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ABSTRACT 

A numerical technique is developed for studying the ergodic and 

mixing hypotheses for the dynamical systems arising from the truncated 

Fourier transformed two-dimensional inviscid Navier-Stokes equations. 

It is commonly assumed a priori in the literature that these dynamical 

systems are mixing (and, therefore, ergodic); this assumption justifies 

the interchange of ensemble averages for time averages in the subsequent 

analysis. However, the phenomenon of macroscopic vortex formation is well 

documented experimentally; the phase space observables corresponding to 

large-scale vortex structure would then have time averages different from 

ensemble averages. This implies nonergodicity. We present two arguments 

which can explain macroscopic vortices. The first is statistical mechanical 

and, although it does not theoretically require mixing or ergodicity, the 

arguments are made more plausible by using these assumptions. The second 

argument is dynamical in nature; it hypothesizes either a flow invariant 

set around the macroscopic vortices or that the set of macroscopic vortices 

is an attractor for the flow. Both cases require nonergodicity of the 

underlying flow. We show, however, that these arguments are logically 

flawed in the inviscid case because of violations of the conservation of 

measure. 



In our numerical study of the ergodic hypothesis, we have employed 

a technique involving the comparison of Cesaro sums with ensemble averages. 

In particular, we have developed a method for evaluating ensemble averages 

for a wide class of observables. The mixing hypothesis is tested using 

similar methods. 

The numerical results to be presented illustrate two possible errors 

in previous numerical work on these questions. First we have observed 

that energy and enstropy conservation is not sufficient to ensure that 

numerical trajectories remain close to actual trajectories. Thus, studies 

using only this criterion for accuracy may be comparing two ensemble 

averages rather than a time average and an ensemble average. The results 

so obtained would indicate ergodicity, but are clearly unreliable. Second, 

the convergence rates of Cesaro sums are strongly dependent on the ob

servables being tested. Previous work has often been restricted to the 

study of energy and vorticity spectra, but results for these observables 

are not sufficient to decide the question. 

We have applied our techniques to three very small truncations, one 

of which is known to be nonergodic. In addition, we have studied another 

dynamical system known a priori to be random and probably mixing. On the 

basis of the numerical evidence alone, it is possible to conclude that 

this latter system is mixing, that the nonergodic truncation is indeed 

nonergodic, and that one of the other truncations is nonergodic. The 

results for the third truncation are inconclusive as are the mixing tests 

for all three truncations. However, we show that these questions can 

probably be settled with further computing effort. 
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It is our intention to apply these techniques to much larger trunca-

tions. It is shown that this course is feasible for the ergodic question 

with reasonable computing effort but probably is not for the mixing 

question (because of the question of computing time). A large truncation 

would, hopefully, be physically meaningful and it would be possible to 

study the macroscopic vortex phenomenon directly. 

Work performed under the auspices of the U. S. Department 
of Energy. 
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Introduction 

A considerable body of recent work has been focused on two-dimen-

sional, incompressible, inviscid fluid mechanics. In part, this is be-

cause of the ease in applying numerical methods relative to the full 

three-dimensional case. Also, the equations of interest are equivalent 

to those used to describe a 2-D guiding-center plasma, thereby inter-

esting a new group of workers. Finally, interesting statistical mechan-

ical problems arise, especially due to the existence of an additional 

quadratic constant of the motion besides energy. 

A difficult problem in this work is the construction of dynamical 

systems with only a finite number of degrees of freedom which faithfully 

model the governing partial differential equations. The most well-known 

method is that of finite difference approximations; however, these have 

the obvious defect of not being able to keep track of the small-scale 

motions which are critical in a turbulent flow. A different approach is 

the vortex model in which the fluid is approximated by a large but finite 

number of point vortices; the analysis proceeds either numerically, or 

analytically by taking the "thermodynamic limit" as the number of 

vortices approaches infinity. The technique which will be used in this 

paper is the numerical solution of a truncation of the Fourier-trans-

formed equations. This method has the advantage of exactly conserving 

energy and ens trophy (i.e., total vorticity) in the inviscid case except 

for numerical error in solving the orindary differential equations. 

It is well-known and obvious that the study of turbulence uses the 

concept of randomness in an essential way. Indeed, physical measurements 

of observables of a turbulent flow involve statistical ideas such as 
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averaging over ensembles and correlation functions of various kinds. It 

is, then, natural to extrapolate from this experience and assume that 

the values of observables in finite-dimensional simulations of the 

Navier-Stokes equations are distributed as randomly as possible -

technically, this is to say that the dynamical system is mixing (for a 

precise definition, see below). 

On the other hand, there is evidence that certain qualitative fea

tures persistently recur in 2-D turbulence. We refer in particular to 

the formation of macroscopic vortex structures. Since the mixing 

property implies that all states have equal probability, this phenomenon 

may indicate that the system is not mixing nor even ergodic. However, 

there is an explanation for large-scale coherence in the face of small

scale randomness. One may argue that the collection of states which 

correspond to the given large-scale behavior (macroscopic vortices) has 

large measure relative to the measure of the total state space. This 

would only be expected to hold in the limit of the state space con

taining a large number of independent directions (in the case at hand, 

this corresponds to retaining more and more Fourier modes. In the vortex 

model, one adds more vortices), and is analogous to the statistical 

mechanical derivation of equilibrium thermodynamic quantities (i.e., 

temperature, pressure, and entropy are all well-defined macroscopic 

quantities even though individual gas molecules behave as randomly as 

possible). 

One of the objectives of the present work is to pursue in detail 

the ideas and arguments alluded to in the preceding two paragraphs, with 

a view towards understanding their consequences, both mathematical and 

physical. As has been noted, the concept of degree of randomness has a 
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central place in these arguments, In particular, it would be of great 

importance to obtain reliable evidence concerning the hypotheses of 

mixing and ergodicity for the Fourier mode model of 2-D homogeneous 

turbulence. Therefore, our other objective is (1) to discuss the feasi-

bility and reliability of checking ergodicity and mixing for the class 

of dynamical systems at hand and (2) to actually investigate this ques-

tion by numerical means for a few particular truncations. Although these 

truncations will not be large enough (i.e., not include enough Fourier 

modes) to be physically meaningful, we believe the results obtained will 

be useful in assessing the feasibility of a similar study for much larger 

truncations. It is less clear that the actual conclusions reached can 

be applied to a larger truncation, but they should be of some use in such 

an extrapolation, nevertheless. 

In Section 1, the equations of interest for the model are derived. 

In particular, the dynamical system is constructed as a system of non-

linear ordinary differential equations, basic results are proved about 

this system, the state space is constructed and parametrized, and it is 

shown that a natural measure exists on this space which is also con-

structed in detail. This is followed in Section 2 by a discussion of how 

well the model can be expected to approximate a real physical flow. In 

addition, the stochastic element of the model is introduced and this is 

also compared to the situation for a real flow. We also briefly consider 

an alternative method due to Kraichnan for handling randomness in the 

Fourier mode model but this is found to be numerically unfeasible and is 

not considered further in the sequel. 
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Section 3 summarizes those ideas of ergodic theory and dynamical 

systems which are relevant here. Proofs of theorems are largely omitted. 

Ergodicity and mixing are defined, and the ergodic theorem with a few 

of its corollaries are stated. These results directly lead to the numer

ical work des~ribed in later sections. Some of the important results con

cerning the Baire category of certain classes of measurable maps are then 

introduced along with a heuristic discussion of their relevance to the 

problem at hand. 

These concepts are then used in Section 4 where the implications 

of the mixing llypothesis are derived. This section outlines the possible 

derivations of coherent large-scale behavior-both the dynamical arguments 

and the statistical mechanical arguments. These ideas are then extended 

to the more realistic situation in which a small viscosity has been 

added to the equations. Also in this section, the vortex model is pre

sented and its statistical mechanical properties are discussed. 

Section 5 describes the methods employed to study the degree of 

randomness of the Fourier mode model. The main technique used is the 

comparison of Cesaro sums for selected observables with a phase space 

integration for the same observables. In addition, a simplified version 

of the 2-D hard point gas problem is introduced. The dynamical system 

thus obtained is intuitively as random as possible and its use here is 

to serve as a comparison in the study of rates of convergence in the main 

problem. 
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Previous results by other authors are summarized in Section 6. The 

numerical details of the present work are discussed in Section 7 along 

with an error analysis. In Section 7, we also present the results of the 

numerical work. In Section 8, we discuss the results, preseIlt conclusions, 

and indicate where further work would serve to clarify the situation. 

We shall conclude in Section 4 that settling the ergodic hypothesis 

for the dynamical systems studied here is important in the work of con-

structing a theoretical explanation for macroscopic vortex formation. 

Our numerical work will show that it is certainly feasible to study this 

question numerically for large-scale truncations. This conclusion will 

be less clear for the mixing hypothesis although we believe it to be 

correct in principle. The difficulty is that a sufficiently accurate 

numerical test would require large amounts of computer time. 

It is hoped that this thesis will make a contribution in three 

ways. First, the specific numerical results should be of interest. 

Second, the discussion of the possible hypotheses in Section 5 and the 

derivation of their consequences should serve to place the problem at 

hand in its proper perspective regarding the overall problem of deriving 

the existence of coherent large-scale structures from first principles. 

Finally, our study of the reliability of the methods employed will be of 

value in assessing the feasibility of future numerical studies of 

the degree of randomness in a dynamical system, both for large scale 

versions of the truncated Navier-Stokes equations and for similar 

problems in other fields. 
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1. The Equations of Interest 

Notation: An underline denotes a vector. N = number of dimensions of 

the physical flow. The spatial coordinates are indicated by 

x = (xl ,x2,x3); the velocity and vorticity fields are denoted ~, 

l; = '1/ x ~ respectively. In the case N = 2, ~ is a scalar and will be 

so denoted. Summation from 1 to N is implied whenever repeated Greek 

subscripts are encountered. 

The starting point for our investigation is the Navier-Stokes 

equations: 

(1.1) ~t + (~ • '1/) ~ = - grad p + \) 'l/
2u + F 

(1. 2) div ~ = 0 

where p is the pressure, ~ is an external force, and \) is the viscosity. 

Here, ~ is at least two-dimensional but we shall also consider a one-

dimensional model equation, Burger's equation: 

\)u 
xx 

Equation (2.1) may also be written in the vorticity transport form in case 

N = 2: 

(1.4) l; + (u • 'I/)l; = \)'l/2l; + '1/ x F 
t - -

in which the pressure term has been eliminated (see [40]). For the most 

part, £ = 0 in the sequel and this is assumed to be the case in the fol

lowing derivation. 

Expanding ~ and p into Fourier series, we have 

ik·x 
(1. 5) ~(~, t) = Lk~(~' t) e - - p(~, t) = ik·x Lk P Os, t) e - - . 
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We proceed as follows to obtain a system of ordinary differential equations. 

First, substitute (1.5) into (1.1)-(1.2) [or (1.3)]. Then, use (1.2) to 

eliminate the p(~,t) terms (analogously, in physical space one can show 

h V2p [( )]) F' 11 h ff" f ik· x t at = - II ~. II ~ • Ina y, equate t e coe IClents 0 e - -

for each ~ in the resulting expression. The end result is an infinite set 

of ordinary differential equations in the infinite collection of variables 

{u (k,) 
a-

,creads 

a = 1, ••• , N; k. = 0, ~ 1, ~ 2, ••• for i = 1, ••• , N}. It 
I 

(1.6) [ ;t + vk2] ua(~,t) = 

(1.7) kaua(~,t) = 0 

where 

(1.8) P s (k) = kSP (k) + k P S(k) a y - ay - y a -

(1.9) PaS(~) = 0aS - kakS/k2 

2 ·22 where k = ~.~. = kl + ••• + kN. These equations are valid for N = 2 

or N = 3. The analogue for Burger's equation is simply 

d ik (1.10) at u(k, t) = T L:pu(p, t)u(k-p, t). 

Observe that ~(~,t) real implies that 

(1.11) ~(-~, t) = [~(~, t)] * 

* where z denotes the complex conjugate of z. Equation (1.4) also has an 

analogous Fourier mode representation. If we write 

(1.12) ~(~,t) 

it follows that 
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1 
-2- ) 1E.,g.l q~, t) ~ (~, t) 
p 

where I~,~I = Plq2 - P2ql' In case ~ = Q or ~ = 0 , it is understood that 

1 1 ( - - -) Ip,ql = O. As before, 2 2 --
~ E 

* (l.14) ~(-~,t) = [~Q~,t)] . 

For further details concerning the above derivation along with a dis

cussion of the numerical analysis of the system of O.D.E. 's, see [58]. 

The physical flow will always be assumed to take place inside a 

cube of side length L with periodic boundary conditions in all directions. 

For convenience, we take L = 2IT which implies that the wave numbers 

above have integer components. It is easy to check that changing L 

merely scales (1.6) - (1.9) and does not change their substance. 

The final step necessary to obtain the dynamical systems to be 

considered here is to truncate (1.6) - (1.7) [resp. (1.13)] in such a 

way as to respect the reality condition (1.11) [resp. (1.14)]. That is, 

we shall set all except a finite number of Fourier modes equal to zero 

for all time; but if ~(~t) is retained then so must u(-k,t). No fur-- - . 

ther restrictions will be placed on the truncations so that in principle 

an infinite collection of dynamical systems can be obtained from the 

equations (1.6) - (1.7) or (1.13). We write the equations for a spheri-

cal truncation in which the retained modes are those k satisfying 

I k I < K (where I k I = max I k. I) for some K-
- - 1 
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a 2 
(1.15) [at + vk ] uo,c!s., t) i 

Z- PaSyC!0 LI£I, 13.1 < K US(E.,t)Uy(s.,t) 

£+ S. = !s. 

(1.17) 1 L 
Z- I£J, Iql < 

:e.+s.=!s. 

where there is one equation for each!s. satisfying 1!s.1 < K. and, in (1.15), 

one equation for each a = 1, ••• , N. 

We now list some general results concerning the system (1.15) -

(1.16). Analogous results hold for more general truncations as well as 

for the system (1.17). 

Even though the system (1.15) - (1.16) is not Hamiltonian (to be 

more precise, it has not been shown to be Hamiltonian), a Liouville 

Theorem still holds. That is, 

(1.18) \' a 
/--1 au (k, t) a-

(
dUa (~, t)\_ 

dt j- O. 

I~I<K 

The proof is trivial. The significance of the result is that the 

dynamical system preserves Lebesgue measure in the phase space consisting 

of the dynamical variables {u (k,t)} (see [32] or [35] for a proof of a 

this fact). 
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Another important result is conservation of energy -

(1.19) 

If we restrict attention to the 2-D case, there is another quadratic 

constant of the motion called the ens trophy or total vorticity -

(1.20) 

The proofs of (1.19) and (1.20) are straightforward 

Taking advantage of the relations k u (k,t) = 0, u (-k,t) a a - a -
* = [u (k,t)] , and u (O,t) = 0, it is only necessary to retain the inde-a- a-

pendent modes in any truncation (e.g., u (-k,t) and u (k,t) are'not in-a - a-

dependent. The same holds for ul(~,t), u2(~,t), and u3(~,t) for any~. 

Note that for any a,k, the real and imaginary parts of u (k,t) are in-- a-

dependent. Say that there are M such independent modes and name them 

w = (wI' ••• ~). Then, (1.15) - (1.16) takes the form 

(1. 21) ~ = E.(~) 

where each component of F is a quadratic polynomial in the w·. Note that 
- 1 

~ and ~ now have purely real components. Using this notation, the con-

stants of the motion and Liouville's then may be written 

l1. 22) 
M 2 

.2:
l
a.w. = E; 

1= 1 1 

M 2 
·2:lS.w. = Q, divC_~) = ° 
1= 1 1 

where E = total energy, Q = enstrophy, and the a· S. are easily deter-
1, 1 

mined constants. It is easily shown that the a· S· are strictly positive. 
1, 1 

Observe that for any i, 1 ~ i ~ M, there exists a j, 1 ~ j ~ M such that 

there exists a,_k with u (k,t) = w.(t) + iw.(t). This implies that 
a - 1 J 
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for any i, there exists a j such that a. ~ a. and S. = S. - this 
1 J 1 J 

remark will be useful later. The formulation (1.21) - (1.22) will be used 

where convenient in the sequel. 

