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I. INTRODUCTION. The puggestion of §. van der Heer(“ for stochastic cooling or
feedback damping of a circulating charged particle beam offers promise of increas-
ing the luminosity of a storage ring and may be a partioularly attractive technique
if antiprotrns are to be employed as one of the beams in such a device. Encnurag-
ing initial tests of suoh a system have been reported from CERN by P. Bramham

at al.,{2) and further tests are in progress in that Laboratory. (3)

The original report of van der Meer (1) gonaiderod the ropeated use of a
kicker to suppress the transverse phase-space displacoment of the centroid of a
group otnj)mrtioleu dotected at a pick-up station situated up-stream (&.g., by
Sh,/4), ™) and the report eatimatod tho oxpeotod rate of damping of the Mean-square
oagillauon amplitude, In the present report we extend this analysis so aw to pro-
vide information on the manner in which the charactor of the amplitude distribution
function may be affscted by thu damping procodure montioned abovoa. It is believad
that information concerning the evolution of the form of the distribution function
may be of particular interest in cases in which a "halo" 1 imposod on the distri-
bution by injection of a group of particles to supplement those in a beam that has
already been subjected to appreclable faedback damping. Results of the analytic
work will be illustrated, and compared with the results of simulation computations.

For consistency with the approach of van der Meer, we continue to assume that
the kicker truly raesults in a zero transverse phase-space displacement for the
centroid of the group of particles to which it is applied--although with a single
pick-up device, capable of detecting spatial displacements only, the time scale of
the damping process in fact may be doubled. We further ignore such potentially
significant complications as imperfect amplifier performance, extraneous noide, or
loss of particles to the chamber walls, and we restrict the analysis to the case
in which complete "mixing" (or phase decoherence) is assumed to occur between suc-
cessive applications of the correctlon procedure.

IT. ANALYSIS. A single application of the full van der Meer correction leads to
new particle amplitudes A;_ given, for N particles, by

‘2 2 2
=Af - (2/N)a -4.) + A os (¢.~¢ 1
Ay i 2/MNA LA, cos (¢.-4.) + {I/N )EjE A cos | j ). (1)

Thus, for random relative phases and N >> 1, the average change of the Ai is
expected to be

<AA)> = —(2/N) <A*> ¢ (I/N) < A%> = —(1/N) < AT, (2)
as given by van der Meer.{l) Accordingly, with v = A%, T = t/N, and time {t) meas-
ured in units of the time between successive correctlons,

d<u>/dT = =< u> (3)
with the solution <u> = { exp(-7) [where ¢ = <u>| ] (4)
--regardless of the form of the initial distribution, provided only that complete
phase mixing occurs between successive corrections. A similar analysis [Appeneix A]

can be performed Zor a beam considered to be composed of (¢-v) two groups for
which the evolution of their individual mean square amplitudes is of intcrest.

A binominal development of Eg.(l) to cbtain A(uip) suggests the relations
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o a< uP>/at = -2p <up> + p? <u> <uP-l >, (5)

at least for integar Pz 0, thus providing a soluble sequence of ordinary differen-
tial equations for the (even) amplitude moments [with < u®, corresponding to p=1,
given by Eq. (4)]. A distribution function £{u;t), of squared amplitude that sat-
isfies the partial differential equation

3£/ T =23 (uf)/Bu +Cexp (~T)d (ud£/3u)/du . (6)
will be found (by integration over the distribution and the assumption of reason-
able characteristics for f and ford £/ 3u at the limits) to be consistent with the
moment equation (5).(4) Numerical or analytic solution of Eq.(6) thus may provide
* a useful means for predicting the évolution of the form of a prescribed initial
distribution and indeed (Soat.III) has been found in test examples to provide re-
sults consistent with simulation computations.

A formal analytic scluticn to Eq.(6) can be written in terms of Laguerre poly-
nominals in the form(6:7)

gurt) = <w>l emp (~v) I o expl-nT) L (v) {7a)

(as can be readily confirmed, term-by-term, by reference only to the Laguorre diff=-
srential equation), whers wo have written

veuy <u> and <u> iam as given by Eq.(4). {7b}
wWith the adoption of this solution, the coefficients o are to be ovaluated in
terms of the initial distribution function (making use "of the weighted crthonormal-
ity of the Laqueré:e polynominals} as (8)

= f £{u;0) L (4/C)du. (7¢)
H .

