pTCEIVED

WEIRETTTER
3 CARCLATORY
-+ 1 19/8

. aRY AND
COGUMENTS SECTION

PRELIMINARY REPORT ON GRUMP--
A SYMBOLIC FORTRAN DUMP

Ed Fourt

March 1977

Prepared for the U. S. Department of Energy

under Contract W-7405-ENG-48

-

For Reference

- Not to be taken from this room

\

UC-S2-

LBL-6762
04

%
79.9-T4T

\

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

00 uU 4807635 2

LBL-6762

Preliminary Report on GRUMP--
A Symbolic FORTRAN Dump*
Ed Fourt
Lawrence Berkeley Laboratory

University of California
Berkeley, California

March 1977

1.1 INTRODUCTION
This is a first report on the program GRUMP, which provides symboli¢

dumps of FORTRAN programs--specifically, of programs compiled by the Control
Data FTN compiler--and which is now in operation at the Lawrence Berkeley
Laboratory. By a "symbolic dump” we mean a printout which is generated and
used 1ike a standard octal or héxidecimal dump, to inform the user of the
state of his program at some specific moment, generally the moment at which
execution aborted; but which in contraét to the octal dump, refers to all
variables by their FORTRAN names, and gives their va]ués in terms of FORTRAN-
‘style encodings, rather than simply as unlabled machine word images. A line
of an octal dump might go .

001234 17204 00000 00000 00000 00000 00000 00000 00006
The corresponding line of a symbolic dump might go

F=1. J=6.
" The usefulness of the latter form should be obvious.
Thi§ report is in no way a guide to the use of GRUMP. For that, an

LBL computer user should print out a copy of the WRITEUPS subset AIDS; the

* This work was done with support from the U.S. Energy Research and Development
Administration.

-2 -

Computing Consultants can tell you how. A somewhat revised version of that
user's writeup is being made available to the world at large as LBL report
LBL-6764, entitled Uéer's Guide to GRUMP, A Symbolic FORTRAN Dump. The
document here is rather a feport on what has been accomplished and a tenta-
tive self-evaluation of the accomplishment, together with many items of
interest to the systems programmer who may be interested in putting up GRUMP

at his own installation.

1.2 A SHORT HISTORY

‘The Lawrence Berkeley Laboratory has a history of trying to make the
1ife of the non-specialist computer user a little easier than it is at many
large scientific computing centers. An octal dumping program named DMPS
which read Load Maps and was thus able to provide the user with addresses
relative to the beginning'of each block of a'relocatab1e load, was made
available éome 10 years ago, not long after the delivery of LBL's first

CDC 6600. This program, written by Bill Gage, is still more useful for our v

purposes than anything provided by the manufacturer today;'at LBL it has
been further developed, chiefly through the efforts of Roy Carlson and Tom
~ Strong, into today's program DUMP, a very powerful octal dump indeed.

The desirability of a truly symbolic FORTRAN-oriented dump has always
been obvious, however; and work was begun on one by the author, under the
auspices of the LBL Systems Group, fn late summer of 1975. This report is
being written some 18 months later, in March 1977, when with version 4.0
GRUMP has reached what we contemplate will be a fairly stable form. It was
never worked on more than half time, so the current version embodies some

9 man-months of effort.

D9 048074883

The author spent many years as a chief programmer for various LBL
physics groups; which is to say, as perhaps the only computer expert among
many heavy computer users. During that time he devoted much thought to
ways of making .his own life easier, to mechanisms which would enable him
to uncover his own and his colleagues' bugs faster, or, even better, would
enable his non-specialist colleagues to uncover their own bugs themselves.
GRUMP is the result; by the time work actua11y began on ft, the situation
had resolved itself into high definition in the author's mind, and work

could thus proceed straightforwardly.

1.3 PROGRAM INPUTS

Three inputs a}e necessary for a symbolic dump--a core image giving
the bit-values of all relevant computer words, a load map giving the
absolute address of the first word of each relocatable block as it has

been linked into the core image, and symbol tables giving the name and

relative address and some of the attributes of each variable in each
relocatable block. We here describe the forms in which GRUMP currently
expects each of these inputs.

The core-image record read by GRUMP at LBL is a single file containing

two Togical records. The first is the "Exchange Package", which contains
the values of all program registers and is 16 words long. The second is
the core image itself. Some coding would be required to generate such a
file on a standard CDC system. At LBL the control-card cracker has been
modifiedlto create such a record when certain magic control-card verbs are

encountered, a small and effective ugly patch.

The load map is read in the form of a unique machine-oriented record

-4 -

called a "Dbgmap", which was first designed as input to LBL's (octal) DUMP
.program. It seems cerfain that no other system generates such an object.
The information contaihedvon this record and used by GRUMP is merely this-;
the name and absolute starting address of every load block and whether it
is a Common block or a routine block; and the naﬁe and absolute address of
every entry point. It should be trivial to write a routine to get this
information from the printout of any loader, e.g. from the CYBER Loader
Map.

The names, 1ocation$, and attributes of all variables--i.e., the

symbol table information--is currently read off the FTN compiler's output

listing itself. GRUMP rewinds whatever files it is told have FORTRAN
Tistings on them, and goes thru the files looking for.an FTN "Symbolic
Reference Map". When it finds one, it scoops up the information it needs.
This method led to a very robust and easily-debugged piece'of code; for in
the developing and debugging stage, whenever a question as to GRUMP's actions
arose, it was easy to track down the problem and fix it, because the file
being read was not only human-readable as well as machine-readable, but

.a1so well-known to bestrustworthy.

The routines that read the FTN listings have been carefully designed
for ease of maximal optimization for spéed--un]ike the remainder of the
.program, which was basically designed for ruggedness and maintainability--
and in fact GRUMP does run relatively fast. A full GRUMP dump often cogts
the user less to generate than does a full octal dump--because the GRUMP
dump is much more compact and entails the formafting and printing of a much

smai]er bulk of. information. A FORTRAM listing is a very bulky object,

however, and the best way to speed up GRUMP's running time would be to enable

it to directly read a symbol table formatted by a compiler for optimal
machine-readability.