As has been already noted, (1.21) has at least two constants of the 

motion, E and ~. Therefore, the motion takes place on S = SEns~ where 

SE is the surface of constant energy E and S~ is the surface of constant 

ens trophy ~. It is trivial to show that SE and S~ must be (differenti

able) surfaces of dimension M-l in 1M and we will show later that S is 

also a surface except for possible boundaries and corners. Assuming this 

for the moment, it is clear that dim S = M-2. For any point ~ES, let 

Ft(~) be the solution of (1.21) evaluated at time t with the initial 

condition given by ~. From the existence and uniqueness theorems for 

systems of O.D.E. 's (see [30], for example), one sees that Ft is a 

well-defined mapping on all of S, i. e., F t : S + S. The function F t lS 

called the time t map for the system (1.21). Since solutions depend con-

tinuously on data, one sees that Ft is continuous (see [30] for a proof). 

For the applications in mind, it is important to note that there is an 

Ft - invariant measure (i.e., if the measure is called ~ then 

~(A) = ~(FtA) for any measurable set A) for all t defined on S which lS 

absolutely continuous with respect to Lebesgue measure on S. The deriva-

tion of this measure for a dynamical system which satisfies Liouville's 

Theorem, but has only one quadratic conserved quantity (e.g., energy) 

may be found in [35]. We shall now generalize that proof to the case 

at hand. 

As is customary, we shall refer to the space ~M with coordinates 

WI' .'., ~ as the phase space of our system. Let dV = dWl ••• ~ be 
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M-dimensional Lebesgue measure. Then, dV = dEdnEdn where dE is the 

~-2)-dimensional Lebesgue measure on S and dnE, dn are the differentials 

associated with two mutually perpendicular unit tangent vectors (to the 

entire phase space) in the normal space to TS (= tangent space of S). 

Here, the tangent vector associated with dnE is in the direction of grad 

E. Define dn~ similiarly and let e = angle between grad E and grad ~. 

Let VE',~' denote that subset of phase space for which E ~ E' and 

~ ~ ~'. Then, for any function f measurable with respect to dV it fo1-

lows that 

j f(P)dV = 
V.E',~' J VEl ~, f(P) dE~dn , 

= j f(P) dE dE d~ 
V E' ~2 I II grad Ell II grad ~ II s:in e , 

,~' 1 dE 
dE j 0 d~ E f(P) n grad Ell II grad nil sln-e 

E,~ 

where LE ~ is the surface of constant energy E and constant enstrophy , 
~. We have used here the facts that dE = "grad E II dnE, 

~ = IIgrad ~I ~, and that 

It now follows that 
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a2 j J dE 
aEan VE,n f(P)dV :::, EE,n Irgni-'-a--=E=II---n'-lIg-r-a---d--:n=ll-s"""in---=-e 

The sin e factor follows from the change of variables formula. It 

must also be shown that dn can be chosen consistantly on all of S (i.e., 

that if the vector grad n is between grad E and the vector associated with 

with dn at one point of S, then the same relationship must hold every-

where on S). To see this, it is sufficient to show that 0 < lei 1T 
< "2 

(since this would imply e r 0, we would have 0 < e < I always or 

o > e > -; always). The fact that the dot product 

2 grad E· grad n::: E4a.S.w. is a positive definite quadratic form and that 
111 

Q t S (we always take E,n > 0) completes the proof. 

We are now in a position to define the invariant measure on S. 

Let M C S be measurable and let XM denote the characteristic function of 

M (i.e., XM~)::: 1 if WEM and is 0 otherwise). Then, by (1. 22), 

lim 1 ( , 
fl.E,fl.n -+ 0 fl.Efl.nJE < E < E + fl.E XM(P) dV 

n< n' < n +fl.n 

IS invariant under the flow on S. Hence, if we set 

li.23) ~(M) = 1M IIgrad Ell IIg~;d dl sin 8 

it follows that ]l is F - invariant. 
t 

We turn now to the computation of dE which will complete the 

specification of the measure ]l in a numerically usable form. By a 

parameter map on S we shall mean a diffeomorphism F:~-+ S (i.e., 
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F is 1-1, differentiable, and has a differentiable inverse) 

where ~ ~ aN-2 is an open set. Note that such an F cannot be onto. 

We shall later explicitly construct a covering of S by the images of 

parameter maps of the following form: 

(1.24) F(ul , ••• , ~-2) = [ul ' ~1-2 f(~), g(~] , 

where U = (ul ' ••• , ~-2) c B. It is well-known that the surface 

element dE is given by dE = [det (gij)]1/2 dUl ••• dUM_2 where (gij) 

is the lnatrix of coefficients of the Riemmanian metric on S for the 

parametrization given by F. The computation of the metric (g .. ) simply 
IJ 

involves finding the relationship between the differentials dwi on S 

and the differentials duo on a and is straightforward: 
1 

M 2 
L dw. == 

i=l 1 

M-2 

i:ldwi + d~_l d~_l + d~ d~ 

M-2 M-2 
= 2 E duo + E 

i,j=l . 1 1 1= 

We have used only the chain rule here. It then follows that 

1. 25) g .. = 
IJ 

(;.. + ~ ~ + ~g ~g-
IJ dUo dUo aU. aU· 

1 J 1 J 

1he determinant turns out to be quite easy to evaluate and we obtain 

1. 26) 
M-2 

det (g .. ) = 1 + E 
IJ i=l 



) 
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where f. = af/au. and g. = ag/au .. We remark that an alternative 
1 1 1 1 

formula for det (g .. ) is derived in [15], It is 
1J 

(1. 27) det (g .. ) 
1J 

••• + 

where the Di range over all (M~2) subdeterminants of the Jacobian matrix 

~ aw· ) ~ . 1 M of order M-2. 
aU 1=··· 

j j=l: ••• : M-2 
It is easy to see that (1.27) leads 

directly to our result (1.26). 

We now proceed to construct the parametrizations used above and, at 

the same time, prove that the surface S is (topologically) connected. 

Regarding the latter objective, it may be noted that the intersection 

of two-dimensional ellipsoids in ~3 will almost never be connected. In 

higher dimensions, it is always true that the intersection of two topol

ogical spheres (i.e., a surface homoemorphic to a sphere. This would 

include an ellipsoid but exclude a torus, for example) must be a cross 

product of topological spheres. However, the degenerate sphere 

so = {-I, +l} is not eliminated a priori as one of the terms in the 

product and if it is included the product would have two connected com-

ponents. Therefore, a proof of connectivity is required. The reason for 

its inclusion is that a flow on a disconnected surface is trivially 

nonergodic. This will be clear upon reading Section 3. To begin, we 

introduce some useful notation. Renumbering the coordinates if neces-

sary, assume that 
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Therefore, we may as well assume that 

as well, since if not it would follow from (1.22) that S is empty. Note 

that if one of the extremes occurs in (1.29) then most of the dynamical 

variables would be forced to be zero. Indeed, let I = {i: ai = ~ and 

Si = SM} and suppose that E/Q = aJ~. Then, the energy and vorticity 

surface reduce to 

(1. 30) 2 E. I a.w. = E, 
IE I I 

2 E. I S·w. = Q, w· = 0 V it I. 
IE I I I 

Since a./E = S./Q for any iEI, it follows that these two surfaces 
I I 

are identical. It has been previously remarked that the set I contains 

at least two elements which shows that S = SE () SQ = SE is connected in 

this degenerate case. The analysis for the other extreme proceeds sim-

iliarly. In the numerical work to be presented below, we shall only con

sider the generic case in which all dynamical variables playa role. 

Define 

(1.31) ci = ai~ - ~Si; di = ~-lSi - ai~-l' i = 1, ••• , M-2 

and observe that (1.28) implies that c.,d.2 O. It is important to 
I I 

note that J j,.Q, such that cj = 0, d.Q, = 0 but that there are no m such 

that c = d = O. This follows from (1.19)-(1.22) and the remark folm m 

lowing (1. 22) . 

Let us use the coordinates (WI"··' ~-2) to parametrize S. The 

subsequent abuse of notation should be obvious. Let:J3' = {(wI' ••• ,~_ 2) 

"M-2 
E K I 3~-1' ~ with ~ES}. If (WI'···' ~-2) E D, then (~-l'~) must 

satisfy the system 
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(1. 32) 2 2 
CLM-l ~-l + ~ = E - E' 

a,. , ui. + R.lll = Q-Q' 
M-l IV1-l ~M--M 

M-2 
where E' = 

2 L: CY... w. < E 
. 1 1 1-

and Q' = 
M-2 

L: 
i=l 

2 S.w. < Q. Let 
1 1 -

1= 

(1. 33) D = ~-l f1vt-~f1vt-l 

and observe that D >0 by (1.28). The solution of (1.32) is 

(1.34) ~-l = D-
l 

[(1\f3 - ~) + (~' - ~')] 

which is equivalent to 

2 -] 
(1.35) ~-l = D [(f1vtE - ~) -

M-2 
2 

L: c·w. ] 
. 1 1 1 1= 

2 -1 M-2 2 
~ = D [(~-l Q- f1vt-lE) - .L: diwi ] 

1=1 

Since c i ' di , f1vtE-~, ~_lQ-f1vt_lE~O and necessarily ~-1' ~ ~O, it 

follows that (wI' ••• '~-2) £ D implies that 
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M-2 2 
L: c. w. < fLF. - (Lo. . 1 1 1 - "'-M- -N--

1= 

M-2 
L: 

i=l 

M-2 
L: 

i=l 

2 
ct. w. < E 

1 1-

2 S·w. < ~ 
1 1-

and the reverse implication follows easily be reversing the steps 1n 

the argument. 

Therefore, S may be viewed as being made up of four disjoint copies 

of F(D) plus boundaries. Here, ~ is given by (1.36), F is given by 

(1.24) and (1.34), and the four separate copies of F(~) arise from taking 

different signs upon taking square roots in (1.34). That is, S contains 

one copy of F(D) for each choice of signs in (~~-l' ~). If aD = the 

boundary of D, then it is easy to see that the four copies of F(D) are 

connected on F(aD) = {(wI"'·' ~-2) I ~-l = 0 or ~ = O}. From 

(2.36), D = AnBnCnD where A and B are solid (M-2)-dimensional ellipsoids, 

C =EKx il-2- K, and D = ELx il- 2-L where If(~) is a solid K(L)-dimen-

sional ellipsoid (recall that some of the c.,d. = 0 and therefore have 
1 J 

no effect in (1.36)). Clearly, all of A,B,C,D are convex and connected 

which shows that D has the same properties. This completes the proof 

that S is connected. 
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Let us note that by simply reversing the roles of the coordinates, 

we can obtain a new parameter map F' and a new domain .D' of the same 

fonu as (1. 24) and (1. 36) (to see this, recall that 3 k t- M and 

"3£ t- M-l such that ak = \1, bk = ~, a£ = ~-l' and B£ = ~-l) such 

that F(dD) will be in the interior of F'(D'). This shows that S is, in 

fact, smooth and that the flow of the dynamical system will not be 

obstructed by nonsmooth boundaries. 

With the parametrization given by (1.28) - (1.36) we are now in a 

position to explicitly exhibit the measure d~ which is given formally 

by (1.23), (1.26). Making use of (1.34), it is straightforward to 

show that 

(1. 37) I g .. (w) I 
1J -

M-2 
= 1 + E 

i=l (

c?w? 
1 1 

2 
.~-l 

2 
IIgrad E II = 

2 IIgrad Q II = 

M 2 2 
E 4a.w. 

. 1 1 1 1= 

M 2 2 
E 4B·w. 

. 1 1 1 1= 

where ~-l' ~ are given in tenus of ~ = (WI' ••• , ~-2) by equation 

(1.35). It now follows that 
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(1.38) AB-C2 

+ 2 2 
~-l~ 

where 

(1. 39) A = 

E = 

2 2 c.w. 
1 1 

M 2 2 
L: a..w. 

. 1 1 1 1= 

B = 
2 2 d.w. 
1 1 

M 2 2 
F = L: S.w. 

i=l 1 1 

C = 
M-2 

2 
L: c.d.w. 

. 1 111 1= 

M 2 
G = L: a..S.w. 

. 1 1 1 1 1= 

The formulae (1.38), (1.39) were used for the numerical computation of 

d~(~. We remark that the number of multiplications necessary for the 

evaluation is approximately 6M plus two square roots. Thus, it is not 

an obstacle to the extension of the results reported here to large M. 

It is trivial to see that d~ is a positive measure; also, sin e f 0 implies 

that EF-G2 
> 0 which shows that d~ is absolutely continuous with respect 

to Lebesgue measure as claimed. 
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2. The FourierMbde Mbdel as an Approximation to a Real Physical Flow 

In this section we will consider how well a truncation of the form 

(1.15) - (1.16) with v = 0 can be expected to approximate a real physi

cal flow given by (1.1) - (1.2). We will assume that the Navier-Stokes 

equations accurately reflect the physics of fluid mechanics. The system 

(1.17) is equivalent to (1.15) - (1.16) and the discussion applies for 

it as well. Only turbulent flows are considered so that 0 < v « 1. 

There are two difficulties: first, in a real turbulent flow, v is 

small but different from zero, and second, not all modes are retained 

in the truncation. We shall also discuss the use of periodic boundary 

conditions. Finally, we shall construct the stochastic element of the 

model as used later in the applications, point out an alternative due to 

Kraichnan, and discuss both in relation to the stochastic properties of 

(1.1) - (1.2). 

A heuristic argument due to Batchelor (see [2]) indicates that for 

a 3-D flow the limit for v + 0 is singular in the sense that a finite 

, rate of energy dissipation persists in the limit whereas energy is ex-

actly conserved in (1.15) - (1.16) with v = 0 for any number of spatial 

dimensions. The argument requires that all Fourier modes be present 

(i.e., no truncation) so that if his result is correct, it would argue 

against using (1.15) - (1.16) as a model for three-dimensional turbu-

lence. However, for Burger's equation (1.3) and for the two-dimensional 

version of (1.1) - (1.2) with periodic boundary conditions it can he 

shown that solutions of the equations with positive viscosity approach 

the solutions of the inviscid equations. Furthermore, the convergence 
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is uniform on compacta for the Fourier transforms of the solutions. 

(Definition: Let f ,f: l2 + l be given. Then, we say that f + f uni-
n n 

fonnly on compacta if and only if, for every compact set K c ft2, the 

restrictions of f to K converge uniformly to the restriction of f to K. n 

The same definit~on holds with l in place of l2). Proofs of these re-

sults may be found in [31] for Burger's equations and in [17] for the 

2-D Navier-Stokes equation with periodic boundary conditions. 

The problem with the truncation is not so much a difficulty in 

theory as it is in practice. In principle, it should be possible to 

obtain an excellent approximation to (1.1) - (1.2) using (1.15) - (1.16) 

by retaining all modes with wave numbers less than that used to de

scribe, say, the intermolecular distance for the fluid being studied. 

This is obviously impractical. The real question is whether the chosen 

truncation can provide a reasonable approximation. This question is 

obviously not well-posed: it depends on the definition of "reasonable", 

the problem under study, and the quantities or measurements desired. We 

have been unable to resolve this problem, but we hope that the Fourier 

mode representation of two-dimensional turbulence with zero viscoity will 

given an accurate account of at least some aspects of turbulence. 

The question of boundary conditions is somewhat more complicated. 

The reason for choosing periodic boundary conditions is that the analysis 

is simpler than it would have been for, say, Dirichlet boundary condi

tions. On the other hand, the boundary layer phenomena which is 
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characteristic of a real physical flow is eliminated. This, in turn, 

eliminates vorticity creation at the boundaries, see [3], [10], [11], 

[40] for a discussion of these mechanisms. The advantages of using a 

periodic cube are twofold: one, the solution can be expanded in a con-

. h I { ik. x} h· h d f· . ven1ent ort ogona system e - - w 1C possesses an exact an 1111 te 

multiplication rule. .ik·x H·x i(k+.Q.)·x That 1S, e - - • e - - = e - - -. For more gen-

eral boundary conditions and geometries, the resulting expansion of the 

solution might be in terms of functions, e.g. Bessel functions, either 

having no multiplication rule at all or a rather complicated one in-

volving infinite sums. This would require a further approximation in 

the numerical work. The second advantage is that the statistics of the 

solution will not depend on spatial position if the initial conditions 

are chosen statistically homogeneous. The use of the homogeneity 

assumption is both convenient and standard in the turbulence literature. 

It is hoped that an understanding of this case will be useful in a more 

general theory. 

