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 ABSTRACT

This Thesis presents a fundamental numerical study of turbulent
heat and mass transport processes in two-and three-dimensional convective
fldws. The model of turbulence employed is of the type referred to as a
second-order closure. In this scheme transport equations for all non—zero
components of the Reynolds stress tensor, for the isotropic dissipation
rate of turbulent kinetic energy, for all non—-zero scalar flux tensor
components and for the mean square scalar fluctuations are solved by a
finite difference method along with the mean momentum and mean enthalpy
(or concentration) equations. The model used.for the stresses has been
developed in an earlier work. In the present study parallel ideas were
u;ilised in obtaining a model for turbulent heat and mass transfer
processes.

The study has focused especially on the problem of non axi-
symmetric convective heat and mass transport in pipes, which arises when
the boundary conditions are not axi-symmetric. The few available
experimental data on such situations have indicated anisotropy in
effective diffusivities. To expand the available data base an experiment
was conducted to obtain heat transfer measurements in strong three-
dimensional heating conditionms.

Numerical procedures, especially suitable for incorporation of
second-order turbulent closure modelsrhave been developed. The effect of
circumferential conduction in the tube material, (which is influential in
the asymmetric heating data currently available) was accounted for directly
by exteﬁding the finite difference calculations into the pipe wall.

" The principal goal of predicting three-dimensional scalar transfer
has ‘been achieved. The predictions of the mean temperature field are in

much closer agreement with experiment than an earlier study using



isotropic diffusion coefficients. The prediction of free shear flows have
been only partially successful. The present model does not fully account
for the variation in effective Prandtl number, among free shear flows
observed in experiments. The prediction of wall flows indicate that the
turbulent time scales of velocity and scalar fields are not proportional
in the vicinity of adiabatic (or impermeabie) surfaces. The implications

of this result for the further refinement of the model is discussed.
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NOMENCLATURE.

Coefficient in equation (3.3)

Coefficient in the finite difference equation for ¢
(equation (3.16))

: Area of a control volume surface

Fourth-order tensor defined in equation (2,13)

Coefficient in equation (3.3)

Coefficient in logarithmic law for scalar (equation (4.15))
Non-dimensional radius, also as in equation (2.39)

Anisotropy of the stress tensor (£ and j =x , ¥y , 38 or
8 ,» ,301,2,38)

Fourth-order tensor defined in equations (2,20) and (2.21)
Coefficient in linearised source term (equation.(3.15))

Time averaged value of scalar property, also, coefficient
in equation (3.3)

Instantaneous value of scalar property

Coefficient in modelled velocity-velocity-scalar correlation

. (equation (2.45))

Coefficient in modelled form of ¢, ] (equation (2.48))
_ ie

Coefficient in modelled form of ¢, ] (equation (2.61))
ie

Coefficient in modelled form of ¢ic w (equation (2.67))

1
Coefficient in modelled form of ¢ic2 (equation (2.58))

Coefficient in modelled velocity-scalar-scalar correlation
(equation (2.77))

Coefficient in modelled form of €, (Table (2.2))

Coefficient in modelled triple velocity correlation
(equation (2.6))

Coefficient in modelled triple velocity correlation
(equation (2.8))

Coefficient in modelled form of ¢£,1 (equation (2.11))

Coefficient in modelled form of ¢ij1w (equation (2.21))
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Coefficient in modelled form of ¢ij2 (equation (2.17))

Coefficient in modelled form Of'¢ij2w (equation'(Z.Zl))

Coefficient in modelled form of ukew‘(equation (2,34))

Coefficient in modelled production of €
(equation (2.33)) :

Coefficient in modelled destruction term of €
(equation (2.33)).

Coefficient in linearised source term (equation (3.15))
Friction temperature or friction concentration

Time averaged value of scalar fluctuation squared
Third-order tensor defined in equation (2.51)

Specific heat of fluid

A gradient diffusion model for scalar flux (Table (2.2))
A gradient diffusion model for scalar flux (Table (2.2))

Tensor invariant model for scalar flux (Table (2.2))

A production of Reynolds stress like term (equation (2.16))

Tensor invariant diffusion model for stresses (Table (2.1))

Gradient diffusion model for stresses (Table (2.1))
Suffix denoting the down-stream location
Third-order tensor defined by equations (2.66) and (2,67)

Coefficient in logarithmic law Qf the wall for
velocity (equation (3.30))

Coefficient in logarithmic law of the wall for
scalar (equation (3.31)) ‘

Near-wall effect function in modelling ¢i' and ¢ . terms,

also, dimensionless velocity profile (Sec%ion (4? .2))
Dimensionless cross-stream velocity (Section (4.3.2))

Gravitational vector ({ =% , Yy , 83 0r 8 ,r , 2 or
1,2, 38)

Dimensionless shear stress (Section (4.3.2))

Flux through a boundary
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Thermal conductivity of fluid

Thermal conductivity of tube wall

Turbulent kinetic energy

Convection through boundaries (Appendix (E))
Mixing length

Dissipation length scale

Mass flow rate,also, dimensionless mean scalar (Section .
(Section (4.3.2))

Nusselt number

Exponent in decay of turbulence, also, dimensionless
cross~stream scalar flux (Section (4.3.2))

Unit normal vector (@ =& , Y , &)

Time averaged value of pressure,. also, production of
turbulent kinetic energy

Instantaneous value of pressure

Production of scalar fluctuations (Section (2.7.4))
Peclet number

Production of scalar fluxesl(Section (2.7.3))
Production of Reynolds stress tensor (equation (2.15))
Molecular Prandtl nﬁmber

Turbulent Prandtl number

Fluctuations in pressure, also, pressure and dimensionless
streamwise scalar flux (Section (4.3.2))

Pressure correction

Dimensionless difference between streamwise and
cross-stream normal stress (Section (4,3.2))

Wall flux of C

Radius of pipe, also, ratio of time scales of turbulent
scalar and velocity fields

A near-wall effect model for ¢ic (Table (2.2))

A near-wall effect model for ¢ic (Table (2,.2))
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A model for pressure~scalar gradlent correlatlon
(Table (2.2))

A model for pressure~scalar gradient correlation
(Table (2.2))

Reynolds number

Inner radius of tube

Outer radius of tube

Launder et al. near-wall model (Table (2.1))
Gibson—taunder near-wall model (Table (2.1))
Launder et al. isotropic model (Table (2.1))
Launder et al. Simple model (Table (2.1))
Radius

Time averaged generation of ¢ per unit volume, also,
spreading parameter in a wake (equation (4.12))

Instantaneous generation of ¢ per unit volume
Surface integral term in equation (2.47)
Surface integral term in equation (C.9)
Surface integral term in equation (2.9)
Surface integrél term in equation (C.10).
Soﬁrce of. ® in equation (3.9)

Turbulent Schmidt number

Stanton number

A period of time (equation (1.5)), also Transport
coefficient of ¢ (Appendix(E))

Diffusion term in equation (2.41) (equation (2.44))

Diffusion term in equation (2.2) (Section (2.2.2))

: . Time variable

Streamwise mean velocity

Time averaged velocity component (¢ = & , ¥ , 2 or
8 ,r ,301,2,38)

Instantaneous value of velocity component

Z=x,y,2006,r,30011,2,3)
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Friction velocity
Suffix denoting the upstream plane
Streamwise conponent of Reynolds normal stress

Fluctuations in velocity ({ =« , y , 2 or
8 ,»r,z20rl1,2,38) :

Time averaged components of scalar flux
it=2,y ,80006,r ,8301,2,3)

Time averaged correlation of velocity~scalar-scalar
=2,y ,8086 ,»,201,2,3)

Time averaged components of Reynolds stress
(fand j=2 ,y ,830c606,r,20rl1,2,3)

Time averaged correlation of velocity-velocity-scalar
(fand j=2 ,y ,830r 6 ,r,20r1,2,38)

Time averaged triple velocity correlation
(7 ,dandk=2x,y ,,80rb ,r,z0rl1,2 ,3 )

Quadruple velocity correlation

Time averaged correlation between velocity and dissipation
fluctuations ({ =2 , ¥y , 830r® , r ,z30rl1 ,'2, 8)

Streamwise scalar flux

Reynolds shear stress

Cross—stream velocity

Cross~stream component of Reynolds normal stress

Cross-stream scalar flux

" Streamwise mean velocity in 6 , r , 2z coordinates .

Transverse component of Reynolds normal stress

Displacement vector (=2 , ¥y , 83or1 =0 , »r , 3 or
1,2,38)

Distance to the virtual origin

Cross stream direction

Distance in cross—-stream direction

Non dimensional distance away from a wall
Effective distance to the wall (equation (A.3))

Distance in g-direction '
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GREEK _SYMBQLS

.
.

Coefficient in modelled form of ¢ij2 (equa?ion (2.14))
Coefficient in the linear form of cgi (equation (2,55))
Coefficient in the linear form of dqi (equation (2.68))
Coefficient in modelled form-of”¢ij2 (equation (2.14))

Wall-effect tensor in Daly-Harlow model
(@and b =2 ,y , 3 ) (equation (2,23))

Coefficient in the linear form of c:i (equation (2.55))
Coefficient in the linear form of d;i (equation (2.68))
Diffusion coefficient

Diffusion coefficient of ¢ in the direction~i
Turbulent diffusivity of scalar property

Kinematic diffusivity of scalar property

Coefficient in modelled form of ¢ij2 (equation (2.19))
Characteristic length for the hydrodynamic field
Characteristic length for the scalar field

Kronecker delta (= 1 forZ =J , = 0 for 7 # J)
Dissipation rate of turbulent kinetic energy

Dissipation rate of scalar fluctuations

Dissipation tensor (£ and j =% , y , 3 0r @ , » , z or
1,2,3) ‘

Weighting factor in hybrid difference formula
(equation (3.13))

Coefficient in modelled form of ¢ij2w (equation (2.22))

Coefficient in modelled form of ¢ﬁj2 (equation (2.14)),
also, dimensionless distance for hydrodynamic field

Dimensionless distance for scalar field
The von KArmin constant
Coeffiéient in the logarithmic law for C

Ratio of free stream velocities in a mixing layer
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Dynamic viscosity of fluid

Kinematic viscosity of fluid

Turbulent viscosity

Coefficient in the linear form of cgi (equation (2.55))
Coefficient in the linear form of d:i (equation (2.68))
Cartesian components of position vector

=2,y , 2 ), also, the weighting factor in
equation (3.11)
Net flux of & in equation (3.13)
Angle of 180° expressed in radians.
Density of fluid
Turbulent Prandtl number or Schmidt number
Characteristic time scale of decay of turbulence
Any dependent variable

Interpolated value of variable ¢ ét fegular grid node
Pressure-scalar gradient correlation
Turbulent t of ¢.
urbulen Par o ¢$c
Mean strain of ¢ .
ic 4
Turbulent part of the near-wall effects of ¢,
e
Mean strain part of the near-wall effects of ¢ic
Pressure-strain correlation
Turbulent part of ¢,
d

Mean strain part of ¢ij
Turbulent part of the near-wall effects of ¢ij
Mean strain part of the near-wall effects of ¢ij
Stream function

Near-wall effect function in equation (2.25)

Weighting factor (Appendix (E))

'Equals gEE.(Appendix (D)
€
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ck
Equals. £ (Appendex (D))
€

Non dimensional stream function (equation (3.1))

OTHER SYMBOLS AND NOTATIONS

(1)

(I+1)

(J)

(J+7)

(K)
(K+k)

tot

turb
wall
o )
AC )

13

Diffusion of ( )

Substantial derivative equals JL ( )+ Uﬁ._g_ ( )
'Exterior' boundary
Effective
'Interior' boundary

Ith grid position in 6-direction or w-direction

(I+7) the grid position in O-direction or W-direction
(¢ =+1 , +5 , -1 , ~% etc )

Inside surface of the tube
Jth grid position in r-direction

(J+j)th grid position in r-direction
(J=+1,+% , -1, ~% etc. )

Kth grid position in 2~direction

(K+k)th grid position,in Z-direction (K = *% and %)
Outer surface of the tube, also, characteristic value
Total

Turbulent

At the wall

Summation of ( )

Increment in ( )

Position on the Higher side of displacement component
Position on the lower side of displacement component
e.g, f;i means the covariant differential of f with

respect to direction-xi
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Most fluid flows and heat transfer processes of practical interest
to engineers involve turbﬁlence. Methods for quantitative evaluation of
turbulent flows are thus needed for.optimum designing of the equipment
involved. Before the advent of large electronic computers, this need
was meet by experimental investigations of the gross flow characteristics
and empirical correlation of the same. The applicability of such
information was limited and could aﬁ best provide broad guide-lines
for the flow evaluation. Analytical and semi~empirical methods available
to the designer were based mainly on dntuitive ideas on turbulence’
phenomena. These again had limited applicability. No general analytical
solution of the equations governing fluid and heat flow processes are
available to date, but the numerical solution of these equations,
facilitated by the advent of computers; has become a reality. During
the last two decades a considerable proportion of fluid dynamic and
heat transfer researchers have directed their gfforts on numerical
solution of the flow and heat-transfer equations; considerable success
has been achieved. Now, with the ever increasing computational capability,
it has becoﬁe possible to embark inte the investigation of increasingly
complex flow situations, including three-dimensional flows.

It has long Eeen assumed that the Navier-Stokes equations which
comprise a closed set- of equations for instantaneous velocity and
pressure field govern the motion of both laminar and turbulent flows.

For a laminar flow, with a set of well defined boundary conditiomns,

these Navier-Stokes equations, at least in principle, can be numerically
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solved to any required degree of accuracy. In the case of turbulent flows,
meaningful results for the instantaneous velocity and pressure fields
from a numerical precedure can be expected only if the numerical
discretisation is finer than the smallest scales of turbulence.

This would demand computer storage and time, several orders of magnitude
larger than the capabilities of present day computers. An alternative
approach based on an averaged form of the governing equations together
with a model of the statistical parameters appearing in them is

utilised in the numerical analysis of turbulent flows; this approach is

well within the capabilities of modern computers.



1.2 Equations of Fluid Motion and Scalar Transport

Since the equations are needed in their general three-dimensional
form, the Cartesian tensor notation is used for compactness, ignoring
the distinction between covariant and contravariant tensors and using

the repeated-suffix summation convention so that
a bi = q bl + a, b2 + ag b3 .

Further, the compact comma suffix notation is used for differentiation,

so that
= of
Fs B '

For a Newtonian fluid of uniform density p and kinematic viscosity
v, the Navier~Stokes equations derived from Newton's second law applied

to a unit control volume, in the absence of body forces, take the form,

PtV

[7- +([/J\- U-) - = - 'L,jj (1.1)

Z,T T d "sd

fol [

~A

where Ui is the component of velocity in the direction xi s P is the
pressure and ¢ is the time variable.
For an incompressible fluid, the continuity equation assumes the

form,

Ui,i = 0. (1.2)

The instantaneous momentum equations obtained by applying

(1.2) in (1.1) are,

0. .+ 0.0 = - %-ﬁ A+ VU

. 1.3
1, ¢ Jd Tsd (1.3)

Correspondingly,  the low~speed tramsport of heat or passive matter
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is describable by the following equation.

CL+0.C. = S+T7¢C .. ' .
PR d sd sdd (1.4)

{

where 5 is the passive scalar (e.g. enthalpy, concentration of a chemical
species etc.), I' is the kinematic diffusivity of the property and é‘is
-the generation of 5\per unit volume (for example, by chemical reaction)
at the point considered;

Now taking the statistical average of variables &; s ¢ and P

with respect to time, obtain

tO+T
1 A
Ui = LtT+m»T' U, dt etc.. (1.5)
2

Here the equation (1.5) should be convergent and independent of to.
Further, T denotes a period of time larger than the time scale of the
slowest fluctuations and smaller than the time scale over which
significant variations in the averaged quantities occur. Equation (1.5)

implies that the fluctuations ui etc. of the variables defined by,

u = U.-U. ete. (1.6)
1 7 7

should satisfy,

1
T T u, dt etc.. (1.7)

Now substituting (1.6) in the instantaneous equations (1.3) and

(1.4) with the above definitions yields,
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FU U . = 2P 4vu .- (T ) . (1.8)
1,¢ Jd Tsd p »7 Tsdd (YY)
and
C,t+Uj C,j = S+ 7T C,jj— (ujc )“7 (1.9)

The equations for mean momentum (1.8), differ from the equations

for the instantaneous momentum due to the appearence of the fluctuating

velocity correlation tensor, uiuj , known as turbulent qr Reynolds stress.
Similarly (1.9) has additional dependent variable, a;E-, representing

the turbulent scalar flux in direction xj. Thus differences between the
laminar fluid flows and passive scalar tramsport to that of their
turbulent counterparts should be solely attributed to the effects of

the turbulent stresses and fluxes. In laminar flows equation (1.3)

with the continuity relation (1.2) form a closed set which in principle
may be solved; this in turn allows the solution of (1.4). To solve

equations (1.8) and (1.9), however, additional equations or expressions

are needed determining uiuj and ujc. The provision of a model for these

correlations forms a significant fraction of this thesis.
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1.3 Closure Levels

In order to.solve the mean momentum and mean scalar equations

in turbulent motion one needs to have some information regarding the

correlatiQns uiuj and ujc. It is this information that is supplied in

a turbulent closure model. At the practical level most proposals for
turbulence closures have been on Boussinesq's idea of a "turbulent
viscosity". He suggested in 1877 that the local turbulent shear stress
(i.e. the cross correlation of fluctuating velocities) could be expressed
as the product of the turbulent (eddy) viscosity and the local mean
veldcity gradient, a clear analogy with laminar stresses. The turbulent
viscosity was considered to be a function of the flow field rather than

a property of the fluid. Thus, in a simple shear flow where UZ = Uzé Ly +,

(1.10)

the minus sign ensuring that momentum is diffused down the velocity
gradient as in laminar flow. The idea of a turbulent viscosity was
conceived to deal with situations where only one shear stress component
exists. In practice theré are many relatively simple but important flows
where such a situation prevails. Implied in (1.10) is the notion that
the turbulent shear stress vanishes in the absence of a gradient in
mean velocity.

As a tensorial extension of (1.10) one may write

_ . 1
uiuj = -V, ( Ui,j + Uﬁ,i ) + Z aij uu, (1.11)

which relates all the components of the stress tensor to the mean strain
field and the turbulent kinetic energy. In (1.11l) the turbulent viscosity
vt is a scalar quantity. The term %-Gi. umum to the right hand side of

(1.11) accounts for the fact that, in the absence of mean strain, the

normal stresses do not vanish and that they are equal in magnitude.



Even for weak turbulent shear flows this is not exactly true,
AlternatiVely, considering the turbulent viscosity as a second-order

tensor, one may write,

- uiuj = ( Vt )ik ( Uj,k + Uk,j ) (1.11a)

or even assuming a fourth-order tensor for the turbulent viscosity,

muy = OV L (Ut Ugn ) (1.11b)

The components of the turbﬁlent viscosities in (1.11a) and (1.11b),
however, should satisfy the conditions imposed by the incompressibility
of fluid and symmetry ofAZ;Z;'ténsor.

The scalar counterpart of equation (1.10). is the definition-of

eddy diffusivity of heat or matter given by,
- u,e = Tt 0’2 . (1.12)

The tensorial extensions of the equation (1.12) can be written in forms
parallel to (1.11) and (1.11a).

