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ABSTRACT 

A theorem of Jauch is used to establish the local gauge 

properties of the statistical mechanics of persistent flow. 

Linear response theory yields the two-fluid model. 

* This work was supported in part by the Division of Physical 

Research of the Energy Research and Development Administiation. 
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1. INTRODUCTION 

In the Landau theory of superfluidity the Galilean prin-

ciple has played a fundamental role in the construction of the 

phenomenological two-fluid model. The concept of a two fluid 

model has been central to our understanding of superfluidity in 

Bose and Fermi systems, and has been strikingly effective in 

predicting the phenomenology well in advance of appropriate 

microscopic theories. It therefore becomes essential to under-

stand the two-fluid model from as fundamental a viewpoint as 

possible. 

The Landau theory requires two densities and two 

fluid velocities The conservation laws impose the 

following constraints on the density and current density: 

p = Ps + Pn and Ps!a + pnyn = ~ , where ~ is the total current 

density. An additional condition required to characterize super-

fluid motion is that \1 x v = 0. The Landau hydrodyniunics for 
~ -s 

non-dissipative flow may be obtained from the above characterization 

by imposing the conservation laws and the principle of Galilean 

relativity.(!) 

It is the purpose of this paper to obtain the two-fluid 

model as a consequence of the representation theory of the GalileL 

Group and the statistical mechanics of persistent flow. In this way 

we place the Landau theory on a firm theoretical foundation . 

2. GALILEAN PRESYMMETRY AND THE .EQUILIBRIUM STATE 

Let us consider a macroscopic system of N identical part

icles (the generalization to systems of indefinite particle number 

will be evident). For our immediate purpose we shall take the 
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particles. to be spinless neutral Bosons. We wish to establish 

the most general form of the partition function under two con

ditions~ equilibrium, and the unitary implementation of the 

Galilei Group on the states of the system. 

In our previous work, we have explored the consequences of 

these two conditions for the statistical mechanics of equilibrium 

flow. Here we shall summarize the previous results. 
(2) 

Consider the following transformation on the coordinate 

and velocity of a particle: r -+ r 1 f -+ r + !J, 
"0 ~ -o: "'0: ~ 

The condition that this transformation be unitarily implemented 

on the Hilbert space of states :UN shall be called Galilean 

Presymmetry. A theorem of Jauch establishes that Galilean 

Presymmetry fixes the form of.the hamiltonian such that it exhibits 

the property of local gauge symmetry. (:~) 

we have demonstrated that the conditions of equilibrium 

and. Galilean Pre symmetry yield the following form for . the partition 

function of a system of identical particles of mass m: 

where 

z "' trl{ exp( - ~HJ~J) 
.N 

N m 
E -

I:Xo:l 2 [
fa: -
m 

Here we have taken ~ to be time independent. The condition 

9 x 1lf ~ 0 is required in order that there exist states of fixed 

particle fiux, when particle interactions are translationally 

invariant. 

-4-

We see that a consequence of Galilean Presymmetry is the 

freedom of introducing a vector field which plays the role of a 

gauge field.( 4) It is just this freedom which is the basis of 

the two-fluid model. The physical identity of the gauge field 

may be determined under the conditions in which linear response 

theory is valid by computing the density that is transported 

by the gauge field. We shall see that unless the local gaugesymmetry 

of the hamiltonian is broken in the statistical state of the 

macroscopic system, the gauge field is empty in the sense that 

the associated density vanishes. Moreover, for the case of 

neutral Bosons, when the local gauge symmetry is broken, the 

density transported by the gauge field is just the superfluid 

density Ps (as determined within ·linear response theory). This 

method is similar to that developed by Baym except that by intro-

ducing the gauge field we see that the existence of the super;. 

fluid density ·is a consequence of breaking local, rather than 

global gauge symmetry; The latter condition has the further 

consequence that it leads to Bose condensation. Thus the breaking 

of local gauge symmetry is a weaker condition, and serves to 

separate the questions of superfluidity and Bose condensation. 