A point of difficulty in the theory of turbulence is the method of 

introducing randomness into the mathematical models. Let us suppose that 

a physical flow is taking place in a region Jj and that we have performed 

a series of physical experiments which are so thorough that we have 

knowledge of all n-point correlation functions of the variables 

u(x.),i = 1, "', n where n and x. E.~ are arbitrary. Then, a detailed 
--1 -1 

characterization of the flow's stochastic properties would be obtained 

by constructing a probability space (~,~,A) such that each u(x.) = 
--1 

~(~i'W)' W E ~ was a random variable and such that the joint distribu-

tion of the u(x.,w) with respect to the measure A was identical to the 
--1 
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measured correlations. It would then be expected that the velocity fields 

~(. , w) ,w fixed, would satisfy the Navier-Stokes equations at least 

almost everywhere with respect to A. Of course, the space Q would be 

complicated and the measure A would be even more so. In fact, Q would 

generally turn out to be a function space whose elements have domain ~ 

and, therefore, would be infinite-dimensional. This viewpoint in 

which u is taken to be a random field is discussed in Chorints book [10] 

along with the further development of stochastic integral representations 

of the velocity and vorticity fields. 

Hence, complete knowledge of (Q,11,A) for a particular domain D 

would be equivalent to knowing everything about statistical properties 

of solutions of the Navier-Stokes equations in fl. Since we do not know 

either (Q,~,A) or the statistical properites of the solutions, it is 

necessary to make a choice concerning randomness properties of the model, 

i.e., we must approximate (Q,B,A). Our choice is a quite simple one. 

Since v = 0, we take (Q,A) to be the space (S,v) constructed in Section 

2 with ~ = Lebesgue measurable sets in S and V the Ft-invariant measure. 

Observe that if '] is the set of velocity fields in L 2 (,1;)), then S may be 

viewed as the projection of J onto a finite-dimensional subspace which 

consists of the modes retained in a given truncation. This must be 

followed by a further projection onto the energy and ens trophy surfaces. 

It may seem unnatural to expect an approximation of this sort to be 

physically meaningful. However, a recent paper of Foias [18], indicates, 

but does not prove, that the measure A must be concentrated on a finite-

dimensional subspace of Q provided A is invariant under the flow induced 

by the Navier-Stokes equations. If E ~ Q is the given subspace, 'this 
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means that A (X) = A (xn E), for all XE8. Note, however, that the sub-

space of this conjecture need not necessarily have any relationship to 

our collection of truncated Fourier modes. Of course, the subspace E 

could be approximated arbitrarily well by a large enough Fourier mode 

tnmcation. 

In summary then, (S,~) is the ensemble of flows for our model. 

That is, initial data is chosen randomly from S with respect to Lebesgue 

measure and weighted according to d~. These points then move on S in a 

completely nonrandom manner which is given by (1.21). Hence, all ran

domness is relegated to the initial conditions. 

We conclude this section by presenting an alternative.method, 

due to Kraichnan, for handling randomness. See [38] for further details. 

Kraichnan replaces the expression for ua(~,t) in equation (1.6) by 
d 2' 

(2.1) [at + vk ]u~(~, t) 

1 1 .. . 
- - -2 M-Z P Q (k)[; [[;.<p .... ~(p,t)u1-J(k-E..,t)]. 

alJY - £ J 1,J ,1-J 15 y-

This expression involves the entire ensemble at once. The ensemble has 

been approximated by the M points ~l, ••• , ~M and the coefficients 

<Pi,j,i-j are constants and chosen such that inviscid energy and enstrophy 

conservation are maintained. The manner of selection of these initial 

points is still undetermined and corresponds to a choice of (~,~,A) as 

above. Note, however, that the evolution of a single initial point is 

dependent on the ensemble and the particular realization of the ensemble 

(i.e., choice of M, ~l, "', ~M). It would be of interest to compare the 

statistical properties of Kraichnan's model (2.1) with those of the 

Fourier mode model but it is easy to see that the additional summation 

(over the index j) in (2.1) makes this numerically infeasible even for 

small M. 
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3. Review of Relevant ResultsfrdmErgodic Theory and the Theory of 
-. --~ Dynamical Systems ------

In this section we present some definitions and theorems from 

ergodic theory and dynamical systems which will be used in the following 

sections. The main references for this section are [26] and [67]. 

Let (M,£], p) denote a measure space such that p (M) < 00 • We wish to 

study the asymptotic behavior of measurable transformations on M. Two 

cases are of interest here. In the first, we let T: M-+ M be a measurable 
n 

map and consider the collection of iterates {T }n~O' In the second 

case, Tt : M-+M is measurable for each tE~ and we require 
+ 

Ts 0 Tt = Ts+t' The collection {Tt}t ~ 0 is a flow on M. These are 

both cases of the more general situation in which one is given a semi-

group G of measurable transformations on M. Here, G = ~+ and G = ~+ 

We now define three statistical properties that are of interest 

in the situation just described. 

The first of these is existence of a finite invariant measure. 

Since p(M) < 00 , we say that p is invariant with respect to T or {Tt } 

if for all AE:B, ]J (A) = p (flA) , for all n L 0 or u (A) = peTtA), :i:01' all 

t ~ 0 , respectively. The following result then holds: 

have 

(3.1) 

Thm. For every measurable integrable function f:M -+ ~, we 

= r f (flx)dp (x), Vn L 0 JM 

pf. These equations are trivial in case f is a characteristic 

function and the general results follow by linearity and the fact that 

any measureable f can be approximated arbitrarily closely in Ll(M) by 
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some finite sum of characteristic functions. The existence of a finite 

invariant measure is enough to obtain the following: 

Ergodic ThIn. Let fsL 1 (M,]J) and suppose that ]J is a finite 

invariant measure. Then the following limits exist a.e. (]J): 

(3.3) 

(3.4) 

"'-

f(x) 

f(x) 

n-l 
1 \' k 

lim n 6 f(T x) 
n-700 k=0' 

liS . 
= lim$-7<XJ S 0 f(Ttx)dt 

Pf. See [26]. 

The sum on the right-hand side of (3.3) is called a Cesaro sum. 

Note that (3.3) and (3.4) need hold only almost everywhere. A related 

theorem, which is much easier to prove, is the: 

Poincare Recurrence Thm. Let As (j3 with]J (A) > 0 and suppose 

that ]J is invariant. Then, for a.e. (]J) x s A there exists an increasing 

sequence of positive integers n. (or positive real numbers t.) such that 
1 1 

n· 
T lX sA (Tt . x s A) in case G = V+ (G = R+). 

1 

Pf. See [26] or [67] for the discrete case G = ~+. The 

continuous case G = R+ can be derived as a corollary by letting T = Tl . 

Suppose now that M has a topological structure which is compatible with 

the measure ]J in the sense that every open set has posi tive measure. Then the 

above theorem would say that every point of M returns arbitrarily close 

to itself. This does not imply that {~} (or {Tt }) is periodic or even 

almost periodic since the sequences {no } and {t.} need not be the 
1 1 

same for different points of M. 
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1he second property is ergodicity. A transformation T: M + M is 

said to be ergodic if 

(3.5) l1(TA-A) = 0 => l1(A) = 0 or l1(A) = 11(M), VAE{8. 

A flow {Tt } is ergodic if and only if each Tt : M + M is ergodic. The 

following results hold: 

Thm. T is ergodic if and only if every measurable invariant 

function [i.e., £(Tx) = f(x) a.e.(l1)] is a constant. 

Pf. See [26]. 

Thm. The limit function f in the ergodic theorem is a constant. 

Indeed, 
AIr 

(3.6) f(x) = ~ JM f(x)dl1(x) 

Pf. See [26]. 

We can therefore rewrite (3.3) and (3.4) for the ergodic case: 
1 n-l 

(3.7) limn+oo n ~ f(Tkx) = 11~) r f (x) dl1 (x) 
k=O ~M 

(3.8) limS+ooi{S 
.10 

£(Ttx) dt = 11~).1 f (x) dp (x) . 
M 

Thus, T is ergodic if and only if the time mean is equal to the pllase mean 

for all integrable observables. The converse of the above theorem holds 

as well; that is, if (3.7), respectively (3.8), holds then T, respectively 

{Tt } , is ergodic. Finally, we note the following characterization of 

ergodicity: 
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Thm. A map T:M ~ M is ergodic if and only if for all 

2 f,g c L (M, jJ) 

(3.9) lim ~ ~~ r f(Tjx)g(x)djJ(x) = ~M) ( f(x)djJ(x) .j g(x)djJ(x). 
n~ j=O jM jJ, )M M 

For an ergodic flow {Tt } 

S 

(3.10) lim ~ I r f(Ttx)g(x)djJ(x)dt = 1(M) r f(x)djJ(x)J g (x) djJ (x). 
s~ 0 )M jJ 1M ')M 

Pf. (3.9) is derived in [26] and (3.10) follows from (3.9) 

by taking T = T , c > 0 and letting c ~ O. Then, (3.9) becomes an 
c 

approximating Riemann sum for the integral in (3.10). 

Let f = XF' g = XG be characteristic functions. That is, 

f(x) = 1 if x c F and f(x) = 0 otherwise. Equation (3.10) becomes 

( 3.11) 1,"%_>= ~ 1 ~ (T _ tInG) d t = ~ (F~ C£~) 
o 

where T _tF = {xcM:TtX £ FL A similiar statement holds for (3.9). This 

theorem leads to the definition of mixing. 

The third property that we shall be using is strong mixing. A 

transformation T is said to be strong mixing if 

(3.12) 1imn+oo~ fcT"x)g(x)d~(x) = ~~~f(X)dll(X))fg(X)d~(X) 

for all f,g E L2(M,jJ). In the case of a flow {Tt }, (3.12) is replaced 

by 
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In other words, we have replaced the Cesaro convergence of (3.9), (3.10) 

by strong convergence. Since strong convergence implies Cesaro convergence 

we see that mixing implies ergodicity. The converse is false. The analog 

of (3.11) is 

= )J(F)ll(G) 
II (M) 

for any F, G c V3. Finally, we point out a further result. If M is a 

metric space with metric d, then we say that T is almost periodic if for 

any c > 0, there exists an increasing sequence {n.} such that 
1 

d(~ix,x) < c for almost every x. 

Prop. Let T:M + M be a measure-preserving transformation. 

Then, if T is periodic it cannot be ergodic. Also, if T is almost 

periodic, then T cannot be strong mixing. 

Pf. The first result is trivial. To obtain the second result, 

let F, G be two sets in ([3 wi th nonzero measure such that F II "IT is empty, 

1 --where F = closure of F. Then, if c < 2 d(F,G) one sees that the left-

hand side of (3.14) is zero for arbitrarily large values of S. 

We shall now set down two results which show that an arbitrary 

measure-preserving t~an5formation is generically ergodic but not mixing 

in the sense of Baire category. 

Let Gl = Gl(M'~'ll) be the group of (measure) automorphisms of 

M. I . e., T is in S if T is measurable, invertible, and measure-preserving. 

We endow Gl with the weak topology which is characterized by the 

following convergence criterion: T. + T if and only if ll(T.E ~ TE) + 0, 
J J 

for all E c (3. Here A ~ B is the synnnetric difference (A- B) U (B-A) . 
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Define GZ = G2 OM,R,~) to be the group of measure-preserving homeomor

phisms of M with the topology given by the metric: 

(3.17) d(T,S) = max (maxi Tx-Sxl , maxIT-lx-s-lxl), VT,S EGZ-
xEM xEM 

The norm I is that induced by the Riemannian metric on M. 

Let X be a topological space and let US; X be an open set. A set 

A S; X is dense in U if A has non -empty intersection with every open set 

of U. A is said to be dense if it is dense in X. A is said to be nowhere 

dense if there is no open set U such that A is dense in U. Also, A is 

said to be of the first category if it can be represented as a countable 

union of nowhere dense sets; otherwise, it is of the second category. 

Finally, A is said to be a Go set if it is the countable intersection of 

open sets. See [59] for further discussion of these concepts. 

Thm. In Gl , the set of all strongly mixing transformations 

is a set of the 1st category. The set of all ergodic transformations is 

a dense Go set. 

Pf. See [26]. 

Oxtoby-Ulam Thm. If the dimension of M is at least two then the set 

of nonergodic automorphisms is a set of the 1st category in G2. 

Pf. The case in which M is a cube in 1R.
n and ~ = Lebesgue measure 

can be found in [55]. 1be proof therein can be adapted to the case where 

M is a manifold. The original proof is given in [60]. 

We shall now consider our dynamical system (1.21)-(1.22) with the 

associated flow maps Ft:S + S. We observe that for t fixed, Ft E Gl n G2. 

The conclusions of these theorems is that it is likely in the sense of 

category that each Ft is ergodic but not mixing. This does not imply 
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that our flow {Ft } is necessarily ergodic and not mixing because we have 

significant a priori information concerning Ft : the right-hand side of 

(1.21) is an analytic function on S and each Ft will therefure be smooth, 

see [27]. That is, each Ft E H where H is the subgroup of G1 and G2 con

sisting of the smooth transformations and H may itself be of 1st category 

in Gl and G2 (for example). Also, it is well-known that, e.g., the unit 

interval with the usual topology and Lebesgue measure contains subsets 

with measure one and of the first category (see [59]). Extrapolating to Gl 
or G2, it is possible that the nonergodic automorphisms, even though they 

fOTIn a set of the first category, have positive measure for some physically 

interesting measure on Gl or G2. 

We now introduce some concepts from the theory of dynamical systems. 

A good reference for further details and examples is [30]. Let X be a 

differentiable surface in Rm for some m with the induced topology. X may 

or may not have a measure attached to it. We consider now the two cases 

of the iterates {rll}n2: 0 of a differentiable map T:X -+ X and a flow 

{Tt } t > 0 which is a collection of differentiable maps Tt:X -+ X such that 

Tt 0 Ts ::: Ts +t for all s, t,E lR+. The main example here is the case where the 

flow {Tt } is induced by the time t maps of a system of first-order dif

ferential equations, x::: F(x) , on X as in Section 1. An example of a 

transformation T would be T ::: Tl , the time one map of a flow. Note that 

~e do not require these maps to be onto (whereas in ergodic theory, one 

only considers the measure-preserving case). Both the ordered pair 

(X, {fl}n > 0) or the ordered pair (X, {Tt}t > 0) are called dynamical 

systems. We will now define an attractor for a dynamical system. A set 

A C X is a local attractor for (X, {ril} 0) if there exists on open set 
n> 

U such that A c U S. X and for any x E U, 'flx-+ A as n -+ 00 in the sense 
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of the topology of X. If the open set U can be taken to be the entire 

space X, then we call A a global attractor. The definitions for the case 

of a flow on X are analogous. We emphasize that the set A need not have 

any particular structure. The attractors can be a single point, a finite 

number of points, a submanifold of X, the cross product of a submanifold 

of X and a set homeomorphic to a Cantor set (see [59] for a definition). 

The latter is a so-called "strange attractor." Observe that if X is 

endowed with a measure which is absolutely continuous with respect to 

Lebesgue measure then all of these examples of at tractors have measure 

zero. 

Thm. Let]l be a measure on ' X which is absolutely continuous 

wi th respect to Lebesgue measure and suppose that {fI}n > 0 (or {Tt}t > 0) 

preserves this measure. Then the dynamical system cannot possess an 

attractor of measure zero. 

Pf. By definition, open sets in X have positive Lebesgue measure, 

hence positive ]l measure. The result then follows immediately. 

This result essentially extends to arbitrary attractors except that one 

must exclude situations in which A c U but ]leA) = ]llU) lthis case, of 

course, is not of great interest). This theorem will be crucial in the 

discussion in Section 4 below. 

The other idea that will be useful from dynamical systems is that of 

an invariant set. A set A c X is said to be invariant for T if x E: A 

implies T x E: A (hence, fIx E: A, Vn.::. 0) with a similar definition for a 

flow. 
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4. The Relationship of Statistical Properties to the 
Existence-D1:Coherent Structures in Two-Dimensional Flows 

The main purpose of this section is to tie together the notions of 

ergodic theory and dynamical systems introduced in Section 3 with the 

actual behavior of physical flows. In particular, we shall develop 

physical implications of mixing or nonmixing. Unless stated otherwise, 

we shall assume that the truncation of (1.1)-(1.2) used to derive (1.21) 

contains enough modes to be physically significant. 