The formal solution, Eq.(7a}, is attractive, and informative, in that it immediate-
1y suggests that as time increases {and the higher order factors exp(-mT) become
increasingly emall), the form of the distribution £(usT) will approach a pure ex-
ponential function, of width characterized by < a%2> = <u> = C exp{=T) -~ as was
found in initial simulation computations. We note, however, the alternative
closed form solution given in(7).

I1I. EXAMPLE. As an example we consider the evolution of the two-group distri-
bution function

£(u;0) = n exp(-u/cl) + n exp(-u/C?), {8a)

with nl +n =1 and the initial mean square amplitude then given by
2

c=<u>|,n=°=nlcx +nc. (8b)

Such an initial distribution may typify a beam composed of a core and a halo com-
ponent, of which mention has been made in the Introduction. Simulation computa-
tions performed with the initial distribution specified by Eq.{8a) indicate the
expected melding of the groups to form ultimately a composite group of simple ex-
ponential form whose mean square amplitude continues to damp in the expected manner
( €u>= C exp(-T)). Figures la-d illustrate this behavior, with results for the
individual groups indicated by dashed lines and results for the total distribution
shown by a solid line. [Note that, because of the shrinkage of amplitude as the
damping progresses, we have plotted < u> f(u;T) vs. u/<u>,

Results in agreement with those deplcted on Figs.la~d are obtained througl use
of the formula given in(7) for £(u;T). With the initial distribution considered
here, this formula gives(9) (wi\:h <u>= C exp(-T)}
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The distribution £(u;T) can also be computed, with identical results, from Eqs.(7)
in cases for which the convergence of Eq.(7a) permits numerical evaluation. {10)
The change of form of the distribution function for the composite beam is directly
shown, by a comparison of results for T = 0 and for T = 1.0, on Fig.2. The ap~
broach of this distribution function to an exponential form is most clearly mppa-
rant from the semi-logarithmic plot of Fig.3.

. The bshavior of the muan square amplitudes of the individual groupa is most
readily ccmputed from the rasults presented in Appendix A. The convergence of the
aseociaced root-mean-square amplitudes, for thu individual groups and for the com-
posite giaup, to a common value ip illustrated graphically in Fig.d4. coicilarly,

< (r.u’)“ >" and higher root-moments approach conutant ratios, characteristic of an
exponential distribution function f{ust) as illustrated in Fig.5.
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APPENDIX A

. Evolution of the Mean Sguare Amplitudes
of the Individual Groups of a Two-Group Distribution

For a distribution regarded as comprised of two groups,

A[\A“) 27 . -(Z/N)A“) 2‘ (')cos(xp(‘) ¢(| )+ L A]( )cos(Q)“) q’;z))

X 2 1 2

2 -
+ (/N )ﬂjEkAjAk cos (¢j ¢k)

for the i';‘bparticle of Group 1. The random phasec assumption then leads to

d
de b com<a™) e ant) V@Dt w2 a2y 2
or
JLT <@l _2<(A(1))z>+ [n (m(l))z> +n <(A(z))2>]
1 2
{where, as in the text, NLER B ana 'Y = nZN), and similarly for d<(A(2))z>/d1:.

Accordingly, with Cl, C_‘7 denoting the initial respective mean square ampiitudes of
groups 1and 2, we may write the solution of these equations as

(17,2, -T,7 —T ( ) - 4 ~
<(A. 1> [Cl+ nz(Cz-Cl)(l-e yle”, <¢a 2)]Z>=[cz+ nl(c1 _cz)u_e T}]e T.



APPENDIX B
Equation (6} as a Fokker-Planck Eguation

With £(u;T) denoting the distribution function for u = A? and ¥ (u,6u) denot~-
ing the probability of an increment Su to the quantity u in a time interval St,
o
flurt + St) =f £ (u~6ust) P(u~6u,Su) d(du),
-u

as 18 characteristic of a Markoff process. A Taylor development of this relation
than leads to

Y
Y

}

[ - 1L3%,, 2
'"B_E[f <6u>]+zau“ [g . <(6u)?>],

e
er

where the quantities < du> and ~ (8u)%> are functions of u that repraesent aver-
ages (over the permissible range ¢f fu) of changee or squared changes of u oxpected
per unit intorval St.

