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ABSTRACT 

The field-strength formulation of non-Abelian gauge theories opens 

the gate to a description in terms of local gauge-invariant variables. As 

a first step in this direction, I work out a gauge-invariant formulation 

of the self-dual sector. A simple extension, using the ideas of Corrigan, 

Fairlie and Yates, provides a gauge-invariant characterization of broader 

regions within the saddle point. 
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I. Introduction 

In a previous paper< 1>, I proposed a local formulation of non-Abelian 

gauge theories in terms of field-strengths G:v· The formulation focuses 

M-1 ab ,Hab abc c 
at tention on the inverse field-strength ('u ) , v ~f G , and con-

IJV IJV IJV 
(2) 

figurations with det~· 0 (all x
11

) are singular • To go beyond semi-

classical expansions about non-singular configurations, one must prescribe 

G-contours (or regulators) near the singular configurations--such that the 

G-functional integral equals the original integral over potentials. I will 

discuss this question elsewhere. The present work is addressed to another 

aspect of the field-strength formulation, and I will limit myself here to 

non-singular configurations. 

Having a formulation in terms of variables which "rotate" only (under 

gauge transformation) --instead of rotating and translating, as do the poten­

tials--points the way to a local gauge-invariant description. In this paper 

I am going to treat only the very simple case of a self-(or anti-) dual sec­

tor--plus a simple extension, using the ideas of Corrigan, Fairlie and Yates( 3), 

to broader regions of the saddle point. Hopefully some of the strategy I em-

ploy in the self-dual sector will be of aid in the more general case. 

-2-
.. 

II. Choice of Variables and Strategy 

In this paper, I treat only the gauge group 0(3) in four space-time 

dimensions <4>. The field strength G
8 

has 6 ,. 3 .. 18 components. 
IIV Three of 

these can be removed by gauge transformation, and so one might expect to ~ 

specify the gauge-invariant content of the theory in terms of 18 - 3 a 15 

gauge-invariants. 

I will not pursue the full problem here, but rather go to the self­

dual sector 

G • ~. ~a • ~ £ Ga £0123 • +1. IIV IIVPO pa' (2.1) 

Here we expect 9 - 3 • 6 independent gauge-invariant variables. I express 

self-duality by writing 

(2.2) 

n# is the self-dual 't Hooft tensor (S). Of the nine components of the 

electric field E~ (the upper index is color; the lower is spin), three can 

be removed by gauge transformation (and two signs fixed). 

Consider the six gauge-invariant quantities 

(2.3) 

In matrix notation E~ : (E) ai' 

(2.4) 
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and E + OE, 0 orthogonal, is the gauge transformation. For reasons of 

provocation, I will refer to the symmetric 3 x 3 gauge-invariant matrix g 

as the "metric-tensor." From this point of view, the electric field is the 

"drei--bein" for the metric. 

The metric tensor is adequate to describe those regions of the self­

dual sector in which (det is determinant) 

t : 2 detE (2.5) 

has~ixed sign, for then t • 2 (detg)~ up to that fixed sign. For the gen­

eral case of a boundary (sign change of 0, I will include t itself as a 
'(") 

variable to measure the remaining sign. I found it convenient to use this 

"""" ove~complete set {g,' t} in the algebraic details of the reformulation. It 
-:) 

is a conceptual advantage however to note that a complete set of (just) six 

ga~-invariant variables is easily found. Such a set is 

{ r _ ( )-1/3 (!J...!. \-2/3 } .., g = detg g • 2 1 g (2.6) 

tha~ is, a unimodular metric g and t. 
':' ·~~· 

..• The reader may find it instructive to work out the previous paragraph 

.. ~ 
in a·particular gauge. A convenient choice is: E (the matrix) upper-
0 

triangular, and Ell ~0, E22 ~0. It is not hard to solve Eq. (2.4) explicitly 

for E (g, t ) • 

(2.7) 

~ ...... _., 
-4-

I should say before proceeding that my choice of variables was just to 

get off the ground in the first place; many other hopefully superior, more 

elegant choices can be made. My variables are not even covariant, so I 

can expect no more from the reformulation. It may be helpful, e.g., to 

work in terms of the redundant but covariant variables I and K 
IIV;pa IIV' 

(2.8) 

My first attempt to solve the problem was along the following lines: 

I know the field-strength saddle-point equations(!) (e is the gauge-coupling), 

(2.9a) 

(2.9b) 

(2.9c) 

In the self-dual sector, these are equations for the electric field. If I 

go to a particular gauge, say the upper triangular gauge, I have the form · 

E • E(g, t) explicitly Eq. (2. 7). This form is of course gauge-4ependent, 

but if I substitute into Eq. (2. 9), I obtain equations for g, t which must 
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be independent of gauge choice. Unfortunately this gauge is not rotation­

ally invariant, and so the resulting equations for g, ~are in a terrible 

~cra~le. Other gauges (that I studied) suffer from compensating drawbacks. 

