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ABSTRACT

Simple dynamical systems displaying complicated behavior ate

found in fields as diverse as biology~ fluid dynamics, .and space

physics. In plasma physics a number of problems exhibit stochastic

motion which is attributed to the overlap of resonances. These problems

include superadiabaticity in mirror machines, destruction of magnetic

surfaces in toroidal systems, and lower hybrid heating.

A particularly simple problem exhibiting stochasticity is the

motion of a charged particle in a uniform ,magnetic< field and a single

wave. Our detailed studies of this wave-particle interaction show the

following features. An electrostatic wave propagating obliquely to the

magnetic field causes stochastic motionH the wave amplitude exceeds a.



certain threshold. The overlap of cy~lotron resonances then destroys a

constant of the motion, allm-ring str'ong particle acceleration. A wave

of large enough amplitude would thus suffer severe damping and lead to

rapid heating of a particle distribution. The stochastic motion

resembles a diffusion process even though the wave spectrum contains

only a single wave.

The motion of ions in a nonuniform magnetic field and a single

electrostatic wave is treated in our study of a possible. saturation

mechanism of the dissipative trapped-ion instability in a tokamak. A

theory involving the overlap of bounce resonances predicts the main

features found in our numerical integration of the equations of motion.

Ions in a layer near the trapped-circulating boundary move stochas-

tically. This motion leads to nonlinear stabilization mechanisms which

are described qualitatively.

Work performed under the auspices of the U. S.
Inergy Research and Development Administration.
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1. Introduction

A. Overlapping resonances, destruction of const.ants of the motion,

divergence of neighboring trajectories, stochastic motion

Problems in which only one resonance occurs are well known in

physics. An example in plasma physics is the one-dimensional motion of

an electron in a Langmuir wave, in which the resonance condition is

w = kv. Here, as elsewhere in this thesis, 'a particle is in resonance

if it maintains its phase relation in the wave. Exact solutions for the

motion of such systems can be found in general. Q'Neil[I] wrote down

the equations describing the motion of an electron in a Langmuir wave of

given amplitude and frequency and used those equations to study the

Landau damping of the wave.· More recent work[2] has attempted to

incorporate the amplitude and frequency shifts of the wave and calculate

the evolution of the wave and the motion of the electrons self·

consistently. We ignore the problem of self-consistency (the problem

actually does not occur in the situations mentioned in Section 2A); we

study in.stead the extremely complicated motion which. occurs when

multiple resonances overlap.

The presence of multiple resonances which do ~ overlap does

not lead to fundamental complications. Near each resonance the motion

is similar to the motion found in a problem with only one resonance.

The "far away" resonances produce high-frequency oscillations in the

motion, which are unimportant in the problems we treat.

When two or more resonances overlap (the criterion for overlap
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will be discussed in Section 2F), the motion changes qualitatively and

becomes incredibly complicated. Numerical solutions of the motion of

such systems show a complexity which clearly cannot be described

analytically; we cannot write, for example, an equation describing the

evolution of a distribution of particles when two resonances overlap.

One characteristic of systems with overlapping resonances is the

destruction of constants of the motion. As resonances grow wider and

overlap, constants which restrict the motion to a certain space

disappear, allowing motion in a space of higher dimension. For example,

particles restricted to move on a two-dimensional surface in phase space

might move on a three-dimensional surface when resonances ,overlap. The

entropy and energy of a set of particles may then change in time

irreversibly, as we will demonstrate in Section 2J. In this work we use

extensively the characteristic of destruction of constants of the

motion.

Another characteristic of systems with overlapping resonances is

the divergence of neighboring trajectories~ Roughly speaking,

trajectories initially close together in phase space are fouqd[3] to

separate in time linearly if resonances do not overlap but exponentially

if they do overlap. Zaslavskii and Chirikov[4] (page 558) point out

that this local instability is neither a necessary nor a sufficient

__ c.-\

':,I

condition for the destruction of constants of the motion.

little use of the divergence of neighboring trajectories.

We have made

The term which has come into use to describe motion in the

presence of overlapping resonances is "stochastic." This term generally
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means "random" or "almost random." For the systems/we 'rill treat,the

motion is more precisely described as "pseudorandom", since differential

equations without randomness determine the motion, but a very slight

change in initial conditions leads to a large change in the conditions

(referred to as "final") at a later time. When almost all initial

conditions are unstable in this way, the motion tends to be mixing, [4]

and correlations between initial and final conditions decay rapidly.

Initial conditions,which are never known precisely in reality, cannot

predict final conditions, and the motion is therefore random in

practice.
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B. Synopsis of thesis

In this thesis we describe several problems involving stochastic

motion, and we treat in detail two such problems which are of interest

in plasma physics. In Section 1C, we discuss (in Subsections 1 through

5) problems involving stochasticity which are of direct interest to the

magnetic fusion energy program. In Subsection 1C6 we describe some of

the problems which have interested researchers in stochasticity theory

since the important work by the astronomers Henon and Heiles in 1964.

In Subsection 1C7 we write the Hamiltonian of a very general oscillator

system and show how it relates to our specific problems. Section 1C

ends with a discussion of the possible implications of stochasticity for

the foundations of statistical mechanics. Section 1D mentions the

striking behavior observed in some dissipative systems which arise in

fields far removed from plasma physics.

Chapters 2 and 3 of the thesis treat the first of our specific

pro.blems, the overlap of cyclotron resonances. Sections2A, 2B, and

2C introduce the problem and the variables we use. In Section 2D we

find some results which are valid when resonances do ~ overlap. In

Section 2E we find the behavior, in certain limits, of quantities which

we later study numerically; the behavior is the same whether resonances

overlap or not. In Section 2F we apply a simple analytical criterion

for the onset of stochasticity. To prepare for the description of our

numerical results we. discuss the method of numerical integration (in

Section 2G), some related Hamiltonian systems (Section 2H), and the

surface of section method (Section 21). Section 2J discusses our



numerical resultstand inSection-2KW(;! furthe.ri,lluminatesomeofthose

results by studying a mapping. Section 2Ldiscusses some electrostatic

waves which could cause strong ion. accel~ration due to the overlap of

resonances. Section 2M c.alc:ulates the distortion of the tail ofa

Haxwellian distribution in the presence of such a.wave. In Chapter 3 we

discuss some theo'retical ideas bearing upon an analytic 'description of

the diffusion process observed in Chapter 2. Section 30 contains the·

conclusions of our study of the overlap of cyclotron: resonances.

Chapt'er 4 treats the second of our specific problems t the motion

of an ion in the presence of a trapped-ion mode in a tokamak. Sections

4A and 4B introduce the problem and the variables we use. In Section

4G we obtain a simplified model for ion motion in a tokamak in the

absence of the mode. Section 4D contains the full Hamiltonian which we

studYt and Section 4E mentions several other problems described by the

same Hamiltonian. In Section 4F we again apply the simple stochasticity

criterion. Section 4G discusses the results of our numerical

integrations of this problem. In Section 4H we relate our work to that

of some other authors. The implications of stochastic motion for the

saturation of the trapped-ion instability are treated in .section 41.

Section 4J contains the conclusions of Chapter 4.

The supplementary material includes appendices, references, a

list of first authors referenced, tables, figurestand their captions.
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Note on the numbering of sections and equations. Sections of

this thesis are referred to by giving the number of the chapter followed

by the s~ction number. For example, Section 2F refers to sectionF of

Chapter 2. For subsections we append the number of the subsection

(e. g., Subsection IC7). Equation numbers appear in parentheses. The

number of the equation is preceded by a period and the number of the

chapter in which it appears. The chapter number is omitted if the

equation and the reference to it appear in the same chapter. For

example, a reference to equation (2.7) appears as (7) within Chapter 2.
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c. Problems involving stochastic motion

Stochastic motion, caused by overlapping of resonances, occurs

in many physical problems. Some of these problems occur in plasma

physics, where stochastic effects have importance for the fusion program

(and possibly also for space physics). In this section we mention some

of the problems involving overlap. of resonances,to indicate areas of

possible application of the ideas discussed later.

1. Particle in a magnetic field perturbed by an obliquely propagating

wave

A very basic concept in plasma theory is the interaction between

a wave and a charged particle. A strong interaction occurs if the

particle is in resonance with the wave. In an unmagnetized plasma, in

which a single sinusoidal wave is propagating, the resonance condition

is w l·~ ,where w· is the wave frequency, k is the wave vector,

and v is the 'particle's velocity. We write the condition for

resonance as

. . .
W = ct>l + ct>2 + ct>3 (1)

where the three frequencies
.
ct>. are k. v.. A qualitative change in the

1 1 1

resonance condition occurs when a magnetic field is applied to the

plasma. Now the resonance condition is

where

W ~11~1 + 12~2 + 13~3 '

1. denotes any integer and the frequencie:;; ~. have more
1 1

complicated forms than before. From (1) a~d (2) we see that the

( 2)

)



magnetic field allows resonance to occur for values of 1.
1

8

other than

11 ~. 12 = 1 3 =1. The existence of these multiple resonances is

crucial for the stochastic effects discussed in this work.

a. Overlap of cyclotron resonances

The simplest magnetic field in which we can study overlap of

\I

resonances is a uniform, magnetostatic field

the resonance condition (2) becomes

w=kv -R.Qz z

B = B 2.o In this case,

(3)

waves, which are called Bernstein[6] waves in the limit

where Q =eBo/mc is the cyclotron (or gyro-) frequency of the particle

of charge e and mass m, and 1 is any integer. The resonances (3)

are responsible for cyclotron-harmonic[S] (or gyro-resonant) damping and

growth of waves in a uniformly magnetized plasma. Cyclotron-harmonic

k -.. 0 ,owez

their existence to the resonances (3). Chapter 2 is devoted to a

detailed treatment of the motion of a particle in the presence of

overlapping cyclotron resonances.

b. Overlap of bounce resonances

In a magnetic field with nonuniformity along a field line new

effects arise because a particle can bounce between magnetic mirrors.

Sometimes the frequency ~ of bouncing is comparable to the wave

frequency w but both are much less than the gyrofrequency Q. Then

resonance condition (2) reduces to



W = n w
b

' n = 1, :2, 3, •.• ..

These resonances are important in the theory of trapped-particle

9

(4)

y

~,

v

instabIlities [7] in tokamaks. Chapter 4 contains a study of the moti6n

of a particle in the presence of overlapping bounce resonances. Many

other problems of current interest, which we discuss in Section 4E,

involve the overlap of bounc:e resonances.

2. Magnetic moment jumps, superadiabaticity, and Arnold diffusion

An approach to thermonuclear fusion, initiated in the early

years of the program, is to confine plasma in a magnetic mirror machine.

A minimum requirement for this approach to be useful is that individual

ions be confined long enough to have an opportunity to undergo a fusion

reaction. In modern mirror machines the escape of anion represents a

loss of plasma density and energy content which mtist be replaced by

inj ection of an energetic atom. If ions are lost too quickly,a given

injection capability will be able to maintain too Iowa density and

temperature, or for a given thermonuclear output too large an injection

facility (and therefore an uneconomic value of Q = thermonuclear output

pm..rer / injected pm..rer) will be required.

Mirror machines are in the class of open magnetic confinement

systems in which the plasma (or at least some of it in a field-reversed

mirror) is on magnetic field lines which lead directly tb the walls of

the machine. The regions of large magnetic field (the mirrors) prevent

ions from moving along the field lines as long as the magnetic moment 1..1
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is conserved. The magnetic moment, defined in terms of the magnitude.

B of the field B and the velocity v..L perpendicular to B by

- 1 2/B h f 11-1 ="2 mv..L ' can c ange or severa reasons. Changes caused by

Coulomb collisions are reduced as the temperature is raised. Changes

c,aused by fluctuating electric fields can be reduced by suppressing the
I

instabilities which lead to the fluctuating fields. Even if these
.

changes are reduced to a negligible level, the magnetic moment still

suffers changes because it is not an exact constant of the motion in a

nonuniform magnetic field.

The changes suffered by the magnetic moment take the form of

sudden jumps which occur in. some, but not all, field configurations at

the points of minimum magnetic field. As shown in Fig. l,a plot of

1-1 vs. time also shoW's rapid oscillations which are largest when the

particle is near a point where a jump occurs. Fig. 1 is st~ikingly

similar to behavior seen in our Fig. 21 for the problem of overlap of

cyclotron resonances. In Section 2J we ascribe the jumps to

constructive interference of terms in the equations of motion. Fig. 1

is strong evidence that constructive interference occurs for a particle

moving in a nonuniform magnetic field. The utility of our constructive

interference picture and its relation to other pictures of the jumps in

1-1 can be decided only by further research.

Kruskal [8) showed that the magnetic moment can be redefined so

that it is conserved to all orders in a small parameter £, which

measures, roughly speaking, the particle's energy and the nonuniformity

of the field. Changes of 1-1 proportional to exp( -C!£) , where C is

It

',.

\,\
.J



11

a constant, are no~ruled out by theory and have been observed'in

numerical calculations [9; 10] of particle traj ectories performed over a

period of almost twenty years. The magnitude of the jumps in the

magnetic moment can now b~ calculated analytically[10J vert accurately.

Jumps in ~ sufficiently large to cause loss of a deeply

trapped ion are of course serious, but moderate changes of ~ do not,

by themselves, imply serious loss of particles from a mirror machine.

Successive changes might be correlated so that the magnetic moment would

remain near its initial value for all time. Such eternal confinement of

a particle in an exactly axisymmetric machine was proved rigorously by

Arnold [11] for sufficiently small values ofe:. Arnold's theorem does

not say how small E must be, but Chirikov[12J used the criterion ~f

overlapping resonances to find an expression for E below which eternal

confinement could be expected! ,He found fair 8;greement between his

expression and both a computer[9] and a laboratory[13J' experiment.

Coulomb colliSions, ignored in Ref. 11, prevent strictly eternal

confinement in a mirror machine, but in a thermonuclear plasma

collisional diffusion may be negligibly slow.

The word "superadiabaticity" refers to the eternal confinement

discussed above. The correlations ,necessary for superadiabaticity can

be destroyed by nonuniformity, of the magnetic field (too large an E)'

or by fluctuating electric fields resulting from instabilities. Using a

very simple model, Rosenbluth[14J found the amplitude of fluctuating

fields necessary to prevent superadiabaticityand guessed that a mirror

reactor might be in ,the superadiabatic regime. For fluctuating fields
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of much higher amplitude, Aamodt and Byers [15] observed a transition
)

back to superad~abaticity by numerically calculating particle

trajectories. Timofeev[16] reviewed the work on the effect of

fluctuating fields on particle motion and concluded that stochastic

motion occurs for moderate fluctuation levels but not for low or high

levels. To our knowledge, no comparison has appeared in the literature

of the superadiabaticity conditions determined by nonuniformity of the

magnetic field and by fluctuating electric fields.

Jaeger, Lichtenberg, and Lieberman[17] and Lieberman and

Lichtenberg [18] studied the heating of electrons in a mirror machine by

application of an electromagnetic field resonant with the electron

gyrofrequency. They found the motion of electrons to be stochastic,

leading to higher and higher energies until an adiabatic barrier

(analogous to the superadiabaticity conditions mentioned above) was

reached which prevented further energy increase. Related work on

radio-frequency plugging of a mirror machine was done by Lichtenberg and

Berk. [19]

If collisional diffusion is negligible and superadiabaticity

conditions are satisfied, good confinement in an axisymmetric mirror

machine can be expected. An asymmetric machine has worse confinement

because Arnold diffusion can occur. Chirikov[20] has studied this

little-known process in considerable detail and predicts a sharp

increase in diffusion rates as E is increased. His estimates do not

contradict the results of an experiment [21] showing an abrupt decrease

in the confinement time of electrons as E is increased. Since

~(
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asymmetry is required in mirror machines to prevent HHD instabilities,

research on the unavoidable process of Arnold diffusion seems desirabl~.

3. Destruction of magnetic surfaces in toroidal systems

The major approaches to thermonuclear fusion by means of

magnetic confinement include both open and closed systems. In closed

systems magnetic field lines in the region occupied by the plasma

hopefully remain always within the plasma. Unavoidable errors in coil

construction, which allow field lines to reach the walls of the vacuum

chamber, are hopefully small enough that the macroscopic behavior of the

plasma is not seriously degraded. The errors allow particles, which

move along field lines easily, to strike the walls of the chamber,

thereby being lost to the plasma and also releasing impurities from the

walls into the plasma.

Toroidal systems, of which the tokamak is the niost important

example, are usually treated theoretically under the assumption that the

errors in coil construction are negligible. The field lines then

generate a set of nested toroidal magnetic surfaces, except where a

field line happens to connect up on itself.

Destruction of these surfaces (also known a,s magnetic braiding

or stochasticity of field lines) by coil construction errors is due to

the overlap of resonances. This phenomenon has been studied for

stellarators with[22J an Ohmic heating current and without [23,..25) such a

current and for a levitron[26-28J (also known as a spherator). Very
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small errors can often cause large-scale destruction ·of magnetic

surfaces. In Ref. 26, for example, a tilt of the levitated ring by 0.1°

was found to be a serious error.

In Ref. 28 on the FM~l spherator, spatial variations in the

plasma density were shown to result from construction errors in the

levitated ring. The current in the ring was not centered at exactly the

same point: in the ring's cross section for different azimuthal angles;

the center of the current distribution deviated by at most 30 mils (less

than one millimeter), but these errors led to density variations up to

30%. The density variations were attributed to the presence of wide

magnetic islands, which allowed rapid radial transport of particles and

heat along field lines. Each chain .of magnetic islands results from a

single resonance. If different chains of islarlds (multiple resonances)

overlap, destruc tion ofmagne tic surfaces results. In Ref. 28

destruction of surfaces was not thought to be a prevalent effect.

In the absence of coil construction errors destruction of

magnetic surfaces ~an still occur because of current perturbations in

the plasma. The current perturbations grow to large amplitudes because

of instabilities of.certain plasma modes. These m.odes include internal

kink modes (described either by ideal MHD[29J or by resistive[30]

equations) and tearing modes (wh ich also occur in several

collisionality[31J regimes).

In Fig •. 2we have sketched tokamak magneticsudaces in a

poloidal cross section (i. e., at a particular toroidal angle)-. In

Fig. 2a we show the magnetic surfaces in the absence of current

Ii.
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perturbations. The nested toroidal surfaces are represented by

concentric circles, each labeled by the value of the safety factor q

on the surface. (On the surfaces for which q is rational [for

example, q=2], a field line connects up on itself [after two circuits

around the totus the long way and one the short way], and, strictly

speaking, the line does not generate a surface.) In Fig. 2b we show the

magnetic surfaces when current perturbations are present near the minor

radii where q=2 and 3. Note the formation of chains of islands near

those radii.

Finn[32] has studied the hypothesis that the very serious

disruptive instability observed in tokamak experiments [33] is caused by

destruction of magnetic surfaces. He computed the trajectories of field

lines in a tokamak (modeled as a cylinder) in the presence of certain

perturbations: two current perturbations with different poloidal mode

numbers or one current perturbation interacting with the poloidal

variation of the toroidal field. In the former case, the intensity of

the two current perturbations necessary for destruction oJ. surfaces was

found to be comparable to intensities thought to be present just prior

to the disruptive instability. Stix[34,3S] has expressed ideas very

similar to those of Finn. [32] Recently, Finn[36] has pointed out the

difficulty of satisfying the instability conditions for two tearing

modes with different poloidalmode numbers in a given discharge. The

tearing instability is thus unlikely to produce two island chains which

can overlap, but Finn[36] has studied an otherwise stable tearing mode

with poloidal mode number m=3 which is driven to large amplitudes by

coupling to an unstable m=2 mode.
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Rechesterand Stix[37] studied the destruction of magnetic

surfaces when tearing modes with m=2 and 3, for example, have

amplitudes too low to cause overlap of their magnetic islands. In this

case, the destroyed surfaces are the ones represented in Fig. 2b by the

moon-shaped outer contours of the islands near q=2. These surfaces are

destroyed by the overlap of bounce resonances, in complete analogy with

the problem studied in Chapter 4. Rechester and Stix[37] found, for

appropriate tokamak parameters, that the area of the islands near q=2

effectively shrinks by 30% as a result of destruction of the outer

contours of the islands.

The destruction of magnetic surfaces allows rapid radial

transport in the parts of the plasma cross section where resonances

overlap. Besides causing expansion of the plasma column and flattening

of the temperature profile, this transport tends to eliminate the

current perturbations which caused the destruction of surfaces in the

first place. Thus stochasticity of field lines in a plasma tends to be

self-limiting, as pointed out by Stix. [34] We can thus expect current

perturbations to hover near the intensities necessary for the onset of

stochasticity. At these intensities the trajectories of field lines are

more difficult to treat analytically than either of the cases of very

weak or very strong stochasticity.

Theoretical calculations of the trajectories of field lines

begin with the equations giving the directions of a field line:

dr/dl; = RB/Bl;

de/dl; = RBe/rBl;

(Sa)

. (Sb)
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Here, r measures the distance from the magnetic axis. of a large...

aspect-ratio tokamak, e is the poloidal and s the toroidal angle.

R is the distance frOm the axis of symmetry to the point . (r,e ,sr.
The right sides of (5) are functions of r,e,~ and are periodic i.r e

and S Equations (5) thus have the form

r = r F (r) exp i (me - ns) + c. c.m,n 11m

e= E G (r) expi(me .,.us) +c.c.m,n mn-

( 6a)

(6b)

where the dot denotes differentiation with respect to S. Thetoroidal

angle s takes the place of the usual time variable; s is the

independent variable in the set (6) of two coupled ordinary differential

equations for the dependent variables rand e. Equations (6) have

the same form as the Hamiltonian equations which \.,re study in detail in

this thesis, but (6) are not derivable, in general, from a Hamiltonian.

Hamiltonians describing trajectories of field lines were used for an

axisymmetric field [27] and fora special, helically symmetric model for

a stellarator field. [241 It seems impossible, however, to describe an

arbitrary magnetic field in tet111s of a' single scalar function (the

Hamil tonian) •

In the absence of current perturbations, all.coefficients Fmn

and Gmn
are zero except G = 1/2q, so (6) reduces to

00.
r = 0, e = l/q(r).

Of all the terms representing the perturbations, the resonant terms in

(6) are tho$e that varYE110wly with ....~ , that is, those for ,which

me - n ~ m/q (r) - n ~, °
Determining[27, 32] the width (in r) of the resonances and their
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separation, one derives a criterion for overlap of the magnetic islands

due to current perturbations. Overlap of the islands implies

destruction of magnetic surfaces near the chosen r.

The status of work on the disruptive instability at present

seems to be the following. It is well established by the theoretical

work of Finn[32l and the experimental work of Karger, et al.[38l (in

which the disruption was induced by currents in external helical coils),

that overlap of magnetic islands is involved in the disruptive

instability. It is not yet clear, however, what physical processes lead

to the observed islands or how to predict the maximum size of the

islands theoretically.

4. Lower hybrid heating

A charged particle may move stochastically in an obliquely

propagating (k t 0) wave, as mentioned in Subsection IBI and shown byz
detailed studies in Chapters 2 and 4. Stochastic motion may also occur

for a wave which propagates perpendicularly (k = 0) to a uniformz

magnetic field. We give in Appendix A the equations describing the

transition between oblique and perpendicular propagation. Here we

review the work which has studied the possibility of stochastic effects

in lower hybrid heating of a tokamak.

Karney and Bers[39l have numerically in~egrated the equations of

motion for an ion in a perpendicularly propagating wave of frequency w.

A rapid increase in the ion's energy occurs if the perpendicular
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velocity V.1.~. w/k. Ref. 39 interprets this increase as due to trapping

by the wave during a time short compared toa gyroperiod. For larger

perpendicular velocities a transition to stochastic motion is opse.rved

as the.wave amplitude is increased. When stochasticity occurs, ions in

the tail of the perpendicular distribution can be accelerated to high

energies by the wave.

Fukuyama, et al. [40] have studied, both analytically and

numerically, the motion of an ion in a wave with frequency w close to

a harmonic LQ of the gyrofrequency. In a wave of small amplitude the

perpendicular velocity of an ion is confined between values at which

kv.1./r.l is a zero of the Bessel func tion J L• [41] Ref. 40 shows, as was

speculated in Ref. 16, that this confinement is spoiled when the wave

amplitude becomes large. Ion motion becomes stochastic because of the

overlap of certain resonances a and ions are accelerated tO,high

perpendicular velocities. The analytical methods used in Ref. 40 are

very similar to those used by us in Chapter 4.

5. Applicability of quasilinear and resonance broadening theory

In plasma physics one often uses quasilinear theory or its

"renormalized" version, resonance broadening theory, to desc.ribe the

interaction between particles and a spectrum of waves. A check of the

most fundamental requirement for validity of these theories is rarely

done, however. This requirement is that a set of resonances overlap.

