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Running head vortex sheet epproximation

+ Abstract

A grid free method for approximating incompressible boundary layers

is introduced. The computational elements are segments of vortex sheets.

' The method is related to the earlier vortex method; simplicitj is

achieved at the cost of feplacing the'Navier—Stokes equations by the

Prandtl boundary layer equations. A new method for generating vorticity

~at boundaries is also presented; it can be used with thé earlier

vortex method. The applications presented include (i) flat plate'prob—

lems, and (ii) a flow problem in a model cylinder-piston assembly,
where the new method is used near walls and an improved version of the
random choice method is used in the interior. One of the attractive

features of the new method is the ease with which it can be incorporated

into hybrid algorithms.



c
©
-
f
2y
o~
# {
<

Chorin, Page 1

Introdpctioﬁ. Some time ago We-infroduced & random vortex method for
solving the Navier-Stokes equations [3]; The idea of the method was to
apprdximate,Euler's_equaticns by analyz;ng the interaction of vortices;
_ and then.introduce the effects.of Viscosity by adding to the motidn'df
the vortices an appropriaie random comﬁonent. This mefhod has been
further developed by, among others, Ashurst [1], Leonard [13], [14],
Meng [18], Rogallo [19] and Shestakov [Zél, (231, and theoreti~
cal analyses have been carried out by Marsden, et al [16],.[17], (8},
amoﬁg others. One attractive feature of the method is the fact that the
tangential boundary condiﬁion is satisfied through  vorticity creation,‘
‘a procedure which mimics an essential physiéal phenomenon (see (21,
{151, [24]).

That method has of course not solved all the outstanding brobléms
of high Reynolds number flow. Some of the;?ifficulties in its use have been: ,
(i) the rate of convergence near boundaries has been slow, and as a re-
§ult.it is not alwsys easy to ensure ﬁhat the results obtained are inde-
pendent of numerical pafameters except possibly when points of separa-
tion cen be determined a priori; (this point has been investi-
tigated by Ashurst [1] and Rogallo [19]); (ii) the dependence of the method on an
assumed structure of the vortices makes ansalysis difficult; in particu-
iar in the three dimensional case (see‘e.g; Leonard [13], [141); (iii) in
interior flow pfoblems, the cost of the calculation can be substantial
(sée e.g. Ashurst [1]); Shestakov [22], [23] has devised a~hybrid method
.which partly overcémes this difficulty, In the present paper, vwe pre- |

sent a new'vorticity generation method which should overcome problem
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(i) above, and introduce a related vgrtex method which solves the

Prandtl boundary leyer equations; in this method the vortex interaction
is not singular, problem (ii) disappears, and the method can be used near
boundaries in hybrid methods. A more general (but much more complicated)
- vortex method for the ana;ysis of three dimensional turbulent boundary

layers will be described elsewhere [T].
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Chorin, Page 3

Principle of the method. ‘The boundary layer equation can be written in

the form (see, e.g. Schlichting [20])

0,E + (w)E = v35E : (1a)
£ = _ayu | ! (1b)
Bxu + Syv = Q (le).

where u = (u; y) is the veloéity; u is tangential to the boundary
éﬁd"y is norm;iitp the boundary, x is the spatial coordinate tan-

. gentiéllto tﬁe boundary and y ié the cbordinate normal to the bound-
ary, & 1is the vorticity and v is.the viscosity. We assume the wall
is at, y = 0 and the fluid fiils out the half-space y=0. The bound~

ary conditions are

u=0 a y=0, . (2a)

u(x, ©) = U_(x) (2b)

Equation (lc) can be integrated in the form

y

viy) = - Bx I u(x, y)dy (3a)
_ 0 ' :

- and equation (1b) yields
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y
u(x, y) =U_ - I E(x, yldy (3b)

. It can be readily seen that if & is known, (3a) and (3b) yield u
and v ,

Consider a collection of N segments_'Si_ of vortex sheets, of
intensities Ei , i=1, ..., N _(i.e., segments of a straight line
such that . u on one side of Si and u on the other side of Si
differ by &, ) . S, is parallel to the x axis, of length h and
center X = (Xi’ yi) . The x component of the velocity of S; du¢

to the presence of the other segments cen be found from (3b), which

yields approximately

T | I |
u; = Ulx,) - 5 Ei"§ £4d, | (La)
where
4 = |xi - le/b . (4b)

and the sum z is over all S such that'

J

y,> vy ema |x - x| <n (ke)

(i.e., O <§dj <1).