Now of course no Control Data compilers turn out such a symbol table
in their manufacturer-supplied versions. Furthermore, it is most desirable
to avoid the problems connected with maintaining special mods to the FTN
compiler. But the University of Manchester will supply one with mods to
FTN that do indeed spill the symbol table to disk; these mods were written
as part of their MANTRAP package, which is discussed below. Furthermore,
CDC has made an announcement that they are going to develop a good Inter-

, active FORTRAN Debugger; and the specifications for this product would
seem to entail modifications to FTN such that it will indeed write out a
machine-readable symbol table.

So it may be that there will soon be a standard or quasi-standard
FTN spilled-symbol-table format, one that will be maintained or at least
not smashed by Control Data. Should this happen, GRUMP will be modified
to read same.

GRUMP also has the ability to spill the internal symbol table form it
- constructs, and then read it back in during a later run. This enables one
to getvsymbolic dumps of routines whichvare not compiled in the same run as
that in which the dump is generated. The reading of these forms is of course
extremely rapid. These symbo]btables are updateable; that.is, a few routines
may be recompiled and a large symbol table revised and re-emitted by GRUMP

itself to reflect the changes.

1.4 FLOW OF PROCESSING
A GRUMP run divides itself naturally into two phases--first building up

an in-core symbol table, and then generating the listing. Before describing

-6 -

the two phases in turn, we note that the FORTRAN listing of the program is
copiously annotated and the program itse]f}purports to be well-constructed,
and thus it itself is its own basic reference. The BLOCK DATA subprogram
attempts a glossary on most variables. 99 percent of the 9200 lines of code
are FORTRAN (FTN4 dialect), with the balance COMPASS. The source code con-
tains numerous format-free coded I/0 statements, which are used for debugging
GRUMP itself.

The symbol table is built up as a single vector stretching back from
the front of Blank Common. Notes in the BLOCK ‘DATA subprogram contain a
detailed map of its contents and methods of accessing them. First goes the
information about Load Blocks and Entry Points passed on from the loader.
This information is used not only for itself, but also to index the rest of
the symbol table. Since we pass over the core image sequentially, the 1ist
of load blocks arranged in load order is handy for indexing the information
from the compiler, which gets pasted on the end of the vector in the order
in which it is presented to GRUMP. This order is not necessarily the order
in which the routines wére loaded.

Next, information about fhe individual FORTRAN blocks is read and
stored. This information may be in the form of FTN 6utput listings, where
it is taken from the cross-reference map that follows each routine. It may
.a1so be taken from old GRUMP symbol tables that have been saved from a
" previous run. The output listings from all versions of FTN that have been
put up at LBL may be read; that is, currently, FTN versions 3 thru 4.6.

The program recognizes‘listings primarily from their‘page-header lines,
which may vary somewhat from installation to installation. Anything on a

print file that is not an FTN listing will simply be skipped over.

The map of variables in a Common Block is taken from the first instance
of the block that GRUMP sees. This is not in accordance with the strict
rules of FORTRAN, which allow every routine to segment the cbmmon vector as
it wishes, but it is the only practical method for GRUMP to adopt. Mapping
Common Blocks differently in different routines is a terrible programming
practice, although a common one on primitive and unfriendly FORTRAN systems.
The *COMDECK facility of CDC's UPDATE program provides a very natural ahd
elegant way of presenting identical Common-Block definitions to all routines,
however, and GRUMP both encourages and assumes its use. No user has in fact
ever inquired about the method used for deciding what to call variables in
Common Blocks, let alone complained about it; CDC users seem to assume that
we would assume that they would be using the *COMDECK facility.

After reading FORTRAN information, and writing out the FORTRAN portion
of the symbol table if such is requested, GRUMP processes any directives the
user gives it. These directives may appear on the GRUMP control card itself
and also on a 1i£t1e file of card images. Their principal use is in sup-
pressing or shortening the 1istings of various load blocks; for instance,
one can tell GRUMP that no more than 5 values should be printed for any array
in a certain Cbmmdn Block. A directive can also tell GRUMP that certain arrays
contain funny-formatted data that should be dumped in octal if no normal
FORTRAN interpretation of it can be made; ordinarily GRUMP would cut the
printing of such an array short, figuring that it had been over-writteh with
garbage 6r had never been initialized.

At this.point GRUMP is ready to make its first pass over the core image.
The symbol table is as complete as it ever will be, and the rest of Blank
Common may now be used as a buffer for reading in large chunks of core image.

This first pass is used to dig out:

-8 -

e The word contained at each Entry Point (which points back to the
instruction that last called the Entry Point),

e The word containing the RJ instruction that last transferred
control to each Entry Point (which contains the FORTRAN Tine
number of the CALL statement or FUNCTION reference, if the last
invocation was from é FORTRAN routine), |

o The contents of the word at each address that is pointed to by
one of the 24 processing registers,

e Parts of the F.E.T. and F.I.T. (control tables) for each file
for which there is a pointer in low core.

This may in fact entail two passes over the core imdge, since an Entry Point
in one buffer-load may have been last called by an instruction in a previous
buffer-load.

After this pass or pair of passes, the first portion of the listing is

written. This consists of:

e A traceback from the routiné last in execution back up the path of
calls to the main program,

° A symbolic analysis of the data in the registers and the names

and values of variables whose addresses are contained in any
register,

e A full traceback of the latest calls to all Ehtry Points,

o An ultra-minimal file status report.

The symbolic register analysis is probably the most powerful item in

the whole dump. The FTN cdmpi]er is obstinately conscientious about opti-
mizing code for speed of execution, and there is no practical way'to make it

compile code on a line-by-line basis ahd reveal where the compiled code for

each line begins. Thus there is no way of automatically telling someone
what Tine was being executed at the time the program aborted, because éode‘
for all lines between two transfer points is jumbled together in one fast-
running snarl.

Thus it is often quite difficult to figure out exactly what an FTN
program was trying to do when it expired. The symbolic register analysis
is a great help at this point, for the addresses of sinister variables are
usually sitting in A-registers and GRUMP can immediately tell you their
names and values. This is almost as useful as the information one gets
from the old RUN or new MNF FORTRAN compilers, which can tell you which
line of code it was that blew you up.