Quasilinear and resonance broadening theory both describe
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evolution of a distribution function using a diff~sion equation. This

description is always valid if the spectrum is continuous. In reality,

however, there are always boundary conditions which make the spectrum

discrete; the separation between resonances is non.-zero. If the energy

in the wave spectrum is great enough, the resonances may be wide enough

to overlap each other. Then a diffusion equation is likely to be a good

description. On the other hand, if the wave spectrum contains

insufficient energy to cause overlap of resonances, a constant of the

motion will exist which prevents diffusion. In this case, completely

erroneous results would be obtained by using quasilinear or resonance

broadening theory. This point has been made also by Tetreault. [42J

Since the onset of stochasticity marks a radical change in the

behavior of a system, it seems likely to us that systems will be found

to hover in the vicinity of the stochastic threshold. For example, the

energy in a wave spectrum would be sufficient to make resonances overlap

marginally. The dynamics of the system is incredibly complicated in

such a situation, as illustrated, for instance, by our Fig. 18. In the

presence of such complexity a description using a simple diffusion

equation cannot claim rigorous validity but may be accurate enough to

answer practical, qualitative questions.

,.
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6. Other Hamiltonian Systems

,. .

a. Henon-Heiles and Barbanis systems

The pioneering work of Henon and Heiles t. [43] in which important

numerical methods were introduced for the study of stochastic motion t

was motivated by astronomical considerations. Th.e stars in a galaxy

produce a gravitational potential in which those stars move. The total

energy (kinetic plus potential) of a given star is conserved in the

absence of close encounters. In an axisymmetric galaxy the angular

momentum is also conserved. The existence of a third conserved quantity

(the third integral) could neither be proved nor disproved despite many

attemptst and observations of the distribution of stellar velocities

near the sun suggested existence of the third integral~ Thedispersion

of velocities in the direction of the galactic center and .in the

direction perpendicular to the galactic plane have a ratio of toughly

two to one; such anisotropy implies existence of a third conserved

quan tity. H~non and He iles convincingly showed t using numerical

experiments t that the third integral may or may not exist depending on

the strength of a perturbation.

The motion of a star in an axisymmetric galaxy maybe reduced to

a Hamiltonian system with two degrees of freedom. As a model problem t
. ,

not directly related to any astronomical system, Henan and Heiles [43]

studied the Hamiltonian

H(x,y,px'Py) = T(px'py) + U(x,y)

T = ~ (pl + py2)

(7a)

(7b)
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(7c)

increases as U increases, until at

Eqs. (7) represent the motion of a particle in a non-axisymmetric

two-dimensional potential well. Equipotential lines (U = constant) of

this well are shown in Fig. 3a. Near the bottom of the well the

equipotential lines are almost circular, but the degree of asymmetry

1
U = 6 the equipotential line is

an equilateral triangle. A particle with a low total energy E (= the

constant numerical value of the Hamiltonian function (7a» is confined

to the nearly symmetric part of the well. A particle with a high E

can reach parts of the well where the triangular asymmetry is stro~g.

In writing (7) a certain choice of units has been made so that

all quantities are dimensionless. Before making this choice of units we

can write (7) as

We see that the quantities in (7) are to be measured in a system of

units in which

unit of mass m

unit of length k/t:.
1

unit of time = (m/k)~

unit of energy k 3/t:.2

A particle of given dimensional (i. e., physical) energy C, moving in a

well with given k, has a large value of the dimensionless energy

E = Ct:.2/k 3 if t:. is large. A large value of E is thus seen, to imply

importance of the triangular asymmetry of the potential well (the term
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proportional 1:0 £), a result deduced a,bove by examining the

equipotentials of U.

Lunsford and Ford(44) showed that the H~non-Heiles Hamiltonian

describes a' three-mass system which could model the dynamics ofa small

molecule or, in a cruder approximation, a solid. They considered three

equal masses, each having just one degree of freedom, linked ina chain

obeying periodic boundary conditions. Possible chains of this type are

sketched in Fig. 4. The potential energy of the springs, assumed to be

identical, was taken to be

Vex) = .!. x2 _ .!. x 3 •
2 6

Ref. 44 gave a canonical transformation which casts thfs..three-mass

system into the form (7).

It is instructive toexptess the H~non""Heiles system in terms of

other canonical variables. In a polar coordinate system the

coordinates, rand e, and the canonical momenta, Pr and Pe' are

related to th~ Cartesian variables by

= (xp + yp )/r
x y

or, inversely, by

x = r cos e, y = r sin e

(8a)

(8b)

(8c)

(9a)

= (xpr
(9b)

(9c)
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That (8) or (9) defines a canonical[45) transformation can be verified

by checking the appropriate Poisson bracket relations. Alternatively,

one can derive the transformation given by (8) or (9) from a generating

function, [451 which guarantees that the transformation is canonical.

Possible generating functions are

or

In terms of the polar variables Hamil tonian (7) becomes

,.

H(r,a,Pr,Pa) = T(r,Pr,Pa) + U(r,a)

T = ~ [p; + (PaIr) 2]

U =! r 2 + !r3 sin 3a
2 3

(lOa)

(lab)

( lOc)

The triangular asymmetry of the potential U shows clearly in (lac).

We also see that the Hamiltonian is independent of a in the limit

r 7 0, which suggests using Pa as the first approximation to a

constant of the motion, if such a constant is known to exist.

Often, it is best for analytic purposes to express a Hamiltonian

in action-angle variables. These variables are related to the Cartesian

variables by

~. =tan-1 (x./p.)
1 J. 1

( lla)

(lIb)



25

where i=lrefers to x and i=2 to y ~The . inverse . relationships

are

I

x. = (2J. )~ sin </>.
~ .. ~ .. ~

k
p. = (2J. )2 COS </>.
~ ~ ~

( 12a)

( 12b)

The generating function

produces the canonical transformation (11) or (12).

In terms of the action-angle variables Hamiltonian (7) appears

Ho = J 1 + J 2

k 1
V = 2(2J2)

2
sin </>2(J 1 sin2</>1 - 3 J 2 sin2<P2)

k 1
= (2J2) 2 {'2 J 1 [sin(2</>1 -</>2) - sin(2<P1 + </>2) + 2 sin </>J

(13a)

(13b)

( 13c)

(l3d)

Note that H is the Hamiltonia.n of two harmonic oscillators. with equal
o

frequency:

In contrast to the Hamiltonian systems treated in detail in thi~ thesis,

in the H~non"'Hei1es system the resonance condition

is independent of J 1 and J
2

, since ~1 and ~2 are constant. In
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addition the resonant term sin (<1>1 - <1>2) is absent from the p~rturbation

V. These characteristics prevent us from applying the first-order

perturbation theory which is applicable to most p~oblems, including the

ones treated in detail in this thesis. The Henon-Heiles system is thus

a special (not generic) type of Hamiltonian system and is more difficult

to treat.

A Hamiltonian system very similar to the Henon-Heiles system was

chosen for numerical studies by Barbanis[46] after theoretical work had

been carried out by Contopoulos and Moutsoulas.[47] The Barbanis system

is given by (7a)-(7b) and

u = ! (x2 + y2) ~ xy2 •
2

In terms of the polar variables (8a), (14) becomes

u =! r 2 + !'r3 (cos 38 - cos 8),
2 4

(14)

(15)

The equipotential lines of the well given by (14) or (15) are shown in

Fig. 3b. In terms of the action-angle variables (11), the Barbanis

system is given by Hamil tonia.n (13a) and ( Db) but with

Since (16) has fewer terms than (13d), the Barbanis system would
, , " '

probably be less tedious to treat analytically than the Henon-Heiles

system.

, "',

Other Hamiltonians similar to those of Henon-Heiles'and

, -~.
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Barhanis. have been studied (481~xtensive~y. Inparticul.;tr,. the term

in (14) was multipli\'!d by a constant (e. g., 1
- or4 .

thereby making unequal the frequencies of the oscillators describ~d by

Ho. Contopoulos (49] andqus~avson(50] have given. procedures for

calculating terms in a formal series approximating a constant of the

motion (the third integral). Contopoulos(51] ha~co~pared his methods

to those of VOn Zeipel, \vhittaker~ Cherry, and Birkhoff. The formal

series obtained by these methods generally have very complicated terms

which must be found by tedious high-order perturbation methods. A

·simple and elegant method for calculating a formal series was given by

Dtit'lriett, Laing, and Taylor, (52] who ignored the desire of earlier

allthors to have each term in the series be a polynomia.l in x. and
~

Pi. This method is applicable to the problems of primary interest to us

and will be discussed in Section 2D. The method is possibly not

applicable to the problems of this subsection, because the resonance

condition is independent of J}. and J 2•

Henon and Heiles(43] showed· that, in the potential well of Fig.

3a, motion.changes qualitatively as the total energy of the particle is

increased. They represented the motion in tWO dimensioQ$ using a

technique invented by Poincare(53] ~n the nineteenth c.entury. This

technique, which is called the surface of section method, will be

discussed in Section 21. Briefly, the surface of section method allows

us to represent a four-dimensional particle trajectory as a set of

points on a plane whiietetafriing infotmation describing the· long-time

behavior of the trajectory.
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In Fig. 5, based on figures in Ref. 43, we show the changes in

motion which occur as the particle's energy is increased. For low

energies, like E = {2' the points representing a given traj ectory are

found always to lie on a curve. For high energies, likeE = .~ , almost

all trajectories have points filling an area rather than lying on a

curve. For intermediate energies, like 1
E = 8" ' the nature of a

trajectory depends on the values of the positions and velocities at

t=O.

The three plots in Fig. 5 allow us to observe the disappearance

of a constant of the motion as the energy is raised. For low energies

E, this constant restricts the motion of the particle to one-dimensional

curves in the plane. For high energies E, this constant has

disappeared, allowing the particle to visit points in a two-dimensional

region of the plane.

Further discussion on the nature and importance of the

disappearance of constants of the motion is contained in Section 2F.

Ho [54] gave a method based on proj e~tion-operator techniques

which allowed her to calculate analytically the energy E at which

widespread stochasticity should occur. The analytical values of E

were found to agree very accurately with the values determined by

numerical experiments.

Finally, we note that the Henon-Heiles and Barbanis systems were

studied using the methods of quantum mechanics by Nordholm and Rice. [55]

Their desire was to determine if a small quantum mechanical system, like
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an isolated molecule, showseffeetsanalogolls to those seen in Fig •. 5,

for which classical mechanics was used. The quantum problem was found

to be moredifficul t, both conceptually and computat:ionally. Nordholm

. and Rice computed energy levels and the corresponding eigenstatesfor

several Hamiltonians, including those of Henon-Heiles and Barbanis.

For some systems, but not for others, they found a tendency for

low-energy eigenstates to be localized, which is analogous to existence

of a constant of the motion, and for high-energy eigenstates to be

global, analogous to nonexistence of the constant. It seems to us that

Ref. 55 does not give a definitive answer regarding the existence of

stochastic effects in quantum mechanics.

b. Restricted problem of three bodies

A famous problem in the history of physics is the·motion of

three masses interacting by their mutual gravitation. Extensive

numerical studies by Henon[56-58] of a restricted three-body problem

suggest that the general three-body problem is analytically insoluble •.

Henon studied the most restricted form of the three-body

problem. The mass of the third body, whose motion is studied, is

infinitesimal compared to the mass of the other two bodies, so the

motion of the first two bodies is given by the well-known solution of

Kepler. The first two bodies revolve about the center of mass in

circular (not elliptical) orbits. The initial position and velocity of

tile third body lie in the plane of motion of the first two bodies; the

motion of all three bodies is thus restricted to this (fixed) plane.
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The total mass of the system is taken as the unit of mass, the distance

between the first two bodies as the unit of length, and the angular

frequency of rotation of those bodies as the unit of frequency. One

uses a synodical coordinate system, which rotates with the first two

bodies and which has the origin at the center of mass of those bodies.

The motion is described by the Hamiltonian

H(X,y,px'Py) = 2
1

(p2+ p 2) - (xp -yp) - (1-~)/rl ... ~/r2'x y . y x

where ~ is the mass of the second body and

The numerical value of the Hamiltonian (times -2) is called the Jacobi

constant and is given by

H~non found the restricted three-body problem to be

qualitatively similar to the Henon-Heiles system; surface of section

plots show regions where a constant of the mot1on (in addition to the

Jacobi constant) exists and other regions where it does not exist. As

the numerical value of the Jacobi constant is decreased, the regions of

existence of the additional constant are found to shrink. This behavior

is shown in Fig. 6, which is taken from Ref. 56, which treated the case

~ =} (equal masses of the first two bodies). In later work H~non found

similar behavior in the limiting [57] case ~ ..... 0 and for intermediate [58]

values of ~
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c. Stl1lrmer problem

The motion oJ a charged particle ina rnagne tic dipole field ,the

simplest app'roxima tion to the earth's field, is interesting because of

possible applications to radiation belt phenomena. This problem, named

in honor of Stl1lrmer, has been discussed in an excellent article by Dragt

and Finn. [59] Here we review briefly the results found in Ref. 59 and

give our interpretation of them.

The Hamiltonian describing motion in a dipole field can be

requced to two degrees of freedom and written, in a certain system of

units, as

1
H =r(pz

2 +pg) + V(z,p)

V = !. [p-l - (p/r3) J22 .

Here z and p. are ordinary cylindrical coordinates: p is the

distance of the particle from the axis of the dipole field and z is

its distance from the equatorial plane. The potential energy V(z,p)

contains a welL in which particles with appropriate initial conditions

can be trapped. The corresponding particles in the earth's magnetic

field are the ones observed in the radiation belts. In the potential

"lell the motion consists of coupled oscillations representing gyration

about a field line and bouncing along it.

The analysis of this problem by Dragtand Finn begins with a

clear description of what is meant by a homoclinic point. They show

that a time-independent Hamiltonian system with two degrees of freedom
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which has a homoclinic point cannot have an analytic constant Of the

motion other than the Hamiltonian. Numerical·evidence is then presented

which strongly suggests the existence of a homoclinic point for the

St~rmer problem. This implies that there exists no analytic expression,

valid throughout phase space, for a particle's magnetic moment in the

presence of a dipole field.

The nonexistence of an additional constant of the motion has

been observed by us in the problems treated in detail in this thesis.

In Chapter 4 we study the disappearance of a constant in the vicinity of

a separatrix, where a constant of the motion can be destroyed by an

arbitrarily small perturbation. This behavior near a separatrix

prevents existence of a constant of the motion valid throughout phase

space.

In applications to physical problems it is important to

determine the extent of the region near the separatrixin which a

constant is destroyed. (In Chapter 4 this extent is referred to as the

width of the stochastic layer.) If this region is extremely small, it

cannot be important in applications. Unfortunately, the extent of this

region cannot be found by any mathematically rigorous technique. The

extent of the complementary region,in which an additional constant of

the motion does exist, has been showriby Braun, [60] using methods

developed by Moser, to have at least a certain extremely small, but

nonzero, size. Numerical studies of dynamical systems seem to indicate

a much larger size for this complementary region~ However, in numerical

integrations it is not possible to reach the long confinement times
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observed for radi.ation belt particles, and numerical studie$ thus,cannot

show definiti.vely whether a constant of the motion exists or not.

Nevertheless, we speculate that the good confinement of

radiation belt particles results from the ex'istence of a constant of the

motion in a large region of phase space, the regions of nonexistence

either being very small or being located in regions of phase space not

occupied by radiation belt particles.

d. Elastic pendulum

Considerable attention[61-63] has been dire.c:ted re~ent1yto the

motion of a mass attached to a spring which can swing ina fix,eq,
~ . .f,

vertical plane. With a certain [61] choice of units this systelJlis

described by the Hamiltonian

H(x,z ". Px ' pzl= ! (p 2 + p2) - gz + 1 (r - 1)2.' . 2 '. x·z 2
(7)

where Interest has centered Qn the case
1

g = 3" for

which the two natural frequencies (stretching,and sWing~ng) occur in a

ratio of two to one.

Hitzl [61] investigated the periodic orbits, some of them rather

complicated, which occur for this system, and also he found an

increasing fraction of aperiodic (1. e., stochastfc}o.rbits as he '

increased the 'total enefgy~' 'Hitzl's results are thus q~alitatively

similar to those>of H~non' an'd Heiles,[43]; wnich we discussed above.

Expanding (7) about the equilibrium point (x=O, z= ~), Olsson [63] wrote

down a dynamical system which happens to be identical to one studied [49]
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by Contopoulos.

7. General oscillator system

In this subsection we will show that the Hamiltonian systems

studi~d in detail in this thesis are of a form which is found under v~ry

general conditions and therefore in many other conservativ~ systems.

The results of our work should therefore be applicable, with only minor

modifications, to many other problems.

Physical systems often take the form of coupled one-dimensional
. .

oscillators each described by a time-independent Hamiltonian Ho(i) (Xi'

Pi). The coupling occurs through an interaction energy eV (Xl' PI' X2 '

P2' "', t). The equations of motion for a particular oscillator (i=l)

involve the dynamical variables of the other oscillators only through

EV, which is often small compared to H (1). A valid approximation is
. 0

then obtained by replacing X 2 ' P2'.~. by the explicit functions of time

derived from the Hamil'tonians

oscillator 1 takes the form

H(2)
o , ... . The Hamiltonian describing

H(x, p, t) = Ho(x, p) + e: Vex, P, t) . (18)

As noted by Chirikov,[20l this reduction to the study of one-dimensional

oscillators eliminates the possibility of Arnold diffusion, which can

only be important if the stronger effects due to overlapping resonances

are absent.

Frequently, we study the motion of a particle in a force field
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dependent only on x and t. The potential energy U, which produces

the force field, can sometimes be Fourier analyzed in x and t:

(19)

If boundary conditiol1s force the values of k and W to b~ multiples

of a fundamental wavenumber

form

kand,. frequency w, then (19) takes the
o 0

where nand R. are integers. The corresponqing. Hamil tonic!lJl"

a(x,'p, t) = p2/21I1 + U(x,t) ,

( 20)

(21)

isa particularly simple example of the general form (18) and has·

exactly the form of (2.45) if the coefficients UnR. are zero for n., 1.

In Section 2H we note that Hamiltp·nian (2~45)' displays the main feature

(stochastic modondue to resonance overlap) displkyed by. the

Hamiltonian «2.3),(2.4), and (2.9» of a particle in a uniform magnetic

field and an oblique electrostatic wave.

If the Fou,rier cqefficients U .
nR.

differ in size, or their

relative importance differs because the particle is nearer the resonant

velocities £wo/nk
o

of some terms in (20) than of others, it may be

possible to study motion in the presence of only a'fe,wtenns'from (20).

In the presence of only one term, the motion would be describ~d by the

Hamil tonian

H (x, p, t)
·0 ..

(22)
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After a change of reference frame and a choice of convenient units, (22)

takes the form

H (x,p) = 21p2 -cosx,o

which is the Hamiltonian for the well-known problem of a (nonlinear)

pendulum. The exact solutions of this problem are given in Section

4C. In the presence of ~terms from (20), the particle moves

according to

H(x, p, t) = Ho(x, p) -E cos (AX'" nt) "

where appropriate definitions of E, A, and n are to be used.

1Chapter 4 includes a study of (23) for the particular choice A = '2.

( 23)

For theoretical work, it is most convenient to express (18) in

terms of variables for which the unperturbed Hamiltonian H depends
'0

only on the canonical momentum and not on the coordinate. Such variable

transformations have been performed in sections 2B and 4B. In terms of

the new variables, which we denote by ~ and J, (18) has the form

H(~,J, t) = H (J) + e:V(~, J, t)., , . 0 ( 24)

If ~ is an angle variable, V must be periodic in ~. :J:f V is also

per iodic in t,' then

(25) .):'
'I>,

We note here the close analogy between (21) and (20) on one hand and

(24) and (25) on the other. A term in (25) is slowly varying in time

(i. e., resonant) if
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J aredeterm~ned by the

intcgccs n dnd i, and, in general, forill a 58 t Hhose members are

distributed along the real number line as the rational numbers are

distributed. We treat the simpler cases in which either n is always

unity, leading to a resonance condition of the form (3), or t is

always unity, leading to (4). Ref. 20 contains a treatment (pp. 55-62)

of the more difficult, general case.

For the purpose of studying the. overlap of resonances, a

time-dependent system of one degree of freedom and a: time-indepeIl;dent

system. of two degrees of freedom are equivalent. The latter type of

system in fact includes the former type, since H(x,p,t) can be

transformed to

K(x,p,e,I) = H(x,p,e/w) + Iw

using the generating function

F2 (x,p' ,I,t) = xp' + Iwt .

(26)

Host of Chapter 2 deal.s with a time-independent system, but we feel that

a time-dependerit system exhibits the overlap of resonances more cleanly

than a time-independent one. A time-dependent system contains no

variable analogous to I in (26) and is thus free of the effects of

changes in I, which are not directly relevant to stochasticity.
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8. Possible implications for statistical mechanics

Many-body problems in physics are usually described adequately

using the methods of statistical mechanics. The fundamental postulate

of statistical mechanics, upon which all of its results are based, is

that an isolated system be found with equal probability in any of its

accessible states, that is, in any part of the energy (hyper)surface.

The few-body problems traditionally studied in classical mechanics

courses generally have constants of the motion in additibnto the energy

which restrict the motion to a subspace of the energy surface. More

typical behavior is seen in numerical studies, like durs~ of dynamical

systems with quite simple Hamiltonians but with very complex motion.

These studies show that additional constants of the motion can be

destroyed by a sufficiently large perturbation. The perturbation

strengths required for destruction of the additional constants are

generally quite high in the two-degree-of-freedom problems which have

been most extensively studied. Possibly, the required perturbation

strengths decrease as the number of degrees of freedom increases.

... ,
Evidence for this behavior has been given by Froeschle and

Scheidecker. [64]

The possibilities of discovering the reasons for the empirical

success of statistical mechanics or of proving the fundamental postulate

have naturally led to much work by both mathematicians and physicists.

A number of excellent review articles have appeared. The most

comprehensive (book-length) treatment, written from a physicist's

viewpoint, is by Chirikov.[20] Written in a similar, dense style and
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containing many of the.same results 'is the i'lrticleby,Zaslavskii and

Chirikov. [4] Farquhar [65] gives a very readable introduction to the

concepts of modern ergodic theory. Other reviews of note are by

Lebowitz, [66] Lebowitz and Penrose, [67] Galgani a~d'SEotti,{68] Ford,

[69-71] and Walker and Ford. [72]
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D. Complicated .behavior in simple dissipative dynami,cal system$

The dynamical systems mentioned in the previous section were all

conservative systems, derivable from a Hamiltonian. Simple dissipative

systems can also exhibit incredibly complicated behavior, as we will

show in this section by giving several examples. We do not believe that

overlap of resonances is responsible for every (or even any) aspect of

the behavior of dissipative systems. We include these examples because

the behavior is sometimes strikingly similar to that observed in

conservative systems.

1. Population levels in biology

The number of individuals in a species, that is, the population,

obeys a complicated set of equations, in general. In a few situations,

however, an adequate approximation may be given by the so-called

logistic equation

dN/dt rN(l - N/K)

Here N is the population level, K the carrying capacity, and r is

the growth rate of the species. If the generations of the species are

non~overlapping, as in the 13-year periodical cicada, then one uses a

nonlinear difference equation

(27)

for the population at time t+1 in terms of the population at time t.
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The difference equation (27) has radically di.fferent hehayior

depending 011 the value of r, as shown in Fig. 1;, which comes from Ref.

73. Plot (a), for r=1.8, shows the population N leveling oHat the

carrying capaCity K af ter initial transientshav~'dfed out. Plot (b),

for r=2.3, shows a stable two-point cycle in which the population

oscillates between a low and a high level each generation. Plot (c),

for r=2.6, shows a stable four-point cycle. Plots (d) and (e) have the

same value of r, 3.3, but different initial population lev~ls. In (d)

~.

the motion appears to have lost any regularity, but in (e) ·the motion

appears quasiperiodic with period three. In plot (f), for r=5, the

motion is cha.racterized by large isolated spikes in the population

level.

Ref. 74 can be consulted forr~cent work ona dynamical system

similar to (27). !1ay[75] notes that similar types of equations occur

also in economics and sociology and the same type of dynamics might

occur in those fie·lds as· well.

2; Rikitake dynamo

The earth's magnetic field is known to have changed its polarity

at seemingly random intervals during the past tenmillipn years. The

observations of the polarity intervals are shown in Fig. 8, 'oJhich is
'- .

taken from Cox. [76] One might think that the apparent randomness is due

to the complexity of the earth's core. However, there exist very simple

models ",hich lead to apparently random changes in the polarity of the
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magnetic field.