The vertical velocity vy of Si can be approximated from (3a)

by
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v, = 4(11 -I)/h | B (5a)
v
where Il and I2 approximate respectively I u(x + n/2, y)dy and
. . " . 0
y .
J u({x - h/2, y)dy , and can be taken as
! .
I = Uu(x; + h/2)y; - §+ Ejdjyj , (51)
I, = U(x, - h/2)y, -g_ g,y s (5¢)
- Wwhere \
at = |x, + n/2 - x [/h ’  . (5d)
J i 3
dj = |xi - h/2 - le/h . (5e)
¥y = min(y,, v,) (5f)
J iy
the sun ] is over all S, such thet 0 < d; <1 and the sum J_

is over @11 S, such that O <;d5 ‘53_}7 Note that the total number

J
of interactions between vortex'sheets is small, in particular in com- |
parison with what happens when point vortex interactions are tasken in-

- to account; one can use sorting algorithms to minimize the number of

decisions involved in carrying out the several summations.
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- Thus, the motion of vorticity described by the equations

a4+ (uV)Eg=0
su+9d v=0
x y
- E=—3u
y
can be approximated by

x?+l = x7 + ku,
i i i
?+l = y° + kv,
i i i

where k 1is a time step, and x?’E xi(nk) . yg = yi(nk) . The effect
of viscosity can then be included by adding to the deterministic formu-
PN + . : .

la for y? 1» a random variable ni drawn from a gaussian distribution

with mean O and variance v¢LVk ; this yields the algorithm

n+l‘

i = x?.+ ku:.L ' (62)
R (6b)
i i i i :

»

The seferal values of n; are independent, ug is given by (U4) and

vi by (5). The boundary conditions u = U°° at y=« and v =0

i

at ¥y 0 are automatically satisfied; the boundary condition u =0

at y 0 will be satisfied through & vorticity creation operation

described in the next section. The statistical error in equation (6)
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can be reduéed by a tagging method which will also be described below;
Note that no grid is introduced; there is no lower bound to fhe
thickness of the boundery layer which can be resolved, and no differ—
~encing occurs acroés the layer. Furthermore, the solution is

‘computed in the (x; y) .plane, without a change of variables, éﬁd thus
it shouid ve easy to match the computed boundary iayer solution with an

inviscid solution outside the layer.
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Vorticigy,creation. In [3] we proposed the following algorithm for

satisfying the tangential boundary condition on u : Let 30 be the
flow satisfying the equation of motion and the boundary condition Vo = 0. If
et the wall ug # 0 , the effect of viscosity will be to create a thin boundary

layer near the wall; the total vorticity in the layer per unit iength of

- the wall is
interior interior
- ou .o
Edy— ay -uo

wall wall

i.e;, one has to create a vortex sheet of strengfh u, pef unit length
of the wall; this vortex sheét is then‘bfoken up into'elements and al-
loﬁed to particiﬁate in the subsequent motion of the fluid. The vor-
ticity elements which cross the wall are lost; their vorticity will of
- course be recreated at the next step} This construction was'éffered in
[4] on heuristic and physical grounds.

To undefstand'the nature of the approximations made, it is adé—

. quate to consider the diffusive part of the equation, i.e., the dif-
fusion equation _dtg = vaig'with the boundary condition u =0 . The

"gaussian random variable provides an apprbximate sqlution of the whole
space heat equation (since fhe Green's function of the heat equation in
the absence of boundaries is a gauséian function), The subsequent deie-
tion of the vortices.which cross the boundéry and the cregtion df‘a
vortex sheet of intensity u serve to project the solution of the
vwhole space.heatrequation on the subspace of functionnghich vanish

outside the domain of integration. This formulation is due to Marsden
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and McCracken; its.convergence as k>0 in the casé of linear equa~

tions such as the heat equation follows from the work of Kato [11],

[12]; (see [8] for a review). It has, however, been observed, compu-
tationally by Ashurst [1], Rogallo [19] and the author, and theorétically in
[8], that the rate of convergence near the wall as k + 0 is slow, in
particular since the boundary condition u = 0 on the wall is satis-

. fied only in the limit. We therefore introduce an alternative to the
earlier approkimation in which the boundary condition is satisfied ex-

actly except possibly at a finite set of velues of t . The solution

£ is‘éxteﬁded 8cross the‘wall at tﬁe beginning of each time by sym-

metry:4 u(x, -y) = -u(x,y) (the wall is assumed to be at y = 0 ) .
(Thﬁgﬁhi(x, -y) = E(x, y) . ) The'whoie space diffusion eqﬁgtion is

then soiVed'by‘é random walk,vfor e time k ', wusing as initial data-the extend~
ed_solﬁtibn; ‘Algorithmically, this is equivalenﬁ to (i) creafing a vor-—

tex sheet of strength 2u, per unit length of the wall, and (ii) bounc-
_in.g;'thos'e vortices whic¢h cross the wall back into the fluid, i.e., if

at the end'of a time step a vortex finds itself gt (xi,vyij s ¥y <'0 ’
itvié_returned to (xi, —yi) . For some analysis, see [8].

