
\

:3., :-,R': .c:..ND

W'--'' .. Uh'IEi'!TS SECTION

PRELIMINARY REPORT ON GRUMP-
A SYMBOLIC FORTRAN DUMP

Ed Fourt

March 1977

Prepared for the U. S. Department of Energy
under Contract W-7405-ENG-48

For Reference

. Not to be taken from this room

t((!-3;L
LBL-6762

"·I

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
Califomia. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

0 0

1.1 INTRODUCTION

Preliminary Report on GRUMP-
A Symbolic FORTRAN Dump*

Ed Fourt

Lawrence Berkeley Laboratory
University of California

Berkeley, California

March 1977

LBL-6762

This is a first report on the program GRUMP, which provides symbolic

dumps of FORTRAN programs--specifically, of programs compiled by the Control

Data FTN compiler--and which is now in operation at the Lawrence Berkeley

Laboratory. By a .. symbolic dump 11 we mean a printout which is generated and

used like a standard octal· or hexidecimal dump, to inform the user of the

state of his program at some specific moment, generally the moment at which

execution aborted; but which in contrast to the octal dump, refers to all

variables by their FORTRAN names, and gives their values in terms of FORTRAN-

style encodings, rather than simply as unlabled machine word images. A line

of an octal dump might go

001234 17204 00000 00000 00000 00000 00000 00000 00006

The corresponding line of a symbolic dump might go

F = 1. J = 6.

The usefulness of the latter form should be obvious.

This report is in no way a guide to the use of GRUMP. For that, an

LBL computer user should print out a copy of the WRITEUPS subset AIDS; the

* This work was done with support from the U.S. Energy Research and Development
Administration.

- 2 -

Computing Consultants can tell you how. A somewhat revised version of that

user•s writeup is being made available to the world at large as LBL report

LBL-6764, entitled User•s Guide to GRUMP, A Symbolic FORTRAN Dump. The

document here is rather a report on what has been accomplished and a tenta

tive self-evaluation of the accomplishment, together with many items of

interest to the systems programmer who may be interested in putting up GRUMP

at his own installation.

1.2 A SHORT HISTORY

The Lawrence Berkeley Laboratory has a history of trying to make the

life of the non-specialist computer user a little easier than it is at many

large scientific computing centers. An octal dumping program named DMPS

which read Load Maps and was thus able to provide the user with addresses

relative to the beginn1ng of each blockof a relocatable load, was made

available some 10 years ago, not long after the delivery of LBL•s first

CDC 6600. This program, written by Bill Gage, is still more useful for our

purposes than anything provided by the manufacturer today; at LBL it has

been further developed, chiefly through the efforts of Roy Carlson and Tom

Strong, into today•s program DUMP, a very powerful octal dump indeed.

The desirability of a truly symbolic FORTRAN-oriented dump has always

been obvious, however; and work was begun on one by the author, under the

auspices of the LBL Systems Group, in late summer of 1975. This report is

being written some 18 months later, in March 1977, when with version 4.0

GRUMP has reached what we contemplate will be a fairly stable form. It was

never worked on more than half time, so the current version embodies some

9 man-months of effort.

8 0

- 3 -

The author spent many years as a chief programmer for various LBL

physics groups; which is to say, as perhaps the only computer expert among

many heavy computer users. During that time he devoted much thought to

ways of making his own life easier, to mechanisms which would enable him

to uncover his own and his colleagues• bugs faster, or, even better, would

enable his non-specialist colleagues to uncover their own bugs themselves.

GRUMP is the result; by the time work actually began on it, the situation

had resolved itself into high definition in the author•s mind, and work

could thus proceed straightforwardly.

1.3 PROGRAM INPUTS

Three inputs are necessary for a symbolic dump--a core image giving

the bit-values of all relevant computer words, a load map giving the

absolute address of the first word of each relocatable block as it has

been linked into the core image, and symbol tables giving the name and

relative address and some of the attributes of each variable in each

relocatable block. We here describe the forms in which GRUMP currently

expects each of these inputs.

The core-image record read by GRUMP at LBL is a single file containing

two logical records. The first is the .. Exchange Package .. , which contains

the values of all program registers and is 16 words long. The second is

the core image itself. Some coding would be required to generate such a

file on a standard CDC system. At LBL the control-card cracker has been

modified to create such a record when certain magic control-card verbs are

encountered, a small and effective ugly patch.

The load map is read in the form of a unique machine-oriented record

- 4 -

called a 11 Dbgmap 11
, which was first designed ·.as input to LBL 's (octal) DUMP

program. It seems certain that no other system generates such an object.

The information contained on this record and used by GRUMP is merely this--

, the name and absolute starting address of every load block and whether it

is a Common block or a routine block; and the name and absolute address of

every entry point. It should be trivial to write a routine to get this

information from the printout of any loader, e.g. from the CYBER Loader

Map.

The names, locations, and attributes of all variables--i.e., the

symbol table information--is currently read·off the FTN compiler's output

listing itself. GRUMP rewinds whatever files it is told have FORTRAN

listings on them, and goes thru the files looking for. an FTN 11 Symbolic

Reference Map 11
• ~Jhen it finds one, it scoops up the information it needs.

This method led to a very robust and easily-debugged piece of code; for in

the de~eloping and debugging stage, whenever a question as to GRUMP's actions

arose, it was easy to track down the problem and fix it, because the file

being read was not only human-readable as well as machine-readable, but

also well-known to be, trustworthy.

The routines that read the FTN listings have been carefully designed

for ease of maximal optimization for speed--unlike the remainder of the

•program, which was basically designed for ruggedness and maintainability-

and in fact GRUMP does run relatively fast. A full GRUMP dump often costs

the user less to generate than does a full octal dump--because the GRUMP

~ump is much more compact and entails the for~atting and printing of a much

smaller bulk of information. A FORTRAN listing is a very bulky object,

however, and the best way to speed up GRUMP's running time would be to enable

- 5 -

it to directly read a symbol table formatted by a compiler for optimal

machine-readability.

Now of course no Control Data compilers turn out such a symbol table

in their manufacturer-supplied versions. Furthermore, it is most desirable

to avoid the problems connected with maintaining special mods to the FTN

compiler. But the University of Manchester will supply one with mods to

FTN that do indeed spill the symbol table to disk; these mods were written

as part of their MANTRAP package, which is discussed below. Furthermore,

CDC has made an announcement that they are going to develop a good Inter

active FORTRAN Debugger; and the specifications for this product would

seem to entail modifications to FTN such that it will indeed write out a

machine-readable symbol table.

