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‘1. Introduction

Several aspects of particlé physics and of quantum'theory have
led to fhe idea that the hadrons - theStroneginteracting particles
consisting.of mesons, m, K, ¢; and bafyons, n,lé; T, A, efc. - are
made of string. Perhaps a more proper description is that the

hadrons have string-like structure.

~ According to thertheory, the strucﬁuré of hadrons is modelled:
as a Qne—dimensionai continuum. There is no direct prbof_of string.
structure but rather a number of indications which havé‘pointed in
this direction,_someiof which will be summarized in §2. At present.
the state of theAthebry is far from complete andvit;céuld require -
considerable modi fication before calculations of experimental.iesﬁlts
such as cross—sections or lifetiﬁes één be made. ‘As‘such, the idea of

a string has perhaps the status of a model rather than é_theory.

_Introductdry accounts of string models have been givéﬁ by
Schwarz [1] and Nambu [2] . More detailed information is

available in the reviews [3,4,5] .

2. Evidence for String Structure of Hadronsv”

2.1 Statistical Models

From a study of statistical models{'Hagedorn concluded that

) tﬁere may be aﬁ infinite number of hadrons whosé distribution is |

an exponentially increasing function of mass. But it is difficult

to obtain such a spectrum for hadrons constructed from point particles.
However, such a spectrum is cbtained for an éxteﬁded object such as
a.relativistic string [6] or more generally for an n-dimensional

‘covariant elastic jelly [7]



A simpie non-relativistic example 1is giVenvhere to show the
-essential difference in the spectrum of a particle'étrﬁgturé aha an
extended'objectf It should be ﬁoted>that_the Hagedorn'type of level.
density éannot be obtained from this example. '

Consider a nonérelativistic lineai harmonic oscillator. After

 subtraction of the zero-point energy, we have the energy levels:

— — st
N
N L

A string can be considered as an infinite set of harmonic oscillators,

corresponding to the normal modes of vibration:

157 HARMONIC 2™ MARMONIC  efec.
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Here n, n,, ng etc. are the occupation numbers of the various modes of
vibration. - We now tabulate all the possible sets of occupation numbers

ni, np, nz, ..... giving rise to total energiés of 0, ﬁmo, 2ﬁmo, etc.
\ .
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It is obvious that the number of possible states increases

rapidly with the total energy.

2.2. Dual Models

A popular description of hadron interactions is thatvgiven in
terms of particle éxchange. For example, nucleon-nucleon interaction
in a nucleus can be described in terms of‘exchange of pions.  These

interactions can be visualized diagramatically, e.g.

A second approach to hadron interactions 1s the idea that particle .
‘interactions give rise to intermediate resonances which, for instance,

show up as bumps in the energy variation of the scattéring qfoss-section;-
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This description of interactions can be shown diagramatically as:

I ResonaNCE
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Low energy iﬁteractions such as thosé dealt with in nuciear physics
are frequently described in tefms of finite sums of resonances.
The'two approaches are brought together by the principle of
duality. Phenomenological duality asserts that the description in
‘terms of exchanged particles should-give the 1ow energy behaviour

averaged over resonances. Diagramatically:

Veneziano has put forward an expression for the ampliutde
satisfying the above duality requirement. In this expression, both
the.sum over particle exchanges and the sum over resonances are infinite

and the spectrum of states nceded looks like the spectrum of a string.




2.3 Quark Confinement

.'A'rather abpealing éxplénation of quarkiéonfinemént can be giveﬁ'
in terms of strings. ,Suppoée we take a mesoﬁ_to be é finite piecebl
of string and further impose on this string a-direction. The two
ends now differ and one end of the 5tring can be ideﬁtified aé a

quark and the other as an anti-quark.

- S O
K 9

Now in order to isolate a quark we pull on one.end of the
string. However the string is brittle and as it starts to stretch,

- it soon breaks, forming a new quark and anti-quark at the broken ends.

¥
ﬁf
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So instead we produce a new meson and no free quarks. The brittleness
of the string is due to the small mass of, say, the m meson compared
with the energies present in high energy collisions which produce_Vast

numbers of mesons.



- In order tc éxplain'certain inéonsistencies in quark models such
as violétioﬁ of the spin-statistics theorem, a new quantum number known
as colour has been introduced. The usual "fiavours" u(up), d(down)

"and s(strange) of quarké are further distinguished as coming in three
colours, R(red), B(blue) and G(gregn). Like the original flavour
quantum numbefs, colour forms on SU(3) Symmetry,_buf unlike fhe flavours
this is an exact symmetry in that it is not broken by ény inferactions.'
The corresponding anti—particles are each available in thévanti—coiours
R,B and C. More recently the flavour spectrum has been extended fo an
SU(4),symmetry with the introduction ofvcharm, aﬁd eﬁeﬁ mOreireéently
to five flévours. ?hysical_baryons are believed to correspond to a

colour SU(3) singlet and so are white. According to the string model,

a proton, for instance can be drawn as:

The Feynman diagram for a strong interaction is now a surface traced

out in space-time. For instance, for an interaction of the type

meson + MESON I mMeson + meson

we have



To describe this process we can either parameterise the surface

by cutting through the diagram at equal times, ie.

which corresponds to summing over resonances, or parameterise by cutting

in this way:

\

which corresponds to summing over exchanged particies.



2.4 Gauge Field Theories

From gauge theories of vector fields there is thé pOssibility qf
producing string structures in various ways and so getting quark
confinement [8,9,10,11] |

| The gauge theory of a vector field that we are most familiar with
is electromagnetic théory, which is an Abélian gauge theory. In Abelian
- gauge theories,‘étrings_can afise from the medium squeezing the flﬁx‘of -
thevfield into strings of quantized flux as for instaﬂce happens to
maénetic flux in a type II superconductor, where the strings are called .

Abrikosov filaments. A theoretical

TYPE &

| SUPER CONDULTOR .