In practice it is often the ratio of eddy viscosity and eddy
diffusivity, denoted by turbulent Prandtl number, that isvused in

describing the scalar fluxes. This quantity
Pr, = : (1.13)

should merely be considered as the ratio of diffusivities in a direction
where non-zero mean gradients are present, or else if Prt is considered
as a tensor, then it's components should be permitted to take finite,

infinite or indefinite magnitudes.
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1.3.1 Mean-Field Closure Models

In mean-field closure models, the turbulent stresses and scalar
fluxes are expressed by algebraic expressions containing mean quantities
only. Most of these models are based on the eddy viscosity-eddy diffusivity
concept described in the previous section. An example of an algebraic
formula for the turbulent viscosity is provided by Prandtl's mixing

length hypothesis,

v, = 12 (1.14)

¢ U, 2

Here again in order to find v, , the mixing length I , should be

t
prescribed. For example in wall boundary layer flows, the mixing length
7 may be expressed by two separate expressions covering the "inner"
and "outer" regions. These expressions have been extensively tested mainly
for turbulent wall boundary layer flow calculations where it seem to
perform very well. Numerous empirical and intuitive formulae are available
which include various physical effects like that of low Reynolds number,
the transition region, compressibility, mass transfer, pressure gradient,
transverse -curvature etc., on the behaviour of the wall boundary layer.
A useful account of this is given by REYNOLDS and CEBECI [1].

The corresponding closure of the scalar equation is generally

achieved by specification of Pr, as a function of geometrical and

t
flow parameters. Several formulations of eddy viscosity generalized to
three-dimensional compressible and incompressible wall layers are also
given in [1].

In the case of free shear layers it is the specification of vt
(assumed constant at any section in the shear flow) rather than the mixing
length 7 , that is common. Some empirical formula for vt , as functions

of characteristic flow parameters, which will give best agreement with

self preserved mean profiles in simple free shear flows can be found-in [1].



1.3.2 Turbulent Transport Models

In turbulent transport models one or more additional partial

differential equations will be supplied. These partial differential

equations will implicitly or explicitly determine the shear stress UqUg

and scalar flux uyC. These closure models can further be classified

according to the number of additional partial differential equations

~considered for determining vt.

(a) One-Equation Models
Usually a transport equation for the turbulent kinetic energy

forms the basis of one-equation models. Now, instead of V_, being related

t
to mean flow quantities ; it is expressed in terms of turbulent velocity

and length scales as
v, « k*1 . (1.15)

Further, in order to solve the partial differential equation for turbulent
kinetic energy a length scale has to be prescribed in approximating

the dissipation term. As with zero-equation models the length scale is
prescribed here with prior knowledge of behaviour of the flow.

(b) Two-Equation Viscosity Models

The use of an additional turbulence partial differential equation
for the length scale 7 or a related variable eliminates the need for
prescribing one to facilitate solution of turbulence kinetic energy -
equation. Transport equations for several length scale related quantities
were studied by researchers, a summary of this is given in LAUNDER and
SPALDING [2]. The most successful one which is now tested in a vast
range of flow conditions is the transport equation for the isotropic
dissipation rate €. (The modelling of this equation supplementary to

the Reynolds stress model is given in the next Chapter).
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Even at the level of one~and two-equation models the closure of
the mean scalar equation is done by prescribing the scalar diffusivity,
or more often, the turbulent Prandtl number.

(c) Stress and Flux Transport Models

At all the levels of closure mentioned before, the shear stress
is expressed by way of thé Boussinesq expression (1.11), where the shear
stress is made to respond at once to changes in the mean strain field.
This is not correct in most fluid flqw situations. Thus the need for a
model which is capable of predicting a non-~equilibrium flow arises.
Reynolds stress models in which transport. equations for the Reynolds
stress tensor components are solved is the simplest model which is
capable of doing this. The solution of partial differential equations
‘for the Reynolds stress components has been suggested by CHOU {3],
ROTTA [4] and later by many others. The partial differential equation
for the Reynolds stress temsor can be obtained by differentiating and
then manipulating ;he equation for the fluctuating component ui of the
velocity vector. The resultant transport equation for a;ﬁ;'contains

contributions from various physical processes; if these are modelled

correctly then all components df the stress tensor uiuj can be estimated.
This will allow the determination of the mean velocity field without
recourse to the notion of an effective viscosity.

Parallel to the Reynolds stress equations it is possible to
formulate partial differential equation for the scalar flux tensor, thus
obviating the need for an effective diffusivity model. The partial
differential equation for the scalar flux tensor can be derived starting
from transport equations for the fluctuéting velocity uiand the fluctuating

component of sealar c.



1.3.3 Higher Order Closures

In the transport equation for the components of the Reynolds
stress tenéor there appears the triple correletion a;agﬂzhwhich represents
the contribution of the transport by the fluctuating velocity of Z;;;
in direction xZ. One may either approximate this quantity in terms of
the Reynolds stress and mean velocity field (as in a second-order closure),
or alternatively one may obtain from the solution of transport equation
for a;&;&z. Models which incorporate solution of partial differential
equations for this correlation are called third-order closures.
Correspondingly, it is possible to formulate the partial differential
equation for the components of the correlation a;a;z—whose gradients
appear in the tramnsport equations for the scalar fluxes.

Likewise, it is possible to generate transport equations for higher_
and higher order correlations but the modelliﬁg of the contributing terms
become more and more abstract due to lack of experimental evidence

to understand their behaviour.

1.3.4 Other Closures

| At least one method which needs mention here is the three~-dimensional
time-dependent numerical computation of the large scale turbulence. Here
only the small scale turbulence is modelled, the large scale turbulence

being obtained from the time-dependent numerical solutions.
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1.4 Evaluation of Available Models

In this section the capabilities and limitations of available
hydrodynamic and scalar transport models described in the previous
section are evaluated. This is done by comparing expected performance

of a given model with corresponding evidence from experiments.

1.4.1 Eddy Viscosity Models

In local-equilibrium flows the generation and destruction of the
components of the Reynolds stress tensor are nearly equal, the mean and
turbulent transport being negligible. In self preserving shear flows
these two quantities, although not equal to each other, are proportional;
the constant of -proportionality being a function of non-dimensional
cross-stream distance only. In these flows it 1s possible to obtain
simple relations between Reynolds stress components and the components
of the mean-rate-of-strain tensor. The eddy viscosity model is a |
generalisation of this possibility. Thus in local-equilibrium regions and
in self preserving flows, the eddy viscosity models with correctly
chosen empirical constants can be expected to perform satisfactorily.
Indeed in the calculation of wall boundary layers where the near-wall
region outside of the viscous layer is in local equilibrium, the eddy
viscosity formulation with empirical corrections is known to give
satisfactory results for a variety of physical and boundary conditionms.

( see Ref [5], Chapter 6)

Similarly, in the calculation of self preserving flows, for
example the plane or radial jet, Prandtl mixing length formula can be
employed to obtain satisfactory agreement with experimental observatioms.
The relationship between the mixing length and the»width of the respective
flow, however, needs to be adjusted if the rate of spread of the flow

is to be predicted correctly. This heavy reliance on empirical formulae



is one of the major weaknesses in the mixing length models even in
predicting equilibrium or self preserving flows.

The one-equation models have some capability of representing the
dependence of shear stress on flow history. Although it is a major
step towards the true representation of the flow bahaviour, the need to
prescribe a turbulence length scale, in order to model the dissipation
term, greatly reduces its usefulness in flow calculations. Since
accurate prior knowledge of the turbulence length scale is not always
available the empiricism associated with the mixing length models becomes
apparent in these schemes as well. Further, due to the neglect of
transport effects on the length scale itself,'the-advantages of a
one—equation'model over a mixing length model are limited.

Two~equation models incorporate the transport effects of length
scale (often a length-scalé-related qﬁantity of the form kaZb ) into the
turbulence model. Thus, they may be expected to perform satisfactorilyb
in both developing as well as developed flows. RODI and SPALDING [6]
reported that with a single set of constants it is possible to make
satisfactory predictions of the spreading rates of plane mixing layer,
ﬁlane jet and radial jet. The predictions of LAUNDER et al. [7] show
satisfactory agreement in a large variety of free shear flows, in
many cases significant improvements over predictions from the mixing
length hypothesis are obtained.

It appears however, that the effective viscosity concept is
inadequate for describing some turbulent flow situations. In these -
situations often the transport effects on the Reynolds stresses are
dominant. For example in flow through an annulus or in an asymmetric
duct or in a wall jet, the maximum velocity surfaces do not coincide with
the zero shear stress surfaces. This pheomenon can not be accounted for

with an effective viscosity formulation. The secondary motion that
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develops in corners of straight axis ducts due to cross stream gradients

of Reynolds stresses is another class of flow where isotropic eddy
viscosityvmodels are inadequate. .The concept also fails to allow
satisfactory prediction of flows with influential body forces; gravitational
effects on turbulence is an example. The direct effect of the mean

velocity tensor on the stress tensor diminishes with increasing influence

of the body forces on the turbulent structure; hence the eddy viscosity

model becomes less relevant in representing the turbulent stresses.

1.4.2 Eddy Diffusivity Models and Turbulent Prandtl (or Schmidt) Number

The eddy diffusivity models have widely been applied in parallel
with eddy viscosity models, in calculating scalar transfer probiems.
Again the eddy diffusivity formulation is a generalisation of the
possibility that:in/local—equilibrium regions and in self preserving
flows there exist some simple relation between the scalar flux tensor
and the gradients of the mean scalar tensor. In flow regions where both
hydrodynamic and scalar fields are in local equilibrium, i.e. when
the  transport effects are negligible in both shear stress equations as
well as in scalar flux equations, the effective diffusivity and simple
formulations for turbulent Prandtl number can be expected to give
satisfactory agreement with experiments. The velocity and scalar fields
close to the wall (the so-called "semi-logarithmic region“) is one where
one may assume local-equilibrium structure and where an eddy diffusivity
formulation should perform satisfactorily. The review paper by KADER
and YAGLOM [8] clearly indicate that .in the semi-logarithmic regions of
a variety of wall flow geometries under a large range of Reynolds
numbers and molecular Prandtl (or Schmidt) numbers, the:implied turbulent
Prandtl (or Schmidt) number is indeed a constant in the range of 0.9.

The predictions of PATANKAR and SPALDING [9] and others, of wall boundary
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layers with prescribed turbulent Prandtl number of 0.9 show good
agreement with experiments.

There are numerous engineering applications, however, where the
scalar field is far. from fully developed or self preserved. Correspondingly,
several experimental investigations aimed at examining the diffusivity
in developing flows haé‘shown considerable disagreement with the idea
of constant Prt (or Sct).

BLOM's [10] investigation of wall boundary layer with a étep in
wall temperature indicated clearly that the turbulent Prandtl number is
a function of both streamwise and lateral distances. His femperature

profiles show that an assumption of Pr, of 0.9 would substantially in

t
error at least in the developing region of the boundary layer.

QUARMBY and QUIRK's [11] measurements of temperature and
concentration profiles downstream of a short heated (or porous) section
in a pipe, again imply that the turbulent Prandtl number is far from
constant across the flow. In their flow situations the transport effects
play a significant role in determining the scalar field.

The eddy diffusivity models which incorporate prescribed Prt
(or Sct) variations across the flow can not be expected to give
satisfactory agreement in predicting flows such as that of Quarmby and
Quirk or that of Blom, where the transport effects are important.

The turbulent flow situations where the effect .of buoyancy on
the turbulent structure is significant, the eddy diffusivity model
becomes less relavant. In such situations the turbulent Prandtl number
is known to vary considerably with relative effect of the buoyancy
forces. For example in stably stratified flows the turbulent Prandtl
number increasgs sharply with increase in Richardson number (which is
a measure of the negative of the production of turbulent kinetic energy

due to buoyancy as a fraction of production due to mean shear). Thus,
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satisfactory predictions of buoyancy influenced flows with the use of
eddy diffusivity models will certainly require some ad-hoc corrections.

In asymmetrically heated shear flows, the zero heat flux plane
may not coincide with the plane of zero temperature gradient. For example,
the‘study of slightly heated two-dimensional jet expanding into a plane
mixing layer by FULACHIER et al. [12] indicate the presence of'a;gegion
where the temperature‘gra&ient and the lateral heat flux are of the same
sign. In this region, the production of temperature fluctuations is
negative. Their spectral analysis of lateral heat flux in the negative
production region confirm the fact, that the high frequency components
are related to the local gradient, whereas, the low frequency components
are related to the larger eddies. An eddy viscosity/diffusivity hypothesis
which assume a simple relation between local properties can not accommodate
‘thése complex effects.

In three~dimensional scalaf transport, diffusivities need not
be isotropic. Certainly the measurements of three-dimensional heat -
transfer in pipes by QUARMBY and QUIRK [l1], indicate that the tangential
diffusivity of heat is much larger than the radial diffusivity in regions
close to the tube wall. Similar experiments by BLACK and SPARROW [13]
suggest the same. An eddy diffusivity model, if employed, needs

considerable empiricism in order to predict this behaviour.



1.4.3 Reynolds Stress Models

Unlike eddy viscosity models, in Reynolds stress models the
transport effects of the Reynolds stress tensor aré incorporated directly.
Thus, this model in principle, can be expected to give a satisfactory
representation of the turbulence in flows with and without influential
transport effects. Of course there is an additional task of modelling
several unknown correlations which appear in the transport equation

for uiu,z Since the solution of the partial differential equations produce
d

the stress components explicitly their incorporation in the mean velocity
equation is now directly possible. Therefore, in principle, none of the
restrictions associated with the eddy viscosity formulation apply to
Reynolds stress model. For example, the effects of buoyancy, effects of
asymmetry, the secondary flow generation due to gradients in stresses

in three~dimensional ducts etc. are all within the capabilities of a
Reynolds stress model.

Among the applications of this type of model, HANJALI& and
LAUNDER [14] obtained satisfactory predictions of several shear flows
including a strongly asymmetric channel flow, using a three-equation
(Reynolds shear stress-turbulent kinetic energy—énd its dissipation rate)
model of turbulence. LAUNDER et al. [15] showed further capabilities of
Reynolds stress models by solving for all non-zero stress-components in

several two-dimensional shear flow situations.
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1.4.4 Scalar-Flux Models

Corresponding to the capabilities of Reynolds stress models, the
scalar-flux level of closure appears capable of giving satisfactory
representation of several flow situations where the eddy diffusivity
formulation is inadequate. Often transport effects of scalar transfer
are even more predominant than those on the flow field. Therefore the
use of a scalar-flux model may be required even when the hydrodynamic
field is in local equilibrium. In modeliing scalar flux equatiomns,
however, accurate knowledge of the stress tensor, particularly the normal
stresses are required. Therefore the scalar-flux models are often
associated with Reynolds stress models which are capable of determining

the normal stress components accurately.
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1.5 Present Contribution

1.5.1 -Theoretical Contribution

The aim of the present theoretical investigation is to devise and
verify a model of turbulence capable of predicting convective heat and
mass transport in three-dimensional temperature and concentration fields.
Emphasis will be placed in obtaining a closure simple enough for practical

calculations yet with least amount of empiricism.

1.5.2 Choice of Turbulence Model
The mést crucial feature of the flow that this investigation
attempts to understand and formulate is the non-isotropic diffusivity
in three-dimensional scalar transfer. The experimental evidence of
BLACK and SPARROW [13] and QUARMBY and QUIRK [11] clearly indicates that
the anisotfopy of the diffusivity is quite signifiéant and increases as’
the wall is approached. The data of [l1] suggest that in fully developed
turbulent pipe flow the circumferential diffusivity near the wall is more
than three times as large as the radial one. As mentioﬁed in Section (1.4.2)
the experimental findings of BLOM [10] and QUARMBY and QUIRK [11] suggest
that the diffusivity in two-dimensional flow is not constant in either
the streamwise or lateral directions. So in three-dimensional flows
~ the diffusivity of a scalar can be expected to vary in all three directions.
If an eddy diffusivity model is to be used in this investigation
without any ad-hoc modifications, it would préduce only an isotropic
diffusivity effect. On the other hand if the directional bias of the
diffusivity is to be incorporated in some way, far too much information
from the same experimental situation that the investigation is trying to
simulate, will have to be given as an input to the model..Even\though
this could lead to satisfactory prediction of the flows concerned, it

‘would not amount to more than a sophisticated curve fit. The comtribution
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of such an investigation towards the undexstanding of conyective turbulence
transport would be very small.

The scalar flux transport model, however, solves for the component
fluxes in all three directions and the anisotropy of the scalar diffusivity
will be an output rather than an input as in the eddy diffusivity model.
Further the model would ideally be a general one, applicable in two-and
three~dimensional free shear flows as well as those affected by a wall
and would not contain ad-hoc modifications. A scalar flux model has
therefore been chosen for the. closure of the mean scalar equation.

For the hydrodynamic closure the Reynolds stress models have shown
a greater range of applicability than eddy viscosity models. Even though
an eddy viscosity model with sﬁitably chosen empirical constants is
adequate to predict the mean flow features of the flow situationé considered,
the component of the stress tensor which are required in the scalar
transport modelling can not be obtained with sufficient accuracy from
that model. Therefore the Reynolds stress model was chosen as the mean
flow closure model. This would enable the proposed numerical scheme to
- be extended to solve fully three-~dimensional hydrodynamic as well as

scalar fields where the eddy viscosity models have had only modest success.

1.5.3 Path for Verification of the turbulence Model

For the purpose of establishing tﬁe validity of the turbulence .
model it is ﬁecessary to make systematic computations in flow geometries
where accurate experimental data are available. First the flow geometries
should be identified with their known physical characteristics. It is
well known that the structure in near-wall turbulence is vastly different
from that away from a wall. Large gradients in mean velocity and large

anisotropies in the turbulent stress tensor are the main characteristics



in flows affected by walls, whereas free shear flows are characterised
by only moderate gradients and anisotropies. Further, in near-wall regions,
the length scales associated with turbulence increase in size with
increase in distance to the wall. In regions remofe from the influence
of walls, on the other hand, the turbulence length scale is more or less
constant in size, It will be seen in the following chapter that present
modelling directions clearly distinguish the wall effects in simulating
pressure interaction correlations in the stress and scalar flux equations.

Thus, the turbulence model is first tested in free shear flows.
In the present investigation the plane mixing layer, the plane jet and:-
the plane wake are simulated and predictions obtained of their hydrodynamic
and scalar fields. Even though they are all self-preserving flows they
cover a large range of turbulent production/dissipation rates. Thus, a
model capable of satisfactorily predicting all these flow situations can
be expected to perforﬁ well in many more free shear flows.

The turbulent model is ﬁext applied to wall affected flows such
as boundary layers, channel and pipe flows. Here the near-wall-effect
parts of the pressure interaction correlations are included in the model.
All other terms and coefficients in modelled terms are kept unchanged
from the forms employed in predicting free shear flows. In the near-wall
regions it is these additional terms that are under test, whereas away
from the walls where turbulent transport is influential, it is mainly the
diffusion modéls that are being scrutinized.

As for investigating three-dimensional scalar transport problems

the turbulence model is virtually unchanged from the above.
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1.5.4 Numerical Contribution

The present numerical investigation has been aimed at providing
numerical schemes for solving problems of two-and three-dimensional
turbulent scalar transport in two-dimensional boundary layer type flow
field, using second-order closure models.

As the first step in verifying the turbulence model, calculations
were made in two-dimensional situations with the use of numerical proéedure
of PATANKAR and SPALDING [9] modified so as to facilitate efficientv
calculation of second order turbulence variables. After a considerable
amount of testing it was decided to incorporate a staggered grid arrangament
for turbulence variables so as to remove some numerical instabilities . -
found in the conventional finite difference grid arrangement. All
free shear flow calculations and flat plate boundary layer calculations
were performed with this numerical scheme.

Development, testing and use of a numerical scheme capable of
solving variables in a three-dimensional.marching fashion forms the
remainder of the present numerical contribution. This basic solving scheme
is a three-dimensional marching numérical scheme used by others (SYED [16]
and BRYANT [17]) in simulating free shear flows. The contributions by the
writer are the following.