So it may be that there will soon be a standard or quasi-standard

FTN spilled-symbol-table format, one that will be maintained or at least

not smashed by Control Data. Should this happen, GRUMP will be modified

to read same.

GRUMP also has the ability to spill the internal symbol table form it

constructs, and then read it back in during a later run. This enables one

to get symbolic dumps of routines which are not compiled in the same run as

that in which the dump is generated. The reading of these forms is of course

extremely rapid. These symbol tables are updateable; that is, a few routines

may be recompiled and a large symbol table revised and re-emitted by GRUr~P

itself to reflect the changes.

1.4 FLOW OF PROCESSING

A GRUMP run divides itself naturally into two phases--first building up

an in-core symbol table, and then generating the listing. Before describing

- 6 -

the two phases in turn, we note that the FORTRAN listing of the program is

copiously annotated and the program itself purports to be well-constructed,

and thus it itself is its own basic reference. The BLOCK DATA subprogram

attempts a glossary on most variables. 99 percent of the 9200 lines of code

are FORTRAN (FTN4 dialect), with the balance COMPASS. The source code con

tains numerous format-free coded 1/0 statements, which are used for debugging

GRUMP itse 1 f.

The symbol table is built up as a single vector stretching back from

the front of Blank Common. Notes in the BLOCK·DATA subprogram contain a

detailed map of its contents and methods of accessing them. First goes the

information about Load Blocks and Entry Points passed on from the loader.

This information is used not only for itself, but also to index the rest of

the symbol table. Since we pass over the core image sequentially, the list

of load blocks arranged in load order is handy for indexing the information

from the compiler, which gets pasted on the end of the vector in the order

in which it is presented to GRUMP. This order is not necessarily the order

in which the routines were loaded.

Next, information about the individual FORTRAN blocks is read and

stored. This information may be in the form of FTN output listings, where

it is taken from the cross-reference map that follows each routine. It may

also be taken from old GRUMP symbol tables that have been saved from a

previous run. The output listings from all versions of FTN that have been

put up at LBL may be' read; that is, currently, FTN versions 3 thru 4.6.

The program recognizes listings primarily from thetr page-header lines,

which may vary somewhat from installation to installation. Anything on a

print file that is not an FTN 1 isting will simply be skipped over.

- 7 -

The map of variables in a Common Block is taken from the first instance

of the block that GRUMP sees. This is not in accordance with the strict

rules of FORTRAN, which allow every routine to segment the common vector as

it wishes, but it is the only practical method for GRUMP to adopt. Mapping

Common Blocks differently in different routines is a terrible programming

practice, although a common one on primitive and unfriendly FORTRAN systems.
i

The *COMDECK facility of CDc•s UPDATE program provides a very natural and

elegant way of presenting identical Common-Block definitions to all routines,

however, and GRUMP both encourages and assumes its use. No user has in fact

ever inquired about the method used for deciding what to call variables in

Common Blocks, let alone complained about it; CDC users seem to assume that

we would assume that they would be using the *COMDECK facility.

After reading FORTRAN information, and writing out the FORTRAN portion

of the symbol table if such is requested, GRUMP processes any directives the

user gives it. These directives may appear on the GRUMP control card itself

and also on a little file of card images. Their principal use is in sup-

pressing or shortening the listings of various load blocks; for instance,

one can tell GRUMP that no more than 5 values should be printed for any array

in a certain Common Block. A directive can also tell GRUMP that certain arrays

contain funny-formatted data that should be dumped in octal if no normal

FORTRAN interpretation of it can be made; ordinarily GRUMP would cut the
'

printing of such an array short, figuring that it had been over-written with

garbage or had never been initialized.

At this point GRUMP is ready to make its first pass over the core image.

The symbol table is as complete as it ever will be, and the rest of Blank

Common may now be used as a buffer for reading in large chunks of core image.

This first pass is used to dig out:

- 8 -

• The word contained at. each Entry Point (which points back to the

instruction that last called the Entry Point),

• The word containing the RJ instruction that last transferred

control to each Entry Point (which contains the FORTRAN line

number of the CALL statement or FUNCTION reference, if the last

invocation was from a FORTRAN routine),

• The contents of the word at each address that is pointed to by

one of the 24 processing registers,

• Parts of the F.E.T. and F.I.T. (control tables) for each file

for which there is a pointer in low core.

This may in fact entail two passes over the core image, since an Entry Point

in one buffer-load may have been last called by an instruction in a previous

buffer-load.

After this pass or pair of passes, the first portion of the listing is

written. This consists of:

• A traceback from the routine last in execution back up the path of

calls to the main program,

• A symbolic analysis of the data in the registers and the names

and values of variables whose addresses are contained in any

register,

e A full traceback of the latest calls to all Entry Points,

• An ultra-minimal file status report.

The symbolic register analysis is probably the most powerful item in

the whole dump. The FTN compiler is obstin~tely conscientious about opti

mizing code for speed of execution, and there is no practical way to make it

compile code on a line-by-line basis and reveal where the compiled code for

- 9 -

each line begins. Thus there is no way of automatically telling someone

what line was being executed at the time the program aborted, because code,

for all lines between two transfer points is jumbled together in one fast

running snarl.

Thus it is often quite difficult to figure out exactly what an FTN

program was trying to do when it expired. The symbolic register analysis

is a great help at this point, for the addresses of sinister variables are

usually sitting in A-registers and GRUt1P can immediately tell you their

names and values. This is almost as useful as the information one gets

from the old RUN or new MNF FORTRAN compilers, which can tell you which

line of code it was that blew you up.

The file report currently tells one very little--the external and

internal names of the file, whether or not it had ever been used, and the

octal value in the F.E.T. •s request/response field if it in fact had been

used. This is sufficient to its purpose, however, which is to uncover a

very puzzling class of errors--namely, the errors caused by the connecting

of an internal logical file to the wrong actual external file. CDC has a

convention for changing actual-file names at execution time by positional

arguments on the control card which is both powerful and dangerous, and

since the first I/0 reference to a previously undefined actual-file causes

that file to be created on disk, it is fairly easy to make a mishmash of

your I/0 and not be able to figure out what went wrong. But the simple

printtng of logical and actual names for all files makes this error easy

to uncover.