A critical observable in two-dimensional turbulence is the vorticity 

distribution. There is evidence to the effect that macroscopic (i.e., 

large-scale) vortices form as the velocity field develops from arbitrary 

initial values according to the Navier-Stokes equations. See [13] and 

[47] for a numerical study. The question of interest here is how does 

this phenomenon nmnifest itself in the model system (1.2l)-(1.22)? We 

shall investigate two possible mechanisms which may explain this behavior. 

The first is dynamical in nature and the second is statistical-mechanical. 

In the first, it shall be proposed that the system (1.21) contains some 

dynamical mechanism which leads arbitrary initial states into states 

which correspond to macroscopic vortices. However, the conservation of 

v-measure on S makes such an explanation quite complicated. This ob-

jection is not present in the viscid case of (1.1) (i.e., v > 0) which 

corresponds to a real physical flow. In the second mechanism we propose 

that the overwhelming majority (in the sense of v-measure) of states on 

S correspond to physical states with macroscopic vortices. This is meant 

to be in analogy to the derivation of thermodynamic quantities such as 

temperature from the statistical mechanics of ensembles of gas particles. 
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In this case, it might not make any difference whether or not (1.21) 

was mixing because one would observe macroscopic vortex formation in 

either case. However, if the system were not mixing, then there could 

be a set of small positive measure on S which never evolved into macro-

scopic vortices. This situation could not occur if (1.21) were mixing 

(ergodic is sufficient) because then time means would equal phase means 

for almost every initial state. In contrast, it is to be noted that the 

dynamical explanations to be presented will require some degree of 

nonrandomness for the system (1. 21) - certainly, nonergodici ty . 

In summary, the problem to be considered in this section is the 

theoretical justification for large-scale coherent behavior of a physi-

cal system in the face of small-scale randomness. As has been noted, 

the solution of this problem is well understood (at least in its general 

outline, if not in specific details) for a large system of gas molecules. 

It will be obvious throughout this section that a solution of the prob-

lem for the system (1.21) - (1.22) will of necessity be much more com-

plicated. Indeed, little is known about the statistical mechaniC$(or 

the ergodic theory) of this system beyond the level of conjecture. As 

a result, our discussion as well will contain few results but several 

conjectures. Let us outline the reasons for this situation at the outset-

details will follow later. First, (1.21) has two quadratic constants of 

the motion instead of just one as in gas dynamics. This forces some 

of the basic ideas of statistical mechanics to be inoperable - c.g., 

equipartition of energy. Second, the macroscopic observable that we 

are interested in - vortex structure - is much more complex then temp-

erature, pressure, etc. The reason is that the latter are single 
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real-valued functions on the state space; on the other hand, it is not 

at all clear how to represent large-scale vortex structure as a finite 

collection of such functions, even approximately. Third, in gas dynamics, 

the phase space is given by the physical degrees of freedom of each of 

the molecules. For the case at hand, the degrees of freedom are inde

pendent Fourier modes - this severely limits ones physical intuition. 

In outline, we shall first develop the vortex model as a coarse 

approximation to the Navier-Stokes equations and correlate macroscopic 

vortex fonnation in this model to so-called "negative temperature" states. 

This has led historically to attempts to define 'negative temperatures" 

in the Fourier mode model and we shall present the statistical mechanical 

arguments used along with a rather critical appraisal of their validity. 

We shall next turn to the dynamical ideas of attractors and invariant 

sets and their application to (1. 21) - (1. 22). This will lead to a dis

cussion of these concepts in case (1.21) were modified to include vis

cosity and external forces. Finally, we shall summarize the arguments 

concerning ergodicity and mixing on the one hand, and coherent large

scale structures on the other hand. 

The idea of the vortex model is to replace the continuous distri

bution of velocity by a discrete set of point vortices. Thus, the 

model explicitly assumes that the vorticity distribution is the most 

important observable in a two-dimensional flow. We refer to [3] and 

[20] for details of the following construction. We proceed as follows: 

since div ~ = 0, there exists a stream function ~(~ such that 

(4.1) u = (a~/ay, - a~/ax). 
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By the def:inition of vorticity, it follows that 

2 2 
(4.2) f1l/J ::U_+U= -~. 

ax2 ay2 

A s:ingle point vortex located at ~ £ ~ (D is the fluid doma:in) is 

defined by the vorticity field 

(4. 3) ~ (~-~) = KOO (~-~) 

where KO :: strength of the vortex:= f ~~ and ° is the delta function. JD 
Note that the sign of KO indicates the orientation of the vortex. A 

stream function for a single point vortex is now easily obtained: 

(4.4) 
1 KO 

l/J (~~~) = - f1 - KO ° (~-~) := - CiT log 1 ~ - ~ I· 

Suppose now that there are M point vortices located at the points 

x., j = 1,'·· , M, and that there are no other contributions to the 
-] 

vorticity field. Assume further that each vortex retains its structure 

in time, i.e., that they remain point vortices. Then, since the total 

vorticity of a fluid element is conserved according to Kelvin's Thm., 

we see that each K. remains constant. We assume that the point vortices 
J 

move with the fluid. Hence, the velocity of the jth vortex, denoted 

by u., will be a superposition of the velocity fields generated by all 
-J 

of the other vortices (point vortices do not self-interact). That is, 

(4.5) dx./dt= L: • ..,t. u., 
-1 Jr1 -J i = 1,'·', M. 

This defines the vortex model, i.e., one considers an initial distribu-

tion of point vortices in ~ and studies their subsequent evolution using 

(4.5). 
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An important feature of the vortex model is that it is a Hamiltonian 

system. To see this, define 

(4.6) q. = i[K":;TX., 
1 1 1 

P. = 1Ti<:T s gn (i<:.) y., 
1 1 1 1 

i=l,p·,M 

where x. = (x.,y.) and sgn (A) denotes the sign of A. Now define 
-l 1 1 

(4.7) 1 H(q,p) = - -2 L:. . K·K· log T .. 
Tf 1 < J 1 J 1J 

where q = (ql' '.', qM), E. = (PI' ••• , PM), 

Using (4.5), one easily verifies that 

(4.8) dH/dt = 0 

(4.9) dq./dt = dH/dp. 
1 1 

dp./dt = - dH/dq., 
1 1 

and r .. = Ix.-x.l. 
1J -1 -J 

i = 1,···, M. 

Together, (4.8) - (4.9) define a Hamiltonian system with "energy" H and 

canonical coordinates (q.,p.). Note that H is not necessarily positive 
1 1 

and that the configuration space of the system coincides with the plane 

of motion. The system (4.8) and (4.9) also has two linear constants of 

the motion corresponding to x- and y- momentum, and an additional quad-

ratic integral which measures the average dispersion of the vortices. 

The system (4.5) - (4.9) may also be interpreted in terms of two-

dimensional plasma physics. Let the coordinates x. denote the positions 
-J 

of very long and thin rods aligned parallel to an external magnetic field 

directed perpendicular to the plane of motion which react via the 

Coulomb potential. In the limit of infinite length and infinite thin-

ness, the rods will remain so aligned, the Hamiltonian function describes 

the motion of the rods according to a "guiding-center drift," and H 

may be interpreted as the total potential energy due to the Coulomb in-

teractions. [33] and [51] may be consulted for further details. Also, 
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the form of H is somewhat more complicated if boundaries are taken 

into account; these modifications are taken into account in [63]. 

We shall now present the statistical mechanical argument leading to 

negative temperature states, following [10]. Many of the ideas originated 

in [56]. See also [11], [33], [34], [50], [51], [52], [63], [69], and 

[70]. We require that the region p ~ l2 be bounded. This implies that 

the phase space, fl x ••• il x M times, has finite volume which is important 

below and is the main difference between this system and a typical gas 

model. This assumption entails modifications in the definition of H to 

take the boundaries into account (as above in the plasma interpretation)-

see [63] for details. The system remains Hamiltonian and of the same 

form as (5.7) so the following argument still applies. 

For simplicity, assume that IK. I = 1, for all i. We now assume that 
1 

M is large and divide B into subregions WI' ••• , ~ of equal area which 

are large enough so that interactions between vortices in different 

regions are negligible compared to interactions between vortices in the 

same region. 

(4.10) 

Hence, we write 
N 

E = E E. 
i=l 1 

where E = total energy and E. = energy in W .• 
1 1 

Now, if N is large and 

{n.} is the most likely distribution of vortices among the regions {w.}, 
1 1 

then it is well-known that 

(4.11) n· = constant x exp(-8E.) 
1 1 

where 8 is interpreted as being inversely proportional to the tempera-

ture. See [32] for a proof of (4.11). There are two cases to consider: 

8 > 0 and B < 0 (the latter possibility arises because the total phase 
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space volume is finite. See [56] where this is worked out in detail). 

To proceed further, we must now make assumptions about the organization 

of the vortices within the regions wi (analogously, in the classical 

statistical mechanics of an interacting gas, similar assumptions must 

be made regarding the interaction potential) . So, assume .first that the 

vortices are organized into L macroscopic vortices each of a definite 

sign and each having a density of lsi decreasing from some center, where 

L « N. Thus, each region w. is assumed to contain vortices all of the 
1 

same sign. If the regions are chosen small enough so that they have 

diameter less than unity, then it follows that for any pair of vortices 

in Wi of strengths K t , Km thatr~m < 1 which implies that log rtm < O. 

Sincesgn (Kn) = sgn (K ), (4.7) shows that the energy E. 
N m 1 

must be positive. Inserting this result into (4.11), our hypothesis 

concerning the density of lsi (which is equivalent to the distribution 

{n.}) implies that S < o. That is, S < 0 is compatible with the 
1 

formation of macroscopic vortices and by a similar argument, S > 0 is 

not. These macroscopic vortices are the "negative temperature" states 

previously referred to. Needless to say, the above argument is not a 

rigorous proof. We remark that by using the equilibrium Gibbs ensemble 

(4.11) in the derivation of the above dynamical result concerning the 

Hamiltonian system (4.5) - (4.9) we were implictly substituting phase 

means for the physically relevant time means, i.e., we assumed that 

(4.5) - (4.9) is at least ergodic. 

Before leaving the subject of point vortices, let us point out that 

the ideas have proven quite useful recently in the numerical modelling 

of two-dimensional turbulent flows. The methods were developed in 
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Chorin's paper [7] and have been studied further in [8], [10], 

[11], [12], and [66]. The basic idea is to use "cut-off" point vortices 

in the sense that the stream function is given by (4.4) except for a 

small area near the vortex where the singularity is smoothed out. 

We now show how negative temperatures might arise for the Fourier 

mode model (1.15) - (1.16). The basic ideas presented here are in [39] 

and we refer also to [57]. Further references to the statistical 

mechanics of the Fourier mode model and to negative temperature states 

are [14], [16], [20], [20], [21], [23], [37], [48], [49], [51], [64], 

[65], [68], [70]. 

Recall that 

are constants of the motion for (1.15) - (1.16). Therefore, given any 

[3, Y ,E JR., 

(4.12) 

is also a constant of the motion. Now, according to the theorem on 

equipartition of energy (see [32] and [57]), 

(4.13) < ua(~,t) du~(R,t) > = C 

where C is a constant depending on the total energy, < > denotes an 

ensemble average, and no sunnnation takes place. The ensemble involved 

here is the uniform distribution over the surface of constant n. 

Performing the differentiation in (4.13) we obtain 

(4.14) < ua(~,t) ua(-~,t) > = c/(S~2 + y). 

Define the energy spectrum E(k) so that 
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00 

E =1 E(k)akj we get E(k) 0: k <u (k) u (-k) > and (4.14) leads to 
- ex - ex -

(4.15) E(k) = ak/(k2 
+ b) 

where a,b are suitable constants. It can easily be shown that for any 

realizable choice of total energy and enstrophy, a and b can be found 

such that (4.15) is a realizable energy spectrum - see [20] for a proof. 

Equation (4.15) will shortly lead us to negative temperature states in the 

Fourier mode model. We remark, however, that it is not obvious how to 

derive (4.15) from the vortex model, which is the heuristic model for 

negative temperatures. 

The number b is taken to be inversely proportional to the tempera-

ture of the equilibrium ensemble (4.15). As for B in the vortex model, 

there is no reason that b cannot be less than zero. Of course, the 

question now arises whether or not the value of b has anything to do with 

the dynamics of (1.15) - (1.16)? In particular, does the sign of b have 

any relation to the formation or lack of formation of macroscopic vor-

tices? There has been one numerical study devoted entirely to this 

problem, [20]. The methods employed were designed to investigate the 

equilibrium energy spectra and compare it to (4.15). The conclusion 

was that the sign of b has no dynamical significance. However? since 

more subtle observables connected to the vorticity distribution were not 

tabulated, this result cannot be conclusive. The precise results are as 

follows: Witil an initial ensemble in which b is large it is found that 

the energy spectrum satisfies E(k) 0: k asymptotically and with b small 

initially the spectrum E(k) 0: k- l was obtained. This correlates exactly 

with (4.15). However, deviations from these values are noted at high 

wave numbers - precisely those which should relax to equilibrium values 
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fastest. If it indeed is the case that (-,LIS) is not a dynamic equil

ibrium (i.e., time means of the energy spectrum are not given by (4.15)), 

this would argue against mixing on surfaces of constant ~ (however, see 

the following paragraph which shows that this is probably not a signif

icant question to begin with). Related results are reported in [16]. 

Here, the authors introduced a small viscosity into the equations and 

were able to construct two initial ensembles approaching distinct equi-

librium spectra neither of which resemble (4.15). Two possible explana-

tions present themselves. First, the inviscid equations may differ 

markedly in their behavior from the viscous case although this seems 

unlikely in view of the discussion in Section 2. Second, (4.15) may not 

hold for all initial ensembles. 

Let us reconsider the derivation embodied in (4.12) - (4.14). Note 

that (1.15) - (1.16) has two quadratic constants of motion whereas (4.12) 

combines these into one "energy". Consider the constants of the motion 

E,r.l, and~. Since~' = L:k(¢~2 + e) luQ01 2 is also a constant of motion 

for any choice of ¢,e £ ~, we conclude that there exists an isolating 

constant of motion on surfaces of constant~. Since~' constitutes a 

nonconstant measurable invariant function, the system (1.15) cannot be 

mixing on a surface of constant ~. This implies that the ensembles 

(4.15) cannot be a statistical equilibrium. However, (4.15) might still 

be a dynamical equilibrium. 

The two isolating constants, E and r.l, are of equal importance 

a priori. The correct surface to consider is the intersection of the 

surface of constant energy with the surface of constant enstrophy. On 

this surface, the analog of the equipartition theorem will presumably 
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be much more complicated than (4.14) and so the same will apply to the 

energy spectrum (4.15). We propose, therefore,that the system (1.15) -

(1.16) should be viewed as having two thermodynamical quantities associ

ated with it, one for each of the two isolating quadratic constants of 

the motion. 1nere is no reason to suppose that the statistical 

equilibria will be of the form (4.15). However, a and b are two 

candidates for independent temperatures. So, (4.15) is a 

possible equilibrium spectrum and the results of [20] indicate that it 

may be valid for part of the range. In the above derivations ergodicity 

is assumed for the underlying dynamical system. However, this assumption 

may not be logically necessary to explain coherent large-scale behavior. 

To see this, let V C S denote those states which correspond to macro

scopic vortices. By considering the formation of macroscopic vortices 

as a thermodynamic phenomenon or a statistical equilibrium, we are 

saying that 11 (S) -11 (V) is overwhelmingly small in the "thermodynamic 

limit", i.e., in the limit as the number of retained modes in the 

truncation (1.15) - (1.16) approaches infinity. The only knowledge 

necessary to transfer this result from the phase ensemble in which they 

are derived to the physically observed time averages is that S-V is not 

an exceptional subset of V regarding the dynamics of (1.15), i. e., we 

must know that initial data in S-V does not stay in S-V a long time and 

that S-V does not attract data from outside of S-V. Knowing this, one 

is then justified in claiming that a statistical equilibrium exists for 

the time ensemble as well as the phase ensemble. Of course, the assump

tion of mixing on S for (1.15) implies all this and more; the point is 

that even ergodicity is a stronger assumption then necessary. 
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As mentioned above, the problem of computing thermodynamic limits 

and equilibrium ensembles in the event that the underlying dynamical 

system has two isolating constants of the motion is difficult. Indeed, 

it is not clear that such limits even exist. We shall now consider two 

dynamical explanations of the macroscopic vortex phenomenon. As before, 

let V ~ S be the set corresponding to macroscopic vortices in physical 

space. Then, one may hypothesize 

(I) V is an attractor for the dynamical system {Ft:S + S} con

structed in Section 2. Alternatively, one might only suppose that V 

is a local attractor. 