Thus, we take points Ql; ey Qﬁ at the wall, such that the dis-

tances QlQ2 s Q2Q3 equal h . At each‘point Qi we evaluate the
tangential velocity ug, using the obvious specialization of equations
(k). We imagine then a vortex sheet of strength 2u; at Q . In order
to have a reasonéble approximation of the diffusion equation at a later
time, we créat at Q,i not a.simple vortex sheet, but some nﬁmber 2 of

sheets such that the intensity of each’is less in absolute value than a
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than a predetermiﬁed § ax .' At fhe next step, thesevsheets will be-
have according ﬁo the laws (6). Some obvious brogremming preceutione
must be taken: the vortex sheets which have Just beenvcreated and are
taking their first random step mey Jump out of the domain of interac-
tion; these should be lost and not bounced.back (or else the wall sym-
metry will be Violated).. One must also ensure that the term '% Ei in
the formula (ka) does not add an unnecessary herizontal~component to
the motion of_fhe newly created sheets.

A substantial reduction in the statistical error can be made by
observing that in equatione (1) diffusien tekes place only in the y
direction; thus the numbers ng used in (6) need be independent of .
each other only when they are used with vortex segments whose centers
lie in a narrow striﬁ perpendicular to the_ﬁall; .This fact can be used
in the following ﬁay: As vortices are created; they are'assigﬁed inte-
ger tags, m being the tag assigne@ to the i-th vortex sheet element.
At each time step, a tag ndt used before is chosen and assigned td one
A at which at least cne ele-

J

ment is created., A seéond tag is then chosen, and assigned to one ele-

vortex element at each boundary point Q

ment at each point where at least two elements are created, etc. The

effect of.the tagging is to piece together the elements created at the
several boundary points. into coherent vortex sheets, with the elements
of each sheet identified by a common tag. When the raﬁdom-numbers .ni
‘are chosen for use in (6), all elements with the same tag are assigned
the same n . This is the variance reduction procedure. In parallel

flows, its effect is to make the sums in:(6) identically zero (and thus

reduce their variance to ‘zero).
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Fléw;past a semi—infinite flat;glate. Consider a semi-infinite flat
platé placed‘on the positive x eaxis, with & fluid of densit&_l occupy-
ing the helf plane y > 0 . At time t = 0 the fluid is impulsively
set in'_motion with velocity U =1 . We sﬁa.ll apply our method to the
analysis of this problem,'with the aim of comparing the results with
the well known solution (see, e.g., Schlichiné [20]).

| .The leading edge singularity presents no difficulty. One fairly
minor detail: requires somé éttgntion:‘we‘are going to compute over a
finite 1éngth'of-tﬁe plate, say for 0 <x S<a . From equations (1) it follows
that no boundary condition need, or indeed may,'be impbsed at x=a,
since the flow of information will be to the rigﬁt ohly. Howevei,'for; '
mula (5a) is essentially a centered difference approximation to
ax j udy , ‘and may give rise to a spuriouis flow of information to the
left. _This is easily corrected by removing all vortex sheets which
éross. X = é and by not allowing those sheets whose centers lie be-
tween - andi a - 2h to have any motion in the ¥y direction - they
are thus merely convected downstream without disturbing the flow to
their left.

The numericel parameters at our disposél_ére h, k, and Emax .

Thé method is unconditionally stable, and h, k are constrained iny
by an accuracy requirement. uk < 0(h) . Convergence should occur as
h y Kk, .gmax all tend to zero. .As these parameters decrease, the
number N of sheets in the calculation incréases, the amount of labor
increases, but both the diffefencing error in (5) and the statistical

error decrese.
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The calculatidns were pursued until a steady state had been
reached maintained for a while. In a steady state, the drag D on the
portion of the plate between O and a point X 'can be evaluated from
the momentum defect formula ([20], page 161)

(-]
D = I wU_ - way ,  u=ulX,y) .
0 .
The integral can be evaluated aé follows: Consider all the vortex
sheets Si sy 1=1,2, ..., M whose centers satisfy Ixi - XJ <Ihv.