We then make a second pass over the core image in order to print out

the values of all variables. It would in fact be possible to get by with a

- 10 -

single core-image pass, but the current way of doing things will greatly

reduce the core that GRUMP requires when it is overlaid or segmented. It

would not be a particul~rly difficult chore to change over to a one-pass

operation, but this will probably not be done, because it is felt' that the

current most-needed improvement is reduced core requirements, and' not reduced

I/0.

If a block is short enough to fit entirely within GRUMP's core-image

buffer, then the variables in it will be print~d in alphabetical order;

other\'tise, they must be printed in load order. The variable listing is

written as formatted print-lines to a temporary file; and when this is

finished, an attempt is made to read the entire temporary file back into

Blank Common at once. If this is successful, then the blocks are copied

out of Blank Common to the ultimate print file in alphabetical order; if

Blank Common is not of sufficient size to hold the entire variable listing,

then this listing is merely copied to the print file in the order it was

created; i.e., in load order. The net result of all this alphabetization is

, that it is extremely easy to find your way around a GRUMP variables listing.

GRUMP will in general print out the values of all elements of an array,

treating the array as a one-dimensional vector because in fact no dimension-

ality information is obtainable from the FTN listing beyond the bald fact

that the variable is not scalar.

Two conventions are used in an attempt to keep the bulk of the printout
,,

within bounds. One is 'the DATA-statement 'convention for indicating consecu-

tive identical values in a vector, that is the convention of saying

'<count>* <value>·. Thus if the 20 elements of array AR are all identically

zero, GRUMP will report

AR (20) = 20* 0.

0 ·u"· ' ~ n ~:.; <t.J {_ r'.
' ' '"l·,i."',., J u ~ / 6 ;•~ '7·" ;:')

- 11 -

The other is to stop printing values when five consecutive elements

are found containing uninterpretable values; the assumption is that the array

is in fact uninitialized, and filled with leftover executable code, or else

has been overwritten with garbage. At LBL the former is particularly fre

quent with large arrays that sit in Blank Common, for Blank Common is

generally not initialized and when execution begins it contains the executable

code of the loader, which is of no interest to the user. In these cases a

message saying "block dissolves into weirdness, no more interpretations"

appears, along with an appropriate diagnostic, and printing of values halts.

It turns out to be quite easy to tell from the form of a word of core

whether it represents a floating-point number, an integer, a Hollerith

(character) value, or garbage. There are few ambiguous cases, given the

use of some obvious heuri.stics--all floating-point must be normalized and

of a •reasonabl~· size, no integer may have absolute value greater than

2**48-1, Hollerith must contain no embedded zero-bytes or characters with

octal value greater than 608. One of the few exceptions of note is the

Hollerith value 6LOUTPUT, , which is also a perfect 20.255 ... In the few

cases where GRUMP is able to make more than one good interpretation of a

value, all interpretations are printed, enclosed in brackets.

Control Data computers are able to generate what are called Indefinite

and Infinite forms. Their essential purpose is to blow up a program as soon

as it attempts to use or succeeds in calculating (depending on the machine)

one of them, in a generally successful attempt to make a program abort as

soon as a problem becomes apparent. GRUMP takes special care with such

forms, since they are usually entwined with program problems.

Many CDC systems, including LBL 1 s, automatically preset all otherwise

- 12 -

uninitialized variables to a special negative-indefinite-plus-address form

at load time; this type of value will cause an immediat~ abort when used as

a floating-point operand or as a subscript; or when by horrible mischange

it is executed as an instruction, and since it contains its own address each

value is .unique to its variable element. GRUMP will print such values sitting

at the proper address as simply ** or *** ; if the value·should contain

the wrong address, a not-particularly-helpful note is printed to that effect.

This values-of-variables information is not as helpful in tracking

down the immediate cause of a program abort as is the printout from the first

pass. It has the great advantage, however, of being extremely readable and

compact, and of often pointing out to the auditor a half-dozen further bugs,

many of which would have caused incorrect answers to be calculated without

causing any machine interrupts at all. Experience has shown this information

to be invaluable; even more than the reduced time it takes to find the

immediate cause of a program abort, it is this ability to show the programmer

the conditions that will lead to future aborts and the even more abominable

future incorrect results, that can so greatly reduce program development

time when GRUMP is used.

1.5 SOME NOT~S ON OUTPUT

Selected pages from some sample GRUMP printout are included in an

appendix. We point out a few of its features.

We may note that the immediate problem is instantly obvious--the user

has forgotten to initialize the variable XTARG in Common /EXTRA/, and an

attempt to use it in subroutine POINJS has blown him up. In casting our

eyes further on down the listing, however, we immediately encounter another

0 P '··· .·.i, J.··~ ~, a ,.J. ;· _, , .•.• 8 '..; . ,,; 0 t ' () ;;;, "

- 13 -

suspicious circumstance--most of the variables in commons /ADJS/, /CHI/, and

/CR/ are also uninitialized. If the auditor is fairly knowledgeable about

the program he is using, which is usually the case, these facts may tell him

about more bugs that will inevitably bite him in the future if he doesn't fix

them now. In this case, in fact, the uninitialized state of /ADJS/ is indica-

tive of programmer error; and another bug is smashed before it can really be

born.

We note that the traceback is segregated into two columns, the first

for calls for which the FORTRAN line number is known and the second for those

for which it isn't. Since in fact the second column contains almost exclu-

sively calls of one system routine upon another, which are of almost no

interest, this nicely reduces the bulk of information that the user has to

plow through. We also note the tiny status-of-files report, here simply

conveying to us the information that all is well in this department.

The listing was in fact some nine pages long, and we also reproduce

the next-to-last page here. By examining the variable FEE0 in common /TS/,

we can get a good idea of how GRUMP handles array printout in a normal case.

We note that the array is 48 words long. The first 4 elements are uninitial-

ized; the values of elements 5 thru 9 also print out on the first line. The

(10) preceeding the second line of values indicates that the first value

printed on the line is for element 10; i.e., for FEE0(10) if ~e consider it

a vector; and similarly, the first value in the third line is for FEE0(16).

Since the last 28 elements are all uninitialized, the printout only occupies

3 print lines.

Further down we note that the variables X and Y in routine XATAN have

no values printed out for them, but are simply labeled as parameters, which

- 14 -

in fact they are. GRUMP currently makes no attempt to print out the values

of arguments to formal parameters, even in the case of routines which stand

in the direct line of calls to the routine in which execution halted, which

~re 'the only FTN routines for which such values, are retrievable.