(II) V is contained in a nontrivial (explanation below) open set 

W ~ S such that "W (W) > 0 and W is F t -invariant. Section 3 contains 

definitions of the terms used here. 

In view of the last theorem proved in Section 3, we may elimiante 

(I) inllllediately (it has already been shown that "W is absolutely contin-

uous with respect to Lebesgue measure on S. See Section 1). Neverthe-

less, in the presence of viscosity, the motion is no longer restricted 

to S but takes place in the entire phase space. Also, the origin of 

phase space is a global attractor. This is clearly a simple situation 

from the dynamical systems point of view. It is, however, possible that 

'metastable" attractors may exist for the system if v is small enough. 

That is, the flow {Ft } may take arbitrary initial data through the 

metastable attractor, and the physical behavior characteristic of the 

attractor persists for a long time relative to the time scale of the 

problem. Finally, the velocity field decays due to the attraction of 

the origin. This type of attractor may be of interest in the study of 
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the so-called inertial range, i.e., those wave-numbers intermediate be-

tween the very high modes where viscosity is predominant and the very low 

ones which describe the larger scales of the motion. See [10] and [39]. 

A more complicated situation might arise if one were to introduce 

a time-dependent random stirring force designed to conserve energy and 

enstrophy. The analogue of (1.15) would be 

:: - i P (k) \l 
2 a,SY - LJ 

I 12J, I sJ < K 

£t~ :: ~ 

where the components of the external force {fa,~,t): a, = 1,···, N; 

I~I < K} are chosen from an ensemble which conserves energy and 

enstrophy, but not necessarily in the trivial manner 

f (k,t) = vk2u (k,t) which would lead us back to (1.15). The system a,- '- a,-
(4.16) may well be a more realistic simulation of a real physical flow 

than (1.15). The analogue of the Liouville Thm. for (1.15) is 

(4.17) L: dU (k, t) a,-
(u (k, t)) a,-

I~I<K 

:: - vN l: (f (k, t)). a,-

I~I < K 

This shows that the flow (4.16) does not necessarily conserve the natural 

measure in phase space and, therefore, the same must apply to S. In the 

second summation on the right-hand side, the {f (k,t)} are chosen from a,-
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an ensemble which depends on the instantaneous value of the {u (k,t)} 
a 

(this dependence is necessary in order to conserve energy and enstrophy). 

Thus, our analysis of ergodicity and mixing would not apply to (4.16) 

because these concepts require an a priori preserved measure. On the 

other hand, we note that attractors are a distinct possibility for the 

system (4.16). 

It may well be possible to extend this construction one step further 

and choose the components of the external force from an ensemble which 

satisifies Liouville's Thm. To see how this development would proceed, 

we exhibit the system of equations that the {f (k,t)} must satisfy in a-

order to belong to the previous ensemble. Conservation of energy re-

quires 

(4.18) 

and conservation of ens trophy requires 

(4.19) 

These two equations follow immediately from (4.16), (1.19), and (1.20). 

Thus, the ensemble is determined by these four linear constraints (the 

real and imaginary parts of (4.18) and (4.19) in the {fa(k,t)}). In 

order that Lebesgue measure be preserved in phase space, we must have 

(4.20) L: a 
k au (k, t) a-

One way of insuring this is to simply fix a time-independent external 

force (which is a function of the {u (k,t)} once and for all which a-

satisfies (4.18) - (4.20). There are enough degrees of freedom remaining 
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after satisfying (4.18) - (4.19) to do so. However, the external force 

would then no longer be entirely random. Once constructed, the induced 

measure on S for (4.16) would be found in the same way as in Section 1 

and the analysis of Sections 3 and 5 would be identical. However, this 

construction will not be pursued further in this paper. 

Turning now to our second hypothesis, we construct an Ft - invariant 

set X~ S for the system (1.15) - (1.16) which is invariant for the 

untruncated system (1.6) - (1.7) as well. Its elements are the Fourier 

transforms of vortices in physical space. Explicitly, consider 

(4.21) ~(k,t) = ik2~(~,t), Uz(~,t) = - ikl~(~,t) 

where the stream function is given by 

(4.22) ~(~,t) = C exp(iakl + ibk2)/H(~,t). 

C,a,b are constants and X = {u: the stream function ~ is of the form 

(4.22) with H(~,t) arbitrary}, see [6]. X is Ft-invariant because of 

the arbitrariness of the denominators H~,t). Clearly, ~(X) = 0 and 

each member of X is a vortex. By itself, this may not be a significant 

result because ~(X) = 0; however, it becomes significant if the fol

lowing conjecture were known to hold: X is contained in an invariant 

set W of positive measure. If this were indeed the case, we would have 

a set of positive measure whose elements correspond closely to vortices 

in pl1ysical space and which stay in this correspondence under the in-

fluence of the flow {Ft }. Some results have been obtained concerning 

the existence of such a set W given X as above in the case of certain 

Hamiltonian systems and also some reversible systems. See [53] and 
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[54]. The Fourier mode model is not known to be Hamiltonian but it is 

reversible. However, it is difficult to establish the assumptions in 

these theorems for the Fourier model. 

Suppose now that V ~ W is as in (II) above. Of course, it is 

trivial to see that W= S satisfies (II). This case is clearly of no 

interest and what we require is that Wbe physically significant. This 

requirement presumably implies that ~(S-W) > 0 in addition to having 

~(W) > O. The problem remaining is how to treat the Ft -invariant set 

S- W which, in our model, is of equal a priori importance to the set W re-

lative to the measure ~. So, in the preceding example, we would have 

an invariant set of vortices and another invariant set of (perhaps) 

nonvortices, both of positive ~-measure. Clearly, one of our main 

assumptions would have to be dispensed with if such a set W existed. 

The possibilities are (1) vortex formation is not an intrinsic property 

of 2-D turbulence or (2) the state space (S,H,~) is an invalid approxi

mation for two-dimensional turbulent flows (see Section 2 for a further 

discussion of the latter property). Once again, the existence of Was 

above can also have a thermodynamic explanation; that is, as the number 

of retained modes approaches infinity, it may happen that ~ (S- W) ->- 0 

(S and W both depend implicitly on the number of modes) . This would 

allow the "unphysical" states of S- W to have ~ -measure 0 in the limit 

of all modes being present. 

We now try to summarize the relationship between statistical 

properties of the flow {Ft } such as ergodicity and mixing, and the ideas 

sketched in this section. Our basic hypothesis is that large-scale 

vortex fonnation occurs in two-dimensional turbulent flows and should, 
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therefore, be a feature of our model, at least for large-scale tnmcations. 

We have also assumed that (S,t8, V) with the dynamical system {F t:S -+ S} is 

a valid model for fully-developed inviscid turbulence. We have noted 

two classes of explanations for the vortex phenomena: statistical 

mechanical and dynamical. The latter view the flow {Ft } as being non~ 

random to some extent - at least it is not mixing nor even ergodic. How

ever, the dynamical explanations are logically flawed in the inviscid 

case because of violations of conservation of v-measure (and the in

variant set hypothesis is consistent only in conjunction with a thermo

dynamic argument). On account of this problem, it is not clear what 

ergodicity or nonergodicity of the flow {Ft } would imply about turbulence 

or vortex structure. Still, one assumes intuitively that nonergodicity 

would imply the existence of some further significant constraint on the 

statistics of turbulent flows while ergodicity would tend to imply the 

opposite result. As we have already noted, the statistical mechanical 

explanations do not technically require that the flow be mixing or 

ergodic. However, the assumption of mixing makes the derivations much 

more plausible because it allows interchange of phase averages and time 

averages. Thus, it appears unlikely that well-defined temperatures or 

similar phenomena could exist if the underlying flow were not at least 

ergodic. 

Our conclusion is that the vortex structure of two-dimensional 

turbulence can be explained with or without the assumption of mixing 

or ergodicity for the system (1.20) - (1.21). Nevertheless, the validity 

of these assumptions deserve to be investigated. First, nonergodicity 

would imply the existence of a further isolating constant of the motion 
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besides energy and enstrophy (see Section 3). Although this integral 

need only be measurable, it may still have physical significance. 

Second, a firm answer to the question may point the way in deciding be-

tween thermodynamic and dynamical explanations of macroscopic phenomena 

such as vortex coalescence in turbulence theory. 

Suppose now that the dynamical system (1.20) - (1.21) is nonergodic 

and suppose further that a constant of the motion, n, has been found ex

plicitly. It then becomes relevant to study the statistical properties 

on the surface SI = S n S where S = surface of constant n. We would 
n n 

then have dim SI = M-3 where M is the dimension of phase space. This 

study would be particularly relevant in case the existence of n were not 

sufficient to describe the phenomena of interest - coherent large-scale 

vortex structures. These comments apply as well to the situation in 

which a finite number of constants of the motion were found, say 

nl , ••• , n~, and dim SI = M-~. In other words, it is possible that S 

is partitioned into surfaces of low codimension on each of which the 

restriction of the flow {Ft } is mixing, without even being ergodic on 

all of S. In this event, we nught say that the flow {Ft } is essentially 

random, especially if the integrals nl , ···,n~ were not of great physical 

significance. Thus, it may be premature to draw drastic conclusions 

from the finding that (1.20) is not ergodic. We should note that in 

case n is merely measurable, the partition of S indicated above would 

also only be measurable and not necessarily a "surface," thereby in-

validating much of the analysis of Sections 1,3, and 5. However, {Ft } 

is a differentiable flow so it seems unlikely that such arl n would not 

be at least piecewise continuous. 
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As a final note, we shall now compare an aspect of three-dimensional 

turbulence with two-dimensional turbulence. In the three-dimensional 

case, the circulation around any closed curve is a constant of the motion-

hence, there are an infinite number of constants of the motion, one 

for each curve. Nevertheless, it is generally agreed that three-dimen-

sional turbulence is random because there is an obvious mechanism by 

which these constants become "coarse-grained" throughout the fluid 

domain. Namely, the stretching of vortex tubes causes each element to 

become thinner and longer. Since the fluid domain is finite, this forces 

the tube to randomly weave its way through the fluid and, eventually, 

the distribution of any observable taken along the curve in question 

becomes indistinguishable from the uniform distribution in phase space -

this is precisely the criterion for mixing (see [57]). Analogously, in 

two-dimensiolllil flow there are also an infinite collection of constants 

of the motion; these are the total vorticity of each fluid element, one 

constant for each element. The difference is that in this case it is 

not clear whether or not there exists a physical mechanism by which these 

elements can become coarse-grained - there is no vortex stretching in 

two dimensions. It should be pointed out that we have been discussing 

the untruncated system (1.1) -(1.2) and that none of the integrals dis-

cussed here survive the truncation in the Fourier mode model. See [3]. 
" 

Also, it is not clear what is meant by mixing or ergodicity in an 

infinite-dimensional space until the latter is assigned a flow invariant 

measure. 



I~ 
U J 

, • 0 '.l '-.. { , () ) (i 0 '~ ,\, , U 

-53-

5. The Methodology Employed to Numerically Study 
ErgodicityandMixing 

In this section, we shall develop the numerical methods used in 

studying the statistical properties of the dynamical system (1.21) -

(1.22). These methods are applicable to a truncation of any size leading 

to (1.21) - (1.22). The numerical results to be presented in Section 7 

treat only very small truncations and will serve to test the feasibility 

of applying the methods to a larger truncation. 

The study of the ergodicity and mixing properties of a dynamical 

system can be quite simple when the solution is known explicitly. For 

example, if the solution is almost periodic then the system cannot be 

mixing - we will present an example of this in Section 6. However, the 

solution of (1.21) is not known explicitly, in general. Therefore, it 

will be necessary to work with an approximate solution of (1.21); fur

thermore, this approximate solution will be too complex to be explictly 

solved for all time and will not be of any use in the manner just in

dicated. As a result, we shall be unable to work directly with the 

definitions of ergodicity and mixing; instead, we shall apply their 

consequences as described in Section 3, especially equations (3.8) and 

(3.13). 

Recall that a transformation or flow is ergodic if and only if every 

measurable invariant function is a constant. In particular, the existence 

of a nontrivial constant of the motion proves that a dynamical system 

cannot be ergodic. Let M be the number of independent variables re-

tained in (1.21) and suppose that 
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is a constant of the motion for the flow on the surface S induced by 

(1.21), i.e., n(~ = 0 identically on S. Since n(~ is a homogeneous 

cubic polynomial, this will yield a system of linear equations in the 

unknowns {y.}, one equation for each term of the form WnW W which 
1 Nmn 

appears in new). Conversely, one may hypothesize an integral of the 

motion of the form (5.1) with as yet undetermined coefficients {y.} , 
1 

derive the system of linear equations, and see whether or not they have 

a nonzero solution. If so, an integral of the motion will be obtained, 

and this will be a new integral once one has checked that n is inde-

pendent of E and ~. Clearly, this method is applicable to any hypo-

thetical polynomial constant of the motion. A few brief computations 

will convince the reader that as inhomogeneous terms are included, or 

cross terms such as w.w., i f j, are included, or as the degree of the 
1 J 

polynomial increases, the probability of finding a new constant of the 

motion is small because the number of linear equations will be much 

larger than the number of unknown coefficients. Nevertheless, see [24] 

and Section 6 for a successful application of this technique. 

We shall now describe how we have used equations (3.8) and (3.13) 

as a numerical method for the study of the ergodicity and mixing 

properties of the system (1.21). Recall that {Ft } is ergodic if and only 

if (3.8) holds for every measurable f and for almost every ~ E S and 

that {F t} is mixing if and only if (3.13) holds for every choice of 

measurable f and g. Thus, to prove ergodicity, it is necessary to test 

an infinite collEiction of functions on a set of full measure in S. On 
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the other hand, to prove nonergodici ty, it is necessary to find one 

function such that (3.8) is false on a set of positive measure in S. 

Analogous statements hold for mixing and (3.13). In addition, both (3.8) 

and (3.13) involve an infinite limit in time. Therefore, it is necessary 

to have a solution for all time in order to prove either ergodici ty or 

nonergodicity. Since we will be using an approximate solution, we will 

only have solutions for a finite time, for a finite ntnnber of points, 

and for a finite ntnnber of measurable functions. As a consequence, our 

numerical methods will not be able to prove any results but will only be 

able to provide evidence. Note: There are theoretical grounds for be-

lieving that sampling a finite number of points is sufficient to obtain 

a proof of ergodicity. However, the argtnnent, which is in [41] and [60], 

is nonconstructive so that one has no way of knowing which are the 

correct points to choose. 

Let p (~) denote the density function of the measure l-1 on S, i.e., 

djl (~= p (~~. We shall need to describe how the following approxi-

mat ions were carried out: 

(5.2) 
T 1 L f (0 f(Ft~)dt - r L f(Ft .06\ 

)r i=l 1 

(5.3) 

(5.4) J 1 N 
f(Ft~)g(w)djl(~ - -N L f(Ftw.)g(w.)p(w.), t fixed. 

S i=l -1 -1 1 

The approximation (S. 2) will be straightforward after we have described 

the ordinary differential equation solver used for (1. 21). We used a 

MOnte Carlo routine for the approx~ltions (5.3) and (5.4) which will be 

presented in detail. In addition, our choice of final integration time 
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T, the measurable test functions f and g, and the values of E and ~ 

will also be discussed. 

The system (1.21) was integrated using a readily available routine 

known as Gear's method. Complete doct.nnentation may be found in [29] and 

a theoretical analysis in [22]. This routine contains two subroutines, 

one for stiff problems and the other for nonstiff problems. Since 

(1.21) is nonlinear, it is not known a priori what percentage of the time 

that Ft(~) will lie in a region of S which is stiff for.0. ::: £(~). We 

tested several points with both routines (obtaining nearly identical 

results) and became convinced that the problem is rarely stiff. There-

fore, we have used the more efficient nonstiff routine for the bulk of 

the calculations. The latter is an Adams -Maul ton, i. e., predictor-

corrector, method of variable order. The user inputs the maximum 

allowable local truncation error (i.e., the magnitude of the difference 

between the actual solution and the approximate solution for one time 

step) and the routine automatically sets the order, the number of cor-

rector iterations, and the time step with optimization of computing 

effort in mind. Of course, the global truncation error is a complicated 

function of the local truncation error and the problem being solved and 

cannot be calculated explicitly. Thus, accuracy for long integration 

times must be insured by other means. Suppose that a local truncation 
-K error of 10 has been chosen (K varied between 7 and 10 for the trunca-

tions actually studied). The total integration time T was then chosen 

as follows: several tests were made with identical initial data solved 

using local truncation errors of 10-K and 10- (K+l). T was then taken 

to be the time at which the solutions begin to differ in the third 
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o 

significant figure. In this way, we were able to insure three signif-

icant figures in the solution for the entire calculation; also, we 

thereby obtained an average accuracy of six or seven significant figures 

over the range of the integration. It is of interest to note that 

energy and enstrophy are conserved almost exactly for the values of 

local truncation error and total integration time chosen. Indeed, this 

would still be the case even if T were increased by an order of magni-

tude. Therefore, conservation of E and ~ is not a sufficient criterion 

in selecting T. There seems little reason to doubt that the method just 

described is adequate to insure accuracy of solutions to the differential 

equations. 