(a) Modification of the three~dimensional numerical scheme so

as to allow economical calculation of two-dimensional situations.
This was an obvious step as the present calculations -

considered only two-dimensional flow fields. The modifications
were made to facilitate the solution of both two-and three-
dimensional situations with only a small number of modifications.

(b) The simplificatiqn described later in Section (3.3.5), valid

for two—dimensional internal flow calculation was incorporated.

For example, in a laminar flow situation, this requires only
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(e)
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a single partial differential equation (instead of three
equations) to be solved to obtain tﬁe velocity field.
Incorporation of second-order closure model set out in a
staggered grid scheme (in place of the two-equation model in
the original program). As pointed out later in Section (3.5)
for two-dimensional flow problems, it is convenient and
sufficient to calculate all turbulence variables in a grid
shifted only in the cross-stream direction. |
Calculation of channel and pipe flow hydrodynamic and scalar
transport problems in two-dimensional form.

Solution of three-dimensional scalar transport problems. Here
the solution of corresponding two-dimensional hydrodynamic
flow fields were obtained first and then frozen, before
making three-dimensional calculations. Simultaneous calculation
of hydrodynamic and scalar fields can however be made with
little modifications to the computer code.

Finally, in order to allow proper account to be taken of
circumferential conduction inithick—walled tubes subjected to
three~dimensional heat-transfer, the numerical scheme was
extended to include the tube wall as well the flow in the tube.
This facilitates simulation of experimental situations where

the heat source is applied externally.
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1.5.5 Experimental Contribution

The present experimental program has aimed at providing a set of
data for the circumferentially non symmetric héat transfer problem. With
the limited facilities and time available for exploration, measurements
were made only of the outer surface of the tube wall., In three~dimensional
heat transfer situations, circumferential conduction is unavoidable. In
the present investigation it was minimised by chosing a glass tube. Thus
this experiment should closely resemble a three-~dimensional mass traﬁsfer
situation where circumferential conduction is absent. Further it should
provide the turbulence model a stringent test than other available

three~-dimensional heat transfer situations (e.g. BLACK and SPARROW [13]).



CHAPTER 2

TURBULENCE MODEL

2.1 Introduction

It ‘was decided in the previous chapter that the Reynolds stresses
and the turbulent scalar fluxes needed for the closure of mean velocity
and mean scalar equations in the present investigation could best be
obtained by solving transport equations for those variables. In this
chapter those transport equations are presented. As there are several
unknown terms in those equations they have to be modelled in terms of
other known variables. In Section (2.2) a model for the Reynolds stress
transport equation in formulated. The transport equation for the

isotropic dissipation

g = v ( (2.1)

1,55,
is presented in Section (2.3) and its modelling discussed. Section (2.4)
contains the modelling of the scalar flux equation and Section (2.5)
deals with the scalar fluctuation equation. The chapter concludes by

presenting in Sections (2.6) and (2.7), a summary of the models and the

transport equations in modelled form.
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2.2 Reynolds Stress Equation and its Trace

An exact equation for the transport of the components of the
Reynolds stress tensor can be derived from the Navior-Stokes equgtions,
equation (1.3). By multiplying equation (1.3) by uj and adding the
same equation with suffixes 7 and § interchanged and time averaging the

sum, one obtains,

uu, , + U, u.u, = - (uu, U, +uu U )

i J,t k 14,k 1k g,k J k 1,k
Convection (a) Production
-2V u’i,kuj,k

(b) Dissipation

- - |22
(uéujuk v uiuj,k + (6kguz + Sktug))

(¢) Diffusion

3

+p (u, . +u, ) (2.2)
F tsd Jst

(d) Redistribution

In deriving equation (2.2) fluctuations in body forces are
omitted., This limits the equation (2.2) to flows unaffected by the
gravitational forces. Gravitational effects on turbulence transport is
discussed in LAUNDER [18].

The equation (2.2) contains mainly two types of terms, those
expressible as spatial gradient terms always represent transport of the
conserved quantity from one place to the other, as such thelr integrals
over the whole flow volume are zero; whereas the integrals of other
terms over the whole flow volumes are generally non-zero.

The trace of the equation (2.2) may be written

kot Upkg = =wuy Up g =V ug g g
(a) Production (b) Dissipation

- (i&' -V k u.) (2.3)

k b’ ki%i Sk

(c) Diffusion
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~ where

uu, (2.4)

is the turbulent kinetic energy. Terms in equations i2.2) and (2.3)
represent the contributions from different physical effects to the
maintenance of the corresponding transported quantity..The redistribution
term (d) in equation (2.2) does not have a corresponding term in (2.3)
because it vanishes by continuity. Thus, it repreeents only an eﬁchange
between the eomponents of turbulent kinetic energy.

The left hand side of (2.2) and (2.3) represent the transport due
to mean motion of 5253 and k respectively. The time derivative terms
are zero in statistically stationary flowe. In the present investigation
these time derivatives are neglected though their inclusion when
necessary would not require any further approximations in the turbulence
model.

The term (a) of equation (2.2) whose integral over the whole flow
volume is non-zero will generally have the same sign as Z;aé; it
represents the generation of Z;Zg by interactions of the‘turbulent motion
with the mean-rate-of-strain field. In equation (2.3), the production
term (i.e. term(a)) represente the rate at which turbulence is generated
by shear interaction which equals the amount of energy transfered from
the mean flow to turbulence. The flow regions where the Z;&3 and its
production are of opposite sign such as velocity maximum region in a
wall jet are often marked by large transport effects.

The term'(b) of equation (2.2) represents the destruction of_
ﬂ;ﬁ? due to viscous action. In the normal stress terms, they are
negative definite and provide mechanism of turbulent kinetic energy

dissipation, (b) in equation'(2.3).
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Term (c) in equations (2.2) and (2.3) represent the transport of
Z;&? and kX due to three distinct actions, They are transport by velocity
fluctuations in the difection xk, transport due to fluctuations in
pressure field and transport by viscous action.

Term (d) in equation (2.2) is the mean product of fluctuating
pressure and the fluctuating strain fields, and is called the
pressure~strain term. It's effect on norﬁal stress components is clearly
to diminish the differences between them. In the shear stress equation
this term acts as a sink term.

In the present form, the equation (2.2), contains a number of
turbulence correlations whose determination is necessary prior to it's
employment in a closure model. Those terms, namely the destruction,
diffusion and pressure-strain terms are modelled as described in the

following sections.

2.2.1 The Viscous Destruction Term

It is a well established experimental fact that the turbulence
is dissipated by swall scale eddies i.e. at high wave numbers. Further,
spectral measurements of turbulent components clearly indicate (see for
example LAWN [19] or HANJALIC and LAﬁNDER [20]) . that at high wave numbers
the turbulence is isotropic. Thus, at high Reynolds numbers where the
dissipating wave number range is remote from that of the energy-producing

wave number range, the dissipation process can be considered isotropic, i.e.

= 2
E'Z:j = géij € (2'5)

where € is the dissipation rate of turbulent kinetic energy given by (2.1).
The transport equation for € can be derived starting from the

equation for veloecity fluctuations. This is done in Section (2.3).



2.2.2 The Diffusion Term

The diffusion term in equation (2.2) is

T, = - (Auw, ~Vuu, +p (0 u F0 .
Iy (uquuk u/but7 %_( kjuz + kiuj)),k

The first term is the triple velocity correlation which has to be found
algebraically or via a partial differential equation for its transport
equation. Some components of Z;Z;ak are measurable and their gradients
are found to be significant. The second term of Tij represents the
transport of 5253 due to viscous action. At high Reynolds numbers this
term is small and hence generally neglected but it's inclusion if
needed is-straight forward. Little is known about the diffusion due to
pressure fluctuation interaction. LUMLEY [21] has pointed out that the
separation of transport and redistribution parts of the pressure
interaction in the Reynolds stress equation is not unique. He argues

that the correct form of the redistribution term is

(p u.+p ul+21 & (pu)
p,ta p,az 30 wpk k

k]

Ok

and the corresponding transport part is

- '?‘16 Sij(puk),k .

Thus, there is no pressure transport of shear stress. Anyway, the
measurements by HANJALIC and LAUNDER [20] in asymmetric plane channel
indicated that the term _gL_(EZé) in the turbulent kinetic energy
equation is small compared to other terms appearing in that equation.
Due to lack of any other experimental evidence, the transport term due

to pressure interaction is neglected here.
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This leaves the triple correlation to be modelled in order to
determine Tij' A transport equation for Z;ZEZZ had been proposed by
CHOU [3], KOLOVANDIN and VATUTIN [22] and others. This equation contains
quadruple velocity correlation and pressure-stress correlations. As
the turbulent gransport terms in the stress equations are of relatively
minor importance in most of the flows considered, it is found inappropriate
to adopt such an elaborate treatment of U U,

g K

formulation of uiujuk is attempted by direct referance to the terms in

. Thus, an algebraic

the transport equation for ul ;. HANJALIC and LAUNDER [l4] obtained

the following formulation for uiujuk.

~uuu = C k (u

U U U U U,
i g k s 1T LU 7Jk,1 /

T A S A
(2.6)

F UU, U

J 7
The assumptions made in obtaining the above formulation are:
(a) flow is at high Reynolds number - viscous terms are negligible,
(b) the triple correlations are small and have Gaussian properties

and thus following MILLIONSHTCHKOV [23]:

UUUU, = UUUU +UU UU +UUUU 2.7
15k 1 14 k1 vk F1 171 Jk 2.7

(¢) the terms of the form u.u u_, U are comparatively small
151 "k, 1

and hence neglected,
(d) the pressure stress correlation can be modelled as proportional

- £
to - 3 uiujuk .

and (e) convective transport of uiuiu
L7

k

All except assumption (c) are either asymptotically exact or are necessary

is neglected.

for closure at this level. At least in two-dimensional boundary layer
flows, assumption (c¢) is not necessary although its employment greatly
simplifies the algebra. The measurements of HANJALIC and LAUNDER [20]

in asymmetric plane channel indicated that assumption (c) was reasonable
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in their flows. Therefore equation (2.6) in chosen as the model for
a;ﬂ;ﬂ;'in the present study. The coefficient Cs has to be found by
reference to established experimental data.

An alternative model is that suggested by DALY and HARLOW [ 24]

where the first two terms of equation (2.6) are omitted. Thus

e TEa = ok
uiujuk CS - (U U, u.u. Z) (2.8)

Equation (2.8) is not compatible in its symmetry properties, only
the left side being independent of the order of the indicies ¢,j and k.
LAUNDER et al. [15] employed thevequation (2.8) in predicting several
free shear flows and found satisfactory behaviour. REECE [25] made
prediction of plane wall flows using both (2.7) and (2.8) and found no
advantage to employing the more numerically complicated form (2.7).
It can be seen from the diffusion transport term of turbulent kinetic
energy, that for consistency, the coefficenf Cé should be about 1.8 Cs'
The computer optimised values of Cs = 0,11 and Cé = 0.20 obtained by -
Reece quite closely tally with the above.

In the present investigation forms (2.7) and (2.8) are compared

in axisymmetric wall flows.,
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2.2.3 The Pressure-~Strain Term

The main characteristic feature of the pressure-strain term

E-(u. .+ u, ,) is its redistributive effect on normal stresses (see
P Tsd dst
HINZE (Ref. [26], pp 323-328)).

The appearence of pressure in the pressure-strain term can be
eliminated following CHOU [ 3], by first formulating a Poisson

equation for the fluctuating pressure and multiplying by the fluctuating

strain. On averaging, there results

— _ Y dvol

Z—9-(u,. J o= L i) u,  +2U uw u dvo + S,

P g 4 J im,lm1,g I,mmyl 1,5 | (X-Y) 1
Vol ' (2.9)

where, terms with and without a prime relate to values at X and Y
respectively. The term Sij is a surface integral having significance
only in flows affected by the presence of rigid walls. Equation (2.9)
suggests that the pressure~strain correlation originates, apart from
wall effects, from two distinct effects. The first part ¢ij1 is generated
purely-from turbulence interactions, whereas the second part ¢ij2 relates
to interactions between turbulence and mean rate of strain.

In non-isotropic homogeneous flows with negligible mean strain
the turbulence decays towards an isotropic state. The process ¢ij1 is
the only one in (2.9) that can promote an equalising of the normal stress

components and a diminishing of shear stress components. With this in

mind ROTTA [ 4 ] proposed the following plausible form:

(e 2, )

where Csl is assumed to be a constant which determines the rate of return

to isotropy and the quotient k.is the characteristic dacay time of the

£
turbulence. If isotropy is to be established the constant Cs] should
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take a value greater than unity. It is the form (2.11) that is adopted
in the present investigation.

Though some workers, for example DALY and HARLOW [24], have
neglected the part ¢ij2 in their modelling of the pressure-strain term,

CROW [27] has pointed out that the effects of ¢ may even be larger

g2
than ¢ij1 under conditions of rapid distortion. Following ROTTA [ 4] ¢ij2

is expressed as

Yj2 = Uim a?; (2:12)
where T
i1 du %o qvol (2.1
iy Zm | € BE. (X-1) |
Vol

and the &£s are the Cartesian components of the position vector (X-Y).
Equation (2.12) is a rigorous comnsequence of (2.9) when the inhomogeneities
of the turbulence are only minor and the second and higher order
derivatives of the mean velocity are negligible. Rotta pointed out that

mi . .
the fourth-order tensor aZ' should satisfy certain symmetry and mass

dJ

conservation constraints. The most general fourth-order tensor satisfying
these constraints and comprising only linear combination of Reynolds

stresses is given in LAUNDER et at. [15]. With that tensor form, the

mean strain part of the pressure-strain correlation can be written

2
(¢ij + ¢ji)2 = - (Piji- E'aij P)

-Bk(U. .+ U. .)
T5d Jdst

-n (.. -25. .p) (2.14)
1d 3 g
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where - -

Pij = - (uiuk Uj,k + ujuk Ui,k) (2.15)
and

Dij = - (uiuk Uk,j + ujuk Uk,Z) | (2.16)
and 7

P = '5 Pkk

is the production of kinetic energy. The coefficients *, B and N can be

expressed by relations containing a single constant 032 as

7 - (Cag + 8)
B = ! (30 C 2)

© 55 s2  °

= 1 (8 C 2) (2.17)
n - H 82 = .

This is the form of ¢ij2 that will be used in the present investigationm.
The following inferences are useful to note:
(a) in isotropic turbulence subjected to sudden distortion,

equation (2.14) reduces to

(¢ij - ¢ji)2 = 0.4k (Ui,j * Uy ! (2.18)

which is same as derived by CROW's [27] detailed analysis

(b) the degenerate form,

_ 2
(¢ij +# ¢ji)2 = =¥ (Pij - }’dij P) (2.19)

of the equation (2.14) can be considered as a parallel of
equation (2.11). Here the action of mean strain is to

isotropize the production tensor Pij whereas the action of

¢ij] was to isotropize the stress tensor. NACT et al. [28]

proposed the form (2.19) as a replacement for ¢ whereas

Tj1?
here it is considered in addition to the ¢ij1 term. Here

again for sudden distortion in isotropic turbulence requires

Y to take a value 0.6.



In the present investigation both forms, i.e; equation (2.,14) and
equation (2.19), are employed as the model for ¢ij2 and compared.

The present model for ¢ij is exactly the same as that used by.
LAUNDER et al. [1l5] in predicting a variety of wall and free shear flows.

Previous to that HANJALIC and LAUNDER [14] modelled the mean strain part
¢ij2-in terms of non-linear combinations of Reygolds stress, Through
ﬁheir chaice for Csl of 2.8 they had found it necessary to include
non-linear terms in ¢ij2 in order to predict corregtly the stress levels
of nearly homogeneous shear flow data of CHAMPAGNE et el. [29].

The model of ¢ij given here still has two coefficients to be
determined. Csl and CsZ (or Csl and Y). The ideal information to
evaluate these coefficients are that of CHAMPAGNE et al. [29], where
the transport effects are negligible in the stress equations. Further,
the production and dissipation of kinetic energy are in equiiibrium
leading to simple algebraic relations for the relative magnitudes of
the Reynolds stresses. Noting the inability of the "redistribution of
production" model (equation (2.19)) to predict the difference between
~ the magnitudes of lateral and transverse normal stresses, for best

possible agreement with the data of CHAMPAGNE et al. the coefficients

of ¢ij models can be obtained as,

(a)'Csl 1.5 in equation (2.11) and Cop = 0.4 in equation (2.14)

or (b) Csl

1.8 in equation (2.11) and ¥ 0.6 in equation (2.19).
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2.2.4 Wall Effects in the Pressure~Strain Term

In modelling the ¢, term in flows unaffected by walls the

surface integral Sij in equation (2.9) was neglected. The influence

of this term on ¢ij must be included in modelling the wall region. When

¢ij is affected by a single flat wall the surface integral can be-

eliminated from equation (2.9) and the resultant equation expressed as:

1 ! ' ! [ 1 1
u, . = =~ [[{uu Jlu, .+ 200! J(u! u, J)l.|—+ —— {dV
Ty 4m I mim T-d 1,8 72,171,9 X-Y  X-y*
(2.20)

where suffixes 7 and 2 stand for streamwise and lateral flow directions
and y* is the image of point Y with respect to the wall. As with
equation (2.9), it can be inferred from equation (2.20) that the near-
wall effect of ¢ij also arises from two effects, one due to turbulent
interactions and the other due to mean velocity gradients. Thus, as a
framework for divising a model of the near-wall effects, one is

led to write

: . . . 7. -
_ 2 me mJ "t
(0p0 #0250, = |Copy & (uguy = 28,500 + Uy (W% + B5) f‘%xg}

(2.21)
where the function f¥;§} has the effect of diminishing (¢ij + ¢ji)w
with increasing distance from the wall. The fourth order tensor
should have the followingvproperties.

(a) In order to be redistributive, b?; = 0.

(b) Since the relative levels of the transverse component
(i.e. the component parallel to the wall and normal to the
flow direction) of the Reynolds stress in free flows and in

23
wall flows are more or less equal, the component bZS should

be small. In fact it is assumed zero.



Applying those properties, LAUNDER et al. [15] obtained the ¢ as

Tdw
(s # 052) = C.. & (G -2 6., k)
1d Jr'w slw % v 3 g
+ C (p,, -D..)
82w 1J 1J
_ Le
+€wk (Ui,j-l-UJ_,i) f-(;27) . (2.22)

In order to obtain the numerical values for the coefficients

C s CS

s and ¢ ~ reference is made to near-wall flows. There the

2w
transport terms in the stress equations are again negligible. Therefore
it is possible to obtain algebraic expressions fpr the relative stress
levels in that region. Further, if the near wall effect function f¥é§}
is defined so that it takes a numerical value of unity in near-wall
region, then the numerical values for the coefficients in equation
(2.22) can be obtained as Cslw = 0.5, ngw = 0.06 and %d = Q.

An alternative model was suggested by DALY and HARLOW [24] -
who were the»first to recognise the need for a separate near-wall
contribution in pressure-strain modelling. They proposed that ¢i'w be
modelled as

[+d Y T g —

where the wall-effect tensor Bab is of importance for the enhancement
of anisotropy near a wall. The last term of equation (2.23) ensures

the redistributive property of ¢ . In this form equal amounts of energy

1Jw
is transferred from the turbulent stress component normal to the wall,

to streamwise and transverse components.
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An integral formulation of the near~wall effect tensor Bab
for a flat plate takes the form:

B 1 (2,24)
YY ”
and

Bxx - BZ b4 =0

where y is the normal distance to the wall. SHIR [30] considered the
Daly-Harlow model and incorporated unit normal vectors to represent the

wall effect tensor, as
B = nn Y (2.25)

where { is a decay function which accounts for the diminishing effects
away from the wall.