ABRIKOSOV
- FILAMENTS




Ve consider the possibility of an Abelian gauge theory of strong
interactions - that is a vector field theory which is‘mathemétically
similar to électromagnetic theory. By constructing a hamiltonian for

the strong interactions analogous to the Ginzburg-Laﬂdau.hamiltonian,

we will have the vaccuum acting as a type II supercondﬁctor for the gauge

fiela, and- this will give strings.
- As well astbelian gauge fields, there are more geheral gauge fiélds
. knéwn as non—Abélian gauge fields. The difference bet@een an Abelian
gauge field and a non-Abelian gauge field, is described below in‘physical
.rather than in mathematical terms. o |
~ For ah Abelian gauge field, such as electromégneticvthébry;'Gauss'é

theorem applies: the nett flux through any surface, not containing any

sources, is zero. ‘For a non-Abelian gauge field, Gauss's theorem does not

ABELIAN GAUGE FIELD . NON-ABELIAN GAUGE FIELD

hold in this simple form. The nett flux through a closed surface is
not necessarily zero even in the absence of sources. The flux is not

“additive. The flux lines can join, for instance as shown

Q;‘
¢
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and so we can get tangles of flux lines, which can overcome the téndency :
dfvflux 1iﬁes to repel each other, and because of these tahgles fhe fiuxA
lines can form strings oquuantized flﬁx.

In the Abelian case, without the effect of a supercbnducting medium,:
v fhe flux lines spread out because they repel each other, and the forcé
depends on fhe numbexr of.flux lines per unit area and asvwe take that
area furthef away we have 1es§ flux lines cutting it and so a smallef

force and so a smaller potential, ie. V « %-.

FORCE DECREASES WITH » " Force INDEPENDENT OF r

V o< ;f . : v\/ < r

When the flux lines have come into a string like this, as we take
the area along the string, the number of flux lines cutting the area
is constant, and so the force is independent of distance - which means

the potential is proportional to distance.
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For noanbelianrgauge theories, a generalized férm of Gaﬁss's
theorem holds. As an example, consider SU(3), at present the most -
popular,ﬁon—Abelian gauge group for the strong intéractiohs. _For:this
group; the generalization of Gauss's theorem gives that thrée flux

- strings can meet

ie. that flux strings are added modulo tﬁrée. Then identifying the ends
of the strings as quarks, we have the pictures'éf'bgrydns consisting of
three quarks and mesons tomposed of‘quark and anti—quark described in
§2.3; The stfiﬁg traces out a surface of ﬁinimai‘afea in space timei‘
at.least'in;the approximation where quark masses are neglected.
From‘the_string_tracing out a minimal area in-Space time it can bé
shown that the hadfons lie on straigﬁt 1ineAReggé tranjectories - that

for rotational bands

MJ2 = oJ + B

where MJ is the hadron mass and J is the spin. This is in substantial
agreement with the Regge trajectories, or more correctly, Chew Frautschi

plots for baryons and mesons which are shown on the next page.
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3. Minimal Surfaces in Space-Time

The.idea'that.a string should trace out a minimal | area in space-time
is anélogbus‘to the action principle postulated for a siﬁgle particle, |
namely that 8S should be stationary.  For a particlé, thié leads to |
uniform ﬁotibn in a straight liﬁe'when no forces are present. 
| »The‘miniﬁal areé problem for a (time-like) area in space-time differs
from the éorresponding problem in Euclidean sﬁace, since invEutlidean
space it is necéSsary to specify the entire boundary. One minimal area
of particular intérest to us in space-time is that traced out by a rotating
‘:straight string where the initial and final postioﬁs of the string are
specified. The ends of the string move at the speed of light, or
alternatively, we ignore those unphysical parts of the solutibn whi;h_-.
correspond to velocities greater than that of light.

To géin some feeiing for the pfoblém 6f_depermining stationary
Aéurfaces in‘épaceétime, it is helpful to consider first thé corresponding
problem iﬁ Euclidéan-space. Work'has been done on this topic by Almgren
and Taylor [12] and Taylor ‘[13] in connexion with the‘geometry of soap
films. From this work it is known that three surfaces meeting in a line
,constitufe a minimal surface but thiS‘iS not true for any number of
surfaces greater than three. For example, if five infinitely long
parallel supporting wires are connected by.a soap film so that 5 soap
films meet in a line (as shown in the firét'diagram)7this configuration
will collapse to one with three soap films meeting at each Jine as shown '

in the last diagram.
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SOAP BUBBLE WITH FIVE SUPPORTING WIRES COLLAPSING TO MINIMAL SURFACE _

The case where the surface is in space-time can be considered by
taking the supporting wires of the sbap bubble to be aligned with the
time-axis. The corresponding result is then that the number of strings .

meeting at a point can never be greater than three.

4
x4

“
’[ . N

MAX. OF 3 STRINGS MEET AT ONE POINT

' This is equivalent. to saying that the hypothesis that a string should
trace out a minimal surface is only consistent with an SU(n) non-abelian

gauge theory if n=3.

4. Transverse Vibrational States at about 4GeV. -

One requirement of any physical theory should be its ability to make

~ predictions. Tabulated below are the types of states obtained for the
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w<meéons for two different models. In both models the ¢ is composed of

a charmed quark and a charmed anti-quark but in one case the quark and

antiquark are interacting by means of a potential and in the other case

they are connected by a piece of string.

c ¢ potential ' o8¢
Rotational states Rotational states
Radial excitation ‘Longitudinal vibrations
of string
: Transverse vibrations
. of string

Possible states of ¢ (cc) meson if a) linear
potential and b) string model assumed

" We see that the string model predicts‘the existence of extra

_states corresponding to transverse vibrations of the string. Giles

and Tye [14] have calculated the energy levels of these states and

~ their results predict the existence of extra resonances at about 4 GeV

upwards. So there is the possibility in principle of experimentally
testing the string theory by identifying the states of transverse

string excitation. However the calculation of Giles and Tye neglects

spin-spin and spin-orbit coupling and experimentally there are a lot

of states in this region so that this identification has not yet been

made.

