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I. Introduction

Heavy ion scattering at energies 0.2 - 2.0 GeV/nuclean provides a
unique opportunity to study properties of nuclear systems far outside
the realm of conventional muclear physics. In such collisions nuclear
ma_,)tter could be compressed to densities p~ (2-4)pgwhere pg=0.17 fm=S ~
m;' /2. At these densities collective phenomena may become important,
leading to p¥a§e transitions in the nuclear system. Indeed, model
calculations*»“ for cold nuclear systems (T=0) indicate that above some
critical density p.~ (1-2) pg, the pion field acquires a finite ground
state expectation value. This phase transition, called pion condensa-
tion, would lead to a spin-isospin lattice, < y*(x)o; TW(X)> =
xjo exp(i kX) with wavelength 2n/k.~ (3 -5) m:1 in the nuclear system.
While densities p>p. could easily be reached in heavy ion collisions,
these high densities are produced only at the price of high excitation
energies E* as well. For these collisions, E* is typically on the order
of 50-100 MeV/nucleon.

One may expect that such high excitation energies would tend to
inhibit, if not eliminate, any possible collective instabilities
involving the coherent interaction of many nucleons. This is certainly
the case if the system has come to thermal equilibrium. In that case
E” is converted into random motion of the nucleons, and as E increases,
so does the disorder in the gystem. Long range correlations will then
eventualllsx be destroyed as E increases. However, in non-equilibrium
systems can be tied up in ordered motion, e.g. half of the nucleons
have momentum =~ P, while the other half have momentum = -fy,- In this
case, collective Instabilities may actually be enhanced as E* increases!

The most familiar example that illustrates this dependence on E*
is colliding plasma beams.3 Below some critical velocity Ve all plasmon
modes are stable. However, as the relative velocity v increases beyond
V¢, certain plasmon modes become unstable. This instability leads then
to the growth of strong, collective electric fields with a growth rate
that increases as a function of v-v.. The instability exists, however,
only in the non-equilibrium stage of the collision. As the plasma beams
thermalize through the interactions with these collective fields, the
plasmon instabilities disappear.

In heavy ion collisions we look for analogous collective
instabilities. The analogue of the electric field in nuclear systems is
the pion field. The program then is
(1) to determine whether pionic instabilities can exist at the
densities and excitation energies expected in heavy ion collisions, 3
(2) to calculate growth rates of unstable pion modes, and
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(3) to determine the effect such instabilities would have on the
dynamics in heavy ion collisions.

II. Unstable pion modes in excited nuclear matter

The existence of pionic instabilities in excited nuclear matter
was first investigated for themmal equilibrated systems.* The critical
temperature Tepjr(p) is shown in Fig. I. For a given density p , nuclear
matter is umstable with respect to pion condensation for T <T i+ (0).
The details of the calculation of T 4y are given in Ref. (4):
paths AB and BC follow the hydrodynamic compression and decompression of
muclear matter in heavy ion collisions. Qurve AB is taken from Ref. (5)
and corresponds to the solution of the Rankine shock equation for
campressibility K = 300 MeV including also Azz isobar production. CQurve
BC is a guess for the decompression path noting that as the system
expands, the compression energy E_ at point B is converted into
thermal energy 157 m by point C.““EBtimates in Ref. (5) indicate
Eomp’Etberm ™ 1 ?S As the system expands it also cools down through
evgggratmn of nucleons. Beyond point C the system becomes so diffuse
that local thermal equilibration can no longer be assumed. The
important point to note in Fig. I is that for the maximum densities,
pg» expected at these energies (see Fig. 14 of Ref. (5)), the
temperature Tp is less than T, rit(pB)' Therefore, pion condensation is
likely to occur in spite of tﬁe relatively high temperatures in heavy
ion collisions.