The file report currently tells one very little--the externa] and
internal names of the file, whether or not it had ever been used, and the
octal value in the F.E.T.'s request/response field if it in fact had been
used. This is sufficient to its purpose, however, which is to uncover a
very puzzling class of errors--namely, the errors caused by the connecting
of an internal logical file to the wrong actual external file. CDC has a
convention for changing actual-file names at execution time by positional
arguments on the control card which is both powerful and dangerous, and
since the first I/0 reference to a previously undefined actual-file causes
that file to be created on disk, it is fairly easy to make a mishmash of
your I/0 and not be able to figure out what went wrong. But the simple
printing of logical and actual names for all files makes this error easy
to uncover.

We then make a second pass over the core image in order to print out

the values of all variables. It would in fact be possible to get by with a

- 10 -

single core-image pass, but the current way of doing things will greatly
reduce the core that GRUMP requires when it is overlaid 6r segmented. It
would not be a particularly difficult chore to change over to a. one-pass
operation, but this will probably not be done, because it is felt that the
current most-needed improvement is reduced core requirements, and' not reduced
1/0.

If a block is short enough to fit enfire]y within GRUMP's core-image
buffer, then the variables in it will be printed in alphabetical order;
othefwise, they must be printed in load orQer. The variable 1isting is
written as formatted print-lines to a temporary file; and when this is
finished, an attempt is made to read the entire temporary file back into
Blank Common at once. If this is successful, then the blocks are copied
out of Blank Common to the ultimate print file in alphabetical order; if
Blank Common is not of sufficient size to hold the entire variable listing,
vfhen this listing is merely copied to the print file in the order it was
created; i.e., in load order. The net result of all this a1phabetizatfon is
that it is extremely easy to find your way arognd a GRUMP variables listing.

GRUMP will in general print out the values of all elements of an array,
treating the érray as a one—dimensional vector because in fact no dimension-
ality information is obtainable from the FTN T1isting beyond the bald fact
that the variable is not scalar. |

Two conventions are used in an attempt to keep the bulk of the printout
within bounds. One isﬂthe DATA-statement convention for indicating coﬁsecu-
tive identical values in a vector, that is the convention of saying
'<count>* <value>". Thus if the 20 elements of array AR are all identically
zero, GRUMP will report

AR (20) = 20* 0.

00U w0480/ 6157
- 11 -

The other is to stop printing values when five consecutive elements
are found containing uninterpretable values; the assumption is that the array
is in fact uninitialized, and filled with leftover executable code, or else
has been overwritten with garbage. At LBL the former is particularly fre-
duént with ‘large arrays that sit in Blank Common, for Blank Common is
generally not initialized and when execution begins it contains the executable
code of the loader, which is of no interest to the user. In these cases a
message saying "block dissolves into weirdness, no more interpretations"
appears, along with an appropriate diagnostic, and printing of values halts.
It turns out to be quite easy to tell from the form of a word of core
‘whether it represents a floating-point number, an integer, a Hollerith
(character) value, or garbage. There are few ambiguous cases, given the
use of some obvious heuristics--all floating-point must be norﬁalized and
of a 'reasonable' size, no integer may have absolute value greater than
2**48-1, Hollerith must contain no embedded zero-bytes or characters with

octal value greater than 60 One of the few exceptions of note is the

8"
Hollerith value 6LOUTPUT, , which is also a perfect 20.255... In the few
cases where GRUMP is able to make more than one good interpretation of a
value, all interpretations are printed, enclosed in brackets.

Control Data computers are able to generate what are called Indefinite
and Infinite forms. Their essential purpose is to blow up a program as soon
as it attémpts to use or succeeds in calculating (depending on the machine)
one of them, in a generally successful attempt to make a program abort as
soon as a problem becomes apparent. GRUMP takes special care with such

forms, since they are usually entwined with program problems.

Many CDC systems, including LBL's, automatically preset all otherwise

-12 -

qninitia]ized variables to a special negative-fndefinite;plus-address form
at load time; this type oflvalue will cause an immediate abort when used as
a floating-point operand or as a subscript, or when by horrible mischange
it.is executed as an instruction, and since it contains its own address each
value is unique to its variable element. GRUMP will print such values sitting
af the proper address as simply ** or *** . if the value should contain
the wrong address, a not-particularly-helpful note is printed to that effect.
This values-of-variables information is not as helpful in tracking
down the immediate cause of a program abort as is the printout frém the first
pass. It has the great advantage, hdwever, of being extremely readable and
compact, and of often pointing out to the auditor a half-dozen further bugs,
many of which would have caused incorrect answers to be calculated without
causing any machine interrupts at all. Experience has shown this information
to be invaluable; even more than the reduced time it takes to find the
immediate cause of a program abort, it is this ability to show the programmer
the conditions that will lead to future aborts and the even more abominable
future incorrect results, that can so great1y reduce program development

time when GRUMP is used.

1.5 SOME NOTES ON OUTPUT

Selected pages from some sample GRUMP printout are included in an
appendix. We‘point out a few of its features.
. We may note that the immediate problem 1§ instantly obvious--the user
has forgotten to initialize the variable XTARG in Common‘/EXTRA/, and an -
attempt to use it in subroutine POINTS has blown him up; In casting our

eyes further on down the listing, however, we immediately encounter another

- 13 =~

suspicious circumstance--most of the variables in commons /ADJS/, /CHI/, and
/CR/ are also uninitialized. If the auditor is fairly knowledgeable about
the program he is using, which is usually the case, these facts may tell him
about mbre bugs that will inevitably bite him in the future if he doesn't fix
theh now. In this case, in fact, the uninftia]ized state of /ADJS/ is indica-
tive of programmer error; and another bug is smashed before it can really be
born. |

We note that the traceback is segregated into two columns, the first
for calls for which the FORTRAN line number is kﬁown and the second for those
for which it isn't. Since in fact the second columh.contains almost exclu-
sively calls of one system routine upon énother, which are of almost no
interest, this nicely reduces the bulk of information that the user has to
plow through. We also note the tiny status-of-files report, here simply
conveying to us the information that all is well in this department.