5. Are Quarks Confined?

. As well as asking 'How are quarks confined?', we must also ask

'"Are quarks confined?'. La Rue, Fdirbank and Hebard [15] have observed.

+

Gl

charges

e on niobium balls. Previously Longo'[lé], had pointed

out the possibility of quarks being unconfined within a heavy nucleus,
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although this mechanism would not provide an explanation of‘?airbank's
reéult.

~ Consider again the analogy of the gauge theory of quark confinement
to superconductivity. In the case of superconductivity, if a sufficiently
large magﬁetic field ié applied or the témperature is sufficiently high,
the material is no longer superconducting and.fhen the magnetic flux
will no longer be squeezed into narrow filaments but Spreads out, so
that the string structure breaks down. In many of the models of quark
confinement, there is the possibility ofvaléimilat phasé transition
leading to the breakup of the string structure and then the quarks are
not confined. |

The possibilities are:-

A. Quarks are always confined. In this case we must look elsewhere

- to explain the results of Fairbank's experiment. |

B. Tﬁat there exist both
i) Confined phase - as in free hadrons:
iij'Unconfined phase - possibly in 1) heavy nuclei
or 2) neﬁtrén stars

or 3) the first 10™% seconds of
~the universe :

or 4)bwho knows?
C. Quark§ are not confined but either_.
i) We haven't looked hard enough fér them
or 1ii) their behaviour is very unuéual - fdr instance,‘they_may be
| | the indeterminate mass partiéles.(IMP'é) suggested by

McCoy and Wu [17] , and so we have failed to see them.:

6.1 Classical Mechanics of Strings

We first outlinc the Lagrangian formalism for a free relativistic '

particle which can then be used as a guide in setting up the
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formalism for a string.
The action for a particle is taken to be proportional to the .

invariant arc 1ength traced out by the particle in space time:

S b b v2 ko b -
S = -mc [ .ds = -mc I dt [1 - fi‘] = f L dt
c .
: a @ 2 :

e

2 - :
where L = -mc? (1 - %E'] is the Lagrangian.
The principle of least action 85 = 0 leads to the result that
the particle traces out a geodesic in space time, ie. it moves with

uniform velocity in a straight line.

The momentum is defined by

S ™
P dq ~ ov 2 VL
et 3 —_— ve 2‘
and the energy is giveniby
mc2
E=p.gqg-1L=
L
-

Following the analogous procedure.for the mechanics of a relativistic
string; we take the Lagrangian to be the area traced 6ut in spéce—time
by the string; so that thé principle of least action leads to a determina-
tion of minimal surfaces.

Considering én infinitesinal element of the string, we éan take the
_ Xx-axlis as tangent to the string and y-axis in tﬁg direction of thé |

transverse motion of the string.



Then the element of area traced out by the segment dx in time dt is

. L

2 72

dxds = cdxdt [1 - L }
[

- and the total area swept out by the string is

t 2 ok

-.cfl dt[l d1 (1-"—;—}

{ - C
J :

(o]
o

We now define the action as

t e ,- 29
-1 Voge | a2 Y2t
2ma! | 2

5]
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| 2 | L 1k %, |
-1 1 _ v_,_2 2 _ 1
and put L = o _J de [1 - ] = de &
' ‘ 2 A

o ' : o .

where L is the Lagrangian and the Lagrangian-densityéﬂ.

. The constant has historical origins which we won't go into here. .

2T
In analogy to particle mechanics we define the transverse momentum

“at each point of the string by

G P9, -L = ol -
e
cs
and the total energy by
L ; 2
E =J1(§.d5LJ1d5L 2 1 )
% 3 1 - B |
(o] o c

6.2 Rotating String

We now apply this to the example given in 53 of a String of constanf_
iength rotating with constant angular velocity, the ends of the string'
moving with the velocityvc. We take the lehgth of the string as 2a (—a<2<a)
and‘thé angular momentum as w. It can be checked that this motion .
satisfiesvthe Euler-Lagrangé equétion of motibn and bduﬁdéry-condition ét :

2 = *a obtained from the action principle by thelusual method [18].
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STRING O.F CONSTANT LENGTH 2a AND CONSTANT ANGULAR MOMENTUM w.

Now the angular momentum of the string will be given by

B L : a
1 1 de Vi/c?
J 7= ) I sz QP_L= 1TG,' I 7 , 7 /2 ;i ’
R : o {1-\"2 ]
0O ) c

and the energy by |

. 1 (2 @ |
E = — —_
: e 2 V7%
1 -2
o[-
o Vi .
Putting & = Y gives
hAR
S S G .
o' w J ve 2)% 2a'w
o 1 - =
, c
V1 Vi
1 c 1 {C}Z d[E_J _ c
J = ' < (VA
! w ) {1 _(&)’2} L da'w
c

19.
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. A quantum mechanical treatment of the same problem leads to the

result (with ¢ = 1)

J = a'E2 + constant.

This agrees with the Chew-Frautschi plots for hadrons mentioned in §2.4.
" From experimental.observations, the value of a' is ébout 1(GeV) 2.

Replacing w by §- in the classical results for E and J gives

so we see that the energy of a hadron is propoftional to the radius of’
“the circle traced out by the string in its rest frame. So for hadrons
of small 'mass, and hence also small spin, a is also small but w is

lafge._ For those with large mass and spin, a isvlarge and w small,
Problems: (Take a'/c = 11 (GeV)_z)

1. Fora classical rotating string, caléulate the length of

- the string, 2a, when J = 1. (answer: 4 x 1074cm)

' 2. A massless particle can be modelled as a non-rotating
. string of length b moving with velocity c¢ and aligned with its

direction of motion. Calculate b for such a'particle with an energy of

-13 '
c

1 GeV. ({answer: 1.2 x 10 m).
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7. Application of Strings to Inelastic Scattering

The inelastic sdattering of electrons from nucleons has been
described in terms of string theory in the work of Tassie [19]
and Braden [QO]. The process we are considering is shown diagramatically

below.