We turn now to the question of whether pionic instabilities can
also occur dGiring the non-equilibrium stage of the collision. We are
then looking for the pion field analogue of the two beam instability
in plasmas.® The following considerations motivate our study of non-
equilibrium systems. First, the stopging distance A;, of a nucleon in
nuclear matter is estimated to be Aj & 4 fm for Ey,p, 21 GeV. The
thermalization time—-typ is then roughly T¢p 2 X, }Vrel A 2-3%10723 sec.
Therefore, a substantial fraction of the total interaction time
Tint v 2 Rea et/Vrel ™ 3-6% 10-23 sec involves non-equilibrium
dynamics. gcond, the effects of collective instabilities on the
dynamics may in fact be greatest during that non-equilibrium stage of
the collision. Depending on the ratio of the growth rate I'., of
collective fields to the two body scattering rate Tg.,s, the dynamics
will be categorized’/ either by (1) wave-particle interactions as in
collisionless plasmas or (2) particle-particle interactions as in hydro-
dynamics, We discuss this, point further in section IV.

As a model of the initial, non-equilibrium momentum distribution
of nucleons we take?

n®) =n,( + py,) + n,@ - ) @
with n () = 8(pp-|P|) as illustrated in Fig. II. To look for pionic

instabilities, we search for complex poles of the pion propagator
Alw,k).
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In nuclear matter, A(w k) differs from the free space propagator
Bo,K) = (wé -kZ -1+ ie)~1 because of the polarizability of the_medium
as shown in Fig. Illa. In terms of the polarization operatorl:2 M(w,k),

st =atlom . @

The dominant interactions that must be included in I arels2 (1) the
P-wave 7NN interaction, (2) the P-wave mNA resonance interaction, and
(3) hard core NN, NA and AA interactions that lead to nuclecn and isolar
correlations. In symmetric nuclear matter the S-wave nN interaction
does not contribute in lowest order.

The 7NN interaction leads to a contribution Iy to the polarization -
operator due to the excitation of mucleon particle-ﬂlgle states. We
consider here only spin-isospin saturated nuclear systems having

reflectl?n symmetric momentum distributions (n(p) = n(-p)). In that
casel»Z,

- 4
v 1 Al R d
Ty (w,K) = -14 £ B2 (,K) f (_zf) 4 S\@) S (3a)

3
- ae2i 220 1y fd 5 S+k
= 4f“k Fﬂ(w,k) '/TZ;%S n(@) (1-nE+k))

1 1
X ! m-mpk+ ie ~ m*-wpk l (3b)

-0

L & 1 1
= Fj dw' INN(“’,k) im-u"rie - m+m'-1s! (3¢)

The non-relativistic nucleon propagator SN is

“ n(p) (a-n(p))
SN(po-p) = p <€ (ﬁ)-ig + PO-EN%j-‘-ls ’ (4)

with EN(p) being the single particle energles. In eq. (3b),

Wi = EN(p+k) -ey®). The mNN coupling £ 1'-[2 and the form factor
F (w k) is taken to be

E @k = 0% -10/0 - u?+xd) (5)
with A~My/m;=6.7. Dipole form factorsd with A~8.3 differ by
< 10% for the w,k considered here.
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In the dispersion relation form, eq. (3c), I,,, measures the
discontinuity of Iy across cuts in the upper and lower half w plane.
These cuts arise because a pion of momentum k and energy w = wy can
decay into a onhe particle - one hole excitation conserving energy-
momentum.

Through the resonant wNA interaction, 2 pion can-excite not only
nucleon particle-hole states via Iy but also A-particle-nuclecn hole
states via HNA’ where

. P
g @,K) = -1 £21F2 0,8 f %4 ENOENCEY

l
+ Sy S, (p-k)‘ : ©)

In. eq. (6), the A intermediate state is included in both s and u channels
(direct + c:{oss graphs). '{'he wNA coupling (including spin-isospin
factors) isls/ f¢ =~ 8m,"“. The form factor is taken to be the same as
the nNN form factor, eq. (5), as suggested by fits to vp+ u™a** data.9
For the A propagator we take