In a recent investigation of ground effects on pressure fluctuations
in the atmospheric boundary‘layer, GIBSON and LAUNDER [31] extended the
formulation of DALY and HARLOW [24] to cover the mean strain part ¢ij2w
and gravitational effects of ¢ijw' (In the Daly-Harlow proposal no -
near-wall influence on ¢ij2 was present and the gravitational influence
was omitted altogether.) In the Gibson-Launder model the near-wall effect

of ¢. was considered to be the redistribution of ¢ 72 itself with

142

respect to the wall orientation i.e.

= -3 -3

¢ij,1w Cé]w - (uku . ng E'ukui nknj E’ukuj nkni)
x f# * (2.26)

A
and

= .3

¢ij,2w = o (¢km,2 "K' 6$J §'¢ki,2 " - ¢kg,2 m;)

(2.27)

1%



The effect of the mean strain part ¢ij2w is also to redistribute
energy from the component normal to the wall, equally between longitudinal
and transverse parts. The experimental data of well documented wall
flows however do not support this behaviour. There it seems that the
energy transfer is essentially from the normal to the longitudinal
component only, and that the transverse component is more or less
uneffected. The attractiveness of this mbdel is that it is possible to
extend the basic idea to cover other effects in pressure redistribution
(e.g. gravitational effects). Further, its exténsion to the case of
pressure-scalar gradient distribution term is clear. In the present
investigation the Launder et al. model (equation (2.22))is dompared with
the Gibson-Launder model (equations (2.26) and (2.27)) in plane and
axi-symmetric flows.

The form of the dacay factor f in (2.21), (2.26), (2.27)

(or Bab in (2.23)) determines the effectiveness of ¢ijw terms for
positions away from the wall. REECE [25] has shown by examining the
HANJALIC and LAUNDER [20] asymmetric channel and KLEBANOFF's [32] flat
plate Boundary layer data that ¢ijw terms as a whole should decrease as
the inverse of normal distance to the wall. Since the production Pll or
P decreases inversely with the distance from the wall, 7 should be more

or less constant in the near-wall region. The results of LAUNDER et el. [15]

suggest that
f = = (2.28)

is an appropriate non-dimensional decay form for a single wall, where".Z€

is the length scale of energy containing eddies. The length scale Z€ can

k3 2 7ol 3/2
be considered either as - or as '— , though of course they produce

slightly different decay functions. If there are two walls present

(e.g. channel flow), the effects are assumed to be additive, so that the
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factor is reviged to read

channel y D~y

where D is the width of the channel, The above form could account for the
slow decay of near wall effects felt in the HANJALIG and LAUNDER [20]
fiow and in the symmetric chanmel flow of COMTE-BELLOT [33].

In the case of a round pipe, the effect of near wall terms should
be even more pronounced in positions away from the wall. From geometrical
consideration (see Appendix A) of equation (2.28), extended to the case

of a circular pipe, the following form emerges:

I o« EE (2.30)
pipe Y,
where
v, = — R (2.31)
, 1 - b cosd 48
(1 + b% = 2bcose)3/2
0

where b = r/R is the dimensional radius.

LAUFER's [34] pipe flow data however does not show any stress
anisotropy near the axis which would suggests that the near wall terms are
very small near the axis. More recent measurements by LAWN [19] in pipe
flow, on the other hand, suggest substantial anisotropy in stresses which
may be either due to wall effects or due to some turbulent transport

effects.
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2.3 The Transport Equation foxr Isotropic Dissipation Rate
The exact transport equation for € = v u, _u, has been
1,0 1,1

presented by many workers (see for e.g. HARLOW and NAKAYAMA [35]) and

it takes the form:

et e g = =3V Up qluy g g+ g ¥ %)
A B
- _ 2
v (ui,Zuk,Zui,k) 2 v (ui,kkui,ZZ)
C D :
- 2v (ui,luk) Ui,Zk
E
- 1) ’ E? 2.32
uke,k > ( ?Zuk,l),k + %5 v s,kk ( )
F G H

Terms F, G and H represent the transport of ¢ in direction ay,
due to turbulent interaction, pressure fluctuation and viscous action
respectively. Term E is negligible in the fully turbulent region. The
terms B, C and D represent the sources and sinks of dissipation rate €,

HANJALI& and LAUNDER [14] considered the term B as the generation
term in (2.32) and C and D as the sink terms. LUMLEY and KHAJEH-NOURI [36]
on the other hand argued that the term B is negligible and that the terms
C and D together represent the generation minus destruction of €. The
final forms of generation minus destruction of €, arrived by [14] and [36]

however are similar. It is

€ (- - .
SO U U, = C ) | (2.33)

In formulating the diffusive term in (2.32) the following considerations
are applied:
(a) the viscous transport term, H is negligible at high Reynolds

numbers
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(b) at the present leyel of closure the term G should be neglected

" (consistant with the practice in closing the uiuj equation)

(¢) an algebraic expression for the term F should be obtained with
reference to the transport equation for ZZET .
The transport equation for the correlation 5257' at high Reynolds numbers
can be simplified to an algebraic form by neglecting convective transport
of ZZET'. HANJALIC and LAUNDER [14] proposed that for boundary layer flows

the algebraic relation can further be simplified to obtain

(2.34)

2 ks
s 1 B Tl (e ) g
(2.35)
The equation  (2.35) contains three doefficients which need to be determined.
- The expoment of the decay of turbulent kinetic enmergy in isotropic
turbulence is about - 1.1 (see for example COMTE-BELLOT and CORRSIN [37]).

For this condition equation (2.35) and the kinetic energy equation (2.3)

can be rearranged to the form
— 1
C = 1 -= (2.36)
n

where »n is the decay exponent. Therefore Ce2 takes a value 1.90 .

A further relationship between the coefficients in equation (2.35)
can- be obtained by reference to the constant stress layer adjacent to a
wall. There

(a) the convective transport of € is negligible
and (b) prodﬁction and dissipation of turﬁulent kinetic energy are equal.

Equation (2.35) then may be reduced to:

. 6
o = (les %’ (2.37)
€ k2 k2 42
a

.



where Kk is the von Karman constant.: and UT the friction velocity. The

most suitable numerical magnitude for C8 and hence Cel via equation.(2.37)
can only be obtained by computer optimisation with reference to a variety
of flow data. LAUNDER et al. [15] arrived at Ceg = 1.44 and hence Ce = 0.15
by computer optimising the £ equation in several free and wall boundary
layers.

Thus, in the present investigation equation (2.35) with C€ = 1.44,

i
¢ . =1.90 and CE = 0.15 will be used as the model for determining the

£2
igotropic dissipation rate €.
An alternative form of dissipation model has been éuggested by
LUMLEY and KHAJEH-NOURI [36]. They axgue that the source of ¢ due to
strain apélied to the flow cannot come purely from the term B of equation

(2.32). Instead they argue that the source of & by strain should be

modelled in terms of anisotropy, bij of the Reynolds stress tensor, where

Then they propose
2
_ as - ot ot 2 4y T .
(Source - Sink) of € ( Ceg CEZ b ) = (2.39)
where
b> = b..b..
1 1d

Reynolds [38] has shown that in the case of a two—-equation model of
turbulence, where b? should be found from the comstitutive relation (1.11),

equation (2.29) may be re—expiessed as:
; (cr -cx B)E |
(Source - Sink) of € = Co- %12’ T (2.40)

which is the same as the form (2.33) obtained by many others e.g.

LAUNDER et al. [15].
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OWEN [39] treated terms C and D in equation (2.32) as the (source,
sink) terms and modelled the difference between them with reference to
the decay of grid turbulence. His equation for isotropic dissipation rate,
therefore lacked a positive source term but satisfied equation (2.37)
to obtain a large diffusion coefficent (CE = 0.64). He made numerical
predictions of pipe flows with this model for & using a near-wall boundary
condition of dissipation rate equal to the production of kinetic energy.
The absence of a positive source term here was compensated by largg
diffusive leakage of € . His model would have been completely unsatisfactory

for free flows without a generation term in € equation.
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2.4 The Scalar Flux Equation

The correlation ZEE'represents the rate of tramnsport in direction
x; of the scalar (' by turbulent velocity fluctuations. The exact transport
. equation for Z;E_can be -obtained by multiplying the instantaneous scalar,
(C+e) equation (1.4) by U component aﬁd adding it to the x; component

of the Navier-Stokes equation (1.3) multiplied by c¢. The time averaged

form of the sum is

7/{.7:@’1; + Uk uic’k = - (uiuk C,k + ukc Ui,k) + .9_6... gi
Convection (a) Generation
- (T + v) e,kui,k

(b) Dissipation

- pe
- Cuiukc -7 uge g - v cu; % + %; Sik),k

(c) Diffusion

+ E-c . - 2.
=2 (2.41)

(d) Pressure interaction

This equation is valid.. for incompressible flows with small gradients
in mean scalar ¢ so that the fluctuation in the molecular viscosity and
molecular conductivity are negligible. The fluctuations in density of the
fluid too is assumed negligible in all terms except the gravitational
térm i.e. the second term on the right hand side of equation (2.41).
A more general form of the exact equation for the tramsport of Z;E can
be found in RUBESIN and ROSE [40].

In the present investigation only the transport of passive
scalars is éonsidered i.e. a hydrodynamic field completely unaffected by
the scalar field. Under this condition the gravitational term in (2.41)
will be neglected. LAUNDER [18] deals with the modelling of the
gravitational terms in the Reynolds stress and scalar flux equations for

active scalar transport situation.
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Term (a) represents the generation of ﬂ;Z’due to the interaction
of turbulence with mean gradients. It is interesting to note that gradients
of mean velocity contribute to the generation of scalar fluxes. The widely
adopted Boussinesq type formula does not contain this contribution of the
mean velocity field. It must be noted that, however, in two dimensional
boundary layer flows the contribution of the production due to mean
velocity is negligibly small. In the case of developing flows where the
streamwise scalar fluxes are important, the presence of these production
terms may be significant.

An order of magnitude analysis of the dissipation correlationms,

as presented by TENNEKES and LUMLEY [41], yields

%

v ( %) ~o0 (R ) (2.42)
and
(G a ) v 0 (PE ) (2.43)
Sk 1,k T T turb

In the present study the turbulent Reynolds number is assumed to
be high. If the analysis is confined to fluids with close to unity
Prandtl numbers, the dissipation terms (b) can be considered negligible.
If the Prandtl number of the fluid differs markedly from unity then one
of the above terms will become significant and should be retaingd in the

“analysis. OWEN [39] concluded that inclusion of these dissipation terms
are necessary only for low Reynolds number flows of fluids with Prandtl
number differing substantially from unity.

Apart from the above, (2.41) contaiﬁs the pressure-scalar gradient
corfelation (d) and the diffusive transport term (c) which need to be
modelled in terms of known variables before (2.41) can be used in a
closure model for the mean scalar equation. In the following subsection

models for these terms will be presented.
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2.4.1 The Diffusion Term

The diffusion term in equation (2.41) is

. = -(uuc-Tuec ~vou,  +BES o (2
Tz ( U C uic,k v cu$,k + 5 Six ),k (2.44)

The first term of the right hand side of (2.44) represents the
diffusive transport of ﬁ;z.due to fluctuations in velocity. The experimental
measurements of some of the éomponents can be found in the literature
and their gradients are found to be significant. The second and third terms
represent diffusion of ﬂzg'due to molecular action and these terms are
generally neglected along with dissipative correlations mentioned in
Section (2.4). There is no information available about the magnitude of
the diffusion term due to pressure fluctuations. So, parallel to the
neglect of tﬁe pressure diffusion term in the Reynolds stress equation,

pressure diffusion is neglected in the uze equation too.

This leaves the triple correlation U U C to be modelled. In order

to obtain an algebraic relation for Ut Cs reference is made to the

transport equation of U ue given for example in KOLOVANDIN and VATUTIN [22].
In appendix (B) it is shown that with some simplifying assumptions the

correlation u;upc can be written as,

- ugupe = C, %—( upuy Z;E;Z + Uguy upe 7+ uge UgUg 1
* Uty C ) . (2.45)

As OWEN [39] and LAUNDER [42] have done, in the present investigation
only the first two terms of (2.45) will be included as the model for &;Z;E.

The éoefficient Cc in (2.45) can only be determined by computer -
optimisation. Its value is expected to be around 0.11 , which is the

magnitude of computer optimised diffusion coefficient in the stress model.
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The diffusion models suggested by other workers are often simplified
versions of (2.45). WYNGAARD and COTE [43] retained only the first of the
terms in (2.45) with a coefficient of 0,15, whereas DONALDSON et al, [44]
effectiveiy expressed the stress components in terms of turbulent kinetic

energy to suppose that

-~ « k* (7o n.oe
uiukc :;_( ukc,i + uic,k ) (2.46)

LUMLEY and KHAJEH-NOURI [36] suggest that when gravitational effects
are present the buoyant transport term is an order of magnitude 1argér
than that due to scalar flux gradients. Further for unstratified conditions
their model will have a term-§26ikazzlz, in addition to the form suggested
by LAUNDER [42] and OWEN [39].

In LUMLEY [45], a suggestion is made for the incorporation of a
term like a;ZYkz/E),k in order to account for the spatial variation in

the transport coefficient. The third term in (2.45) has more or less

this effect.

~2.4.2 The Pressure-Scalar Gradient Correlation

The pressure-scalar gradient correlation = ¢ i is the counterpart

3

o I3

of the pressure-strain correlation in the stress equation. This term
provides the mechanism which limits the growth of the scalar fluxes., The
exact equation for the correlation can bé obtained by multiplying the
Poisson equation for fluctuating pressure by the gradient of scalar
fluctuations. On averaging the product oﬁe obtains (see Appendix (C)

for details):

‘E.c .= 1 (u'u') e -_‘dVOZ £ 1 g W' o ) dVOZ_/_S .
p st 4m mwn ,nm ,1 (X-Y) ar n,m  wn,m ,1  (X-Y) et
v
ic = P ’ Sz T Fed

(2.47)
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where the prime superscripts on thé right hand side of (2,47) refers to
quantities evaluated .at Y ,

Following CHOU [3] who showed that the surface integrals in the
velocity correlations are negligible in positions away from free boundaries,
the surface integral Sci is included for further examination in near-wall
situations only. quation (2.47) would contain an additional term, if
gravitational effects were included in the velocity equations. The
first two terms on the right hand side of (2.47).fall on two categories,

one dependent only on fluctuating quantities ¢ic and the other ¢i

1

dependent on the interactions of the mean strain field,

cl

The most widely used form of the turbulent part ¢icl is based on
Rotta's linear-return-to-isotropy approximation of the pressure-strain
correlation. Here the effect is expressed as a linear function of the

component scalar flux, i.e.

= - € '
¢icl Ccl'z u.ce . (2.48)

Strictly the time scales for this process should depend on both hydrodynamic

turbulence time scale.é and the scalar turbulence time scale égi . At

least in local equilibrium flows these two time scales can be agsumed
proportional, hence the use of %.is preferred over incluéion of two yet
unknown quantitiés.Z? and €, . This form of ¢icl was suggested by MONIN

{46] and then by LAUNDER t1>8], LUMLEY [47]), DONALDSON et al. [44] and others.
Equation (2.48) is the model for ¢icl used in the'present inyestigation.

In modelling the mean strain part of the pressure-scalar gradient

correlation ¢i02 , the same steps taken in modelling ¢ij2 are followed. It

is assumed that any inhomogeneities in the flow do not make a major

contribution to the integral ¢ic2 . Therefore ¢;,5 can be expressed as,

_ m
¢i02 B Un,m cni : (2.50)
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where

R 9% up e dyot (2.51)
n om | 9 3E. (X-Y)
n 1

Vol

where £'s are the Cartesian components of the position vector (X-Y). The
: m
third order tensor Chi should satisfy the symmetry constraint,
M. o= " . (2.52)
Further, in order to satisfy the conservation of mass principle, equation

(2.47) indicates that,
qo= 0 . (2.53)

Also, applying Green's theorem to the integral in (2.51), away from

boundaries,

i = 2 u,c . (2.54)

Equation (2.54) suggests that a linear combination of scalar fluxes may

be suitable for expressing czi. Thus the form

ni e 6nt m e Omi ¥ T Ve Gmn ue (2.55)

should satisfy the relatioms

BC=\)C

<
il

o, * Bc + 3vc

Do
i

30 + B +V _ (2.56)
<] (& c

implied by equations (2.52) - (2.54). Therefore the mean strain part of

can be written as

¢

ie

d. = (0.8 u,c v, -0.2uclU . (2.57)



£
A
4
vt
&
ol
o
s
wam
el

LAUNDER [42] and later LUMLEY [47] arrived at these expressions following
more or less similar arguments as given here, |

An alternative formulation has been proposed by LAUNDER [18]
in which the sole effect of ¢ia2 was considered to be to reduce the
effect of generation of Z;E—by mean gradients. This is parallel to the

idea of redistribution of stress production as given in (2.19). Here,
Oic = Cog Uyt Uz m . (2.58)

Note that in two-dimensional boundary layer flows (2.58)does not
contribute to the equation for lateral scalar flux, whereas (2.58) has
a contribution of - 0.2 ﬂE'%gm OWEN [39] adopted this model for his
calculation of scalar transport in pipe flows. In the present investigation,
equation(2.58) is employed as the model.for ¢ié2' Equation (2.57) will‘
also be used as a comparison model in free shear flows.

An alternative form of a model has been suggested by LUMLEY and

KHAJEH-NOURI [36], where the explicit appearence of mean strain terms were

excluded from the analysis. Briefly, their method was, first to consider

the & . (consideration of £ ¢ . would lead to the same resﬁlt) as a
o Dot p 0%

function of the form

- %-p i = F £ UC s Uls 5 € , gravitational terms # .
3

(2.59)

and then to make a Taylor series expansion to obtain

¢ = : 2 S )
“oPi T - (a; + a2bij + aglt + a4bij + gravitational terms )
x 2% ‘ (2.60)
: T
where Cu.au
T « k. b.. = *d _.2¢ .. .
€ 1d % 3 g
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In the present investigation a model consisting of only the first two

terms in (2.60) is considered as an addition to ¢ic2 form (2.57) and

not as Lumley and Khajeh-Nouri proposed as a replacement for ¢, P i.e.
. ie
g T € —
. = - ¢ Zuc-C" b uec 2.61
¢zc] el k 1 el k i1 1 ’ ( )

Now in order to find the numerical values for the coefficients in
the modéls of ¢ic described above, the local equilibrium forms of the
scalar flux equations in free shear flows are considered. In these flows
one should aim to get a Prandtl number of about 0.6 - 0.7 and a ratio
of the scalar fluxes in streamwise to the lateral direction of about 1.2,
(WEBSTER's [48] data indicate a value of 1.1 for this rétio; however,

p)
his measured levels of “_ are about 25% lower than the accepted level
' ) .
2

and hence his Y€ is likely to be rather too low.)
ve
(a) Redistribution Model, i.e. Equations (2.48) -and (2.58)

Under local equilibrium conditions in a two-dimensional flow

one obtains

(2.62)
With stress levels from the nearly homogeneous shear data

= 0.65, Ccl is obtained

of CHAMPAGNE et al. [29], and with O i

as equal to 2.9.
The streamwise scalar flux equation in local equilibrium

conditions reduces to

k
— g, * 1-Cuo . (2.63)

= L
Ccl uw

S I8

With a scalar flux ratio of 1.2 this implies that 002 should

be about 0.5, which is the value used by OWEN [39].



(b)

— 2 _
v? k uc
0 = ¢ — — -Cc _ -C'_ b — | -C!, Db
t — ; 7.
X py= el ¢1-"12 | o= el “22
—_— % )
+ 0.2 | ¥ — (2.64)
ve uv
and )
0 k + 0.2 k c w c'. b ue c'. b
= [e) — _ - - - - - .
t | W el | 73 el 11 | 53 el 12
(2.65)
On substituting numerical values for Ops gg.and stress levels
ve

the coefficients C , and €,7 can be obtained as 4.3 and - 3.2

Quasi-Isotropic

Model

If the equation (2.48) is used for ¢icl’ along with the given

quasi-isotropic

model (2.57), clearly incompatible magnitudes

for Ccl will be obtained from the two flux equations. Therefore

in adopting the

(2.61) for ¢iel

quasi-isotropic relation the non~linear form

will have to be used. The resulting flux

equations in local equilibrium form are

respectively.

