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ABSTRACT 

A path-integral procedure for quantizing gauge 

theories is proposed (on a heuristic level). The Hilbert 

space of physical states is constructed. Each physical 

state is represented by an infinite set of gauge equi-

·valent configurations. All physical transition ampli-

tudes are defined. In this approach, the "natural" 

value of the parameter 6 is zero. 

Consider a !?,!:luge theory with an arbitrary Lie group. Our 

purpose is to propose a quantization procedure by defining the 

physical Hilbert space and all transition amplitudes. In a non-

gauge field theory, at each point 
... 
X in J-space, there is one degree 

of freedom, cp(~). Each field configuration cp(~), represents a 

state in the Hilbert space, which is the analogue of the state 

* This work was supported by the U. S. Energy Research and Develop-
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in qua.1tum mechanics with n degrees of freedom. 

These states form a basis to the Hilbert space (in the Schrodinger 

representationh they are eigenstates of the 
A ... 

~(x) operators and 

therefore of the potential energy v( ljl( ~) ]. ( V is the term in the 

Lagrangian which does not contain any time-derivatives). They are 

not eigenstates of the Hamiltonian. The transition amplitude from 

a state ljl0(~) at time t
0 

to cp 1(~) at t 1 is1 : 

Jo[Htt>] eis[ct>C~,t)} (1) 

t 

cf>(~,\) 1!> 1(~) and S =f\ dt. 

to 

where 

In gauge theories we face the problem that different field 

configurations may be related by a gauge transformation. Our task 

is to overcome this difficulty in the spirit of the Faddeev-Popov 

ansatz. 2 

We want to construct our Hilbert space at any given time t. 

Since we freeze the time, the gauge transformations are given by 

from J-space to the group. The role of the 

gauge field A~ is to compensate the derivatives of g· in the x~ 

direction. In the absence of the time direction, it is natural to 

h th A 0 
J,l, .. 

c oose e gauge 
0 

= . (In any case, A 
0 

is not a .canonical 

degree of freedom, since L does not contain its time derivative) . 

Consider a given configuration A.(~). (We use A.(~)= r A~(~)Ta, 
1 1 a 1 

and from now on omit the space index i and color traces.) For any 

(time-independent) gauge transformation g(x), we get a new config-

uration, which we denote by gA. (Note that at this point we cannot 



-3-

decompose the mappings g(;) into homotopy classes, since they can 

be continuously deformed into each other.) 

Assumption 1: The set of all configurations gA (we fix A 

and run over. all possible g(;)) corresponds to a single physical 

state Ia:> in the Hilbert space. 

Due to the group properties of the gauge iransformations, the 

definition of the set is inde.pendent of the choice of the original A, 

as long as it belongs to the set. We represent the state Ia:> by a 

dot (Fig. 1}. The points u and v represent two configurations 

o<il . 
--•~•--- •Ia) Figure 1 

u v 
Au and Av in the Ia:> set. They are related by some gauge trans-
. .... 

formation g(x). The set of all configurations gAu is schematically 

represented by the line to the left of the Ia;> dot. A configuration 
I 

A 
I 

gA ' which does not lie in the I a :> set, generates a new line 
I . I 

which represents the physical state Ia > . We put the Ia > dot on 

the state axis, which comes out from the page through the Ia> dot. 

The line gA
1 

lies to the left of the Ia'> dot. The scalar pro­

duct in the Hilbert space is defined as <a'la> = jD(g(~)]o(gA
1 

-A) 

This is the generalization of the o[<t>'( ~) - q,(;>J normalization in 

non-gauge theories. 

Assumption 2: The transition amplitude from a physical state 

( 2) 

where the r.h.s. is still to be defined. a(t) is a physical trajec-

tory: for any time t we choose a physical state ( in contrast to 

configuration) a( t), with a(\,) = a
0 

and a( t 1 ) = a1 . In Fig. 2 
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Figure 2 

we let time flow upwards. At each t we represent the physical 

states by dots on the state axis (which is perpendicular to the page). 

J D[a( t) J is equivalent to summing over all curves (which go from a 
. 0 

at to to a1 at t 1 ) in the {state axis- time axis} plane. (This 

plane is perpendicular to the page.) 

Let us consider a given physical trajectory a(t). (We draw 

it for simplicity on the plane of the page. This does not mean that 

a is independent of t}. We now have to define the action s[a(t)] 

We may try to choose at each t (t
0 
~ t ~ t

1
) an arbitrary configura­

tion A(;,t) from the set corresponding to a(t) (trajectory I in 

Fig. 2), and set s[a(t)] = s[A(;,t)) - J::dtjdJiA_Ct,t) where 

L ( I = F F~v) r~ ~ vv contains time derivatives. This definition is 

unacceptable since it depends on the choice of A(i,t). If at each 

t we choose a different configuration, g( ;; t )A, from the same set, 

we get a new trajectory (II in Fig. 2) which generally has a differ-

ent action. (The reason is that the time t is just a parameter 

in g(;;t) and the gauge transformations do not contain the g-1 30~ 
term which is necessary in order to make~ gauge invariant.) 
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However, if g(~;t) is independent oft, the new trajectory in con-

figuration space will have the same action. We represent such new 

trajectory (III) by a trajectory which is parallel to I. To define 

a gauge independent action, we integrate over all trajectories in 

configuration space which correspond to the same physical trajectory 

e:ts[a(t)) --jn(A]eis(A) (_,.) a.( t), and get , where A x, t is in the 

a.(t) set. The only infinity we get due to gauge invariance is 

because of the equal action of parallel trajectories. To eliminate 

this infinity we fix A(lr,t ) at some arbitrary configuration A0(~) 
0 

which belongs to the a.
0 

set. The resulting s[a.(t~ is independent 

of the choice of A0(~). (Note that taking A
0 

= 0 and then choosing 

an arbitrary (time-independent) gauge transformation corresponds to 

a complete gauge fixing. 