Sy @g:B) = (g - @) - i X, (g, + 1), @)

where the A self energy ZA is included to accoumnt for the finite A
width. The real part of ZA is absorbed into & A(ﬁ), which we

approximate by €,(@) = m, + pz/Zm , with m, = 8.8 m . ImzA # 0 when
the A can decay to a free pion and nucleon, i.e., when pé-pZ 2 (mNﬂrL")z.
We ignore the relatively small modification of 2., due to the presence
of muclear matterl0 and take the free space value of ). The effect of
Im ZA is to smear out the A mass. We therefore write

5,® = f an oy msy(osm . ®)
where
~2 L1
Splom) = (g -m-fp- + i) : - ®

Then computing Im SA from eqs. (7,8,9), the A spectral density is seen
to be
- c, Yp(m)
ppm = - -11FIm Sy(p, =m+ pZ/ZmA » D) = —A—ZA—Q— » (10)
(m-my)" + v, (m)

The § dependence of py and v, in egs. (8,10) can be neglected because_ of



-5-

the small A width T -ZYA(mA) =120 MeV = vp/my << 1. Then y,(m) =
- Im ZA(mz) For the moment C,=1/m. We note that canonical anti-
commutation stations for the A field require that

f ppm)dm = 1 . (11)
)

As long as (p ,P) in eq. (8) is not near threshold (m = my * mﬂ) .

a good approximation for Spfp) is obtained by taking p,(m) to be
Lorenzian, i.e., setting

Yp(m = 8(m-my-m ) 6(2m,-my-m -m) vy, (m,) . (12)
The upper mass cut off is chosen to give a symmetric weight of masses
in eq. (8) about m,. Larger mass are estimated to contribute only ~10%

to the sum rule eq (11), as a result of the small A width, yp=.43

With eq. (12), 1n eq. (10) is then determined so that eq. (11) is
satisfied.

With eqs. (6,8) we then get for Iy,

HNA(“’:R) = fAZkZFfr(m,l‘E)f mdm pA(m) [UNA(wsR:m) + UNA(-(A),‘R;!TI)] (13)
] .

where the NA Lindhard function is

b oo = [E2. i) - : 1)
(2'") w+ (mN-m) +—L _EET—+ k) +ie

Note, eq. (13) reduces to eq. (4.4) of Ref. (7) when pA(m) = s(m-mA).

The inclusion of the finite A width will be important when we estimate
on-shell pion production rates in section III. As in eq. (3c), it is
convenient to write

1 . 1
w-u' + 1€ w+w'- 1€

Ty @) = %'[:’dm' INA(m-,l"c) (1s)

E.xpressmns for scattering rates become more compact in terms of I
and I in section III.
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Note that IT +lIN is t}-le pion—nuqleon forvgard scattering amplitude
summed over all tﬁg nucfeons in the medium; T,,. is the Born term
involving only a single nucleon intermediate g’%late while My, is a model
for the contribution from wN contimum intermediate states. The strong
distortion of the wN contimum near the Az; resonance is described by
pp(m) in eq. (10). The propagation of a pilon in the medium via eq. (2)
with I = Ty, +Ty, then consists of a series of elastic N scatterings.
However, in this multiple scattering series only one pion exchange (OPE)
is included between successive collisions. Clearly, multiple meson
exchange must also be included, especially the exchange of vector mesons
F,w that give rise to the hard core repulsion between nucleons. These
interactions tend to keep nucleons apart and lead to short range
correlations in the medium.

_ Such correlations are included in Il via an effective interaction
G (k) ag ;llustrated in Fig. IIIb. The correlated polarization operator
is then®
IINN(m,Tc) + HNA(m )

1 - G (k) (g (0, ) + Iy, (,K))

M(w,k) = (16)

Detailed calculations'! show that G_(k) ~ g/k%, where the correlation
parameter g = 0.5 + 0.1. This form of G. follows’ when the mNN and mNA
vertices are included in the definition of Ty and My, as in egs. (3,13).
The parameter g measures the strength of the Tepulsive hard core NN, NA,
and AA interactions. A value of g = 1/3 would just remove the

attractive 6(x) part of the OPE potential.Z A value of g = 2/3 would
then reverse the sign of that &§(x) part of OPE.