2.4.3 Wall Effects on the Pressure-Scalar Gradient Term

The surface integral term neglected in the analysis subsequent to

equation (2.47) can be expected to have a considerable effect in mnear-wall

flows. As in Section (2.2.4), this surface integral can be eliminated by

manipulating the equation (2.47). The resultant form is

P
p

. - L
57 s

|4

(w'u') e |
mn ,;m ,1

+ 20" u e
1,2 2,1 ,1

1
X-Y

11 ay

X-Y*

(2.66)
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where, suffices I and 2 stand for the streamwise and lateral directions

respectively. Further, Y* is the image of Y with respect to the wall,
Here again, fhe turbulent and mean strain parts can be identified

and modelled in a manner exactly parallel to that of the wall effects

on the pressure-~strain correlation. In a general form this can be

written as,

ue aolriledl - 2.67)

- + .
¢ UZ,m li zy

£
ew clw k

s
]

The function f has the effect of diminishing ¢, with increasing
cw

» m
distance away from the wall. The general third-order tensor dZi

comprising linear combination of scalar fluxes is

m S S R
dZi = aé 6Zi u.c + Bé dmi use + Vé sz use . (2.68)

: m m
This tensor should satisfy the symmetry requirement d__ = d _ and the

17 11
mass conservation constraint dm_ = (. They lead to
mi
B! = ! and 0 = o'+ 48" . (2.69)
el e] e e

Thus the resultant form for the wall effect on pressure-scalar gradient

correlation is

uc-4sc'<s uc U f

- - '
Sow = ¢ 2t Bl Vo

e —_
. - uclU
10w clw k m

[/

(2.70)
An alternative near-wall model has been suggested by GIBSON and
- LAUNDER [31] which parallels their near-wall pressure-strain model. The

turbulent and mean strain parts of their model are

£
¢iclw Cciwli

Z;E'n n, f (2.71)

k< n.x,



and

¢ =C ¢ nn f e (2.72)
ictw c2w ke2 ki n | )

In the present investigation this near-wall model is used along with

equations (2.48) and (2.58). The form in equation (2.70) is employed as

a comparison model.

Now, in order to find the numerical values for the unknown

coefficients (two in each model) in these near-wall forms attention is

turned to turbulent scalar. characteristics in wall flows. As will be

seen later in Chapter (4), the turbulent Prandtl number and the ratio of

levels of scalar fluxes in the streamwise direction to that of lateral

flow direction in two-dimensional flows are about 0.9 and 2.0 - 2.5
respectively.

(a) Gibson- Launder Model

Equations (2.58) and hence (2.72) do not contribute to the
lateral scalar flux equation in two~dimensional boundary layers,
thus the coefficient Calwiﬁ-(2.71) must be chosen in order to
get a turbulent Prandtl number of 0.9. With near-wall stress
levels, the local equilibrium form of V¢ equation imply a

Cclw of 0.75. Equation (2.71) and (2.72) do not contribute to
the streamwise scalar flux equation, therefore Cc2w in (2.70)
can not be found in two-dimensional flows. Further it means

that the streamwise scalar flux equation is unchanged in the
near-wall region. This implies a ratio uc/ve of about 2.0

which agrees reasonably well with the experimental data

though is perhaps a little low.



- 82 -

(b) Isotropic Model

When equation (2.70) is employed in the local equilibrium

regions, the scalar flux equations for the lateral and streamwise

directions can be written in algebraic forms as,

2
-2 g +(C_+C

ww ¢ cl clw %k e oo
and
o1 w e
0 = Oy (1 002) + (ccl +C )

clw vo

(2.73)

- 48, (2.74)

With the above mentioned near-wall stress levels and scalar

characteristics, these two equations can be solved to obtain

c

= 0.25 and B’ =~ 0.06 .
clw

e



2.5 - The Transport Equation for Scalar Fluctuations
The variable representing the level of scalar fluctuation is

taken as %c* , Wwhich corresponds to the turbulent kinetic energy

—— —

k =_%.u2 . The transport equation for %c® can be obtained by multiplying
the instantaneous scalar (C+c) equation by the fluctuation %¢ . On time

averaging the result yields

152 1o?) = WG C . -T o3 - (nde? - T b
(%c*) st Uk (%3¢ ),k ch c T'e .c (ngc T %e

3 > ’J,

R,
(2.75)

Convection = Generation - Dissipation - Diffusion .

In order to solve (2.75) models have to be supplied for the
dissipation and diffusion terms in this equation.

The time scale of turbulence associated with the scalar turbulence

——

is %cz/ec where Ec =T ci.c.j . The assumption that there is a constant

J 7
ratio between the time scales of the scalar field and the hydrodynamic

field yields

(2.76)

where R is the time scale.ratio. The magnitude of R , if it is a constant,
should be evident from the dacay of turbulence behind a heated grid as

the ratio of decay exponents is equal to the ratio of time scales. The
survey of scalar fluctuation decay data compiled by LIN and LIN [112] .
however show a large variation in dacay exponents. They imply time scale
ratio between the extremes 1.26 to 0.35 .

In computer modelling SPALDING [49] used a value of 0.5 whereas
LAUNDER [18] used a value of 0.8 in predicting buoyant free shear flows.
In the present study a value of 0.5 is used for the time scale raﬁio in
(2.76).

The more appropiate method of course is to solve for-ec via its
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transport equation, an attempt similar to solving € the dissipation of
turbulent kinetic energy. Current modelling ideas have followed lines
similar to that used in:élosing thé'e equation. Here however the presence
of two time scales k/c and'%ziyec complicates the modelling a great deal.
OWEN [39] has suggested a model for €, » but his equation containing no
positive source term is clearly incorrect.

As for the modelling of diffusive transport of %e¢? reference is

made to the transport equation for ujc2 . The algebraic expression

obtainable with the level of assumptions used in modelling uiujuk of

uiujc » 1s,

-k uc? = k| T (302
s ch Cg . ukug (ke ),k + ue ujc

% + ujukc C % .

3 3

(2.77)
WYNGAARD [43] omitted the last terms in (2.77) thus retaining the

usual gradient diffusion form. In the present investigation too only the

gradient form is retained

-%uc? = ¢ k o
] ujc Cg = ukuj (;2’@ )’k * (2.78)



2.6 A Summary of the Models to be Investigated

The turbulence models diécussed in previous sectilons of this chapter
are summarised here. Table (2.1) corresponds to the hydrodynamic closure
models whereés Table (2.2) refers to the scalar transport models. The
&ifferent models are identified here with different code names and the
methods used in obtaining unknown coefficients that appear in modelled

terms are mentioned.



Model

Equation of

Coefficient and Value Used

How Determined

Term Name Description

its First

Mention
Pressure R 7 LAUNDER et al. (2.11) and Csl = 1.5 and 052 = 0.4 Normal stress
-velocity s [15] isotropic (2.14) "~ levels in nearly
gradient model homogeneous
correlation : shear flow
o.. Rgo LAUNDER et al. (2.11) and C.,=1.5and C_, = 0.6
&% [15] simple (2.19) sl sé

model;
also in {31] (2.11) and Csl = 1.8 and 032 = 0.55

(2.19)
Near-wall R P LAUNDER et al. (2.22) CsZw= 0.5 and 032w= 0.06 Near-wall stress
effects on Sw {151 model levels
$..
T R_, GIBSON-LAUNDER (2.26) and 7= 0.5and C_, = 0.3

sw [31] model (2.27) 8w saw
Turbulent Dsl Tensor invariant (2.6) - = 0.11 Computer
diffusion model s optimisation
Do Gradient diffusion | (2.8) ¢, =0.2

model

Table 2.1 Hydrodynamic Models Used in the Present Study
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(contd.)

Model

Coefficient and Value Used

How Determined

Term Name Description Equation of
its First
Mention
Energy LAUNDER et al. (2.33) C€1 = 1.44 Computer
dissipation [15] model optimisation
rate . '
equation (2.33) ¢ _=1.90 Decay of grid
€2 turbulence
(2.34) Ce = 0.15 Consistency with

Von Karman
constant and near-
wall stress levels

Table 2.1 Hydrodynamic Models Used in the Present Study



Model
Term Name - Description Equation of Coefficient and a How Determined
its First Tentative Value
Mention
Pressure . R 1) Linear : (2.48) c 7= 2.9 Prandtl number of
-scalar el destruction ¢ 0.65 in free flows
gradient ‘
correlation 2) Redistribution (2.58) CcZ = 0.4 Flux ratio of 1.2
in flux of production in free flows
equation (due to mean
b, ’ velocity .
e gradients) tensor
R 1) Non-linear _ (2.61) Cc = 4,0 and C!'_ = - 3.2
ez - destruction el cl
2) Quasi-isotropic (2.57) exact term known
model
~Near-wall R 7 Isotropic model (2.70) Cclw = 0.25 and B’ = 0.06 Prandtl number of
effects on W ' ¢ 0.885 in near-wall
o . R, 1) A modified linear| (2.71) c = 0.75 flows
e . Sewl . clw
destruction term
‘ Flux ratio of 2.05
2) Modified linear (2.72) z = not applicable in ’ in near-wall flows
destruction term C8W  tyo-dimensional
boundary layers

Table 2.2 Scalar Transport Models Investigated in the present Study
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- (contd.)

Model
Term Name Description' Eqﬁation of Coefficient and a How Determined
its First Tentative Value
Mention :
Diffusive D 7 Gradient diffusion (2.45) Cc = 0.20 Similarity with
transport of ¢ : . existing stress
fluxes ch Gradient diffusion Cc = 0.11 model coefficients
D Tensor invariant c,=0.11
e3 e
type
Diffusive Gradient diffusion (2.78) C = 0.11 Similarity with
transport of g kinetic energy
c? ' equation
Destruction of Constant time (2.76) ng I-1.3 -+ 2.0 Levels of scalar
of scalar scale ratio type R fluctuations
fluctuations ’
Computer
optimisation

Table 2.2 Scalar Transport Models Investigated in. the Present- Study
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2.7 Modelled Equations in Carxtesian Tensor Form
2.7.1 Reynolds Stress Equatiomns
The conservation equations for the Reynolds stresses are
D(uu,) =P, +¢..-€..+D (uu,) (2.79) -
Dt vt g 2 1d 1d 1 4J
where,
(a) the convection,
3 d
D (uwu., ) = — + U Ul .
DE v ot K ax 1]
(b) the production,
BUj an
Pyps = - wu —=+uUU —
J 7k k
t oy, J axk _
(c) the pressure-strain correlation,
for free flows,
= + 9.,
¢z; ¢ij1 ¢@J2
and for wall flows,
= + s F 0. ..
cb’bj ¢ijz ¢ij2 (bwlw ¢w2w
where
= - £ L - 25, els R dR_,
¢7,gl Csl E(uiug = (Sw k) Models R ; and R_,
2 3U,i oU
= -(a(P, -2PS§,)+B k| L+ __d
ij2a g 3 Td ij Sxi
.- 2 ..
+ N ( PﬁJ E'P 6%3 }) Model R,
or .. = - Y(P -2p¢§ ) Model R
¢$J2 i 3 1J 52
A
e = € us - 2 ¢ £ del
¢%le Cslw z.( Uyt E'k 6ij ) £ 4 %5 # Mode stl
3
€ v o= 2
or ¢ij1w slw 1 ( Uitm Tx T 67,.7 .2yku¢ "% ng
L
- > )
g_ukuj m, ) f ¥ = 7 Model R, o



. le
.. = (P D .) fof=—2 Model R
¢'L.72w saw ij 44 d Zo T Tswl
- : 3 .
’ . - C . - —
or %o sow  Ykme "k Tm Ot T S %kas ™ T 7 Yags )
X fi E§.% Model R,
o ' sw2
with
P = %P
mm
and ‘f U Y]
- k k
(d) the dissipation,
€.. = Z2¢6.,
1d 3 d
(e) the diffusion, r
0 UsUs o UsuU o U U
D{uu, ) = 2 C k U U —ted gy oy ———Q—E-+ U.U vk
17 dx;, 8 e kK'm 3z im  dx, Jm . 3x,
Model D
r 9 U U o1
— 3 ~ Kk 1%
D S ! = Y 0 & —td " A
or D ( Ug ) 7 %; . Uy Uy, = Model D32

2.7.,2 Isotropic dissipation rate equation

The conservation equation for the dissipation rate is

7%(8) = 061%?-08225_+D(e) (2.80)
where
(a) the convection,

D 3

— (e) = 2 +ypy, 9 e

Dt ot K Bxk J

and

(b) the diffusion,

D(e) = _° ¢
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2.7.3 Scalar Flux Equations

The conservation equation for scalar fluxes are

D(ue) = P. +¢. +D (u.c)
DE % ie ic 7

where

(a) the convection,

D(uwe) = S +ry 2 | e
Dt ¢ at Koz z
k
(b) the production,
U, '
P, = - ue _t U I
e - axk T axk

(¢) the pressure-scalar gradient correlation,

for free flows

¢, = ¢. +9¢

1e 1el 1c2

= . + :
¢tc ¢$cl 1e2 ¢ic]w 1w
where
- £ T
, ¢ic] - Ccl %ﬂuic
. _ c e
or ¢icl Ccl k “p© Ccl % sz “1¢
oU,
- — Y7
Yic2 = Cop %S dxe,
k
— oU; U
or o = 0.8nct_0.2uc K
ie2 k 3z k oz,
k 7
6. = -C  ETorfles
telw clw i 7 z
= g ZE
ot ¢ic1w N Cotw 7 %mC 'm T fe—=4

Model R
aw

(2.81)

Model R
' cl

Model»ch

Model Rcl

Model RcZ

Model R
cwl

2
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) = - 48! § u’c——-"U'Z B'G az fé
ielw e 1t m ox e 5 2
z -Model R@wl
_ e
or ¢7102w - CcZw cbch P Mg £ "33_2' > Model RawZ
(d) the diffusion,
—_— ¢ u.c
D(uec) = 0 ¢ k|an 22 Model D
7 axk e e k1 3xz él
—— % ’ o u.c 9 u.c
or D(uec) = 2 ¢ k Uy + U.U Model D
7 Bxk C e k axz (2 Z axz 62
- ' 9 u.c 3 U, C 9 uU.u
or D(ue) = -2.¢ K| %z o+t uu + uge vk .
7 Bxk ¢ e k'l axz i1 sz 8xz :
Model DcS
2.7.4 Scalar Fluctuation Equation
. The conservation equation for mean square scalar fluctuations is
D (%) = p —c +D(2" 2.82
5z ( 5 ) Pc €, + D ( > ) (2.82)
where
(a) the convection,
"2 2
2 ——) = 53; £, 53—] e
ka 2
(b) the production,
P, = - e 20
“k
(c) the dissipation,
e = ¢ Eec”
e géa k g
(d) the diffusion,
7 —Z
D (& ) = LC‘QE u,u 9.c7/a .
2 B_xk % Lk sz
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CHAPTER 3

NUMERICAL PROCEDURES

3.1 Introduction

The conservation equations for mean and turbulent quantities
presented in the previous chapter can be solved using finite difference
numerical methods. In general those equations are three-dimensional,
unsteady and elliptic. In engineering practice, however, there are
many statistically stationary or steady flows which are of interest.
Further>there are many important situations where the flow is of boundary
layer type, i.e. with at least one direction having negligible diffusive
fluxes. In the present analysis the attention is limited to steady flows
of boundary layer type. Althoﬁgh the present calculations are limited
to incompressible cénstant property flows, the numerical procedures to
be discussed can be generalised easily to variable-property flows.

PATANKAR and. SPALDING [ 9 ] presented a numerical procedure for
the solution of partial differential conservation equations for steady
two-dimensional, axi-symmetric boundary layer flows. This procedure
is probably the most widely tested numerical scheme, designed to solve
the above equations, available to date. In Section (3.2), the main
features of this procedure and its application to the solution of mean
and turbulent conservation equations are presented. The problems
encountered, e.g. instabilities, their possible causes and cures are
discussed there.

The-procedure used_to predict three-dimensional boundary layers
is an outgrowth of the two~dimensional ellibtic-numerical'method of
GOSMAN and PUN [50]. This procedure incorporates displaced grids for
velocity and pressure, employed by HARLOW and WELCH [51]. Here, as in

CARETTO et al. [52], a guess—and-correct procedure is used for the
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velocity field., The correction of the velocity field is obtained through
a linearised pressure-velocity relation which in»turn satisfies continuity.
This procedure with an obvious simplification to the case of
two~dimensional internal flows is discussed in Section (3.3).

The remainder of the chapter is concérned with adaptations to
the basic structure of the codes that the writer has introduced to
facilitate the introduction of a second-order cloéure.

In Section (3.4), a finite difference staggered grid suitable
for the application of a second order closure-model in a fully
three-dimensional flow situation is described. The aim here has been
to stagger the variables so that when they appear in the mean equations,
requires a minimum of interpolation. This is expected to eliminate the
instabilities encounted in using_numefical procedures outlined in
previous sections.

The idealised grid arrangement described in Section (3.4) is
simplified in the Section (3.5), so that, it is economically applied to
the solution of three~dimensional scalar transport problem in
two-dimensional boundary layer flow situation. It is seen here that
this-modified grid arrangement simplifies the calculation of generally
more predominant terms in the mean as well as in the turbulence equations.

In Section(3.6) the limitations of cell layout and the application
of the boundary conditions are discussed. The inclusion of a solid wall
into the domain of the three-dimensional calculation procedure is
"discussed in Section (3.7). This allows circumferential conduction to

be taken into account in instances where it is necessary.
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3.2 The Patankar-Spalding Procedure for Two-Dimensional Beundary Layers

3.2.1 Main Features

The Patankar-Spalding procedure for the solution of conservation
equations for two-dimensional boundary. layer flows is widely used by
‘research workers and in industry an& is well documented in [9 ].
Accordingly only the main features will be mentioned here.

(a) The Coordinate System:

In this procedure the boundary-layer equations are transformed
to x-w coordinate system, where & is the displacement coordinate
in the main flow direction and w is the dimensionless stream

function, given by

Y-y
6 = I (3.1)
Yo Y7

The stream function is defined so that Y is a constant along

a stream line and
¥ = pUrdy | (3.2)

The edge stream functions WI and WE are chosen as functions
of x , so that all the important variationsvin the dependent
variables takes place within their limits, i.e. W values
between zero and unity; this practice assures an efficient and
flexible grid layout.

(b) The Difference Equation:
The finite difference forms of the conservation equations
are obtained by integrating the partial differential equations
over control volumes. (see Fig. 3.1) Being a boundary layer
procedure, the control volumes at a given x-level are defined
so as to cover only upto the immediate forward x-level. In

w~-space, the control volumes are defined by known discrete



w-levels, so that a given number of control volumes occupy

the w-space between I and F boundaries. For the purpose of
integration it is assumed that in the w-direction, the
dependent variable ® varies linearly with ® between.grid
points. For convenience it is assumed that, in thg x-direction,
the variation of ¢ is stepwise and it is the downstream

level that is prevailing over the control volume.

The individual terms of the conservation equation are
integrated over the control volumes so as to obtain difference
equations for each control volume. The resulting equations

are of the form

+Bo., +C (3.3)

dt d-

where ©d+ and ®d_ are thé values of Qd'S'at adjacent control
volumes in w-space. (The suffix d stands for the downstream
level.) The coefficients 4, B and C are explicitly evaluated
with known ®'s at upstream x-level.