This is a flaw. It would be nice to print out argument values in the

cases for which they are retrievable, and someday it may well seem worthwhile

to put forth the effort necessary to enable this. It will certainly not
'

happen as long as GRUMP is reading FTN Symbolic Reference Maps, however, for

they don't supply enough information--they don't tell you what the ordinal

of a parameter is; i.e., whether it's the first, or second, or third parameter

of a routine that requires three arguments. The felt need for this improve

ment is not huge hut far from infinitesimal.

Looking on down at the printout for Blank Common, we find GRUMP dealing

with a more recalcitrant set of arrays. Their images start off with nice

values, but swiftly degenerate into what is in fact left-over Loader code,

which is sitting in the unused portions of Blank Common. GRUMP is able to

realize that it in fact is dealing with garbage and cuts itself off, printing

a message which in fact correctly analyzes the situation.

It is probable that after the appearance of a half-dozen or so ugly

Blank Common dumps like the present one, the user would be motivated to do a

little digging in the documentation and discover the parameters necessary to
I

get Blank Common preset to the same innocuous negative indefinites as the

rest of core is. We may note that in the meantime GRUMP's output here, while

hideous, is at least accurate.

The arrays AAA and AX are EQUIVALENCEd. That is why the two names

appear paired on the first line printed for Blank Common and why the line

_.

0 0

AX SEE AAA

appears below.

- 15 -

This ten-page output provided a complete symbolic image of the state

of all variables at a moment in the execution of a physics code that occupies

some 70K (octal) words of core. This is about an average length for a full

GRUMP dump, which for all but tiny beginner programs usually occupy 5 to 20

pages. It is extremely unusual for a GRUMP dump to require more than 25

pages; i.e., more than 1500 lines--at least at LBL, where no program longer

than 170K (octal) words can fit into the small core memory of the main 7600

computer.

1.6 EVALUATION AND COMPARISON

We may now articulate and evaluate some basic features of GRUMP 1 s

design.

1. Printout is compact but complete. This was thought to be a most

important principal when work began, and is still seen as such. There is

nothing more frustrating than having an 11 intelligent 11 dumping program decide

that you don•t need a particular piece of information when in fact you do.

GRUMP attempts to print out every single item of data in the program unless

it seems almost certain to be misplaced executable code, and it will even

print in octal stuff that looks like garbage if it is requested to. Also,

in the default case, all elements of all arrays are printed, although it is

easy for the user to reduce or suppress the printing of large useless blocks.

But in order to be so complete, GRUMP has to compact its printout as

much as possible. Thus, for instance, it does not explicitly tell you that

a value is for a variable typed Real or Integer or Logical or whatever, but

simply prints out floating-point values with a de.cimal point and fixed-point

- 16 -

ones without, shows Booleans as .TRUE. or .FALSE. , etc. In the case

where an element whos'e only type is Real contains a non-zero value with zero

exponent: GRUMP will print both the floating point 0. and the non~zero

integer, bracketing the pair; and similarly for other values corresponding

to no extant declaration of their containing variable. The futile printing

of strange values as gargantuan integers, or of good floating point as bad

Hollerith, is avoided. Also, variables local to routines that were never

called are not printed out at all. A barrage of trivial information about
I

declarations is liable merely to discourage the user; GRUMP shoots for

elegance rather than overload.

2. It is economic a 1. At LBL • s current computer r,echarge rate a GRUMP

dump costs between 25 cents and $1.50 to produce, which is within reason'

although not infinitesimal. At 1-1/2 cents per page, the printing shouldn•t

add more than another 25 cents; a full octal dump of 100 pages, in contrast,
.

costs $1.50 for paper alone, plus processing charges which may well be higher

than GRUMP•s. The shortness of the listing cuts turnaround time way down· in

shops where short jobs print first; and the completeness of the listing
·,

maximizes the number of bugs squashed per run, thus cutting down program

development time and number of debug runs.

3. It attempts to unveil the state of a program without attempting

to diagnose that state. It is thought that a ten-page 11 how to debug" writeup

(currently unwritten) is necessary and should be sufficient to enable anyone

to diagnose most of his own problems. It is also thought that a concentration

on the immediate problem is less profitable than a consideration of the

program as a whole, as an object riddled with problems, many of which will

neither cause an abort nor be diagnosable. The author•s experience with

0 u \.I t) tJ 8 u ,/ 6 6 0

- 17 -

diagnostic dumps has not been particularly pleasant; for all but the

simplest problems, i.e. uninitialized variables and division by zero, they

often mislead. Also they often over-diagnose; i.e., inform the user over

and over again of things which are in fact not errors. GRUMP avoids these

proble~s currently via the simple expedient of printing no diagnostics

whatsoever, which is probably overdoing things; but hopefully GRUMP will

always err a little on the side of terseness.

4. The output is not ugly. The hardest part of t~e building of

GRUMP was preventing its printout from taking on a hideous, shrapnel appear

ance. An ugly dump will be read as little as possible; GRUMP attempts to

invite the user in. for a further look around, to make it pleasant for him

to amble through the state of his program and find out what else beyond the

immediate, problem is wrong with it. Non-ugliness ranks with compa~tness as

one of the overriding fetishes that controlled the design and development

of GRUMP.

5 .. It is easy· to begin using and easy to tune with experience .. The

first-time user simply has to insert a control card saying

GRUMP.
. ;

in his deck, and something pretty close to what he really wal)tS will appear

automatically. There are many execution-time arguments which may be used

to customize one's dump, however; they are enumerated in the User's Manual.

The phi 1 osophy has been that any feature requested wi 11 be inserted, but as

a parameter with a sensible default.

The author knows of two other somewhat similar symbolic dumping

programs, the University of Manchester's HANTRAP package, and the University

- 18 -

of Michigan's DUMP. We will draw our comparisons only with MANTRAP, since

it also runs on Control Data hardware. U1ichigan's program runs on IBM

compatible machines.)

~·1ANTRAP is a very nicely designed package indeed, and this author is

happy to report that he feels that it serves a completely different program

ming environment than does GRUMP. MANTRAP is highly diagnostic-oriented

and extremely verbose; it is oriented towards small student programs that

embody gross misconceptions about how it is that FORTRAN actually works.

It seeks to explicitly teach computing science; it tries to impress upon

the student the view of a program as tree-structured and consisting of a

heirarchy of modules that talk back and forth via parameters passed in

calls upon routines.