Evaluating eq. (16) for the system specified by eq. (1), the
singularities of A(w,k) in eq. (2) and hence the pion spectrum can be
determined. These singularities are analyzed in detail in Ref. 7. To
look for unstable pion modes, we search for complex roots -

w = Rewe (k) + iy(K) of A~l(w,k) = 0. As discussed in Ref. (7), y(k) can
be interpreted as the rate for spontaneous w*w- or 70r0 phonon pair _
creation where one phonon carries momentum k while the other carries -k.
The rates y(k) computed for typical non-equilibrium configurations,

eq. (1), encountered in heavy ion collisions are presented in Figs. IV-
VI. The contour lines define surfaces k,(6;) in the pion phase space
on which v(ky(0.), 04,45) = @, where a is a constant. In these figures,
o is chosen to be mu.l[tiples of 0.1 m;. The angle 6_ refers to the angle
between the pion wavevector k and p.. in eq. (1). The symmetry of n(p)
in(_keq. (1) implies that v(k,6,$) is independent of ¢ and v(k,8) =

Y ,11‘-9) .

The regions of phase space where unstable pion modes exist are
bounded by critical surfaces k_(8) = 1lim k,(8) for o + 0*. In Figs. IV-
VI, we find up to three distin€t regions for pionic instabilities. These
regions are differentiated from one another by the real parts of the
frequencies, Re w.(k), for those unstable modes. In region I, Re wc = 0;
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in region II, Re w. = 0.5 m; ; in reglon III, Re w my. Only the zero
frequency modes (IS’ were cons1dered in Ref. (7) Tﬁe finite frequency
instabilities_(II,III) are the analogues of the two beam plasma
instabilities3 that we sought for these non-equilibrium configurations.
The phase space for these instabilities is seen to decrease with
decreasing Pcm and vanishes once the system comes to thermal equilibrium.
This is in contrast to the zero frequency instabilities (I) that survive
in equilibrated system if T<T.(p) in Fig. I. Further discussion of the
differences between mstabllltles in these regions will be given
elsewhere.

The essential feature we want to note here is that the typical
phonon pair creation rates y(k) are in the range (0.1-0.2) m;. The
mmber of phonons created per unstable mode k is then on the order of
one per 1.5x 10-23 sec. Therefore, there is enough time during the
characteristic (thermalization) time Ty~ (2-3)x 10725 sec, that
specifies the duration of the non-equilibrium phase of the collision,
for such pionic instabilities to develop. However, the mumber of
phonons created per mode during this time is small, ~1-2, and thus the
term pion condensation is not really appropriate for such systems

The total number of unstable pion modes is?

Mg = f K o y(dy) = VAT, , an

where V is the volume of nuclear matter where eq. (1) applies.
Typically, we estimate V = Ap/ po m:3 = volume of projectile
nucleus. The critical volume cr1t de‘t[med by eq. (17) is calculated

to be in the range (0.5 -1.0) m'3 > n8pje = (2-4) Ay The total mumber

of 7, 7 phonons that are created in the non-equilibrium phase is then
est:unated to be <y> ncr1t Toh ~ 4%

It is important to note the sensitivity of these estimates to the
value of the correlation parameter g in eq. (16). Except for Fig. Vb,
all calculations were made with g = 0.5. In Fig. Vb, we took g = 0.6.
Compared to Fig. Va, the phase space of mstab111t1es is seen to
decrease very muich. In fact, the pair productlon rati per unit volume’ ’