VARIOUS HADRONS

VIRTUAL PHOTON '

NUCLEON

The émmision of a virtual photon from an eléctrbn is wéli known
from quantum électrodynamics and'won’t be.considered»further here. To
- examine the process of absorption of the Viftuél phdton by the nucleoh

and resultant production of hédrons we assume that one of fhe quarksi
from the nﬁcleon ié struck by thé phOtoﬁ and recoils. As it does so;
it draws out the string to which‘if is aftached, bréaking the string

1and 50 creating a new particle. This first break will deterﬁine the.
effective ﬁass of the recoil piece and can be determined by measuring

the inelastically scattered electron.



STRUCK QUARK
REcoILS

REST OF

NUCLEON

VIRTUVAL -
. PHOTON

EFFECTIVE MASS OF
RECOIL PIECE DETERMINED

BY MEASURING €.

- The recoil piece may subsequently break up into smaller pieces
generally moving in the'direction of the incident virtual photon.
These pieces will form the photon fragmentation region. It is

possible that the remaining target piece will break up also, forming

the target fragmentation regiom.

22,

Simple calculations can be made from this model to give relative

probabilities for the types of mesons produced in the first recoil piece.

Tabulated below are the quantum numbers of electric charge, strangeness

and charm for the SU(4) quark flavours:



CHARGE STRANGENESS . .. CHARM

. s | 0'_-"',’0'
a | -1/3 o 0
s Y T | 0
c v2/3 o w1

: We'alsd’list the mesons and their constituent quarks:

MESONS
L /% (uu+dd) T du
n ud K su
K us - D° cu
p° uc K sd
K° ds | D | cd
p*=D” dc F cs
;:;F— SE:

Nucleons consist only of u and d quarks, so only those mesons
‘containing either u or d quarks can be produced by this model of
inelastic scattering. If the quark struck by the virtual photon is
a u-quark, the following possibilities arise:
wor—d oL

Ui e

and if{ the photon strikes a d-quark, we have



24.

° i 4O
.d‘h,—"g' 50—”"1:>
- .o(._;__....E co—0)

N~
S SR

dF\O —

Neglecting differences in masses of different types of quarké we

\.

assume that each type of quark-antiquark pair can>f6rm where the
string breaks with an equal probability. However the probability
amplitude of prodﬁcing a particular'pérticle should:depend on the
type of quark interacting with the virtual phofén. ‘We can fhéfefore
assume the probability of any of the procesSes_shown in thé diagrams

above to be proportional to
(charge of interacting quark)2 X (numbér of that type of qdark in_nuéléon)

For interactions with u-qusrks we have Q2 = 33 with two u-quarks in the
protpn_and one in the neutron, and'fqr d-qﬁarks, Q2 = %ﬁ with two d-qﬁarks
-in:fhe neutron and one in the proton. - This gives‘the following table of
relative'proﬁability amplitudes: | |

Fo L K* - KO D D ~ Any other mesons

P = uud

N0
o
[
m.
p—
oo
[ =Y
(o]

N = ddu 3 4 2 4 2 4 2 : 0
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The experimental data curfently availéble is still insufficient
to make any strong judgements for this model df‘fof'similar modeis
or for similar modeis assuming Quark-diquark structure of nuclebns
(88). One shortcoming of either model seemé'td be the predicted -
ratio of ﬂ+/ﬂ:' production off protons. The modei used here'aSSumes.
that the photon'fragmentation regiqn consists oﬁly of thé meson in -
the initial recoil piece. Such mesons manifest themselves exﬁerimentélly"
as having iarge values of the Feyﬁmapn scaling variable Xp» which is |
the fraction of thé longitudinal momentuﬁ of the incident photon
transferred to the recoiling meson. |
| While the predicted ratio of n+/n_ producfioh'ié g, oﬁsefvationé ‘
indicate that this ratio is never more than about 3. This low value
" may be due tb meésurement being taken at low Xp or alternately.may

indicate the occurence of some other process.
8. Exotics

A model of baryons involving diquarks has been proposed by :
‘Lichtenberg and Tassie [21] and Keleman; Lichténberg and Tassie [22],
For massless quarks, the area traced out in space-time by the configura-

- tion so far suggested for baryons, viz.

v

- can be reduced if two of the quarks coalesce to giﬁe the configuration:
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9 4 ¢ v o ol
‘forming a single string bounded by a quark and a diquérk._The diquarks
.beiong to the colourYSU(S) representation 3 in order thaf‘the baryqn
.formed by a quark and é diquark should be a colour’singlet.:

Any meson which is more complex than q-—-a; for inétance one

~ composed of diquarks, is called an exotic meson. - In particular we

consider the exotic meson of the form -

P I
' - S '3 L
5 | -~

This can decay by the process of breaking the string into either

- two exotic mesons or a baryon and antibaryon:

X

i\_/;z | g;_./—‘

- EXOTICS

«~0
Q]
X

BARYON — ANTI-BARY O
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- An exotic meéon cannbt; hdweVer, decay by\étting bfeaking intO'only
 noﬁ exqtic.mésons so .that simple string.breaking decays of d-d |
'exoticé must produce Uaryon-anfibaryon pairs.

'  Consider deep inelastié electrdn Séattering.from a baryon

constructed from a quark and a diquark.

of 4

K,_/'

Although it requires less energy to snap a string to create a qq

‘pair than to create a d d pair, a process such as

<8y

—_— L e—> ETC,

“!@

1
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involving only q'a- creation will never produce an antibaryon. However

antibaryons are produced in deep inelastic scattering and so some

'dd string breaking must occur, eg.

&Ry
PUSS o S

A Q1

M

N

In the decay of string pieces antibaryons can arise from the decay.of

an q q meson which can decay into either non-exotic mesons or B B

(
.