In the present application, with du for an iﬂ particle yiven by
= 2 - - 2 -
Su= §(a°) = (2/N)AiEjl\j cos (4:1 ¢j) + (I/N )EmEnl\mAn cos (¢m ¢n),
the presumption of random phase leads to
<u>= ~2A%/N + < A?:/N= -(2/N)u + <u>/N.

Simjilarly,
< 8u?)> = —~(4/Mut + (4/N)u <u>,

Accordingly,

< (w?>z < 8(u?)> -2u < fu>= (2/Nu <u>.
[It may be worth noting that we have found < (Gu)p> to be zero through order
1/N for all integer p > 2.] The partial differential equation then bacomes

3E 3 uf . <u>fl 1 32 u<u>f
ﬁ-r['z‘u‘*'T]*iauz 2 =)

or

P

l

£ _ 3 ) £

e T TR T

wherein (as given originally by van der .‘!eer(l)) < u>may be taken [consistently
with Eq.(s)] to be given by Eq.({4) of the texi.
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In finding the solution shown by Eq.(7a) we oziginully commenced with the
moment equations (5) and introduced an amplitude distribution function g(A;T)
[ =2a £ (a%;7)] that should satisfy the partial differential equation

3g/3T = 3 (Ag)/3A + (C/4) exp(-T) 3[A3(g/A)/ 3R]/ 3 A,

We then wrote z = (A%/C) exp(T) and regarded g{A;7) as a functlon G(z;T) to
obtain a partial differential equation in which none of the coefficients was
lxplic.ltly 7-depsndent. We next replaced G by the depandent variable

= [(1/¢x) exple =1/2)]G to obtain a partial differential cquation that, by
lopantion of variables, led to a solution in terms of Laguerre polynominals.
Transoription of this solution into the original variables led ¢> a result
squivalent to Eg.(7a). For numerical weolution of the partial differential
squation, it may bs conveniant to introduco the independont variable
W = A exp(t/2) and to smploy aw the dependent variable a function
Hwyt) = [ oxp(-‘l/z)]q. Tha partial dilrerential equation for H im

AN/ 371 = (1/2) 3 (wr)/ Dw+ (c/4) 3 [wd (uyw)/ dw]/dw
~-agaln an eijuation In which none of the coofficients is T-dependent--and it

is expedient to meek molutions that haye the formal character of baing odd
with respect to w.

An alternative, closed-fotm solution may be written

£luiT) = <us Exp(-u/<u >) E’Sﬁ[i‘_e._L__Ll
1 -e

7)1 yR/C) £ (x;0)dx,

[ exp[ -(ET-l)-’x/C] :|:o (201 -e
o

where Ia is the zero-order modified Bessel function of the first kind--see
1. 5. Gradshteyn and I, M. Ryzhik, Table of Integrals. . .(Acaaemic Press,

New York; 1965), Sec. 8.976 (1), p.1038 (with @ = 0} to relate this solution
to that proposed by Eq.(7) in the text.

Since f(u) is normalized to unity and L (u/C) = 1, uﬂ = 1. Also, slnce the
initial value of <u>is C and IB (u/c)-Ll(u/C) = u/C, we find oz -on1= 1 and,

hence, o = 0.
1

©

Note that .f e—Bx
0

For the example of Sec, III, evaluation of Egq.{7c) leads ta am = n(l —C /C) +

n2 (1 —c /c) --gee Gradshteyn and Ryzhik (cited in (7)), sec. 7.414 (6),

I YR ax = (1/Brexp(ky?/B}.

p. 844. The resultant Eq.(7a) may not have suitable convergence characteris-
tics for small T under certain circumstances however--thus censider, for ex~
ample, an initial distribution (8a) with nl= 0.75, n2= 0.25, Cl = 4,0, and

C2 = 16.0 (C = 7.0), for which the factor 1 -CZ/C = -8/7 and the coefficients
ccm ultimately increase essentially in geometrical progression (with alternat-

ing sign).
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