Teo1/V = <Y>/Vcnt, decreases from 0.18 '"1r to 0. 025 when g is increased

from 0.5 to 0.6. For g 2 0.65, no i.nﬂa bilities are fmmd Therefore,
with 20% uncertainties in est].mates for g, the above calculations
with g = 0.5 can be considered only as order of magnitude estimates for
<y> and Vgrit'

Finally, we note in Figs. IV-VI that the wavemumbers k of unstable
modes are typically ~(Z - 3) m,. This is c¢f course due to the P-wave
nature of the 7N interaction in egs. (3,13). The wavelengths
2n/k ~ (3-5) fm of such modes are then comparable or less than the
dimensions of nuclear systems involved in heavy ion collisions.
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Therefore, infinite nuclear matter calculations, egs. (2,16), can be
applied to heavy ion collisions only as a result of the large values
of k for pionic instahilities.

III. Effects of Pionic Instabilities on the Dynamics

Collective instabilities effect the dynamics in two essential ways:
(1) through the growth of collective fields via spontaneous phonon pair
creation, and (2) through the modification of two body scattering rates
via phonon rather than bare meson exchange. To evaluate the jmportance
of each effect, we first seek a formalism that incorporates them both.
A convenient formalism was found in Ref. (7) that involves the calcula-
tion of the complex correlation energy density, Mppas of the system in the
Random Phase Approximation. In temms of Mppa > the decay rate T

of an excited many body state is given by7
I'=-2VIm MRPA . (18)

Diagrammatically, Mg A is the sum of comnected ring diagrams as shown in
Fig. VII. A generaRP term in this sum consists of a product of n
bubbles and n interactions, where each bubble represents Ty * Tha and

each interaction represents A, +G.. Evaluating Mpy, , the decay rate per
wit volume is found to be’

sa'x -
= k ’
VA" Ref(zﬂ)4 log e(w,k) (19)
where
e(w,k) =1 - (8, * G.) (Tygy + Typ) (203

is the generalized "dielectric" function for the nuclear system. In
non-equilibrium systems, the singularities of e(w,k) include overlapping
cuts in the w plang, as seen from egs. (3c,15), and isolated zeros at

w = Rew_ (k) + iy(k) as found in section II. Equation (19) is then most
easily évaluated by first integrating over w by parts giving’?

3% = 1 f 3a% 2
T = —_— k - 1 1-41 I(- A
YAl f n? Y& - » . og ( WICw|a.l?)

= I‘1:.01/‘, * I‘scat/v ! (1)

where
I(w,k) = Ty (w,k) + Iy, (,K) (22)
is defined via egs. (3c,15), and
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B0, = (8,(,K) + G ()} e,k (23)

is the correlated pion propagator. Equation (21) allows us to calculate
the growth rate of collective fields via I, and the scattering rate
Pscat in non-equilibrium systems, eq. (1). 1\ further decomposition of
Pscat is possible noting that the integrand vanishes unless I(w)I(-w)+#0.

Then

Tocat™ rNN *Tna* Tan @8
where
NN(m) INN('“))
f -’E‘Z’djk 4 T (W) T (-w) } Pw,k)|A+ GCIZ , (25)
2 Ly, W)y, (-0)

and the polarization form factor P is

- log(l-41(w) I(-w)|a_|®)
P(w,f) = I )
41(w) I(-w) o, + G |2

rNN is the effective elastic NN + NN scattering rate, while rNA and T

are the effective inelastic NN + NA and NN + AA rates in the medium.
In the low density limit, Mgy + fyy + 0= P(w,k) + 1 , and Tij reduce to
rates calculated with free space cross sections, do©, i.e.

