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Running head vortex sheet approximation 

· Abstract 

A grid free method for approximating incompressible boundary layers 

is introduced. The computational elements are segments of vortex sheets. 

The method is related to the earlier vortex method; simplicity is 

achieved at the cost of replacing the Navier-Stokes equations by the 

Prandtl boundary layer equations. A new method for generating vorticity 

at boundaries is also presented; it can be used with the earlier 

vortex method •. The applications presented include (i) flat plate prob-

lems, and (ii) a flow problem in a model cylinder-piston assembly, 

where the new method is used near walls and an improved version of the 

random choice method is used in the interior. One of the attractive 

features of the new method is the ease with which it can be incorporated 

into hybrid algorithms. 

- i -
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Introduction. Some time ago we introduced a random vortex method for 

solving the Navier-Stokes equations [3]; The idea of the method was to 

approximate Euler's equations by analyzing the interaction of vortices, 

and then introduce the effects of viscosity by adding to the motion of 

the vortices an appropriate random component. This method has been 

further developed by, among others, Ashurst [1], Leonard [13], [14], 

Meng [18], Rogalla [191 and Shestakov [22}, [23}, and.theoreti-

cal analyses have been carried out by Marsden, et al [16], [lj], [8], 

among others. One attractive feature of the method is the fact that the 

tangential boundary condition is satisfied. through vorticity creation, 

a procedure which mimics an essential physical phenomenon (see [2], 

[151, {24}). 

That method has of course not solved all the outstanding problems 

of high Reynolds number flow. Some of the difficulties in its use have been: 

" (i) the rate of convergence near boundaries has been slow, and as are-

sult it is not always easy to ensure that the results obtained are inde-

pendent of numerical parameters except possibly when points of separa-

tion can be determined~ priori; (this point has been investi-

tigated by Ashurst {1] and Rogalla [19]); (ii) the dependence of the method on an 

assumed structure of the vortices makes analysis difficult, in particu­

lar in the three dimensional case (see e.g. Leonard {13], [14]); (iii) in 

interior flow problems, the cost of the calculation can be substantial 

(see e.g. Ashurst[ll);Shestakov [22], [23] has devised a hybrid method 

which partly overcomes this difficulty. In the present paper, we pre-

sent a new vorticity generation method which should overcome problem 
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( i) above, and introduce a related vortex method which so1 ves the 

Prandtl boundary layer equations; in this method the vortex interaction 

is not singular, problem (ii) disappears, and the method can be used near 

boundaries in hybrid methods. A more general (but much more complicated) 

· vortex method for the analysis of three dimensional turbulent boundary 

layers will be described elsewhere [7]. 
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Principle of the method. The boundary layer equation can be. written in 

the form (see, e.g. Schlichting [20]) 

2 
att,; + (u. 'V)~ = va E,; (la) 

-- y 

E,; = -a u (lb) y 

a u + a v = 0 (lc). 
X y 

where ~ = (u, v) is the velocity~ u is tangential to the boundary 

and v is normal to the boundary, x is the spatial coordinate tan-

gential to the boundary and y is the coordinate normal to the bound-

ary, ~ is the vorticity and v is the viscosity. We assume the wall 

is at. y = 0 and the fluid fills out the half-spP.ce y ~ 0 • The bound-

ary conditions are 

u = 0 at y ~ 0 , (2a) 

(2b) 

Equation (lc) can be integrated in the form 

y 

v(y) - - a 
X J u(x, y)dy (3a) 

0 

and equation (lb) yields 
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u(x, y) = U~ fy ~{x, y)dy (3b) 
00 

It can be readily seen that if ~ is known, (3~) and (3b) yield u 

and v • 

Consider a collection of N segments_ S. of vortex sheets, of 
~ 

intensities F.. 
~ 

i = 1, ••• , N (i.e. , segments of a straight line 

such that. u on one side of S. and u on the other side of S. 