A difficulty which must be dealt with is that the statistical 

properties of the system (1. 21) - (1. 22) may be dependent on the choice 

of E and ~. It was impractical to numerically test a wide range of 

choices and we did not do so. In practice, only one value of E and ~ 

was selected for each truncation, and the choice was made on purely 

pragmatic grounds. Specifically, small values of E and ~ lead to 

large (i.e., efficient) step sizes in the Gear routine while large values 

for E and ~ lead to small step sizes. So, E and ~ were chosen to 

be small enough so that the computing effort was within reason but large 

enough so that (5.2) would be well approximated. Also, the relative 

sizes of E and ~ must also be selected. Of course, (1.29) must be 

satisfied; to facilitate the Mbnte Carlo approximations in (5.3) and 

(5.4), it is best to choose E/ ~ somewhere in the middle of the range 

allowed by (1. 29) . In this way, j.l (S) is approximately maximized be-

cause j.l (S) approaches zero as E/~ approaches either of its extreme 
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values. Now, if ~(S) were too close to zero then (5.2) - (5.4) would 

be forced to hold to several significant figures whether or not (1.21) -

(1.22) is ergodic, unless the functions f,g are chosen to insure a 

wide total variation over S. It was thought best to avoid this purely 

numerical difficulty in the manner indicated. 

We now consider the approximation (5.2). Clearly, the right-hand 

side is simply an approximating Riemann sum for the left-hand side. The 

6t. are given by the (variable) step sizes of the Gear method. Even 
1 

though this is the simplest possible choice of numerical integration 

routine, it was felt that the small step sizes used (between 10- 2 aqd 

10-1) combined with the sirnplicitly of the functions to be integrated 

(see below) insured sufficient accuracy. However, we are actually 

integrating f 0 F and not simply f; the former may have a nruch larger 

variation than the latter even for very simple choices of f. In view 

of the fact that the flow {Ft } is smooth (see Section 3), we hope that 

this is not a significant factor. Finally, observe that there is a 

numerical tradeoff between the final integration time T and the average 

step size 6t arising from the choice of E and D. That is small (re-

spectively large) values of E and D lead to large (small) T and large 

(small) 6t. Of course, large T and small 6t are desirable for a good 

approximation in (5.2) whereas large 6t is desirable in order to lessen 

the computing effort. 

We turn now to the Monte Carlo evaluation of (5.3). Because of 

the complicated topological structure of S (see equation (1.36)), we have 

been unable to devise a method to uniformly sample points in the param

eter domain D of S. The usual method of enclosing D in a simpler 
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region is prohibitively inefficient. Our solution to this problem is 

to choose a subset E ~ D which can be sampled uniformly and then to 

evaluate only those measurable functions which vanish on the complement 

of the image of E in S of the parameter map. We now construct E and 

describe the sampling algorithm. The notation is that of Section 1 . 

. Define 

(5. 6) s. = max (A ., ll·) 1 1 1 

for i = 1, ••• , M-2. Then, 

M-2 
(5.7) L: 

i=l 

2 s. w. < 1 
1 1-

describes an (M-2)-ellipsoid inscribed in D. More generally, 

(5.8) 
M-2 

L: 
i=l 

2 s.w. < R, R.2':. 1 
11-

will describe an (M-2)-ellipsoid which is partially interior and 

partially exterior to D. Clearly, there exists an Rcrit > 1 such that 

(5.8) describes an (M-2)-ellipsoid which superscribes D. We have chosen 

R = R with 1 < R < R . t in such a way as to optimize a numerical c c cr1 

tradeoff which we now describe. For values of R close to 1, almost 

every sampled point will lie in B and can be used in the approximation 

(5.3). However, it then follows that ll(E)/ll(S) is so small that the 

the trajectory of a point ~ €S will almost never lie in E (we view 

E ~ S by abuse of notation). Since the sample functions are chosen to 
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vanish outside of E, this would cause the approximation (5.2) to be 

statistically meaningless. Suppose next that R - R "t' crI In this event, 

the trajectories of (1.21) will be nearly contained in E but the sample 

points for the integration of (5.3) will seldom lie in fl. Since evalua

tions of (5.2) and (5.4) are several orders of magnitude JTK)l"l' costly 

per point than evaluations of (5.3), we have chosen R in such a way c 

that on the average well over 99 per cent of a trajectory lies in E. 

In this way, the information obtained through the integration of the 

system is not artifically lost. Of course, this requires R - R . and 
c , crlt 

the price must be paid in the approxin~tion (5.3). 

Next, we demonstrate a procedure for uniformly sampling points from 

a solid (M-2)-ellipsoid. See also [36] and [61]. First, we describe 

the "polar method" which yields two independent normally distributed 

random variables. It consists of four steps: 

(I) Generate two independent variahles "l and U2 uniformly 

distributed on (0,1) and set VI = 2l1-1, V2 = 2L2-l. 

(II) Set Z = vi + V~. 

(III) If Z ~l, return to Step I. 

(IV) Define 

The proof that Xl' X2 are independent and no~lly distributed is 

straightforward - see [36]. Second, to obtain M-2 such indpendent 

normally distributed random variables, it is necessary to repeat the 

above procedure (M-2)/2 times (recall that M is even). Denote X1,X2, 

iiI and Z above by X1,X2, and Z for i = 1, ••• , (M-2)/2. If we set 
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(M-Z)jZ 
L: (-Zln Zi) 

i=l 

M-Z 
then it follows that L: X~ = 1. See [36] for a proof that the random 

.1 1 
1= 

points (Xl' ••• '~-Z) are uniformly distributed on the unit (M-Z)-

sphere. Third, we set 

and obtain sample points uniformly distributed on the surface of the 

(M-Z) - ellipsoid (5.8) with R = R. Finally, to obtain a uniform c 

distribution on the solid (M-Z) - ellipsoid, we set 

X. +- 0' X. 
1 1 

where 0', 0 .:::. 0' :S.. 1, is a random variable distributed in such a way 

as to weight the volume of the ellipsoid according to radial distance. 

The construction of 0' is straightforward and is omitted. 

In sunnnary, points are uniformly sampled from E ~:e and the cor

responding point on S is then constructed from (1.Z4) and (1.35). The 

signs of ~-l' ~ are chosen randomly with equal probabilities for 

each case. lbe density p~) is then evaluated using (1.38) and (1.39). 

Thus, the approxinmtion (5.3) is a Monte Carlo integration of f on the 

set E. Since f vanishes on the complement of E, this is all that is 

required. 

The approximation (5.4) was handled in the same way that (5.3) was. 

Once again, g was chosen to vanish outside of E. The integration was 

performed once at t = 0 and then ten times during the integration at 

t = 0.1 T, O.Z T, .", T. Of course, it is a trivial matter to save the 
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value of g(~) during an integration as well as to save the partial sums 

between integrations of different initial data. 

We have already noted that the flUlctions f and g used in the inte-

grations were chosen to vanish outside of E. Hence, they are merely 

measurable, and not even continuoQs. Denote f(~) = XE(~)h(~) where XE 

is the characteristic flUlction of E. The functions h that were tested 

are: 

(5.9) h (ell) 
Q, 

Q, = 0,1, 4' 1, M = w. ... 1 = 
1 

, , 

(5.10) h(~) 
£ 

= 1,3; = Iw. I ,£ 1 = 1, ... M 
1 

, 

(5.11) h~) Iwiw
J 
I l~i, j ~ tv! 

(5.12) h(~) 
2 2 

1 ~ i, j~N = w·w. , 
1 J 

ro if IWil < 0.01 

(5.13) hew) 
= l/lw·1 

i = 1, M 
--

if Iw·1 ~ 0.01 
1 1 

r if w. < 0 
1-

(5.14) h(~) = 1 1 1, M 

if w. > 0 
1 

-1 if Iw·1 < C 
1 

(5.15) hl",) "j 1 = 1, . ", M 

+1 if Iw·1 > C 
1 

where C is a suitably chosen constant (different for each trwlcation) 
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(5.17) 

where w.' = 
1 

(5.18) 

") ./ 
, 
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{ 0 if w. < 0 and w. < 0 
h(0 = I· J 

1 otherwise 

h(0 = w.' [w. '] 1 = 1, • 0 0 ,M 
1 1 

, 

5l;;1/2 . i WI + 5 and [ ] denotes the greatest 

h~ = p.~, 
J 

j = 1, .0., 8 

1-.::: i, j~ M 

integer function. 

where the P. are special polynomial functions of the coordinates w .. 
J 1 

These will be presented in Section 6. 

By the linearity of the integral, we may test any linear combina-

tion of the functions given by (5.9) - (5.18) without any additional 

computing effort. 

It will be noted that (5.9) - (5.18) are all rather simple functions. 

Nevertheless, (5.9) already includes the energy and vorticity spectra 

which have been the object of much of the previous numerical work on the 

ergodicity problem for (1.21) - see Section 6. Also, since the trunca-

tions chosen for the numerical study are small, it is not clear that more 

complex functions would be of any greater physical interest than those 

in (5.9) - (5.18). Of course, this will not be the case for large-

scale truncations and the choice of functions to be integrated will 

have to be given much greater thought before similar tests are undertaken 

for such truncations. In particular, it would be of great interest to 

construct observables which measure the extent of vortex coalescence -

see Section 4. 

It remains to discuss our handling of the constant v(S) which occurs 

in equations (3.8) and (3.13). This number is not known because of the 
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complexity of the surface S. Furthennore, it carmot be calculated approx-

imate1y because we cmmot sample over the entire surface S. However, 

observe that 

(5.19) -----r.S!) J f(w)dw(w) Wl --. S 

i ]J (E) \ 1) -. ) J == . ~,' -- ---;-- j (IJ.: ,1 lwJ 
\i-1lJ) i w(l) - .-

E 
since f vanishes outside of E. We make the approximation 

N 
weE) -! E p(w.) 

N i=1 -1 
(5.20) 

where the u)' are the Monte Carlo points used in (5.3). The equations 
-1 

(5.3) and (5.20) lead to 

(5.21) 
( .' \ 

1 i :t-t (E~ \ :-:t"C\S i f(w)dp(w) -I (S .i 
WlJ) I - - \W ' 

.J S ' 

Consider equation (3.8). We wish to test whether or not the ratio 

(5.23) 

approaches uni ty as T -+ 00 for the functions f in (5.9) - (5.18). 

Using the approximations, we are testing whether or not 

/
~ 

1 I: .~. ifl .. f(~i)P(wi) ( 
(5.24) L.L, flft.~61!:i N ___ --C.. -+ ~(~j 

1==1 1 E p(w.) 
i==l 1 

as T -+ 00. Surriliarly, with equation (3.13) we wish to test whether 
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or not the ratio 

(5.25) 

approaches unity as t + 00. In terms 

(5.26) 

N 
L f(Ft~i)g~i)P~i) 

i=l 
N 
L p(w.) 
. 1 -1 1= 

, I 

/ 

( 

1 I 
lltST J g (~ dll (~ 

.. S 

of the approximations this becomes 
N N 
L f(w.)p(w.) L g(w.)p(w.) 
. 1 ~ ~ . ~ ~ 1= 1=1 

N N 
L p(w.) L p(w.) 
i=l -1 i=l -1 

approaching ll(E)/ll(S) as t + 00. Even though this ratio is not known 

exactly, it is a constant for all functions f chosen. Thus, if we can 

find two functions for which the ratios of the form (5.24) differ sig-

nificantly, we would have evidence of nonergodicity of the flow. Sim

iliarly for mixing and equation (5.26). In practice, ll(E)/ll(S) is very 

close to unity because of our choice of the region E. Note also that the 

Lebesgue measure of the parameter domain D occurs as a factor in both ll(E) 

and ll(S). However, it cancels in the ratio ll(E)/ll(S) and is of no 

concern in the computations. 

We now describe our choice of the problems that were numerically 

studied. This choice was motivated by our lack of a priori knowledge 

concerning the expected convergence rates of (5.25) and (5.26) in the 

mixing case. On the other hand, we had no a priori knowledge of the 

amount of divergence to be expected in the nonergodic case. In particu-

lar, if the maximum deviation from the ratio ll(E)/ll(S) in (5.24) is less 

than that expected from purely numerical error, then the ratio (5.24) 
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would indicate that the flow is ergodic even though it was known other

wise. Therefore, it was thought best to choose a wide varit>t)' of problems 

containing various amounts of a priori information concerning ergodicity 

and mixing. 

Three different truncations were selected for the study. The first 

was a ten mode (therefore, twenty independent variables) truncation of the 

system (2.15) - (2.16). The second was a five mode tnmcatlon of 

equation (2.17) and the third was a six mode truncation of (2.17). 

Furthermore, the five mode truncation was known in advance to be noner

godic - see Section 6. We had no a priori information for either the 

six or ten mode truncations. 

For each of the three tnmcat ions, we constructed a new dynamica 1 

system as follows: equation (1.21) was solved as above with Cear's 

method except that an unrealistically high local truncation error was 

selected. The effect of this is that the solution begins to differ 

from the actual solution in the first significant figure at integration 

times about one-tenth or one-fifth of the total integration time. Thus, 

the approximations (5.2) and (5.4) will have less dynamical significance 

for long integration times and will take on more of the character of a 

Monte Carlo integration of the type (5.3). We therefore expect the ratios 

(5.24) and (5.26) to exhibit a somewhat greater degree of convergence for 

these systems than they would for the original systems. 

For the purpose of comparison, we have also tested a system which, 

intuitively, is as random as possible. The systC'JIl lIIay be vie\~ed as a 

simplified JIlodel for a "hard point gas" or simply as a "computer gamc." 

It was introduced in [9]. 
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Let S denote the unit 2L-dimensional sphere with coordinates 

... is constructed as 

follows: given £ in S consider in succession all integers 1 S ~ ~ L. 

Given ~,pick~' at random between 1 and L with all integers having 

equal probability of being chosen. Given ~ and ~', consider (a~, b~) and 

(a~" b~ I) to be the velocities of two particles undergoing an "elastic 

collis-ion." That is, let s be a random variable equidistributed be-

tween 0 and 1, define 

e = (cos 2TIs, sin 2TIs) , 

let 

and set 

T preserves Lebesgue measure and "energy" (i. e., T maps S into S). In 

addition, T preserves the total momentum 

L 
B = l: b~. 

~=l 

On the average, each pair (a b) undergoes two "collisions" each time 
~, ~ 

T is applied. 

We have taken A = 0 and B = 0 in the numerical work. Thus, the 

flow of T takes place on the great circle C given by A = 0, B = o. The 

flow is believed to be mixing, although we cannot prove it. 
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The dynamical system given by T differs substantially from the 

system (1.2l) - (1.22). First, T is a discrete transformation whereas 

(1.21) defines a continuous flow. Second, due to the absence of the 

spatial coordinates from phase space, T has no natural time scale. The 

numerical analysis of (3.8) and (3.13) proceeds just as it did for the 

flow {Ft } of (1.21). However, there are two simplifications. First, 

points can be uniformly sampled from C using the algorithm presented 

above. Second, the density fLmction fJ (~ is a constant on c: the 

analogue of (2.23) for the conserved measure on C is 

(5.27) r d2: 
lJ (M) = )M II grad Ell 

L 
h M C C · bl E = '" (a; + b;) were _ IS measura e, L ~ ~ 

£=1 
is the only conserved 

quadratic quantity, and d2: IS a surface element on C. Since d2: IS 

already being uniformly sampled and II grad Ell is constant on C, it follows 

that p(~ is also constant on C. If we define a new measure onC by 

v(M) = aJl(M) and suppose that II is T-invariant then 

v(lM) = alJ(1M) == alJ(M) == Il(M) and v is also T-invariant. Hence, there 

is no harm in taking p(~ = 1 on C. 