(¢) Treatment of Diffusion Terms:
In the pﬁblished version of the numerical procedure the
diffusion terms of the momentum and heat transport equation
are arranged to suit gradient diffusion models. Thus the
incorporation of an "eddy diffusivity' model of turbulent
transport is straight forward. In order to incorporate a
Reynolds stress-Scalar flu; closure, modifications are needed.

The following sub section outlines-alternative approaches.



- 98 -

3.2.2 Treatment of Turbulent Shear Stress and Scalar Flux

Consider a control volume whose edge values of w are w_; and
-2

Wy i (see Fig. (3.1)). The total shear stress at the edge Wz is given by

ow | - oW . (3.4)

R
7 3Z/Jd +%

A
|

With a gradient diffusion model, this is expressed as,

ol
T = n = (3.5)
% eff dy |d |+%5
where ueff is the effective viscosity obtained by
(3.6)

ueff = uf uturb

and the -turbulent viscosity Yemb is obtained via a constitutive relation.

With a Reynolds stress closure, however, equation (3.4) can be
evaluated directly.: Thus.the turbulent shear.stpess term can be
incorporated either,

(a) by constructing a pseudo-viscosity and applying equation (3.5)
or (b) as a source term in the momentum equation.

If the effective viscosity method is to be pursued, the turbulent

viscosity M is calculated by

turb

(pav-)#z,.(yﬂ—y)

] e 3.7
Uturo,+% (U -0U) -9
u

Equation (3.7) is not satisfactory in regions of small velocity
gradient unless meésures are introduced to counteract instabilities.
Alternatively the net diffusion due to turbulent shear stress can be
written as,

oT
turhb - . +5 Tz (3.8)
dy Y =Y E




unlike equation (3.7), this equation can be incorporated unconditionally,
even in regions where the mean gradient is negligibly smali: Especially

in flows with regions where the eddy diffusivity conéept is not valid;

e.g. maximum velocity region is a wall jet, equation (3;8) is satisfactory,

whereas equation (3.7) is not.

3.2.3 Instability in Solution and A Possible Remedy

Several workers (e.g. REECE [25], MORSE [53]) making numerical
computations of boundary layer flows using second-order closure models
employed the Patankar-Spalding procedure for their calculations. In those
investigations, the turbulent variables were evaluated at the same grid
points as those of mean variables. In the present investigation as well,

a large number of calculations were performed with that grid arrangement.
It was sometimes seen however that numerical instability occured and that,
when it did, the numerical scheme seemed apparently contained no mechanism
for damping it. The following hypothetical situation will clarify how

this happens.

Consider a mean velocity profile as shown in Fig. (3.2) and suppose
there is a peturbation in this profile at grid point (I) (dash lines),
so that the velocity is now U(I) + 6U(I) . Since the shear stresses are
calculated at points (I-1), (I) , (I+1) etc., velocity gradients have to be
interpolated in order to calculate production and other terms due to mean
gradients. Thus, the velocity gradient across the cell (I) is in fact
unchanged whereas gradients across cells (I+1) and (I-1) are cﬁanged
slightly. Thus, the resultant shear stress at (I) is unchanged whereas at
(I+1) and (I-1) the shear stress will have changed in the right direction.
Now since the interpolated values of sliear stresses are needed for inclusion
in mean-velocity equation the net effect would be to change the velocity

profile towards the stable solution but at a too low response level.
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In order to ensure full exchange of information between mean velocity
and shear stfess equations, which are interlinked via their gradients,
the scheme ﬁust be able to feel correct gradients creatéd by the
pertubation. POPE and WHITELAW [54] and ANDRE [55] proposed schemes which
had staggered grid arrangements where the shear stress nodes are shifted
by a half a grid node spacing from the mean velocity nodes. This idea has
previously being used by CHORIN [56] and in PATANKAR and SPALDING [57]
numerical procedures, with respect to the velocity and pressure nodes.

In a staggered grid arrangement the shear stress values are
calculated at points (I-%), (I+%)etc., shifted half a grid spacing away
from (I-1) , (I) , (I+1) etc.. Now the production type terms of difference
equations at (I-%) and (I+%) directiy feel the total perturbation. The
shear stress at (I+%) will be rapidly raised while that at (I-%) will fall.
The velocity cell at (I} , therefore, will experience a restorative force
which will‘cause the perturbation to diminish,

- The above argument is satisfactory in regions of flows where the
mean velocity (or scalar) and the corresponding flux are strongly linked
to one another, i.e. having a predominant production due to mean shear
term in the shear stress equation. In a weakly linked flow, for example
a flow region with dominant diffusion effects, any instabilities in the
mean profile will not be strongly felt by the corresponding flux equation
so that the instability would vanish only very slowly. Even in such regions,

however, the staggered grid can be helpful although to.a lesser extent.
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3.3 ‘Description and Application of the Three-Dimensional (8, r, 2)

Boundary Layer Procedure

The general form of the conservation equations written out in

Section (2.7) can be reexpressed here as

1 (
) 0 )
—— | pUxY +-——[rU<1> + = U,
736 0 r3r ¢ Pr oz l Pz
( h!
d
= 9 r‘é’ 9 |, 2 | ? 2 +3—-[r2-3-— + 9 (3.9)
r39 | r96 ror dr 9z L 93

where ® stands for any ofvthe dependent variables UG’ Ups Ug, k, €, uiuj
(with £ = 1,3 and j = 1,3), C, #¢ (with £ = 1,3) and %, Here I
stands for the diffusion coefficient of ¢ in the direction-i and S¥
stands for the net generation of ¢ per unit volume.

Equation (3.9) can be interpreted in Cartesian coordinates by

transforming (6, », z) to (x, y, ) using

1. (3.10)

%
=
]

9
ox ro8 S;
The following discussion, however is made with respect to the (0, r, z)
form and the Cartesian equivalent is always implied.
For the case of a three-dimensional boundary layer with the main
flow in the z direction, the diffusion in that direction is so small

compared with convective processes that the term

LI
0z B 9z

is discarded. Equation (3.9) thus becomes first order (parabolic) in the
2 coordinate, permitting evaluation of all variables progressively in
planes normal to direction-z, with the knowledge of upstream and
boundary conditions. It is this form that is solved in this numerical

procedure.
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3.3.1 Pinite Difference Grid.

The finite difference grid for this procedure consists of three
orthogonal sets of lines of constant 6, r and 2. The (0,7) plane covers
the cross~stream-and the direction-z coincides with the main flow direction.
The control volumes are centered around the grid nodes which are the
intersection points of given (8, »r, z) lines. These control volumes cover
the whole domain of interset. The general equation being parabolic in
the z direction, at a given moment in the calculation, attention is givVen
only to a single z-spacing.

In general, a compromise is sought, between the cost of computation
and accuracy of results, in deciding the optimum number of lines to be
used in grid formation. Some further limitations apply, under turbulent
flow conditions, in laying out of the grid near walls and this is
discussed later.

The control volumes defined above are centered around the grid
nodes where the pressure is calculated. As in the numerical schemes of
HARLOW and WELCH [51] and GOSMAN and PUN [50] the velocity components
are evaluated at grid points shifted by half a node-~spacing from the
pressure grid. This allows a direct estimation of pressure gradients
relevant to the velocity component equations. The positions of the
dependent variables are denoted by their corresponding grid node numbers.

For example ¢ refers to the variable ® at the position where grid

(I,J)

lines I (in the 6-direction) and J (in the r-direction) intersect.

(see Fig. (3.3))
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3.3.2 Derivation of Finite Difference Equationg

Only a brief discussion is made here on the derivation of the
finite difference equations. Datailed discussion of the topic has been
provided by others, see for examplé SYED [16], BERGELES [58],

The finite difference equations are derived by integrating the
partial differential equation (3.8) for ¢, over the control volume
centering the point where ® is required to be calculated. The net total
of convection and diffusive fluxes of ¢ leaving the control volume is
equated to the net generation of ¢ within the control volume. For the
calculation of total flux of & across any surface of the control volume,
the value of ¢ at that surface has to be approximated. This can be done
by weighting the values of ¢ at neighbouring locations according to the
local flow Peclet number. The one-dimensional analytical solution to the

flux equation yields

o = & @y, + (1-8) &/py (3.11)
where Q(I) and ®(1¥1) are ®'s at grid points at either side of the surface
(I+%) and &, the weighting factor is given by

ePe -7 )
£ = ) . : (3.12
Peir+1)
e -1
where
v e
Pein) = Wimy - Xma) ~ X)) Twy
and
X - X
P P (1)
¢ = e(I+1) X

(1) " X
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The net total flux of ¢ in direction I, can now be written as

-
I = ( apl ) C 0] +(1~-2¢ )@
T (I+k) | (I+%s) (I) (I+%) (I+1)
- ( apU ) o & +(1-¢ ) @
(1-%) | (I-%) (I-1) (I-%) (1)
(3.13)
where
. = 1-g, s
(I+%) (I+%)  Pe
(I+1)
and
1
= 7] - o o—
C(I—%) ‘ E(I—%) Pe
(I-1)
Here a(I+%jand a(I~%) denote the areas of surfaces normal to the direction(I).

Use of (3.13). would require evaluatioﬁ of &'s which contain
exponentials, which are expensive to compute. An alternative form of C's,
suggested in {50], is used with little loss of accuracy.

For, Pe > 2 5, ¢t =1 N
Pe <-2 , ¢ =0

lpe| < 2, ¢

¥ (1 + g;—) . ' (3.14)

The first two expressions mean that when'lPel is high the flux
of ¢ across a surface depends solely upon the upwind value. It is the
exact solution for |Pe| - ». In the third expression the surface value
is taken as the central-difference, arithmetic mean value of the .
neighbouring ®'s. It is the exact solution for Pe = 0.

The net generation term S® is the only term in equation (3.9)
remaining to be considered. The integral of S® is expréssed in the

following linearised form

S® dvol = b c® . (3.15)

0]
r,5) S0t S,
Vol(I,d)
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o ® . d
where b(I;J) and C(IJJ)may be functions of @(I;JJ' Values b(I,J) and
C?I g) are not unique, they can be chosen to enhance the stability‘of
3
the procedure. It will be seen‘later in (3.33) that b?I J) should in fact
S

be negative, or small and positive, in order to achieve a stable solution.

3.3.3 Assembly of Finite Difference Terms

The finite difference forms of total flux expressions and net

generation term derived in Section (3.3.2), when assembled gives

o o o @
) A - b | o = 4 o + A o :
(I,J) (I,J) (I,J) (I+1,J) (I+1,J) (IT-1,Jd) (I-1,J)
+ 42 o L )
(I,J+1) (I,J+1 (I,J-1) (I,J-1)
o ®
+ A o + A o
(I,J,u) (I,J,u) (1,J,d) (I,J,d)
+ Cq) (3.16)
(I,J)
where
22 = (apU) ( -
(I+1,J) (I+%) (I+%)
o
A(I—Z,J) = (apv )(I—%,) ( “(1-%) ! ete.
and
na = Acp_ + 42 + a2 ‘ -/—A@
(1,7) (I+1,J) (I-1,J) (I,J+1) (I,J-1)
+ 42 + 42

4 A
(I,J,u) (I_,J,d)
The finite difference equation for neighbouring control volumes are

kept implicitly connected by taking ® etc. in the right hand side

(I+1,d)
of (3.16) as equal to ®(1+1 J d)_etc..
E
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3.3.4 Finite Difference Equation for Velocity Components and SIMPLE Algorithm

Assembled finite difference equation for velocity compoﬂtnts Ugs

U

12 Uz can be obtained by replacing & in (3.14) by these respective

components. Here the pressure gradient terms will appear as part or
U.
L 'L

whole of ¢ terms. Due to the shifted control volume layout,

6
. - AX AX
¢ CPorg) Prren,m M My
UT
¢~ =P T P gen) ) M M
U
2
c? N oy -p ) AX AX 3.17
p@&@ pmaw I J (.)

As given in equation (3.8), the gradients of turbulent stresses
appearing in Ui equation can too be expressed as a source term. The
oV may contain a part or whole of that as well. Assuming that those
stress terms are known, there still remains the pressure field to be found
separately.

In the SIMPLE algorithm of PATANKAR and SPALDING [57], the
continuity equation is consulted in order to guess the correct pressure
field. The supposition is made that the velocity component is a linear
function of the pressure gradient in that direction. Thus

SU'g

U, = U+ —2 (") etc. (3.18)
3(p*)

where U: is the velocity component in the direction 3 corresponding to
the pressure difference field Ap*, and (Ap*)’ an increment in (Ap™)
which will produce a new value Uz' On examining (3.16) and (3.17) it
can be seen that,
U AX_ AX
2
= - I J etc.. (3.19)

3(p™) (a4 - plz )
(I,dJ) (1,J)
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Suppose the corrected velocity field Ug, Ur‘and Uz in (3.18) satisfies
the continuity equation, then it can be shown that fhe increment in
pressure at the point (I,J), necessary to cause this effect, is governed
by the equation.

P , _ P : p '
Y0 Perg T A, Pz, T Are1,9) Pir-a,0)

1% ? p r
A1) Por,aer) T Ar,a-1) Pon,a-1)

p ' P '
F A gw Pinaw T Arg,a Ping,d)

*

g

(3.20)

where ;
vy

“ = Py < (%)
I+1,J) (I+%) L o(ap ) +3

(AXJAXK)
and

*

* .
m(l;J) = [ ( PUq ) ( AX_ AX )

(I+%,d) J K T (I+%)

+
—

F3
PUg )1z gy O 8% My )1y

23
O ) r ey M M i)

*
+ ( U, )(I,J—%) ( AXI AXK )(J-l;)

e
POV ) ga M M ) kg

* _
+ (U )(I,J,u) ( AXI AXJ )(K,u)

m?I'J) is the net imbalance for the control volume (I,J) as evaluated by
, .
the U;, U;, U: flow field which resulted from the solution of the finite

difference momentum equations.
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The pressure correction equation (3.20) is fully elliptic in

character, Ap being non zero, Thus an iterative procedure, which
(I,7,d)
will require a larger computational capability is needed for its
solution. If there is a means. of correctly guessing the variations
in the pressure field in z-direction (so that p' = 0), the
(I,d,d)

pressure correction equation too can be treated as parabolic in the
direction-z.

In the shear layers the mean momentum equation in the lateral

direction can be written as
(3.21)

So, in the absence of body forces Fr in r ~direction, the pressure

gradient in z~direction is given by

d | o |k (3.21a)
da dz e

As a boundary condition the right hand side of (3.2la) in known. Therefore
correct pressure gradient can be incorporated in the Uz equation, so
that the pressure correction p! is zero. This makes the equation
(I,J,d)
(3.20) parabolic in a-direction for thin shear layers.
For confined flows, the prior knowledge of the total mass flow
rate enables one to estimate the error in the assumed streamwise pressure

gradient. Linearising the z~direction momentum equation with respect to

.dp

the pressure gradient =i, one obtains,
dz
v U
2 )" DA = A7 Fooe.
A(I,J) b (I,J) UZ(I,J) A(I+1,J) UZ(I+1,J)

- Ax A Az ) . (3.22)
dz ) Z 2
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Uz
Usually b is zero ivin
y (1,7) s B g

u _ QE_AXJAXZAZ

: _
ERn
(2,4) AR

+ eonstantl . (3.23)

Thus the mass flow rate across the control volume at (I,J), in

z-direction is

= U AX AX.
Mz Cer,a) Ber,J) 1 3

= - [ éﬁ.] AXZAX2AZAX1AX2 + Gonstantg

dz Uz
AT,
giving
sz _ AXJAXZAzAXZAXg . (3.26)
L&
o | a» (I,d)
dz _
Now, Bmz
m R € 5T/ Ny - (3.25)
#(1,J) (I,J) * dz '
5 | &
da
* , . [ dp }* o
where m_ correspond to the pressure gradient | .. . Now summing
(I,J) dz
up equation (3.25) over the whole cross-stream plane.
*
om_ |
B(1,J
mz ) = m + A éE. z _._{LI_"__)._.
(I,d) (I,9) dz -
3 | &2
therefore gg
d : 21,0 ! m:(I J) |
| 2 = - 2 (3.26)
dz
3 [ D Ax habX Y }
Uz
41,9

giving

| _ [.‘?B]*+A~[i€] (3.27

dz | porrected da

I.
7
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Equation (3.25) and (3,27) form a consistent set of corrections to the
Uz component and pressure gradient fields. The corrected U,field from (3.25)

will satisfy continuity exactly and [ éﬂ ) from (3.27) will be
dz corrected

a good assumption for the nekt calculation step in the z~direction.

3.3.5 The Case of Axi-Symmetric (or Plane- Symmetric) confined Flow

In the previous subsection it was seen that it is possible to
obtain a Uy-velocity field (equation (3.25)) which satisfies the overall
mass conservation requirement. In a symmetric flow there will be no
transverse gradients of any of the variables. Thus, consideration of
individual control volume mass-balance with the knowledge of U,-fields
in consecutive z-planes will give expressions for velocities in the

lateral direction, (see Fig. (3.4)) such as

0 = (apUz) (apUZ)

(I,J,d)" (I,d,d)

+ ( apU_ ) —(apUr)

v (1, 7-%) (3.28)

(I,d+%)

At the symmetric boundary, however, the U? velocity is zero.
Therefore, the equation (3.28) can be successively applied in control
volumes away from the axis to obtain the complete lateral velocity field.

Thus, in the case of two-dimensional confined flows, the solution
of finite difference equations for the lateral velocity Ur and that for

the pressure-correction p’ is unnecessary.
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3.4 An Ideal Grid

The numerical procedure is employed to calculate, in the order of
importance, the mean variables Ui and C, their respective fluxes a;a;zand
ZEE, and other quantities e.g. € ete.. The inevitable errors associated
in using interpolation formulae in calculations can be minimised by
choosing a grid system where the individual terms in all equations are
calculable without extensive interpolations. In fact it is not possible
to avoid interpolations entirelyf The staggered grid system shown in
Fig. (3.5) does allow one to obtain all terms (except the convective terms
which require interpolations in any grid system) in the mean equations
without interpolation. The variable locations for this grid system is
given in Table (3.1).

In this arrangement, however, interpolations are required in
calculating terms in all the turbulent equations. Now, in boundary layer
flow situations, where, the gradients in main flow direction are much

smaller than those in lateral directions, this grid system can be modified

to advantage with little loss of accuracy.
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Variables

e.g. €, k, c?

Variable Location
Pressure P I ,dJ , K
Mean Velocity Ue I-%, J , K
Components U, I , J-%, K

Uz I ,dJd , K-%
Shear Stresses uruz I , J-%, K-%
ueuz I-z_, J 3 K—;g/
Ugh, I-%, J-%, X
Mean Scalar c I ,J , K
Scalar Fluxes Uu,e I-%, J , K
upc I , J-%, K
uzc I , dJ , K%
Normal Stress ug Ir ,J , K
Components ZLE I ,dJ , K
u: I ,J , K
All Other Scalar I ,dJ , K

Table 3.1 Variable Lacations in an Ideal Grid
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3.5 Staggered Grid Arrangement for (O-r~3) Procedure for Three-and

Two-Dimensional Scalar Transport in a Two-dimensional Hydrodynamic

Field

All equations under consideration in the present investigation
are parabolic in z-direction. This enables one to refrain from considering
a grid system displaced in z-direction. In such a grid system the variables
can be located as shown in Fig. (3.6). Here all variables are known in a
given plane~u and the finite difference equation can be formulated to
obtain new values for the variables at the downstream plane; d.

Further simplification to the grid system is now made by noting

that only two-dimensional flow fields  without a swirl component in

velocity are treated. Consequently, Ué, Ugly, , Ugl, are all. zero.Therefore
all mean and turbulent flow variables can be located in a single (r-z)

plane.

