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Abstract
Experimental 8 cf the P ion =
of H™ from surfaces bombarded with hydrogen are
revieved. Some weasurements of H' and H° pro-

duction Erom surfaces are also discussedwith par~
ticplar emphasis on work which might be relevant
to ion source applications. .

Introduction

. Recently fnterest inH~ production from sur-
faces has been aroused by the need for H~ ion
‘gources for use in infjection heating of future
MFE plasmas. Studies have suggested that a sur-
face mechanism 1s creatingH™ ions in the present
While there have
been many studies of the production, of neutral and
positively charged hydrogen particles from sur-
faces, few have 1nvestiga:ed the negatively charged
component of the backschttered particles, since
it was considered to be a small fraction of the
total. However, at low impoct energles and’ with
particular aurface conditions, the negative par~
ticles can wake a considefable ccntribu:inn to
the backseattared £luxs

One of the most pressing® probleds is to
‘understand the physical processes which create
the negatlve ions at the surface; the theoretical
gtudiea’ ff these processes have been au:linr—d :
earlier.

In this nr:iéle I propose to revieil the ex-

" perimental measurements that have been made on

*he production of H .from surfaces boubarded with
hydrogen,” with particular emphasis on work which.
might be relevant to lan-source applications. Sev-
eral experimental ta ‘of back:
H~ ions can be applied both to the understanding
of these processes and to the construction of ion
sources: )

1) Total con\?’ersion of dincident hydrogen
particles toH~ aa a function of incident energy,
angie and surface conditions.

2) Theangular dis:rlhutlnn of bnnkscst:ered
1~ 1lons.

3) The energy distrihu:inn of backscst:ered
H- 1ons. -
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. total backscattered flux.

“the 107
- work 'discussed here the surfaces were polycrys-
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The backsm::ering of positive and neutrsi
particles is also important in the.overall ion

svurce operation and some Ielevant measurements

are mentioned later.

Exgerimen!:ul Techiniques

.~ There have been a number of experimentzl zp-
proaches ‘used to.make -the m:asurements outlined
above,, Since it.is no: posaible to give a detatled
account of each apparatus 2nd surface preparation,
only the general experimental techniques uscd will
be described.

One of thie sim‘)les: approaches is to borbard
a surface withaknown incident flux of partlcles
and measure the total backscattered current. By
use of su!tably blased grids and magnetic Helds,
it is poskible to'suppress allethe charged par-
ticles backacattered except the negative iams.

" Particuler care muat be ‘taken to' ensure complete

electton suppression. In a similar experimental
arrangement it 1s possible to focus che negative
fons emitted from the surfa & into a mass spec—
trometer and hence idencify the negative-ion spe=
cles; energy analysis of the negailve ions canalso
be incorporeted. The negative fon current 1s nor-
mz2lized to the incident beam flux.' The analysis
of these, data is complicated by the change in the
particle reflection” coefficlent with energy; &

. energles below 1D keV this change can be rapld.

A second npproach_:o overcome _this problem
15 ‘to normalize the negative-ion clrrent to the
Hovever, thia eatails
Ie detection of neueral particles. ovet the wide
range of energles and sngles through which they are
backscattered. If measurements are taken at a
particular scattefing angle, sn integratfon over
all angles is required tc deduce cthe toral coh=
verslon efficiency of Lm:idﬁn: hydrogen pnrr.lcl-:s
to H™.

The greatest pmhlem in interpre:ing theae
various measurements 1a in the reprodacibility
of surfacess Ingeneral the surface conditions are
_not well known, with ‘vacuum system pressures in
Torr rnngo or higher. ln most of the