I

This view of computing is presumably a fine one to impress upon the

young, but in fact has little to do with the structure of most big olq

FORTRAN programs. They are in fact, and presumably unfortunately, a

b blurry web of references to global variable~ residing in a mishmash of

Common Blocks; and the best and only way to clarify their structure is to

alphabetize everything possible. This is not because FORTRAN users are
~

dummies or because scientists and engineers haven't st~died enough academic

computing, but because large scientific codes live long, long lives and get

modified by many, many people. GRUMP's basic use is in modifying big old

codes, for that in fact seems to be the main business done at the lawrence

Berkeley Laboratory Computer Center. For an environment of beginning
'

students writing beginner programs, t1ANTRAP is undoubtedly a better product.

- 19 -

1.7 PROSPECTS

GRU~1P should be in a fairly stable state now; it is thq.ught to embody

most necessary features. It is hoped that the following can be added when

time a 11 ows:

• Retrieval and printing of argument values where this,is possible

• Analysis of the contents of RA+l (the area for communication with

the mo~itor) when they are non-zero

• A line of diagnostics dependent upon the immediate.cause~of~abort-

mode error, time 1 imit, user abort, or whatever . ·:·.

• Reducing core requirements. The current unsegmented form ~ontains

some 34K (octal) words of instructions and Labeled Common. By·

getting rid of FORTRAN library references and using the segmenta

tion loader, .at least 12K of this should be recoverable. At least

2qK, and preferably more than that, are additionally necessary for

Blank Common.

• Perhaps the abi 1 i ty to. dump 7600 LCM

• Reading of mac hi ne-ori en ted FTN symbo 1 tab 1 es when a standard form

for same seems to exist

• Reading of machine-readable symbol tables put out by the MNF FORTRAN

comp1ler. This is actually being installed at the time this report

is being written.

• Elimination of FORTRAN Formatted I/0 in favor of more efficient and

smaller subroutines.

GRU~4P is ready to begin running on systems other than LBL's. This

system is locally written and unique, but in fact it quite closely resembles

the standard 6000-series KRONOS and NOS systems, and transfer to those should

- 20 -

be a mere chore. Transfer to standard 7600 SCOPE 2. will be somewhat more

difficult, though hardly a challenge, because some 1/0 that explicitly calls

CIO will have to be rewritten for the Record Mangler. The author would be

interested in hearing from users at other sites that would be interested in

adapting GRUMP to their local system and making the necessary mods available

to the world at large.

GRUMP has only recently been put up on LBL's 6600 system. Therefore,

no detailed timing trials have yet been made; only the times required for

entire runs are currently known. This is because 7600 timing histograms are

tedious and expensive to gather, because a software simulator must be used;

' but 6600 timing trials are trivial and cheap, because of the system architec-

ture.

Thus there are undoubtedly some worthless loops lingering undiscovered

within the bowels of GRUMP, areas of code that sop up time unnecessarily, and

one of our next projects is to uncover them. We hypothesize that the biggest

time-burners are the listing-reading routines,'which are designed to permit

easy optimization but have not in fact been op~imized, and the FORTRAN ENCODE

statement, which is used to translate most variables into printable format.

But no doubt big blunders are lurking there too

Special thanks to Jerry Knight, for insisting that the output be

pretty, and to Bill Johnston, for insisting that it be correct.

-.

r

.~

~-

,-..

,..

(:1

r ,

L-:·• •

. . . .

"'"'* G R U M r> n u·., P ~ ~ * l P L vr: S r:. • ~ ':l \IJG 77 l'·',<;.,'.lf< Lfll/Rn

PROGRAM HAL TED AT ADDR 000133 IN II.ClliTI Nc POI NT S
. CALLfD FROM TRACKS AT LINE 101

AO
A1 ... Ai

CALLED FROM HOWL AT LINF. 113

ADDRESS

*** MAIN PROGRAM ***

A

CONTENTS OF REGISTERS

REGISTERS (CONTAIN ADDRESSES! ·---· .

(ABSOLUTE ADDR 0006531
(RELATIVE ADDR 0000301
(RELATIVE ADDR 0053401

• 22o2i
• .38286 OR 1 0N(YXB+VT'
• •D Fl •
• .11419 OR '0L<2-tC6F '
• *** UNINITIALIZED ***
• 7.1362 OR 'DR'E,T6+27•

.Al
A4
AS
A6
A7

0 53005 _.,. 000052
001432. -> 000712
06564i -> .000015
06572(-> 000067
000126 -> XTARG
000311 -> RAD
000267-----> xoc
000323 -> PBETA

I!\1 -TRACKS
IN ~POI NT S
IN SINr:OSa
IN SINCOS•
IN /EXTRA/
IN /MAKE/
IN IM'II'EI
IN /MAKE/

• • • • • • CONTF.~TS
OOOD0000000000053013
17166100313D027026~1t
04000006500000000000
17t47235645603410600
60000000000000400126
1722710556244l453542
17770000000000000000
17327614533513615236

• ••• CALCULATED POSITIVE INDEFINITE . • ••

X REGISTERS (USUALLY CONTAIN DATA I
XO 1.72lo475142626040351t • 6.6195 OR 1 0R-l!l.VVOC• 1

X1 17166100313002702621t • o38286 OR 1 0Nf YXB+VT 1

x2·--·ooooooooooo40000065D --.--67109288 -- · ·
X3 17203553562600665621 • '0P2SoV v,Q•
X It ---60000000000000400126 .. -~- *** UNI NITIALI ZED ***
X5 17227105562ftltH53542 • 7.1362 OR 1 0R'EoT6+27 1

X6- .17770000000000000000. • ••• CALCULATED POSITIVE
___ X 7 __ 1_7_7 700000flOOOOOOOOOO __ •_ ***·-· _ C_A LCULA TEO POSIT! VE

so ..
81
82
83
Bit
85
86'
87

B REGISTERS IMISCELLANEOUSI
oooooo • ·o - ·
000650. • 424t -> 000130 IN -POINTS-
000001 • 1 ---- . ..
777767 • -8
777745 --~- :..26 -----
074017 • 30735t -> PCMEASI131 IN //
000004 • 4 ... - ----
000005 • 5

---------------- . ----------·-- ----------·-

• 1990e3 0~ •oz,LS2K(I3 1

INDEFINITE
INDEFINITE_

••• •••

51500003115140000126

000000000000000000~0

• -9.29638+136

• 0

OR 1 1/ Cl15 AV'