-~ via the process:

2
&1

e }
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or from an exotic meson which decay either into more exotics or into

B B via the process:

-
~

~ Thus we expett that a substantial amount of antibaryons produced in
inelastic electron scattering should come from the decay of exotic
mesons. It is therefore suggested that the production of baryon-

antibaryon resonances be looked for in inelastic electron scattering.
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9. Extended Objects in Quantum Field Theory

To examine strings in terms of a field theory it is necessary to
deQelop fields which consist of extendedvbut morevor less localized
deviétions from the ground state which must in themselves be staﬁle,
that is, solitons. We shall follow largely the treatment given by

'tHooft [23] , while a more qualitative treatment can be found in [24]
Such a localized deviation from a vacuum state can be immune to

decay into a vacuum state with time evolution if it is topologically

stable. To explain what is meant by topological stability we first

consider models in one space and one time dimension.

"9.1. Solitons in one space and one time dimension

The Lagrangian

£

-5 (3, 92+ B(3,4)2 - V(9)

gives rise to a simple scalar field satisfying

2 2 d _
2,26 - 2%+ g V() = 0

The existence of solitons will depend on the choice of potential V(¢).

CIf V(9) is given by V(¢) = k242

NVg)= ﬁ&gva' |

v
>
"J

i
-
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then the vacuum state ¢'§ 0 is clearly a solution. Any solution
which initially deviates from the vacuum state in some finite region
willveventually decay to the vacuum state as t » « and so no solitons

exist for this choice of potential. On the other hand, with the

potential V(¢) =‘A(¢2-F?)2/4l

N
- A &
V() " Y, (90.1__ F‘z)

-F | +F

there are two degeneratevacuum states, ¢ = *F.

N4 |
‘ @= +F

:é"'

<
fx
-
no




We might also seek solutions satisfying the boundary conditions

-F

FF 5 g(ew)

Bk =)

or

fl
fn

$(+ ) +F.

-Fos o ¢(->)

For static solutions we have

a2y o
92¢ = dv/dg
S0
2 Ty o2 -v =V 0
9X ¢ “ ( X(b) .
From the boundary cohdition V(¢(x=)) =0 we have
%(ax¢)2 - V(4) = const. =0
SO ’
E = - 1
1
d¢ (2 V(4))
With V(¢) = A(2-F2)2/4! this gives

F tanh g%s (x+const.)

e
I

F tanh g%% X

by suitable choice of origin.

33..
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e e = o s am -

This solution is topologically stable against decay into either of

the vacuum states ¢ =+F and so represents a soliton at rest. In this

case the topological stability is due to the boundary conditions

forming a discrete set, so no continuous transformation can convert

‘these boundary conditions to those of either of the vacuum states.

9.2 Solitons in Two Space Dimensions

It is not possible to develop topological solitons in two space

dimensions from a scalar field because the boundary condition as

_ |x| » » must differ from a constant. (If the boundary condition

were ¢ > const. as lx] + =, then

any solution cannot decay to the

there is no topological.reason why

vacuum state ¢ = const.)

Suppose then that we consider a two component field

with the '""Mexican hat' potential:

V({e)

A ($2-72)2
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s .

Vig) = A (90"4 F2)*

For this pbtential we have an infinitely degenerate set of vacuum states

given by $2 = F2,

The boundary condition

600 » x/|x| as |x] > =
4\35;
\\ { I

S~

L

»

/;L\

could be expected to yield topologically stable solufionsf ﬁOWevei the

térm %(3x¢)2 dzz_ in the Lagrangian asymptotes to %(F/lxl)2 fdzzgas | x| > o,
and upon ihtegrating, this ié logarithmically divergéﬁt. By the same.
argument it can be shown that the corrésponding n-component field and bdundary
' conditions.in n space dimensions aiso lead to divergent integrals_wiihin the

Lagrangian.
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It is possible to overcome this problem with the introduction of

gauge fields. We modify 3; with the gauge transformation

where'Ai is a gauge field.

9.3. Gauge Fields

Before preceeding further we consider the effect of gauge .

~ transformations on a complex scalar field.  The Lagrangian

LG (3,0 0% - K:?W

gives the Klein-Gordon equation

' ([] + k2)p =0 | vhere [0 = 32/3t2 —_Vz

Clearly the phasé of ¢ is unimportant, that is, the—Kiein-Gordon'equation

- is invariant with respect to transformation of the form

6 ve %
In this case, the gauge group is the Abelian group U(l); Generalizations
can be made to include non-Abelian groups but we will not go into the

mathematics of these here.
If a gauge transformation is used in which the phases are position

dependent in space time, ie.

: 5 () —».ej S{x} 6 (x)
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the Lagrangian and field equations are no longer invariant since
i6(x) . 16(x) '
3 > e 3 + ie 3 6{x
K K SERICH

that is, the derivative of the field no longer transforms like the
field itself. To restore the invariance we replace au by a covariant

derivative Du such that

This can be done by introducing the gauge field Au(x) which is -

defined to transform as

1
Au(x) -> Au(x) i E-Bue(x)

with g a constant. Du is then defined by
D=3 + igh
u i &%

so that D ¢ now transforms according to (1).
. pt .

We can still add a gauge invariant scalar to the Lagrangian:

_ 21 uv
& =&, 7P P
.o lp o igA 1o% (3%+ipAM)6 <200
= 7] Fqu | + (au 1gAu)¢ »(3 +igA )¢‘ K ¢¢.
"where = 3 A - 3 A, giving the Lagrangian for an electromagnetic
. HV [SEAY v H , : .

field with a scalar field as source. The electromagnetic field is an
Abelian gauge field corresponding to a particle of zero mass, ie. a.
photon. By use of the Higgs mechanism we can introduce a mass for the vector

particle by altering the Lagrangian to givedegenerate Vacuum states.
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The Higgs Lagrangian is
uv

L= -7 o, - igAuw*} (3"+igA")o - MA(6%6-F2)2 (2

Whereas preﬁiously the vacuum was described by ¢=0, we now have the

degenerate Higgs vacuum ¢ = exp(iaF).

