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I. Introduction 
Heavy ion scattering at energies 0.2-2.0 GeV/nucleon provides a 

unique opportunity to study properties of nuclear systems far outside 
the realm of conventional nuclear physics. In such collisions nuclear 
matter could be compressed to densities p ^ (2-4)p0where p o«0.17fm' 3 «= 
iRjf/2. At these densities collective phenomena may become important, 
leading to phase transitions in the nuclear system. Indeed, model 
calculations-'-> 2 for cold nuclear systems (T = 0) indicate that above some 
critical density p c ^ (1-2) p 0 , the pion field acquires a finite ground 
state expectation value. This phase transition, called pion condensa
tion, would lead to a spin-isospin lattice, < i|i+(x)o.: TaiJ>(x) > = 
Xja exp(i kjJx) with wavelength 2ir/kp'\< (3 - 5) m^ 1 in the nuclear system. 
While densities p > p c could easily be reached in heavy ion collisions, 
these high^densities are produced only at the^price of high excitation 
energies E as well. For these collisions, E is typically on the order 
of 50-100 NfeV/nucleon. 

One may expect that such high excitation energies would tend to 
inhibit, if not eliminate, any possible collective instabilities 
involving the coherent interaction of many nucleons. This is certainly 
the case if the system has come to thermal equilibrium. In that case 
E is converted into random motion of the nucleons, and as E increases, 
so does the disorder in the system. Long range correlations will then 
eventually be destroyed as E increases. However, in non-equilibrium 
systems 1? can be tied up in ordered motion, e.g. half of the nucleons 
have momentum « pgjj while the other half have momentum = - p ^ . In this 
case, collective instabilities may actually be enhanced as E* increases! 

The most familiar example that illustrates this dependence on E 
is colliding plasma beams. 3 Below some critical velocity v c all plasmon 
modes are stable. However, as the relative velocity v increases beyond 
v c , certain plasmon modes become unstable. This instability leads then 
to the growth of strong, collective electric fields with a growth rate 
that increases as a function of v - v c. The instability exists, however, 
only in the non-equilibrium stage of the collision. As the plasma beams 
thermalize through the interactions with these collective fields, the 
plasmon instabilities disappear. 

In heavy ion collisions we look for analogous collective 
instabilities. The analogue of the electric field in nuclear systems is 
the pion field. The program then is 

(1) to determine whether pionic instabilities can exist at the 
densities and excitation energies expected in heavy ion collisions, 

(2) to calculate growth rates of unstable pion modes, and 
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(3) to determine the effect such instabilities would have on the 
dynamics in heavy ion collisions. 

II. Unstable pion modes in excited nuclear matter 
The existence of pionic instabilities in excited nuclear matter 

was first investigated for thermal equilibrated systems.4 The critical 
temperature T c r4 t(p) is shown in Fig. I. For a given density p .nuclear 
matter is unstable with respect to pion condensation for T < T C T ^ . ( p ) . 
The details of the calculation of T c r ^ t are given in Ref. (4) - The 
paths AB and BC follow the hydrodynamic compression and decompression of 
nuclear matter in heavy ion collisions. Curve AB is taken from Ref. (5) 
and corresponds to the solution of the Rankine shock equation for 
compressibility K = 300 MeV including also A j 3 isobar production. Curve 
BC is a guess for the decompression path noting that as the system 
expands, the compression energy Eccmj at point B is converted into 
thermal energy Etheim ̂ y point C. HSitimates in Ref. (5) indicate 
^oim/Etberm "" l'"°- As t^lfi s v s t e m expands it also cools down through 
evaporation of nucleons. Beyond point C the system becomes so diffuse 
that local thermal equilibration can no longer be assumed. The 
important point to note in Fig. I is that for the maximum densities, 
Pg, expected at these energies (see Fig. 14 of Ref. (5)), the 
temperature Tg is less than Tp rj t(pg). Therefore, pion condensation is 
likely to occur in spite of the relatively high temperatures in heavy 
ion collisions. 