TRACEBACK ()_F_LATEST CALLS TO ROUTINES

BLOCK ••••• ENTRYoooooFROM •••••• LINE •••••• REL ADDR BLOCK ••••• ENT RY •• • •• FROM •••••• REI AOOR
DECODE= DECODI. REEO 240 000107 AlllG ALOG. SAGE 000105
DECODE• OECOORe REEil 2ft0 000107 ATAN ATAN. XATA~ 000026 -·- ----~- -----------·--·----~------- -- ------ eoF · --- REEti ---- 239

--- ---
000105

---- --
CICl• ERMU -- 000575

GO SAGE 300 000333 St~COS• cos. POINTS 000127
HJWL --··-- ••• .. MAlN PR~RAM • •• .. FMTAP• FE CAPo OOTC• 000130
INITIZE SAGE 180 000134 OUTCOM• FECCHR. KODER• 000056

INPC• ----··- INPCie REFO 236 000103 COMIO• FFCC63o OUTC• 000165
INPC• INPCR. REED 236 000103 FOR SYS• FfCOPE. OUTC• 000105
OUTC• ------ OUTCI •. --i>RA~4 --· --- 41 ·--- 000033 -------- INC OM• FEIFST. KRAKER•

..
000357

OUTC• OUTCR. PRA"' 41 000033 FLTOUT• FEOF o\l o KODER" 000307
POINTS TRACKS 101 000030 FLTOUT• F£O<;CAo KOOI'R• 000300
PRAM HOWL 109 005334 oe.ro. FTNRPVo HOWL 005320
RANO GO 231 000463 GETFIT• GETF IT • OUTC• 000023
REED HOWl 99 005325 KRI\KFR• KRI NIT • INPC• 00)132

""' 0

c

'1 ·~-

c:·
\ !£~,

--.~.

Q;;·

C~~-'

·-:::1 ' •
0'·

0'·

N

itS ..,
~
><

:.J

""' '

~

""""·

,-.

·""'

("

0

RX S4G; i i , 1 . I .~ .• ~

SM>E H'JWL 111 O'lS336
SAMF lifE' I) 218 000067
SLAP Rr:FO 351 000256
TRACKS HOWl. 113 005340
WT SAGE 309 000342
XATAN POINTS 171 000105

UST OF ~NTRY POINTS tHAT WERE NEVER CALLED

ABNCIRM.····· ATAN2- ·-·-· DC8., ---- -~t;CEE. FEIFSC •... FEOPlf.
ABORT ATAN2e DEDX FECFMT. FE IFSG. FEOR 10.
ABORTC 8FN. DET • FECFMU. FEIGNC. FEOXFL.
A81e FILANK DRIFT FECJP• FE I NUM. FEOZRO.
ACOS ···- CBD. ENCOOI. ffCLP. F~fSBL • FINALE
ACOS. COKPCT ENCOOR. FFCMSK. FEOAFMe FLLCM.
ADD .. -·--·-cHISQ ·- END. -·-· HCNAP •. FEOBLS. FLOW
ALOG Cl RC ERRSET FECPRT • FEDCNV. fl.SCM.
ALJG10- C:LSLNKe·-· EXJ T FFCRP. FEOEOVa FUNWT
ALOGlO. CLUTCH EXP FFCV. FEOEXP • GAUSS
ANORM ·--· CMF• EXP. ····- FEIBLI<• FEOI. GOTOER.
ASI~ COD. fAN fFIBlKe FEOL. GO

- ·--·AS I N.·-·--·-cos· ---·FAR ·---·-FE IEPR. . FEONTl~ .. HFIH!f' ..
ATAN COSMO FECBUGe FEIEXP. FEORNO. INPBI.

STATUS OF FILES

EXT NAME •••• INT NAME •••• STATUS
INPUT ... INPUT 000013
~ALPH RAlPH UNUSED
FOURVS . ·- -- FOURVS . lJNUSED
OUTPUT DEBUG 000027 -·-··---------·-··---------- . ----------- -

:,I UO·Jf· rt!
S [I('IS= s l ,,: • ~)ni~JiS 00111()7
SO'!T SORT. r'JINTS 00tlll5
ER'1U STATS. fi~MU oooo;,z

SY$= c f(1= 000005
UZF.PO .. UZI::ROOO oa.ro. 00()0"?4

WHI= ERMU 000406
XTOI• XTOI. GO 000057
ER'1SS ZleGET I~PC= 000161
ERMU ZZ.OPE FORSYS" 000705
ER'4U ZZ.PUT OUTC" 000176

tNP&fl. . NAME. Rr>W• . STRAY
NESTLE RDX• STREAM
NGO~G REWJ~~. SYP•1
ORDR RINGER SYP•3
OUTS l • . ROTN SYP•tt
OUTBR. ROTTEN SYP•5

I OERR.
JTOJ.
KQOWRT•
KOJPT.
KOOL .
kQREP.· .
LCB•
LORUSI(a
lE!'INARD
l INUM.
LODGEN
HAXWT
MORGUE.

. PLOP RUNGE SVSAtaa·

SYS2•
SYS•6
TAN.
TORTURE
TRIGGER
TRIG SA V
WHEIIE
WHIRL
WN8•
WOBBLE
WTL•
WTW•
WTlCO.
XTOY.

PRETSUM SCAT SYSAIDe
08.10. SHUFFLE SYSA~G•
PANOOM. SIN SYSENO.
RUE SLAC:OUT - SYSERR.
RAZ SORT SYSE3.
RCL;o-- STOP~· ··--·svSTlA~-

RDL• STRAIT SYSlSTe

EXT NA~E •••• INT NAME •••• STATUS
OUTPUT OUTPUT 000021
CYRIL CYRIL UNUSED
OHOift. DH'lWl U NUS EO

VAlUES OF VARIABlES WHEN PROGRAM HALTED

/AOJS/ VARIABlES IN COMMON /ADJS/

UISSE
zz.cttt
zz. CLO
zz. EOF
ZZ.EOR
ZleREW
ZZ.SKP

. RFRt· ---·.--.··-· ·-----··· ·wANOZO. nn··;o·Ic;•·••• ·--·· nT n,--.- s• ""' --------·- ~ nr -···-p -...-·-····--·-·····
0 YRT (81 • B* *" YTR (81 • B* ***

/CHI/ VARIABLES IN COMMON /CHI/ • . CHT"XY -uoJ • 50* •• ,.... -· - CHIZ (50) ... ,.. 50* _.,

--ICRr·-· -vARrlBl.£rnrto~mr-,tR7

Q CHI • ** ERROR
---·--p· ·---·;;· •• ----· ···--···--- ·-- xo.