talline and had been clesnedwith vurlous solvents
'before 1ns:sllntlon in the vacuum system. Most
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1ot Schneider e 51,8 fiavé made
Bome grelimtnary measuremeﬁta vhich seem to sup~.
port this- theory. Th srtial coverage phenumennn g
3 is’ thuught to bi or:an: in, surface plasma
cdoled. iovever,in other ‘cases, fresh deposite goitrees. ' Dudnikov 0 has ‘made some measurements of
: of the particular surface materialvere laid down -, :}‘e L yield Eron the surfaces in these Bources,
g -nd pgrenu ea. in the . operal:ing wirh cesium sddéd to-the discharge. The
t Torry: enabling: diachatge valtage, thnh determives the cnergy
ciéan surfaces to be maintatned. (Al: these pressures ~. . - of the pusuive 1ous s:riklng the Mo cathode, could
an adsorbed mcnolayer - takes- abont 50 minutes ‘to < be varied by changing the cathode temperature and
-form.) Studies, of poritive and neutral backseal cesium 1njeuion rate. The ratio of the extracted
:eringhave nhaun thu: the inE‘hgence sof . adsorbate *; negative=lon current density to the positlve-inn
*_layers canbe very urtunt- .Inthe following { current, density ct .the ecathode 'was' then calen-
N dtscussion of Yebul tg the JBul ces have not bean . ldted for .various values of discharge voltage.
* shown to “be l:'lean, in’ that: they have only been The'results are also shewn in Fig. 1. It should
” sub_‘lec:ed‘ to’ hm ing, unless o:huwise noted- be pointed out that at the optimumcesium'injection
- i . ratethe dischargevoltage is around 100 V, while
' without. cesium. injéction the discharge voltage
s around 450 V =~ po- the results .obtained at
-higher discharge volteges may well be for surfaces
with léss thun optimum cesium.coverage. The in-
. Y. teresting ‘féaeure 15 that ar 130 ¥V the H™ yfeld
. “$ome measuremants of H ptudu:tinn for pri- . ! £rom the. pattially cuated nquace is twice that
mary beamenergies ubgve 25%e¥ Rave been repar:ed.. f.ot a ces-um surface.
itropan and Gumeniuk® bombarded Al, Cu, and staic- - . Lot
ess ateel targetswich 200 KeVeo 1000 key hydrogen - T
: . Anid.deutexium lons, and mea-utfd total’ negative
0 ion currents of the order cf 107 times the dncident
Usihg mass analysis :hey iden’tiﬂed H-

heo been hen:e.] co teqzentq: t
thnn -4 -onolnysr of ldlorbed Baterialw. bqlieve

rfaces vere still hot or ha

1

GERERRRT A T

e
=
T

abundance was very aenail:iva to '1 surface condi- D"
tigns decrq’gsing 88, Ll ces ere heated.
- FozeL et .al, made a jors de! lle‘ xass spectro= 0~°$

mel:r.lc measurement for H+ m:idenl: on a Mo surfa:e,
at dn’ angle-of “60° snd: with energies between 10
" land 30keVs They £ound the backscatte:
" Ancident beam ratio (K")Fwes 1 x:10
':energy range, although it is not clear. thai
-had’ complete. colluction .of the backsc!!tl:ered B

‘per incident ucleus

<o

acyum was of l:he~ z‘der of.[10W Tntr.
smthe o fractlunu were del:end.ned for "d;.rl:y"
E :ur!acea, urfaces with adéorbed gas lnyere- i

'I I 03.- 3
g : - ncident ener
0 schaetder ot al. e‘,hnve ‘endeavéred. t6 over= LIETER RS 9y Y nucleon)

‘come tlils surface ;gontanl\nntial by el’IBllting good e . s YBL779-2297
vactum \conditiané" 10T | range, lnd“' - i

E experiuehl: 1u,ducr .detailifn & _cllwing

paper, Heasurements wAr: ndde of D™ ylelds from
Cs; Rb,. K, Na, nd Li-sirfaces .bénbatdea i1th

nnd D3+ dn the enery range

suiface (Ref. 8). “tntal H™ yields
from ‘Wb ddcldent’ on 4 Mo surface With
: v‘ ,)ntt!al CE coverage (Re’. 10y .

not in thé substrate Sbibe of the nellurements are "
‘shewn dn. Figs 1 .along -with measurements”for  a
Ml uolyg_den surfaces: It vas found' that the
E yield irn-D z 3
0 from. D,™, ¥ For convenience’ tha D7yleid dmshown”
’dividef £y theausbet:of lnciden: nuclel.