Vgl

= , - |l

An aiternative choice of gauge which makes some of the physics

- clearer is to put

ia(x)

$(x) = (F + Pe

where a(x) is chosen so as to make Y real. It is also necessary to

regauge A, SO we write

A = R a .
Au _Bu 2 u_a(x)

~ Then the Higgs Lagrangian becomes
'y ._' ’ 1 RO r . . NIRRT L '
L = - 7 P o - g B“)w] (a"+igB )

.. 2g2FB“Bpw st - 2aFd - 20F2y2 4 gZFZBuB“
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From the term +g2FzBuBu we identify the mass ofrthe vector field as
m= v2 gF
and from the term - 2AF2y2, the Higgs scalar field has a mass of

m, = (20)%F

9.4, String-like solutions to the Higgs Lagrangian

In this section we shall follow the work of Nielsén and Olesen [25]

andb Olesen [26] .

Returning to the original Higgs Lagrangian (2), we note that it‘
- is similar to the Lagrangian of the Ginzburg-Landau theory of‘type II
superconductivity and sovthere are vortex solutions."Thaflis, it should
be possible #o'derive string-like solutions. |

We are seeking a solution thch decays to:the vacuum at infinity;

so for two spatial dimensions a suitable boundary condition is

nd

o> F M0 4 | x| +

‘where n is an integer in order that ¢ should be single-valued. We
shall consider the simplest case, n = 1, and assume cylindrical

symmetry and z-independence of the solution. Using polar co-ordinates

X =1 cos ©
y = 1 sin 8
we put
o = x(r) exp ie

A= Txea (n, A =0



- The action is given by
' 2. 2 ¢ 1, 2 L X1 g2 232
[P | 0B - feunt mP-(a;-108)0" (25158 Do = Lol D]
_ . . Ry ' R ‘ i6 )

= J d%x { - (Za(r)+r 3?)» - [K% ae—igra(r))e ,x(r) v

o ; | . .
(r—13‘O + igra(r)) elex(r)} - (95) - 1—A (XZ‘FZ)Z }

I

27 J r dr [:~ %-.rz(da/dr)2 - (dx/dr)2 '
o .

(07! 4 grae? - %sz_Fz>z - (a2+ra'(da/dr>>]

Integrating the last two terms:

e , - > _ :
{ -t dr(a”+ra(da/dr)) = [o dr(ra“+t"a (da/drj;

0 , assuming |Al ~ 0 at infipity. -~
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So the action is given by
j:ﬁdzx = 2w j r dr [ & r2(da/dr)? - (dx/dr) - (r agra(e)) %A(XZ-FZ)Z]
For the last two terms to converge at r » » we must have

X > F } |
as r -+ o«
a~» - (grz)_1

- Also we must have

x » 0 . '
as r -0 .

a finite

From the conditions on a as r » « . the flux ¢ in the x-direection

is
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In Fact,,bne can see that the flux is quantized if we consider the\:
| possible cylindrically symmetric boundary conditions at'|r|f¥ @

viz. ¢ » F exp(ine).  This gives
¢ = 2mn/g

~ The Higgs Lagrangian in the form (2) yields the field equation:-

*

_(3u + igAu)ch = A szo-k m'zw B ' : o S (3)

v T 2 2 L

3 F = = ig{e®3 9~9 3 ¢*) - A . 4)
Y Jy = retede-e u¢‘) 29 ul¢[ o o ( ? v
To deal with the cylindrically Symmetric static case we rewrite these

‘ equations in cylindriCai co-ordinates. For ¢ = x(r)exp(ie) this gives

-1 d dx A 2 2 9] - .
.—r T T EET) + [}r - QIAI) - AF +}x'JX =0 : . §5)

- I (r"1 é%- riA]) + 2 x2(|A| g2 -gr ) =0 . ) (6)
'Equation (6) is the § component of (4). To obtain the first term of (6)

we note that the & component of 3> F, is just
N L g -1 d B
.(Curl ﬁ>@. = aH/ér = --(r ——-rIAl). .

Although (5) and (6) have not so far been solved analytically it is
possible to find the asymptotic behaviour of the solutions as r » = .
For {4} we have

; -1 =k /7 Fr

5»\'4? - (¢ P ) - O op 59
1Y gLy Lo a9
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where C is‘a constant of integration. The vector field x A

1T
t
<3

is thenvgiven by

o VR
e (clal) - /Z gre 2F eI L

The asymptotic behaviour of x is given by

L
1 2
X ~F +C' 1‘_/2 e—(Z)\) Fr

Recalling the definitions of m, and Myys the masses of the vector

and scalar Higg's fields from §9.3, we see that

: emT .
H~ /2 gfCr e : y T > =

S

1 -m, T )
~F+C' 1 ie N o
x ~ F + T e y L > o

Plots of H and x as functions of r are given on the next page.

Because of the term - 1—A.F2|¢]2 in the Lagrangian, the Higgs

2
meéhanism forces ¢ from 0 to F. However, we also have fhe term -
QzAuAulWIZ, 1] ifiin some région of space AZ is sQFFiciently large, |
this term wins and there is no'longer a‘Higgs mechanism; so the grodnd
state is ¢=0. These phenomena lead to the string-like stfuctUre of the
- vortex sélution, where in region I we have H #£ O, o =0 and in region )
11, H=0, Jo| = F. The distances over which H and ¢ differ noticably
fFrom their limiting values are characterised by the invérse Compton_'

viavelengths m;1 and m;1 of the vector and scalar masses respectively.
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9.5 Strong Coupling Limit

We now identify thevVortex solution of §9.4 with the dual string

discussed in §6.