Such a model[77] is known as the Rikitake two-disk dynamo. In

Fig. 9 is shown a schematic picture of this dynamo. The equations which

describe the system are

L i 1 + R 11 = MQ1I2

.
MQ2I1 (28)L 12 + R 12 =

• .
erl1 = e rl2 = G- MI II2

In (28) 11 and 12 are the currents in the two loops of wire, Land

R are the inductance and resistance of each loop, M is the mutual

inductance between one loop and the opposite disk, rl1 and rl2 are the

angular velocities of the two disks, C is the moment of inertia of

each disk, and G is the (common) couple which driv~s each disk.

In Fig. 10 is shown a typical time evolution of the current

11 ' as calculated by Cook and Roberts. [78] Note the variable interval

between reversals of the sign of 11; sometimes there are many of the

rapid oscillations before 11 changes sign, sometimes 11 changes sign

only very briefly. This behavior is similar to the observational data

shown in Fig. 8. We stress the fact that the complicated motion seen in

Fig. 10 results from a simple set of three nonlinear differential

equations.
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3. Fl1,1id motionbetw:e~n .cylinders

In this subsection and the next we discuss two classical

problems in fluid mechanics which have been the subject of renewed

interest in recent years. The first problem is the motion of a fluid

between two coaxial cylinders, the inner one of which is rotating with

respect to the other. The name "Couette flow" describes the motion of

the fluid when the rotational velocity is very small. This system is

thought to be described accura.tely by the Navier-Stbkesequation

au 1 v 172 uat" + (!!. • 'V).!!. = p'Vp + v

and the incompressibility condition 'V. u O.

The theoretical picture of turbulence developed by Landau[79]

many years ago. states that the level of turbulence gradually increases

as the rotational velocity of the inner cylinder increases. More

recently, a new theoretical picture of turbulence was propo~ed by Ruelle

and Takens,[BO] who state that the onset of turbulence is sudden.

Experimental results are available which support the plctureof

Ruelle and Takens. In Fig. 11 are shown the resul ts of an .

experiment[8l] on fluid motion between cylinders. On the left side of

the figure we see the variation with time of a certaincompo':nent of the

fluid velocity. That data has been Fourier analyzed on the right to

yield a power spectrum. The rotational velocity of the inner 'cyHnder

is parametrized by the reduced Reynolds number R* which increases from

top to bottom in the figilr'e~ At a low totational velocIty, the motion

is periodic at a frequency fl. As the rotational velocity. is
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increased, new frequencies f 2 andf3 appear. At a certain velocity

the spectrum changes abruptly from discrete to continuous, indicating a

sudden onset of turbulence. This sudden qualitative change in the

spectrum reminds us of the change in the motion of a Hamiltonian system

when the initial condition is displaced from an ordered region of phase

space into a stochastic region. In an ordered region the motion is

quasiperiodic, (has a discrete spectrum), while in a stochastic region

the motion is aperiodic (has a continuous spectrum).

4. Rayleigh-B~nard heat convection problem and the Lorenz model

Another classical problem in fluid mechanics is the

/
Rayleigh-Benard problem of heat convection through a layer of fluid

heated from below. A theoretical approach [82] to this problem starts by

writing the fluid equations describing the system. The equations are

Fourier analyzed and all but a few modes are discarded. A very crude

model [83] retains only three modes, denoted by x, y, and z ,whi.ch obey

the system of equations

I:
= C1(y~X)

...
= rx ... y - xz (29)

= -bz + xy ,',

The parameters C1 and b; are unimportant for the- present discussion,

but we think of r as a measureo£ the stress- on the system due to the

temperature gradient oi For·· small. r, (29) has solutions corresponding to

heat conduction. For intermediater, the solutions correspond to
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laminar convection,ancl for iarge rto turbuLent cor1vection. For

latge r the motion in the three-dimensional xyz-space.has a very

intriguing na ture. For any initial condition whatever of the dynamical

system (29), the motion is· found to converge rapidly to a

two-dimensional surhce embedded in the three-dimensional space. This

t~lO-dimensional surface, which is called a strange attractor , has a

very complicated structure, which is difficult to represent on paper.

There exist systems of lower dimensionali ty, hOlvever, for which the

strange attractor can easily be shown. Such a system is the subJect of

the next subsection.

Before leaving the Lorenz model (29) lye mention three noteworthy

comments of Lorenz. [83] He argued for large r that all solutions of

(29) are aperio'dic, except for a set of periodic solutions of measure

zero. He observed all solutions to be unstable to small modifications,

or in other words, slightly differing initial conditions led to greatly

differing final conditions. These two characteristics of the

dissipative system studied by Lorenz are identical to characteris~ics of

conservative systems with overlapping resonances studied by us and by

many others.

Lorenz' thirdcotnment is that the inevitabl~ inexactness of

meteorological observations (initial conditions) makes long-range

weather prediction (knowledge of final conditions) impossible.
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5. Map~ing with a strange attractor

A two-dimensional mapping with a strange attractor was

discovered recently by Henon.[84] The mapping is defined by specifying

the coordinates of a point on the xy-plane at time i+1 in terms of the

. xy-coordinates at an earlier time.· i:

IX,. 1 = y. + 1 -1.+. 1.

Yi+l = bXi

ax.2
1. (30)

For many initial points (XO'YO) , the points defined by the mapping

rapidly converge to the attractor, which is the curve shown in the upper

left part of Fig. 12. The structure of thisattractor is indeed very

strange, as we see by blowing up the small square in the upper ~eft

picture to produce the picture at the upper right. The four lines which

were visible under low resolution.can now be seen to consist of at least

seven lines. Continuing clockwise around Fig. 12, we see successive

blowups in which more and more lines can be resolved. It seems that the

structure of the attractor will appear complicated at whatever

resolution we choose to use.. Conservative systems also show

complications at all resolutions, a phenomenon we have observed to a

limited extent by numerically calculating particle trajectories in

certain electromagnetic fields.
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2. Overlap of: Cyclotron Resonances

A. Choice of model

Stochastic instability is possible if a .ill of reSon<'ifiCeS edsts

and the resonances can overlap. In plasma physics such a set of

resonances occurs .when a uniform magnetic field is present. A particle

is in (exact) resonance w:i,th a, sinusoidal wave of frequency W if the

Doppler ...shifted ,"ave frequency is a mult;iple of the gyrofrequericy

n ::: eB fmc:o

w- k v =-Ronz z . , ~ =0, ±),± 2'0 0 0 (1)

From (1) we find the set of resonant parallel velocit ies

these velo~ities are finite if k z # o. Theresonaneeshavea non~zero

width when the wave amplitude is not infinitesimal and the gyroradius is

finite ( kIP> 0). Overlap of the resonances is thus possible if the

wave propagates at an oblique angle to the magnetic field: k z " k..L#O.

Published accounts of our early work on the overlap of cyclotron

resonances appear in Refs. 85 and 86.

Our work assumes the wave spectrum is so narrow that a single

wave is a good r.epresentation of the spectrum~ This situation is

easiest to treat analytically and leads. to the most stri~ing results •.

Having studied the single-wave situation, we will be able to understand

the nature of stochastic motion in many-wave problems more clearly.
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We usually assume that the wave is electrostatic ( £11£ ). An

electromagnetic wave can also cause stochastic acceleration since the

same resonances occur as in the electrostatic case. The widths of the

resonances are different and ,as is shown in Appendix B, a wave

amplitude large enough to cause overlap bf the resonances is more

difficult to achieve in the electromagnetic case.

Appendix C mentions the analytical cOmplic~tions which would

arise if we relaxed our assumption that the wave is $inusoidal.

of the electrostatic. .Finally, we assume that the amplitude ~o

wave is constant in time. An antenna which launches a wave in a

steady-state plasma will produce a constant wave amplitude. If,

instead, the wave is due to an instability, then an equilibrium will be

reached in which the linear growth rateY$/, balances the nonlinear

damping rate y(~ ) caused by stochastic acceleration of the particles.
S 0

The amplitude ~
o

is then given by

(We assume here that stochastic acceleration saturates the instability

before any other nonlinear effect is important; this qssumption must be

investigated separately for each physical situation.) We will find that

stochastic acceleration is avery rapid process (characteiistic rates

comparable to the gyrofrequency Q). Therefore, even a variation in the

,,,,we amplitude at a quite rapid ('V O.l)Q) rate' will not alter our

results qualitatively.
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B. Choice of variables

To describe the motion of a particle in a uniform magnetic field

and a wave, we could use the Cartesian variables (x, Y'l?:' vx,v
y

' v
z

).

Our work is simplified and the generalization to a nonuniform magnetic

field made clearer by choosing other variables. He use a Hamiltoilian

formulation so we can utilize many results of Hamiltonian theory. The

simplest Hamiltonian formulation is found by choosing generalized

coordinates ~ and moment~ E such that the motion in the magnetic

field with no wave is described by a Hamiltonian depending on the

momenta only:· H = J-I (n) .o 0 l:...

We derive the uniform magnetic field

potential

A (y) = - B yx
-0 0

B 2 from the v~ctor
o

The unperturbed (i. e., ~o 0) Hamiltonian is

We see that we need to transform the perpendicular variables (x, y;

P ,p ) to a new set of variables which describe, it turn.s out,the
x y

position of the guiding center and the gyration about it. We use the

variables

s. = ( z, <f>, Y)

~ = (pz ' P<f>' mQX)

~vhere <f> is the gyrophase, P<f> the canonical angular momentum of
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gyration, and X and Y the components of the guiding center. These

variables are defined in terms of the Cartesian variables by

4> =: tan-1 [(p + mQy)lp ]
x y

Ph. :: [(p + mQy) 2 + p 2] /2mO
'f' x, y

x :: x + p ./mQ
y

The requirements for these variables to be canonical are easily verified

by computing the Poisson brackets

[4>. p4>l = [V. mnx] = 1

[4>, Yl = [4>, Xl = [P4>' Yl = [P4>' xl= 0

Alternatively, we can transform

using the generating function [45]

F1 (x, y; 4>, Y) = mQ r} (y - Y) 2 cot 4> - x Yl

The gyroradius P. the perpendicular velocity v..L,and the magnetic

moment ~ are defined in terms of P4> by

1P4> -ZmQp2 - mvlJ2Q - (mc/e)~ •

He WI" He

4> - sin- 1 (- v /v.JJ = cos- 1 (- vy/v.JJx

y = y+p sin 4>

X = x-p cos 4>
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to show that we have named <t>, P, X,and Y according to their

conventional. meanings. We illustrate in Fig. 13 the definition of the

gyrbphase . <t> which we have adopted.

The unperturbed Hamiltonian is now written

In terms of the chosen variables the unperturbed motion is extr~mel.y

simple:

• • •
H = Pz = P = X = Y = 0

0 <t>

z = pz/m = v z
•

<t> = n

(Th~ dot denotes time differ~ntiation.)

c. Hamiltonian

(3)

The Hamiltonian for a particle in a uniform magnetic field and

an electrostatic wave is

H = H + V
o

\vhere H is the unperturbed part discussed above and V is theo

(4)

perturbation due to the wave. We use canonical variable$ which measure

the position z' = z - (W/k ) t and the parallel momentum p'. = p- mw/k
! z Z ·z ·z

in the wave frame. This reference frame moves with velocity (W/kz)2

with respect to the c~nter of mass of the plasma. The canonical
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transforma tion, given in Appendix A, to the wave frame variables is a

mathematical, not a physical (Galilean) transformation, and there is no

requirement, as noted by Palmadesso; [87] that w/k <:< C. Nevertheless,z

w/k «c, because'. z

these slow waves seem to lead to the strongest stochastic effects. For

simplicity of notation we henceforth drop the primes on the wave frame

variables.

In the wave frame the perturbation due to the sinusoidal

electrostatic wave is

v = e~0 sin (~. x)

We choose the direction of the x-axis so that

Then, in terms of the variables discussed above

(5)

We redefine the origin of z by performing a canonical transformation

to the new variables

Y' = Y, xI = X' - kJ.P /k ronz . z

Since yl and XI do not appear in the transformed Hamiltonian, they

are each constants of the motion. yl is constant because there is no

EX to cause an . Ex.!!. drift of the gUid ing cen ter in the y-direc tion.

XI is constant because the electric field components By and E ,z
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which are related by kzEy = k.LEz' cause, respectively, an E xBdrift

in the x-direction and an acceleration in the z-direction. The

constancy of Xl and Y' has been shown eihlier[88] using less

powerful methods. 'He drop the primes on the new variables and write the

perturbation in the final form

The Hatililtonian given by (3) ,(4), and (6) does not depe,n<L on time;

therefore

(6 )

"

H(z. </>. Pz,P</» = pz
2/2m+pl? + e4>o sin (kzz + kj,X -k.tpsin</» (7)

E const,

the particle's energy in the wave frame is constant. In the plasma

frame (7) becomes

!..2m [(v - w/k )2 + vll + e4> sin (k· x ... wt) = const.z·z 0

This result has been noted previously by several authors. [87,89]

D. Particle motion in a small-amplitude wave

Stochastic acceleration occurs when the wave amplitude is large.

(The Chirikov criterion tells us ho~., large; this criterion will be

discussed and applied to thepresent problem in Section 2F .)We prepare

for our discussion of stochastic "lcceleriltionby studying here the case

of a small-amplitude wave.
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We use the BeSsel...;function identity

co

exp (i a si.n ¢)= r JR, (a) exp (Urt»
R, =_co

to write the perturbation (6) as

(8)

v = sin (k z - R,rt»z ( 9)

Most of the terms in this sum over R, vary rapidly in time and are not

expected, on physical grounds, to have a significant effect on the

particle motion. '\Ie identify the rapidly varying terms by substituting

into (9) the expressions

z = V t + z , .</l = Qt + </l , P =Pzo o· 0 0

derived from the unperturbed Hamiltonian H •o

(10) .

(In (10) the subscript

naught denotes the value of a quantity at t=O.) ~le find that (9)

contairis the oscillating functions

sin [(k v - R,Q) t + kz - R,</l ]z zo zoo

The particle is in exact resonance with the R,th component of the wave

if

kv =R,Q.
z zo

This condition is the same as (1) but is expressed in terms of the

parallel velocity in the wave frame instead of the plasma frame.

(11)

If v
zo

is far from satisfying (11) for any R" then all the

terms in (9) vary rapidly and the unperturbed motion, (10) together with
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v = v
Z ZQ

is a reasonable approximation to the exact motion.

If v is close to sa tisfying (11) for a particularzo

but far from satisfying it for all other £, then the motion is

approximately that given by the Hamiltonian

L

Two constants Of the motion exist in this approximation. Since HL is

independent of time, one constant is H
L

itself. The coordinates z

and ~ appear only in the combination k z - L~, so we can triviallyZ ..

derive the second constant by transforming to new variables using the

generating function

In terms of the old variables, the new ones are

l/J = aF2 /apl/J = k z - L~, ~' = aF2 la I L = ~z

Pl/J = (p. - mLr2/k )/k , I L = P</>+LPl/Jz . z z

The Hamiltonian is

(12)

which is independent of ~', showing that I
L

isa constant of the

motion. Other constants, combinations of the two constants H
L

and

I
L

' have been derived previously[87,90J using other methods.

We now derive a me~sure of the width of the resonance L,
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term in (9) to

be slowly varying in time. We write the approximate Hamiltonian HL as

(13)

where we have suppressed the dependence on I
L

and dropped constant

terms. Equation (13) gives the Hamiltonian found in several other

familiar problems, e. g., the one-dimensional motion of a particle in a

Langmuir wave and the motion of a (nonlinear) pendulum. A separatrix

divides the wp~-plane into regions in which the motion is qualitatively

different. Ins ide the separatrix the particle is "trapped": ~

repeatedly takes on values in a subset of the interval (0, 2n) during

the motion. Outside the separatrix the pclrticle is "untrapped": ~

increases (or decreases) monotonically in time. The separatrix has

HL = e410 J L •.

On the separatrix the maximum deviation of

I ~
6p = 2 me41 J

L
I2/k

~ 0 Z

from zero is

Using (12), we derive 26vZ = 26.p/m - w
L

' which we refer to as the

trapping width:

(14)

Near the stable equilibrium point (~ = ± ~n, if e41
0

J
L

~. 0) the par(~ic1e

has a bounce frequency

(15)
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In the above development we have eliminated, terms from the

complete Hamiltonian by using our physical intuition that rapidly

varying terms do not significantly affect the partidemotiort. This

elimination can be done rigorously using any of several averaging

methods, as discussed by Nayfeh. [91J Higher-order effects of the

rapidly varying terms can be computed using these methods.

We end our discussion of particle motiqn in a small-amplitude

wave by presenting a method, given by Taylor and Laing, [92J for

computing an asymptotic expansion for a constant of the motion. The

method is based on the fact that a function I of the canonical

variables satisfies the Poisson bracket equation

i = [I . H] - dI dH dI dH
, = dS. • dE. - dE. 0.9.

A function I which is constant during the motion satisfies

a = [I, H) •

H and I are each expanded in a series using a small' parameterE:

(16)

1· ·1 2 .= 1 0 + E 1 + E 12 + • • • •

(17a)

(17b)

Equations (17) are substituted into (16) and terms containing th~ same

powers of E are collected. The coefficients of each power of E must

vanish identically:

o = [10, Hol

o = [II' H 1 + [I , HI), n =0, 1,. 2., . . .n+ ·on

Knowing the Hamiltonian H, we can, in principle, solve the partial

(18)

(19)
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differential equations for the In in succession and find as many terms

in I as we desire. The series obtained will generally be

asymptotic: the. series is divergent but, if truncated, the series can

approximate. the value of I as closely as desired by making E small

enough. Nevertheless, the seriej obtained 'may be singular; near certain

points in phase space, II may become infinite faster than 10 •

Dunnett, Laing, and Taylor[52] developed a method for ensuring that II

is no more singular than 10 , that is, for making the first two terms

of the asymptotic series uniformly valid. [91]

Applying this method to our problem, Taylor and Laing [92] choose

units of mass, length, and time such that

m = k = n = 1z

and write our Hamiltonian as

E :: k 2 e4> /mn2
z 0

For brevity in the equations below, we drop the subscript 9n

Equation (18) is then

(Ho dIo
O=p--+-

dZ d</>

P .z

( 20)

( 21a)

(21b)

the solution of which is an arbitrary function of p, p</>, and z - p</> •

A sufficiently general solution is an arbitrary function 1oCp) of p

alone; for details, see Ref. 52. Equation (19) for n=O is then
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which has the solution

In general, II is singular at

P= R" IR,I = 0,1,2,

The singularities can be removed by choosing

1
0

= cos TIp

The first two terms of the uniformly valid asymptotic series fOr I are

thus

I = co,S TIp - £ TI sin TIp 1: n J n sin (z - R,<j»
Tv Tv P - R,

Knowing the two constants of the motion H and I, we can

( 22)

illustrate the particle motion by drawing in the zp -plane contours ofz

constant I for given H. We choose 'a value of ,<j> (= 1T,here) and

eliminate P<j> between H(z, Pz ' P<j» and I(z, Pz ' P<j» to obtain

I(z, Pz ' H) (Note that Pep appears in the argument kJ.p of the

Bessel functions.) The actual computational algorithm exploits the

simplification of (21a) for <j> = TI:

H I 2 •
= '2 Pz + P<j> + £ S 1n z

This is solved for

JR, in (22).

P<j> , which is used to calculate the argument of

Values of I are computed at all points on the zp -planez '

which satisfy P<j> > 0, and a plotting program draws the contours.

cotitOUl' plots thus obtained show some of the features revealed by

The

"surface of section" plots, discussed in Section 21, which are computed
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by time-consuming integration of the equations of motion. Some features

of the particle motion are not revealed by contour plots of I, most

importantly whether a constant of the motion I actually exists or not!

Shown in Fig. 14 is a sample contour plot of 1. tve see that

near each resonance the contours of I are topologically different from

those between resonances: the contours are closed curves instead of

open ones. These topological differences lead to the singularities in

the expansion (17) for I. Taylor and Laing[92] have shown how to

remove the singularities while retaining the topological differences.

E. "Diffusion" and correlations in a linear theory

In later sections we will present numerical calculations showing

diffusion and decay of correlations when resonances overlap. Here we

define the diffusion coefficient and correlation function which we

study, and show that, for short times, "diffusion" and "decay of

correlations" can occur regardless of whether resonances overlap or not.

True diffusion and decay of correlations, for longt imes, are possible

only when overlapping resonances cause loss of memory of initial

conditions. The results of this section allow us to properly interpret

the numerical calcJlations to be presented later.

We choose to study the autocorrelatio~ function of the,parallel

acceleration:

C(T, t') - (v (t'+T)V (t')
Z z ( 23)
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The brackets denote .anaverage over the phaseskzzo and CPo'

(A) J
21T d(kzzo) 21T. dCPo- r .-. A

o 21T 0 21T
( 24)

~.,ith the subscript naught indicating the value ofa variable at t=O.

This average mimics the situation often found in the laboratory; the

initial phases cannot be chosen by the experimenter (indare l,miformly

distributed over the physically distinct values.

To calculate (23) we use, in this section, the unperturbed

(<Il = 0) orbits (10). These are the orbits used in linear theory
o

(e. g.,. to find a dispersion relation), and it is clearly impossible to

describe nonlinear effects, like resonance overlap, using them. The

parallel acceleration is found from (9):

(25)

where a :: k.lPo. Inserting (10) into (25) and calculating (23), we find

= C(0) cos (k V T) J
o

(2a sin ~frr) ,
z zo

(26a)

(26b)

1·· .
where C(O) :: -2 (k e<I> /m)2. Note that (26) is independent of t'.z 0

Formula (8.531.'3) of Ref. 93 has been used to rewrite (26a) in the form

(26b).

Many of our numerical calculations use a=5 ,sowestudy the

shape of (26) for short times in the limit a» 1. For

(27)
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(26b) yieldf;

For initial conditions such that

k v «an = k 1V..Lo ,z zo ;..L.

(28) further simplifies, for T t'E, (k V )-1, toz zo

C ('r) ~ C(0) J (anT).

°
From (30) we see that the correlation function falls to zero in the

short time

T ~ 2. 4/an ~ O. 5/n

and then oscillates with a period

(28)

(29)

(30)

In Fig. 15 we compare the correlation function C(T) found analytically

from (26), the approximation (30), and C(T, t' =0) found from numerical

integration (see Section 2G) of the equations of motion. The behavior

predicted by the approximate expression (30) is indeed observed for

sufficiently short times. Plots like Fig. 15 for other values of Vzo

verify another prediction of (30):

(29) ho Ids.

C(T) is independent of V whenzo

In addition to the correlation function, we study the diffusion

(Cbv
Z
)2) in parallel velocity, where
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t
8v (t)::: v (t) - v = !dt' .Jz (. 'tl) (1)z .. .z· . zo O·

and the brackets are again defined by (24). From the definition (23) we

have

t t-t I

«(b.v }2) - f dt l f d1" Ce1"~· t') (32a)z
0 -t I

t t-1"
= 2 f d1" f dt' C(1", t l )

( 32b)

0 0
t

= 2 f d1" (t - 1") C(T) (32c).
0

In (32b) we first used the symmetry property C(1",t l ) '" C(-1", 't l +1")

and then interchanged the order of the integrations.

To predict the time-dependence of «(8Vz)2) for short t, we

again specialize to (29) and use (30). For very short times,

t ~ 1" ::: (an) -1, (30) is nearly constant and (32c) yields
o

For

1" < t < 27T/n,o

( 33)

(34)

the main contribution to (32c) comes from 0 < T< T , since C(1") is
o

small anc;I rapidly oscillating for larger 1" • Thus

«(.b.v )2) ~ 2 C(O) ! t,z 0

and the predicted "diffusion" coefficient is

o ::: «(8Vz)2)/2't

~ C(O)! = (ke~ /m)2/2an ~O.l (k e~ /m}2/n .o z 0 ·z 0

(35)

(36a)

(36b)
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In Fig. 16 we compare (Cl:lvz)2) calculated analytically from (26) and

(32) and from numerical integration of the equations of motion.

Tetreault[42] reached the same conclusion that "diffusion" can

occur for short times even though motion is not stochastic. He pointed

out the role in this "diffusion" of the nonresonant terms in (25). Each

term causes constant acceleration of the particle, which would lead to

the quadratic behavior seen in (33), but the number of nonresonant terms

decreases as lit, resulting in the linear behavior in (35).