0 jy-2_ 0 i

rij/vp:ﬁ I‘i]./V-p O\N - ij Vyel” _ . 27
D1agramnat1ca11y, only the third term in Fig., VII contributes to I‘
in the low density limit, giving do® = A, +G_|° . At high

densities effective two body (elastic and melast1c) Ccross sections,
dogge, can be derived’ from eq. (25) giving

doger = P(w,k) do® ‘ 7 , (28)

where (m,E) are the energy-momentum transfers in the process. Therefore,
P(w,k) contains the density and configuration dependence of the effective
Cross sect;ons in the medium. For systems close to equilibrium, P

reduces to
Plwk) > ——F | . @)
Je(w,k)|
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as is found in the kinetic theory of plalsmas.12 The important point to
note about eq. (28) is that the existence of collective instabilities
implies that there exist certain critical values of (wc,k.) such that
P{we,ke) + = and hence dogge + = if the energy-momentum transfer (w.,~c)

is kinematically allowed. This is known as critical scattering
phenomena and is extensively discussed in Ref. (7). Thus the presence

of the polarization factor in eq. (28) leads to enhanced scattering rates
if instabilities are present.

As_an example of the kind of enhancements pionic instabilities lead
to, P(w,k) = doggg/do® is plotted in Fig. VIIT for p., = 4m; in eq. (1).
This figure is taken fram Ref. 7 and corresponds to tﬂe elastic (w=0)
scattering of a nucleon of momentum P, with another of momentum -
in the medium. Kinematically, k is constrained by k = 2 p; cos 6.
Logarithmic divergencies of doggf at k = 1.5 and 2.0 m; arise when
kinematically allowed values o% fk,eﬂ) lie on the boundary of region I
of unstable pion modes (see Fig. XIV of Ref. 7 and Fig. Va here).
Figure VIII illustrates then critical scattering phenomena for large
momentum transfers that arise as a result of pionic instabilities.

The integrated scattering rates are given in Table I for a variety
of lab kinetic energies, Ty, v (0.4 - 1.5) GeV/nucleon. It must be
emphasized that the spirit of these calculations is to obtain only order
of magnitude estimates of the effects of pionic instabilities on these
rates. We cannot expect to predict absolute rates with such a simple
model. Nevertheless, the ratios of effective rates I'¢tf to free rates

I‘(.l’j do indicate the magnitude of enhancements that can arise due to

collective phenomena. The rates in table I were obtained by integrating
numerically eq. (25) up to momentum transfers k_= 8 my;. The free rates
Igj were obtained from eq. (25) by setting P(w,k) = 1. To set a scale

for the absolute magnitudes of rij , note that a 20 mb cross section in
eq. (27) would give I‘ij/V ~ (.25 m?r. The essential point to note in

tables IA,B is that both the elastic and inelastic scattering rates
are enhanced by factors v (2 -4) due to pionic instabilities. Purther
details of these calculations will be given elsewhere.

Iv. ' Summary

Model calculations of dense, excited nuclear matter expected in
heavy ion collisions indicate that in both thermal® and non-equilibrium
extremes pionic instabilities can be expected. The typical excitation
energies involved in these high energy (v~ 1 GeV/nuc) collisions are not
 too large to prevent such instabilities. Furthermore, the spontaneous

phonon pair creation rates y(k) were shown to be sufficiently large for
.these instabilities to develop during the short collision times. In the
“-nion-equilibriim case finite- frequency instabilities (regions II,III) were
‘found ‘as well as zero frequency (condensate) instabilities (region I).
The total w*r~ and 7910 phonon pair creation rate T ol = P VIV =
To + Iyt is given in table IC, with Ty being the
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rate for zero frequency pairs and I'_, being the rate for finite frequency
pairs. We noted also the short wavelengths 2w/k. ~ (3 -5) fm of these
pion modes as being essential for such instabilifies to develop in the
finite size nuclear systems involved.

Then through the calculation of the complex correlation energy,
the effect of pionic instabilities on the dynamics was studied. The
main result is that critical scattering phenomena leads to enhancements
of both elastic and inelastic scattering rates by factors ~ 2-4. We
can now assess the relative importance of the two effects mentioned
at the begimming of section III. The ratio rcol/rs cat of rates in

eq. {21) provides a measure of which effect dominates. This ratio is
given table IC. Note that I‘COI/I‘ scat <1 in all cases indicating that

the scattering rates are greater than the growth rates of collective
fields. Therefore, the dynamics is dominated by two body collisions
involving density dependent interactions, eq. {28). The reduction by
2 - 4 of the effective nucleon mean free path in the medium is therefore
expected to lead to mgre rapid thermalization, indicating that a hydro-
dynamic description®:9,13 of the dynamics would be appropriate.’