Recall that the rest energy per unit lengthrfor a dual string is

given by

1

string

For the vortex solution, we have for the magnetic energy

12
é@ortex = > I H° 2ar dr -

This can be evaluated approximately by assuming H to take its average

value for 0 < ¢ < R = mv_1, so that

1,2 2 1 @2 1 sz 1
& =5 H « R” = &+ = . .
vortex 2 2 2 2 2 2
nR g mR
2 .
= 2L m2 = 27 FZ .
2 Y

There is also a contribution to the enérgy per unit length'of the string
due to the core, where |¢| deviates from F, and this contribution is of’
"the same order of magnitude as the magnetic energy [25].

"So a' ~ F2, that is, F should remain finite. For the vortex to

constitute a string of negligible thickness we must have m, = /2 gF' and

1/ .
my, = (2M)2F + = . This implies that the coupling constants X and g must

both tend to infinity. We refer to this limit as the-étrong'éOupling 1imit.

In this limit the field ¥ is non-vanishing only in a small region

TRV

- and the field ¢ is nearly equal to the vacuum everywhere apart from that



approximately

H
. . s 1 uv 1.7,.2 22,2
equal. Because of this behaviour, the terms - T Fqu and - iﬂ(¢ -F7)

region in space where Fuv # 0 provided we take m, and m

'invthe LLagrangian are,non—vanishingvonly within the line vortex where
~they are of order m3 and mﬁ respectively and‘so act like smeared‘out s -
functions. The ?emaining term in the Lagrangian [(au+igAu)¢]2 remaiﬁs
finite everywhere, and beéause'ofuthe choice of gabge vanishes outside

the vortex in the strong coupling limit. -

~ The action for the line vortex is then given by

'J d4xzﬁ
T vortex

Svortex

R

Ja' 1 Wy o o
dh L= g P f - 7 26D |

n

1 T 1,77 2.2
F \)F o, —»2)\(0 -F7) UH]_

Jdtdz[—z .

H

~ where 2 is the distance alohg the string and o, and o
‘which the Higgs vector and scalar fields do not vanish.

The cross-sectional area of a moving string is related to the cross-

sectional area in the rest frame by

. 2.k
0300(1'Y‘_)2.’

so finally we recover the action.for a dual string:

S = const. J dt dlf(1—w?)2

the areas over

- 46.



10 Lattice Gauge Theory

Nilsén [27] Has treatéd gauge theory on a diécrete iattice in four
dimensional Euclidean spacthime. Other treatments‘of lattice gauge
Athéory have been given by Balian et al. [2§] ahd Kadanoff {29]. By
defining field valueslat each site in a lattice it is possible to quantize -

the field by means of Feynman path integrals.

We take the field to be ¢(n), where n labels the lattice sites;
_Assuming a model in which only fields of neighbouring sites interact, the

action can be taken to be, for instance,

S= 1 eln)xem) + xX T e(n)*e(n)
n,m nearest v n :
neighbours

By analogy with the treatment of the abelian gauge field in_§9 we now

demand the action to be invariant under the gauge transformation.
o(n) - eH My

Invariance of S with respect to this transformation can be guaranteed

by the introduction of a gauge field U(n,m) transforming according to

ialn ~ia{m
Uln,m) =+ e (n) U(n,m)e (m)
© The action

. v ‘ 2 Y '

S = ¥ o(n)*U(n,me(m) + x= | o(n)*e(n)

- n,m nearest n o
neighbours
is then gauge invariant. e can loosely refer to the Uin,m) as a piece

of string joining the lattice sites n and m.
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- uem -

corresponding to the addition of the gauge invariant term - %—Fuvr”” in

the continuum case, terms of the form

binng

U(n1,n2)U(n2,n3) v

"can be added to the Lagrangian without destroying the gauge invariance.

10.1 Quantization by Feynmah Path Integ;als

In order to quantize fhe field we turn to Feynman path integrals.

If the action
S:Jd4X£

includes a source term J then the vacuum-to-vacuum field is written in
terms of an integral over all possible fields of the amplitude exp(iS(@;J)).
That is | . |

h -. .
ifd_'XBe((P’ 3urp)

<D]_0>_J = A J Lo e

Ihe convenience of & lattice becomes apparent when we btry Lo give

é‘meaning to the operator J 5. By writing the field ¢(n) at each

493.



vlattice site n in the lattice as discussed before we define

Jo@ﬁp J I de(n)
sites
If the field ¢ is further restricted to admit only diécrete values

o, say, then we can write the integral operator as a statistical sum

over configurations, viz :

J Qcp - I tro(n) |

sites

def.

Tro(h)

For instance, with an Ising model we héve-o(n) - #1 and so B

] % =] 3o (1)0p(2) ... 'agJ(N)_ |
T oident o(afes o(N%:'t‘I*"
= ) t“_'"o(z)_"' tro(N)v
where ve have defined
tr_ flo) = f(1) + f(-1)

If a cubic lattice is chosen with an imaginary time co-ordinate,

"so that
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."Qhere a is the lattice spacing, the amplitude exp(ﬁ‘S(w))vbecomes

i 4 a . ‘ _
exp‘(ﬁ J£(¢’¢’F)d X): exp (“-’ﬁ 'E;&(n’m)) .
Here n and h are four-vectors with integer cbmpcnénts labelling

- neighbouring sites. . The replacement

"'1 ~
(TR G?n+ﬁ oy s _l“l =a
 has been made in the Lagrangian so that interaction only occurs

between neighbouring sites. The vacuum—to—vacuum.amplitude is then

. 4 o
<glo> = A Tr_exp (- %T- I L(mn)
‘ . nearest - _
neighbours

The resemblence with the.partition function
Z=Tr_ exp (- H/KT)

from statistical mechanics is obvious, and the methods employed in
statisticai mechanics can be carried over to heré.: Wle need therefore

only concern ourselves with caleculating functions of the form

: - . . : E n,m :
L= ] exp { - H(g(n),e(m))} (}Barest neighboUrs)
{9} : = T

where the sum is taken over all possible configurations fo(m} .
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10.2 Gauge Ising Models

The treatmént of gauge Ising models was first given by Balian
et al. [30] Withvfurther work concerning the lattice independence

being done by Enting [31].