We have studied the two models L 4 and L = 8 In the numerical work. 
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6. Previous Results by Other Authors 

A recent study of the one-dimensional two particle hard point gas 

system is reported in [5]. See also [19] and [71]. The two particles 

are constrained to move in a one-dimensional box and they move with a 

uniform velocity except for instantaneous collisions with each other and 

the two walls. Both the total phase space in which velocity and position 

coordinates are retained and the velocity phase space (position coordinates 

not included) are considered. Thus, the energy surfaces are three-dimen-

sional and one-dimensional, respectively. The resulting dynamical systems 

are viewed as taking place on these two energy surfaces. In case the 

two particles are assigned equal mass, it is easy to construct additional 

analytic constants of the motion besides energy; hence, neither system is 

ergodic. Using analytic methods, Casati and Ford show in [5] that neither 

system is ergodic for a countably infinite dense collection of mass ratios. 

On the other hand, numerical results are presented which provide strong 

evidence that the systems are both ergodic and mixing for all other pos

sible mass ratios. The numerical methods take full advantage of the low 

dimensionality of phase space and the simplicity of the system. Conse-

quently, the techniques involved are not as time-consuming as our method 

of comparing time means to phase means. The main reason for outlining 

these results is to point out the dependence of the statistical properties 

of the system upon a parameter, the mass ratio. The ratio of energy to 

enstrophy is a similar parameter for the system (1.21) - (1.22); if the 

ergodic properties of (1.21) were lcnown to have a discontinuous dependence 

on E/~ such as observed in [5] then our analysis would need to be much 

more refined. In particular, it would be necessary to study several E/~ 

ratios for each truncation. 
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Further studies relevant to the nilluerical analysis of statistical 

properties of other dynamical systems are [3] and [28]. 

A prototype for this thesis is [9] where the Fourier-transformed 
\ 

truncated Burgers equation (1.10) is studied using the same methods as 

presented in Section 5. In addition, the computer game as described in 

Section 5 is introduced and results fO,r it are compared to those obtained 

for the Burgers equation. The truncation used is very small-scale; only 

four independent modes are retained. Similarly, the four particle COJll-

puter game is studied. In the comparison of time means with ph use means, 

only quadratic fWlctions of the coordinates are considered. The nUIl1erical 

results are impressive: the Cesaro SUIl1S for the computer game converge 

rapidly to ensemble averages whereas it is clear that no convergence 

takes place at all for the truncated Burgers equation (1.10). 1nus, it is 

reasonably certain from these computer tests alone that the system (1.10) 

is not ergodic for the truncation considered. 

It was later shown by Hald in [25] that equation (1.10) has an extra 

analytic constant of the motion. It is given by 

(6.1) T Lj+k+~ = 0 u(j,t) u(k,t) u(~,t). 
j ,k ,H 0 

This fact was also known to Orszag (private communication). Of course, 

this verifies the numerical results obtained by Chorin in [9] since the 

existence of the extra constant of the motion proves that the system (1.10) 

cannot be ergodic on surfaces of constant energy. We note that the Burgers 

equation~ the two-dimensional Navier-Stokes equation, and the three-di-

mensional Navier-Stokes equation are now known to each have an extra 
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analytic constant of the motion besides energy. These are T, enstrophy, 

and helicity ( = ~.S) respectively. However, T is a cubic whereas 

ens trophy and helicity are quadratic. 

Also in [25], a simple truncation of (1.10) is studied analytically 

in detail. Only two independent modes are retained, kl = 1 and k2 = 2. 

Hence, the phase space is four-dimensional. It is shown that the motion 

on the intersection of the surface of constant energy with the surface of 

constant T is sometimes periodic, in general ergodic, but never mixing. 

The latter result follows by showing that the motion is almost periodic. 

We turn now to papers concerned with the two-dimensional Navier-Stokes 

equations. Using the analytic techniques briefly sketched in the beginning 

of Section 5., Hald has constructed extra analytic constants of the motion 

besides energy and estrophy for four different truncations. This work 

appears in [24]. He works with the vorticity representation (1.13) of 

the equations. The independent modes for the four models are 

(6.2) (I) "Fundamental Triad Interaction" - any three modes which satisfy 

! + 2 + g, = 0. 

(II) (0,1), (2,1), (2,,0), (2,-1). 

(III) (1,1), (2,1), (3,0), (2,-1), (1,-1). 

(IV) (0,4), (1,3), (1,1), (3,1), (4,0), (3,-1), (1,-1), (1,-3). 

These models are shown explicitly to contain three, six, eight, and four 

independent isolating integrals of the motion (including energy and en-

strophy) respectively. Hence, all are nonergodic on the intersection of 

the surfaces of constant energy and constant enstrophy. The system (III) 

was chosen·for numerical study in this paper; also, the six-mode system 

used in our numerical work was obtained from (III) by the addition of 
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one other mode. The eight constants of motion for (III) are gIven 

explicitly by 

(6.3) 

* 3S E:lE:S 

Here, i;l:: E.:l(l,l), ••• , E.:S::: f;S(l,-l) denotes the Fourier-transformed 

vorticity field. It may be shown that E = (Y l +YZ)/140 + y 3/630 and that 

~ = (Yl + YZ + y3)/3S. The polynomials in (6.3) are identical to the 

Pj (!0 in (S .18); of course, II and 12 each contain two real polynomial 

constants of the motion. 

In view of this work, the question arises as to how far these results 

can be generalized to larger truncations. The relative ease in locating 

the constants of the motion in the above four systems is due to the sirn-

plicity of the resulting dynamical systems. Indeed, the six-mode systeJ;l 

studied here is considerably more complex than any of the systems listed 

in (6.2) and our ten-mode system is far more complex. Lee [4S] argues 

that Hald's truncations are "special" and that the isolating integrals 

must disappear for more general truncations. Also, Lee [44] presents an 

argument, based on coupling triad interactions, that the only quadratic 

constants of the motion for a sufficiently general truncation are energy 

and ens trophy . This does not contradict Hald' s result in (6.2 I) because 
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the extra integral constructed there is a cubic. On the other hand, Lee 

only considers quadratics without cross terms (i.e., in our notation, if 

w.w. appears then i = j) and does not consider cubics or higher order ex-
1 J 

pressions at all. Yet, as already indicated, Hald has constructed a cubic 

isolating integral for the fundamental triad interaction. See also [42] 

concerning Lee's work. 

We have already discussed in Section 4 the numerical results due to 

Fox and Orszag [20] and Deem and Zabusky [16]. These papers study trunca-

tions large enough to be of physical significance and the numerical work 

accordingly concentrates on determining the dynamical evolution of the 

energy spectrum and deciding whether or not these relax to the predicted 

equilibrium ensemble deduced in equation (4.15). MOre complicated observ-

abIes of the system are not considered. As we have noted, the actual 

results are possibly contradictory (a positive viscosity is used in [16]" 

so that a literal comparison cannot be made) and certainly not conclusive. 

Nevertheless, both papers conclude that time averages of the energy spec

trum converge to an equilibrium with the form of the equilibrium dependent 

on the E/Q ratio. See also [14] concerning these two papers. 

In addition to [9], the numerical Ivork which is the most closely 

related to ours is that of Basdevant and Sadourney [1]. The truncation 

of equation (1.21) which they use is relatively large-scale; the l6x16 

lowest Fourier modes are retained in the computation. To compute phase 

means, they evaluate the asymptotic limit of the integrals involved as 

the number of modes approaches infinity. They test these values against 

a Monte Carlo evaluation of the integrals for the smaller 8x8 problem to 

ensure validity. The integration of the system of differential equations 
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1S done with the leap frog scheme (see [22]) with a time average of odd 

and even solutions every 100 time steps. This is a second order scheme 

and the integration is performed for approximately 105 time steps. Hence, 

as the local truncation error is O(h2) , we may infer that the step size 

could have been no greater than approximately 10- 3 which yields a total 

integration time of about 102. The author observed a relative damping of 

order 10-8 per time step in the values for energy and enstrophy. The 

only observables for which convergence is tested are the quadratics 

associated with the energy spectrum. Their numerical results yield a 

time-averaged spectrum which is virtually indistinguishable from their 

computed phase ensemble. Of course, one cannot conclude that (1.21) -

(1.22) is ergodic from this information alone. Nevertheless, the re-

sult is significant because it allows the computation of the energy and 

vorticity spectra in the phase ensemble followed by a substitution of 

phase means for time means. 

The observed dissipation of energy and ens trophy in [1] closely 

parallels the corresponding figures in our calculations and is certainly 

acceptable. Still, we question the accuracy of the calculations. As 

noted in Section 5, we have found it necessary to use a local truncation 

error no larger than 10- 7 in order to obtain accurate trajectories for 

total integration times of order 10 or 100. These times correspond to 

~ 103 time steps in our calculations. Assuming a step size of order 

10-3 in [1], we see that the local truncation error is somewhat larger 

than 10- 7 and the number of steps is larger by two orders of magnitude. 

In addition, the Gear routine uses a sixth order method on average whereas 

the leap-frog scheme is only second order. The combination of these factors 
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leads us to conclude that the numerical integrations in [1] must leave 

the real trajectory approximately every 103 time steps or less. If this 

is indeed the case, the authors of [1] are really comparing two phase 

space integrations and their results are hardly surprising. However, our 

objections are conjectural since we do not know the time step used and 

have not tested their difference scheme on our problem. Moreover, it is 

conceivable albeit unlikely that the l6x 16 problem is more well-bellaved 

numerically than the small truncations that we ahve studied. 
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7 . Ntnnerica1 Results 

We have studied three dynamical systems of the form (1.21) using 

the techniques described in Section S. The parameters describing these 

three systems are as follows where M is the number of retained modes, 

k1' ' .. , ~ are the independent modes retained, E = energy, $1 = total 

squared vorticity, T is the final integration time, and E is the 

maximum allowable local truncation error: 

(7.1) (I) M = 10, 

k1 = (0,2), k2 = (0,1), k3 = (1,2), k4 = (1,1), kS = (1,0), 

k6 = (1,-2), k7 = (1,-2), k8 = (2,1), kg = (2,0), k10= (2,-1), 

E = 3.0, $1 = 10.0, 

-10 T = 30.0, E = 10 . 

(II) M:: 5, 

~ :: (1,1), k2 = (2,1), k3 = (2,-1), k4 

E = 2.0, $1:: 5.0, 

-7 
T = 50.0, E = 10 . 

(III) M = 6 

k1 :: (1,1), k2 :: (2,1), k3 = (2,-1), 

k4 = (1,-1), kS = (1,0), k6 = (3,0), 

E = 1.0, $1 = 5.0, 
-8 T = 45. 0, E = 10 . 

(1,-1), kS :: (3,0), 

As noted previously, (I) arises from a truncation of the Navier-Stokes 

equations (1.1) - (1.2) whereas (II) and (III) arise from truncations of 

the vorticity transport equation (1.4). Observe that the number of 

independent variables is twice the value of M. 
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We have also studied the dynamical systems (I'), (II'), and (III') 

which are identical to (I), (II), and (III) except that the local trunca-

tion error E is larger. The value -3 
E = 10 was used in all three cases. 

Two models of the "computer game" described in Section 5 were also 

studied. These may be described as follows: 

(7.2) (IV) M = 4, 

E = 1.0, A = B = 0, T = 5000. 

(V) M=8, 

E = 1. 0, A = B = O. T = 5000. 

Here, M is the number of particles, E is the energy of the system, A and 

B are the linear momenta, and T is the total number of time steps which 

were observed. Again, the number of independent variables is twice the 

value of M. Note that it is not possible to correlate a time step with a 

physically meaningful time increment. 

All calculations were performed on the CDC 7600 machine at Lawrence 

Berkeley Laboratory using the FTN4 (OPT = 2) Fortran compiler. In 

Table I, we list some basic data concerning each of the problems (I) -

(V). The first four columns refer to a single sample point integrated 

from t = a to t = T. The fifth column refers to a sample of one hundred 

points integrated from t = a to t = T. The last two columns consider a 

sample of 1000 Monte Carlo evaluations. The computer processing times 

indicated include time spent on various computations not directly related 

to the integrations or the Monte Carlo routines. Thus Tl and T2 should 

be multiplied by some fraction, about 3/4. The exact multiple is not 

known. TIle figures in Table I are based on a random sample; however, 

the values would not differ significantly if another sample were used. 

From the second column of Table I, we see that the Gear routine 

found Problem II to be significantly more difficult than either I or III 
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in the sense that it was forced to make the step sizes relatively 

small. Recall also that the local truncation error for Problem II is 10- 7 

which is the largest of the three. Additionally, the system of differential 

equations to be solved in Problem I is considerably more complex than 

those in Problem II and III. 

Conservation of energy and enstrophy is clearly satisfactory for all 

the unprimed problems as the third and fourth columns of Table I indicate. 

Again, the worst behsvior is exhibited by Problem II. Note that the 

computer games (IV) and (V) conserve all three known integrals almost 

exactly. Problem I behaves similarly in this regard. 

The last column of the table indicates how many points it was 

necessary to sample in order to obtain 1000 points in the region E 

given by equation (5.8). It would be dangerous to try and draw general 

conclusions from the comparison of these figures as there was no well-

defined algorithm for selecting the relative size of E in the surface S. 

The numbers Tl and T2 from the table give some timing figures. It 

can be seen that the Monte Carlo evaluations are reasonably inexpensive 

(despite the large values of N in the last column). On the other hand, 

the integration of a single point using the Gear routine requires over 

one C.P. second. 

For each of the problems (I) - (V), we have performed 103 inte

grations; thus, N = 103 in equation (5.4). Each of the Monte Carlo 

evaluations involved 105 sample points; thus N = 105 in equation (5.3). 

These computations required just under two hours of computing time. We 

note that the Cesaro sums (5.2) were not computed in all of the 103 

integrations as this would have significantly increased the computation 
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time while little useful infonnation would have been obtained. 

Let us comment briefly on the accuracy of the Mbnte Carlo computa-

tions. Since the exact values for all of the integrals which were evalu-

ated are not known, we cannot make any definitive claims. 11owever, these 

values were known a priori in some special cases. In particular, 

J w.dv(w) = 0 for any choice of i and for each of the problems (I) - (V). 
1 -

SThe largest error observed for the approximation (5.3) is 1.18XlO- 2 

for all i and all problems. 1yPically, the error is less than 10- 3 and 

errors below 10-4 are not unusual. We have also noted that these errors 

for Problem V are about an order of magnitude less than for the other 

problems (including Problem IV). It is also known that 

jw?dV(w) = 0.125 for Problem IV and 0.0625 for Problem V. The largest 
·S 1 -

error observed for these integrals is less than 4XlO-4. Next, with 

h(~ as in (5.14), we know that the corresponding integral must have the 

value 0.5 by symmetry (for all problems). The largest error observed 

here is less than sxlO- 3. 

On the basis of these figures, we will assume that the approxima-

tions (5.3) are valid to two significant figures. We note that these 

error estimates would be somewhat worse if N = 104 in (5.3) and that 

they would be considerably worse for N = 103. This, of course, will be 

important in evaluating the results for the approximation (5.4). 

We first consider the results for Problems I', II', III' in which 

the local truncation was selected at an unrealistically high level for 

the integration times used. The results were disappointing. In all 

cases, the behavior of the ratios (5.24) and (5.26) were worse than the 
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corresponding bellavior for the unprimed problems in the sense that there 

is less convergence apparent. TIlis occurred despite the fact that the 

primed problems were deliberately chosen to be somewhat more random than 

the unprimed problems and should, therefore, exhibit faster convergence 

for (5.24) and (5.26). We conjecture that these results can be explained 

by the fact that the primed problems did not conserve energy and 

ens trophy to a significant extent and that this factor outweighed the 

a priori randomness of the models. In any event, we shall not present 

the detailed numerical results for the primed problems. 

We shall now present the results concerning the ratio (5.24) in 

detail for three sample points, denoted Ql' Q2' and Q3' for each prob

lem (I) - (V). First, we have observed experimentally that 

1 - (~(E)/~(S)) <10- 3 in the sense that it is unusual for Ft~ I E for 

more than one or two time steps in a typical integration; further, one 

usually finds Ft~ to: E during the entire run. Thus, we shall take 

~(E)/~(S) ::: 1 in the sequel, for simplicity. Let A' (f) denote the 

left-hand side of (5.24) and define 

(7.3) Al (f) = 11 - A' (f) I. 