‘Angular Distpibution of - Backscatteréd W™ lons
<. At present there are no'reported n’ieamirel;en:s
£ the angular dis:ﬂbutiori oi backscattered H™ -
3 Cowu:u simulations’ predict that the
cnufering intensity Eor, 117 backscar.:ered par~’
:iclel at an angle of in¢idence oE 902 will have
“8 coaine’ distrihutlon about the nbrlnal, except. ﬁ
lmer 1nc1den: energles where Oen and Rablpson
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found a s’.lig’h:ly more peaked distribution. Some

. measurements of the neutral and poslaulve Hdrogen

angular dlﬂr"lhutinns have been made”* which
confirm @ cosine distributiun at. lw emergende.
energiess . 5

Energy Dis:ributtnn oE Backsca:tered H” Jons

. Lévine and, Berry s:udied the ener distri-
butlonof B~ tons produced by u*.and "y
went of a W surfacé,, with particle- ene:gy of the
arder of a kilovolt and at normal incidence. They
poaltioned the'target platé in a mass spectrograph,
with the target ‘biased so as to. accelerate nega-
tive fons produced-at the. surface. They observed
4 lov energy and high energy peak. The low enepgy
peak had 2 maximum'in the ‘emerging energy spectra
at about 3 eV: This was found to be due to adsorbed
hydrogen being knocked from the surfaces upon
heating of the tungatén target to 1100 K, this
veak diseppeared. The high: energy pesk was iden~
tifjed as backscattering of the incident particles
as H~. It ‘waa noted that'H; behaved like two
inctdent WY with one half the incident kinmetic
encrgy. At tncidenc energies of the order of 1 keV
the peak of the energy distribution of theH™ was
found to be 0.6 times ‘the incildent H' eneray.

MeCsughan et 51..l 17 ien & similar ap=
paratus, confirmed the existence of these twopeuss
and alao Found ‘a medium energy peak in the W~
energy distribution. It was estainshzd. by al-

+ ternating ‘-deuterium and hydrogen: ion beams on

Cu and W targets, - that this medium energy peak
was due to the re-emfesion: of buried primaxy fons
from the bulk of the -target. They noted that the
luvw and medium energy peaks were evident anly
ir the H™ energy spectra ard not the H* spectra
which they also observed; The high energy peak
wag presen: inboth theH ™ and s apectra, Fig.-2
shaws the ecEfact of prolonged bowbardment on'a
target which hea been extenaively cleaned ac that
the low euergy peakuaei oot pireaent. The incident
bean was 965 eV Hz.

Measurements of K~ energy dlsttibutinns have
been made at bigher incident beam ener:
Cawthron et al., Bhf and the Garching A;x-eup.g'fafg'H
In both experiments the -energy of the backacat~-
tered particles was snaly:ed usihg electrostatic
deﬂec:lan.

Casthron, et al- 8 bombarded Pt and N4 tar-
éta, maintained at red hot :'emeratures. with var~
Loug, molecular and 1 apecies of hydrop
The ‘particles had Incident enesgfea between 2 and
40 keV,. were incident to the surface at 45° to
the normal, and observed at a5° to the normal,

borbard- *

making &.acattering angle of 90°% A typleal H™

energy apcctrum for & Pt target boxbarded by protons
at various . energies 18 shown in Fig. -3. 4An u*
energy spectrumfor the eame’ target but bnmbarded
by various molecular hydrogen specles 1is ahown
in Fige 4.. At low incident bear vnergles the
negative -and positive lon backscattetlng intensi~
ties wera couparable' Yiowever, at the higher ener-
gles in tha ewperiment (~ 40 keV) the negative
ion intensity was found to be five to ten times

less. At the lower incident energles
the spectza for the H™ lons are simflar to, but

(<10 ke¥) "

nsrrowe= than, rkie peaks for the ¥''ions. While -

the H™ spéctra are found to be forward peaked
throughout the energy range, the H™ spectra become
flatter a8 the incident energy increases. It.was
unclear wWhether the low energy peak (below about-
1 keV) was due toH™ ions or.elections which reach
the detector, . There 18 no report of any obgerved
change in the energy spectrawith bosbardmént times
The molecular ions were Found to give a higher
H™ yield per nucleon than incident protons, bub
there were insufficient data to observe if there
Wwag an lsotope. effect.