differ by ~. ) . 
~ 

S. 
~ 

~ ~ 

is parallel to the x axis, of length h and 

The x component of the velocity of S. due 
-~ 

to the presence of the other segments can be found from (3b), which 

yields approximately 

where 

and the sum L is over all 

(i.e., 0 < dj < 1 ) • 

The vertical velocity vi 

by 

(4a) 

(4b) 

such that 

(4c) 

of S. 
~ 

can be approximated from (3a) 
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v. = -(I - I )/h 
~ 1 2 ( 5a) 

where approximate respectively JY u(x + h/2, y)dy 

0 

and 

y 

f u(x - h/2, y)dy , and can be taken as 

0 

where 

the sum I+ is over all sj suc!-1 that 

is over all sj such that 0 < d- < 1 
j 

. 
of interactions between vortex sheets is 

(5b) 

(5c) 

(5d) 

(5e) 

(5f) 

+ L 0 < d < 1 and the sum 
J 

Note that the total number 

small, in particular in com-

parison with what happens when point vortex interactions are taken in-

to account; one can use sorting algorithms to minimize the number of 

decisions involved in carryin'g out the several summations. 
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Thus, the motion of vorticity described by the equations 

can be approximated by 

d+~ + (~ V)~ = 0 

a u + a v = o 
X y 

n+l n x. = x .. + 
1 1 

n+l n 
yi = yi + 

~ = - a u y 

ku. 
1 

kv. 
1 

where k is a time step, and x~ = x. (nk) , y~ = y. (nk) . The effect 
1 1 1 1 

of viscosity can then be included by adding to the deterministic formu-

n+l la for y. 
1 

a random variable drawn from a gaussian distribution 

with mean 0 and variance /4Vk ; this yields the algorithm 

n+l n ku. xi = X,·+ 
1 1 

( 6a) 

n+l n + kv. + n. yi = yi . 
1 1 

(6b) 

The several values of ni are independent, u. is given by (4) and 
1 

v. by ( 5). The boundary conditions u = u at y=oo and v = 0 
1 00 

at y = 0 are automatically satisfied; the boundary condition u = 0 

at y = 0 will be satisfied through a vorticity cre~tion operation 

described in the next section. The statistical error in equation (6) 
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can be reduced by a tagging method which will also be described below. 

Note that no grid is introduced; there is no lower bound to the 

thickness of the boundary layer which can be resolved, and no differ-

encing occurs across the layer. Furthermore, the solution is 

computed in the (x, y) plane, without a change of variables, and thus 

it should be easy to match the computed boundary layer solution with an 

inviscid solution outside the layer. 
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Vorticity creation. In [31 we proposed the following algorithm for 

satisfying the tangential boundary condition on u : Let ~O be the 

flow satisfying the equation of motion and the boundary condition v0 = 0 . If 

at the wall u0 * 0 , the effect of viscosity will be to create a thin boundary 

layer near the wall; the total vorticity in. the layer per unit length of 

the wall is 

interior interior I E; dy = I ~; dy = uo 
wall Wall 

i.e., one has to create a vortex sheet of strength u0 per ~it length 

of the wall; this vortex sheet is then broken up into elements and al-

lowed to participate in the subsequent motion of the fluid. The vor-

ticity elements which cross the wall are lost; their vorticity will of 

. course be recreated at the next step. This construction was offered in 

[4} on heuristic and physical grounds. 

To understand the nature of the approximations made, it is ade-

quate to consider the diffusive part of ·the equation, i.e., the dif-

fusion equation d E; = va 2
E; with the boundary condition u = 0 • 

t y 
The 

gaussian random variable provides an approximate solution of the whole 

space heat equation (since the Green's function of the heat equation in 

the absence of boundaries is a gaussian function), The subsequent dele-

tion of the vortices which cross the boundary and the creation of a 

vortex sheet of intensity u serve to project the solution of the 

whole space heat equation on the subspace of functions which vanish 

outside the domain of integration. This formulation is due to Marsden 
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and McCracken; its convergence as k + 0 in the case of linear equa-

