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ABSTRACT

A theorem of Jauch is used to establish the local gauge
‘properties of the statistical mechanics of persistent flow.

Linear response theory yields the two-fluid model.
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1. INTRODUCTION
In the Landau theory ofAsuperfluidity the Galilean prin-

cipie has played a fundamental role in the construction of the

phenomenoclogical two-fluid model. The concept of a two fluid

model has been central to our understanding of superfluidity in -
Bose and Fermli systems, and has been strikingly effective in

predicting the phenomenology well in advance of appropriate

microscopic theories. It therefore becomes essential to under-

stand the two-fluid model from as fundamental a viewpoint as

possible.

The Landau theory requires two densities Pgs Py and two

fluid velocities Yo ¥, The conservation laws impose the

following constraints on the density and current density:

P =0pg * Py and PYs * Yy, = 3o where J 1s the total current

density. An additional condition required to characterize super-
fluid motion is that y;x v, = 0. The Landau hydrodynamics for
nonfdiséipative flow may be obﬁainéd fr;m ihe above characterization
by imposing the conservation laws and the'principle'of Galilean
réiativity.(l) | - ‘

' It is the purpose of this paper to obtain the two-fluid
model as a consequence of the representation theory of the Galilei.
Group and the statistical mechanics of persistent flow. In this way
we place.the Landau theory on a firm theoretical foundation.

2. GALILEAN PRESYMMETRY AND THE EQUILIBRTUM STATE
Let us considera macroscopic'éystem of N identical part-
icles (the generalization to systems.of indefinite particle number

will be evident). For our immediate purpose we shall take the
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particles to be spinless neutral Bosons. We wish to establish
_the most general form of the partition function under two con-
ditions? equilibrium, and the unitary implementation of the
Galilei Group on the states of the system.

In our previous work, we have explored the consequences of
thesé two conditions for the statistical mechanics of equilibrium
flow. Here we shall summarize the previous results.(e)

Consider the following transformation on the coordinate

~ ~NQ
The condition that this transformetion be unitarily implemented

and velocity of a particle: t SRl S —ga_’ o+ .

‘on the Hilbert space of states ﬁw

Presymmetry. A theorem of Jauch establishes that Galilean

shall be called Galilean

Presymmetry fixes the form of .the hamiltonisn such that it exhibits
the property of iocal gauge symmetry.(j)
We have demonstrated that the conditions of équilibrium
.énd-Galilean Presymmetry yxeld the following form for the partition
function of a system of 1dent1ca; particles of mass m:
7 = tr exp( - BHN[éf])
H , ,
N .
where

2 N

5 | |
LE|T e vl )

HN[g] =
vHere-ﬁe have taken )é, to be time indépendent. The conditibn
AR 13 = 0 ig required in order that there exist states of fixed
particle fiux,'.when particle interactions are trénslationally

invariant.

“he

We see thaf a consequence of Galilean Presymmetry is'the
freedom of introducing a vector field which plays the. role of a
gauge field.(h) It is just this freedom which is the basis of
the two-fluid model. The physical identity of tﬁe gauge field
may be determined under the conditions in which linear response
theory is valid by computing the density that is transported -
by the gauge field. We shall see that unless the local gauge symmetry
of the hamiltonian is broken in the statistical state 6f the
macroscopic system, the gauge field is empty in the sensé that
the associated density vanishes; Moreover, for thé c;se of
neutral Bosons, when the local gauge symmetry is broken,. the
density transported by the gauge field is Just the superfluid
density o (as determined within linear response theory). This
method is similar to that developed by Baym except that by intro-
ducing the gauge_field we see th;t the existence of the super-
fluid density is a consequencebof breaking local, rather than

global gauge*éymmetry; The latter condition has the‘fufther

" consequence that it leads to Bose condensation.: Thus the breaking

of local gauge symmetry is a weaker condition, and serves to

separate the questions of shperfluidity and Bose condensation.
3. GALILEAN PRESYMMETRY ANi THE STATISTICAL
'MECHANICS OF PERSISTENT FLOW
‘The characterization of a statg of a fluid in»which the
equilibrium current density may be specified at each poinﬁ in
séace requires a more general enéemble than that considered in
the previous section. The construction is standard, however. One

extends the ensemble of the absolute equilibrium state in such a
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In terms of the causal response function -

way as to fix (Q({)) as a constraint. We then acquire an additional

.