Assume that they are numbered in such a way that y1 <y2 <y3 S... S Yy
Then we have approximately

: M
D= iZ ui(Uoo - ui)Ayi ’

where, as before,

M

' 1
w s -kE - T g,
i i 2 7 J=i+1 J,J

with dj = |xJ - X|/h . Ayi =¥;=¥iq1 0 Yo = Q .

1 1~

Define the spanwise Reynolds number

1/2

to first order-in R we have from boundary layer theory
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D = 0.664/VE . | | (7)

In figure 1 we display a typicel vorticity configuration: an 0
corresponds to the center of a vortex sheet. This configuration was
_ -6

obtained with k= .2, h=.2, £ =.l, v=10", & t=5.0.

We found experimentally that for k < 02 , hso0.2, Emax < 0.1
the statistical error domingted éil 6thers; this error deéreases rath-
er slqﬁiyvas the number of ?ortex sheeté increaseé, but will notvbe
.particulérly fréﬁblesome in later applicatidné (see bélow). One meth-
'od fof.réduciné the sﬁatistical error in the steady:state is to average
i%he solution §§er a number of time stéps (see [22], [23]). In figure 2

we display the velocity profile averaged over 20 steps with v = 10;6',

K=.2, n=.2, € .=+l 8.<t<12., compared with the ena-
lytic boundary layer .solution.

The drag computed at Vv = 10—6 ’ .averagéd over 20 steps, is
6.69 x 10—2 , compared with the value 6.64 x 102 obtained from (7):
If one considers the successive values of D at the several time stéps
to be sucéessivé estimates of D , then the standard deviatiqp of the
computed answer is .4 X 1072 . IV = lb_h , the computed value of
D is 0.669 , with stendard duration Woh éompared to the value
D = .664 obtained from (T). In all our calculations, the averages bf
the computed D converged to the exact value ﬁuéh fasfer than one would
have expected from the estimates of the standard deviation. No exﬁlana—
tion is offered, and we do not know how general this effect may be. The

typicel number of vortex sheets in these runs is 100, and a'typical run-

ning time is 20 seconds on the CD6 400 computer at Berkeley.
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 We also ran some problems where U_ was not constant, but had the

form
Um =1~ A sin X .

Due to the occurence of Goldstéin singularities, one does not expect to
be able to compute a steady state solution (see e.g., Stewartson [21],
Dwyer aﬁd Sherman [o]). However, for large enough values of A one ex-
pects separation and reattachment to occur, with a recirculatidn bubble
under the layer. In table 1 wé displéy some values of u obtained with
k=.1, h=.1,'gméx=-.1, vélo"6, A= .2, averaged over 20

steps between t =8 and t =12 . n = y/vxV 1is the usual similarity

variable. I did not find a suitable source of data for comparison.
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TABLE 1

Separation and reattachment
YI 1 .2 30 .5 6
n
.04 .34 .15 .00 -.12 .0k .0k
.08| .38 .17 .02 -.10 -.03 ;os
12| .39 .18 .03 -.09 -.01 .06
.16l .39 .19 .04k -.07 .00 .09
20| .11 .21 .05 -.06 .01 .09
24| k2 .22 .06 -.05- .02 '.io
.28 .4k .23 .07 -.05 02 .i;
.32| .44 .24 .08 -.03 .ok .11
36| .45 .24 .10 -.02 .03 .12
Jho| .46 ;26' .10 -.02 .ok .13
A4 46 .27 .11 -.00 .05 13
8| b6 .28 12 .01 .06 .12
52| .47 b .03 .07 .12

.28

Chorin, Page 15
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A hybrid algorithm involving the random choice method. We now present

a hybrid algorithm in which the method describéd above is used near the
boundaries while a differeht method is used iﬁ the interior of the ao—
mein. The two components'of the algorithm are coupled,vwith the vortex
sheet method serving as vorticity source for the interior methqd. An
earlier hybrid method was presented by Shestakov [221, [23]; iﬁ She-
stakov's work, a vortex blob method was used near ﬁhevwalis, and a dif-
ferénée-method was used in the ipterior, with a coupling based on a
careful use.of spline interpolﬁtion. A hybrid method based on the use
of vortex sheets near walls and vortex monopoleé in the interior will
be presented elsewhere (f?]).