We turn now to the question of whether pionic instabilities can 
also occur during the non-equilibrium stage of the collision. We are 
then looking for the pion field analogue of the two beam instability 
in plasmas.* The following considerations motivate our study of non-
equilibrium systems. First, the stopping distance \^ of a nucleon in 
nuclear matter is estimated to be h %, 4 fm for Ei ajj > 1 GeV. The 
thermalization time -r^ is then roughly xtjj "v 2 X^ / v r e l *\- 2 - 3xio _23 s e c 
Therefore, a substantial fraction of the total interaction time 
Tj n t^-2 Rtarget/Vrel ̂  3 " ̂ x 1 0" 2' s e c involves non-equilibrium 
dynamics. Second, the effects of collective instabilities on the 
dynamics may in fact be greatest during that non-equilibrium stage of 
the collision. Depending on the ratio of the growth rate r c o, of 
collective fields to the two body scattering rate r s c a t , the dynamics 
will be categorized7 either by (1) wave-particle interactions as in 
collisionless plasmas or (2) particle-particle interactions as in hydro-
dynamics. We" discuss this, point further in section IV. 

As a model of the initial, non-equilibrium momentum distribution 
of nucleons we take7 

nCp) = n0(p • p^J + nQCp - p ^ (1) 
with n (p) = 9(p--|p|) as illustrated in Fig. I I . To look for pionic 
ins tabi l i t ies , we search for complex poles of the pion propagator 
A(u,k). 
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_ In nuclear matter, A(w,k) differs from the free space propagator 
AoCoi.K) = (w2 - k 2 - 1 + ie)"l because of the polarizability of the medium 
as shown in Fig. Ilia. In terras of the polarization operator1!2 n(w,k), 

n C2) 
The dominant in terac t ions t h a t must be included in n are ' (1) the 
P-wave irNN in te rac t ion , (2) the P-wave mNA resonance in teract ion, and 
C3) hard core NN, NA and AA in terac t ions t ha t lead to nuclecn and i so l a r 
co r r e l a t i ons . In symmetric nuclear matter the S-wave irN interact ion 
does not contribute in lowest order. 

The irNN interact ion leads to a contribution I W to the polar izat ion 
operator due to the exc i t a t i on of nucleon pa r t i c l e -ho l e s t a t e s . We 
consider here only spin- isospin saturated nuclear systems having 
r e f l ec t i on symmetric momentum d is t r ibu t ions (n(p) = n ( - p ) ) . In tha t 
c a s e 1 ' 2 ' ' 

n N N o»,k) = - i 4 f 2 k 2 F . ' : ^ / T ^ 4 VWfcfr*3 

(2n) 
(3a) 

= 4 f 2 k 2 F '2(u>,k) f i ^ n(p) (l-n(p+k)) 
(2TT) 

u - c o p k + i E ( r t ^ - K (3b) 

= \f^ W»# oi-u'+iE ui+ui - l e 

The n o n - r e l a t i v i s t i c nucleon propagator Sw i s 

(3c) 

(4) s fr, 61 = n ( P J + (l-n(pj) 
« P ° ' F P 0 - e N ( p ) - i e PQ-^CpJ+ie 

with e w (p) being the s ingle p a r t i c l e energies. In eq. (3b), 
- 2 - 2 

a) , = eN(p+k) - E N (p) . The ITNN coupling f = m and the form factor 
F (to,ic) i s taken to be 

F ir(a3,k) = (A2 - i ) / ( A 2 - u>2 + k 2 ) (5) 
=,8 with A=N^j/m1T = 6.7. Dipole form fac to rs 0 with A * 8 . 3 differ by 

< 10% for the oi,k considered here . 



In the dispersion relation form, eq. (3c), I*~, measures the 
discontinuity of n ^ across cuts in the upper and Tower half co plane. 
These cuts arise because a pion of momentum k and energy in = câ . can 
decay into a oiie particle - one hole excitation conserving energy-
momentum. 

Through the resonant irNA interaction, a pion can-excite not only 
nucleon particle-hole states via 11™ but also A-particle-nucleon hole 
states via TL,,, where 

A 
nNA(u3,k) = -i fli^c»A/^Jj j %(?) sA (p+k) 

+ \iv) S& (p-k) C6) 

In. eq. (6), the A intermediate state is included in both s and u channels 
(direct + cross graphs). The irNA coupling (including spin-isospin 
factors) isl>' f£ •» 8111^. The form factor is taken to be the same as 
the irNN form factor, eq. (5), as suggested by f i t s to vp+ u~A+ + data.9 
For the A propagator we take 