Finally, we comment on the implication of the enhancement of

I‘§§f in the medium in connection with real pion production. It is

tempting to assume that a factor of 2 enhancement of the NN + NA rate
would lead to twice as many pion being observed in the lab. However,
the final number of pions observed depends not only on the production
rate Iy, but also sensitively on the absorption rates of pions.

Therefore, to estimate real pion production rates, the effects of pionic
instabilities on pion absorption rates must also be investigated. Such
an investigation is currently in progress.
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Table Caption:

1.

Collective T and scattering I‘i. rates in non-equilibrium nuclear
matter at variSB% lab energies TL. J The NN-+NN rates -(A), NN-NA
rates (B), and spontaneous w'w~, wOnO phonon pair creation rates (C}

were calculatéd with egs. (21,25). The enhancements of the scattering - '

rates due to picnic instabilities are given by oggg/o, in A and B.
The ratio T'qy/Tscat in C measures the importance of phonon pair
production as compared to the modification of the scattering rates on
the dynamics.

Figure Captions

I.

1I.

Range of densities and temperatures where pion condensation is
likely (shaded). T pi; 1s taken from Ref. (4) for g = 0.5. Curves
AB and BC illustrate the compression and decompression phases in
heavy ion collisions.

Initial non-equilibrium momentum distribution in heavy ion
collisions.

III a) Pion propagator A in a nuclear medium.

Iv.

b) Polarization operator I including nucleon particle-hole and
Az- - nucleon hole intermediate states as well as correlations.

a) Contour plot for the rates vy(k;,0,) of spontaneous w1 or non0
phonon pair creation in non-equilibrium nuclear matter, eq. (1),
for p; = 2.0 my,  Contours correspond to multiples of |
0.1 my (= 2 x 1022 sec'l). The angle 6, is that between k, and
By Zero frequency (Re w.=0) pionic instabilities occur in
région I. Finite frequency (Re w. * 0) instabilities occur in
regions II, III.

b) Same as IVa but for p_ = 3.0 m .
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,Same as IVa but for Pep © 4 0 m

- Same as Va but with large correlation parameter g= 0.6.

SameasIVa but for Pan = 5.0 mo.
Forpm=6.0mﬁ_ .

Series of ring diagrams included in the Random Phase Approximation
for the correlation energy density Mopa in eq. (18).

Ratio of the effective dueff, to the free, dao, elastic (NN-+NN)

differential cross sections as a function of momentum transfer k
as calculated via eq. (28). (Taken from Fig. XIb of Ref. 7).
This illustrates critical scattering phenomena due to pionic
instabilities.
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. Table I.

A. - Elastic Scattering Rates
T, (o) g N fveh ke
I A Pep/ My eff’
10,38 3 0.37 0.09 4.1
"0.67 - 4 0.31 0.08 3.9
1.94 5 0.27 0.07 3.9
1.50 6 0.22 0.06 3.7
B. Imelastic Scattering Rates
eff 4 0 4 in , in
TL(GeVYN) pcm/mn r /Vun") I'NA/V(““rr) 0effloo
0.38 3 0.24 0.06 4.0
0.67 4 0.58 0.28 2.1
1.04 5 0.72 0.42 1.7
1.50 6 0.64 0.39 1.6
C. Collective Rates
' 4
TL(GeVYN) pcm/m'rr PC°1/V(mﬂ) P“,/Po I|cca1/rsc,at
0.38 3 0.21 0.47 0.34
0.67 4 0.18 0.47 0.20
1.04 S 0.25 0.50 0.25
1.50 6 0.59 3.20 0.69
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