As an example consider a cubic lattice on which the field ¢(n)

-at each site may take values *1. The Hamiltonian is given by

To make H gauge invariant we introduce an Iéing gauge field o(n,m) :

H = ) o(M)o(n,m)e(m)
nearest
neighours

where o(n,m) takes values *1 and transforms accordihg tb.
o(n,m) - An o(n,m)Am ’

‘Wle can add to H a gauge invariant term for the free gauge field
analogoué to the term - %—Fu Py introduced in the continuum case

\Y

- in 59, For example, the term

a Yool of .' )
b\nq,nz) o(n2,n3, 0\”va1)

‘curresponding to a closed loop such as



is gauge invariant.  Any such term can be written in terms of terms

‘corresponding to elementary plaquettes such as

For the 1+1 dimensional case, consider a lattice whose sites are



Ve can take H to be

H= =3 T 1 olnymned,m)o(net),msned,me)
1sm<M  1<n<N '

g(n+1,m+13n,me1)o{n,n+lsn,m) .

- Following Enting we define new variables t by

"o(n;m;n+1,m)o(n+1,m;n+1,m+1) -

- » ' o(n+1,m+1;n,m+1)o(n,n+1;n,m) if niN"
t(n,mn,m+1) "

4

L o(1,m; 1,m+1) if nAN

t(n;m;n+1,m) o{n,m;n+1,m)

H=z-J3 3 t(n,m; n, m+1)
1<m<t 1<n<N

Since the mapping from the o variables to the t variables is one-to-one

we have
Zyy = 1 exp(-H/KT) = [ exp(-H/KT)
{0} ‘ {t}
= ] T exp{(JI/kNt(n,min,m+1) ]
{t1 1<m<H ‘
1<n<N
Z!EI coshirl(K)

= P T
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is the number of edges in the lattice,
IFl = (N=1)(M-1)

is the number of internal faces and Kv: J/KT.
In the limit of an infinite lattice, the free energy per_site-is :
given by

f = - 2im (NM)—1 N 2 = - 2n 4 - n cosh K
SN M ~NM ' ,
2

which does not show any singular behaviour for positive K and so no phase
- transition occurs.

Entingi[31] has extended this result to any two dimensional lattice,
"i.e. a gauge invariant. Ising modei of the type described above on an

‘arbitrary planar graph will not have a phase transition.

10.3 Another Soluble Model.

Illustrated below is another soiuble‘modelvén_a‘1+1 dimeﬁsional.
iatfice which, like the previous model, has little fo do_with'the real
world. It does, however, illustrate some of fhe techniéues currentiy
in use. Attempts at solutions of physicalvmodels so far have genefally

been unsuccessful.

Once again a square lattice is considered and_the field at each .

point is given by o, = 1. The action is taken to be

S = Y { ¢ o g.g.0, + 8. (o0 45,0, + 20.0,0,0, }
L . 147678 T2 T2TeT AT 27374 l)



3 4 5
2 ?I 6'
9 8 7

31 and BZ are constants and the term in chain brackets refers to site

We take the gauge transformation to be

c
v
—
. | U
the term 0,0,9g9, 18 o ¢
2 Gy¢
. ) 456
replaced by o,U U, 0 0gUp U0, Uz, s
w,
8.
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the term 0,04 18 replaced by

U167 | | e, Ge
Wy | Wi |
: o A#GL
the term 0,0g 18 replaced by.
' Uy
AU/1U18 8
Uy
&

and the term 202030401 i; replaced by

: )
(o)Uy395) (9,U4q09) + (03Up994) (9415050

X i
a2 2 JEE B
Ups |
al?. . %I
%51 G, ﬁgg &Gj




Also, by analogy with the term - 1—FUV F*V introduced in the continuum

4

case, we add the gauge invariant term

83Uy U334y

The full action is fhen giveh by

S= 1 89,U,0U56%%Y1Y12%2
lattice

sites

-+

& [ogUp1U16% * °alur1e%s

- (°2U23“3)<04U41°1)+(“2U21°1)(64U43“3)],
* B3U15U2341
This problem is exactly soluble for the case g = B

7

2 . ' . . .
g, = 1, we can force the term o, into appropriate places 1n the action

Since
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= 1 { 8y(o,Uu0q)(ogU o) (GgUgioy ) (04U;50,)
lattice _ :
sites
v By lloglUpoq)(oqUygog)+lo Uy 000 (0qUrgg)
o (09Up305) (o, U100 )+(05U104) (0, Uy505)]
o BsUpplpsUs Uy )
Introducing the new variables V.ﬁ = o.U..o. , the action becomes
. ij iij g
S= 1 '_{ BVVigVg1Ya2 + B2l VorVagtVyrVag + VasVar *+ VopVasl
- lattice : : , -
sites- ' '
*+ SRVAVIASTAVY -} :

“The introduction of the Vij's is a valuable trick; but is only
~effective when the end terms cancel. For more general models the
method will fail.

B We nowrnumber the lattice edges according to the following scheme,

'so creating a new lattice with the primed figures as vertibes:
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Relabeling V.. as of, S becomes
ijg o1

- 1 1 1] ) . 1 1 :
S = Ogd 8103060504 + [o o! +o3 5 + 0403 +voé]
lattice '
+ B3aio%oéoé
= o%d' 81o%oéoéca + B,y (o ol +0Acé) v .
lattice v
) [
+ 8103060504 + 82(0 06 +0305

= y 8101020304 + B (o 03 0462
new
lattice
where By has been put equal t0-63.

The last form for S is mafhematically equivalent to the Hamiltonian
-of Baxter's eight vertex model [32] given by
1
+ J 0.0, + J& Oicjokol

E=-7 ’[Jojok

for the case J=J'. In this model the spins o4 = +1 are associated

with the spaces around each vertex site. R o v s

- m am a e oo o

This model can be solved exaetly [32]0
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