Here we use as interior method a version of the random choice meth-
od for compressible flow ([4], [5]). Thus, not oﬁly do we use differ-
ent methods in the interior and near walis; but we also meke different
assumptions about compréSsibility:' We have viscous incompressible flow
‘near the walls and inviscid éoméressible flow‘in the‘interiof., There
are two sets of reésons for dbihg this: |

(a) Difficulties with interior viscosity. One may well believe
that the numerical viscosity associated with finite difference or fi-
nite element iethOds ﬁas little effect as long as one stays awaY'from
walls, but it is not clégr what "staying away frém walls" should mean.
.The interior method must reach quite close to the walls, and earlier
numerical experiments ([22]) indicate that ﬁnless.the interior viscos-
ity is tightly controlled, e.g., through fhe use of a very fine grid,

the results mey be substantially in error. The random choice method
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"

. has effectively no numerical viscosity and is availeble for use, Since

ali we want to do is demonstrate how the gheet method can be coupled to
"an interior method, the random choice method is acceptable, as long as -
_the Mach number near the walls is reasonably small,

(b) Ulterior motives. The methods of this paper will be used on
the analysis of reacting gas flow, and in that conﬁext it'is believed
that the particularﬁmixture of methods we use here will be mostvappro-
priate. |

The most important problem is to find a reasonable way for coupling
the interiOr ahd;the boundary. If it is known in advance that.the‘boundary
layer will not separate,.this is trivigl, since all one has to ao,is use
tangentialqvelocitieé,from the interior as velocities at-infinity for
the boundary. In interesting cases it is, however, essential fhat the-
layer act on the interior as well, since it may have a~crucial.impact on the
interior flow, and sinée some boundary-interior interaction is needéd td
‘counteract the separatioh Singuiarity. In the exémples described in the
fbllQWing'séction we proceeded as follows: ﬁSed'the tangential velocity
et the wall of the interior calculation asrvelocity at infinity for the

- boundary layer calculation, and impressed upon the interior calcﬁlation
the velocity normal to the wall»indﬁced by the boundary layer calcula-
'tion.v | |

-This_last normal véiocity was computed as follows: let P be a
~ point at the wall, with coordinates .((1 + %)A, Q) . vheré £ ié an
integer and A is the grid size in the interior. The momentum lost

due to the boundary layer above P can be approximated by
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Upaje = L By2;

where @, = |x; - (£ +'%ﬁAl/h . (x

3 = 1 37 93

sheet SJ with vorticity EJ » end the sum is over all SJ

0 < dJ <1, (see equations (5)). Then the normal velocity at x=24A

) is the center of the vortex

such that

is approximately (UR+1/2 - Ul—l/z)/A.' This velocity is imposed on
the interior calculétion.at the boundary.

Thé.programming details of the Joint vortex sheet4fandoﬁ choice
calculation require a somewhat lengthy explanation, mostly because qf
the relative complexity of the random choice program. The équations
solved in the inﬁerior are the usual Euler'equatiohs. .As descriﬁed in
[5], one full step éf the random choice'method for these équations con-

sists of four quarter steps of length k/2 . Let !2 = v(iA, Jb, nk)

»J
denote the solution vector. At the beginning of the step we have »XE 3
. . 3
. . . . ' : n,l/4
_for 1? J 1ptegers. In the first ouarter step we compqte !i+l/2,j s

. . i R n,l/2
in the second quarter step wescompute ¥i+l/2,j+l/2 .
n,3/h4

- quarter step we compute V.

=i,§+1/2 °
compute Zz+§ . To obtain one new value for the vector Y &t a point
3 .

in the third

and in the last quarter step we

one solves & Riemann problem, ﬁhich is them sampled. The sampling

" strategies have been described in some detail in [6]; they involve
"random" numbersv 8 . A Riemann problem is an initial value probie@
fbr the equations of motion in.which the initial data are diécontinudus.
Its solution contains a slip liﬁe; i.e., & line which divides the fluid
initially to the left of the discontinuity from the fluid initially to