For k V ~ aD, (28) predicts a different shape for C(l) than
Z zo

(30) predicted in the limit (29). In the time interval (34) we use the

large-argument 'formula

J (a -+ 00) -+ (2hTa)~ cos· (a - J,sn)
o

to find (after dropping a rapidly varying term)

C(T)~C(O) (2naDT)-~Cos [(kv -aD)T+~].z zo

There is now a significant contribution to (32c) from T > T, and
o

«(6vz)2) increases more rapidly than t in the interval (34).

Evidence for this behavior has been observed in our numerical

integrations.
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F. Chirikovcriterion for, stochasticity

In Section2D we treated particle motion in a wave of amplitude

small enough that at most one term in the perturbation (9) was slowly

varying in time. Two terms can be slowly varying if a particle lies

within a trapping half-width of each of two adj a:cent resonances (11):

for~ 1 =L and L+1. The constants of the motion "L and. I
L

~

found when only the term 1=L was retained, are not expected to remain

constant when two terms are slowly varying. Numerical integrations of

the equations of motion verify (see Section 2J) that, in large regions

of phase space, no constant exists except the Hamiltonian, if the wave

amplitude is large. The particle is thus free to move almost anywhere

on the energy (hyper)surface. This freedom can result in important

physical consequences; in the presence of a single, obliquely

propagating wave, particles can be accelerated to high velocities

(1. e., a distribution can be heated to high temperatures).

The criterion that resonances overlap has been studied

extensively by Chirikov[20] and found to predict .the disappearance of

constants of the motion (i. e., the onset of stochasticity) with

accuracy sufficient for physical applications. The criterion is simply

that the sum of the half-widths of adjacent resona:nces exceed the

separation 0 between them:

(37)
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The separation (in parallel velocity) follows from the resonance

condition (11):

(38)

The Chirikov criterion for stochastic particle motion in an oblique,

electrostatic wave is thus

(39)

If the Bessel functions have comparable amplitudes, then (39) can be

replace~ by the simpler formula

( 40)

We interpret (40) as follows. Particles with parallel velocity (in the

wave frame) such that Ik v /0. - LI < -21 will tend to move stochasticallyz z

if (40) is satisfied but nonstochastically if it is not. We compare

(39) to the findings of our numerical experiments in Section 2J.

Criterion (40) gives the wave amplitude necessary for

stochasticity to occur for most (roughly speaking, the majority) of

particles with the specified velocity. For wave amplitudes much less

than (40), stochasticity occurs only in thin layers surrounding the

separatrices associated with the resonances (11). These'stochastic

layers can be understood as arising from the overlap of a different set

of resonances, which we call bounce resonances and study in detail in

Chapter 4. One might think that these bounce resonances are of more

fundamental importance than the cyclotron resonances weare emphasizing

in Chapters 2 and 3, and that a more accurate stochasticity criterion
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could be d~rived by considering bounce resonances. ThenulTlerical

results of Chapter 4 show however that, for SOme choices of parameters,

the border of stochasticity is det~rminedby the overlap of yet another

set of resonances. We clearly cannot continue to ascend the infinite

hierarchy of resonances forev~r, and His probably best to apply the

Chirikov criterion tci the lowest set of resonances for which a sensible

answer can be obtained.

G. Num~rical integration of the equations of, motion

To test various aspects of the theory of stochasticityas

applied to particle motion in an oblique, electrostatic wave, we perform

numerical integrations of the equations of motion. The equations are

derived from Hamiltonian (7):

•
<lH/dPz J

•Z = et> = <lH/<lPet> J

Pz = -<lHI<lz I Pet> = -<lH/<let> .

We choose units such that (20) holds and write (40 explicitly as

.'z = P,z

•
et> = 1- Ek.L p- 1 sinet> cos X

•Pz = -E cos X

•
Pet> = E kl P cos et>cos X I

where E is defined in (21b),

X - z - klP sin et> I

(41)

(42a)

(42b)

(42c)

(42d)
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k
and p = (2Pep):2. We avoid. taking a square root by replacing (42d)by

•
p = E k1. cos ep cos X • (42e)

The four equations of motion (42a,h,c,e) are irttegratedon a ..

CDC 7600 computer. The integration scheme used (Gear-Hindmarsh) is

described by Risk[94J and utilizes standard predictor-corrector methods.

The order of the method and the size of the integration step are

adjusted automatically to optimize the efficiency of the integration.

The maximum order available is twelve. In our integrations, a typical

order was eight and a typical integration step was 6t "" 0.05 n-1 .

Several checks of the integration accuracy were made. Since the

Hamiltonian is independent of the time, its numerical value should be

nearly conserved during the integration. The percentage change in the

value of the Hamiltonian was 0.0005% in a typical integration time cif

50 n- 1 • A different integration scheme was uSed in .the early stages of

this work. During the changeover from the old to the new scheme we

checked that the particle traj ectories found by the two schemes were

very close to each other. Also, the equations of motion could be

integrated forward and then backward in time to see if the initial

conditions were recovered. For stochastic trajectories, the most

difficult ones to integrate, we could integrate forward for a time

"" lOn-1 and still recover the initial conditions fairly well.

All calculations were done in single-precision, which is about

14 decimal digits on the 7600. There was no point in reducing round-off

errors by calculating in double-precision, because truncation errors in
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the integration scheme were always much larger than round-off errors.

We could adjust the amount of truncation error per integration

step which was tolerated by the integration subroutine. For

nonstochastic trajectories it was easy to see when a sufficiently small

tolerance had been chosen, since points on our surface of section plots

then fell on smooth curves. If too large a tolerance had been chosen,

the points would tend to spiral in or out from a central point, behavior

known not to occur in.conservative systems like ours. For stochastic

trajectories it was generally found necessary to choose a smaller

tolerance than for nonstochastic ones •. We could check that a small

enough tolerance had been chosen for a stochastic orbit only by

integrating for two values of the tolerance and comparing the resulting

orbits.

It is easy to understand why smaller tolerances are required for

stochastic trajectories. A truncation error causes a displacement in

phase space between the calculated trajectory and the "true" one defined

by the equations of motion. Along a stochastic orbit this displacement

tends to increase exponentially with time while the increase tends to be

linear along a nonstochastic one. A smaller tolerance helps to keep the

accumulated error of a stochastic orbit comparable to the error of a

nonstochastic one.

The presence of numerical integration errors in our trajectories

is thought to have little, if any, significance for the physics of the

problem we are studying. A real particle does not obey (42) exactly

because there will inevitably be small, perturbing terms in the
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equations of motion, arising from physical effects not included in our

model. The truncation errors mimic, to some extent, the effects we have

ignored. These errors are small enough that a nonstochastic trajectory

appears to be stochastic only in a relatively thin layer separating the

stochastic and nonstochastic regions; outside this layer the stochastic

or nonstochastic nature of a trajectory is unaffected by small'

integration errors. These empirical results can probqbly be understood

using the mathematical ideas[4] of KM1 stability for nonstochastic

orbits and of structural stability for stochastic orbits.

H. Related Hamiltonian systems

Several Hamiltonians, closely related to (7).whichwe have

studied in most detail, have also been found by us to exhibit stochastic

motion.

Our numerical results with (7) sometimes show only small

variation of the gyroradius from its initial value Po and only small

deviation of the gyrophase </> from the unperturbed traj ectory given in

(10). A dynamical system with these properties built in is described by

the Hamil tonian

x - z - kJ?o sin </>

</> :: t +</> •o

(43a)

( 43b)

( 43c)

The computer programs developed for studying (7) could easily be adapted
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to stuc!y (43) instead; the only necessary change was the replacement of

order E terms on the right-hand-sides of (42b) and (42e) by zeros.

\-le observed qualitatively similar behavior with <'})and with (43) b.ut

did not attempt detailed comparisons.

Another Hamiltonian studied by us is

. (44)

where the CR, are constants. The closest relationship to (7) is

achieved by taking

with m and M large enough that the coefficients JR,(kJ.Po) of the

terms omitted from the sum in (44) are very small. The same time

variation (43c) of the gyrophase is found from (44) as from (43a). An

undesirable feature of (44) is the behavior of p~(t) which is found

using it: p~ can become negative if Pz increases (in the presence

of overlapping resonances) to a large value • Hamiltonian (7) does not

allow this possibility because a decrease in p~ reduces the values of

the coefficienls JR, (k.LP), preventing an excessive increase in pz.

A Hamiltonian with the good behavior .of (43) but with the

flexibility of ,(44) is

H(z,p ,t)z
1 M

= '2P 2 + E l CR, sin (z - R,~) ,
Z R,=m

(45)
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with the time appearing again through (43c). If only two terms of the

sum in (45) are retained, we obtain a dynamical system equivalent in all

important respects to the one studied in Chapter 4 (compare (4.28)).

If we specialize (45) by taking H=-m= 00 and CR, ~ 1, we find

H(z,p ,t) = -2
1

.p2 +e:TSinzE o(t-nT+<p),z zn 0

using T _ 2w and the identity

00 00

l eiR,t = 2w l a(t - 2w n)
9, = _00 n=-oo

( 46)

( 47)

We choose the particular value <Po = 0-, drop the subscript on Pz' and

write the equations of motion resulting from (46):

•z = p
(48).

p = -e: T cos z En a(t - nT + 0-) •

The evolution of the system is seen to reduce to the discrete mapping

ri
+

1 = p. -ETcosz.
1 1

Z. 1 = z. + p. 1 T.1+ 1 1+

(49)

. . "This mapping is similar to mappings studied by Chirikov,[20] Froeschle,

[95] and others.

I. Surface of section method

A particle trajectory resulting ·from integration of (42) lies on

.'
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. a three-dimensional energy surface which is· contained in the

four"'-dimensional phase space. Attempting to represent a trajectory by a

curve .in a three-dimensional space would be needlessly difficult and

confusing. To answer the important physical question of whether motion

is stochastic or not,.we need traj~ctory information only at certain,

well-separated instants of time. In this section we describe the

technique ,known as .the surface of section method, for selecting these

instants of time and for constructing a plot using the retained

trajectory information; we also discuss the utility of the method.

Poincar~'s[53] surface of section method considers the

intersection of a trajectory with a cross-section of the phase space.

The chosen cross-section must be crossed repeatedly by the trajectory; a

convenient choice in our work is defined by the gyrophase ~ =~. The

choice of any other constant instead of ~ is quite possible, but the

choice of .~ was seen in Section 2D to lead to a desirable

simplification in applying the Taylor-Laing method. The intersection of

the traj ectory with ~ = ~ yields a set of points in a three-dimensional

space with axes z, Pz' and p~. We then ignore the p~ -coordinates of

the points and plot the points in the zp -plane (1. e., we project themz
onto the plane).

As we integrate the equations of motion forward in time,

successive points on the surface.of section plot are generated roughly

once each gyroperiod. The points are iterates of an area-preserving

mapping of the zp -plane onto itself~
Z

Calculating the iterates using

the Hamiltonian equations of motion is computationally time-consuming,
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and past workers[20,43,95-97] have often replaced a Hamiltonian system

by a discrete mapping thought to mimic more or less closely the actual

physical systems of interest. These mappings display <transitions from

nonstochastic to stochastic behavior asa parameter is varied, just as

Hamiltonian systems do. We use the mapping' (49) in Section' 2K to aid us

in understanding our numerical results for the correlation function

C(t). Gen~rally we pr~fer, however, to use the Hamiltonian equations of

motion and thereby eliminate uncertainty about the relation between the

given physical system and a chosen mapping.

By looking ata surface of section plot ,we can tell immediately

whether a particular trajectory shows stochastic motion (nonexistence of

a constant of the motion) or not. By examining plots for several values

of the stochasticity parameter (our E ) and for various initial

conditions we can quickly gain a comprehensive understanqing of the

dynamical system being studied.

The utility of a surface of section plot arises from its method

of construction. If a constant of the motion I exists for a

particular orbit, that orbit will be confined to a two-dimensional

surface, the intersection of the energy hypersurface with the

hypersurface I=const. The intersection of this two-dimensional surface

with the surface of section <f> = 1T is a curve in'zp~p<f>-space, and

proj ection onto the zp -plane yields a curve on which the set of
Z

traj ectory points must lie. If.!!.2. constant I exists,' an orbit will

visit a three-dime~sional region of the energy hypersurface. That

region intersects <f> = 1T . in a two-dimensional surface, which, after



projection, appears as an area of the

7S

zp ..;plane. Thus, a constant ofz

the motion exists if trajectory points lli.2!l.! curve, while a constant

~~ exist if the points illi.~~. Note that the surface of

section method does !!2l. tell us the analytic form of the constant, if

one exists.

Surface of section plots are very useful in determining the

important resonances of a.dynamical system, as shown by an example to be

presented in the next section.

J. Discussion of numerical results

To validate the analytic work, we integrate (42) numerically,

presenting many of the results as surface of section plots.

We first illustrate, in Fig. 17, three of the resonances (11)

for a wave amplitude ~o small enough that the resonances do not

overlap. The widths of the resona.nces (W
L

for L=-l, 0, and 1) are

indicated. The dashed lines are the limits on the motion of a particle

with a given energy which follow from the positivity of the gyroradius.

Next, in Fig. 18, we plot trajectories when the wave amplitude

is large eno~gh for resonances to overlap. Points representing

nonstochastic trajectories have been connected by smooth curves. This

plot illustrates the "divided phase space" which occurs at intermediate

values of the wave amplitude: regions in which a constant of the motion

(in addition to the energy) exists are interspersed with regions in
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which it does not exist. Referring to Fig. 14 we see that the shapes of

some of the smooth curves in Fig. 18 were predicted accurately using the

method of Taylor and Laing. Other curves, representing resonances other

than (11), appear in Fig. 18 but were not predicted earlier. Near each

of the three "primary" resonances (11) we see a set qf five smooth

curves; each set represents a single trajectory and is referred to as a

chain of islands. Each chain shows the existence of a "secondary" or

bounce resonance, which we study in detail in Chapter 4.

To demonstrate the pos·sibility.of heating a distribution of

particles by applying a single, obliquely propagating wave, we use the

plots in Fig. 19. The plots are constructed by the surface of section

method, but in contrast to Figs. 17 and 18, the trajectory points are

projected onto the vl.vz-plane instead of the zpz ...plane. Fig. 19 shows

the motion in velocity space (i. e., the acceleration) of a group of

particles which is specified precisely in the figure caption; the group

is chosen to represent particles with certain values of the

perpendicular and parallel velocities at t=O. We consider a wave of

frequency w = 3.6Q and choose a value v = -w/kz z for the parallel

velocity (as measured in the wave frame). The chosen particles thus

have zero parallel velocity (as measured in the plasma frame) at t=O.

Fig. 19 contrasts the.particle acceleration ina wave of

relatively small (€ =0.25) or large (~=O. 75) amplitude. In the small

amplitude case E.£ particles in the chosen group move stochastically, and

the particle velocities remain near their initial values. In the large

amplitude case all of the particles move stochastically, appearing to
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diffuse throughout much of the semicircular annulus hounded by the

dashed curves. The dashed curves give the limits on the particle motion

which follow from conservation of energy (as measured in-the wave

frame) : the wave can change the kinetic energy of a particle by 2e~
o

2 1",
at most, giving curves at speeds (v ± 4 e~ /mr~, .'. where v . is theo

initial speed. The time-averaged value of a particle's kinetic energy,

as measured in the plasma frame, increases substantially in the large

amplitude case. The vertical aX,is at the far left of Fig. 19 helps us

see the extent of the increase in parallel kinetic energy.

In Section 2L we give examples of electrostatic waves which

could cause heating of a particle distribution. In Section 2M we

consider the heating of a Maxwellian distribution and find that the tail

particles are accelerated most strongly. In Appendix D we mention some

experimental requirements which must be satisfied in order to observe

stochastic acceleration.

Our numerical results indicate a transition to stochastic ,motion

at E ~ 0.50 when the propagation angle and initial p<:irticle velocity

have the values used in Fig. 19. To compare this numerical result to

the theoretical formula (39) we insert the values J -3 =-0.17 , and

J _4=0.051 for Bessel functions of argument k..lp=2. 24 and find the

condition for stochastic motion to be

E > 0.61 •

The agreement is as good as can be expected considering the crudeness of

both the numerical measurement and the theory.
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In Fig. 19 the numbers 0, 1, 2, 5, 6, 7 show the positions of

a particle (with a certain z ) after the indicated number ofo

gyroperiods. The apparent diffusion process noted earlier seems quite

rapid, and we now investigate this process more carefully. We

numerically calculate the trajectories of 50 to 200 particles which have

unique initial values of vi and Vz but initial values of kzz and

<I> arranged in a regular array (see Fig. 20). In Fig. 21 we plot, for a

subset of the trajectories, the parallel velocity Vz vs. time. We

first note the diffusion of v away from its initial value; below wez

study this diffusion quantitatively. Interesting features of some

trajectories in Fig. 21 are periods of rapid change in Vz (large

parallel acceleration) separated by periods of relatively constant v •z

These features can be understood by referring to the related Hamiltonian

systems (45) and (46). If the gyroradius has an appropriate value,

several of the Bessel function coefficients in (9) may have comparable

magnitudes, causing the motion to resemble that of (46), at least

temporarily. The periods of large parallel acceleration are thus

attributed to constructive interference of the terms in (25).

To study the diffusion process quantitatively, we use the

numerically calculated trajectories to compute (C6Vz)2), a quantity

introduced in Section 2E. The time variation of this quantity typically

has the form shown in Fig. 22. Quadratic and then linear dependences on

time, as predicted by (33) and (35), are observed during the first

gyroperiod or so. Thereafter, a deviation from the linear behavior,

indicating either a larger or a smaller diffusion rate, generally

occurs. An interpretation of this.deviation which is consistent with
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our numerical results is the following. The tate of diffusi'on ofa

group of particles is primarily determined by theirpr~sent velbcities

rather than by the past history of the group (i~ e., a Narkovia~:)

assumption has some validity). As a group of particles diffuses; some

particles reach velocities for which the diffusion rate is, say, larger

than it was at the initial velocity. The diffusion rate of the whole

group then appears to increase. This interpretation is indicated on

Fig. 22. For long times the diffusion process ceases because the group

has spread out to fill the entire stochastic region of velocity space

(see Fig. 19).

Using the numerically calculatedtrajectories,~vealso compute

the correlat ion func tion (23). Fig. 23 shows a typical s'hape for'

C(T, t I = 0). In Section 2E we explained the observed shape for short T

using a linear theory (see Fig. 15). Fig. 23 extends to longer T than

Fig. 15 and reveals persistent oscillations in the correlatiohfunction.

We propose two explanations for these oscillations. First, the

oscillations may be an artifact of the small number of trajectories

used; this possibility is demonstrated for the mapping (49) in the next

section. Fig. 24 shows, however, that for parameters of interest in

wave-heating, there is only a weak dependence of the measured

correlation function on the number of trajectories. The second

explanation is that our moderate values (E ~~) of the stochasticity

parameter allow long-time correlations for a significant fraction of the

particle trajectories used to compute C(T). This effect is

demonstrated in the next section for the mapping (49). In addition,

fig. 25 suggests that this effect is present for the Hainiltonian(7)~
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increasing E:by a factor of four appears to decrease the rms level of

the oscillations. The larger of the values of E used in Fig. 25

corresponds to a wave of such large amplitude (see Section 2L) that we

begin to doubt our assumption that the wave is sinusoidal.

Measurements of quantities like the correlation function thus

seem somewhat problema tical. One is concerned that an insufficient

number of trajectories has been chosen. Elimination of the persistent

oscillations requires an amplitude violating the sinusoidal assumption.

On the other hand, if one wants to study these oscillations, which are a

real physical effect, no theory is available with which the numerical

results can be compared. In the face of these problems we have limited

our study of the correlation function.

K. Correlation function ofa discrete mapping

In this section we measure the dependence of a correlation

function of the mapping (49) on the number of trajectories and on the

size of the stochasticity parameter. We feel the results presented

below support the explanations proposed in the preceding section for the

behavior of the correlation function (23).

The correlation function which we measure is

c.:: 2 <cos z. cos z >,
1 1· 0

where the bracket denotes the average over z •
o

(50)

This quantity for the

mapping (49) is analogous to (23) for the Hamiltonian (7). We iterate
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(49) up to step i=24 for N=100 or 400 initial values of z:

z = 2TIn/N , n=O, 1, 2, ••• , N-1 •o

The numerically calculated iterates are then used to compute (50). In

Fig. 26 we show C. for N=100 and a relatively large value of
1

After an initial decay shows persistent oscillations,€ =0.20.

just as C(T) does in Fig. 23.

C.
1

Note, however, that we calculate C.
1

over 24 steps, each of which corresponds to one gyroperiod, while Fig.

23 extends to only about 2.4 gyroperiods. In Fig. 27 we show that an

increase of the number of trajectories, N, to 400 greatly red·uces the

oscillations. For a quantitative measure of the reduction we compute

(C.) =0.0535.
1 rms

from i=12 to 24. With N=lOO,the rms level of C.
1

and with N=400,

(C.) =0.107,
1 rms

The empirical relation

(C ) N-~i rms ~

is strong evidence that the persistent oscillations in Figs. 26 and 27

are caused by the finite values of N.

Next we investigate the dependence of C.
1

on €, keeping N

constant (=400). The results are seen by comparing Fig. 27, for which

€=0.20, and Fig. 28, for which €=0.06. The set of trajectories used

for Fig. 28 contains some nonstochastic trajectories, which cause, we

believe, the persistent oscillations seen in Fig. 28.
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L. Oblique electrostatic waves for a~celeration of ions

In Section 2Jwe uses as an examples an electrostatic wave with

frequency W = 3.6Q s propagation angle °e = 45 s and various amplitudes

measured by £ - kz
2 ecI>0/mQ2. t~e identify here a particular wave \\lith

thes~ properties and show that the amplitudes used are not unreasonably

large.

We concentrate on waves appropriate for heating ionas but we

note that often there exists s for each ion wave, an electron wave with

analogotis parameters which is appropriate for heating electrons.

A plasma in a uniform ~agnetic field can support an obliquely

propagating, electrostatic wave which we call an ion-acoustic wave.

This wave is indicated in Fig. 29. The name "intermediate-frequency

acoustic wave" is used in the old s but still useful review by

Stringer. [98] Our terminology is based on the similarity to the

ion-acoustic wave which exists in an unmagnetized plasma. In deriving

the linear dispersion relation of the ion-acoustic wave in a magnetized

plasmas one finds an ion response similar to the response in an

unmagnetized plasma since the wave frequency is greater than the ion

gyrofrequency. The electrons are strongly magnetized and move only

along, not across s field lines. The electrons can~ nevertheless s act to

shield the potential produced by the ions as long as e is not too

1 9'0°.case to The frequency W is thus given approximately by the

unmagnetized formula

w ::::: kc ,
5
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where k2 :: k
Z
2 + k.L2 , and the sound speed is. given by

C 2 :: (T + 3T. ) 1m .•
5 e 1 1.

Given the wave parameters w = 3.6S1.
1

and

• and the temperature rat·io T IT., we calculate the damping rate of thee 1.

wave using the formula (4.68) in Ichimaru[99J appropriate for Maxwellian

distributions of electrons and ions. Just as in an i.mmagnetized plasma,

we find a weakening of the damping as T IT. increases. The damping
e 1

reaches a fairly small value when T IT. is increased to 16:e 1

y ~ -O.04w •

Such a large temperature ratio would not be required in an unmagnetized

plasma to reach this damping rate. With the temperature ratio 16

chosen we can calculate the ion thermal speed,

VT . ~ O.58S1./k •
1. 1. Z

(51 )

This speed is indicated on Fig. 19 by the hatched semicircle. The group

of ions studied in Fig. 19 would thus have an initial perpendicular

velocity 3.8 times the thermal speed.

We now express the wave amplitude given by e: =0. 5 in more

familiar terms. From the fluid equations describing an ion-acoustic

wave, one easily derives a relation between the potential amplitude ~o

and the density amplitude· onln:

on e~o·
-=
n m.c 2

1. 5

( 52)

Using the formulas for the dielectric function D and the Debye length

AD' we also find the expression
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(53)

for the wave energy density W.

write e: =0.5 as

Use of (51) and T IT .=16 allows us toe .1·

3
e~ ~ - T ~o ·2 i (54)

Substitution of (54) into (52) and (53) yields

( 55)

The moderate numerical values in (55) appear to justify our use of the

linear dispersion relation for the wave. Also, (55) gives the important

result that stochasticity can occur at smaller amplitudes than nonlinear

effects requiring on/n'V 1. For other wave parameters, however,

stochasticity might not occur for any physically reasonable wave

amplitude.