The 1isting was in fact some nine pages long, and we also reproduce
the next-to-last page here. By examining the variable FEEp in common /TS/,
we can get a good idea of how GRUMP handles array printout in a normal case.
We note that the array is 48 words long. The first 4 elements are uninitial-
ized; the values of elements 5 thru 9 also print out on the first line. The
(10) preceeding the second 1ine of values indicates that the first value
printed on the line is for element 10; i.e., for FEEP(10) if we consider it
a vector; and similarly, the first value in the third line is for FEEP(16).
Since the last 28 elements are all uninitialized, the printout only occupies
3 print lines.

| Further down we note that the variables X and Y in routine XATAN have

no values printed out for them, but are simply labeled as parameters, which

-14 -

in fact they are. GRUMP currently makes no attempt to print out the values
of arguments to formal parameters, even in the case of routines which stand
in the direct line of calls to the routine in which execution halted, which
are ‘the only FTN routines for which such values are retrievable.

This is a flaw. It would be nice to print ouf argument values in the
cases for which they are retrievable, and someday it may well seem worthwhile
to put forth the effort necessary to enab]e.this. It witl certainly not
happen as long as GRUMP is reading FTN Symbolic Reference Maps, however,.for
they don't supply enough information--they don't tell you what the ordinal
of a parameter is; i.e., whether it's the first, or second, or third parameter
of a routine that requires three arguments. The felt need for this improve-
ment is nof huge but far from infinitesimal.

Looking on down at the pfintout for Blank Common, we find GRUMP dealing
with a more recalcitrant set of arrays. Their images start off with nice
values, but swiftly degenerate into what is in fact left-over Loader code,
which is sitting in the unused portions of Blank Common. GRUMP is able to
realize that it in fact is dealing with garbage and cuts itself off, printing
a message which in fact correctly analyzes the sftuation. ,

It is probable that after the appearance of a half-dozen or so ugly
Blank Common dumps like the present one, the user would be motivated to do a
little digging in the documentation and discover the parameters necessary to
get Blank Common’preset to the same innocuous negative indefinites as the
rest of core is. We may note that in the meantime GRUMP's output here, th]e
hideous, is at least accurate. : i '
The arrays AAA and AX are EQUIVALENCEd. That is why the two names

appear paired on the first 1ine printed for Blank Common and why the line

00 5048076359

AX SEE AAA

appears below.

This ten-page output provided a comp]ete»symbo]ic image of the state
of all variables at a moment in the execution of a physics code that occupies
some 70K (octal) words of core. This is about an average length for a full
GRUMP dﬁmp, which for all but tiny beginner programs usually occupy 5 to 20
pages. It is extremely unusual for a GRUMP dump to require more than 25
pages; i.e., more than 1500 lines--at least at LBL, where no program longer
than 170K (octal) words can fit into the small core memory of the main 7600

computer.

1.6 EVALUATION AND COMPARISON
We may now articulate and evaluate some basic features of GRUMP's

design.

1. Printout is compact but complete. This was thought to be a most
important principal when work began, and is still seen as such. There is
nothing more frustrating than having an "intelligent" dumping program decide
that you don't need a partitu]ar piece of information when in fact you do.
GRUMP attempts to print out every single item of data in the progfam unless
it seems almost certain to be misplaced executable code, and it will even
print in octal stuff that looks like garbage if it is requested to. Also,
in the default case, all elements of all arrays are printed, although it is
easy for the user to reduce or suppress the printing of large uée]ess b]ocks.

But in order to be so complete, GRUMP has to compact its printout as
much as possible. Thus, for instance, it does not explicitly tell you that
a value is for a variable typed Real or Integer or Logical or whatever, but

simply prints out floating-point values with a decimal point and fixed-point

- 16 -

ones without, shows Booleans as .TRUE. or .FALSE. , etc. In the case
where an element whose only type is Real contains a non-zero value with zero
exponent, GRUMP will print both the floating point 0. and the non-zero
integer, bracketing the pair; and similarly for othe# values corresponding
to no extant declaration of their containing variable. The futile printing
of strange values as gargantuan integers, or of good floating point as bad
Hollerith, is avoided. Also, variables Tocal to routines that were never
called are not printed out at all. A barrage of trivial information about
declarations is liable merély to discourage thé user; GRUMP shoots for
elegance rather than overload.

2. It is economical. At LBL's current computerrweéharge rate a GRUMP

dump costs between 25 cents and $1.50 to p?oduce, which is within reason
although not infinitesimal. At 1-1/2 cents per page, the printing shouldn't
add more than another 25 cents; a full octal dump of 100‘pages, in contrast,
costs $1.50 for paper alone, plus_processing charges which may well be higher
than GRUMP's. The ;hortness of the listing éﬁts turnaround time way down in
‘shops where short jobs print first; and thé completeness of the listing
maximizes the number of bugs squashed per run, thus cutting down program

development time and number of debug runs.

3. It attempts to unveil the state of a program without attempting

to diagnose that state. It is thought that a ten-page "how to debug" writeup

(currently unwritten) is necessary and should be sufficient to enable aﬁ&one
to diagnose most of his own problems. It is also thought that a concentration
on the immediate problem is less profifab]e than a_cohsidération of the
program as a whole, as an object riddled with problems, many of which will

neither cause an abort nor be diagnosable. The author's experience with

OUuwd80 7660
-17 -

diagnostic dumps has not been particularly pleasant; for all but the
simplest problems, i.e. uninitialized variables and division by zero, they
often mis1ead. Also they often over-diagnose; i.e., inform the user over
and over again of things which are in fact not errors. GRUMP avoids these
prdblems currently via the simple expedient of printing no diagnostics
whatsoever, which is probably overdoing things; but hopefully GRUMP will

- always err‘a_little'on the side of terseness. '

4. The output ‘is not ugly. The hardest part of the building of

GRUMP was preventing its printout from taking on a hideous, shrapnel appear—‘
ance. An ugly dump will be read as little as possible; GRUMP attempts to
invite the user in for a further look around, to make it pleasant for him

to amble through the state of his program and find out what else beyond the
immediate, problem is wrong with it. MNon-ugliness ranks with-compaptnéss‘as
one of the overriding fetishes that controlled the design and deve]opmeﬁt‘,.
of GRUMP.

5.. It is easy to begin using and easy to tune with experience. . The

first-time user simply has to insert a control card saying

GRUMP. |
in his deck, and something pretty close to what he really wants will aébéar
automatically. There are many execution-time arguments which méy bggused

to customize one's dump, however; they are enumerated in the User's Manual.

The phi]bsdphy has been that any feature requested wj]] be inserted, but as

a parameter with a sensible default.