In the present flow situation the gradients of the shear stress Uy
are the most importaﬁt in the Uz equation. The streamwise gradients of
normal stresses have only a secondary'effect in the Uz equation (through
their effect on'Z;&;). Therefore the location of normal stress control
volumes can be made so as to facilitate easier calculation of their source

terms. Now it is obvious that, (I,J-%) point, where the non-zero shear

stress Uy, is located, is the best place for the normal stresses to be

sl
located. At this point the major velocity gradient —2 can be evaluated

or
without interpolation. Further, the dissipation rate € can also be
evaluated at (I,J-%), so that the calculation of source terms in the
€ equation as well as those containing € iin the stress equations can be
made without interpolation.
The scalar field (temperature or concentration etc.) however, being

three~dimensional, its important flux variables should be located as in

the idealised grid. The streamwise s¢alar flux whose streamwise gradients
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have only an indirect effect however, is located along with shear stress
etc. so that calculation of its source terms becomes straight forward.
The variable locations thus displaced to suit the present flow and scalar

transport situation are shown in Fig. (3.7) (only non-zero variables are

shown) .

3.5.1 Staggered Grid Arrangement for (2-¥) procedure

Being a two-dimensional boundary layer precedure, the control
volumes can be displaced only in direction-Y. It can be seen by reasoning
similar to that of the previous subsection, that it is useful to shift
the control volume for all turbulent quantities in the Y-direction by
half a grid spacing. The derivation of the general finite difference

equation in a shifted (x-¥) coordinate system is presented in Appendix (E ).



3.6 Cell layout and Boundary Conditions

In both (x-Y) and (6-r-2) numerical precedures cells are generally
distributed in order to cover the full domain of interest and in
particular, capable of giving closer attention to areas where important
variations occur. Since the turbulence model described in Chapter (2) is
valid only for high Reynolds number turbulence, it can not be applied in
regions very close to the wall wﬁere the Reynolds number is small. Therefore
limitations do apply in laying out the grid in near-wall regions.

In Fig. (3.8), a typical grid distribution in a near-wall region is
presented. Here, 4 is the node nearest to the wall where mean variables
(i.e.U, and () are evaluated. As a criterion the distance between the

node 4 and the wall is chosen so that,

+
> 30 .
Yy

Thus A lies outside of the viscous sublayer and the mean variables at 4
satisfies the logarithmic laws to be described in the next sub section.
Since the lateral velocity gradients in the near-wall region véries
inversely with the distance to the wall more grid points should be
concentrated in this area. In order .to achieve this .a non-uniform grid
distribution should be employed in the near-wall regions.

The method of applying boundary conditions in the (£-¥) procedure
is given in [ 9 ]. The same method can be employed for the variables
evaluated in a staggere& grid as well.

In applying boundary conditions in the (0-r-2z) procedure, the
false-source technique of GOSMAN and PUN [50] is employed (see Fig. (3.9)).
Here, the flux of ¢ implied by the boundary condition is first expliciﬁly
evaluated. Then this flux, &" » 1s supplied to the control volume closest
to»the boundary in a linearised source form given in (3.15), and further,
the finite difference coefficient which connects the boundary value @b

to the control volume value ¢ is set to zero.
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The flux through the boundary J" can be calculated with the
knowledge of prevailing physical conditions. These are discussed in the

following subsections.

3.6.1 Wall Boundary Condition

(a) Mean Velocity Equation
The total stress; Ttot’ opposing the turbulent flow of fluid

parallel to a rigid wall is used in defining the friction

velocity Ut with

Teor |5
u. = [‘ tot ] . (3.29)

T P
This friction velocity is supposed to satisfy the logarithmic
"law of the wall",

yu
N L (3.30)
Ut K v :

where Uz is the velocity component parallel to the wall, at

a distance y away from the wall. The von Karmdn comstant K

is taken.as equal to 0.42 and the constant ¥ is taken as 9,85.

In the numerical precedures employed here, the friction

velocity UT is evaluated from (3.30) and the corresponding

total stress at the wall is enforced as the boundary conditiom.
(b) Meén Scalar Equation

Generally as a boundary condition, the wall scalar flux, &"

or the wall value of the scalar itself CwaZZ is known. In

either case it is the wall scalar flux that is enforced as the

boundary condition for the scalar equation. When (,,7; is known,

the implied total scalar flux through the wall is calculated
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J

using the logarithmic law for scalar i.e.

Cpall = €

Cr

yU
Tk,
Vv

I (3.31)
Ke

Here (' is the magnitude of the scalar at a distance y away
from the wall. The constant K, is taken as 0.46, and the
coefficient Ec’ which is a function of molecular Prandtl

(or Schmidt) number of the fluid, is chosen from equation

(4.18) which represents a consensus of wall flow data. The

total scalar flux through the wall

g" = pe U C . (3.32)
i P T T

~

can now be calculated with U; and C; obtained from (3.30) and

(3.31) respectively.

(c) Shear Stress and Lateral Scalar Flux Equations

The control volume for a;a;(or &;E)_closest to the wall is
centered at B ( see Fig. (3.8)). It is the diffusive flux ef Z;Z;
(or E;E) across the surface at 4 that is required as the
boundary condition. Now in order to evaluate the diffusive
flux across 4, the value of Z;Z;Kor E;E) at A needs to be known.
This value is estimated with reference to the relevant mean

equation. By integrating the mean momentum Uz equation between

the limits » = rb (i.e. at 4) and » = R (i.e. at the wall) one

obtains
( oU W, 1%
ruu = - | —R+y —24 ~E r dr
ra % 3z r or p 0z
r=ry ~ g
p
( Y, . |
+ | rv—2 - rv—2 (3.33)
or or
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where

rV 5—§ = T = -R Ui .
r | p=R tot

Similarly, the integration of the scalar equation yields,

s
,

ruce = - | U §Q,+ U Y r dr
r rery L 2 3z r 3
“p
P p L 3C (3.34)
{ pcp d9r |r=R pe. or r=ry

where

R q"
r F.gg- = e .

The right hand side of (3.33) and (3.34) can be explicitly
evaluated. The diffusion coefficient in the equations for

turbulence quantities are of the form,
7
k
€

$

constant X

which increases linearly with ¥, in the local equilibrium

region since € & y—l and the stresses are constant. Thus the

diffusion of uruz and u,c¢ through the surface 4 (see Fig. (3.8))

can be written as

(k22 -
u yA (uruz)‘4 (uruz)B
flux of u_u_ through 4 = constant —
2 ~
| € JBYB yA yB
and -y I U
(% u; ) Yy (urc)A - (urc)B
flux of u,c through 4 = constant . —
\ jg¥8 Y4~ Yp
(3.35)

The value of the constant is determined from the diffusion

model employed.



(d) All Other Turbulence Equations
In all other turbulence equations, expressions similar to
(3.35) are employed in calculating the diffusion fluxes
through the‘surfacé at.A. For all normal stressesAand remaining

scalar fluxes, their magnitudes at A4 are taken as simply

related to U, and U, values obtained by equations (3.33)
and (3.34) respectively, constants of proportionality are
obtained from consensus of near wall data, as discussed later
in Section (4.6). The value of dissipation rate at 4 i.e. €y

is chosen in order to get the diffusive flux as implied by

the relation

U
T
Uh g =™
ra
Ky

(3.36)

3.6.2 Symmetry Axis (or Plane) Boundary Conditions

For all variables except the shear stress uruz and the scalar

flux U,Cs the boundary condition at » = 0 is that of zero gradient,

i.e. zero flux through the boundary. The values of u and U,c at r = 0

s
is in fact zero by definition. In the three-dimensional problems the
6-boundary condition too should be given. In a general problem a gradient
of C in the B-direction can be enforced by supplying the implied scalar
flux. In the present investigation, however, two (1-2) planes of symmetry-

could always be identified. In these cases the transverse scalar flux

is zero at the boundary.

3.6.3 Free-Stream Boundary Condition

The (6~-r-z) procedure in its present form has a (r-8) grid which
is invariant in the z-direction. In flows with free boundaries, however,

due to the spread of the layer, it is undesirable to employ such a grid
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in calculation. For such flows it is useful to have a grid which expands,
along with the flow, in the main flow direction. Therefore problems with

one or two free stream boundaries afe tackled by Patankar-Spalding procedure
which has an expanding grid facility. (Problems with free stream boundary
were successfully solved with slightly different (6-r-3) procedure by

SYED [16].) The free stream values of all variables can be evaluated with
reference to their respective differential equation by assuming zero

lateral gradients for all variables. This will yield equations of the form

20
v— = g° , (3.37)
d

which can be rearranged to an explicit form as,

s? ax

q)d = 7 + CDU. (3.38)

where @d and.@u are the downstream and upstream values of ¢ respectively.
The value @, obtained from (3.38) can be incorporated in the procedure

as given in [9].
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3.7 Treatment of Conducting Wall in the Numerical Procedure

Investigation of scalar diffusion in internal flows e.g. pipes,

under laboratory conditions is common and practically very relevant.

BLACK and SPARROW [13], QUARMBY and ANAND.[59], CHAN et al., [60], and

the present experimental investigation (see Chapter 5) considered
three~dimensional scalar diffusion with a variety of wall boundary conditions.
While the attainment of a perfectly impermeable wall in a mass transfer
experiment presents no difficﬁlties the same is not the case in a

heat transfer study. Heat conduction in the pipe wall may significantly
modify the idealized boundary conditions particularly when the heat

source is applied externally (an arrangement that simplifies the experimental
task). Though conduction effects can be minimized by correct choice of
materials, in three—dimensional scalar transport investigations they

can not completely be neglected. In making predictions of such cases it

was thus necessary that the mean scalar transport equatipn (which is the

only variable relevant in the wall scalar transfer) be solved in an area
covering both the wall and the inside of tube.

Inclusion of a wall, with finite thickness, does not pose any
additional problems in the numerical procedure, because the heat conduction
is just a much simplified version of the convection equation. For
generality, consider a tube heated by a flux qg(e) through its outer
surface (as in the present experimental investigation) and heated internally,
by say an electric current (as in BLACK and SPARROW's [13] experiment)

at the rate of S per. unit volume. Due to the circumferential

c
(r,0)

conduction effects in the tube wall the heat flux through the inner wall

can not be directly evaluated. The solution of the partial differential

equation for { however require following additional relations,

(a) Total heat from outer surface = qg(G) ROAG Az (3.39)
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(b) Generation of heat in wall control volumes

= 5%(r,8) »* 06 Az (3.40)
and '
(c) Total heat diffused from the tube to the fluid
=q" (6) R. A8 Az (3.41)
where 1 1
g" (8) = |T x (3.42)
1. wall or r=R,
and v
. (C, -=CJ)pec U k .
q" () = L4 p._T ¢ | (3.43)
7

n ( yZE’c )

These relations of heat flow can be incorporated into the numerical
procedure in the'foilowing manner. The equation (3.39) is the boundary
condition applied to the outermost control volumes, £ (see Fig. (3.10)).

The heat generation (3.40) is included in the source form for all wall
qontrol volumes. The heat flow relations (3.41) - (3.43) can be incorporated
implicitly by expressing them in the finite difference forms, i.e. (3.41)

and (3.42) written as

Ri AS Az
Q. = T = (CH - C, ) (3.44)
wall , D b’
b Arpp |
c
= A (¢ ~¢C. )
(I,J-1) D b
The relevant coefficient AC of the control volume at D can be
| (I,d-1)
modified as
R. AB Az
A =T S —— (3.45)
Similarly the coefficient AC of the control volume 4, can be
(I,J+1)
modified to read
C pe U x
A = ___EL_I__E.Ri AB Az . (3.46)

(I,J+1) in ( yyE, )
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In the present computational code, however, there is a grid node

at b | having zero volume. Therefore its A?;;J+1) and A?},J—l)

should be adjusted so that they are equal to the right hand side of

coefficients

(3.45) and (3.46) respectively. This has the effect of solving (3.42)

and (3.43) to obtain Cb.
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CHAPTER 4

REVIEW OF EXPERTMENTAL DATA

4.1 Introduction

Accurate experimental data aré essential for the development -
turbulence models. It is these which direct the initial modelling ideas;
mathematics follow next. Again, since the turbulence models are not fully
analytic, determinétion of any unknown coefficients can be done only
with reference to experimental data. Then in order to check the validity
and generality more and more accurate experimental findings are necessary.

Measurements of scalar fields are not as extensively available as
those for hydrodynamic fields. Even among those available there are few
which are relevant for this Thesis. Moreover, judgement have to be made
in order to establish their reliability. An extensive review of free
shear flow hydrodynamic data are given by RODI [61]. Here in this
chapter, attempt is made to survey free shear flow and wall flow scalar
field data in situations covered by this Thesis.

Section (4.2) identifies the kind of data which are useful to have
in order to formulate and validate second-order closure models in scalar
transport. The basic criteria for assessment of these data are presented
next.

Characteristics of free shear flows, mainly with respect to self
similarity, are presented in Section (4.3)..The expressions for scalar
flux in terms of mean scalar and local flow characteristics are obtained
for the shear flows under consideration. This further enables one to
obtain expressions of the eddy diffusivity ratio between momentum and
scalar transport in terms of local characteristics. In Section (4.4) these

rélationships are used in checking the consistency of available data-



Characteristics and review of two—dimensional wall flows are
presented in Section (4.5) - (4.6). This covers the hydrodynamic and scalar
transport aspects of the flat plate boundary layer and the circular pipe.
The discussion is centered around the logarithmic laws for mean velocity
and mean scalar.

The three-dimensional scalar field data are discussed next. The
different geometrical arrangements used by experimenters in obtaining
three-dimensional scalar fields are given here. The comments made by them
on the thermal or mass diffusivity, especially the anisotropy in the near

wall region, are mentioned here.
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4.2 Data Required and Criteria for Assessment

In order to understand the scalar transport problem in turbulent
flows it is useful to have accurate information on the individual terms
in both hydrodynamic and scalar equations. Focusing attention solely on
the scalar transport equations, Table (4.1) sets out the quantities whose
measurements are desirable for better understanding and guidance to the
solution of the problem. They are categorised in their order of importance.

Mean scalar field measurements are the most important in understanding
the flow situation. They are direcﬁly relevant in practical usage and
reliability of these measurements is greater than for other quantities.

In some flows the scalar flux field is directly expressible in terms of
the main scalar field: Section (4.3). Hence these measurements can be
used in checking the accuracy of the flux field measurements.

The second-order correlations i.e. the turbulent fluxes agg_and
scalar fluctuations ;Z are very desirable to have, since it is these
quantities that a second-order closure will solve for. Direct comparison
of predicted correlations is possible only when accurate measurements of
these quantities are available. The knowledge of other correlations are

useful in modelling terms in the flux and scalar fluctuation equationms.



Category | Mean Scalar Second-Qrder Other Correlations
Correlations
Quantity c ve | ue | e2 | we!l e,| vPe | we | ve? | vwe uwe we’ wle Py | Pow sz—
c x% | % %%
*k ve | * x * *
Equations
in which - *
they x* ue * *
appear
ko Hok a2 *k * *
*k e * % %
Remarks + In In In In In In
3-D 3-D 3-D | 3-D 3-D 3-D
only only only | only only only

ot

2

¢® interlinks with other equations only when buoyancy is present

Table 4.1 Data Required and Their Relative Importance
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4.2.1. Criteria .for Assessment of Data

Turbulence measurements of properties of the scalar field are rare
in the literéture. Often it is only the mean scalar field that is measured,
sometimes scalar fluxes and scalar fluctuation correlation are reported
and seldom any higher-order correlations. Thus the following criteria -
will be used mainly for ﬁhe purpose of establishing credibility of data
and understanding their applicability to the present investigation, and
not necessarily for making any form of selection between them.

Criterion (a) Hydrodynamic field measurements,‘if reported, should have
high credibility. In the case of frge shear flows, reference
is made to RODI {61] where an extensive review is given.

In the absence of any analytical forﬁs for tﬁe turbulent
field, data will be assessed in the light of measurements
by other workers.

Creterion (b) The mean scalar should be conserved.

NOTE: Most data in the literature are found in non-
dimensional fdrms, often implying satisfaction of this
criterion.

Criterion (e¢) The diréctly measured scalar flux field should agree with

the corresponding fluxes obtained from mean scalar equatioms.
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4.3 Characteristics of Free Shear Flows

4.3.1 Integral Forms of Mean Equations

The general behaviour of a free shear flow depends primarily on
the total excess or deficit of momentum and that of scalar present in the

layer relative to the external streams. Integrating the momentum equation

(1.8) over the whole cross-section of the layer defined by boundaries I

and F , for plane flows results in the following equation

Y yE
2 U -+ - dy+£Z£jE (U -U_) dy
o E dx E
0
E
VU -U) =0 . (4.1)
I

In symmetric flows I is the plane of symmetry; therefore the last
term in (4.1) vanishes in those flows. In the present investigation only
free shear flows in zero pressure gradient are considered. Hence equation

(4.1) reduces to

Yg
- 3

2 =
UU-Up) +u? - 0% | dy -V (Up=Up) = 0

ox
(4.2)
Similarly, by integrating the mean scalar equation between boundaries

I and F and applying the boundary condition that the external-stream value

of the mean scalar, CE , i1s constant,

Yg
3 — | _
= v (¢ - CE) + uc | dy - Vs (CI -Cp) = 0 (4.3)

The experimental data for the present investigation should satisfy

equations (4.2) and (4.3).
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In fully.turbulent’flow~there exists a region of flow over which
the direct action of wiscosity on the mean flow is negligible. Within this
region the mean and turbulent motion are determined by the boundary
conditions alone. So that all terms in the mean and turbulent equations
vary at the same rate in the streamwise direction. Sometimes there are
features in a flow which prevent the occurence of a self similar form
or allowing only an asymptotic self preserving form. In order to find out
the relevant form for a given flow condition equations (4.2) and (4.3)

should be checked in that flow condition.

4.3.2 Definition of Self Similarity and Decay Laws

Definition of self similarity as given in TOWNSEND [62] is,

"For a particular flow to be self preserving, it is :
necessary that the variation of any quantity over any
plane, ¥ = constant should be expressible non~dimensionally
through suitable scales of length and velocity, § and

U ., as a universal functdon of y/§ . The scales of

o

length and velocity are functions of x only."

In order to cover the scalar transport problem this definition is
extendéd by prescribing a mean scalar scale Co which is a function of ¥
only. It is often the maximum deficits in velocity and mean scalar at a
given section that are used as characteristics of that section. As for
characteristic length however, one can make a choice to suit the situatiom.
In the presentJinvestigation the representative length scales are chosen
so that they are easily comparable with available experimental data and
that they are easily obtainable from numerical calculation. The Fig. (4.1)

shows the characteristic lengths chosen. They are,



(a) For plane jet and plane wake,
§ = distance between centre line and %;-plane.
(b) For plane mixing layer,
§ = distance.between 0.105 and 0.9V, planes .
Often in literature the scalar field measurements are presented with
respect to another characteristic length 60 s given by
(a) For plane jet and plane wake,
60‘ = distance between centre line and %g-plane.
(b) For plane mixing layer,
Sga ; distance between 0.1C, and 0.9¢, planes.
Here too 60 is chosen as the characteristic length for the scalar field,
noting that 60 is directly proportional to § in all flowé.

The self similar forms of variable profiles in the cross-stream

can now be expressed as

U = Up + U, f 40}

14 = U, g fn}

w = Ué' ho{ni

u? - p? = Ug q {n} etc.
and

C = Cp+C,m n, 4+

ve =. Uo Conx‘nc}

w = U C p fn } etc..

o o e

where functions f , g etc. are the non-dimensional variable profiles.