SA(P 0,P) = (p 0 - eA(p) - i I m £ A ( P 0 , P ) + i<0" , (7) 

where the A self energy 2^ Ais included to account for the finite A width. The real part of ?.^ is absorbed into e.(p), which we 
approximate by E.(p) = m. + p /2m., with m. = 8.8 m . I m £ . * 0 when 
the A can decay to a free pion and nucleon, i.e., when pQ-p - 0 nM + m

7 T) • 
We ignore the relatively small modification of zl. due to the presence 
of nuclear matter10 and take the free space Value of J\.. The effect of 
Im 5£ A is to smear out the A mass. We therefore write 

/
oo 
dm pA(m)SA(p;m) , (8) 

o 
where 

SA(p,m) E (p 0-m-Jjj- + ie)' 1 . (9) 

Then computing Im S. from eqs. (7,8,9), the A spectral density is seen 
to be 

PA(m) - - ! & , S A(p o = . + p 2/2m A , p) = C A > W
 2 , (10) 

(m-mA) + YA (m) 
The p dependence of p A and y A in eqs. (8,10) can be neglected because of 
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the small A width rfi = 2Y A(m A) = 120 MeV » Y A/m A « 1. Then YA(m) « 
- Ln £ A ( m 2 ) . For t*16 moment c A=l/n. We note that canonical anti-
commutation stations for the A field require that 

/ PA(m)dm = 1 (11) 

As long as (p 0.P) in eq. (8) is not near threshold (m = IIL, + m ) , 
a good approximation for SAfp) i s obtained by taking pA(m) to be 
Lorenzian, i . e . , setting 

YA(m) = eCm-n -̂m )̂ 6 (ai^-n^-m^-m) YA(mA) (12) 

The upper mass cut off is chosen to give a symmetric weight of masses 
in eq. (8) about m A. Larger mass are estimated to contribute only ̂ -10% 
to the sum rule, eq. (11), as a result of the small A width, YA =- 4 3 % • 
With eq. (12), c A in eq. (io) is then determined so that eq. (11) is 
satisfied. 

With eqs. (6,8) we then get for njjA 

%A(a),k) = fA
2k2Fj(ai,k)y dm pA(m) hj^(u,£;«) + ̂ (-oi.-kjm)! (13) 

where the NA Lindhard function is 

l̂ <„,k;m) - / A 5® _ (14) 

Note, eq. (13) reduces to eq. (4.4) of Ref. (7) when PA(m) = 6(m-m.). 
The inclusion of the finite A width will be important when we estimate 
on-shell pion production rates in section III. As in eq. (3c), it is 
convenient to write 

nNA(<o,k) = 1 P d u ' INA(w',k) ui-w' + ie u3 +(!)'- IE 

Expressions for scattering rates become more compact in terms of I, 
and I N A in section III. 

(15) 

NN 
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Note that nwM + I W i s t n e pion-nucleon forward scattering amplitude 
summed over all the nucleons in the medium; 11™ is the Born term 
involving only a single nucleon intermediate s tate while IIJJA is a model 
for the contribution from irN continuum intermediate states. The strong 
distortion of the irN continuum near the A™ resonance is described by 
P (̂m) in eq. (10). The propagation of a pion in the medium via eq. (2) 
with H = I IJ^+IIJ^ then consists of a series of elastic irN scatterings. 
However, in this multiple scattering series only one pion exchange (OPE) 
is included between successive collisions. Clearly, multiple meson 
exchange must also be included, especially the exchange of vector mesons 
p,w that give rise to the hard core repulsion between nucleons. These 
interactions tend to keep nucleons apart and lead to short range 
correlations in the medium. 

Such correlations are included in II via an effective interaction 
Gc(k) as illustrated in Fig. I l lb . The correlated polarization operator 
is t h e n 2 ' 7 

IINN(u),k)+nNA((o,£) 
n(u,k) = — — = . (16) 

i - Gc(k) CnNN(u,k) + n^&o.k)) 
11 ? 

Detailed calculations show that G c(k) « gfk. , where the correlation 
parameter g = 0.5 ± 0.1. This form of G_ follows? when the TINN and irNA 
vertices are included in the definition of IIj^ and IIw. as in eqs. (3,13). 
The parameter g measures the strength of the repulsive hard core NN, NA, 
and AA interactions. A value of g = 1/3 would just remove the 
attractive <5(x) part of the OPE potential.2 A value of g = 2/3 would 
then reverse the sign of that 6(x) part of OPE. 