The low-frequency ion-acoustic wave

w ~k c < Q
z 5 i

might also be used to heat ions. A large temperature ratio is again

required to reduce the linear damping rate. This wave seems to lead to

less dramatic heating of an ion distribution than the ion-acoustic wave

with W > Q. which we considered above. The difference between
1

parallel velocities in the plasma frame and in the wave frame decreases

as W decreases (see Fig. 19). For small W the constant energy

curves in the two frames are close together, implying less possibility

of dramatic changes in the distribution of parallel kinetic energy (as
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measured in the plasma frame).

We have considered other. waves of a plasma in a uniform magnetic

field but have found no wave with more favorable parameters than those

given above. Lacking a definite optimization criterion, we have not

performed a systematic variation of wand O. Values of 0 close to

90° are of particular interes.t since many waves propagate nearly

perpendiClllarto the magnetic field; the lower llybrid wave,important in

rf heating studies for tokamaks, is one example. For parameters typical

of lower-hybrid-heating experiments the condition (40) for. overlap of

cyclotron resonances cannot be satisfied. Ion motion may be stochastic,

nevertheless, .because of the overlap of other resonances, as mentioned

in Subsection 1C4.

H. Heating of a distribution function

In Section 2J we showed that a group of particles with given

parallel and perpendicular velocities at t=O may be heated by a

single, oblique wave. Here we consider a Haxwellian distribution of

velocities at t=O and find the distortion of that distribution caused

by the wave.

We use the following qualitative picture suggested by Fig. 19.

An ion whose velocity satisfies (40) moves stochastically, ranging over

that portion of the constant-energy semicircle defined by (40). An ion

whose velocity does not satisfy (40) r~nains nearly fixed in velocity

space. In the presence of a single, oblique wave of large amplitude the
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steady-state ion distribution must therefore be constant along the

stochastic portions of the constant-energy semicircles and nearly

Maxwellian in the nonstochastic regions of velocity space.

This picture is implemented by a computer program which modifies

an initially Maxwellian distribution to obtain the steady-state

distribution. The modification is accomplished by successively

considering semicircular annuli in vl.vz"'space, each of which represents

particles with a small range of speeds. For.each annulus the Maxwellian

is integrated over the stochastic portion of the annulus to find the

total number of stochastic ions in the annulus. This number is then

spread over the stochastic portion of the annulus to form a distribution

with a certain weighting along the constant-energy semicircle. We

choose a weighting proportional to the perpendicular velocity vl. to

make the distribution uniform over the three-dimensional (v v v )
xy z

kinetic energy surface. The form of the chosen weighting determines

quantitative, but not qualitative, features of the resulting

distribution.

The steady-state distribution in v.Lvz-space is integrated over

Vz to obtain the perpendicular distribution and over Vl. to obtain the

parallel distribution. In Fig. 30 we plot these distributions on a

logarithmic scale. The horizontal (velocity) axes use a quadratic scale

so that a Maxwellian {indicated by e:=0) appears as a straight line.

Results for two different values of the wave amplitude are indicated by

e:=0.25 and 0.75. The same wave frequency and propagation angle and

the same ion thermal speed are used as in the example of Section 2L.
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The wave is. seen to distort only the tCli1s of the perpendicular

and parallel distributions, not the bodies. The perpendicular

distribution is distorted for v~~ 3VTi in the case £=0.75. The

distortion of the parallel distribution is highly asymmetric because

. .

ions tend to be accelerated to the parallel velocity of the wave frame,

which is positive and much larger than the thermal speed. Although the

distortions shown in Fig. 30 involve only a tiny fraction of the ions in

the complete distribution~' the changes in ihe popula~ions of tail ions

are quite dramatic •

.Thetiny fraction of ions which is stochastically a..ccelerated by

the wave can gain a substa.ntial amount of energy as a result .of the

large velocity changes produced during stochastic acceleration. As a

numerical example we consider the smaller amplitude case £ =0.25 for

which 0.03% of the ions move stochastically. These ions increase

their kinetic energy by an amount roughly equal to half of the energy in

the wave. We thus expect the propagation characteristics of the wave to

be altered significantly when stochastic acceleration occurs.
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3. Analytic Description of the Diffusion Process

In Chapter 2 we'introduced a simple problem'illustrating the

overlap of cyclotron resonances, derived and verified a stochasticity

criterion, and discussed the implications of stochastic motion (wave

energy is converted to plasma kinetic energy). Also, we presented

results of our numerical integrations and gave explanations of many of

those results. This chapter is devoted to an extremely important

practical question not addressed in Chapter 2: what equations describe

the rate of change of a particle distribution' in the presence of a

perturbation, (e. g. ,a wave) large enough to, cause stochastic motion?

We assume here, in agreement with other authors,[20,24] that the

diffusion process is Markovian, and we search for an appropriate

diffusion coefficient. Stochasticity tends to erase the memory of a

particle's history, thus justifying, to some extent, the Markovian

assumption. For our moderate values of the stochasticity parameter, e:,

a considerable memory remains and a non-Markovian description may be

necessary. Such a description was presented in Ref. 100~

A. Linear and quasilinear theories

In Section 2E we presented a linear theory which agreed well,

for short times, with the results of our numerical integrations. In

particular, the time-dependences of the correlation functionC(t) and

.,.,.

the diffusion of the parallel velocity were predicted using
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the linear theory. For long times th,is theory cannot , however, give an

adequate description if resonances overlap, since the theory does not

allow for any (true) decay of correlations, which is an important

feature of stochastic motion. The failure of linear theory's prediction

for the correlation function is clear from (2.26) in the cases of

integral values of k V In:z zo G(T) is periodic with frequency Q.

To derive a diffusion coefficient, one must assume that there

exists a decay of correlations which is not present in linear theory.

When the correlation time is short compared to a particle diffusion

time, the limits of the T-integrals in (2.32) can be extended to

infinity. If G(T, t') is independent'oft', a diffusion coefficient

00

D J dT Cee)
o

, (0

can be found.

,
In quasilinear theory, one inserts in (1) the (non-decaying)

correlation function G(T) found from linear theory. Thisprocedure

gives a sensible formula for D if the wave spectrum is continuous.

In our prd'blem, however, the spectrum is discrete, and integration of

the cosines in (2.26a) yields the unbroadened (a-function) resonances

in the mathematically nonsensical result

J 0
2 (al 1T a(k V - R,Q) •

IV Z zo ( 2)

Hechanisms for the decay of correlations give, effectively, a finite

upper limit on the integral (0, leading to broadened resonances. When

the spectrum is discrete, it is essential to ta~e these mechanisms into
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account.

B. Mechanisms for the decay of correlations

In this section we mention three mechanisms for the decay of

correlations (and thus the broadening of resonances), one of which does

not occur in our work and two of which do occur.

Another resonance broadening mechanism occurs, physically,

because a particle which remains near a certain resonance for only a

finite time cannot determine the frequency of that resonance exactly.

Wbrk on this mechanism was begun many years ago[lOl] and ha~ continued

until relatively recently. [102] The standard methbd for treating this

diffusion process gives, as we show below, insufficient broadening of

the resonances and therefore cannot adequately explain our numerical

results.

The standard method begins with the substitutibn of (2.25) into

(2.23) to obtain an exact expression for C(T, t')~ Approximationsare

made which reduce the double Bessel function sum to a single sum of the
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form

where

OZ(T) - Z(T) - Zo
Y T.

ZO

Hore approximations allow one to derive an equation for the diffusion

coefficient:

J 0
2 (kl.p ) Ro (y. ' P ) .

IV o· IVZO 0
(4)

The resonance functions RR, depend on D through

00

(5 )

The failure of the standard tre&tment of resonance broadening is

illustrated by a numerical example. From plots like Fig. 22 we measure

diffusion r~tes of roughly 0.05 Q3/kz
2• The resonance functions (5)

then have full-widths (in frequency) of ~ 0.5 Q, significantly narrower

than the separation Q between resonances. As a result, our attempts

to calculate iteratively values D(Y )
ZO

for the diffusion coefficient

either failed to converge or gave sharp peaks near the resonances

(2.11). The complete absence of such peaks in the numerically measured

D(Y ) forces us to reject (4) and (5) as a description of the
zo

diffusion process.

Evidently, some of the numerous approximations leading to

(3)-(5) are poor. A serious defect of the standard treatment is the
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obscuring or, possibly, the complete omission of an important mechanism

for the decay of correlations (and thus the broadening of resonances).

This mechanism is called mixing in Ref. 4. While only the slow (action)

variables enter into the physical description of correlation decay by

diffusion, for mixing the fast (angle) variables play an essential role.

The mixing process is often the primary object for study in

stochasticity theory (see, for example, the important Refs. 3 and 20).

1-1ixing is rarely mentione~ in the plasma physics literature, and it .is

customary [4] in stochasticity theory to attempt to eliminate the

diffusion process. Consequently, the relation between decay of

correlations by diffusion and by mixing remains obscure. Here we limit

our treatment of mixing to setting up the (almost trivial) calculation

of the local rate of separation of neighboring trajectories. This local

rate gives information about the stochasticity only of very special

systems. For more general systems a lengthy theoretical treatment of

mixing is given by Chirikov,[20] but a treatment for Hamiltonian systems

like ours seems not to be available. Our limited treatment may give the

flavor of the mixing process but yields no information which we can

compare with numerical results.

To calculate the rate of separation of two neighborin~

trajectories we consider the vector 8Y:: (8Z, 8</>, 8p, 8p) giving the

separation between two nearby points in phase space (we suppress the

.subscript on pz). This vector changes its orientation and its length

as the two phase points move according to the equations of motion

(2.42). If the vector has infinitesimal components, the equation of

motion for the vector is easily derived. We write equations (2.42) for

..
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Y. = (z., ef>., .p., P.), i=1,2, subtract the
-1 1 1 1· 1

corresponding pairs of equations from each other, and expand the

right-hand sides in Taylor series. The result is a vector. equation of

the form

(6)

*where A4 is a 4x4 matrix whose elements are functions of position X.

in phase space.

Since particles moye on constant-energy surfacesiri phase space,

we are most interested in the rate of separation of trajectories lying

on the same energy surface.. A vector AY. lying on an energy surface

has components related by

o = AH av av av. A= pAp + pLip + aZ" tJ.z + aef> Lief> + ap up (7)

where we use the units (2.20) and

v - e: sin (z - k.lp sin ef» •
,

Using (7) we can eliminate Lip from the right-hand sides of (6) and

( 8)

derive an equation of motion for Li! = (Az, Lief>, Lip), the separation of

two trajectories near position X = (z, ef>, p) on the energy surface:

Using the abbreviations

VI _ e: cos (z

c - cos ef>,

~P sin ef»

s =sin ef> ,

( 9)
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we can write the 3x3 matrix 1"3 (!) as·

- V'/p kl.p C V' /p kJ.sV'/p - pip

~

kf csV - kJ.cV'/p kls2V/p + kJ.sV '/p2A
3 = - kJ..s VIp . (10)

k..Lc V - kl pc2v - kJ. 5 V' - kl cs V

In (10), p is to be expressed in terms of K using (2.7).

We see that (9) has the form of three coupled, ordinary,

first-order differential equations with variable coefficients. We

restrict our attention to very short times for which a particle's X

has changed very little. The coefficients can then be treated as

constants and a general solution written:

3
AX(t) = I

j=l

y·t
C. b.. e J •

J -J (11)

The C. are constants determined by the initial separation A~.ct =0).
J

The eigenvalues y.
J

and eigenvectors A. are found by solving
-J

(12)

The fact that ~ is a real matrix allows us to derive the following

reality conditions for the y. (and also for the A.): one eigenvalue
J -J

is always real, while the other two are either both real or form a

complex conjugate pair. From the reality conditions we can show that a

real value for ~X(t =0) leads to real values for AX(t > 0), in spite

of the complexness of the C. ,
J

y., and
J

in (11).
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If the initial separation 6X lies exactly along a real

eigenvector, say ~, then the separation will grow (or shrink) at the

rate YI. However, the eigenvalues and eigenvectors depend ohthe

position X on the energy surface for which (12) is solved. The change

in X during the motion may thus lead to changes in the magnitudes and

signs of the eigenvalues and in the directions of the eigenvectors.

These serious ~omplications make direct use of the local rate of

separation impossible.

c. Semi-empirical model for the diffusion coefficient

In the previous section we mentioned some of the known

theoretical ideas for treating decay of correlations ~hd resonance

broadening in stochastic dynamical systems. Since these theoretical

ideas have not led to useful comparisons with our numerical results, we

introduce here a semi-empirical model which is found to agree with those

results in some respects.

Our idea is simple and physically reasonable but not derivable

from any known. theory. We reta;Ln the form (4) but replace ·the· resonance

function (5) ,,,,itha broader.function, a Lorentzian of half-width 'VR,:

00

= J dT COS WT exp(-'VR,T) =
o

(13)

We choose

Section 2D:

to reproduce the trapping half-width calculated in
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(14)

Chirikov[103] suggests instead

v = e!'k W )4/3/rl.1/ 3 (15)R, 2zR, ,

which is supported by the theory iii Section 2.11 of Ref. 20. Standard

resonance broadening theory also leads to a half-width VR, proportional

to (15), although the theories appear quite different. This result

follows from (5), which gives

and the estimate

D ~ 1T C(O) Jf/rl.

following from (4) in the limit of strongly overlapping resonances. The

constant factors suggested by standard resonance broadening theory yield

a much smaller value for the half-width than (15). Our semi-empirical

model for the diffusion coefficient is insensitive to the shape used in

(13) and to the value of VR, as long as the resonance functions RR,

are broad enough to overlap. Consequently, our numerical comparisons,

described below, do not. 'allow us to choose between different resonance

functions.

In Fig. 31 we use (4), (13), and (14) to plot the diffusion

coefficient D as a function of the initial parallel velocity vzo •

Curve (a) uses a relatively large value of E:, curve (b) a somewhat

smaller one.
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We now compare the curves in Fig. 31 to. values of the diffusion

coefficient measured from plots like Fig. 22. The observed points and

error bars in Fig. 31 are derived from the slopes of «~vz)2> vs.

time at short times. The logic behind this comparison is, strictly

speaking, not correct. Our semi-empirical model is supposed to describe

a nonlinear syste~ with stochastic motion, while the short-time slopes

are not determined by stochasticity but by the linear effects discussed

in Section 2E. The measured slopes give~ however,a fair indication of

the diffusion rate at later times when the linear theory undeniably must

be replaced by a nonlinear one. Fig .• 31 shows that our semi-empirical

model predicts the l~vel of and, roughly, the variation with V ofzo

the diffusion coefficient.

D. Conclusions of Chapters 2 and 3

In Chapters 2 and 3 we have studied the motion of a:charged

particle in a single wave, which is propagating obliquely to a uniform

magnetic field.. As the wave amplit!Jde is increased, a constant ()f the

motion disappears, allowing the motion to become stochastic. The

Chirikov criterion of overlapping reson~nces gives a prediction for the

onset of stochasticity in good agreement with the results of numerical

integration of the equations of motion.

We have numerically computed a correlation function and found

evidence for its decay with time when motion is stochastic. Our results

show, however, that the study of correlation functions of Hamiltonian
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systems requires more careful, and costly, numerical experiments than

ours.

The resemblance of stochastic motion to a diffusion process has

been observed numerically. We have found no previous theory which

adequately explains our observations but have introduced a semi

empirical model which gives a good description of the diffusion process.

The Hamiltonian system studied by us closely resembles many

other dynamical systems. The results found by us thus may aid

investigations of problems seemingly remote from particle motion in a

single wave.

We have considered the possibility of using the overlap of

cyclotron resonances as a mechanism for heating a particle distribution.

Choice of an electrostatic wave, the ion-acoustic wave, allows

parameters satisfying the requirements of our analysis. The analysis

predicts rapid transfer of wave energy to ions in the tails of the

perpendicular and parallel distributions. Heating of ions by this

mechanism does not appear important infusion plasmas but might be used

in a small-scale laboratory experiment to observe stochastic

acceleration by a single wave.
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4. Overlap of Bounce Resonances Caused by
the Trapped-Ion Mode

We saw in Chapters 2 and 3 how the overlap of cyclotron

resonances could lead to stochastic mo.tion in a uniform magnetic field.

In a nonuniform field we would expec tthe results found above to be

modified somewhat. Instead of studying these modifications we have

chosen to investigate an entirely new phenomenon which arises when the

magnetic field is nonuniform along a field line, as·sketched in Fig.

32. In such a field, particles with a parallel velocity small compared

to the perpendicular velocity can be trapped between magnetic mirrors

and bounce along the field line about the point of minimum field

magnitude. If the bounce frequency ~ is comparable to the frequency

of a wave in the plasma, the resonances

W = n = 1,2,3, ...

.,

can be important. This chapter studies a situation in which the overlap

of bounce resonances is important.

Bounce resonances occur in many different problems; in Section

4E we discuss problems which seem to us to be of interest to the fusion

program. The occurrence of bounce resonances in many physical

situations is expected from the discussion in Subsection lC7: the

dynamical systems studied are of a generic, rather than a special, type.
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A. Choice of model and parameters

Of the many problems of interest to the fusion program we have

chosen to study the motion of an ion in a large-aspect-ratio tokamak in

the presence of a dissipative trapped-ion mode. That this system is

described by the dynamical equations we study was not widely recognized

when we began this work. A brief report of our work has already been

published. [104) We were able to choose appropriate parameters by

consulting the well-developed linear theory of the dissipative

trapped-particle instabilities. For readers who are unfamiliar with
(

these instabilities we include in Appendix E a discussion of· the physics

of the dissipative trapped-ion instability.

The parameters of the trapped-ion mode wh.ich will be important

to us are its amplitude, parallel wavenumber, and frequency. We assume

the amplitude 4>
o

to be given by

where e is the ion charge, T.
1

field at the magnetic axis, and

(1)

is the ion temperature, B is the
9

6B is the modulation amplitude of the

field. Note that a typical value of 6B/B is one-fourth. The
o

numerical factor 0.05 was chosen so 4> would be comparable to theo

mode amplitudes at which other[105) nonlinear processes become important

and also at which trapped-particle modes have been observed[106) in

experiments.

The parallel wavenumber k
ll

is given in terms of the poloidal

and toroidal mode numbers m and ~,respectively, by

..
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. 0

1
- m-R,q =

2
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( 2)

where R is the major radius of the tokamak, and q is the safety
o

factor on a magnetic surface near which the ion motion occurs (a precise

specification of this magnetic surface will be given later)~ The value

12 takes into account two properties of the trapped-ion mode. First,

the modes with different values of m are coupled together st~ongly

because trapped particles are present. For a given R" several modes

with adjacent values of m have appreciable amplitudes. The mode with

the largest amplitude has the m \l1hich makes 1m - R,q I as small as

possible. Second, the radial structure[107] of a mode of given R,

shows maximum amplitudes between the magnetic surfaces where q is

rational (i. e., equal to an integer divided by .Q,). Thus, we study the

1motion of an ion near a surface on which q = (m ± 2)/R,. He believe

qualitatively similar ion motion would be found for any value of rn"" R,q

not too close to zero; this belief was verified by a few calculations

with 1
rn-R,q =-.

4

The mode frequency w. must satisfy several requirements (see

Appendix E) before the mode can be unstable and grow to large

amplitudes. The growth rate of the mode (due to electron collisions) is

proportional to w2 • If the plasma parameters are such that ion Landau
\

damping (proportional to w4 ) is unimportant, then the mode with the

largest possible w will grow fastest. The mode frequency is limited

by the very approximate relation w< ~i ' where the bounce frequency of

a deeply trapped, thermal ion is given by
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(3)

where M is the ion mass. In accordance with the approximate limit

W < W
bi

' we choose

(4)

Our numerical calculations of ion traj ectories use only the

e4> /j.lL\B and
. ~

where is the magnetic moment.ratios W/~.(j.lB /T.) , j.l
Q 1 0 l.

The calculations thus apply to values of the amplitude and frequency

other than (1) and (4), as long as those ratios are unchanged.

The electrostatic potential due to a spectrum of trapped-ion

modes can be written as

(5 )

where 0 and r;; are· the poloidal and toroidal angles, respectively,

and a is the toroidal flux (divided by 2~) enclosed within a magnetic

surface (L e., a gives the minor radius r of a surface of circular

cross section according to the approximate relation a = !.B r 2 ).
20 The

(assumed real inhas a frequency W~

the saturated state) and phase n~. As mentioned above, m is chosen

mode with toroidal mode number

so that 1m - ~ql is as small as possible. The sum over ~ consists of

modes with, in general, different linear growth rates. For simplicity

in our numerical and analytical work we select from this sum the single

term representing the mode with the la~gest linear growth rate. The

a.-dependence of 4>~ (0,a) leads to finite-banana-width corrections,

which we neglect, to radial Ji x ~ drifts. The a -dependence also leads
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to poloidal and toroidal]. x ], drifts ,which are negligibly small

compared to diamagnetic drift or thermal velocities. We thus have

replaced (5) by

4> = - 4> g (0) cos (mO -R.l; - wt + n) ,o . ( 6)

where subscripts on wand n have been dropped and we have introduced

the poloidal structure factor g using

The simplest poloidal structure, and the one used for most of our work,

is g=l. For a few calculations we have used

1
g(O) = 2(1 + cos 0) (7)

which models the ballooning of the mode on the outer side (0 = 0) of the

torus.

B. Transformation to action-angle variables

In studies of tokamak problems we believe significant advantages

are gained by utilizing the appropriate set of action-angle variables.

Once the meaning of the variables is understood, one can easily see

analogies between problems in the relatively complicated tokamak

configuration and in simpler configurations (e. g., a uniform or zero

magnetic field). The appropriate vari,ables for a tokamak have been used

by many workers, with the most systematic formulation given by

Kaufman. [108] During the course of this work a slight refinement of the
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results of Ref. 108 was developed.

For the sake of completeness and,to introduce the notation used

here we review the ideas of Kaufman[108] in this section. We begin with

Kaufman's Eq. (11) for the Hamiltonian describing guiding-center motion

in quasistatic electric and magnetic fields. We assume that no

quasistatic electric field is present and suppress any indication that

the magnetic field might be varying slowly in time. We also take the

usual large-aspect-ratio limit and find the guiding-center Hamiltonian

to be

( 8)

The magnetic moment ~ appears here as a parameter which is constant in

time. A more complete theory would treat (lk/e)~ as a canonical

momentum as was done in Chapter 2. In this chapter we will deal with

guiding-center motion only and are thus able to reduce the number of

canonical variables to four. The toroidal angle ~ does not appear in

(8), since we are assuming the tokamak to be axisymmetric~. The momentum

p~ canonically conjugate to ~ is thus a constant of the unperturbed

motion:

o .

The variables 0 and a give the location of the guiding center in a

plane perpendicular to e. These variables are chosen to be a set of

Euler potentials, [109] variables in which the magnetic field is

described simply and naturally •.. Each of the nested magnetic surfaces is

labeled by a, which, physically, is the toroidal flux (divided by 27T)
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enclosed by the surface. The variab.1e0, gives the poloidal position

of the guiding center on the magnetic surface ·a. The toroidal field

is given by

"B,.. Z;. = Vx A , A = a'iJ 0 •
';> -p-p

The calibration of 0 is such that~ along a field line~

d0/dZ; = l/q(a)

with the safety factor q a function of the magnetic surface labeled by

a. That these conditions can all be satisfied simultaneously was shown

by Hamada[110] and disc.ussed by Greene and JohO$0fl[lll] and Solov'ev and

Shafranov. [112] The poloidal, qux function 1J! is conventionally used

1J! = -RA ,r;;
B
-p

"= B 0o

1J! is a function of a with derivative

d1J!/da = l/q(a)

The spatial variables 0 and a are a pair of conJugate

variables in Hamiltonian (8). To be precise, the momentum canonically

conjugate to 0 is

p = ea/c.

(Fora uniform magnetic field, in Chapter 2, we found the analogous

resul t that mQ X is the momentum 'canonically conj uga te to Y.) From
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Hamil tbnian (8) we derive the equations of motion

(9a)

- c aHo
a =-- --e ae -

where we have used

caB Mc ;2R aR "
- e II ae + e ":> . ae· (9b)

-l; = aHolaPl; = (Pl; + e'l'(C)/MR2 (10)

In (9) the terms proportional to -2l; are the curvature drift and the

terms proportional to II are the gradient drift.

We now introduce a more convenient set of variables which we

denote by . (e' I a', l;', p~). For this purpose we use the function

ao(pl;) , defined by

From (10) we see that, for a trapped particle, ao is the va1ue of

-a at the particle's turning point (l; = 0). We also note that

,
daQ/dpZ; = -(c/e)(d'l'/dao)-l =

The generating function

- cq (a)/e •
. 0

yields

e' ,= e
( 11)

at = a - a (p'), p.: = p
. 0 l; ":> l;
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Since e and Pz;; .are unchanged by this canonical transformation, we

henceforth drop the primes on those variables.