The author knows of two other somewhat similar symbolic dumping

programs, the University of Manchester's MANTRAP package, and the University

-18 -

of Michigan's DUMP. We will draw our comparisons only with MANTRAP, since
it also runs on antro] Daté hardware. (Michigan's program runs. on IBM-
compatible machines.)

MANTRAP is a very nicely designed package indeed, and this author is
happy to report that he feels that it serves a completely different program-
ming environment.than‘does GRUMP. MANTRAP is highly diagnostic-oriented
and extréme]y verboseg it is oriented towards small student programs that
embody gross misconceptions about how it is that FORTRAN actually works.

It seeks to explicitly teach computing science; it tries to impress upon
the student the view of a program as tree-structured and consisting of ;
heirarchy of modules that talk back and forth via parameters passed in
Ca]]s upon‘routines.

o This view of computing is presumably a fine one to impress ﬁpdn the
young, but in fact has Tittle to do with the structure of most big old
FORTRAN programs. They are in fact, and presumably unfortunate]y, a

blurry web of references to global variables residing inla mishmash of
Common Blocks; and the best and only way to clarify their structure is to
alphabetize everything possible. This is not because FORTRAN users are
dummies or because scientists and engineefs haven't studied enough academic
computing, but because large scientific codes 1ive Tong, long Tives and get
modified by many, many people. GRUMP's basic use is in modifying big old
codes, for that in fact seems to be the main business done at the Lawrence
Berkeley Laboratory Computer Cepter. For an environment of beginning

students wfiting beginner programs, MANTRAP is undoubtedly a better product.

o
a;’
£

{54
L
e,

&)
@%

1.7 PROSPECTS
GRUMP should be in a fairly stable state now; it is thought to embody
most necessary features. It is hoped that the following can be added when
time allows:
(] Retrievg] and printing of argument values where this is possible
. Ana]ysfs of the contents of RA+1 (the area for communication with
the mopjtor) when they are non-zero
] A 11ﬁe'of diagnostics dependent upon the immediate cause, of-abort--
mbde error, time limit, user abort, or whatever
° Re@ucfng core requirements. The current unsegmented form contains
some 34K (octal) words of instructions and Labeled Common.. By
gefting rid of FORTRAN Tibrary references and using the segmenta-
tion loader, at least 12K of this should be recovefdble.. At least
ZQK, and prefeféb]y more than that, are additionally necessary for
Blank Common. |
o Perhaps the ‘abthy to. dump 7600 LCM
° Reading_pf machine-oriented FTN symbol tables when a standard form
l for same seems to exist
-o Reading of machine-readable symbol téb]es put out by the MNF FORTRAN
compj]gr. This is actually being installed at the time this. report
is being written.
) E]imination‘of FORTRAN Formatted I/0 ih favor of more efficient and
smaller subroutines.
GRUMP ié ready to begin running on systems other than LBL's. This
system is locally written and unique, but in fact it quite closely resembles

the standard 6000-series KRONOS and MOS systems, and transfer to those should

- 20 -

be a mere chore. Transfer to standard 7600 SCOPE 2. will be somewhat more
difficult, though hardly a challenge, because some I/0 fhat exp]ic{tly calls
CI0 will have to be rewritten for the Record Mangler. The author would be
interested in hearing from users at other sites that would be interested in
adapting GRUMP to their Tocal system and making the necessary mods available
to the world at large.

GRUMP has only recently been put up on LBL's 6600 system. Therefore,
no detailed timing trials have yet been made; only the times réquired for
entire runs are currently known. This is because 7600 timing histograms are
tedious and expensive to gather, because a softwarg simulator must be used;
but 6600 timing triafs are trivial and cheap, becausé of the system architec-
ture. | |

Thus there are undoubtedly some Worth]ess loops 1ingering undiscovered
within the bowels of GRUMP, areas of code_that sop up time unnecessarily, and
one of our next projects is to uncover them.' We hypothesize that the biggest
time-burners are the listing-reading routines, which are designed to permit
easy optimization but have not in fact been opﬁimized, and the FORTRAN ENCODE
statement, which is used to translate most variables into printable format.
But no doubt big biﬁnders are lurking there too....

Special thanks to Jerry Knight, for insisting that the output be

pretty, and to Bill Johnston, for insisting that it be correct.

o

ok GRUMDP DU MP tx

PROGRAM HALTED AT ADDR 000133 IN ROUTINS POINT

CALLED FROM TRACKS
CALLED FROM HOWL

AT LINE 101
AT LINE 113

E 21 MAIN PRNOGRAM xkx

CONTENTS OF REGISTERS

*

S

LPL ves £,2

(ABSOLUTE ADDR 000653}
{RELATIVE ADDR 000030)
(RELATIVE ADDR 005340

A REGISTERS (CONTAIN ADDRESSES)

73 G TT 12.52.18 LBL/BKY

't/ CI1t5 av?

o ADDRESS ® 8 & 06 & o * 0 0 o 8 0 o 0 0 s 0 s 0 & CONTENTS . .
A0 7 053005, -> 000052 IN ~TRACKS- ‘ -— 00000000000000053013 = 22027
Al 001432 ~-> 000712 IN —-POINTS- -= 17166100313002702624 = ,38286 OR _*ON[YXB#VTe
a2 065647, => 7000015 IN SINCOS= -~ 04000006500000000000 = *D F/ '
A3 065721 ~> 000067 IN SINCOS= = 17147235645603410600 = 11419 OR '0L<2#,C6F °
A4 000126 => XTARG IN /EXTRA/ -- 50000000000000400126 = %% UNINITIALIZED %4«

A5 000311 -> RAD IN/MAKE/ -~ 172271055624414535642 _ = 7.1362 O0OR _ORYE,T6#27*
A6 77000267 -> " xoC IN /MAKE/ -- 17770000000000000000 = s%& CALCULATED POSITIVE INDEFINITE ~ ##%
A7 000323 -> PBETA IN /MAKE/ -~ 17327614533513615236 = 1990¢3 0OR *0Z-L$2K{)3¢