Evaluating eq. £L6) for the system specified by eq. (1), the 
singularities of A(ui,k) in eq. (2) and hence the pion spectrum can be 
determined. These singularities are analyzed in detail in Ref. 7. To 
look for unstable_pion modes ,^we search for complex roots 
w = R e w c (ie) + iy(R) of A~l(u),ic) = 0. As discussed in Ref. (7), y(k) can 
be interpreted as the rate for spontaneous j +ir or Tr°rr° phonon pair 
creation where one phonon carries momentum k while the other carries -k. 
The rates y(k) computed for typical non-equilibrium configurations, 
eq. (1), encountered in heavy ion collisions are presented in Figs. IV-
VI. The contour lines define surfaces 1^(6^) in the pion phase space 
on which Y(k a(6_), 9^,^) = a, where a is a constant. In these figures, 
a is chosen to be multiples of 0.1^1%. The angle 6 refers to the angle 
between the pion wavevector K and p ^ in eq. (1). The symmetry of n(p) 
in eq. (1) implies that "r(k,6,<J>) is independent of $ and y(k,0) = 
Y(k,ir-6). 

The regions of phase space where unstable pion modes exist are 
bounded by critical surfaces k (8) = lim 1(^(9) for a -»• 0 +. In Figs. IV-
VI, we find up to three distinct regions for pionic instabilities. These 
regions are differentiated from one another by the real parts of the 
frequencies, Re u>c (k) , for those unstable modes. In region I, Re u>c = 0; 
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in region II, Re ui » 0.5 1% ; in region III, Re Up £ m^. Only the zero 
frequency modes [IJ were considered in Ref. (7). The finite frequency 
instabilities (11,111) are the analogues of the two beam plasma 
instabilities3 that we sought for these non-equilibrium configurations. 
The phase space for these instabilities is seen to decrease with 
decreasing p ^ and vanishes once the system comes to thermal equilibrium. 
This is in contrast to the zero frequency instabilities CI) that survive 
in equilibrated system if T<T,-(p) in Fig. I. Rirther discussion of the 
differences between instabilities in these regions will be given 
elsewhere. 

The essential feature we want to note here is that the typical 
phonon pair creation rates Y(k) are in the range (0.1 -0.2) m^. The 
number of phonons created per unstable mode k- is then on the order of 
one per 1.5x10"23 sec. Therefore, there is enough time during the 
characteristic (thernialization) time T-H, ~ (2 - 3) x 10~ 2 3 sec, that 
specifies the duration of the non-equilibrium phase of the collision, 
for such pionic instabilities to develop. However, the number of 
phonons created per mode during this time is small, - 1 - 2, and thus the 
term pion condensation is not really appropriate for such systems. 

The total number of unstable pion modes is' 

f™\Q(y(X)) = V/V*. , (17) 
J (2ir)3 c r i t crit 

where V is the volume of nuclear matter where eq. (1) applies. 
Typically, we estimate V = A p/p 0 = 2A- m' 3 = volume of projectile 
nucleus. The critical volume v£ r^ t defined by eq. (17) is calculated 
to be in the range (0.5 - 1.0) m" 3 =» n?.-,. « (2-4) A„. The total number 

TI LX1X P 
of ir, ir° phonons that are created in the non-equilibrium phase is then 
estimated to be <y> *&-*+ T ^ - 4A_. 

I t is important to note the sensitivity of these estimates to the 
value of the correlation parameter g in eq. (16). Except for Fig. Vb, 
a l l calculations were made with g = 0.5. In Fig. Vb, we took g = 0.6. 
Compared to Fig. Va, the phase space of instabi l i t ies is seen to 
decrease very much. In fact, the pair production rate per unit volume', 
r c o l / V = < Y > / V c r i t , decreases from 0.18 m* to 0.025 nc when g is increased 
from 0.5 to 0.6. For g ~ 0.65, no instabil i t ies are found. Therefore, 
with 20% uncertainties in estimates 2»"• for g, the above calculations* 
with g = 0.5 can be considered only as order of magnitude estimates for 
<Y> and V j r i t . 