Of course, Al (f) is a~so a function of time; it measures the rate of con-

vergence of the Cesaro sum for f in the sense that Al(f) ~ 0 as t ~ 00 

if and only if the Cesaro sum approaches the ensemble average. Denoting 

f(~) = XE(~ h(~, we have studied Al (f) for all choices of h(~ listed 

in (5.9) - (5.18). However, we shall avoid listing results for those h(~ for 

whichl f(~d~(!0 = 0 since the numerical error in these cases is far greater 
S 
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than the phenomena that we are interested in. We now list those func-

tions h(~ that were useful: 

(7.4) Iw·1 1 

4 = w. 
1 

2 = w. 
1 

h5 . . (w) = I w . w. I ,1,J- 1J 

h7 i(~ = h(~ , h as in (5.13), , 

h8,i (~ = h(~, h as in (5.14), 

h9 i(~ = h(~), h as in (5.15), , 

hlO .. (w) = h(w) , h as in (5.16), ,1,J - -

hll i(~) = h(~, h as 1n (5.17), , 

h12 i(~ = h(~, h as in (5.18). , 

2 2 h6 .. (w) = w·w., ,1,J - 1 J 

The index i usually ranges from 1 to M ( = dimension of phase space). 

However, for h12 ,i' i only takes the values 1,2, and 3 as the other 

five polynomials have integrals close to zero; also, for the function 

hS . ., h6 · ., and h7 . ., we did not compute Cesaro sums for the ,1,J ,1,J ,1,J 
full range of indices - only 21 choices of (i,j) were made. We now 

define 

(7.5) 1::. I Al(hk .) 
1E k ,1 

for k = 1, "', 12. Here, 1k is the set of all indices for which 

hk . (or hk .. ) was studied and #Ik is the number of elements in ,1 ,1,J 
1k" For example, #11 = M, #112 = 3 and #15 = 21 for all problems. 

Thus, A2(f) represents an average rate of convergence over a class of 

similar functions. Finally, we define 
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which is a weighted average over the A2(hk). Thus, A
3

, which is a function 

only of time and the problem under study, represents an average conver-

gence rate over all the functions studied. 

Figure 1 is a graph of the composite averages A3 versus time. 

A3(Ql), A3(Q2)' and A3(Q3) are depicted in Fig. la, lb, and lc, re

spectively. Each figure contains graphs of each of the five problems 

under study (needless to say, the Q. are functions of the problem). 
1 

We make the convention, which will remain in force for all of the figures, 

that one hundred time steps (in Problems IV and V) equals one second 

(in Problems I, II, and III). This has no significance besides enabling 

us to draw all five graphs in one figure. 

Figures 2-5 contain graphs of A2(hk) (in (a) of each figure) and 

Al(hk M) (in (b) of each figure) for k = 2,3,4,6,8,12 for Problems , 
I - IV, respectively (except k = 12 is not graphed for Problem IV be-

cause it was not computed). Only results for the point Ql are presented. 

Observe that the scales vary from figure to figure. Graphs of this type 

for Problem V would have been similar to those for Problem IV. These 

figures are meant to illustrate how the functions Al(f) and A2(f) depend 

on f. Also, by comparing A2(hk) with Al (hk M) within one of the figures, , 
one sees immediately that Al(hk,i) varies considerably with i. 

In Fig. 6, we graph A2(h3) and A
l

(h3,M) for Problem I. TI1is figure 

illustrates the dependence of Al(f) and A2(f) upon the initial point. 

It is clear that, at least for AI' this dependence may be considerable. 
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It should be borne in mind when reading these graphs tba.t each of 

h12 ,i for i = 1,2,3 is an integral of the motion for Problem II but 

not for the other problems. 

The most striking feature of Fig. 1 is that the graph of the com-

posite average A3 for Problem II is virtually a horizontal line for all 

three points. This property extends to the averages A2 in Fig. 3a and, 

to a large extent, in the individual Cesaro sums exhibited in Fig. 3b. 

Of course, it was known in advance that Problem II was not ergodic and, 

therefore, we knew that we would not see convergence to zero for these 

averages. Still, the lack of oscillation in these curves comes as a 

surprise and is quite a contrast relative to the other problems. It 

implies that the Cesaro sums studied are converging rapidly (but not to 

zero, of course). For Problem III, we see convergence initially for all 

three points in Fig. I followed either by Slight convergence or slight 

divergence depending on the point. Thus, Fig. I is evidence for non-

ergodicity of Problem III, although this is not conclusive. The nearly 

horizontal curves of Fig. 4 are stronger evidence in this regard. 

Problem I is the hardest to draw any conclusions about. On the one hand. 

we see rauid initial conver~ence for all three Doints in Fi~. 1; but, 

on the other hand, this is followed bv a Qradual levelinQ off in all three 

cases. It would have been of use here to have llad a somewhat lar~er 

final integration time. For the most part, Fig. 2 bears out this 

problem of interoretation even further. AlthoUQh it is clear from Fig. 1 

that Problem I is more random than either Problem lIon Problem III. we 

do not believe tllat there is sufficient evidence to say that Problem I 

is ergodic. 
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Finally, we turn to Problems IV and V. As Fig. 1 illustrates, the 

behavior of A3 for these two problems is essentially the same. It is 

apparent that the oscillations in the Cesaro sums have already been 

damped out prior to time step 500 and that convergence to zero is rapid. 

Furthermore, convergence is still taking place at time step 5000. These 

conclusions are further verified in Fig. 5. This is strong numerical 

evidence that Problems IV and V are ergodic. 

Another important feature of the results is the large disparity 

between Problems I, II, II I and Problems IV, V. We believe that this 

can be explained by the lack of a time scale in the last two problems 

and the fact that the trajectories for the first three problems must be 

continuous. It is also conceivable that the error in the approximation 

(5.2), which lS zero for the last two problems, plays a role but this 

isn't likely. In any event, it is invalid to declare Problem I to be 

nonergodic simply because it doesn't converge as "fast!! as Problems IV 

or V. 

We now present the numerical results for the ratio (5.26) which 

bears on the question of mixing. The functions f and g to be considered 

are given by(7.4); the reason for excluding the others lS the same as 

given above. In analogy to AI' we define 

(7.7) Bl(f,g) = 11 - B'(f,g) I 

where B' (f,g) is the ratio (S.Z6) for f and g. Let us define four com

posite averages BZ' B3, B4, BS. BZ is to be the average over those 

(f,g) for which one of the pair is simply XE. B3 encompasses those 

(f,g) for which f = g or f,g are both functions of the same coordinate 
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(e. g., f (!0 ::: I wsl 2 
and g(!0::: wS)· B4 consists of the cross correla-

tions where f,g are functions of different coordinates. BS 1S a 

weighted average of B3 and B4. 

Figure 7 consists of the graphs for the Bk, k::: 2,···5 for each of 

the Problems I-V in turn. Figure 8 contains graphs for five samples of 

the ratios (5.26) where the following notation is used: 

(7.8) Bl (1) ::: Bl (f,g): f::: ~,g::: XE(~ 

Bl (2) ::: Bl(f,g): f ::: PI (!0, g ::: XE (~ 

Bl (3) Bl(f,g): 
2 2 

::: f::: ~, g ::: 
~ 

Bl (4) ::: Bl(f,g): f ::: g as in (5.17), i ::: M 

Bl(S) ::: Bl(f,g): 
2 2 

f ::: ~_ l' g ::: u14· 

Since the trajectories {Ft~ ::: 0 ~ t ~ T} lie almost entirely within 

E, it is approximately true that XE 1S the identity function. Hence, 

B2 and Bl(l), Bl(Z) measure how well the flow {Ft } conserves ~-mea

sure on S to a good approximation and do not test the mixing hypothesis 

to a significant degree. As ~-measure is known to be conserved, we can 

use the results for these functions in determining the error inherent in 

the approximmation (5.4) with N ::: 103. In particular, any graph which 

crosses below BZ' Bl(l) , or Bl (2) indicates convergence for the ratio 

or average being tested; a graph which stays significantly above would 

indicate lack of convergence. 

On the basis of Fig. 7 alone, it is hard to draw any conclusions 

concerning Problems I, II, III. Although B3, B4, and BS remain above 

BZ in the entire range 0 ~ t ~ T, the difference in amplitudes is not 
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significant. On the other hand, one could not expect even a known 

mixing transformation to exhibit faster convergence than that shown In 

Fig. 7d and 7e. Thus, it is tempting to conclude that Problems IV and 

V are mixing on the basis of the numerical evidence. This conclusion 

is buttressed in Figs. (8d) and (8e) in which the amplitudes and oscil-

lations of the four graphs are similar; this indicates that whatever 

nonconvergence is present is due solely to the approximation error in 

(5.4). We now turn to Figs. 8a, 8b, and 8c. In all three cases, two of 

the mixing ratios (i.e., f,g r XE) lie well above the baseline given by 

BI (1) and Bl (2). Furthermore, neither of these curves gives any indica

tion that it would converge to zero if the final integration time were 

increased. This is evidence for nonmixing in Problems I, II, and III. 

Observe that this evidence is of virtually equal weight for the three 

problems. 

In conclusion, the numerical results provide strong evidence for 

the ergodic hypothesis and some evidence for the mixing hypothesis in 

Problems IV and V. Problem II is clearly nonergodic on the basis of the 

numerical results alone. Also, Problem III is almost surely nonergodic. 

We cannot say one way or the other for Problem I without a larger inte

gration time. All of Problems I, II, and III appear to be nonmixing. 

However, this result is flawed by the low value of N = 103 in the 

approximation (5.4); recall that N = 104 was necessary in the inte

gration for (5.3) and there is every reason to suspect that (5.4) would 

require even more sample points. 
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8. Conclusions 

We now discuss the feasibility of extending the techniques of 
I 

Section 5 to the study of larger scale truncations, in view of the 

numerical results presented in Section 7. 

The feature of our results that causes the greatest difficulty of 

interpretation is the dependence of our convergence graphs for the ratios 

(5.24) and (5.26) upon the function being studied. In the case of 

(5.24), the dependence upon the initial point is also important. We have 

seen that this dependence is highly nontrivial. For example, consider 

the sequence of functions 2 4 
IWilxE' wi XE' IwilxE· These graphs all have 

the same qualitative features; however, their amplitudes form a n~n-

otonically increasing sequence. It is tempting to say that merely by 

increasing our final integration time, we could have conclusively settled 

the convergence issue for these four ratios. This is probably true, but 

the question then arises what would happen for the functions 

Iwil5xE' w~XE' etc? Presumably longer and longer integration times would 

be required. In other words, for a numerical experiment involving a 

finite integration time, however large, it is impossible to obtain conclusive 

results about convergence for an infinite set of functions. A similar 

analysis applies to the variation with respect to initial data. 

This type of limitation upon the interpretation of results was to 

be expected a priori since our technique involves replacing infinite 

limits by finite procedures. Despite these limitations, we have been 

able to conclude on the basis of the numerical evidence that Problem I 

is considerably more random than either Problems II or III, that 

Problem II is definitely not ergodic, and that Problem III is probably 
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not ergodic. Furthennore, a strong case has been presented that 

Problems IV and V are mixing .. Also, these questions could probably have 

been settled for Problem I if a somewhat longer integration time had 

been used (which could easily have been arranged by using double pre-

cision aritlunetic in thediffercntial equation soher). 

Perhaps the key question in extending these results to larger 

problems is how do the convergence rates depend on the size of the 

truncation? If they become much slower than those observed for 

Problem I, the extension of our methods is certainly infeasible. .-1.5 

indicated in Section 6, the numerical results of Basdevant and Sadourney 

[1] indicate that the opposite may take place. In any event, this factor 

will have to be thoroughly tested. 

We have not observed any reason why our ~bnte Carlo techniques for 

the evaluation of the approximation (5.3) cannot be extended to larger 

problems. The same holds for the computation of the density flffiction 

p (~ and for the construction of the region E ~ S. Of course, the com

puting effort will be greater but not insuperably so. 

Thus, there is every reason to believe that interesting results can 

be obtained concerning the ergodicity hypothesis by using our numerical 

techniques on larger truncations. We cannot say the same for the study 

of the mixing hypothesis. It appears from our results that the inter

pretation of the numerical figures arising from the ratio (5.26) will 

be much more difficult than those from (5.24). For example, consider 

the similarity in Figs. 7 and 8 between the graphs for Problems I, II, 

and III. It is quite possible that these difficulties would have dis· 

appeared had we taken N = 105 or at least N = 104 in the approximation 
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(5.4). This would have been just barely possible in terms of the com-

puting effort involved; for a very large problem, it unfortunately would 

not be so. Nevertheless, we see no difficulties in principle in extending 

our techniques. 

As we have just observed, one can never numerically test for con-

vergence of Cesaro sums of all possible functions in a finite time. 

This, however, should not present a barrier to investigating the physical 

phenomena in which we are interested, in particular, macroscopic vortex 

formation. What is required is the construction of a finite collection 

of observables which, at least approximately, describes the qualitative 

features of the vorticity field. With these in hand, one could then 

perform the numerical tests as in Section 7' and decide whether or not 

the relevant Cesaro sums converge to ensemble averages. The answer to 

this question would, of course, be significant in formulating a theoreti-

cal explanation for macroscopic vortex formation. 

We have remarked in Section 4 that a dynamical system can be ex-

hibit highly random behavior and even support a thermodynamic analysis 

without being even ergodic. Thus, it is not necessary from a physical 

point of view to definitively decide the ergodic hypothesis for a 

particular dynamical system. What is important is the careful study of 

those observables which define the phenomena of interest. We believe the 

numerical techniques presented here can be useful in such a study. 
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Problem T, STEPS 

I 30 915 

I' 30 232 

II 50 2153 

II' 50 1054 

III 45 1599 

III' 45 739 

IV 5000 

V 5000 

T = final integration time. 

-97-

TABLE I. 

6E 

0.05 0.2 

0.08 

-13(*) 
10 

10 -13 (*) 

119 

20 

128 

44 

132 

36 

44 

96 

STEPS = number of time steps used in the integration from 
t = 0 to t = T. 

2.62 

1.07 

1.60 

0.31 

0.55 

6E, MJare the actual errors in the values for E,st at t = T. 

N 

8019 

5909 

8018 

Tl = C.P. seconds needed to integrate 100 points from t = 0 to t = T. 

T2 = C.P. seconds needed to evaluate 1000 Monte Carlo points. 

N = # of random points needed to obtain 1000 points satisfying 
equation (5.8). 

(*)figures refer to the error in the linear momenta, not enstrophy. 
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FIGURE CAPTIONS 

Fig. 1. Composite averages A3 (see pg. 82) for each of the problems 

I-V, plotted as a function of time. 

la - Point Ql for each problem. 

lb - Point Q2 for each problem. 

lc - Point Q3 for each problem. 

Fig. 2. The averages Az(hk) (see pg. 81) and the ratios for individual 

Cesaro sums ~(hk 20) (see pg. 80) for k ~ 2,3,4,6,9,12, plotted as , 
a function of time for Point Ql' Problem I. 

2a - A2(hk) for each k. 

2b - Al(hk 20) for each k. , 
Fig. 3. Same as Fig. 2 except graphs refer to Problem II. 

Fig. 4. Same as Fig. 2 except graphs refer to Problem III. 

Fig. 5. Same as Fig. 2 except graphs refer to Problem IV and k ~ 12 is 

not plotted. 

Fig. 6. Comparison of convergence rates by point for Problem I. 

6a - A2(h3) plotted as a function of time for each of the initial 

points Ql,Q2,Q3. 

6b - ~ (h3,lO) plotted as a function of time for each of the initial 

points Ql,Q2,Q3. 

Fig. 7. The composite averages B2,B3,B4,B5 (see pg. 84) plotted as a 

function of time. 

7a - Problem 1. 

7b - Problem II. 

7c - Problem III. 

7d - Problem IV. 

7e - Problem V. 

" , 



· ., 
"./ 

-99-

Fig. S. The ratios (5.26), denoted by Bl (Ie), Ie::: 1"",5 (see pg. 85) 

plotted as a function of time. 

Sa - Problem I. 

Sb - Prob lem II. 

Bc - Problem III. 

Sd -Problem IV, Ie ::: 2 not included. 

Se - Problem V, k ::: 2 not included. 
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