tions such as the heat equation follows from the_ work of Kato [11], 

[12], (see [8] for a review). It has, however, been observed, compu-

tationally by Ashurst [1], Rogallo [19] and the author, and theoretically in 

l8], that the rate of convergence near the wall as k + 0 is slow, in 

particular since the boundary condition u = 0 on the wall is satis-

fied only in the limit. We therefore introduce an alternative to the 

earlier approximation in which the boundary condition is satisfied ex-

actly except possibly at a finite set of values of t . The solution 

t.: is extended across the wall at the beginning of each time by sym-

metry:· _!!(x, -y) = -_!!(x,y) (the wall is assumed to be at y = 0 ) • 

(Thu; t{x, -y) = ~(x, y) • The whole space diffusion equation is 

then solved by a random walk, for a time k , using as initial data the extend-

ed solution~ Algorithmically, this is equivalent to (i) creating a vor-

tex sheet of strength 2u
0 

per unit length of the wall, and (ii) bounc­

ing'those vortices which cross the wall back into the fluid, i.e., if 

at the end of a time step a vortex finds itself at (xi, yi), 

it1s returnedto (x., -y.). For some analysis, see [8]. 
1 1 

y. < 0 ' 
1 

Thus, we take points Q
1

, ... , ~ at the wall, such that the dis­

tances Q1Q2 , Q2Q
3 

equal h • At each point Qi we evaluate the 

tangential velocity u0 , using the obvious specialization of equations 

(4). We imagine then a vortex sheet of strength 2u0 at Qi • In order 

to have a reasonable approximation of the diffusion equation at a later 

time, we creat at Qi not a simple vortex sheet, but some number of 

sheets such that the intensity of each is less in absolute value than a 
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than a predetermined ~max . At the next step, these sheets will be­

have according to the laws (6). Some obvious programming precautions 

must be taken: the vortex sheets which have just been created and are 

taking their first random step may jump out of the domain of interac-

tion; these should be lost and not bounced back (or else the wall sym-

metry will be violated). 1 
One must also ensure that the term 2 ~i in 

the formula (ha) does not add an unnecessary horizontal component to 

the motion of the newly created sheets. 

A substantial reduction in the statistical error can be made by 

observing that in equations (1) diffusion takes place only in the y 

direction; thus the numbers ni used in (6) need be independent of 

each other only when they are used with vortex segments whose centers 

lie in a narrow strip perpendicular to the. wall .. This fact can be used 

in the following way: As vortices are created, they are· assigned inte-

ger tags, m. being the tag assigned to the i-th vortex sheet element. 
l. 

At each time step, a tag not used before is chosen and assigned to one 

vortex element at each boundary point Qj at which at least one ele:­

ment is created. A second tag is then chosen, and assigned to one ele-

ment at each point where at least two elements are created, etc. The 

effect of the tagging is to piece together the elements created at the 

several boundary points. into coherent vortex sheets, with the elements 

of each sheet identified by a common tag. When the random numbers ni 

are chosen fo~ use in (6), all elements with the same tag are assigned 

the same n • This is the variance reduction procedure. In parallel 

flows, its effect is to make the sums in (6) identically zero (and thus 

reduce their variance to·zero). 
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Flow past a semi-infinite flat plate. Consider a semi-infinite flat 

plate placed on the positive x axis, with a fluid of density 1 occupy-

ing the half plane y > 0 • At time t = 0 the fluid is impulsively 

set in motion with velocity U
00 

= 1 • We shall apply our method to the 

analysis of this problem, with the aim of comparing the results with 

the well known solution (see, e.g., Schliching [20]). 

The leading edge singularity presents no difficulty. One fairly 

minor detal.l· requires some attention:' we are going to compute over a 

finite length of the plate, say for 0 ~x ~a. From equations (1) it follows 

that na boundary condition need, or indeed may, be imposed at x = a 

since the flow of information will be to the right only. However, for-

mula (5a) is essentially a centered difference approximation to 

a f udy , and may give rise to a spurious flow of information to the 
X· 

left. This is easily corrected by removing all vortex sheets which 

cross x = a and by not allowing those sheets w~ose centers lie be-

tween a and a - 2h to have any motion in the y direction - they 

are thus merely convected downstream without disturbing the flow to 

their left. 