Finally, we note in Figs. IV-VI that the wavenumbers k of unstable 
modes are typically ~(2 - 3) m .̂ This is of course due to the P-wave 
nature of the irN interaction in eqs. (3,13). The wavelengths 
2ir/k ~ (3 - 5) fm of such modes are then comparable or less than the 
dimensions of nuclear systems involved in heavy ion collisions. 
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Therefore, infinite nuclear matter calculations, eqs. (2,16), can be 
applied to heavy ion collisions only as a result of the large values 
of k for pionic instabilities. 
III. Effects of Pionic Instabilities on the Dynamics 

Collective instabilities effect the dynamics in two essential ways: 
(1) through the growth of collective fields via spontaneous phonon pair 
creation, and (2) through the modification of two body scattering rates 
via phonon rather than bare meson exchange. To evaluate the importance 
of each effect, we first seek a formalism that incorporates them both. 
A convenient formalism was found in Ref. (7) that involves the calcula
tion of the complex correlation energy density, MRPA, of the system in the 
Random Phase Approximation. In terms of W R P A » t n e <^ e c ay r a t e r 

of an excited many body state is given by 
r = - Z V I m M j ^ . (18) 

Diagrammatically, Kg™ is the sum of connected ring diagrams as shown in 
Fig. VII. A general^ term in this sum consists of a product of n 
bubbles and n interactions, where each bubble represents IK™ * IK,, and 
each interaction represents A+G . Evaluating AW« > the decay rate per 
unit volume is found to be 

•5d\ i / v = l ie i 

where 

C 3 d \ r/V = Re I ^ _ K l o g e ( u k ) , C19D 
J (2TT) 4 

e (u,k) = 1 - (A0 + G c) ( n M + n N A) (20) 
is the generalized "dielectric" function for the nuclear system. In 
non-equilibrium systems, the singularities of e(w,k) include overlapping 
cuts in the u plane, as seen from eqs. (3c,15), and isolated zeros at 
as = Reu (k) + iv-(k) as found in section II. Equation (19) is then most 
easily evaluated by first integrating over ui by parts giving? 

r/v = f ^ K Y(k) - \ f ̂ k x (1.4 I(a))Ic.uD | A J 2 ) 
J (2ir)3 z J (2ir)4 C 

where 
I(ai,k) = I M(u,k) + I N A(",k) (22) 

is defined via eqs. (3c,15), and 



Ac(u),k) = CA0(w,k) + Gc(£))/e(co,k) (23) 
is the correlated pion propagator. Equation (21) allows us to calculate 
the growth rate of collective fields via r c oi and the scattering rate 
T s c a t in non-equilibrium systems, eq. (1). A further decomposition of 
r s c a t is possible noting that the integrand vanishes unless I (u) I (-u) =£0. 
Then 

rscat* rNN + IW + r M W 
where 

Tw\ M V ^ N N ^ 
FNA 

= / S ? 4 I N N M I N A ( ' U ) PCco,k)|AQ + G c | 2 (25) 
C2ir) 

rAA ' * 2 V ^ N A ^ 

and the polarization form factor P is 

- log(l-4I(ai) I(-a))|A_|2) 
P&o.k) = - =£— . (26) 

4IMI(-(u)|A0 + G c | 2 

rNN * s t' i e e f f e c t i v e elastic NN •+ NN scattering rate, while IV.. and r.. 
are the effective inelastic NN •*• NA and NN •+ AA rates in the medium. 
In the low density limit, IIj^ + IIĵ  -* 0 =» P(w,k) •*• 1 , and r^j reduce to 
rates calculated with free space cross sections, da°, i.e. 

V V o r ? j / V E p 2 < a N N - . i 3 V r e l > ' • (27) 

Diagrammatically, only the third term in Fig. VII contributes to I\. 
in the low density limit, giving do° * |A 0 + G J 2 . At high 1 3 

densities effective two body (elastic and inelastic) cross sections, 
do e££, can be derived? from eq. (25) giving 

dOgff = P(w,k) do° , (28) 

wherg (u,k) are the energy-momentum transfers in the process. Therefore, 
P(u),ic) contains the density and configuration dependence of the effective 
cross sections in the medium. For systems close to equilibrium, P 
reduces to 7 

P(u),k) =* L-^- , (29) 
|e(U,k) i2 
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12 as is found in the kinetic theory of plasmas. The important point to 

note about eq. (28) is that the existence of collective instabilities 
implies that there exist certain critical values of (w^k,,) such that „ 
Pfac.kc) •*• °° and hence da e££ -»• °° if the energy-momentum transfer (u,-,^) 
is kinematically allowed. This is known as critical scattering 
phenomena and is extensively discussed in Ref. (7). Thus the presence 
of the polarization factor in eq. (28) leads to enhanced scattering rates 
if instabilities are present. 