N o X REGISTERS (USUALLY CONTAIN DATA) . B
X0 T17226475142626040354 = 6.6195 OR 'ORe>L VVDC=*

X1 __17166100313002702624 _= .38286_ OR__*ON{ YXB VT e o o
X2 7 700000000000400000650 = 67109288
X3 17203553562600665621 = 'QP2$,V v,Q¢ _ i
X4~ 60000000000000400126 = %% UNINITIALIZED s«

X5 __ 17227105562641453542 = 7,1362 OR_ *OR'E,T6+27* o _

X6~ '17770000000000000000 = **% CALCULATED POSITIVE INDEFINITE ~ ##s

X7___17770000000000000000 = *#&« CALCULATED POSITIVE INDEFINITE es& B i
o B REGISTERS (MISCELLANECUS)

‘80" 7000000 = 0
Bl 000650 = 424y => 000130 IN -POINTS- -- 51500003115140000126 = -9,29638+136 OR
82 000001 = 1
B3 777767 = - e e S
84" 777745 -

BS 074017 -- _ 00000000000000000030 = 0

U B6 7000004

87 000005 = 5

BLOCK s esseENTRYge00eFROM o ceee sl INEocaes s REL ADDR

DECODE= DECODI.
_____DECODE=__ DECODRe
I - Rar e
G0

T HOML
___ INITIZE
INPC= INPCI,
INPCs INPCR,
ouTC= " ourel,
NUTC = OQUTCR,
" POINTS

PRAM

RAND

REED

REED 240
REEn 240
REED 239
SAGE 300

T wxx TMAIN PROGRAM

_SAGE 180
REEN 236
REED 236
TPRAM T T 4y T
PRAM 41
TRACKS 101
HOWL. 109
6o 231
HOWL 99

000107
000107
000105
000333
e
000134
000103
000103
000033
000033
000030
005334
000463
005325

_ TRACEBACK OF LATEST CALLS TO ROUTINES

- BLmK‘.'I.EN‘".‘...FROHQOOQ..REI

T ALNG

_ATAN

SINCOS=

T FNTAP=

QUTC OM=

COMIO=
FORSYSa
" INCOM=

FLTOUTs
FLYOUT=
Q8.10,

GETF1ITs
KRAKFR=

ALOG.

ATAN,

CIQ=

cnsS,e

FECAP,
FECCHR,
FECC63.
FECOPE.
FEIFST,
FEOFAL,
FEOSCA,
FTNRPV,
GETFIT,.
KRINI T,

SAGE
XATAN
ERMSS
POINTS
UTCs=
KODER=
OUTC=
QUTC=

KRAKER=

KNDER=
KODER=
HOWL
QUTC=
INPC=

0001 05

_. 000026
000575

000127
000130

_ 000056
000165

000105
000357
000307
000300
005320
000023
000132

ADOR

0

4 ¢ € e ¢

C

RX SAGT s

[RIVARNE PO A

coo)E

SAGE HOWL 111 075336 Sticnse sin. POTITS 00n1n7
SAME 9FED 218 000067 son T SORT, POINTS 000115
SLAP REFD 351 000256 ERMS S STATS. Famss 000562
TRACKS HOMWL 113 005340 SYSs cto= 000005
WT SAGE 209 000342 UZERD.. UZEROOO 08,10, 000074
XATAN POINTS 1n 000105 WTH= ERMS S 000406
X101 = XTOI. 60 000057
ERMSS 17.GET INPC= 000161
ERMSS IZ.O0PE FORSYS= 004705
- - T ERMSS zz.5ut ouTC= 000176
- " LIST OF ENTRY POINTS THAT WERE NEVER CALLED
" ABNORMS T ATANZT TTTTOCBs T T T TRECEE, FEIFSC. ~ ~ FEORLIF. INPBR, " NAME. RDwW= “S$TRAY - 8YS2= C2PSE
ABORT ATAN2. DEDX FECFMT. FEIFSG, FEORIO., IDERR, NESTLE RDX= STREAM SYS=6 12.CH
ABORTC ~~ BFN. " DET. FECFMU. FEIGNC. ~ FEOXFL. ITOJ. NGONG REWIND. SYP=l TAN, 11.CLO
ABl. AL ANK DRIFT FECJP= FEINUM, FEOZRO. KODWRT= ORDR . RINGER §YPa3 TORTURE Z2, EOF
ACOS T CBD. 77 ENCODIS FECLP. FEISBL. FINALE KOJPT. ~ 'OUTBI. = ROTN SYP=s TRIGGER 2Z.EOR
ACOS. COKPCT ENCODRs FECMSK, FEOAFM, FLLCM, KOOL ~ OUTBR, ROTTEN SYP=5 TRIGSAV 2Z,REW
T ADD TTTTTCHISQT T ENDe T FECNAP, ° FEOSBLS. FLOW KOREP,” = " PLOP RUNGE SYSAID= = WHERE TL.SKP
ALOG CIRC ERRSET FECPRT. FEOCNY, FLSCM. LCB= PRETSUM SCAT SYSAIDe WHMIRL
7 ALJG10 T CLSLNKe ™ EXIT ~~ ~ FECRPy ~ FEDEOV. FUNWT LDRUSX= 08.10. SHUFFLE SYSARGe WNBa
ALOG10. CLUTCH EXP FECV. FEOEXP. GAUSS LECNARD RANDOM. SIN SYSEND. WOBBLE
“TC ANGRM TUUCMES TUUT EXP. 7T U FEIBLK= FEOF. 7 GOTOER. LINLIM, RATE SLACOUT " SYSERR. WTL=
ASIN C0o0, FAN FEIBLK, FEOL. G0 LODGEN RAZ SQRT SYSE3, WTws
TUTTTASINGTTTTLOS FAR FEIERR, ~ FEONTLL "~ HFIECD ™ " MAXWT ~ " RCL® ™ "7 STOP. ™ """8YST1A, ™ WYXe™ = = =7 oo
ATAN COSMO FECBUG. FEIEXP. FEORND, INPBI. MORGUE. RODLs STRAIT SYSIST, XTOY, . N
b
e e STATUS OF FILES e e
EXT NAMEseooINT NAME..qs STATUS EXT NAME....INT NAME..,.STATUS
TTOTTTTTTUOINeUT T INPUT] b R — ouTAUT ouTPUT 000027 - ;
RALPH RALPH UNUSED CYRIL CYRIL UNUSED
ST FOURVS ~ "~ " FOURVS -~ UNUSED DHOWL DHAWL UNUSED
OUTPUT DEBUG 000027