Hamiltonian (8) can be exptessed in terms of the t\VO canonical

momenta ~ = (eal/e, PZ;;) and the one coordinate e. To obtain the

simplest equations of motion and to bring out the analogies between

motion in a uniform and in a nonuniform magnetic field, we express the

Hamiltonian in terms of two momenta and no coordinates. The variables

e and aI, are replaced by action-angle variables J and ¢.

The action variable J is given by

(12)

To carry out the integral in (12) explicitly, one needs to solve (8) for

a l
• The integral sign ~ is interpreted differently for trapped and

circulating particles. For a trapped particle, the variable e

oscillates in the range - e
TP

< e < e I < 7T , where the subscript TP
- - T)

denotes the turning point, as the particle follows the well-known banana

orbit. The integral in (12) is to be evaluated during one execution of

the banana orbit. For a circulating (also known as passing, transit, or

un trapped) particle, the variable e .increases or decreases

monotonically as the particle moves (in the lowest approximation) along

a field line. During this motion the particle encounters successively

the minima and maxima of the magnetic field. The integral in (12) is to

be evaluated over~ periods of this oscillatory motion (e. g., from.

one minimum of the field, past a maximum, a minimum, another maximum,

and ending at a minimum). This definition of J is continuous across
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the boundary between trapped and circulating particles.

The action J is closely related to the well-known. longitudinal

invariant ~ ~I ds. In the large-aspect-ratio approximation, which we

have adopted,

V:'I /Ro ~ ~ ~. PlI(a.) - 'l'(a. )] elMeR 2 ~ a.'e/McqR 2o 0 . 0

and

ds ~ R dr,; ~ qR d0 ,
o 0

so from (12)

27TJ ~ M ~ Vj, ds

,.

Using (12) to eliminate

generating function

Ho in favor of J, we write the

o
= r,;' Pr,; + (e/c) ! d0' a.' (0', J, Pr,;)

o

where the bar on P~ indicates that F2 depends on the new

(canonically transformed) momentum. The new momentum P~ is in fad

equal to the old momentum P~, so we henceforth omit the bar.

angle variable conjugate to J is

o
~ = aF2/aJ = (e/c)! d0' aa.'/aJ

o
o

=~ ! d0' /0 = (t - to)~
o

The new

(13)

where 0(t )=0, and the bounce (or transit) frequency is given byo
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For a trapped particle, ~ is the frequency of bouncing between

magnetic mirrors. For a circulating particle, is half the

frequency of transiting from one minimum of the magnetic field to the

next. The new coordinate conjugate to is

o
~ = aF2!Clp = l;' + (e/c) J d0' aa'/ap,..

l; 0 ."

Physically, l; gives the value of Z;;' averaged over a period of the
•

o -motion. For a trapped particle, Z;; is the (constant) drift of the

banana in the toroidal direction. In Fig. 33 we illustrate the

relationship between 0 and ¢l

We show the analogies between gyromotion(Chapter 2). and bounce

motion (Chapter 4) in Table I. The canonical variables we have used for

a uniform and for a tokamak magnetic field are compared. Constant

factors have been omitted in Table I to keep the entries simple. The

intermediate variables x' and y' were not given explicitly in

Chapter 2 but are shown here for comparison with l;' and a'. The

analogy between gyromotionand bounce motion is the key to understanding

the relationship between classical and neoclassical transport

theory. [113]

C. Guiding-center motion in absence of a wave

In Section 4F we will estimate (using the Chirikov criterion)

the mode amplitude <I>o necessary for overlap of bounce resonances.
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Here we gain a better understanding of the unperturbed (<1> = 0) motion
o

and derive formulas we will need in Section 4F.

To make the problem analytically tractable we introduce some

simplifying assumptions. We believe these assumptions do not

fundamentally alter the physical mechanism (overlap of bounce

resonances) which we are studying. Referring to Hamiltonian (8), we

first neglect the 0- and a-dependence of R:

R(0,a) -+ R
o

He thus lose curvature drifts, as seen from (9). We will be most

interested in particles with parallel velocity small compared to

perpendicular velocity, for which curvature drifts are negligible

compared to 'lB-drifts (at least in a low-a tokamak). Second, we

neglect the a-dependence of B:

B(0,a) -+ B(0)

This approximation eliminates the' 'lB-drift term in (9a), which is

easily shown to be negligible compared to the remaining term on the

right hand side of (9a) for particles withgyroradius much less than the

tokamak minor radius. Finally, we ignore the shear of the magnetic

field by eliminating the. unwritten terms in the expansion

'I!(a} = 'I!(a'+a) = 'I!(a )+a' d'l!/da + .••
000

With these approximations we write Hamiltonian (8) as

= (ea.'/cqR )2/2M+l1B(0)o
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Hith the approximatiop.s we ,have used, a trappedpartideexecutes a

non-drifting banana orbit of negligible width. Hamiltonian H also
o

describes the guiding-center motion of a particle near the axis of a

mirror machine.

~.Je now assume the flux surfaces have circular cross sections.

This assumption, with the large-asp.~ct-ratio approximation, guarantees

that 0 is the usual poloidal angle (it gives the radian measure of a

point on the flux surface, with the outer edge of the torus designated

as 0 = 0).

B(0)

vle thus have

= B - f1B cos'0o

where B is the field at the magnetic axis and ~B is the modulation
o

amplitude of the field (we use the value of f1B on the surface labeled

by a ).
o

The Hamiltonian can now be written

H - (eat /cqR ) 212M;.. l.lf1B cos 0
o 0

(14)

The constant term llB has been dropped; the relation between Hand
o 0

the particles's energy E is, from here on,

H =E -llBo 0
(15)

The shape of the magnetic field we have adopted and the symbols used to

describe it are shown in Fig. 32, along with the effective potential

energy levels of trapped and circulatin~ particles~

Equation (12) for the action J can now be written as

, ", ,"'" -c' , 'J,: ,

21T J (H ) = qR ~ d0 [2M (H • + llf1B cos 0)] 2o 0 0
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The explicit expressions for J involve K, defined by

2K2 :: (1 + H fl,.1t.B). 0
(16)

and K(K) and E(K) , the complete elliptic integrals of th~ first and

second kind with modulus K:

Note that a trapped particle has E < ]JB
M

, where

(17)

K < 1, while a circulating particle has K > 1. The angle variable ~ ,

which is canonically conjugate to J, is given, for ~~ < e < ~ and

a. t > 0, by

(18)

where Ksin E;; = sin ~ e ,and F (E;; ,K) is the incomplete elliptic

integral of the first kind with amplitude E;; and modulus K. For.'

other ranges of e and a. t (which is proportional to e·) we use the

definitions of ~ indicated in Fig. 33. These definitions prevent the

addition to ~ of unwanted multiples of ~ when a particle crosses the

separatrix. The frequency of bouncing (K < 'I) or transiting (K > 1) is

given by

~ {I1K(K) ,K < 1

= ~ K/K(K- 1), K > 1
(19)

where the bounce frequency ofa deeply trapped particle (K = 0) is
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k
~ (0) = (].lb.B/M) 2/qRo •

The boundary in velocity space between the trapped and the

( 20)

circulating stc':!.tes is given by E = 11B orM
K = 1. This boundary is

referred to as the separatrix; it separates orbits of dissimilar

topology in the 0a'-plane. The most important fact about the

separatrix is the form of near it. Fig. 34 shows both J and

as a function of H , which is related to K by (16) ; Fig • 34 uses the
o

units given in (21). The decrease of to zero at the separatrix

allows multiple, closely spaced resonances to appear near the separatrix

when the mode amplitude

D. Hamiltonian

4> r O.o

We can now write down the Hamiltonian which describes the

guiding-center motion of an ion in a tokamak in the presence of a

trapped-ion mode. With the approximations adopted above, (9a) has

reduced to ~ ~qe which implies

r; ~ r; + q (0 - 0 )o 0

The electrostatic potential (6) due to the mode involves

m0 - R- r; ~ (rn - R- q) 0 + const

We absorb the constant term into n and write the Hamiltonian as

.H(0,a' , t) = "0 (0,a') + e<l> (0,t)
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with Ho given by (14) and

~ = -~o g(O)cos~ [(m - R.q)O - wt + n] • . -

We choose the units of mass, length, and time such that

M = qR = 1168 = 1 •o .
( 21)

The unit of frequency is seen from (20) to be wb(O). Using p = ea'/c,

we write the Hamiltonian in the dimensionless form

H(O,p,t)
1= "2P2 - cos 0 - e~0 g (0) .cos [(m - R.q)0 - wt + 111 • ( 22)

In terms of the action"'angle variables the Hamil tonian is

H(<jl,J,t) = H (J) +e<l>(<jl,J,t)
. 0

where "o(J) is the function obtained by inverting J(Ho)' which is

possible numerically but not analytically. The pertlirbation has the

form

00

~ = -~o I Un(J) cos (n<jl - wt + 11)
n=-oo

where the Fourier coefficients Un(J) are given by

1 1T
Un -. 21T J d<jl g (0) cos [(m - R.q)0 - n<jl]

-1T.

with

( 23)

(24)

(25)

(26)



115

found by inverting (18), and J(K) given by (17). The notation sn

refers to one of the Jacobian elliptic functions and am is the

amplitude functioli ,the inverse of, the incomplete elliptic integral 1".

It is 'easiest to:derive(24) and (25), by writing

g (0) exp [i (k8 + o)]:::'tu exp [l'(ncji + 0)]n n

and noting that

1 1T
Un ::: 21T J dcji g (8) exp [i(k8- ncji)]

-1T

is real because g(8)::: g(-8) and 8(cji)::: -8(-cji) •

The U
n

can be expressed in terms of

1T .

V k'::: -2
1 J dcji cos (k8 - ncji)n, 1T

-1T

For the poloidal structure given by (7) and

1
U ::: -4 (2 V 1 + V 3 + VI)
n n'2 n'2 n,-'2

k = 1rn - g,q =
2

( 27)

E. Other problems described by the same Hamiltonian

Using. th~ abbrev,iations £ ::: e41
o and k = m - R.q, setting the

constant n, which is unimportant for the present discussion, to zero,

we write Hamiltonian (22) in the simplest case (g=l) as

H(0,p,t) = ~p2 -cos 8 - £ cos(k8-wt) , . (28)

As shown in Subsection lC7, (28) can be 'wi-it ten in the time-independent

form



"(0;p,4>,I) = ~p2 + Iw -cos 0 -£ cos (k0 - 4»
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(29)

The Hamiltonian (28) which weare studying in. this chapter occurs quite

generally as an approximate Hamiltonian in dynamical systems of two or

.more degrees of freedom, as discussed in Sub sec tion lC]. In this

section we mention a few problems in plasma physics described, at least

approximCltely, by Hamil tonian( 28) •

In Chapter 2 we obtained in (2.13) a Hamiltonian "L describing

the motion of a particle with parallel velocity v( in the wave frame)z

near LQ/kz • To derive "L we assumed that, for such a particle, only

one term in the complete Hamiltonian, the one varying slowest in tim~,

was important. To determine the effect of one of the previously omitted

terms (the one with t = L+l), we choose units such that

and ~tudy the Hamiltonian

(30)

where If the dependence of £ on I
L

- Lp1JJ( through the.

Bessel func tion argument kJP) is sufficiently weak, then we can

approximate (30) by (29) with k=l.

Zaslavskii and Filonenko[114] and Kawand Kruer[IIS] studied the

one-dimensional motion of a particle in two electrostatic Waves, one of

amplitude and wavenumberko ' the other of amplitude and

wavenumber k. Choosing units such that

m = k = e~ = 1o 0
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. .
and a refe;ren!J.e frame,;movingwith the la.n~e-amplitude wave,we can.write

the Hamiltonian. for this. system exactly as in (28), where e: = <P/4> •o

The motivation for. the study in Ref. 114 'was the desire to' understand

the conditions for validity of the quasiHnear approximation. Ref. 115'

studied the motion of deeply trapped particles analytically and'dfboth

deeply and barely trapped particles numerically; the numerical

observations were apparently similar to ours. Stix[116] studied exactly

the ~ame system, with the hope of finding a plasma heating scheme in

'~lich energy transfered from an external source to plasma particles can

be randomized even when collisions are absent.

Dobrowolny, et a1. [117] considered the motion of a particle in a

sinusoidally modulated magnetic field same model of a tokamak as in

Section 4C) and an electrostatic wave propagating parallel to the

magnetic field. Hamiltonian (28) describes this problem <also • The

values of the parameters e: and W used by the .authors of Ref. 117

were similar to our values, but the values of k (=20 and 100) were much

larger. They found that under certain conditions a particle trapped at

t=O petween magnetic mirrors could be detrapped and forced to move at

the wave's phase velocity.

Rechester and Stix[37] used equations derivable from a

Hamiltonian of the form (28) to study the trajectories of magnetic field

. '
lines in the presence of two tearing modes ina tokamak. The two

tearing modes are peaked near rational surfaces with minor radii r o

and rr' and Ref. 37 studies the trajectbr:i,es of field' lines near r
o

'The perturbation parameter e: is the ratio of the tearing mode

(
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amplitudes, measured at r
o

w » 1, ,qhich is apparently the appropriate limit for that problem.

our problem (particle motion in a tokamak in the presence of a

trapped-ion mode), the limit w < 1 is more appropriate, as we will

discuss in Section 4G.

We mention one more problem, closely related to that of

For·

Rechester and Stix,[37] but not considered explicitly in the literature,

to our knowledge. The ripple of the tokamak magnetic field, caused by

the discreteness of the toroidal field coils, should cause destruction

of the outer contours of magnetic islands resulting from a tearing or

kink mode.

F. Chirikov criterion for overlap of bounce resonances

The locations (in phase space) of the bounce resonances and the

widths of the resonances follow trivially from the Hamiltonian (23)

expressed in action-angle variables. From the separation between

resonances and the resonance widths, we use the Chirikov criterion to

derive, in this section, the condition for overlap of bounce resonances.

A particle is near the nth bounce resonance when the nth

term in (24) is slowly varying in time. Since we are treating e~ as a

small perturbation of the unperturbed Hamiltonian Ho

The values of the action J for which bounce (or transit) resonance
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occurs are thus given by

~(J) = win (31)

We denote these resonant values of J by J and see that, since
n

~ (J) -+- 0 as K -+- 1" there are two values of J,n tor each positive

integer n. The separation, J - J l' between resonances nandn n+ .

n+l is most conveniently expressed in terms of the resonant vall,les of

th~ bounce fr~quency:

From (32) we see that the separation between resonances decreases

rqpidly as n increases.

(32)

For the width of resonance n we ignore all other resonances

and calculate from (23) the width of th'e "secondary" separatrix. This

separatrix divides the ~J-plane into regions in which the phase

n~ - wt is either bounded or unbounded in time. Theseparatrix width is

calculated from (23) as follows. We introduce the new canonical

variables ~ and
. .

I by mean.s of the generating function

w' = n~ - wt

(n~ - wt) I + ~J :
n

1 = (J - J )/n
n

H(lP,!) = H (1) - wI - e<l> U (I) cos lPo 0 n , (33)

We then expand

obtain

Hando U about
n

;(-'.1

1=0 (thati~, about J= J ) to
n
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The motion occurs on the secondary separatrix if

maximum value of I given by

(34)

H - Ie~ u I ,wi t h a
o n

Doubling this value to obtain the full-width of resonance nand

expressing the result in terms of functions of

obtain

J (evaluated at J ), we
n

1

t

(6J) = 2n61 = 41e~ U (J )/(a2H /aJ 2)1~. non non

Converting the width in action to the width in frequency by use of the

function ~(J) = aHo/aJ, we find the resonance width to be

t

6 = 41e~ U (J ) dWb/dJI~non n n

To put (35) in a useful form we need'to know th~ Fourier

(35)

coefficients U (J). Here we take the poloidal structure factor g=1,'
n

so that = V , where we suppress the subscript
n

k on V'
n,k In

(27) we need exp (ike) , which, for

relatively simple form

1
k =m- R.q = 2' can be put in the

{

dn u + i K sn u , K < 1
exp (ike) = .

en u + i sn u , K > 1

where U =cf>2K/7T and elliptic integrals and Jacobian elliptic functions

have modulus K for K < 1 and modulus K-1 for K > 1. Fourier

series expansions of the Jacobian elliptic functions are tabulated in

many references, including Abramowitz and Stegun. [118] From these
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r-qO)-l, o odd }
K<.. 1

'IT nj2
(1 + qn)_l J n even

V (J) = -q
n K e/K(! - q20) , o Odd}

J K > 1
o J n even

(36)

where the nome q (not to be confused with the safety factor) is given

by

q - exp (- 1TK' jK)

and

K' - K(K'), K'
K < 1

K > 1

The expressions in (36) are valid for n> 0, which are the values of n

of immediate interest to us. For n < 0 we note that

rlol K< I}
J n odd

V = -q Inl V1nl J K > 1
n·

Vlnl J n even

while. for n=O we have

. {:/2K .J K < 1
V

0
1J K >

A useful approxima.tion for the ~'oeffici~nts

(37)

(38)

V (J) is easily
n
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found in the limit K « 1, as is cleat f,tom Ref. 119. In this limit,

(26) reduces to

(39)

with

(40)

Substitution of (39) into (27) and use of (2.8) yields'

v k[J(K)] = J (ker, p) , (41)n, n '

which is further simplified by using (40). The Bessel function on the

right-hand side of (41) should not be confused with the action variable

J. Note that (41) is valid for all

restriction on K, is valid only for

k, ,while (36), which carries no

1
k= 2".

The Chirikov criterion for ov~rlap of bounce resonances nand

n+1 is given in terms of the widths l\n and separations On QY

1
-2(l\ + l\ 1) > '0n n+ n

(42)

If the widths of resonances nand n+1 are comparable; the simpler

formula

l\ > °nn
(43)

'"
may be used. When equation (42) or (43) is written out explicitly us"ing

the formulas given above, a complicated combination of elliptic

integrals appears. To derive simple results which are easy to interpret

we next find approximations to several of the above formulas which are
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· valid near the separatrix.

As K + 1 (either from above or belo\-,) the bounce frequency ( 19)

becomes

We differentiate (19) or (44) with respect to K to obtain

the minus sign applying to K < 1 , the plus to K > 1. The nome

( 44)

( 45)

( 46)

iJe evaluate the needed expressions, (36) and (45), at J= J
n

using ~ = W
b

(I
n

) = win. For (36) we choose the limit appropriate for

the present problem, w« w
b

(0) , to derive

n
q + 1 - 1Tw/~ (0)

and thus

V (J ) +n n

211m , n odd

lWlwb(o)n, K < I!
1

' n even
o K>

To obtain the simplest possible formulas we use V (J ) = 2/rrn andn n

(43). Then the condition for overlap of resonances nand n+1 is

( 47)
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In (47) avery strong dependence on n occurs in the exponential

factor~ indicating overlap of all resonances with n gteaterthan a

critical n depending on ~ and w. A range of particles, witho

values of J roughly centered about the primary separatrix (K = 1), is

expected to move stochastically. This range of J is referred; to as

the stochastic layer. To find the width of the layer we note the

relation, which follows from (44), between the exponential factor in

(47) and the distance in energy of a particle from the separatrix~

We choose n=1 in (47), anticipating our choice of ~ and w, foro

wh;i.ch the n=1 and 2 resonances overlap. Our theoretical formula for

the width of the stochastic layer is thus

..

(48)

~Je will find in the next section that (48) agrees rather well

with our numerical measurements of the width of the stochastic layer.

The magnitude of the right hand side of (48) will be confirmed but not

necessarily the scaling wi th w. If some of the approximations used

above were removed, a more credible analytic result woul<\ replace (48).

We expect the more accurate scaling with W would still show the main

feature revealed in (48): the width of the stochastic layer decreases

with decreasing w.

'.! '
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G. Discussion of numerical results

In the analytic work presented above, the magneticmomentJ.1'

played the role of a' fix:ed parameter,~lhich was usually not indicated

explicitly in the .formulas. In applying the analytic r,esul ts anci .in

choosing parameters for numetical studies appropriate to the trapped-ion

mode, the dependences on 'J.1 are very important.

We wish to study the motion of a representative sample of ions

distributed throughout velocity space. Since we are considering

guiding-center motion, the gyrophase is irrelevant and the location of

an ion in velocity space is given by two variables. For the first of

these variables we will always take the magnetic moment J.1. For given

J.1 the second variable specifies the depth of trapping in the effective

potential energy \"ell (the last term in (14)) produced by the modulated

magnetic field. Of the possible choices for the second variable we have

already used J, K, H /lIliB , and E - lIBM • Other variables used in
0

the literature are E, 0TP - cos- 1 (1- 2K2 ), and A - lI/E = (B + 2K2liB)-1m . . ~

whe re 8 - 8 - li8
m 0

We have used the values of 1I given in the first column of

Table II. For each 1I we calculate trajectories of ions with several

different values of J(t=O). The, equations of motion which we integrate

numerically are derived from (22):

( 49a)

•p = - sin 0 - e4>o [g (0) (m- R.q) sin X - g '(0) cos xl, (49b)

where X:: (m - R.q)0 - wt+ n. The numerical integration scheme is very

similar to the one described in Section 2G. The trajectory information,
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0(t) and p(t), found by integrating (49) is converted to <t>(t) and

J(t) using the formulas (14), (16)-(19). To display the trajectories

in two dimensions we use the surface of section method described in

Section 21. For the present problem we 'use the information ,(t) and

J(t) to plot a point 'in the <t>J-plane whenever wtis a multiple of

2'IT.

The relative size of the term in (22) representing the

trapped-ion mode is given by e<I>o/JJl\B , the ratio of the potential

energy due to the mode to the effective potential energy due to the

modulated magnetic field. This ratio is shown in the second column of

Table II for a mode amplitude given by (1). The ratio increases as JJ

decreaseS, indicating a stronger perturbation of the trajectories of

low-energy ions than of high-energy ones. In our numerical calculations

we choose units such that (21) holds, so the dimensionless value of the

mode frequency w is w/~(O), which we show in the third column of

Table II for the choice of frequency given by (4).

We show in Figs. 35 and 36 the increasingly perturbed

traj ectories as JJ decreases. The parameter values are those given in

the last three lines of Table II. The moderate mode amplitude (1) is

seen to lead to trajectories unlike the unperturbed trajectories, which

would be straight, horizontal lines. The prominent islands represent

the fundamental (n~l) resonance w = w ; the islands below the
b

separatrix (J::I S/'IT) show the bounce resonance of trapped particles,

and the islands above the separatrix the transit resonance of

circulating particles. In each of the figures we show one stochastic
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trajectory;, it is represented by the, scattered points which do not lie

on any smooth curve •

Motion becomes stochastic when an invariant ceases to exist

(more precisely, the invariant changes character from iso1ating[120] to

non-isolating) • Surface of section plots allow uS to map out the

regions of phase space in which the invariant exists.

As seen in Figs. 35 and 36, the analytic form of the invariant,

when it exists, is not simply J. In some regions of phase space

(e. g., J < 2 in Fig. 35a) the invariant is approximately J, but near

the n=l resonances the invariant curves are topologically different

from straight, horizontal lines, indicating a different analytic form

for the invariant. The method of Taylor and Laing (Section 2D) could be

used to find one of the many possible analytic forms. Note that an

invariant can still exist in the presence ofa single resonant

perturbation, but multiple resonances which overlap prevent existence of

an invariant. The bounce resonances discussed in Section4Fcause

disappearance of the invariant in the vicinity of the separatrix.

We obtain from the surface of section plots a measure of the

velocity space region in which stochastic effects are strong as follows.

Near the separatrix most trajectories (excluding those within the

islands) are stochastic, while away from the separatrixmost are not

stochastic. We find a rough boundary between the stochastic and

nonstochastic regions by searching for the nonstochastic trajectories

"closest" to the separatrix. With a planimeter we measure the area

bounded by the horizontal line (J = 8/lT) representing the separatrix and
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the "closest"ttaj ectory below it and by the vertical lines at 4>= 0 and

27T. This area gives a measure of the width (in action) of the part of

the stochastic layer inside the separatrix. A similar measurement

involving the "closest" traj ectory above the separatrix yields the width

of the stochastic layer outside the separatrix. We repeat the

measurements for the five values of ~ given in the first column of

Table II and plot the widths on Fig. 37, interpolating between our ten

measurements with two heavy curves.

In Fig. 37 we also show by dashed lines the locations of the

ions satisfying W=~ =Wb(J,~) and thus the locations of the

prominent islands in Figs. 35 and 36. The nonstochastic regions within

.these islands have not been indicated in Fig. 37.