3. GALILEAN PRESYMMETRY AND THE STATISTICAL 

MECHANICS OF PERSISTENT FLOW 

The characterization of a state of a fluid in which the 

equilibrium current density may be specified at .each point in 

space requires a more general ensemble than that considered in 

the previous section. The construction is standard, however. One 

extends the ensemble of the absolute equilibrium state in such a 
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way as to fix (~(~)) as a constraint. We then acquire an additional 

· field as a lagrangian parameter associated with the constraint. This 

yields the following ensemble: 

exp(- ~eff[~, ~]) 
D- . 

- tr exp{- t3HeffL4!, ~)} 

where D is the statistical operator, 

and ~(~) is the local current density. ~ is the ga~e field 

and ~ is the vector lagrangian parameter-field. We see that even 

wen the gauge field is subject to the condition ;:l, ~ )l_ = o, local 

gauge tranformations fail to remove Ji .. Thus this ensemble 

describes a statistical state of quasi-equilibrium in which the 

local gauge symmetry is broken (though global gauge symmetry is 

maintained). 

Let us define ~ 2 ~ ~ ~ and determine the linear response 

of the current to w in the quasi-equilibrium state. We are led 

to examine the current-current correlation function(5)* 

and 

* We have taken 11 E 1. 
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In terms of the causal response function 

= fdw' x;j<~, w') 
x.j(k, w ) .€ 

l. ~ 1T (l) - (l) + l. 

\ 
the fourier transforms are related by 

_ The ensemble average of ~i with w = 0 is 

Hence 

Since the fluid is isotropic, Xij(~, w) takes the form 

( L . ) "' It T( I I ) ( "' k ) " ~ xij ~' w) = x ( 1~1, w _ -'\ j + x ~ , m 8ij - ki j ; ~ = 1iiT 
.... 

We shall consider the limit w ~o in what follows. The static 

susceptibility is given by 

We shall also make use of the longitudinal sum rule for x1 (k): 

(p) 
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Therefore we may write 

xij(!~) = [<o)- xTCI~I>] 1tiftj + l<l~l) 8ij 

We have the additional sum rule 

Lim x?c I~ I) ~ (p) 
1.61--~ 

Defining p ~ Lim XT(k) and Ps = (p) - Pn we have 
'n k--tO 

~~moxij(i) = pskikj + pn8ij -
The limit ~-tO must be taken in the manner appropriate to an 

open system,* 

Lim Lim 
kikj 

2 .. 0 
kj ,~-tO ki-t 0 k ~. 

Thus we find that 

Lim xij(k) 
k--tO -

0n8ij 

and therefore 

tim (~(~)) P .J:J+pu 
· k--tO s ""' n ..... 

* . See reference (5) 

-8-

We may identifY the gauge field as the velocity of the superfluid 

component and the lagrange parameter-field as the normal fluid 

velocity. The above results are summarized as 

Jj= V 1 
- -s 

U=V 
- -n 

These are just the original equations of the two-fluid model. 

4 •• CONCLUSION 

In this paper we have shown how the basic equations of 

the two fluid model can be derived in a straight forward way 

through the complete exploitation of the properties of the Galilei 

Group within the context of linear response theory. we find that 

a local gauge field emerges naturally, and that the necessary 

condition for a system to be superfluid is that the local gauge 

symmetry is broken in the statistical state. The identification 

of the superfluid velocity with this gauge field should be con-

trasted with other theories in which it appears as the gradient of 

the phase of a macroscopic wavefunction (t(~), or the gradient 

of a scalar operator*, both of which imply the existence of a 

Bose condensate. Whether such a condensate does exist is a 

precludes the existence of a condensate. The sole criterion for 

superfluid behavior is that ps I 0. 

* See Ref. (5} 1 Forster P. 232. Here 1jr(~) is the complex scalar 

Bose field operator. 
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