The totsl H™ yield at 90° was' obtained by
incegrating the energy spectra. A further 1o~

- tegration assuming various angular distributiona

gave values for the fraction of the total beam
bacKscattered as H™. For incident vnergless8f be-
twee~ 3 keV snd 15 keV the cotal 'scattérgd ne~
gative fraction was eatimzt~d to be around .025
for Luth Ni and Pt targets; the uncertainty in
the exact angular distribution of the particles
legds to considersble unCerl:ainl:y, as 1arge as a
factor of tuo.
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Fig., 2. Change in H- energy distribution as a
function of bombardment time (primgry
beam 965 eV Hy')e  Cuive () immediate-
3 1y after an ‘extensive cleanlng opera=~
- tiom. 7 Curve (b) after five hours of
. bombardment, st a current densin
- 0.67 vAfem™ (total.doav 7.5 x 10
. /lem®)s  Curve (c) after. a Euxther 9

" hours of 7bumbnrdq;ent (total dose of
3.6 x 10°7 H, */en’), No change was ob- -
# served past :his poiat. fRefs. 16, 17).
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a piatinum r.argec*bumbardedmy prorons
t varigus’ energies:: (1) 6. 3 keV; (2)
(OR K

The Garchi.ng gr P na “regorted H
scattering from Au Ya ZB ig 'tho % »
and’ s:ainless steel2t tax; ets. ‘The menurements
" wefe madewith. l' keV hedms \of ‘both hydrogeni
and deutef zimry beams Were -notmally’

part;clea were' observed ‘gt -an: angle of 45% ta

hea:ed 1n thedvaeutum. TheLAu target wis also sput~
:ered ‘cleanwith Ne.iond2nd its-surface contami~
,natiun monitored.. /It wss estimated that the Au
? target . liad 1ess than one-tenth® of -.a monolayer
" of adsorbed gas-on:its 9urface. ‘The. ThO,; target
vqa a comrninuy available I £1

with ThOz. The energy'dl.utubutian\of‘bo:h u¥ and

»dn Fige 6. The telults for' the other
o 'aimilat shape Energy”spectra £ton
a'Ta tnrget showad botha molecular .and an 1 .
£fact, the -a]e-:u!.ar effecc hed alsobeen o
in'Fb; yields oi i verohigh:r per, incident'pr
“forH," sand Hyl :hnn for MV 1nciden:. However,
‘neither effect h-ervpd onarriu :a get. Aguin,
there is 1o repget of any: ohj«:ved. hdnge 1in :he
4 ', enexrgy uppc:q w.r.h bom 1rdru=ng ‘time.

"!t vas fouqll that while the’ pgak 1n the HY,
S . .energy -pcccr- whifts tc lower ehergies aa the in-
: ctdent energy decreases, the fraction of backscat-
tered, ll to H culncidel where' the_ emerging en~
| overlap, ss do’ﬁellammnt- obtained with
¢ Dtdnd HY bean 15 ylottedv rsus the energy
" per nucleon. Thig I a_strong 1ndi ationthat the
charge state of ‘the particle _hevin; the surface

A

1nc1denc -onko Ehe target and the backu:nr.thred w

the normal. ‘Tha surfaces were cleaned ‘and - ‘then

lmun: ~coated .

backscl:tgted»&mn ‘Auare “shown 4n Fig. 5 and. -

'normlimd to ‘the’ total"

", -tent. However since ot
s:nn: throughau: an “erérky ‘gweep ‘thei shapes -of

- " the,/rap & de
' sTE diffe:encea 1n
. Since the experimen:al techriiques ‘used are quite

- appear -that these*

epergy of sgamsred ions (keV)

- ’ : XBL 779-2432
Fig. ‘L Energy spectra of hydrogen particles with
M . positive charge scattered at 90 + 3.70
% frem a platinum targer at various bom-.

, .. varding emergies: (1) Hytat 9.1 kev;
s o H3+ at 15%1 kev5 {3y Hz+ at 9.1keV;

! T4 Hi at 25,1kevi (5) Hztat 15.1keV;

at 9.1 keV; (7) Hot at 25.1keV;
18).

(6) R
(8) H* atyl5:1 keV, (Re;

lrnn earliu‘ meagurements of the neutral frac-
tlon of hydmgen hacku:a:tered fromTa and Au, the
negative-Eraction of ail backscatterec. particles

wag.‘calcalated.’ For Ta the negatlve fraction was,
% found' to’haye a_maxlmm of 0.035cy 5-keV, while
Auhad & vaximim of 0.045 ac, 3 keV. These are

nsistent vtth the valuea calculated by Cawthorn
~als Eor.ﬂi aia Pt,at aumeﬂhat higher energies.