Integrating over all possible physical trajectories a.(t) 

we finally get 

Assumption J: 

( 3) 

Ao( x-) (->- ) and A x,t
1 is in the a.

1 
set. 

Equation Jls the main result (or assumption). We would 

like to get some more information by computing it for imaginary 

( t 1 - t
0

).. In that case any configuration trajectory with 'infinite 

kinetic energy (or potential energy) will not contribute. The 

potential energy is V(a.). = v[A(~)J = jdJ; Fij~j , and it is 

independent of the choice of A(;). We can eliminate from the Hil-

bert space all states a. with V(a.) = "' (but this is not essential 

for our arguments). The time-integrated kinetic energy T is 
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rt, J 3 • J t.~ dt d ~ F oi F
0
l ( F oi = Cl 

0
A.i in the A

0 
= 0 gauge). The minimal 

( ->- ) i(-) . ) . 5 value of T (under the constraint A x,ti = A x , l = 0,1 lS 

T . = t = t JdJx (~A)2 , where ~A= A
1
(;) - A0(~). We shall mln 

1 0 

use the term "a good function" for a function A(~) with J d3; A2 
< "" 

~amely, A~ l/rJ/2 + £). We cannot interpolate two functions with 

a finite T if their difference is "bad". A state Ia.> is good if 

its set coritains at least one good A. The state with V(a.) = 0 

(the classical vacuum) is good since its corresponding set contains 

the configuration A(;)= 0 (It also contains bad configurations.). 

A good state cannot communicate with a bad state (namely, T = oo 

for any interpolating trajectory). From now on we ignore the bad 

states. 

Let us choose at t
0 

a good A0
(;) , and let A

1
(;) be 

-+ 1 -+ 
good. In Eq. 3 we have to integrate over all g(x)A . g(x) is 

-1 -+ -+ l 
called good, if g oig is good. If g(x) is bad, g(x)A 

-1 l -1 ) . 1 (= g- Aig + g aig is also bad since the flrst term cannot cance 

the second. Therefore, we do not have to integrate over bad g's. 

Let us consider for a moment only those g(~) which are smooth at 

infinity (namely, the limit lim g(n,r) = g(Q) exists). For g(Q) 

.which is not 
r -+ oo 

-1 1 
independent , g a i g ~ F ' and g is bad. The orily 

good smooth g's are those with g(Q) canst. At that point we 

choose our group to be SU( 2). All smooth mappings g( ~) with g( n) 

canst. fall into. homotopy• classes3 labelled by the integers. (If 

a non-smooth g(~) is good it belongs to. one of these classes). If 

g( n) belongs to the n class ( n t 0) we can find .a finite-T 

trajectory from A0 to (n )Al g . However, this trajectory cannot 

be conti_nuously deformed into the original one .(from A0 to · A1 ) 
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without crossing an infinite-T barrier (this would define a continuous 

deformation of g(n) to g(;) = I, which is impossible). The conclu­

sion is that for the SU(2) group, the functional integral of Eq. 

3 breaks into infinite number of components , labelled by the integers. 

Notice that the (classical) vacuum state did not play any special 

role. Consider now a transition from the .vacuum to itself, and take 

A
0 = 0. The n = 0 component contains the trajectory A(;,t) = 0 • 

The n = 1 component includes the instanton solution6 (in the A = 0 
0 

gauge). This proves that more than one component can be non-zero. 

According to Eq. 3 we have to sum over all the components 

with an equal weight. Mathematically, this is equivalent to 0 = 0~'4 

One can modify the present approach in several ways in order 

to get a theory with 0 t 0: 

a. i.lodify assumption 1, and break each set g( x)A in to many 

subsets (according to the behavior of g(!) at infinity) and as-

sociate each subset with a different physical state. This leads 

to the Bloch-waves picture.3,4 

b. Add the ·OF ~v term4 to the Lagrangian. w 
with sua: T e:11aBy (.!.A 0..A +.!_A A A ] S 

r 2 a ~:r-y 3 a 8 y ' 0 

Since F flN = 3 s 11 
\J\) u 

is given by the 

integral of s11 over the surface of { t
0 
~ t ~ \ 

(with R -> oo ). 

-iOn 
e between the different components .of any transition 

amplitude. 

Whether these modifications are "na~ural" or not is a matter of taste. 

-e-

After completing the first draft, I became aware of a paper 

by Z. F. Ezawa8 and rediscovered a paper by K. Cahi119 . They both 

conclude that 0 = 0, using different (but related) approaches. 

I would like to thank Eliezer Rabinovici for many helpful 

discussions. I thank Prof. S. Coleman for indicating a mistake in the 

first draft. Useful discussions with C. Callan, M. Chanowitz, M. 

Halpern, S. kfundelstam, C. Rebbi and P. Senjanovic are acknowledged. 
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FIGURE CAPTIONS 

Fig. 1: A physical state and its corresponding set of configurations. 

Fig. 2: Different trajectories in configuration space which correspond 

to one physical trajectory. 
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