ZlM • ** Z2M
Q ---··

/CYlPRM/ VARIABlES IN COMMON /CYLPRM/

• l.OOOOOE-12 ••••
• ••

M
YO

• 0
. ····-.

NCYC
zn

• 0

• ••

·fj .

----CYlDF"l"""CYLOF 1:JF J lHr•·-x6• ·-- . -··-·--··· -· CYl.DR-~££--"t"flXZ"" -· CTlllTlf y·· CTt:DTlf ·trrw r ~~ it ,.. •u
A CYLDO (CYLDO DO J I 41 • 4* ***
r-:'1 ·--------CYlP CCYLP CYLXl PHIO l Clbl •

I 51 6.52600E-02t 8.050DOE-02t
"._j Clll .17552, .16049,

CYLR (CYLR P NOM I 1161 • 1a360R,

CYLD1 f CYL01 01 J • **
6. 26000E-02, 7 .41600E-02,
.15920, .14472,
.10455, .12011.
1.3511. 1.34lft,

.14504,
1.zo;eooe-o2,
• 23934,
1a33Ho

~13,.49,
e. 95300E-o2,
.262441
1.1321.

'.

I

•;

·~·

·::>

•
•
0

r;

t"l

""'
t'\

,..,

_,...

_,....

f"

r· ·:
'>-'

_j

'- '
CYLS I CiLS SIZE
CYLSET = **
CYLTP I CYLTP TP
C YL TR (C YL TR TR
CYLTY (C YL TY TY
CYLX 1· CYLX XO I
CYLX1 SEE CYI.P
CYLY I CYLY YO I
CYLZ [CYLZ ZO I
DTW SEE CYLDTW
RNOM SEE CYL~
TY SEE CYL TV

141

141 •
141 •

I 141. •
C41 •

141 '"
(41 • 4*

~.ol;..J,

-4 .zooooe-o4,
2o89000E-D3t
2.90000E-04t
5.810001'-03,

CYLX2 I CYLX2
. -.1.50000E-03,

2.48000E-02
DO SEE CYLDO
SIZE SEE CYLS
XO SEE CYLX

/OCHINFO/ . VARIABLES IN COMMON /OCHINFO/
CHTYPE- f301 • 2* 'PROP CH ',
CLOCK • ** ICHOFPT C 5001
lOCH 1301 • lo ---- -------i,

111 1, e,
NDAZMS • ** -- - NDCH • 0
NDPTS C201 • o, 19* ***l

4.00000E-05,
3. 6'iOOOE-03,
4.700001':-04,
6. 72000E-030

CYLDR OR I • **
-1.18000E-03,

OF
01
TP
YO

·: ~; '· .

1. 50000E-04,
-1.60000E-04,
1.1000:>E-:>4,
6. 53000F.-03,

-9.60000E-04,
SEE CYLDF
SEE CYL01
SEECYLTP
SEE CYL Y

B*' •SPARK
• 5oo• •••

CH '• 20* ***;

3,
9,

lOAZM (15001 • 1500* *** ,.,
10,

NWIRES (301 • 30* *** PHIOFO c30I " 30* *** SPEED • **

iENi>CAP/ .. -----VARIABLES- IN.COi1MiJiif /ENOCAPr--- . -
ECPHIO 141 • 4* *** ECSIG 141 • 4* ***
MAXECPS • I, ------- MXECPET 8 100
NNECPS • 0 . RECPMAX I__~J • 4* ***

/EXTRA/ VARIABLES IN COMMON /EXTRA/

JECP • **
MXECPTK • 10
RECPMJN 141 • 4* ***·

GK14 -------..51100--- ----- """(;l(p --;.-r:i.-----------·-· ---- GKPCT --0. *i -- ---- -----
IFOURVS • 0 IRUN • 0 IRIJNCTR • 1

- -·- ··--··
.ITRYl ---·;;--·o-··---------------tTYPE. 0

NEVTOT • 5
NTRYS -----. 1 XIR • •• XTARG • •• -··----- ---------- --·-----· --~ ---
VTARG ••• ZIR • •• ZTARG • ••

--/Ffl.e·si --~----iiilff48t.esiH COMMON7Ff[i:S_/ __________ _

CYRIL • 'CYRIL' DHOW L • 'OHOWL '
NTP IN SEE .. INPUT ------- ---· NTPOUT {-NTPOUT OUTPUT

FOURVS
• itluTPUT'

• 1 FOURVS'

RALPH • 'RALPH'

-GO- VARIABLES LOCAL TO ROUTINE -GO---- -- u·t AA-IT 1 • ••- ------ ------ - --- ------

A1 181 • -320.23o 795.14, l801o6o 2000. o,
-- 111 1eo1. &, -- .. - · 2ooo. o;

A2 (81 • 320.23, -795.14, -1801.6 1 20oo.o,
· 111 ·-1eo1.6, ··-- --2ooo.o; ·--- -

A 3 (PARAMETER. •• J A4 (PARAMETER. • • I BCOS • 1 8COS
--------BPOL • 'BP.OC----,-----81--f iH ii 1 • ** 82 [82 ""i 2 - •••• ---

84 (B. 14 J • o. 03SO • ** EA • *• FMJN --. •* -· ·---- -------FN -- •• soooo·---- FOURPJ • 12.566
GAGe - • •• G02 • ** HCOS • •HCOS
Il SEE 81 - ·------- -·--· J 2 Sf:E BZ 13 see 83 .
J • 5 ONE4V CPARA,..ETER ••• t
Q - ----·· 1995.}" _________ 01 ... • •• PI -14??1_ •. _4•. ***

R 131 • -.160501 .39B53, .903001
. RGE --- • ** -- .. ------ -- --- RHO . a **. ~I NE"" - -· ... -. • 4296tt-

TDEL • 'TDEL ' T"'AX • ** TMJN • ••
TWOPI ___ -.6.2832 -- ----···-- TW04V CPARAMETER ••• t TX • ••

--·-·

)'_ ();

4.10000E-04l
-3.l'iOOOE-03;
6.100001:'-04;
7.30000!::-03;

-5.50000E-04l
OR SEE CYLX2
PHJO SEE CYLP
TR SEE CYL TR
ZO SEE C YLZ

5~
20* •••;

'6,

TWIST 1301 • 30* ***

llBEAM • **
NECPPTS • 0
ZECP C41 • 4* ***

IF.vf:Nr--; ~---------

ITRYTOT • 0
NF INAL • •• ·······- ---·--

Yllll • ••

INPUT 1 INPUT NTPIN I • 'INPUT 1

OUTPUT SEE NTPOuT . - -

-320.23,.