the right of the discontinuity.
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Near the boundary, symmetry cénditions can be used tq formuiate
the appfopriaté Riemann problems. 'In_the prégfam uéed here, which is a
refinement of the earlier ﬁrogram [5],,tﬂe physical domain is npt él—
ways fi#éd with respect to the computational grid. All‘poinfs ére iden-~
tified by an integer tag q , with q = i for points in the interior
of the domain and q = 0 for points. ocutside the domain. g 1is treated
as a passive Quantity and propagates as part of fhe calculation, depend-
ing on‘the‘relative-position of the slip lineand the sampling péint.
If q=0 for both initial states in fhe:Riemann problem-hoﬁcalcula—
tion need be carried out. If q = 1 for both states we have an inte-
ridr:éoint, énd if we have two distinct values of q the Boundary sym-
metry.cénditions are applied. As already partly describéd.in [6];»if‘thé>"ran—
dom" nﬁmbers ® are picked so that the first two are 2‘6 » the next two
<0, etc., and if the bottom and lefﬁvboundaries coincide with

lines x=JIA, y=JdA, I, J integers, while the top and right

boundaries coincide with lines x = (I + %)A s ¥ =\(J'_+ %JA . 1,

J' ‘integers, then stationary boundaries remain stationary on the grid.
If the boundaries are chosen as we have Just described, then one bound-
ary layer calculation step must be madevevery two interior quarter steps,
and the conditions at infinity for ﬁhe boundary.layer Calculétion can be
updated and fhe normal velocity imposed on the inteiior only once every
four quarter.steps (i.e.,.once‘per whole interior step), the updating oc-
curring whenever:appropriate boundary data from the interior calculation
are available. It should be obvious that the fact that the random choice

method does not smear out vortex sheets immediately is helpful to the

\
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success of the method.
The accuracy of the method has not yet been discﬁssed. Ciearly,

our matching procedure is based on the assumption that the boundary

layer thickness is at most comparable with A , i.e., 'A.>=O(R-l/2)

?
where R 1is & Reynolds number based on an interior 1ength scale and

velocity. The accuracy of the interior Glimm method is at best 0(A)

(seev[h]). Thus, the over-all qccufacy is at best 0(A) + O(R—l/g)

This is not a surprising estimate (see, e.g., [4] for a discussion),
and if it can be shown to be realistic and to hold uniformly in 'R_l/e .
it would represent a substantial'achievement. There are of course no

probiems with stability, since each component of the hybrid method is

unconditionally stable.
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Application to two dimensional flow behind a piston. We now present an
application of the preceding ;lgﬁrithm, an application fof which the ran-
dom choice interior methodvis'well-suiﬁed. We do so with words of cau-.
tion. The belief that our method can handle pfoperly thé separation of
a boundéry layer is based more on hope than on hard enalysis. The ac~
curacy of the-:results is difficult'to gauge through the inevitabie sta-
tistiﬁai error. There are no_reliable data for ceomparison. The best"
that can be said is that the results.are plausible, consistent with |
earlier work‘oﬂlsimilar problems (see, e.é., Bernard [3]), and cohsist-
entvélsofwith the'ﬁelief thet the effective diffusion of the scheme
equalglthe nominal diffusion (i.e.; that tﬁe cémputational results cor-
respond to -the Reynolds number explicitly imposed on the calculation and
not toya;ggmerical_ Reynolds numbe: intrinsic to the method). -

‘ Th¢ flow configuraﬁion is shown in fiéure 3. A piston is fushed
wtih velocity . V into a chamber filled with gas. The iﬁitiai density
of the. gas is p =1 , the initial éressure is p=1, and the gas
is initially at.rest. The gas is assumed to be berfect, i.e., the in-

ternal energy is given by £ = (p/p)/(y - 1) , where ¥ = i.hv, The
sound speed is c¢ = /?573 . The viscosity 'V is measured in units‘in
which /575 =1 qnd the initial length of the chamber is Vl . Thus,A

- the Reynolds numbef,based on the velo;ity et infinity seen by the bound-
ary layer and on the:leggth of‘the‘chamber ié Ry = v/v ;A Cére is
taken to ensure that the Mach number V/c << 1 . V=0 for t <O,
'and assumes & constant value.for vt >0 . The displacement of the pis-

ton . is X =Vt .



Chorin, Page 22

In the absence of viscosity we would have a shock wave propagating
into the gas, reflected at the far end, and then bouncing back and
forth between the piston and the back wall. The random choice method
would compute this flow with infinite resolution (see the analysis in
[6]). Call this flow ‘u

o = (ugs 0) -

The effect of V¥ 0 is to superimpose on u. a roﬁatibnal flow

0
with the‘gene?al pattern depicted in fig. 3. The béundary layers on the
topfand bottom are slowed down and deflect some fluid at the piston to-
wards the interior of the domain (see, e.g., [3]). We exhibit a calcu-
lation made with Vv = lO_‘3 . This relatively high value of V is |
picked because the rotational effecf we wishrterxhibit deéreaées with
V . It is clear that as Vv decreases our method doés not break down.
This VvV is as large as wé could pick and still observe the constraint -
A = 0(vt) . The results below must be considered while keeping in mind
(i) the built-in fluctuations of the random choice méthod, (ii) the
fact that the edge of the calculation is the edgé of the boundary layer
and not the béundary of the domain,'ana (iii) the coarseness of the in-
terior grid.