The numerical parameters at our disposal are h k ' and f,; max 

The method is unconditionally stable, and h, k are' constrained only 

by an accuracy requirement uk ~ O(h) Convergence should occur as 

h ' k f,;max all tend to zero. As these parameters decrease, the 

number N of sheets in the calculation increases, the amount of labor 

increases, but both the differencing error in (5) and the statistical 

error decrese. 
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The calculations were pursued until a steady state had been 

reached maintained for a while. In a steady state, the drag D on the 

portion of the plate between 0 and a point X can be evaluated from 

the momentum defect formula ([20], page 161) 

00 

D = I u(UQO u)dy , 

0 

u = u(X, y) • 

The integral can be evaluated as f'ollows: Consider all the vortex 

sheets S. , i = 1, 2, ••• , M whose centers satisfy lx. -XI < h • 
1 1 

Assume that they are numbered in such a way that Y 1 ~ Y 2 ~ Y 3 .~ · • • ~ Y M • 

Then we have approximately 

whe~e, as before, 

with 

M 
D= l 

i=l 
u . (U - u . ) t.y. , 
~ QO ~ 1 

1 M 
u. = U (X.) - 2 ~i - l ~jdj , 

1 00 1 j=i+l 

t.y. = y. - y. 1 , Yo= o . 
1 1 1.-

Define the spanwise Reynolds number 

to f'irst order in -1/2 R we have from boundary layer theory 
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D = 0.664//R (7) 

In figure l we display a typical .vorticity configuration: an 0 

corresponds to the center of a vortex sheet. This configuration was 

obtained with k = .2 , h = .2 ' E;; = .l ' max 
\) = l0-6 

' at t = 5. 0 • 

We found experimentally that for k ~ 0.2 , h ~ 0.2 , E;; ~ 0.1 
max 

the statistical error dominated all others; this error decreases rath-

er slowly as the number of vortex sheets increases, but will not be 

particularly troublesome in later applications (see below). One meth-

· od for reducing the statistical error in the steady state is to average 
.. ., . 
the solution over a number of time steps (see [22], [23]). In figure 2 

\) = 1~.;.6 we display the velocity profile averaged over 20 steps with 

k = .2 , h = .2 , E;; = .l , 
max 

8. ~ t ~ 12. compared with the ana-

lytic boundary layer solution. 

The drag computed at \) = 10-6 
' averaged over 20 steps, is 

6.69 x 10-2 , compared with the value 6.64 x 10-2 obtained from (7); 

If one considers the successive values of D at the several time steps 

to be successive estimates of D then the standard deviation of the 
I 

computed answer is .4 x 10-2 At V = 10-
4 

the computed value of 

D is 0.669 , with standard duration .04 , compared to the value 

D = . 664 obtained from ( 7). In all our calculations, the averages of 

the computed D converged to the exact value much faster than one would 

have expected from the estimates of the standard deviation. No explana-

tion is offered, and we do not know how general this effect may be. The 

typical number of vortex sheets in these runs is 100, and a typical run-

ning time is 20 seconds on the CD6 400 computer ~t Berkeley. 
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We also ran some problems where u 
00 

was not constant, but had the 

form 

U
00 

= 1 - A sin TIX , 

Due to the occurence or Goldstein singularities, one does not expect to 

be able to compute a steady state solution (see e.g., Stewartson [21], 

Dwyer and Sherman [9}), However, for large enough values of A one ex-

pects separation and reattachment to occur, with a recirculation bubble 

under the layer. In table 1 we display some values of u obtained with 

k = .1 , h = .1 , ~max = .1 , V = 10-
6 , A = .2 , averaged over 20 

steps between t = 8 and t = 12 . n = y/~ is the usual similarity 

variable. I did not find a suitable source of data for comparison. 
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., 

