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ABSTRACT 

The suppression of infinite kinetic-energy 

trajectories is related to the topological classification 

in non abelian gauge theories. 

The quantum-mechanical states of an SU( 2) gauge theory in the 

A = 0 gauge have been recently considered.1 ' 2 'J The potential 
0 

energy of a configuration A.(~) (at a given time) is given by 
l. 

v(Al = d~TrFijF J • The configurations that correspond to the f i" 

classical vacuum satisfy v(A] = 0, and are given by Ai(~) = g-~~CligG), 

where g(!) is any continuous mapping from J-space to the group. For 

simplicity we consider only such mappings for which the following 

. limit exists: lim g( r' n) = g( n). The manifold of these vacuum 
r+co 

configurations is simply connected. This means that v[A] has one con-

tinuous minima valley (unlike the double-well potential in quantum 

mechanics with one degree of freedom , in which there are two discrete 

minima which communicate only through the tunneling effect.) 

* This work is supported by the U. S. Energy Reseach and Development 

Administration under the auspices of the Division of Physical 

Research. 
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Jackiw and Rebbi1 ' 4 postulated the condition g(Q) = I. As 

a result, the vacuum manifold is decomposed into disconnected sections, 

which they called the 1~ vacua. The purpose of this comment is 

to show that this condition is a consequence of kinetic energy con-

siderations. 

We first recall that among all the functions q; t) which 

satisfy q(t
0

) = q
0 

and q(t
1

) = q
1

, the minimal value of the "kinetic 

energy11 T =J:: dt(~i;~ 2 , is achieved by the linear interpolating 

function (This is equivalent to minimizing the action of a free par-

ticle ). The minimal value of 

In the A 0 gauge, 
0 

T is Tmin = (q1 -

T. = \
1 dtfdJ~ r J to 1.,a 

2 q ) /(tl - t ). 0 f) 

I Cl a+ ~2 . -A.(x,t : 
Clt l. 

Since T does not couple different points in ordinary (~) space, its 

minimal value under the constraints = A~ (i) 
l.,O 

and 

is 

(1) 

This expression + £ 

Suppose A~ and A1~ 1 l.,O ,_ 
are vacuum configurations, which are derived 

from the mappings g(~) 
I+ 

and g (x) respectively (with the correspon-
I I 

ding limits g(rl). and g (n)). Unless g (Q) = gg(Q) where g is 

a constant element of the group, the two configurations are different, 

and their difference goes like 1/r. Therefore, = co 
' 

and there 

will be no communication between these two vacuum configurations in 

the functional integral.formalism. 4' 5 Consequently, if we start at 

t = t
0 

with some vacuum configuration with a given g(Q), we can 

ignore at any future time all vacuum configurations which correspond 

to different g(Q). In particular, if we start with the Jackiw-Rebbi 
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condition, g(n) = const. we can ignore all other vacuum configurations. 

At that point one can use the result that the mappings g(~) with 

g(n) = canst. fall into homotopy classes, labelled by the integers. 

We thus see that the classification of vacuum configurations into 

the n-classes, advocated by Jackiw and Rebbi, rises in a natural way. 

Let us now consider the mappings 

where 
.... 
X i · r = r and T /2 are the (2 X 2) generators of the SU(2) group. 

gG> = exp[-ia( r > r: • 112] 

To get a continuous mapping at x = 0 we set a(O) = 0. If a(oo) 2nn, 

the corresponding mapping, ~(~), is in the n class (with gn(n) 

= (-l)n I). As an illustration to our arguments we construct a tra

jectory A~(i,t), which interpolates the n = 0 configuration (namely, 

-1 
go ai go) at t = t with the 

0 
n = 1 configuration at t = t 1 through 

the valley ( narrely, V [A~(~' t)] = 0 at each t. Note that any such 

trajectory cannot satisfy the classical equations of motion). For 

example, at each t we take a(r;t) = y(t)a(r) ~ith y(t ) = 0, 
0 

y(t1 ) = 1 and a(O) = 0, a(oo) = 2n, and then set A.(~;t) 
1 

-1 .... .... = g (x;t)Clig(x;t). However, since we change g(n) with time, the 

kinetic energy T must be infinite; and a· direct calculation gives 

T = 2i~ dt ( ~) 2 
ioo dr [ (:) 

2 
r2 + 2a2l = oo 

We see that any trajectory which interpolates the n = 0 and 

the n = 1 configurations with a finite kinetic energy must cross 

the potential barrier. The instanton6 is an example of such a 

trajectory, which has a finite action. 

We wish to thank S. Coleman and S. Mandelstam for helpful 

discussions. 
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