The folloﬁing parameters were,ﬁsed: 'iﬁ the interior, A = 1/13 .,
" k/A = 0.6 » My = 7, m,=3 (these integers are used in the generation of ‘i
the numbers 6 which definé the algorithm,'seg {5}]). 1In the boundary layer, -
h = 2A = 2/13 and gmax = V/5 . The results displayed are at t = Lok
= 1.846 , when X = displacement of the piston = .3692 . In tables 2

and 3 we displsy the values of the horizontal and vertical velocity

fields. In figure 4 we plot the vectors (U - uy s v) , i.e., the
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difference between the flow vwith V=0 and the flow with vF#EO .
The correct rotational behavior can be observed. In:FigureAS we dis-
play the poéitions of the vortex centers in the lbwer half of the do-
main. At this %t , there are 531 vcrtex sheets in fhe calculations,
and the total computlng time has been 9 minutes on a CDC 6h00 computer
It must be p01nted out that the boundary layer thlckness is O(/Ff )
i.e., it varies from 0 to O(EE , &nd that we are considering ef-
fects induced by the_intefnal mechanics of the bcundary‘layer, which

would normaily require a fine grid for adequate resolution.
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0
1/13|
2/13]
3/13|
4/13|
5/13|
6/13|
7/13|
8/13|
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Horizontal velocity behind a piston, t = 1.846

5/13 6/13 7/13 .8/13 9/13 10/13 11/13 12/13 1

.20

.20
20
.20
20
20
.20
.20
.20
.20
.20
.20
.20

.20

12
.20
.18
.25
.22
.20
.22
22
.19
.21
.23

A7

19

.21

.13
.26
.18
.22
.20
.20
.23
.22
.20
.19
.24
.21
.23
.16 -

21 .18 .20
22 A7 .22

27 .2k .20

.21 .23 .20
.20 .19 .19

.22 .22 .20

.20 .18 .19
.21 .19 ;19
19 .20 .19
.18 .18 . .18
.22 .23 .21
.25 | .18 .16

‘19" 27 .25

21 .21 .22

.20
.18
.20
.19
.19

.19

.19
.19
.19
.18
17
.19
.19

.22

.22 .03
A7 -.01
21 .03
AT .01
AT 00
.20 .02
19 .02
.19 .00
21 .00
.19 -.00
AT .00
18  -.05
JA3 -.03
.0l -.03"



Vertical velocity behind & piston,

TABLE 3

t = 1.846
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5/13  6/13 7/13 .8/13 9/13 10/13 11/13 12/13 1

ol
-.12
.02

.02

-. 04

- -.09

~.0b4

.03

-.01 -

-.01

.01

.oh

.01

.08

.12

.13

-.Oh
COO

-.04

01

-.00

'5.03

.03

-.03

-.01

.01

ok

.04
-.0k

-.01

o1

.01

-.02

.01

-.01

- -.03

~.01

-.01

-.01

-.03

-.07 -

-.09

-.02

.03

.02

- 03

.03

-.03

' 'Ol

.';OO

.02 .

-.Ol

.02

.03

.02

.03
-.01
.01
-.02.
-.0L
v".'02,
-.01
.03
..'01
.00
02

.00

-.01"

-.0b

N

.03
.00
.02

~.00
.00,
.01
.02
.01
.02

-.03

-.02

-.05.

-.06

.01
.06

.01

-.00

~.02

-.01

-.07

-003

.01
.0l
.03
~.00
.01
-0k

.01

-.02

-.03

=07

-.Ol

—.01

L0

.01

-.02

-.01 -

.01

-.02
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"Conclusion. - We have presented a grid free method for studying boundary
layers. The two main features of this method are: (i) the use of vor-
tex sheet segments as computational elements, and (ii) a new method for
generating vorticity at walls. It is expected.that this elgorithm will
be mainly useful as a component of hybrid'methods; and an example of .
such uée'has been given.