As_an example of the kind of enhancements pionic instabilities lead 
to, P(tu,k) = daeff/do° is plotted in Fig. VIII for p c m = 4m^ in eq. (1). 
This figure is taken from Ref. 7 and corresponds to the elastic (w=0) 
scattering of a nucleon of momentum ^cm with another of momentum - p,^ 
in the medium. Kinematically, £ is constrained by k = 2 pn, cos 8^. 
Logarithmic divergencies of dogff at k * l.S and 2.0 % arise when 
kinematically allowed values of tk,6Tr) lie on the boundary of region I 
of unstable pion modes (see Fig. XIV of Ref. 7 and Fig. Va here). 
Figure VIII illustrates then critical scattering phenomena for large 
momentum transfers that arise as a result of pionic instabilities. 

The integrated scattering rates are given in Table I for a variety 
of lab kinetic energies, T L t» (0.4-1.5) GeV/nucleon. It must be 
emphasized that the spirit of these calculations is to obtain only order 
of magnitude estimates of the effects of pionic instabilities on these 
rates. We cannot expect to predict absolute rates with such a simple 
model. Nevertheless, the ratios of effective rates r?ff to free rates 

i] 
r?. do indicate the magnitude of enhancements that can arise due to 
collective phenomena. The rates in table I were obtained by integrating 
numerically eq. (25) up to momentum transfers k_= 8 n%. The free rates 
T?- were obtained from eq. (25) by setting P(a>,k) = 1. To set a scale 
for the absolute magnitudes of r••, note that a 20 mb cross section in 
eq. (27) would give r. ./V « 0.25 m*. The essential point to note in 
tables IA,B is that both the elastic and inelastic scattering rates 
are enhanced by factors *• (2 -4) due to pionic instabilities. Rirther 
details of these calculations will be given elsewhere. 
IV. Summary 

Model calculations of dense, excited nuclear matter expected in 
heavy ion collisions indicate that in both thermal 4 and non-equilibrium' 
extremes pionic instabil i t ies can be expected. The typical excitation 
energies involved in these high energy (y 1 GeV/nuc) collisions are not 
too large to prevent such ins tabi l i t ies . Furthermore, the spontaneous 
phonon pair creation rates Y(£) were shown to be sufficiently large for 
these instabil i t ies to develop during the short collision times. In tne 
non-equilibrium case finite frequency instabil i t ies (regions II , III) were 
found as well as zero frequency (condensate) instabil i t ies (region I ) . 
The to ta l ir+ir* and T\°TP phonon pair creation rate V . = <Y> V/Vcrit E 

r o + rir ' i s given in table IC, with r 0 being the 
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rate for zero frequency pairs and r , being the rate for finite frequency 
pairs. We noted also the short wavelengths 2ir/kc ̂  (3-5) fm of these 
pion modes as being essential for such instabilities to develop in the 
finite size nuclear systems involved. 

Then through the calculation of the complex correlation energy, 
the effect of pionic instabilities on the dynamics was studied. The 
main result is that critical scattering phenomena leads to enhancements 
of both elastic and inelastic scattering rates by factors ̂ 2 - 4 . We 
can now assess the relative importance of the two effects mentioned 
at the beginning of section III. The ratio ? ,/T of rates in 
eq. (21) provides a measure of which effect dominates. This ratio is 
given table IC. Note that r

c o ] / r
s c a t < 1 in. all cases indicating that 

the scattering rates are greater than the growth rates of collective 
fields. Therefore, the dynamics is dominated by two body collisions 
involving density dependent interactions, eq. (28). The reduction by 
2 - 4 of the effective nucleon mean free path in the medium is therefore 
expected to lead to more rapid thermalization, indicating that a hydro-
dynamic description^>°»" of the dynamics would be appropriate.7 