I report this "brute-force" approach for two reasons. First, anyone who 

tries it will believe it can be done in principle (and hence for full 

Yang-Mills?). Second, it provides a grim background against which to 

appreciate the relatively simple results I will present below. 

The basic stragegy of the next section is as follows. By using Eq's. 

(2.2) and (2.9b,c), we can construct Fa (E) (F as a function of E and its 
I!V 

derivatives). At first sight, this is a horrible expression; with a moment's 

thought however, F must be a function of E such that it rotates like E under 

gauge transformation. It is therefore reasonable to hope (6) that it can 

be put in the form 

(2.10) 

where 0 is a function only of the gauge-invariants. I shall show that this 

is precisely what happens. The gauge-invariant description follows immedi-

ately. Away from the singular configurations, E has an inverse. The field 

equations 

(0 + e n' )Ei • 0 
~o~v;m ~v m 

(2.11) 

are then equivalent to the gauge-invariant description 

(2.12) 

• 
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III. Field-Strength Structure and Gauge-Invariant Formulation 

As described in Ref.(l), we have for 0(3) in four dimensions 

In the self-dual sector K is proportional to the unit matrix, and we have 

the "gluon" J, 

K • ~ m 2detE 

Note that det~ not identically zero for all x implies the same for t 
I! 

and detg. 

(3.2) 

Our first real task in this paper is then to sort out the numerator of 

the gluon Ji. I ld lik d h I! wou e to o t e sorting in such a manner (consistent 

with our stragegy) as to show the gauge-transformation properties of the 

gluon. Each term in the gluon numerator is cubic in E, with two color in­

dices contracted. When this pair is separated by a derivative, I separate 

out the gauge-invariant part with the identity 

(3.3) 
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·AIJ is a (global) color singlet "spin-density." In this way, after some alge­
P 

bra, I can express the gluon as(J) 

(3.4) 

where Tr means trace. 

This form shows the gluon gauge-transformation property nicely. Under 

the infinitesimal rotation 

""' 
(3.5) 

·b) x arbitrary, the spin-density changes by 

'"""\,· --
(3.6) 

'~us, I verify the gluon gauge transformation, 

(3. 7) 

with the spin-density providing the translation term. In fact, the first 

term in J, 

-8-

(3.8) 

has, by itself, the correct transformation property [Eq. (3.7)]. This gives 

us a simple laboratory to test our strategy. 
'\, 

I have computed the simpler object Fa (J). Helpful identities are 
IJV 

ijk jim kpq (6 6 -6 6 ) jim 
£ £ £ - - jp lq jq lp £ 

+ (<'ij 6 -6 6j )tjil. p mq mp q 

(3.9) 

With the help of the first four identities and Eqs. (2.3), (3.6), I can 

-1 
'\, '\, 

manage a contraction to 1, g or g in each of the terms in £abc1b1c Then, 
1.1 v 

I eliminate all E' s in favor of E via the last identity. After some-algebra 

I find that all terms with derivatives on E cancel, leaving the simple resul 

(3.10) 

This certainly shows the correct gauge-transformation property. I can also 

put it in the desired (linear-in-E) form by the identity, 

(3.11) 



-9-' 

Buoyed in spirit, I have computed the remaining terms in Fa (J). After 
IJV 

some similar algebra, I obtain the desired result, 

(3.12a) 

+3Z -az 
1.1 vm \1 11m (3.12b) 

-1 + l:i(g Lo {3 go Z - 3 go_Z } 
UK. 11 -t.n vn v <..n 11n 

(3.12c) 

The first term in e corresponds to Eq. (3.10). A nice check on the form of 

e is to remember that F is scale-invariant under G + K~. Now, under 
IJV 

3/2 -~ g +Kg, ~ + K ~. 0 is homogeneous of degree K • The form Eq. (3.12) for 

i F is much- simplified over previous work, and will be an aid in the field­
IIV 

strength formulation itself. 

The field-strength equations of motion Eq. (2.9) are then' 

(e + en~ )Ei • o 
IIVjm ~v m (3.13) 

And, as discussed in Section II, the gauge-invariant formulation is simply 

0 +en~ • 0 
IIVim ~v 

(3.14) 

Multiplying our result by gmk puts the equations in a form resembling general 

i c 
-10-

relativity (say in the gauge with g00 • 1, g0i • 0) with a cosmological 

constant. 

Other interesting quantities are easily evaluated in terms of our vari­

ables. E.g., ignoring the "Faddeev-Popov" terms(l), I find f_or the field-

strength action, using Eq. (3.12a) 

4 1 'll 
• /d x{- e (eOijm + ~Oi>m)&mi - Tr(g)} 

where ~ is the usual dual of e. 