320.23,_

BOEl • 1 BOEL
83 t 83-131• o~
FMAX • *"'
FPJSO • 157.9i
II SEE AA
14 see e•
PM • *•

· ·teas • •rcos ·
TPJL • 'TPOl
fY . • ••

. 795.14o

-79!.14,

-.

i .

UMAX • •• . UU • ** --------- z · ---,;- .!ioooo ------------zzz · · ·--.-- •·- U1 ______ • __ 139.00 - __ .. ___ .U2 ---- -- ·- 139.00

/HEAD/···
FITB
uz

VARIABLES IN COMMON /HEAD/
• 1.oooo LVAC • ••
• •• XIN • "'*

ux ••• UY • **
Yl N . • *• ZIN • **

~
0

,. c.:
.,I!

i':,n..,

>!'""'•
r~,r.

.,
-~

co

c
...
N

....,~

C?"-..

·()-

c:....;

.~

(".

"""
,...

r

,...

r-

c

/)
'-'

NP 151 = ~"- ''*''
uu (4951 = 495* ***

/STRANO/
I RAND

/SWITCH/
ISW

VARIABLES IN COMMON /STRANO/
• 0

VARIABLES IN COMMON /SWITCH/
• 0

-TRACKS- VARIABLES lOCAL TO ROUTINE -TRACKS-
I ______ • __ 2_ _ _____________ J ... -·· _ • __ 4_

VARIABLES IN COMMON /TRIGGER/

K

/TRIGGER/
!FIRED.
MAXTRIG
TRIGHLN

• ** - . ITRIG (481 • tt8* *** ITRIGCH
NTRIGS • ** MINTRIG • **

• ••
/TSl-- ------- VARI AIILES -TtftfiMMi:iN7Tsi

CAN • 1.0000
FEEO -C4BJ • 4* ***• ---- --·- --- oZ6244,

1101 .17552, . Bo95300E-02,
1161 6.526ooe-o2; ---- --.13449,

HAFSIZE 1241 • .25400, o40640o
-------- 1111 14•-·••; --------

HAFWIR • o25000 NPHIO • 20 st zEso (241 • .z5B06t _________ :66064,
(111 14* •••;

--sizz 121t1 •• 5oBoo, ----~aliso,
Clll 14* •••;

-. -----TANSKEWCitl ~- -4* •••

/USER/ . -----·W~iABLES lNCOM,.ON7iJSERi

• 23934,
7 • 25BOOE-02o
.14504,
2• 1.1025,

2* 4oB620,

2•· 2.2o5o;

NSIZE

e ___ __ NUSER __ _!__O _ ---------- ________ YOUSER C 561 • 56* ***

/WOBBLE/ VARIABLES IN COMMON /WOBBLE/

• 5_

• 0
• ••

.12011'

.14472,
7 oft1600E-02'
2* 1.1000,

• 10
z• 4o B400,

2• · 2.2ooo; -

lTRIG
TOPPLE

• ••
• ••

.fo455,

.15<120,
6.26oooE-o2,
2* 1.2090,

zti 5. &46 7-~

---2*2.4i8o,

.i6049o
e. o5oooE-oz,
28* •••;
2* 1.3375,

241 7.1556,

z• z~675o,

-- -BETA-----.99758 ----- --COSFL -~2964 - -FlOP -- ---;,;T;ur.t·--- ----,~ASS- -; i39.oo --· ------··
PXYZ • 1995.2 PXYZSO • 3.9806BE+06
XYMOM--e ** --------------- -

-wt;; -- ------- YARJABLESiOCAi.. TO -ROUTINF -wr:..
____ A1_C!~_RA~ETER!•••------------------- _________ _

-XATAN- VARIABLES LOCAl TO ROUTINE -XATlN-
------ A1BO ___ a 3.1416 .. - - A270 • 4o7124

DANGLE • 1.1267 PUTZ • 2.1018
--- ---y I PAif{METER •• • I - ----- -- -- -

---,-zzzr-----v""i"Rtnres IN coMMON Jzzzr------
PMP • ** RH02 • ** ---- iitu---.-.,,.----- -----------------

----;,-- ·-----· ------VARiABLES- TN 8CANK COMMON ~~--

RADSO • 50.925_

A360 • 6e2832
X CPARAMETEReool

SIGZVX •_Oo

SINFL • o90300

i9o
UTAN

• 1.57os
• 1.1267

ZBGN • **

--- __ AU (!oU_ U_J ClOOI • _____ -~-2•o., _ _ _ IUNNORMAliZEDI loOfi~B~+~·Uo __ _ ___ __ CI_JNNORMAl,PEf?L_5_.711204-1Ut.
C 151 IUNI\IORMALIZEDI 7. 260B2+2B0o 'I SIGNS' 1 (0. 262145), 400000040000010000008

•••••BlOCK DISSOLVES INTO WEIRDNESS, NO MORE INTERPRETATIONS•••••
••• -•• PR08A8-l Y LEFT-OVER LOADER CODE IN BLANK COMMON••••• .

AX SEE AAA
AY uoo1 • 4ooo.o, ·o., 3* 139.oo, --- · - ~- itMNdRMAiftifr:ii 1~o661fi+24z, iiJi'iNORMAifZ!iH

171 1e95240-115o IUNNORMALIZEOI 7.26082+280, 1 1fOXS.•, l o. 2621•" lo
, --------·---uu-·4oOOIJoo40oooo·1ooo«TOOii --------- --·- ------- - ··-

[_; ___ •••••BLOCK OJ SSOLVES INTO WEIRDNESS,. NO Mr.RE INTERPRETAT10NSoo•••
•••••PROBABlY LEFT-OVER lOADER r.OOE IN ALANK COMMON •••••

AZ ClOOI • CUNNOR114AliZEOJ 7.26082+280, 'KOOER 1 1 (o. 262145 I, 40000004000001000000Bo
151 °H 1 t· CUNNORMALttEOI 5.50919!'-79

•••••BLOCK DISSOLVES INTO WEIROtlESS, Nfl MORE INTERPRETATIONS •••••
"I ·.;_·1'

n

~-

""'

-~ '""'
I

. .

u • v I ..) ' i

This report was done with support from the Department of Energy.
Any conclusions or opinions expressed in this report represent solely
those of the author(s) and not necessarily those of The Regents of the
University of California, the Lawrence Berkeley Laboratory or the
Department of Energy .

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

'f. I ,6