Finally, we comment on the implication of the enhancement of 
eff I*wt in the medium in connection with real pion production. It is 
tempting to assume that a factor of 2 enhancement of the NN -»• NA rate 
would lead to twice as many pion being observed in the lab. However, 
the final number of pions observed depends not only on the production 
rate IV.. but also sensitively on the absorption rates of pions. 
Therefore, to estimate real pion production rates, the effects of pionic 
instabilities on pion absorption rates must also be investigated. Such 
an investigation is currently in progress. 
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Table Caption: 
I. Collective r , and scattering r.. rates in non-equilibrium nuclear 

matter at various lab energies T,. •* The NN + NN rates (A), NN + NA 
rates (B), and spontaneous ir+ir", irOrro phonort pair creation rates (C) 
were calculated with eqs. (21,25). The enhancements of the scattering 
rates due to picnic instabilities are given by o^ff/a- in A and B. 
The ratio r c o ^ / r s c a t in C measures the importance of phonon pair 
production as compared to the modification of the scattering rates on 
the dynamics. 

Figure Captions 
I. Range of densities and temperatures where pion condensation is 

likely (shaded). T c rjj. is taken from Ref. (4) for g = 0.5. Curves 
AB and BC illustrate the compression and decompression phases in 
heavy ion collisions. 

II. Initial non-equilibrium momentum distribution in heavy ion 
collisions. 

Ill a) Pion propagator A in a nuclear medium. 
b) Polarization operator n including nucleon particle-hole and 

Ajj-nucleon hole intermediate states as well as correlations. 
IV. a) Contour plot for the rates Y O ^ . O ^ ) of spontaneous ir+iT~ or Tr°ir° 

phonon pair creation in non-equilibrium nuclear matter, eq. (1), 
for P Q H = 2.0 i%. Contours correspond to multiples of 
0.1 % (« 2 x io22 sec -!). The angle 9 ¥ is that between k^ and 
p . Zero frequency (Re w c = 0) pionic instabilities occur in 
region I. Finite frequency (Re a)c # 0) instabilities occur in 
regions II, III. 

b) Same as IVa but for p = 3.0 in . 
' rcm ir 
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V. a) Same as IVa but for p c m = 4.0 m . 

b)Same as Va but with large correlation parameter g = 0.6. 

VI. a) Same as IVa but for p^ , = 5.0 in . 
' rcm ir 

b) For p = 6.0 in . 
c m it 

VII. Series of ring diagrams included in the Random Phase Approximation 
for the correlation energy density Mnp A in eq. (18). 

VTII. Ratio of the effective doeffi to the free, daQ, elastic (NN-»-NN) 
differential cross sections as a function of momentum transfer k 
as calculated via eq. (28). (Taken from Fig. Xlb of Ref. 7). 
This illustrates critical scattering phenomena due to pionic 
instabilities. 
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. Table I 

A. Elastic Scattering Rates 

TL(GeV/N) p ^ / m / rgf/Vfrft r^/vcmj) e l . e l 
a e £ £ / a o 

0.38 3' 0.37 0.09 4 .1 
0.67 4 CI.31 0.08 3.9 
1.04 5 0.27 0.07 3.9 
1.50 6 0.22 0.06 3.7 

B. Inelastic Scattering Rates 

TL(GeV/N) Poi/% 
„e£f, **"<*? lNA' /V6<) „in . i n 

a ef f / a o 

0.38 3 0.24 0.06 4.0 
0.67 4 0.58 0.28 2.1 
1.04 5 0.72 0.42 1.7 
1.50 6 0.64 0.39 1.6 

Collective Kates 

T. (GeV/N) PcmH 'cor /VCmJ) r , /r 
I t ' O 

r col ' r scat 

0.38 3 0.21 0.47 0.34 
0.67 4 0.18 0.47 0.20 
1.04 5 0.25 0.50 0.25 
1.50 6 0.59 3.20 0.69 
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Fig. II 

p x 

XBL776-I09I 

(a) 

A = 

CfWWWfc 

Fig. I l l 

A 0 + ' A 0 TI A 

= c—: -O + O 

(b) 

n (n„ + nA) (i +G cn) 

XBL776-I090 



-17-

Fig. IV 
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Fig: V 

1= -1—I—I—h 
(b) 

P c m

= 4 0 m 7 r g=0.6 

7 = 0.1 

0 1 1 1 !_ I I I I 

0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1.0 

COS 0, 'IT 
XBL 776-1093 



-19-

Fig. VI 
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Fig. VII 
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