TABLE 1 

Separation and reattachment 

~I .1 .2 .3 ' .4 ·5 .6 
- -

.o41 .34 .15 .00 -.12 -.04 .04 

• 081 .38 .17 .02 -.10 -.03 .05 

.121 .39 .18 .03 -.09 -.01 .06 

.161 .39 .19 .04 -.07 .00 .09 

.2ol .41 .21 .05 -.06 .01 .09 

.241 . 42 .22 .06 -.05 . .02 .10 

.281 .44 .23 .07 -.05 .02 .11 

.321 .44 .24 .08 -.03 .04 .11 
•.' > •:, • 

. 361 .45 .24 .10 -.02 .03 .12 
~ 

.4ol .46 . 26· .10 -.02 .04 .13 

.441 .46 .27 .11 -.00 .05 .13 

. 481 .46 .28 .12 .01 .06 .12 

.521 .47 .28 .14 .03 .07 .12 
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A hybrid algorithm involving the random choice method. We now present 

a hybrid algorithm in which the method described above is used near the 

boundaries while a different method is used in the interior of the do­

main. The two components of the ale;orithm are coupled, with the vortex 

sheet method serving as vorticity source for the interior method. An 

earlier hybrid method was presented by Shestakov [22], [23); in She­

stakov's work, a vortex blob method was used near the walls, and a dif­

ference method was used in the interior, with a coupling based on a 

careful use of spline interpolation. A hybrid method based on the use 

of vortex sheets near walls and vortex monopoles in the interior will 

be presented elsewhere ([7]). 

Here we use as interior method a version of the random choice meth­

od for compressible flow ([4), [5]). Thus, not only do we use differ­

ent methods in the interior and near walls, but we also make different 

assumptions about compressibility: We have viscous incompressible flow 

near the walls and inviscid compressible flow in the interior .. There 

are two sets of reasons for doing this: 

(a) Difficulties with interior viscosity. One may well believe 

that the numerical viscosity associated with finite difference or fi­

nite element methods has little effect as long as one stays away· from 

walls, but it is not clear what "staying away from walls" should mean. 

The interior method must reach quite close to the walls, and earlier 

numerical experiments ([22]) indicate that unless the interior viscos­

ity is tightly controlled, e.g., through the use of a very fine grid, 

the results may be substantially in error. The random choice method 
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has effectively no numerical viscosity and is available for use. Since 

all we want to do is demonstrate how the sheet method can be coupled to 

an interior method, the random choice method is acceptable, as long as 

the Mach number near the walls is reasonably small. 

(b) Ulterior motives. The methods of this paper will be used on 

the analysis of reacting gas flow, and in that context it is believed 

that the particular mixture of methods we use here will be most appro-
I 

priate. 

The most important problem is to find a reasonable way for coupling 

the interior and:·the boundary. If it is known in advance that the boundary 

layer will not separate, this is trivial, since all one·has to do is use 

tangential velocities from the interior as velocities at infinity for 

the boundary. In interesting cases it is, however, essential that the· 

layer act on the interior as well, since it may have a crucial impact on the 

interior flow, and since some bounda~-interior interaction is needed to 

counteract the separation singularity. In the examples described in the 

following section we proceeded as follows: used the tangential velocity 

at the w,all of the interior calculation as velocity at infinity for the 

boundary layer calculation, and impressed upon the interior calculation 

the velocity normal to the wall induced by the boundary layer calcula-

tion. 

·This last normal velocity was computed as follows: let P be a 

point at the wall, with coordinates ((i + ~)~, 0) :where i is an 

integer and ~ is the grid size in the interior. The momentum lost 

due to the boundary layer above P can be approximated by 
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where is the center of the vortex 

sheet Sj with vorticity ~j , and the sum is over all . Sj such that 

0 < dj < 1 , (see equations ( 5)). Then the normal velocity at x = M. 

is approximately (U~+l/2 - U~_112 )/~ . This velocity is imposed on 

the interior calculation at the boundary. 