énergy spectia obtained by Cawthron ét al.

. The
/ (Plgu '3 and 4} and ‘Jorbeek'et ali (Pigs. 5 and

‘that the Eormer present-their data , .
1nérdent beam, Hhereas
al measured negatlve cur-
lnciden: current-#is con—

S8Y ALEESE Hn

“the lattel

ptesent»:he

the' curvea should ‘be comp‘u‘able. It 1a clearfiom’

i} r.he ®* ‘and B~ spectra.

simllar, for uan: of more ‘hfcmntlon it would
) 1E£arences way be: dur to the

d-here that ‘there * *




- porhicles per energy interve’ larb units)

¢ 6 & W 12 u
energy of emerging particles [kev} -
) x5t 719-2410

’ Energy distributions of 'H"' and H™ 1lona
backscattered, from Au bombarded with
15.3-keV protons,. {Ref: 19)= .

Fig. 5.

different angles of incidence and scattering which?®
are uged in the two experimontss As mentioned
earlier, no systematic study of these angular de-
perdences has been made. < .

The  charge states of particles emerging from
surfaces has also been’ investigpted by passling
beans ghrough thin fells. The work of Berkner
et al,““1s of particular interest since they mea-
surgd the charge state fractions of deuterium beams
emerging from frashly deposited surfaces of C,
Mg, Nb and Ag in a vacuum system maintained at
less than 107° Torr. The charge states of deuterium
ynr:lcles emerging normal to the surface with en~
ergies between § and LOD keV were analyzed. In
all targets the D™ fraction of.the emerging beam-
was found’ to increase with decreasing emergence
encrgy. A Mgsurfa¢ewasfound to give the highest
D~ fraction: 0.12 at an emergence cnergy of BkeV.

Other Relevant Measurements

Understanding the overall operation of & nega=
tive-fon gource requires irformation on all the
processes taking place at the aurfaces. Therefore,
the backscattering of incident particles in posi~
-tive and neutral charge states is also of intereat.
1t is not possible in this limited review to go
into adetailed discussion of all these processes;
however, sume measurements should be mentioned.

There has been mich work reported on the energy
.spectra of neutral and positive hgd{ggﬁg particles
‘backscattered from surfaces.’ However,
due to the difffculty in de:ectzng the backscat~
tered hydrogen atoms, few ! have been
extended Lo emerglng ene) Egles aof below 5 keV al-
though Behrisch et al.” have extended the mea-
surements to as low ae 300 eVis In general it
1a found that the neutral fraction of the batk-
Bclttered‘ beam increases snd the positive fraction

as energy

¥

8 5% & &,

2 D
g8

particles per energy mterval farb umits)

6 8 10 74 % 16

energy af .emarging pqr(iblrs (kev)
T . “x8t 775-2420
Energy distributions of D¥ and D™ .ions
backscattered from ThO, on Ir when bom-
barded with 10-keV deuterons, (Ref. 19).

re

Fig. 6.

. There are few measurements of the total Eroc-
cion of incident hydrogen heams backscatcered from
surfaces (The reflection coefficient R).The de-
tection of neutral particles with o wide range
of energies uund scattering angles hes been n major
.problem. Verbeek” integrated the measured emcrgs
and assumed angular distributions of the neutral
and charged particles to calculate thé cotal re-
flection coefficient for 3~15 keV H' incident on
Nb. The reflection coefficieat increased from (.02
at 15 keVto0.34at 3 keV, although possible oxide
layers on the Nb may have resulted in these mea-
surements belng low.

Sldenius” has used a target mounted in a
proportional counter to measure the reflection
coefficlent ‘for H* from Au in the encrgy range
5 to 50 keV. The reflection coefficient was found
to increase with decreasing energy to a value of
0.34 at the loweat incident e-~rgy. The high
methane pressures in the proporta dal counter mrant
chat the Au surface was contaminated..

several authors28~3! have aought to calculate
reflection coefficients by monitoring pressure in~
creases vhen targets are bombarded with hydrogen.
There ig considerable disagreement among ?eisure-
mente made at high incident' energies.“®”~" tThe
measurementa by Bsraglola et al.”" ‘for 300 ev

1nl:lden: on Mo, usinga oimilar technlque, glve
values aof B = 0.31 + 0.04.