.i 



-11-

IV. Simplest Ansatz 

The gauge-invariant equations of motion, Eq. (3.14), are conveniently 

grouped, following Ref. (1), as self-dual and anti-self-dual parts, 

(4.1a) 

(4.1b) 

I will seek a solution to these in the form of the simplest conceivable 

ansatz 

0 

g - (4. 2) 

2 3 ,0rom Eq. (2.6), this is equivalent to g • X , t • 2>. • I have used X in-

-!tead of just t itself only to make contact with Reference (1). 
'~-t, 

equations of motion (4.la, b) become respectively 
P''"" ~, t .. 

-l ~ixamx + amai"A + £ (l alaox - aoal_\_ o 
2 A 3 X 2 mij 2 X 3 X 2 l 

The 

(4.3a) 

(4.3b) 

-12-

These equations are precisely those implied (before the A[R]) assumption) 

a in Ref. (1), now divided by X. (The ansatz there was equivalent, Ei • 

6~X, J! • -n~v ~avlnX.) Note that the simple variable change X • 41
2 

((. 24> 6 ) brings the self-dual part of the equations of motion (Eq. [4.3a]: 

to the form(S) 

~ 
3 + 2e • 0 

4> 

Nevertheless, as stated in Ref. (1), when taken together Eq.'s (4.3a, b,) 

. (9) 
have as their only common solution, the translated pseudo-particle 

A • 4b 
e 2 2 [(x-x0) +b] 

(4.5; 

b, xOU arbitrary. In the next section, I will discuss the circumstance 

·under which Eq. (4.4) survives without interference from the anti-self-

dual Eq. (4.3b). 

There are also known(S) self-dual solutions of the form Va • 
IJ 

-.!. Ja 
g \l 

tion). 

- .!. n a ln4>, D
2

4> - 0 (n is the anti-self dual g 8\IV V --
tensor in our nota-

Except for the pseudo-particle itself however, these are not inclu· 

ded in our simplest ansatz Eq. (4.2). (See however Section V.) 
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V. Corrigan-Fairlie-Yates and a Broader Gauge-Invariant Characterization 

Corrigan, Fairlie and Yates (CFY)( 3) have recently distributed a very 

interesting paper that independently observes the simplification oftJ - 1 

in the self-dual sector( 1). They als~ observed that the~ simplification 

describes broader regions of the saddle point: one need not set the anti-

self-dual part to zero. 

TI1ey begin with the saddle point equations (2.9) in the form 

F~v(J) + e Ga 
~v 

• 0 (5.1a) 

a Ga + £abcJbGc - 0 IJ IJV IJ IJV 
(5.1b) 

G " G+ + G_, Ga a 
n~v• Ga sa 

i\JV s+i "'\.IV -i n4tv' (5.1c) 

Instead of setting S • 0 (as I did) they separate out S±: 

(5.2) 

J.-1 -1 If (say) G + has an inverse, 'cJ +. , then 

(5.3) 

H -1 On inspection of Eq's. (2.2) and (5.1c), it is evident then that.v + and 

Ja(S+) are precisely our forms in the self-dual sector with the identification 
IJ --

(5.4) 

-14-

Equations for S± 

(5.5a") 

Fa (1 [s+)) + e sain... • 0 
-IJV - _v 

(5.51!) 

reduce to ours if S~i • 0. In general, CFY point out that, given S+, S 

may be computed from (5.5b). 

It is easy then to link up the advances of the present paper with the 

observation of CFY: all results of this paper for E should be read in terms 

of the map Eq. (5.4), and the anti-self dual parts of the equations should 

be used to compute s_. One is then reading, e.g. 

(5.6) 

etc., in (say) Eq's. (3.4) and (3.12). The field-strength equations read 

(5.7a) 

e~v.·m sa + sa n • 0 ,. +m -m ~v 
(5.7b.) 

(and [5.7b) determines S_.) Finally, the gauge-invariant equations for g, 

~ are (just the self-dual part of our previous equations) 

(5.8) 

Thus, under the "simplest" ansatz (4.2), the result (4.4) stands potent. 
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It deserves emphasis then that the Wilczek-Corrigan-Fairlie ansatz is, 

within the gauge-invariant formulation, the simplest conceivable ansatz. 

Note that all gauge-invariants can be constructed from g, ~using, say, 

0 sa 
e ~v;i +i 

c:a 1 ~ 5a 
~v e ~v;i +i 

E.g., one easily computes 

·---Lt e ~ e 
6e3 ijk ~p;i po;j av;k 

(5.9) 

(5 .10) 

The CFY observation works as long as not both detS± • 0. This is not 

~ broad as the "full" saddle point (detlj,. 0)-which presumably needs 15 

'='gauge-invariant variables. 
(5) 

:) Following CFY, I can also find the 02~-0 solutions as a limit. As 

mantioned in Section III, under S+ + K~S+' we have g + g, f; + K
312 

E;, 

d-+ K-~e. Thus with S+ • K~S+, t • K312 c- we have in the limit K + 0, 

(5.lla) 

(5.llb) 

-16-

The ansatz (4.2) for ~- then comes to ~- 3 o2~=0 and (5.llb), 

1: = -nl~v3vln~ but the solutions are anti-self-dual. 

Thus (still) 
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