The programming details of the joint vortex sheet-random choice 

calculation require a somewhat lengthy explanation, mostly because of 

the relative complexity of the random choice program. The equations 

solved in the interior are the usual Euler equations. As described in 

[5], one full step of the random choice method for these equations con-

sists of four quarter steps of length k/2 . Let V~ j = V(i~, j~, nk) 
"""l., -

denote the solution vector. At t.he beginning of the step we have ~ j 
--:1, 

. · n 1/4 
for i, j integers. In the f1rst ouarter step we compute ~~1;2 ,j , 

n,l/2 · 
in the second quarter step we compute .Y..:i.+l/2 ,j+l/2 , in the third 

n,3/4 
quarter step we compute ~,j+l/2 and in the last quarter step we 

compute vn+l 
-i ,j 0 

To obtain one new value for the vector ~ at a point 

one solves a Riemann problem, which is them sampled. Tbe sampling 

strategies have been described in some detail in (6]; they involve 

"random" numbers 8 • A Riemann problem is an initial value problem 

for the equations of motion in which the initial data are discontinuous. 

Its solution contains a slip line; i.e., a line which divides the fluid. 

initially to the left of the discontinuity from the fluid initially to 

the right of the discontinuity. 

.. 
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Near the boundary, symmetry conditions can be used to formulate 

the appropriate Riemann problems. In the program used here, which is a 

refinement of the earlier program [5] ,, the physical domain is notal­

ways fixed with respect to the computational grid .. All points are iden­

tified by an integer tag q , with q = l for points in the interior 

of the domain and q = 0 for points outside the domain. q is treated 

as a passive quantity and propagates as part of the calculation, depend­

ing on the relative position of the slip line and the sampling point. 

If q = 0 for both initial states in the Riemann proble~ no calcula­

tion need be carried out. If q = l for both states we have an inte­

rior point, and if we have two distinct values of q the boundary sym-

metry conditions are applied. As already partly described in [ 6] ~· if the "ran-

dom" numbers 8 are picked so that the first two are ~ 0 the next two 

~ 0 , etc., and if the bottom and left boundaries coincide with 

lines x = I6. y = J6. , I , 

poundaries coincide with lines 

J integers, while the top and right 

x =(I' + ~)!:,. , y ='(J 1 
+ ~)!:,. , I' 

J' integers, then stationary boundaries remain stationary on the grid. 

If the boundaries are chosen as we have just described, then one bound-

ary layer calculation step must be made every two interior quarter steps, 

and the conditions at infinity for the boundary layer calculation can be 

updated and the normal velocity imposed on the interior only once every 

four quarter steps (i.e., once per whole interior step), the updating oc­

curring whenever appropriate boundary data from the interior calculation 

are available. It should be obvious that the fact that the random choice 

method does not smear out vortex sheets immediately is helpful to the 
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success of the method. 

The accuracy of the method has not yet been discussed. Clearly, 

our matching procedure is based on the assumption that the boundary 

layer thickness is at most comparable with ~, i.e., ~ ~ O(R-l/2 ) , 

where R is a Reynolds number based on an interior length scale and 

velocity, The accuracy of the interior Glimm method is at best 0(~) 

(see [4]). Thus, the over-all accuracy is at best 0(~) + O(R-l/2 ) . 

This is not a surprising estimate (see, e,.g., [4] for a discussion), 

and if it can be shown to be realistic and to hold uniformly in -1/2 
R 

it would represent a substantial achievement. There are of course no 

problems with stability, since each component of the hybrid method is 

unconditionally stable. 
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Application to two dimensional flow behind a piston. We now present an 

application of the preceding algorithm, an application for which the ran-

dom choice interior method is well suited. We do so with words of cau-

tion. The belief that our method can handle properly the separation of 

a boundary layer is based more on hope than on hard analysis. The ac-

curacy of the·results is difficult to gauge through the inevitable sta-

tistical error. There are no reliable data for comparison. The best 

~hat can be said is that the results.are plausible, consistent with 

earlier work on similar problems. (see, e.g., Bernard [3]), and consist­

ent also with the belief that the effective diffusion of the scheme 

equal~ the nominal diffusion (i.e., that the computational results cor-

respond to the Reynolds number explicitly imposed on the calculation and 

not to a. num~ric.al Reynolds number intrinsic to i;.he method). 