_ VALUES OF VARTABLES WHEN PROGRAM MALTED

7ADSS/ VARIABLES IN COMMON /ADJS/
T URFRET TR RS T "WANDZO TISY & JE® ®&¥ ~° " XRT (81 "= ¥ ¥ T XYR (WY T Hw WEw T o
,-b.-,_w".."f. (8) = g% *4& _YTR (8) = 8x #e=e o :)
/CHI VARIABLES IN COMMON /CHI/
o CH!XY (507 = 50% &% CHIZ (50) = 50% %&% : T T e e -
TTICRT T “VARTABLES IN CORMON /CR7 ~~ ~— "7~ - Comommm T mmmm———— T T T T e e T -
CHI . = ERROR = 1.00000€~12 M = 0 NCYC =0
R K 1 i {+ I R 1) B/ T e T mn =
I1M - _I2m i
JCYLPRM/ VARIABLES IN COMMON /CYLPQH/

T CYLDF T CYLOF DF I (I&) % 1% wew—
CYLDO (CYLDO DO } (4) = 4% sas
TTTCYLP [CYLP CYLX1 PHIO 1 (18} = -~ e

(5) 6.52600E-02, 8.405000E~02,
(11) 17552, 16049,
CYLR [CYLR RNOM) (16) = 1.3608,

T © T CYLDRSEE CTWLXZ "™ 777 T CYLDTW TV CYLDTH OTH Y (%) a &% B+

CYLDL T CYLDL D1 1 = &

60 26000E-02, " T<41600E-02, «14504, 13449,
«15920, e14472, Te25800E-02, 8.95300€E~02,
«10455, " «12011, ©23934, 0262443
1.3511, 1.3314, 1.1321,

1.3414,

4

C e 6

-

FENSN BANFY

S . »
CYLS [CYLS SIZE 1 {4}

CYLSET = kw

CYLTP [CYLTP TP) (4) = -4 420000E-04%, . 4+ 00000E-05, 1. 50000F~0%,
 CYLTR [CYLTR TR) (4) = _ . 2.89000E-03, 3.65000E-03, -1.60000E-04,

CYLTY [CYLTY TY 1 (4) = 2.90000E-04%, 44 TOO00E=04, 1.10000€=~04,
. CYLX [CYLX X0) 4) = 5.81000E-03, 6.72000€-03, 6.53000E-03,

CYLX1 SEE CYLP CYLX2 [CYLX2 CYLDR DR] = &=

_CYLY € CYLY YO 1 (4) = =1.50000€-03, ~1.18000E-03, -9.60000E-04,

CYLZ [CYLZ 20 1 (4) = 4* 2,48000E-02 DF SEE CYLDF

__ DTW SEE CYLDTM __ 7" "po SEE cvLoO - D1 SEE CYLDL

RNOM SEE CYLR SIZE SEE CYLS TP SEE CYLTP
B _ TY SEE CVYLTY _ X0 SEE Cyix Y0 SEE CYLY
_____ /OCHINFO/ . VARIABLES IN COMMON /DCHINFO/ X B

CHTYPE (30) = 2% °*PROP CH *y 8% 'SPARK CH ¢, 20% &%

. ‘cLock = ex - _ICHOFPT (500) = 500% *== IDAZN (1500) = 1500% =%

IDCH (30) = 1, 2y 3, Gy

~ (7) 7, 8y o 9y 10,

NDAZMS = k% ..NDCH = 0

NDPTS (20) = O, _19% #*x%x;

NWIRES (30) = 30% ®»* PHIOFO (30) = 30% ®2x SPEED = *¢
TTU7ENDCAPY T T VARTABLES INTCOMMON JENDCARZ T T T . o T
. _ ECPHIO (4) = 4% %52 __ ECSIG (4) = 4% »%» 1ECP . m ke

MAXECPS = & MXECPET = 100 MXECPTK = 10

___NNECPS __= 0
. JEXTRA/

VARIABLES IN COMMON /EXTRA/ __

 RECPMAX (4) = 4% #2s

|

RECPMIN (4) = &% s

GKM = 51100 GKRP = 0. CKPET = W&
- 1FOURVS = O . IRUN =0) . IRUNCTR =}
ITRYL =0 1TYPE 2 0 NEVTOT = 8
__ NTRYS =3} . XIR = ** XTARG = o
YTARG = . : ZIR . " 2TARG a e
TT/EILEST T YARTABLES IN COMMON ZFILES7) ’
__CYRIL = *CYRIL' DHOWL = *DHOWL® o ~ FOURVS = 'FOURVS®
NTPIN SEE INPUT NTPOUT T NTPOUT OUTPUT 1 = *QuTPUT!
_RALPH = = *RALPH* = . : R
—_.=60- _____ VARIABLES LOCAL TO ROUTINE -GO-__ . __._.
AA T AA TT) = xe. :
Al (8) _ m =320.23, ___ 795.14, 1801.6, 20004 0y
(7)7 1801.6, 2000, 0%
A2 (8) = 320423y __ =T95.14, ~ =1801.6y 200040,
(7)) =1801.6y 2000.0%
A3 (PARAMETERese) A4 _ (PARAMETER...) BCOS = *BCOS
BPOL = vgPOL ¢ B1 T 81 11 1 = »#] B2 [B2 12 1 = ¢
e B4 1 B4 T4 V=0 0 D350 = . EA L
FMIN = FN = ,50000 FOURPL = 12,566
. __.GAGE -~ = *x i .00 @ W% _ KOS = 'HCOS
11 SEE 81 12 SEE 82 13 SEE 83
R =5 . ONE4V _ (PARAMETEReeso} PL .(477) = 4% ses
QT TR 1995, "“ 01 77 %=) :
R {3) = -,16050, _«39853, « 903003 o o
7 TTRGE T T m wx T T ORMN BN SINE 7 77w’ 429647
_ TDEL = *TDEL M _ TMAX - %% TMIN . % N
) T OTHOPT T T e 642832 7T T THOGV (PARAMETER.el) X = ns
UMAX i S W = e ur . * 139,00
z = ,&0000 221 Ta e)
/JHEADZ 77 T VARTABLES IN COMMON /HEAD/
. FITB = 1,0000 LVAC = ux -« a2
vz = %k XIN = ®% YIN R 1]

« 2000

4.10000E-043
-3.15000E-03:
6410000E-043%
7.300005-033

-5 .50000E~043
DR SEE CYLX2
PHIO SEE CYLP
TR SEE CYLTR
10 SEE CYLZ

s, T h 6
20% *%e;

THIST (30) = 30% se%

LIBEAM = o8

NECPPYS = O

LECP (4) = 4% %42 o

TeveNT = 17T T T T
... 1TRYTOT = O R .