One can see that an algorithm based on non-rotating vortex sheets '
cannot reproduce the effects characteristic qf turbulent boundary layefs'
(see, e.8., [7]). Turbulence effects can conceivably be taken into ac-
count by replacing the molecular viscosity vwhich determines the vari-
eance of the random variable n by an eddy viscosity.v However, ih later
' wérk we expect to use our present algorithm as a vorticity generation
- method for a hybrid method, in{ﬁhich the main part of the calcﬁlation
will be carried out through the use of vortex eleﬁents of more elaborate
stfuctﬁre; the sheets will be effectively relégated to the viscous sub—>
layer. |

It is obvious that a price must be paid for the removel of numer-
ically induced wiscosity in our method, and this price is statistical
efror. It is hoped that there will be a substantial number of applica—'
tions in which such price is worth paying. It is also obvioﬁs that the

present method generalizes trivially to three dimensional flows.
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LIST OF FIGURE CAPTIONS

'Vortex sheets over a flat plate.

Horizontal velocity in Blasius flow‘.
Piston—Cyiinder flow configuration.
Velocity in the piston-cylinder flow.

Vorticity in the boundary layer of the piston-cylinder flow.
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Note: The programs used to obtain the results above are available from

the author.

Acknowiedgment: I would like to thank Dr. A. Leonard and Professors

M, McCracken and J. Marsden for many helpful discﬁssions and comments.



| (1]

(2}

[3]
(4]
(5]
(6]
(71

(81

L9l

[10]

[11]

[12]

[13]
[14]
[15]

[16]
[17]

18]
[19]
[20]

[21]

Chorin, Page 29

Ashurst, W, Numerical s1mulat10n of turbulent mlx;_gflayer gxy
namics, to appear.

Batchelor, G.K. An introduction to fluid mechanics, Cambr1dge
University Press, 1967. ‘ »

Bernard, P.S. Ph.D. Thesis, Berkeley, 1977.
Chorin, A.J. J. Fluid Mech., 57, 485 (1973).

. Jd. Comp. Phys., 22, 517 (1976).

J. Comp. Phys., to appear.

. Numerical study of turbulent boundary layer struc-
ture, to appesar.

Chorin, A.J., T.J.R. Hughes, M.T. McCracken and J.E. Marsden.
Product formulas and numerical algorithms, to appear in Adv. in Math.

Dwyer, H. and F.S. Sherman. To appear.

Glimm, J. Comm. Pure Appl. Math., 18, 697 (1965).

Kato, T. Trotter's product formula for an arbitrary p@ir of self-
adjoint contraction semi-groups, to appear.

Kéto, T. manuscript, 1976.

Leonard, A. In Proc. Lth Int. Conf. Num. Meth. Fluid Dynamics,
Springer (1975). ‘

. In Proc. 5th Int. Conf. Num. Meth. Fluid Dynamics,
Springer (1977). o

Lighthill, M.J. In Laminar boundary layers, L. Rosenfeld (ed. ),
Oxford Univ. Press, London (1965)

Marsden, J. Bull. Am. Math. Soc., 80, 154 (197k).

S

Applicationé of global analysis to methematical:
physics, Publish or Perish, Boston (197k4).

Meng, J.C.S. The physics gz'vortex ring evolution, to appear
Rogallo, R, Personal communication (1975).

Schlichting, H. Boundary leyer theory, McGraw Hill (1960).

Stewartson, K. Quart. J. Mech. Appl. Math., 11, 399 (1958).



Chorin, Page 30

[22] Shestakov, A. Ph.D. Thesis, Berkeley Mathematics Dept., 1975.

[23] . In Proc. 5th Int. Conf. Num. Meth. Fluid Dyn.,

Springer (197T).

[24] Willmerth, W.W. Adv. in Applied Mech., 15, 159 (1975).




D0 g ud 48U 2265

Chorin, Page 31

List of Symbols.

3 9 'dg_ smoothing coefficient
h  sheet length

I, 12 , . integrals

I s J ., I J' integers

k .time step

t time

Q » Q2v, ceel points

R Reynolds number

u velocity vector
ul ui N vl vi R veloc1ty components
N ‘wall velocities

 U°° velocity at infinity

n '+1/2 ’ .
Vi,j s V?+l/2}3 , solution vector
' n n .
X 5 Y xi., yi o Xy s .yi s coordinates
y; displacement

X wall position
v, (nabla) grid operator
A (delta) interior grid size

v (nu) viscosity -



n,on (eta) random numbers

£ (xi) vorticity
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(cap sigma) sums
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