The flow configuration is shown in figure 3. A piston is pushed 

wt.ih velocity V into a chamber filled with gas. The initial density 

of the gas is p =. 1 , the initial pressure is p = 1 and the gas 

is initially at rest. The gas is assumed to be perfect, i.e., the in-

ternal energy is given by £ = (p/p)/(y - 1) , where y = 1.4 • The 

sound speed is c = .;y:pTP. The viscosity ·\1 is measured in units in 

which /p/p = 1 and the initial length of the chamber is 1 • Thus, 

the Reynolds number based on the velocity at infinity seen by the bound-

ary layer and on the length of the chamber is Ry = V /V • Care is 

taken to ensure that the Mach number VIc << 1 • V = 0 for t ~ 0 

and assumes a constant value for t > 0 • The displacement of the pis-

ton is X = Vt . 
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In the absence of viscosity we would have a shock wave propagating 

into the gas, reflected at the far end, and then bouncing back and 

forth between the piston and the back wall. The random choice method 

would compute this flow with infinite resolution (see the analysis in 

[ 6 ]) . Call this flow ~O = ( u0 , 0) • 

The effect of v * 0 is to superimpose on u
0 

a rotatfonal flow 

with the general pattern depicted in fig. 3. The boundary layers on the 

top and bottom are slowed down and deflect some fluid at the piston to-

wards the interior of the domain (see, e.g., [3]). We exhibit a calcu­

lation made with V = 10-3 • This relatively high value of v is 

picked because the rotational effect we wish to exhibit decreases with 

v . It is clear that as v decreases our method does not break down. 

This v is as large as we could pick and still observe the constraint 

b = O(vt) • The results below must be considered while keeping in mind 

(i) the built-in fluctuations of the random choice method, (ii) the 

fact that the edge of the calculation is the edge of the boundary layer 

and not the boundary of the domain, and (iii) the coarseness of the in-

terior grid. 

The following parameters were used: In the interior, b = 1/13 ; 

k/6. = 0.6 , m
1 

= 7 , m2 = 3 (these integers are used in the generation of 

the numbers 8 which define the algorithm, see [5]). In the boundary layer, 

h = 26. = 2/13 and ~ = V/5 • 
max 

The results displayed are at t = 40k 

= 1.846 , when .x =displacement of the piston= .3692 In tables 2 

and 3 we display the values of the horizontal and vertical velocity 

fields. In figure 4 we plot the vectors (U - u , v) , i.e., the 
0. 

-, 

• 



0 0 8 0 

Chorin, Page 23 

difference between the flow with v = 0 and the flow with v * 0 • 

The correct rotational behavior can be observed. In Figure 5 we dis-

play the positions of the vortex centers in the lower half of the do-

main. At this t , there are 531 vortex sheets in the calculations, 

and the total computing time has been 9 minutes on a CDC 6400 computer. 

It must be pointed out that the boundary layer thickness is 0(~ ) , 

i.e., it varies from 0 to and that we are considering ef-

fects induced by the internal mechanics of the boundary layer, which 

would normally r~quire a fine grid for adequate resolution. 
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TABLE 2 