The contour lines in Fig. 37 show the distribution bf ions in

velocity space. A Maxwellian distributionisused,and the appropriate

Jacobian factor is included so the number of ion8in a unit area of

Fig. 37 is proportional to the value (designated below by N) shown by

the contour lines. The explicit formula used to calculate the contour

lines is

N = (X~l)~exp {-[1+ (t.B/Bo)x]y+ 1},

where the velocity space variables are denoted by

x = H 1~t.B, y= ~B IT.o . . 01

(50)

The exponential factor in (50) is seen from (15) to be exp(-E/T.+ n.
.. ·1 ,. ,

The pre-exponential factor is derived from the factor j in
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~vhere v" anq v..L are ll1efPHr~d at, 0 = o. Suppressing unimportant

constant factors we hav~

and

2(H + l1~B)/M ex: (x + l)yo '

For Fig. 37 we chose B /1113 = 4.'
o

,We have compared the measurements of the widths of the
.,:- "j.' - -'"

stochastic layer inside and outs,ide .t:he separatrix, ,to the theoretical

predic tion (48). Agreement (± 40%) is found When the layer is relatively

narrmv; for parameters givir,tg very wide layers, a$ in Fig. 36,' (48)

becomes inaccurate due to the as~umption K 7 1 used to derive it.

The agreement between the measurements 'and (48) is equally good

for both the inside and otitslde part~ of t~e ~tochastic layer. This

result is surprising, at first, because"the Fourier coefficients (36),

which appear in the resonance widths (35), have different forms inside

(K < 1) than outside (K >'1) ,the separatrix.It is therefore possible

to derive different widths for the inside and outside parts. In the

limit w» ~ (0), Rechester and Stix [37] noted that the resonances

outside are twice as far ,apart. (~ince re~onanCeS with even n are

effectively abs,ent) as~he resonfnce$ inside, and the widths. outside are

k
2 2 times greater ~ha!1 insi?e,~ These fa,c t$, l,eaci to the c:onclusion, that

the part, of the la)Te;r: ,5?uts~~e,tJ;1~, ,separatrix, should, b~. only half as wide
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as the inside part. This conclusion does not follow in the limit

w «~(O) which is more appropriatf2 to our problem involving the

trapped-ion mode. In our limit, doubts arise about the applicability of

the theoretical approach used to calculate the widths of the parts of

the layer, as discussed below. We are thus unable to explain

theoretically the relation between the inside and outside widths which

we observe numerically.

The perturbation levels e~ /~~B which we use in the numer~calo

calculations are large enough to raise doubts about the ~alidity of the

perturbation scheme used theoretically. In particular, the widths ~
n

can easily become extremely large due to the factor oWb/<M
n

in (35),

causing the overlap criterion (42) to lose its sense. Also, when (42)

is extremely well satisfied for ·n=l, the width of the stochastic layer

cannot be found from (42), because the Width is determined by resonances

other than (31). A new theoretical problem, in which the unperturbed

motion is determined not by the modulated magnetic field but by the n=l

resonance, would have to be considered. The close agreement between the

crude theoretical calculation in Section 4F and the numerical results

shown in Fig. 37 is thus somewhat surprising. Either the agreement.is

fortuitous, which we think unlikely, or the theory h~s a broader range

of validity than one would expect at first.

We saw in Figs. 35 and 36 that an initial condition lying within

the stochastic layer leads to a trajectory which visits most parts of

the layer. To find the rate with which a typical ion moves from one

side of the layer to the other, we calculate an ensemble of trajectories
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and plot the action J vs., time in Fig. 38. Each. ensemble consists of

100 trajectories with values of <P(t = 0) andn(t=O) (see (24»

distributed over the interval [OJ 21T) in a regular IOxlO array; each

traj ectory has the same initial value of the variable J and the same

value of the parameter ~. The chosen set of initial phases represents

an ensemble of ions distributed uniformly in toroidal angle (through n)

and in bounce phase <p (position along a banana orbit). A subset of

the trajectories in two such ensembles is shown in Fig. 38. One

ensemble has J(t=O) ~ 1, which lies outside the stochastic layer; these

trajectories show no tendency to depart far from their initial value of

J, and, in fact, have a gross periodicity with frequency ~ (J) - w •

The other ensemble has J(t=O) lying within the stochastic layer; these

trajectories are not periodic and tend to spread out to fill the layer.

The rate of spreading Is quite rapid; a significant amount of spreading

occurs in the first wave period (up to CIb (O)t ~ 41T) and the ensemble
. .. . - .

has essentially filled the layer in roughly four wave periods. The

implications for the trapped-ion mode of this rapid motion within the

stochastic layer will be discussed in Section 41.

In Fig. 39 we contrast, in a different way, the spreading

tendency of an ensemble within.the stochastic layer to the lack of

spreading of an ensemble outside the layer. Here w~plot, for the same

ensembles as in Fig. 38, the val ueof (fl.]J2 averaged over the

ensemble, where 6J =J(t) - J(t=O). Plots like Fig. 39 allow us to

measure the rate of spreading of an ensemble of stochastic trajectories.

Zaslavskii and Filonenko[114] attempted to calculate this diffusion

rate, bu~ their result Is smaller by a factor of about ten than the rate
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suggested by Fig. 39. The cause of the large dip in «M)2> near

40 is not known at this time. A possible cause is the

presence in the ensemble of trajectories lyin~ in or nearnonstochastic

regions.

H. Other closely related work

In the preceding sections we have shown that a single

trapped-ion mode can cause stochastic ion motion, which results in

transitions between the trapped and circulating states and irreversible

changes in an initial distribution function. Our nonlinear,

collisionless detrapping mechanism differs from mechanisms considered by

earlier authors. [121,122] In this section we clarify those differences.

Then we discuss work[119] which mentioned some of the physical ideas

which are important in our work. We briefly describe previous numerical

calculations [123, 124] in which stochastic particle motion in a tokamak

was observed. Finally, we call attention to the proposal[125] that the

enhanced electron heat transport in tokamaks could be explained using

the large radial excurs.ions of some electrons in the presence of certain

trapped-particle modes. We do not mention here several other nonlinear

processes which may be important for the trapped-ion mode;' these

processes are discussed in the comprehensive review article by

Tang. [105]

Jablon[121] studied a nonlinear, collisionless mechanism for

mode damping which relies on the mode's perpendicular electric field to

.\
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cause detrapping of particles. Errors and questionable assumptions in

Ref. 121 led to incorrect conclusions. Ehst[122Jcorrected some of the

errors and concluded that Jablon's mechanism could be neglected in

. comparison to his own nonlinear, collisional mechanism. A followu'p on

Ehst's work is desirable to assess fully the importance of Jablon's

mechanism.

Jablon's mechanism can be explained physically as follows. The

mode's electric field has a component lying \'lithin a magnetic surface

and perpendicular to a field line. This component causes a radial

E x B drift. During half of a mode period a trapped particle's banana

center drifts inward, to radii r for which the effective potential

energy well ~B(e) is shallower. The value of ~BM may decrease to

less than the particle's energy E, implying a transition to the

circulating state. An outward drift of a circulating particle can

similarly cause a trapping transition. After a particle is detrapped,

it moves along a field line to a region where the mode's phase is

different (because k ll F 0), and there it is retrapped. Successive

transitions between the trapped and circulating states lead to diffusion

of particles along a field line. This diffusion tends to eliminate the

density perturbation caused by the mode and could cause saturation of

the instability. Jablon augmented this single-mode picture of the
,

de trapping by assuming a spectrum of many modes was present; without

such turbulence Jablon's mechanism is probably inoperative.

Jablon's mechanism requires a nonzero k ll in order that

diffusion along a field line be able to move particles from the crest of
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the mode to the trough. Jablon did ll2£ consider the forces on particles

due to the mode's parallel electric field. Our work shows that the

parallel electric field can have a very strong effect on particle

motion.

Ehst[122] considered a saturation mechanism involving parallel

forces on the particles but requiring collisions. He noted that, in

linear theory, detrapping occurs because of collisional changes of the

magnetic moment ~, the energy. E remaining approximately constant.

He then showed that a finite-amplitude trapped-ion mode, acting together

with collisions, could cause changes in E, which could also lead to

detrapping. His quantitative study of this mechanism concluded that it

could cause saturation only at an unreasonably large mode amplitude.

Ehst did not recognize that a single mode, without any collisions at

all, could cause detrapping.

Dobrowolny, et al.[119] studied the quasilinear diffusion in

parallel kinetic energy H of trapped particles. The wave spectrum
o

consisted of many waves, either sound waves or drift ·waves. The authors

of Ref. 119 pointed out that a trapped particle moving in an

electrostatic wave with k
ll

f 0 feels fluctuating potentials at all

harmonics of its bounce frequency. Quasilinear diffusion thus occurs

whenever the wave spectrum contains energy at multiples of the bounce

frequency of typical particles. Ref. 119 considered drift waves with

parallel phase veloeities between the ion and electron thermal speeds:

VTi < w/k\1 < vTe .
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For these t\taves diffusion of ions was found not to occur. We have shown

that stochastic ion motion (sometimes resembling diffusion) can occur

for the trapped~ion mode, which has a much lower frequency. Also, we

have emphasized that stochastic motion can occur even for a single wave.

Coppi and Taroni[123, 124] numerically integrated equations of

motion similar to· our (49) in a study of particle orbits in the presence

of certain trapped-particle modes in tokamak. Differences in the

equations and parameters used in Refs. 123 and 124 and by us prevent a

straightforward comparison of the numerical results obtained in the two

studies. Nevertheless, it is clear that Coppi and Taroni observed

stochastic particle motion (identifiable by successivedetrapping and

trapping transitions) caused by a single mode. They gave only numerical

results on stochastic motion; we have given a theory,based on the

overlap of bounce resonances, which allows us to predict the conditions

under which stochastic motion occurs.

CoppiandPozzoli[125] used the results of Ref. 123 which found

that "quasi-banana" orbits execute large radial radial excursions.

These orbits show large oscillations in J but no transitions to the

circulating state; the orbits are therefore probably not stochastic.

The large radial excursions were proposed in Ref. 125 as an explanation

for the enhanced electron heat transport ob~erved in tokamaks. A

pseudoclassical diffusion coefficient was derived.
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I. Effects of stochastic motion on the mode

One of the goals of this study is to assess the importance of

overlap of bounce resonances as a mechanism for saturation of the

trapped-ion instability. In this section we describe our progress

towards this goal, giving the qualitative results we have obtained.

Quantitative results require further numerical work.

To understand the effects of stochastic motion on the mode we

must know how stochastic ions move in the action space of J and P~ •

Our discussion of the physics of the trapped-ion mode in Appendix E

makes clear the importance of changes in Pi;; (i.e., radial excursions

of the banana center). In our t~eatment of ion Landau damping in

Section 5 of the appendix we use (52), derived below under the

assumption that only one of the resonances w = n~ is important. This

assumption is not valid when motion is stochastic, and we must determine

the radial excursions by numerical integration of the equations of

•motion. We add an equation for P~ to the equations (4~) which we

integrated in Section 4G. We use the variables (11) to express the

potential (6) as

<I> = - <I> g (0) cos [(m - R,q)0 - R,~' - wt + n].
o

The Hamiltonian equation of motion for •
p~ is then

He neglect the radial (PZ;;) dependence ofH
o

' which eliminates Jablon's

mechanism and possibly other effects. We also assume that the radial

variation of <I> is slow enough that the p~-dependence of is

negligible. Then



137

~'= aH/ap = 0,'
. 1';.

and we can set l;;'=O.The equations we integrate are thus (49) and

. .
PI'; = e <1>0 g(0)R. sin X • ( 51)

.Since Pr; does not appear in (49), inclusi6nof(51) changes none of

the results reported in Section4G.

If only the nth term in the sum (24) is important and g=l, it

is easy to show using (22)-(24) and (51) that a relation exists between

J and Pr;:

PI'; = - (R./n)j • (52)

changes of

To integrate (51) numerically we must choose val\,les for R. and

PI';(t~O). From the results of Ref. 126 we take R.=5, imagining that

m=10 and. q=1.9 so (2) is satisfied. To determine appropriate values

for Pr; we use q(a) = const to derive a relation between Pr; and the

position r of the banana center:

_ P = e'Y = ea =!.. Mnr2/qr; c eq 2 .' (53)

The iongyrofrequency is represented byO. Using the values

1r/R
o

= 68/8
0

= '4 and q=1.9 and our choice of units (21), we find

- Pr; = [O/~ (0) ] /220 • (54)

For typical tokamak parameters[126]

T. = 3 keV, 8 = SO kG, R =·132 em,
100



we find the ion gyroradius
k

p. _ (T./M) 2/Q = 1.5mm and
1 1
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Q
-.-=
~i

R (B)!.:o 0 2

p:- q 6B ::0:: 3300 •
1

(55)

For a thermal ion (~B =T.) we thus find from (54) and (55)
01·

-Pz; = 15 •

Equation (53) tells us the relation between changes in

in r:

and

Using the same parameter values as in the preceding paragraph, we find

vlith typical values determined, we proceed to the numerical

integration of (49) and (51). In Fig. 40 we show two trajectories in

Jpz;-space. The motion represented in (a) is determined to be not

stochastic by a glance at the surface of section plot in <f>J-space.

The motion in (b) is stochastic, which is clear from the three

transitions between the trapped and circulating states during the

integration time of five waveperiods. (Recall that the separatrix at

J = 2.55 is the boundary between trapped and circulating ions.) Both

trajectories in Fig. 40 lie roughly along the diagonal line determined

by (52) with n=l. Other trajectories which we have integrated also
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show this characteristic, even though the trajectories"differmarkedly

in their fine de~ails.

Our numerical results thus indicate ion motion along lines with

slope

dp / dJ = - R, ( 56)z; ,

one of which is· shown by the triple-headed arro\" in Fig. 44. The

irregular oscillatory motion along these lines has a rate which is a

fair fraction of the wave frequency w. This rate can easily be much

greater than the rate of collisional diffusion in JpZ;-space. (Note

that collisional diffusion from J=O to J = 2.55 occurs at the rate

v f ., which is much less than w.) Collisional diffusion, which
e ,l.

attempts to maintain a local Haxwellian distribution, cannot counteract

the tendency of mode-induced diffusion to flatten the distribution along

the lines with slope (56). In the presence of a finite-amplitude

trapped-ion mode we therefore expect distortion of the distribution

function f in the manner sketched in Fig. 41. For clarity theo

distortion has been kept relatively mild. The large excursions in J

which are evident in Fig. 40 would lead to a distribution distorted in a

much broader band about the separatrix.

f implies' nonlinear shifts in the frequency
o.

and growth rate of the trapped-ion mode. As discussed in AppendixE,

the mode's frequency is determined by ~ x B convection of trapped ions

(and also, strictly speaking, barely circulating ions). In the presence

of a finite-amplitude mode, ~ x ~ convection of barely trapped and
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barely circulating ions contributes little to the density perturbation

because the slope of f o in the relevant direction is gr~atly reduced.

A nonlinear shift to a lower frequency results, analogous to the

reduction of W below w* because of the failure of circulating ions

to ! x ! convect.

The nonline.ar reduction of W leads to a decrease of the

electron collisional growth rate (proportional to (02) and therefore has

a stabilizing influence on the mode.

A further stabilizing effect is an increase in the rate of

transitions between the trapped and circulating states.· In a

finite,,:,amplitude mode the usual collisional rate of pitch-angle

diffusion is enhanced by mode-induced diffusion. The enhancement is

greatest in the stochastic layer. The larger detrappingrate leads to a

more rapid exchange of energy between the mode and the ions according to

the mechanism described in Section 3 of Appendix E.

The nonlinear modifications to the Landau damping process are

probably destahilizing because of the reduction of the slope of foe

(Note that a large .enough temperature gradient leads to growth instead

of damping; the nonlinear modifications are then stabilizing.) We

recall however that ions with different values of the magnetic moment

·11 contribute to Landau damping (observe the dashed lines in Fig. 37

which show the locations of the resonant ions). Deeply trapped ions

give the largest contribution [127] to Landau damping by the bounce
; f ':

resonance w =~, bU~ distortions of the distribution function f o are

small near J=O where the deeply trapped ions are located. Our study
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therefore indicates that nonlinear modifications to Landau damping are

small. It is desirable, however, to extend the' present work with both

qualitative and quantitative studies.

J. Conclusions of Chapter 4

In Chapter 4 we have studied a possible saturation mechanism for

the dissipative trapped-ion instability. Numerical integration of the

equations of motion in a single trapped-ion mode shows that ions move

stochastically in a layer surrounding the trapped-circulating boundary.

The width of this stochastic layer increases with the mode amplitude t o

"'-..

and with the mode frequency w. For relevant parameters the width of

the layer is quite large; for W = ~ w
bi

a substantial fraction of the

ions moves stochastically in a mode of amplitude given byet = O.OSET.
o 1

A theory, based on the ,overlap of bounce resonances, predicts a width

for the stochastic layer in agreement with the numerical results.

Our plots display the strikingly large excursions in

longitudinal action J and in radius r which can occur whether motion

is stochastic or not.

We have made a qualitative study of the effects of stochastic

motion on the nonlinear stabilization of the trapped-ion mode. In the

stochastic layer the motion resembles a diffusion process with a high

rate compared to collisional diffusion. A distortion of the

distribution function in this layer leads to a nonlinear reduction of

the mode frequency and stabilizing modifications to the electron
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collisional growth rate and the ion collisional damping rate found in

linear theory.

Because of its generic nature the dynamical system studied in

Chapter 4 occurs in a large number of other problems. Our methods and

results are therefore of interest to researchers outside of the tokamak

area.
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Appendix A. Equations for transition between

oblique and perpendicular propagation

In terms of the variables defined· and discussed in Section 2B,

we write the Hamiltonian

H(z, P , cf>, P,f,' t) = H (p , P,f,) +e4> sin(k z - k..LP sin cf> - wt) (1)
Z '1'0 Z 'I' 0 Z. .

to describe a particle in a uniform magnetic field and' an electrostatic

wave propagating at an arbitrary angle to the field. In (1) we use

variables z and Pz giving the position and the parallel momentum in

the reference frame in which the center of mass of the plasma is at

rest; the origin bf z is chosen as in Section 2C.

For oblique propagation (k r 0), we note that since z and t
Z

appear in (1) only in the combination

generating function

k z - wt, we can use thez

to transform to new variables and

K(1JJ, P1JJ' cf>, Pcf» = H+ aF2/C>t

= kz
2 pt/2m - P1JJw+ Pcf>r2+ ecf>o sin(1JJ - kJ.p sincf». (2)

We make the mathematical ttansformation generated by

to the wave frame momentum P,,: = P,I, - mw/k 2 = (p - mw/k ) /k •
'I' 'I' Z Z Z Z
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The transformed Hamiltonian is equivalent to (2.7).

For perpendicular propagation (k = 0), (1) is independent of
z

z~ and the parallel momentum p. is a constant of the motion. Droppingz

the constant parallel kinetic energy from (1) and converting to a

time-independent system of two degrees of freedom (see Subsection 1C7),

we find an expression for the Hamil tonian which is identical to (2) with

k set to zero. Hamiltonian (2) can thus be used to investigate both
z

the cases of oblique and of perpendicular propagation.

We expand (2) in a series of Bessel functions. If the wave

amplitude is small enough, all terms in this series, except possibly

one, can be considered rapidly varying in time. Retaining only the term

varying slowest ,we approximate (2) by

We use

F2($, <p, p ,P",I) = ($+ L<P)p + <pp",1n 'I' n 'I'

to transform to new variables

n = $ + L<P, <pI = <P

P I =
<P

The gyroradius is now given by
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Note thatp~ is an invariant in (3). Our approximation has thus

reduced the motion to one degree of freedom.

Fixed points of the motion are found by solving

• ktP11 d

1

0

0

= 11 = -- - (w - LQ) + e4> sin 11 -d J L(k. I p) .m op _.-
11

= P
n

= -e4> J (k I p) cos T).
'I 0 -L ..L

(4a)

(4b)

Several families of fixed points may exist. Family 1 is important when

k is large and the last term in (4a) is negligible:z

11 = ±~7T, P ::::::m(w-W)/k 2 •. . n z

These ftxed points give the locations of thecyclotrotl resonances

studied in Chapter 2. The resonant values of become very large as

"

kz becomes small, and very few (if any) particles are able to interact

strongly with the cyclotron resonances. Another set of resonances may

exist near the fixed points of Family 2; when the first term of (4a) is

negligible, these fixed points are given by

When these fixed points exist, they can be shown to be stable. They

have been considered by Aamodt and Bodner, [41) Timofeev,(16) and

Fukuyama, et a1.[40) The same authors mention the corresponding

unstable fixed points, which are given by
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Other families of fixed points arise when two terms of the

Bessel function series are retained. These families have been ob~erved

by Fukuyama, et al. [40] and by Karney, [128] who have begun the

theoretical study of these families.

The transition between Families 1 and 2 is determined by the

ratio of the first and last terms in (4a), which we denote by R:

R = /kz
. k.1.

mV vl.z
e<fl o JL• I·

The ratio R is large for the parameters used in Section 2L, justifying

our neglect of the last term in (4a). For parameters appropriate to

studies of lower hybrid heating, R may be small, justifying neglect of

the first term in (4a). Even if the first term is not negligible,

however, Karney[129] notes that it may cause only small changes in the

locations of fixed points.
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Appendix B. Stochastic acceleration by an electromagnetic wave

Stochastic acceleration by an electrostatic wave is treated in

detail in this thesis. Here we discuss the possibility that an

electromagnetic wave could cause stochastic acceleration.

The motion of a charged particle ina uniform magnetic field

plus a perturbing electromagnetic wave can be described by Hamiltonian

(2.4) with the perturbation given by

l v • A) exp [i(kz + k.LY)] + c.c ••
c - - Z

Here 4> and A are the complex amplitudes of the ",ave's scalar and

vector potentials. As in Section 2C we use wave frame variables.

Expressing the velocity v in terms of the canonical variables

introduced in Section 2B yields

where v.l We introduce

and write

A sin'" + A cos'" = (A e
iep

x ~ y ~. +

Use of (2.8) then allows us to write

where the complex amplitude



148

(1)

plays the same role for an electromagnetic wave that ~oJ~ played for

an electrostatic wave. An electromagnetic wave can thus trap a particle

with parallel velocity near any of the resonant velocities given by

(2.11). The trapping widths are fqund from (2.14) by replacing ~oJR,

with ~R,. If ~R, is large enough the wave can cause stochastic

acceleration.

As an example of a particular electromagnetic wave we consider a

high-frequency Alfven wave.
!

By this name we refer to a wave on the same

branch as the magnetosonic (compressional Alfv~n) and whistler waves but

with a frequency a few times the ion gyrofrequency. The dispersion

diagram in Fig. 29 shows the location of the high-frequency Alfv~n wave.

When the propagation angle e = OO(i. e., k~=O), this wave is

right-hand-circularly-polarized, and (1) reduces to

( 2)

When the wave propagation is oblique (kz • k~ f 0), (2) is still a good

approximation for certain combinations of wave frequency wand angle

8. When (2) is valid, the condition of overlapping cyclotron resonances

appears difficult to satisfy. Using the same values of kIP and

k v IQ (which determines R,) as in Fig. 19, we find the Bessel function.z z
JR,_l to b~ smaller than JR, by a factor of about three. A

high-frequencyAlfv~n wave with amplitude given by

(v./c) Ik 2 eA Im.Q.21
.L z - 1 1

1.5 (3)
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could thus be expected to cause. ion heating similar to that 'caused by ,

the ion-acoustic wave of Section 2L which has

k 2 ell> 1m. n.2 = O. 5 •
Z 011

To check whether (3) is a reasonable wave amplitude we use kz = kl. and

calculate

oB IB = k IA lIB = 1.5 n./k V I •
Z 0 Z -, 0 1 Z ~

(4)

For the linear cyclotron-harmonic damping of the wave to be weak we use

the crude condition that the ion thermal speed satisfy

, (5)

this condition means the distribution function "fits" between the

resonant parallel velocities ~./k (compare (2.51».
1 z

Combining (4)

and (5), we find that ions with "1- = 4V
Ti

are stochastically

accelerated if

oB /B > 0.75 •z 0''\1

A high,.,frequency Alfven wave with amplitude (6) would not obey the

( 6)

requirements of our analysis that the wave be sinusoidal and satisfy the

linear relations for the frequency and polarization. On the basis of

this example we conclude that an electromagnetic wave of reasonable

amplitude is less likely to cause stochastic acceleration by overlap of

cyclotron resonances than is an electrostatic wave. It is clear,

however, that many choices of parameters were made in arriving at (6),

and the possibility of strong stochastic effects due to an



electromagnetic wave cannot be ruled out.
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Appendix C. Stochastic acceleration .bya nonsinu$oidal wave

The problems treated in detail in this thesis involve stochastic

motion caused by a sinusoidal wave. We note here that such motion can

occur as well for a nonsinusoidal wave. Stochasticity might appear at a

lower value of the wave amplitude in the nonsinusoidal.case.