Along with these limited measurements :Iu.-re
have been several computer simulation calcula=-
tion of ieiiessiun coefflcieats for hydroger on
métals. h

Discussion- E
From the results avallable at’ vresent it is
clear that H~ production by hydrogen backsca:-
tering from ourfacea is only slghlficnn: at emer—
gles less than about 10 kev. Surface cvnditlnm
ate very important; and 1t has been suggested that™”
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111uutrnted in, we evar, :hey have

+;the Tesults of Schneidex-et a ‘(Fig. 1) uhere.
as the work function decxeases:.from Li (@ v
[ 2:4 eV) roKand Na (# w.2.2'eV) toRb @
7 "and then to Cs (# ».1.9eV) surfacesy the negltirs

ion yield 1nc:euu The ruultq of Dudnikov
arealso,shown in Fig.® 1. At” 130 v the cnthnda
has an optimn' cegium’ coveuge, :hat J.s. ope in
uhichl,thu work. function is midimized it L+5 eVe
“ ‘A5 gource canditicns are altered to change ' the;
bonbarding . pnticle e\urgy the cesium coverage
ence
" work futetion until it véaches th' for a
target (8 4.3 eV), 'th & could account
pid fallpff 1u the’ negntive “lon yleld
dele ergy in these measure=

. nr.erpre:i.ng l:hese data, the re-
flec:i.on coEfie; ent: and’ energy distributicn of
the' hanchatteud puticles are also 1npartant.

For. example, : Fig.: 1 the, ™ yle!d from'Li:
,(BF 2.4 eV) o1 luuez‘ :hnn for
_~ (8 G 3ev)

Thls

distribucion of l:he Conpuring N
the'energy spectra in Fig. 5 for Au, (B », 8 evy
77" and in'Fig. 6 for Th0, (B » 2 eV) it can be scen *

- -thate - me e xima in :he enar;y spectra are mving .

- lower: energiu with decreasing work £unct1.unv .
6-eV) the energy !x.tctruu pesk was
Simlldc trends (for the. peak in

around 2.5 kev.

In:etpnntion of- .the nvnihble H""energy
digtributions is difficult,’ since ':hey have been .
+ made with different’ lnzlu of, incidence and “emer—
gmc The low uedi.ull, and l-fssh energy HT péaks -
e obsfs\gf ‘Ey evin: -nﬂ Berry: and HcClughan et

ale s who' collected the-HT
b ““with awide lngular dl?tuhuttnn. MEr
d:y ‘Cawthron et ..al, and ‘Verbeek et al.s
co!.lactéd theE™ {ons" leaving the surface at’ spe-.
eifie” ‘angles of smergence. Although the fact that. -
Cawthronet al.,nw a much broaderH” di-:ubu:lon
£hen H+,d1!tribution may -indicate the presence of .
* the, mediun energy paak deaczibed' by HcCuuzh-u

4 -

1. -nt $fferent angles of ingi~
tle agrcement) It is

not_.yet clnr\hw he ene
i6ns will chlng as the ngle of inéidence nnd
. lﬂ'll of emer e chnngad 1r\dependen:1y oF
¥ fone another.

Zlevyi v

e R

| the’backacattered D™ are'collected have been faund

to. be independept of ‘the . molecular &pecies, 1f
‘normalized. tg the number of’ ‘Ineident nuclei. How=

with o e inci~
dent beams or differen: 185topess ; .

* Conclusion-

glve | sizable yields of ,negstive hydrogen ilons when
bomberded” ‘with hydrogen beams. The measurements

available'to date indicate that surfaces with low. .
and high reflection coefficients,
ulu be most desirahle for ion source conatruction.

work function

Before the phyBicBl procenses whlch lead to
n-, pruducuon from surfaces can be undets:ood, it

is clear that more erpenmental information is |

required.

Several areas would be oE partirular interest
at the moment.

1. Fackscattering of pa:t!.clws with {ncident
energies between 1l eV and lkeV from surfaces, es-
pécially those with a partial coverage of alkall
metals.

-2, 'The angular, dependenre of H- p:odm:ed
by surfuce bombardwent.’

: 3. “Tke sputtering of aduorhed ar 1wlunL=d

hyd:ogen from surfaces.

ftcm 1 13 presently under lnvestlguclun by
our gzoup at the Lawrencd Berkeley Laburetoty-
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