" field as a lagrangian parameter associated with the constraint. This
s o' xij(k, w )
yields the following ensemble: J(k, w ) —J' T e
the fourier transforms are related by N
L ol B g (4, ul) |
tr expl- PH_..1H, ulJ '
. Xpl= BHoppll > 4 . . 5 (31(51 w)) = X'ij(k’ ) Wj(E: )
where D 1s the statistical operator, ‘The ensenmble average of ,11 with w =0 1is
H [,é/, ul] = H[,gj-fd5r,1(r) ‘u(r)-u.N. , ’
| | €y @)y = o) Hlis @)
and j(r) 1is the local current density. éj is the gauge field
. : Hence
e and u is the vector legrangian parameter-field. We see that even
9 .when the gauge field is .subject to the condition ¥ x Jg = 0, local _
. (3,08 0)) = (o) H(k, 0) +xy,(k 0) wy(k, o)
»y gauge tranformations fail to remove ‘g . .Thus this ensemble
~ describes a statistical state of quasi-equilibrium in which the Since the fluid is isotropie, 7‘13(’5’ w) takes the form
Gy
' . local gauge symmetry is broken (though global gauge syrmnetry'.is
v _ maintained). . ’ - L, 28 T ﬁ k 2
y _ : : , X1 (%, o) = X'([kl, o) KX, +x7(|k], w)(8 ) 1£=
«© Let us define WEu- g and determine the linear response: i3°~? . '_“., -1 d‘_ . if] S m
T{{ré» . ) . : - - C . : .
‘ of the current to w in the quasi-equilibrium state. We are led We shall consider the 1imit  —0 in what follows. The static
e . : - . (5) ‘ )
. to examine the current-current correlation ﬁzrr;ctfionv » susceptibility is given by
AR | n, 00 - [ X3k o)
o ny -t - =2 e, JJ" , t')1> 1 >
o . . Ly,
. We shall also make use of the longitudinal sum rule for x'(k):

and
: % : L

: . x|) = (o}
a@i(z,t)>= j at’ fd3£'x'i'd(£ -r' ot - (et D = o

* wé have taken H = 1.




-Therefore we may write

Xy 4 (k) = [(°) - "T(Ils'.)] Ry + X (JK)Byy

We have the additional sum rule
Lim  T(|x]) < (o)
x(|kf) s {p
k |0

Defining p = Lim XT(k) and p_ = (o) - p, “e have
k-0 ’ .

Lim x (k) = p K,k + 0 8
5_’01.1 s " Pn°1y

\

The 1imit k ~ O must be taken in the manner appropriate to an

open system,*

Lin - Lim —Jd .o

Ky ko0 k=0 K° -
~Thus we find that
Li k) =
Lim gy (k) = o3y
and thereforé
Lim (J(k)) = p M+ p u
- k-0 _’1 ~ s = " P~

~

* See reference (5)
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We may identify the gauge field as the velocity of the superfluid
component and the lagrange parameter-field as the normal fluid

velocity. The above results are summarized as

ﬂ:v,u:v
~ ~n

~ ~8

Q) = PV +PpY, 8nd ¥ xv =0

These are just the original equations of the two—fluid'model.
L. " CONCLUSION
In this paper we have shown how the basic equations of

the two fluid model can be derived in a straight forward way

through the complete exploitation of the properties of the Galilei

Group within the contexf of linear response theory. We find that
a local gauge field emerges naturally, and that the necessary
condition for a system to be superfluid is that the local gauge
symmetry -1s broken in the statistical stﬁte. The identification

of the superfluid-veldcity with this gauge field should be con-

,trasfed with other theories in which it‘appeArs as the gradient of-:

the phase of a macroscopic wavefunctiﬁn (#(5), or the gradient
of a sca;ar operator*, both of which imply the existence.of a
Bose condensate. Whether such a coﬁdensate does exist is a
precludes the existence of a-condéhsate. The sole criterion for

superfluid behavior is that P $ 0.

* gee Ref. (5), Forster P. 232. Here. V(x) is the complex scalar

Bose field operator.
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