Horizorttal velocitl behind a pistona t = l. 8116 

~I 5/13 6/13 7/13 . 8/13 9/13 10/13 11/13 12/13 1 
-

0 .20 .12 .13 .21 .18 .20 .20 .22 .03 

1/131 .20 .20 .26 .22 .17 .22 .18 .17 -.01 

2/131 .20 .18 .18 .27 .24 .20 .20 .21 .03 

3/131 .20 .25 .22 .21 .• 23 .20 .19 .17 .01 

4/131 .20 .22 .20 .20 .19 .19 .19 .17 .00 

5/131 .20 .20 .20 .22 .22 .20 .19 .20 .02 

6/131 .20 .22 .23 !20 .18 .19 .19 .19 .02 

7/131 .20 .22 .22 .21 .19 .19 .19 .19 .oo 

8/131 .20 .19 .20 .19 .20 .19 .19 .21 .00 

9/131 .20 .21 .19 .18 .18 .18 .18 .19 -.00 

10/131 .20 .23 .24 .22 .23 .21 .17 .17 .00 

11/1'31 .20 .17 .21 .25 .18 .16 .19 .18 -.05 

12/131 .20 .19 .23 .19 .27 .25 .19 .13 -.03 

1 I - .20 .21 .i6 .21 .21 .22 .22 .04 -.03 

• 
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TABLE 3 

Vertical velocity behind a piston, t = 1.846 

~ 5/13 6/13 7/13 .8/13 9/13 10/13 11/13 12/13 1 

0 .04 -.04 ,01 -.02 .03 .04 .01 .01 -.01 

1/131 -.12 -.09 -.00 .03 -.01 .03 .06 .04 .01 

2/131 .02 -.04 . -.03 .02 .01 .00 • 01 .03 .01 

3/131 .02 .oo .01 ·.01 -.02 .02 .02 -.00 .00 

4/131 -.04 -.04 -.04 -.03 -.01 -.00 .01 .01 -.01 

5/131 .03 . .03 .04 .03 .02 .oo -.01 -.04 -.03 

6/131 -.01 - -.03 -~04 -.03 -.01 .01 .01 .01 ' .02 

7/131 -.01 -.01 -.01 .01 .03 .02 .02 .02 .00 

8/131 . en .01 -. 01 .00 • 01 .01 .01 .01 .02 

9/131 ' .04 .01 -.01 • 02 . .00 .02 -.00 .04 .03 

10/131 .01 -.02 -.01 -.01 .02 -.03 -.02 -.02 -.02 

11/131 .08 .01 -.03 .02 • 00 -.02 -.01 -.03 -.01 

12/131 .12 ....;,01 -.07 .03 -.01 -.05 -.07 -.07 .01 

1 "I .13 -.03 -.09 .02 -.04 -.06 -.03 -.01 -.02 
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Conclusion. We have presented a grid free method for studying boundary 

layers. The two main features of this method are: (i) the use of vor­

tex sheet segments as computational elements, and (ii) a new method for 

generating vorticity at walls. It is expected that this algorithm will 

be mainly usefUl as a component of hybrid methods, and an example of 

such use has been given. 

One can see that an algorithm based on non-rotating vortex sheets · 

cannot. reproduce the effects characteristic of turbulent· boundary layers 

(see, e.g., [7]). Turbulence effects can conceivably be taken into ac­

count by replacing the molecular viscosity which determines the vari­

ance of the random variable n by an eddy viscosity. However, in later 

work we expect to use our present algorithm as a vorticity generation 

method for a hybrid method, in which the main part of the calculation 

will be carried out through_ the use of vortex elements of more elaborate 

structure; the sheets will be effectively relegated to the viscous sub­

layer. 

It is obvious that a price must be paid for the removal of numer­

ically induced viscosity in our method, and this price is statistical 

error. It is hoped that there will be a substantial number of applica­

tions in which such price is worth paying. It is also obvious that the 

present method generalizes trivially to three dimensional flows. 
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Fig. 4. Velocity in the piston-cylinder flow. 
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Note: The programs used to obtain the results above are available from 

the author. 
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k time step 

t time 

Ql ' Q2 ' ... points 

R Reynolds number 

u velocity vector 

velocity components 
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·u velocity at infinity 
00 

n 
v. j ' l, 

yr:+l/2. ' 
i+l/2 ,j , solution vector 

6 5 

X ' y , X. ' l 

n 
. X. ' 

l. 
coordinates 

displacement 

X wall position 

V , (nabla) grid operator 

~ (delta) interior grid size 

v (nu) viscosity 
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n ni (eta) random numbers 

F,; (xi) vorticity 
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