We consider a plane electrostatic wave for which the potential

is an arbitrary periodic function of the phase k· x - wt As in

Section 2C we eliminate the time dependence by using wave frame

variables and write the perturbation as

v = e L ~ sin en _k • _x + 0 ) In n n

which replaces (2.5). The operations performed in Section 2C allow us

to write the equation

which replaces (2.6). Use of (2.8) now yields

Equation (1) has essentially the same form as (1.20). As noted in our

discussion of (1. 25), (1) shows the existence of resonant velocities

V z = CR.!n)f2/kz

distributed along the real number line as the rational numbers are

distributed. The complications implied by this distribution have

deterred us from study of nonsinusoidal waves. One might expect,
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however, that a nonsinusoidalwave would lead more easily to stochastic

motion than a sinusoidal one because of the presence of the large o1Jmber

;,
!-,

of additional. resonances of finite width (proportional to ~~) .
n
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Appendix D. Experimental requirem~nts

for observing stochastic acc,elerat:ion

Stochastic acceleration of ions by a singleion""acoustic wave

was seen in Sections 2L and 2M to lead to the heating of a Maxwellian'

distribution. We believe a fairly simple laboratory experiment could

observe these effects. WhEm stochasticity occurs one should see a

change in propagation characteristics of a launched,obliquely

propagating wave,and one might .observea high..,energy tail in the

parallel distribution. Some care must be taken experimentally in

launching <;In ion-acoustic wave in order to avoid effect$mentioned in

Refs. 130 and 131. Assuming ~hat the desired wave can be launched, we

giv~here trye experimental requirements suggested qy our theoretical

work.

To observe ion tail-heating by an ion-acoustic wave, the

following requirements must be met.

1.
"

The wave frequency w(=k c )
5

should be a few times the ion

gyrofrequency n., but not too close to a multiple of
1

to

avoid cyclotron-harmonic damping.

2. The propagation angle e with respect to the magnetostatic

field ~ should be in the vicinity of 45°.

3. The temperature ratio T /T.e 1
should be high enough that the

wave damping is small, but there must be ions with gyroradii

comparable to the perpendicular wavelength (k~Pi~ 1).

4. The ion collision frequency v.
1

must be less than about

O.ln. so the collisionless theory is applicable.
1
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5. The distance Lx in the 1 x ! direction over which the wave

amplitude is uniform should .satisfy k L ~ wIn.. Otherwise,·z X J.

ions E.x B "'drift out of the wave before significant

acceleration occurs.

6. The density amplitude must be as large as (,n/n'v 0.1.

To observe electron tail...heating by a Langmuir wave, the

analogous requirements are the following.

1. w(==w ) a few times n
e

, but not too close to a multiple ofpe

n •e

. 2. 6tV 45°.

3. The Debye length ~D- should be small enough (k~D ~ 0.25) that

the- wave damping is weak, but elec tronswith gyroradii such

that ~Pe ~ 1 must exist.

4. V ~ 0.1 n ;e e

5. kzLx > wIne'

6. (,n In tV 0.1.e e
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Appendix E.Physics of .the dissipative· trapped-ion instability

In this appendix we give a physical discussion .of the

dissipative trapped-ion instability, which leads to the large amplitude

mode considered in Chapter 4. Our discussion should serve asa useful

introduction to the instability for readers unfamiliar with it. Also, a

detailed understanding of the physics of the instability aids us in

assessing the effects of the stochastic ion motion on the nonlinear

development of the instability. Our discussion draws heavily on ideas

expressed by Ehst. [122]

1. Introduction

The dissipative trapped-ion instability is expected to occur in

tokamaks which are hot enough that a typical trapped ion can bounce

between magnetic mirrors (execute a banana orbit) before Coulomb

collisions detrap it. This condition is express7d as

4lbi > "'ef,i '

where the typical bounce frequency ~i is defined in( 4.3) and V £ .e ,1

t'

is an effective collision frequency for ions.

Several other conditions are generally assumed in the simplest

derivations of the dissipative trapped-ion instability. The mode

frequency w must lie between the effective collision frequencies for

ions and electrons:

V f . < w < V f .e ,1 e ,e ( 1)
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A typical trapped 'ion must bounce in less than a wav~ period:

w < ~i . ( 2)

A typical circulating ion must travel farther than a parallel wavelength

during a wave period:

(3)

!.:
is defined in (4.2) and VTi :: (T/m

i
) 2 is the ion thermal

speed. One chooses k ll to reflect the tendency of the mode to minimize

variations of the perturbed potential along a field line.

When these conditions are satisfied, the simplest theories lead

to the dispersion relation

w = -2
1 e:~w* + i(Re W)2/V "f - i(V""f . +VLO) •

e ,e e ,I "
(4)

In (4) e: is the inverse aspect ratio of th~ magnetic surface to which

the radially local theory refers. Also appearing in (4) are the ion

Landau damping rate V
LO

and the so-called diamagnetic drift frequency,

.w*
Tee 1 dn

= kl. ea n dr '

expressed here in terms of the derivative of the density n with

respect to minor radius r.

In the sections below we discuss the physics of the instability

and gain some understanding of the conditions assumed in deriving

dispersion relation (4).
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2. li x ~ convection of trapped particles

For certain "drift" waves the main effect of the density

gradient is to allow E x B drifts in the wave's electric field to change

the density of some particle species. In a hot tokamal,t this type of

drift wave is called a dissipative trapped-ion mode and the species

undergoihg this E x B convection are the trapped particles, both

electrons and ions.

The simplest pictures[132] showing density changes caused by

.§. x ~ convection are cOPlplicated somewhat iq th~ tokamak geometry. In

Fig. 42 tole draw, an "unrolled" magnetic surface with l;, the toroidal

angle, on the horizontal axis, and with 0, the poloidal angle, on the

vertical axis. At the left we indicate the variation of the magnetic

field with 0. Hith the short-dash line we show a field line on the

magnetic surface; the safety factor is assumed to be
7

q=S" The line

with an arrow at each end represents the banana orbit of a deeply

trapped 'particle. At the right we show that the density gradient is out

of the page.

We assume an electrostatic wave is present with the solid lines

in Fig. 42 showing the crests (electric potential a maximum) and the

long-dash lines showing the troughs (potential a minimum). The

direction of the wave's electric field and the direction of the! x ~

convection are shown. The density gradient together with E x ~

convection causes the density of both ions and electrons to be

increasing or decreasing as shown.
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The defeat of ! x! convection for any species has a profound

effect on the mode. The failure of circulating particles to E x B

convect, as discussed below in Section 4, causes the mode frequency to

drop below the usual drift wave frequency w*. If E x B convection of

trapped electrons were not defeated by collisions, as discussed in

Section 3, the perturbations in the charge density due to electrons and

ions would cancel and the mode would not exist. If kU were not as

small as possible, some trapped ions would cross crests and troughs of

the wave during their bounce motion. This would tend to 'average the

E x B drifts of these ions which would then contribute little to the

charge dellsityperturbation. A lower mode frequency would result which

would lead in turn to a lower growth rate (see (4)).

Condition (2)dn the mode frequency simplifies the theoretical

work but is not necessary for existence of an instability. With (2) one

can often ignore the details of the ion banana orbits and treat the

motion of banana centers, th~ bounce-averaged locations of the guiding

centers. Where (2) is not satisfied (1. e., for large kl ) the

trapped-ion instability is replaced by the dissipative trapped-electron

instability.

3. Colli~ions of trapped particles

We next consider the effects of collisions. First, we show that

collisions allow the existence of the mode. Second, we describe the

mechanism for instability (due to electron collisions) and the analogous

process of ion collisional damping.
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Study of Fig. 42 reveals an important fact about ~ x !

convection: it produces a density perturbation in phase with the

potential perturbation. In Fig. 43 we illustrate the potential

-perturbation ~ and, with solid. lines, the density petturbations fits

of trapped particles (s=i ,e) in the absence of collisions (" f =0) •e ,s

The density perturbations· n
ts

are modified by collisions which

change trapped particles to circulating ones and vice versa. After a

detrapping collision a particle moves along a field line, changing its

relation to the wave phase. A detrapping collision followed by a

trapping collision thus has the effect of producing a random change in

the wave phase of a trapped particle. The rate of ~trapping collisions

is greatest where the density of trapped particles is greatest (fits>

0). The rate of trapping collisions is proportional to the density of

circulating particles, which is relatively insensitive to if the

number of circulating particles exceeds the number of trapped ones

(large-aspect-ratio approximation). The net rate of increase of trapped

particles due to collisions is thus a maximum where

as shown by the arrows in Fig. 43.

-nts is a minimum,

Competition between! x ! convection and collisions leads to the

density perturbations
_.
nts shown by dashed lines in Fig. 43. For the

ions, v f . < w so collisions are.weak compared to E x Bconvection,e ,1 -.--.- -

and -n
ti

is only slightly altered by collisions. For the electrons,

v f > W, so collisions are strong compared to ~ x ! convection, and
e ,e .

n is greatly reduced by collisions. The charge density perturbation
te

13 :: e en .- n ), shown at the bottom of Fig. 43, is thus positive
t t~ te . .
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changes due to two processes with different phases

-relative to ~, fits suffers a phase shift o due to collisions, as
s

shown in Fig. 43. These phase shifts are often cited as the cause of

collisional damping and growth, but we give a more direct explanation

below.

Collisions cause a net exchange of energy between the wave and a

particle species. To show this, we consider the effects of pitch-angle

collisions, which can detrap or trap a particle but do not change its

(total) energy. The net effect of detrapping and trapping collisions is

to allow movement of particles~ regions of positive potential, where

fi is enhanced by ], x ! convection, !2. regions of average (~ )
ts

potential. Ions move~ a potential energy gradient, gaining kinetic

energy and causing the mode to damp ~!£~ collisions~ Electrons

move ~ a potential energy gradient, losing kinetic energy and causing

the mode to grow~!2. electron collisions.

4. Shielding by circulating particles

Condition (3), which is necessary to prev~nt excessive ion-

Landau damping (see Section 5), also d~feats the], x! convection

process foi circulating particles. A typical circulating particle sees

such a rapid variation in the direction of the mode's electric field

that its radial drifts are insignificant. Consequently, the main effect

->
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of the circulating particles is to provide Debye shielding of. t,he charge

density produced by the trapped particles. Condition (3) guarantees

that circulating particles can move fast enough to keep up with the

changing potential of the mode. Debyeshielding causes a reduction of

the trapped-particle charge density Pe and thus of the mode frequency, .

by a factor k2AlC« 1), where AD is an appropriately averaged Debye

length for the circulating ions and electrons.

5. Ion Landau damping

Ions which are well into the circulating region of velocity

space (VII ~ vi..) are affected little by the modulations of the magnetic

field, and the analysis of Landau damping by these ions follows the

analysis for a un.iform magnetic field. To prevent strong damping of the

trapped-ion mode the parallel distribution function must have a small

slope at w/kll • Condition (3) is thus an approximate requirement for

the. damping to be weak.

A mode with a given m and t cannot satisfy condition (3)

near the rational surface q = m/t because kll+O (see (4.2)). In a

naive theory of the radial structure of the mode, we might therefore

expect to find a depressed mode amplitude near rational surfaces. These

expectations hold up to some extent in a more complete theory, as shown

by Gladd .and Ross. [107]

The reader may wish to postpone study of the following

paragraphs until he has reached Section 41.
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. ~
Ions with moderate parallel velocities (VII ,.. e: VlJ are best

treated using the action-angle variables introduced in Section 4B.

These variables allow us, in Section 4F, to write the Hamiltonian (4.34)

describing motion near a resonance W =n~ in exactly the same form as

the Hamiltonian describing motion near the resonance w=kv in an

unmagnetized plasma. The physical description of ion Landau damping of

the trapped-ion mode by bounce and transit resonances is then analogous

to the description of the simple unmagnetized case given by Chen. [132]

Before giving the description analogous to Chen's, we show how the

radial ( ! x ~.) excursions, which are not present in the simple

unmagnetized problem, have an important effect on the trapped-ion mode

problem.

A trapped-ion mode affects ion motion in a tokamak by

simultaneously changing the longitudinal action J (through the parallel

electric field) and the radial position r (through the perpendicular

electric field). If the ion motion is dominated by a single one of the

resonances W = nw
b

, the motion occurs on a straight line (see (4.52))

in the action space shown in Fig. 44. One such straight line (with

arrowheads) is illustrated in the figure. It is easy to show that the

Landau damping rate is proportional to the slope of the distribution

,.~

• b

function f o along~ straight ~. In Fig. 44 we have sketched

contours of a locally Maxwellian distribution. Since the straight line

is neither horizontal nor vertical, the damping rate depends on both

af /dJ and af jar, in general. In the large-aspect-ratio limit,o 0

af far gives the dominant contribution to the damping rate.
o
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The triple-headed arrow in Fig. 44 shows the excursion in action

space of an ion in the pr~sence of a trapped-ion mode of small

amplitude. During the excursion the ion's energy changes (through

changes of the action J). Ions moving to.wards B are gaining energy,

those moving towards A are losing energy. Damping of the mode occurs

because more ions are gaining energy than are losing it.

Textbook treatments of Landau damping generally consider the

damping of a wave present in the plasma at t=O. To show the relevance
.. .

of Landau damping to tokamak plasmas we must go beyond such treatments

and consider the effect of Coulomb collisions. Collisions cause

diffusion in velocity space. In the action space of Fig. 44, including

collisions would cause ion traj ectories to diffuse in both J and r

(velocity-space diffusion changes the positions r of the banana

centers of our guiding-center ions just as collisions can change the

guiding centers of gyrating ions). Collisions cause arrival of ions

into the region of the resonance W= nWb(J) at a certain rate. After

arrival at A an ion begins to move towards B, gaining energy and

contributing to damping of the mode. Ions which arrive atB and begin

moving towards A contribute to wave growth, but the greater number of

ions at A than at B causes the net effect to be damping.
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TABLE I. Analogies between gyromotion and bounce motion •

--------~~~---~--------~~- -------------~----------- ------------------
magnetic field

-------------~------~--~---

old variables

--------------------------
intermediate variables:

uniform tokamak

center of oscillation x + P = X
Y

-y

motion about center

new variables:

l
Yf = Y + Px = - p sin <p

P = - P cos <p
Y l

a f = a - a (p )o I;;

o

center of oscillation guiding center

x. y

banana center

<P. J

motion about center gyromotion bounce motion

-------------------------- --_._-------------------~- -----------------
frequency of oscillation n ~



TABLE II. Parameter values used for numerical studies.
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4.0

2.0

1.0

0.5

0.25

e~ T.o 1
11t\B = 0.05 11Bo

0~0125

0.025

0.05

0.1

0.2

1· T. t
W ( 1);Z

~(O) =211B
o

0.25

0.353

0.5

0.707

1.0
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FIGURE CAPTIONS

1. The magne tic moment J.l vs. time, showing jumps and rapid

oscillations. The arrows indicate the times of passage through

the points of minimum magnetic field. Courtesy of R. H. Cohen,

Lawrence Livermore Laboratory.

2. (a) Magnetic surfaces in a tokamak shown in a poloidal cross

section when no current perturbations are present (the

axisymmetric, Ohmic beating current is the only current present).

The surfaces are labeled by the value of the safety factor q.

The axis of symmetry of the tokamak, if shown, would bea vertical

line some distance to the .left of the largest circle. (b) The

same surfaces when current perturbations are present. The

perturbations are near the minor radii where q=2 (mode numbers

m=2 and n=l) and where q=3 (m=3 and n=l).

3. (a) Equipotential lines of the H~non-Heiles potential, (1. 7c).

(b) Equipotential lines of the Barbani~ potential, (1.14).

4. Two arrangements of masses and springs, whose motion is described

by the H~non-Heiles Hamil tonian (1.7) if the springs have a

cubicly anharmonic potential energy.

5. Surface of section plots (from Ref. 43) for the Henon-Heiles

system, (1.7), showing disappearance of a constant of the motion

as the energy E is raised.

6. Surface of section plots (from Ref. 58) for the equal-mass

restricted three-body problem showing disappearance ofa constant

of the. motion as the Jacobi constant C is lowered.
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7. Behavior of the logistic difference equation (1.27) for various

values of the growth rate r (from Ref. 73).

8. Observations of geomagnetic polarity intervals (from Ref. 76).

Hatched periods are those in which the polarity was the same as at

present.

9. Schematic picture (from Ref. 78) of the Rikitake two~disk dynamo.

10. Typical time evolution of the current II' which is proportional

to Xl' for the Rikitake dynamo (from Ref. 78).

11. Results of.an experiment on fluid motion between cylinders (from

Ref. 81).

12. Structure of the strange attractor of the mapping (1.30) (from

Ref. 84). The resolution increases clockwise, starting at: the

upper left.

13. Specification of the particle position (x, y) in terms of the

canonical variables used in the text.

!<
14. Contour plot of (2.22) for the parametersk.1. PE == k.1.C2E!m) 2/0. =

1.48, e: = 0.1, and e == tan-ICk.L!kz) = 45°. The definition of £

is given in (2.21b).

15. The correlation function CC'r) , normalized ~o unity at ,[=0,

computed analytically from (2.26) (solid curve) and from (2.30)

(dashed curve) and from numerically calculated trajectories

16.

(dotted curve). The wave amplitude is given by £=0.75 and the

propagation angle by e = 45°. The initial speed is v = 50./k z '

and the initial parallel velocity is v =0.z

The diffusion (UN) 2) in parallel velocity, computedz .

analytically from (2.26) and (2.32) (solid curve) and from
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numerically calculated trajectories (dotted curve). ' The

parameters are the same as in Fig. 15.

17. Surface of section plot illustrating three non-overlapping

resonances. The initial conditions~ indicated by X's, were chosen

to yield trajectories very close to the three separatrices. The

points representing the traj ectories have ,been connected wi th

hand-drawn curves. The wave amplitude is given by e::=0.025, the

other parameters are the same as in Fig. 14.

18. Surface of section plot showing a divided phase sp~ce. The

parameters are the same as in Fig. 14.

19. Surface of section plots contrasting thl':! motion in velocity space

in the presence of a small- or of a large-amplitude wave. The

wave has frequency w = 3.60 and propagation angle
oe = 45 •

-
Trajectories of a group of ten particles are represented. At t=O

this group has values of k z =N'IT/5, N=O, 1, 2, ••• , 9, but hasz

unique values of <p (='IT) , vI and V z • 'The chosen value of the

perpendicular velocity is given by kzv110 = k~p=2.24 and of the

parallel velocity by kzvz/O =-3.6. The hatched semicircle shows

the extent of the thermal ions considered in the wave-heating

example of Sections 2L and 2H.

20. Array of 100 initial values of kzz and <p used to approximate

numerically the average defined by (2.24).

21. Particle trajectories, represented by plotting ~he parallel

velocity vs. time. The same parameters ar,e used here as in Fig.

15. The initial speed and parallel velocity are the same for all

trajectories, but the initial phases k zz and, If> differ.
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22. The mean square deviation in parallel velocity vs. time. The

parameters are the same as in Fig. 14.

23. The correlation function (2.23) for t' =0, normalized to unity at

'[=0, illustrating persistent oscillations.· The parameters are the

same as in Fig. 15. The array of 200 initial values is similar to
,

Fig. 20, except that 20 values of kzz and 10 values of ~ are

used. The range 1T ~ ~ < 21T used here gives identical resul ts to

those obtained using a set of 20 initial values of ~ in the

range °~ ~ < 21T because of a symmetry which exists for v z=o.

For comparison with other figures the number of initial values is

thus~ effectively, 400.

24. The normalized correlation function (2.23) for t'=O, comparing

. measurements obtained using 400 (effectively) and lOO initial

k z' and ~. The solid curve is the one already shownz

in Fig. 23. The dashed curve was obtained using the array of 100.

initial values shown in Fig. 20.

25. The normalized correlation function (2.23) for t'=O, comparing

measurements fqr two values of the stochasticit.y parameter £ •.

The solid curve here is the same as the dashed curve in Fig. 24.

The value £=3 is used for the dashed curve.

26. Correlation function (2.50) for the mapping (2.49), illustrating

persistent oscillations. The parameters used are Po =0,' £=0.20,

and N=100.

27. ' Correlation function (2.50), illustrating reduction of the

oscillations when N is increased to 400, other parameters

remaining the same as in Fig. 26.
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28. Correlation function (2.50), illustrating oscillations attributed

to nonstochastic trajectories. Parameters are identical to Fig.

27 except £=0.06.

29. Dispersion diagram (wvs. k) Jor a plasma in a uniform magnetic

field,showing the high-frequency Alfv~n wave (Appendix B) and the

ion-acoust~c wave ( Sections 2L and 2M). Adapted from a figure in

Ref. 98.

30. The perpendicular (f1..) and parallel (f
ll
) distributi~on functions in

the presence of a finite-amplit;:ude, obliquely propagating ,

electrostatic wave. The distortions to Maxwelliandistr:ibutions

(£=0) are shown for two wave1amplitudes, £=0.25 and 0.75.

31. Agreement between our semi-empirical model for the diffusion

. coefficient D(v,J ,and values of D measured from plots like

the speed v constant. The propagation angle

Fig. 22. As is varied, th~ gyroradius is also varied to keep

oe = 45 •

(b) k v/Q=6, £=0.75.z

32. The variation of the magnetic field B with distance s along a

field line or with poloidal angle 0. A sinusoidal modulation of

amplitude 6B is added to an average field B •o
The horizontal

lines show the energy levels of trapped and circulating particles

in the effective potential energy we],.l llB(0). The physical

interpretation of Ho is indicated at right~

33. Relationship between the variables 0 and ep, showing continuity

of the definition across the separatrix, which separates the

closed cu.rves (trapped particles) from the open curves

(circulating particles). The action J increases outwards from
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the a-points ( e=0, 0 =0 and 27T ).

34. The action J and the bounce (or transit) frequency W
b

as a

f unc tion of H
o

35. Surface of section plots sho~ng ion trajectories in the

4>J-plane. The parameter values are given in the lines of Table

II: (a) line 3, (b) line 4. All figures take the poloidal

structure factor g=l. Comparison of (a) and (b) illustrates the

stronger effect of a mode with given amplitude on a lower-energy

ion. Note, especially, the larger stochastic region in (b) than

in (a) •

36. Surface of section plot continuing the sequence of Fig. 35a,b.

The parameter values are given in line 5 of Table II.

37. The extent in velocity space of the stochastic region (between the

heavy curves) for a trapped-ion mode with parameters (4.1,2,4).

The dashed lines show the locat ions of the resonant (w = W
b

) ions.

The contours show the density per unit area (on the figure) of

ions in a Haxwellian distribution.

38. Traj ectories of ions chosen from two ensembles with different

initialvalt,tes of the action J. The lower set of trajectories

'.<

lies outside the stochastic layer, the upper set lies within it.

The values of the mode amplitude

given in line 3 of Table II.

~ and the frequency ware
o

39•.The diffusion «6J)2) of the action J vs. time, calculated

from the ensembles of trajectories used in Fig. 38.

40. Trajectories of ions in the action space introduced in Appendix

E(see Fig. 44). The initial conditions are shown by the X's
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marked 0. The numbered pluses indicate the locations at

intervals of the wave period. The parameters are taken from line

4 of Table II. The initial angles are 0=0 ,and n=O. The

41.

initial values of H ar~ (a) 0.44, and (b) 0.92 •
o

Disto'rtion of the unperturbed distribution function

presence of a finite-amplitude trapped-ion mode.

£ in the
0;

42. An "un~olled" magnetic surface, illustrating density changes due

to E xB convec tion in a trapped-ion mode.

43. Perturbations in potential (~), in densities of trapped ions

( ii
ti

) and trapped electrons (ii
te

), and in charge density ( f\ )
"

caused by, a trapped-ion mode •. The dAshe'd curves show the

modifications to the density perturbations in the presence of

collisions.

44. The action space used for a tokamak to represent guiding-center

motion and distribution functions. The longitudinal action J

appears on the vertical axis. The horizontal axis is (minus) the

canonical angular momentum p~, which determines the average

radial position r of the guiding center (i. e., for a trapped

particle, r is the banana center). The dashed line is the

separatrix. Contour lines are shown for a local Maxwellian

distribution £
o

with density decreasing with increasing r but

with a constant temperature. The triple-headed arrow shows both

the direction of guiding-center motion in the presence of a

trapped-ion mode and the line along which the slope of £0 is

measured (in a calculation of the Landau damping rate).
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