NF INAL = %

YIR = &

INPUT [INPUT NTPIN] « *INPUT®
DUTPUT SEE NTPOUT

-320.23, 195414,
320.23, _ -795.14,
. BOEL = *BDEL Y e e
B3 { B3 13] = 0,
FMAX _ LIS S -
FPISQ = 157,91
. 11 SEE AA .
14 SEE B4
. PN e
B ({1 SR L {: | S R
.o yYOL = tTPOL -
) 1y = %8
b2 0 =139%00
uy n %¢
ZIN - RN

-2+

v,
vb

e

e

anon

At

By
wha

NP (5) = Lx xwe C
UU (495) = 495% %%
/STRAND/ VARTABLES IN COMMON /STRAND/
JIRAND =0 _ .
/SWITCH/ _ VARIABLES 1IN COMMON /SWITCH/
ISW =0
" ~TRACKS= = VARIABLES LOCAL TO ROUTINE -TRACKS-
SRR SOR.. 1 4 SRR [UUOTR. 0. JS K .=
_/TRIGGER/ VARIABLES IN COMMON /TRIGGER/ _) -)
IFIRED = #% ITRIG (48) = 48% w*as ITRIGCH = 0 LTRIG = %
 MAXTRIG = ®* __MINTRIG = »x _ NTRIGS = ## TOPPLE = &%
TRIGHLN = #=#
TS F T T UVARIABLES INTCOMMON /TS/ T T T T - T T T
__CAN = 1,0000 . _ v L . .
FEED (48) = 4% =%, «2626%, «23934, +12011, «10455, «16049,
1100 .17552, _ __B.95300E-02, T« 25800E-02, el4&T2, «15920, 8. 05000E-02,
(16) 6.52600E-02y 13649, 14504, 7.41600E-02, 6.26000€~02, 28% x%2;
______ HAFSIZE (24) = 425400y 40640, .. 2% 1.1025, @ - 2% 1.1000y _ 2% 1,2090, 2% 1,337%,
(11) 14% s#x;
___HAFWIR = ,25000 ____NPHIO = 20 3 NSIZE - 10 . e e
SIZESQ (24) = ,25806, 66064, 2% £.8620, 2% 4,8400, 2% 5,8467, 2% 7.1556,
BT B % 3 I Lk T o e e I
S$IZZ (24) = ,.50800, +81280, 2% 2,2050, 2% 2,2000, 2% 2,4190, 2% 2.4750,
(11) 14% ®ex; =~~~ e e e e e e e e e e e
T TANSKEW (4) = 4% #2% -

T IUSERZTTTT T VARITABLES IN COMMON JUSER/ e oo R) T _ 'ﬁ
NUSER___® O __ YOUSER {56) = 56% #x« B R N N '
___4yoasLE/ VARIABLES IN COMMON /wOBBLE/_ e e e

BETA a .99758 “CoSFL = 42964 FLOP = T.0267 PUASS = 139,00
. PXYZ = 1995,2 ___PXYISQ = 3,98068E+06 RADSQ = 50,925 SINFL = ,90300 . L R
TTXYMONT T a s
T eSO 7T G ARTABLES LOCAL YO ROUTINE -WT- - - oo
Al _(PARAMETER.eo) e e e e e e e e T e e e e o R
__=XATAN= _ VARIABLES LOCAL TO ROUTINE -XATAN- o . o R L
A180 = 3,1416 A270 = 4,7124 A360 s 626832 4% = 1,5708
~ _DANGLE = 1,1267 _ PUTZ = 2,1018 - X (PARAMETER.) XATAN = 1,1267 o . i
Y (PARAMETEReeo) : ‘
Z¥7 VARTABLES IN COMMON 7127 7 T T mmmmmTTm e T o e e TeTm oo
pMP s# = RHO2 = ex S1G2VX = 0. . IBGN = & o A
ZRAY = % : ’
TUTTRRTT T T U ARTABLES T TN BLANK COMMON 777 TN T MmUwmmo s onnnmonnom o omm s
__AAA [AAA AX] (100} = 12% 0oy (UNNORMAL IZED) 1.06688+242, ‘_pm,_A“_(UNNONHAL!ZEQ!W§,18204—116p L
(15) (UNNORMALIZED) 7, 26082+¢280, *ISIGNS®, t 0. 262i48 1, 4000000400000 0000008

eeseeBLOCK DISSOLVES INTO WEIRDNESS, NO MORE INTERPRETATIONSeseoe
ecessPROBABLY LEFT-OVER LOADER CODE IN BLANK COMMONeeaeo
__AX_SEE AAA
"AY (100) = 400040,
(7) 1.95240-115,
TTE11) 7 40000004000001 6060008
. eseesBLOCK DISSILVES INTO WEIRONESS, NO MCRE INTERPRETATIONSceeae
eeeesPROBABLY LEFT-OVER LOADER LODE IN RLANK COMMON.o...
AZ (100} = (UNNORMALIZED) 7.26082+280, 'KODER ¢y
(5) 'HY, (UNNORMALTZED) 5.50919E-79
eesesBLOCK DISSOLVES INTO WEIRDHESS, NN MORE INTERPRETATIONS..ess

Bay 3% 139,00,
{UNNCRMALTZED) T7,26082+280,

{ UNNORMALT ZE0) i, 066884242, ~ " (UNNORMAL TTED)
_VITOXS. % U 04_262148 1y . e
{ 0. 262145 1, 400000 040000010000008,
TR

This report was done with support from the Department of Energy.
Any conclusions or opinions expressed in this report represent solely
those of the author(s) and not necessarily those of The Regents of the
University of California, the Lawrence Berkeley Laboratory or the
Department of Energy.

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