For symmetric flows,

= H_ A . = -y- . 4.4
n < and n, 5 ( ,)

For plane mixing layer,

(y - yg/ (y ~ yy)
N = —— and n = — .
8 c 8,
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The conditions for exact self gsimilarity can.be obtained by substituting

(4.4) into the mean momentum and mean scalar equations, They are:

bl =. constant

dx

EE = gonstant

Uo

§ du,

—_— = constant

U, dc

das )

< = constant

dx

S dc

£ 79 = constant . (4¢5)
¢ dx .

The flows under consideration, if and when self similar, should
satisfy equation (4.5). Of the three flow situations under comsideration
experimentai data (see Section (4.4)) suggest that the plane jet and the
plane mixing layer satisfy (4.5). The plane wake does not satisfy
%E = constant , exactly, but found to achieve an approximately self similar
erm when g§->> 1.

Table (4.2) gives the decay laws which can be derived from
equation (4.5). To be exact, the power laws given in Table (4.2) should
have (X + X,) as the basis, where X, is the virtual origin of the flow

This origin is found to depend on the exact conditions of flow generation

and is generally estimated by back extrapolating data at known x~locations.



Flow UE 8 UO Cb Gc
Plane Jet 0 « & « x‘% , « x-% « X
0 @ eonstant constant & x
Plane Mixing Layer
constant « & constant ~constant « &
Plane Wake gg >> 1 « o = x—% « x—% o %
' o}

Table 4.2

Decay Laws

§

- €ET -
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4.3.3 Expressions for Shear Stress and Scalar Flux for Self Similar Flows

The shear stress and scalar flux at the free edge is zero and at
a plane of symmetry they change sign. Hence shear stress or scalar flux
at any point in the layer can be calculated by integrating their respective
mean equations. The expressions thus obtained are tabulated in (4.3).
The shear stress relations were taken from RODI [63].

The expressions for scalar fluxes can readily be transformed to
incorporate the characteristic length of the scalar field Gc and its

associated parameter nc where

§ n. = é&n (4.6)



Shear Stress Relation

Scalar Flux Relation

Flow
(RODI [63]) (Present Work)
. n n
Plane Jet = E@.[%f{fdn+nq (4.6) - ds Z;m{f'dn+np] 4.7
Up = 0 dx dz J
. 0 0
ds & & ds " {
A 2 A
= 22 nf - dn | - dn =—-—[[ Hrvn-[mdn)—den
dx[[z-k][f jf ] Jf dx 1-A ) i
0 0 0 0
\ “n n \ n n
Plane Mixing -(f-l)[[———}den+Jf2dn -(m-l)[[ )den+jfmdn
Layer ’ - A -2
Ug 0 0 0 0
T = A (n n n n
I +.Jqdn]+mjfdn +den]+mjfdn
0 0 0 0
n _ n
-Jqdn+(n+nI)q] (4.8) -den+(n+nl_)p) (4.9)
0 0
Plane Wake Up 482 : Ug  d4s®
= £ (4.10) = =—nm - (4.11)
.g§>>1 2U06dx f 2U06d.’13

Table 4.3 Self Similar Shear Stress and Scalar Flux Relationms

0
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4.4 Review of Data for Free Shear Flows

In this section scalar transport data for free shear flows are
discussed. The analytical, self similar scalar flux relations derived in
the previousisection are used here to calculate the shear stress and flux
profiles implied by the mean equations. They are compared with measured

profiles of wv and ve .

4,4,1 Plane Jet

Table (4.4) shows important flow parameters for some scalar
measﬁrements of plane jet., NEWMAN's [64] review suggest a value of 0.11
for the rate of spread éé of plane jets. RODI's [61] review show values
‘ranging from 0.102 to 0.11 for the same. Rodi's recommended target velocity
profile of a plane jet is that of ROBINS [65] and it has a spreading rate
of 0.103. In passively heated jets the value given in DAVIES et al. [66]
comes closest to the above. Jet of VAN DER HEGGE ZIJNEN [67] can not
possibly be considered passive because of its high temperature difference.

Unfortunately thefe are no measured cross-stream scalar flux
data available for comparison here. The maximas of calculated Ez.profiles
show good agreement with each other. The ratio of the spreading rate of
scalar field to that of velocity field has a value of 1.40 to 1.46 in
all cases except that of Davies et al,, JENKINS and GOLDSCHMIDT [68] quote
values of 1.41 and 1.40 for this ratio from experiments of REICHARDT [69]
and SINGH and UBEROI [70]. The spreading rate ratio found by Davies et al.
is even smaller than the value 1.25 generally qﬁoted for round jets. This
may imply that the low aspec¢t ratio of 6 in Davies et al.'s experiment
is not sufficient to give a fully plane symmetric jet.

Davies et al. made conditionally sampled measurements of mean
velocity and temperature fields and found that turbulent fractions of these

fields spread at more or less similar rates, 0.155 and 0.140. They



Reported meas.| calc. + — %
Experimenter Geometry Flow Range Variables; ds d5c ve,, ve, (e )m
’ Technique o0 T
1 dx dx U,C, | U,C, AC
VAN DER HEGGE | D = 0.5em | AC. . = 107°C u, Cc, 0.096 0.141 0.0295
ZIJNEN [67] L =10 cm Jer ot i
a ot-wire
gn= 1 em anemometer
L=25cm
JENKINS and D =1.27cm | Re = 1.43 x 10" u, c, a) 0.088 | a) 0.123 0.0273
GOLDSCHMIDT L = 30.4cm chet = b) 0.091 |. b) 0.128
[68] a) 1.11°% pitot— c) 0.096 | c¢) 0.137
' b) 20.7°C static
c) 35.0°C tube and
' hot wire
anemometer
DAVIES et al. D=25.1cm | Re = 4.6x10" U, u?, 0.109 0.125 0.0271 0.18
[66] L = 30.5cm | AC, .  14.6°C —
d c, : s
T
= =10+ 25 hot wire
8 anemometer

+ see Table (4.3)

Table 4.4 Scalar Measurements in Plane Jets
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concluded that the'spread of the heated turbulent jet is better represented
by a variable associated uniquely with the turbulent fluid and chgse the
half intermittancy point of U aﬁd C fields for comparison. The variation

in U and ¢ fields were coincidental. LAUNDER [71] reports that conditionally
sampled measurements of JENKINS and GOLDSCHMIDT [68] indicate that for
turbulent fluid in plane jet a Prandtl number of 0.40 , virtualy uniform
across the jet. This is much lower than the implied value of 0.80 in

the experiments of Davies et al..

Thus it seems that there is considerable disagreement between
experiments as regards to the relative spreading rates of scalar and velocity
fields. Since a value of 1.40 - 1.46 from unconditional (conventiomal)
measurements seem more consistent, that value is chosen as the representative
one suitable for comparison with numerical_predictions.

As for the hydrodynamic field; on the recommendation of RODI [61],
ROBINS [65] velocity profile and BRADBUR&'S [72] turbulent stresses are

considered for comparison with numerical predictions.

4.4.2 Plane Mixing Layer

Table (4.5) lists the experimental conditions and some important
flow parameters of scalar field measurements found in literature.

RODI [61] pointed out that the agreement in the spreading rates
of the mixing layers he considered with given velocity ratio is rather
poor. WATT's [73] velocity field spreading rate lies along the average
value for that velocity ratio whereas SUNYACH and MATHIEU's [74] spreading
rate is slightly higher than the average level for H§.= 0.

The sprea&ing rates of the scalar field againIdepends on the ratio
between the free stream velocities. The overall Prandtl number of the flow
is inversely proportional to the ratios of the squares of spreading rates.

Thus Watt's data imply an overall Prandtl number of 0.78 whereas Sunyach

and Mathieu's data imply a Prandtl number of 0.5 .



. Reported meas calc. meas. calc. /m?—
Experimenter Flow Conditions Variables a5 ds, uv,, v, ve, 55% C
and Technique - - i Tz
used dax dx Jo Uo Uoco Uoco -Co
| ; U, w, u?,
E —_— = v
WATT [73] 7= 0.50 v2 ,w? ,C ;| 0.045| 0.051| .0091 | .0105 + | .0120 | 0.112
T _ _ A ‘
e? ,
Half plane jet, — - . ) :
SUNYACH and 4em x 4. 8cm U, w, u>, | 0.18 0.249 | .0140 | .0132 .0203 | 0.135
'MATHIEU [74] Ug _—
—==0 2 2 o
UI Vo, w. 3 )
X B J—
7 =1.0~ 3.0 c*
Re, , = 5.25 x 10"
Jet
‘AT = 54%
FIEDLER [75] Half plane jet, c , ;E-, 0.210
AT = 26%c¢
o _
BROWN and L =1 1 and7 u, o,
ROSHKO [76] g 7
U Pilot + hot
L =v7 and 7 wire
Ug

+ normalised with respect to maximum value

Table 4.5 Scalar Measurements in Plane Mixing Layers

St



- 140 -

Again there are no reported heat flux profiles in plane mixing
layer found in the literature, Watt has given a heat flux profile normalised
with respect to the value at the centre of the layer, The heat flux ve

—_— = — L
calculated from his profiles of correlation coefficient ve/(v* c%)?

;E'and Z? has a maximum of about 0,003UOCO , which is only one quarter
of what is implied form his temperature profiles. This raises serious
doubts about the accuracy of other variable measurements.

The hydrodynamic field measuremenfs of SUNYACH and MATHIEU [74]
are not in good agreement with mbre consistent data of others (for e.g.
BRADSHAW et al. [75]). The measured shear stress has a maximum which is
about 407% higher than that of Bradshaw et al. and also the kinetic energy
is about double that found in measuréments reviewed by RODI [61]. This
appears due to the flow being still not fully self similar in turbulent
producing central region of the mixing layer.

The temperature fluctuation profiles of SUNYACﬁ and MATHIEU [74]
and those of FIEDLER [76] show remarkably similar uniform level over the
central 50% of the layer. Fiedler pointed out that the corresponding mean
temperature profiles has three inflection points and they in fact coincide
with the two maximas and one minimum found near the mid regions of Z?
profile.

BROWN and RSSHKO [771 studied mixing between different velocity
streams with different densities. Mixtures of Nitrogen and Helium were
employed to obtain density ratio up to 1:7 and measufements'were made of
mean velocity and density; In this case density can be treated as the
scalar. Their deduced value of the turbulent Schmidt number was only 0.16
in the central regions of the mixing layer which is far lower than values
reported for any other turbulent free shear flow.

For comparison with numerical predictions, Watt's data will be used
for the -case ng# 0 and SUNYACH and MATHIEU [74] and WYGNANSKI and

I

U
FIEDLER's [78] data for the case ﬁ@,— 0 .
‘ I



4,4,3 Plane Wake
Plane wake can become approximately self similar for large values

U
of £ ., TOWNSEND [79] appears to be the first one to have conducted

U
detazled measurements in heated and unheated wakes. His results indicate
that both mean quantities as well as turbulent structure become nearly
self preserving for (X - X,)/D > 500 , the former achieving similarity
earlier than the latter. Experimental findings of others given in Table (4.6)
indicate that self preserving region for the mean variabies can start
as early as 100D .

RODI's [61] review recommend Townsend's measurements of the

hydrodynamic field as the best in consistency. The spreading parameter
for a plane wake,

U
y 2 |

4.12
Z | T, (4.12)

in Townsend's case has a value 6;114, and is 10-15% higher than other reported
wake data. The spreading parameters of other meaSurement sets are in good
agreement with data sets presented'in Rodi's review.

The relative rate of spreads of scalar and velocity fields seem to
Ee in reasonably good agreement with each other. In all cases, the implied
overall Prandtl number, which is the inverse of the square of the relative
rate of spreads, indicate values in the range 0.6 - 0.7 .,

Although TOWNSEND's [79] lateral hear flux data have large scatter,
agreement with level of flux implied by the mean temperature profile is
reasonably good. The measured level of heat flux maximum in FREYMUTH and

UBEROI's [80] data and that of FABRIS [81] are too small by 40% and 45%

+ Rodi has obtained a value of 0.098 from Townsend's data and correspondingly
his calculated value of non dimensional shear stress maximum is 0.051 .
This is in good agreement with Townsend's measured (uv/vg)max .



Reported meas. calc. meas. calc. — %

Experimenter Flow Range; | Variables; Uy S S ULy, Uvpy ey ve (e )i

Geometry Technique e : = e 2

eometry qu UE 8 U U U,C, U,Co Co

TOWNSEND Re = 1360 U, w , u? 0.093 0.114 1.30 0.049 0.059 | 0.073- | 0.078
[79] circular S - 0.031 0.086

cylinder v? > w? s C :

X —

L =89 -

D 950 ve ,
FREYMUTH and Re = 960 v, Cc, EZ-, 0.0344 0.0934 1.22 0.035 0.056 | 0.403
UBEROI [80] circular _ at X :

cylinder e? , ve? , D

X =25~ = 1140

D €

1140 e’

fo = 40

D
LA RUE and Re = 2800 c, %,
LIBBY [82] circular

cylinder

X = 400, 500

T

Yo - 40

D .
FABRIS [81] Re = 2400 v, VvV, Cs_| 0.057 | 0.0958 11.26 0.050 0.034 0.061 0.351

circular ve , uc , ¢%,| at X

cylinder 2 > D

X'= 200, 400 Z5_» X~ _

D uve ,-ve 400

Hot wire

Table 4.6

Scalar Measurements in Plane "akes
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respectively, The reason for such a large discrepancy is not clear, at
least in FREYMUTH and UBEROI's [80] measurements it is not due to lack of
self similarity because their final measuring station is 1140 diameters
from the cylinde:. |
Fabrig measured the streamwise heat flux uc and in the area of maximum

lateral heat flux, the ratio “C is about 1.4 . At the plane of symmetry .
the value of uc is about halfvihe maximum e .

The levels of temperature fluctuations in wakes reported here seem to
agree resonably well with each other. LA RUE and LIBBY's [82] v ¢? profile
normalized with respect to the value at the axis coincide over most parts
of the wake with profiles of Freymuth and Uberoi. The maximum value of v &2
is 407 higher than the value at the axis.

FREYMUTH and UBEROI's [80] measurements of temperature gradient
fluctuations indicate local isotropy over the bulk of the wake. Although they
have shown.that the terms in temperature fluctuation equation are in balance,
the overall accuracy may be rather suspect with the large discrepancy
between measured and calculated heat flux profiles.

The measurements of heated wake behind a flat plate made by KOVASZNAY
and ALI [83] show some effects of buoyancy. Even though their mean velocity
and mean temperature profiles are hardly affected, the shear stress and heat
flux profiles across the wake show considerable asymmetry.

For comparison with numerical predictions, TOWNSEND's [62], [79] data

will be used. The data of others too will be presented for further comparison.
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4,5 Characteristics of Flows Affected by Walls

In fléws which are affected by one orrmore walls, there exist thin
layers adjacent to the walls whe;e the viscous stresses are more significant
than turbulent stresses. The principle of Reynolds number similarity can
only be applied to the fully turbulent region where these viscous effects
are negligible. The similarity and dimensional arguments show that (see
for example TOWNSEND [62], page 200), in the region of overlap between this
viscous layer and the fully turbulent region, the mean velocity takes a

universal distribution of the form,

U U :
v o= Li1n . (4.13)
K v
where
- 1. %
UT = 5 TwaZZ (4.14)

k is the Von Karman constant and has a valﬁe about 0.41 . (Different
workers have obtained values between 0.35 and 0.43 from their experiments.)
B too is constant and has a value equal to about 5 ,» again determined from
experiments. This is probably the most exteﬁsively used expression in
‘wall flows. It has limited validity in adverse pressure gradient flows,
while in strong favourable pressure gradient flows considerable deviations
occur.

Now, when the mean scalar equation is examined with the similarity
and dimensional arguments parallel to previous considerations it can be
seen (see for example KADER and YAGLOM [ 8 ]) that the mean scalar takes

the form

U
(c,-C) = flln.é./_l+Bc(Pr} (4.15)

KC Vv

where Cw is the wall value of C , and CT is given by

q"
cT = W (4.16)
p cp U,r
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é" is the total flux of C .through the wall, Here again Kea is a consgtant
w . ;

and Bc’a function of the molecular Prandtl number of the fluid, The
turbulent Prandtl number of the flow in the region where the above

logarithmic laws are valid can be obtained as

Pr, = XK . (4,17)

4,5.1 Turbulent Prandtl Number in the Near Wall Logarithmic Region

In the abéence of any analytical forms for the mean velocity and
‘mean scalar profiles, the turbulent Prandtl number can be found with known
Reynolds stress and scalar flux only. Like in free shear flows, the stress
and flux profiles implied by the mean velocity and scalar profiles can be
obtained by integration. A knowledge of streamwise variation of mean
variables and the values of wall stress and flux are however needed for
the integrations.

In the review paper by KESTIN and RICHARDSON [84], the Prandtl
numbers were obtained by the above method. The numerical value of Prt
close to the wall seems to lie in the region of 0.9 - 0.7 , however the
depenaence of Prt on thebdistance from the wall did not seem to follow any
particular pattern. It is clear that if the mean velocity and passive
scalar obey some universal logérithmic laws in the near Qall region, then
in that region the turbulent Prandtl number will come out to be a constant.
KADER aﬁd YAGLOM [8] compiled heat and mass transfer data in boundary
layer, circular pipe and channels and reploted them in semi-logarithmic
coordinates in order to obtain Prt as from (4.17). Their findings clearly:
show that Prt invthe logarithmic region is independent of the flow geometry
and molecular Prandtl number of the fluid. Oﬁt of twenty one data sets

only five were found to give Pr, outside the range 0.8 -~ 0.9 . Also they

17
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noted that the constant B, in equation (4,15) is a strong functien of the
molecular Prandtl number. Some curvefit expressioms for Bc are gi?en\in

[8], for example

B, (air , Pr=20.7) = 3,0 ~ 4,0
B, ( water , Pr = 6,0 ) = 30.0 - 40,0
B, ( mercury , Pr = 0,026 ) = ~8.0 - -10.0 (4.18)

It is important to note here that a range of 0.8 -~ 0.9 for Prt is
representative only in regions where both mean velocity and scalar sétisfy
respective logarithmic regions, if at all present, can be very thin and
will depend on the main stream distance in both the streamwise and
cross-stream directions.

Several workers have inveétigated-the effect of molecular Prandtl
number on the turbulént Prandtl number. QUARMBY and QUIRK's [11] pipe
flow diffusion studies covering a Schmidt number range of 0.7 to 1200

show no detectable effect of Pr on Prt .



4,6 Reviey of Data fpr‘Wall'FlOws

In the extg;nal waii flows, the characteristic Reynolds number of
the flow does not generally stay constant, Therefore evaluation of shear
stresses and. scalar fluxes from corresponding mean profiles is possible
only if they are known at two or more streamwise locations.: Since this
evaluation can not be done very accurately using published mean velocity
and scalar profiles, no attempt will be made to do so here,

For fully-developed internal flows analytical evaluation of shear

stress and scalar flux for fully developed flows can easily be obtained

from:
puww = 1 (%)+nudl (4.19)
w
_ R
R
and j} Uer dr
e = -qg B_1 0 + L3¢ (4.20)
Yype (R pe 3
p J Ur dr P
0

For the developing flows to which attention is giveén in this thesis,
the scalar flux can be evaluated only if the streamwise development of :
mean scalar profile is fully documented. Here again no attempt will be

made to calculate ve from previously reported C profiles,

4.6,1 Flat Plate Boundary Layer

As mentioned in Section (4.,5.1) there are several investigations
of turbulent heat transfer from flat plate boundary layers to be found in
the literature. Extensive measurements of mean temperature fields with a
variety of wall boundary conditions was reported by REYNOLDS et al. [85].
Following them measurements of turbulent scalar correlations started to

appear, Table (4.7) gives some details of such available data for smooth



Experimenter Boundary Rea Reported Near- Wall uc g e? Remarks
Condition Variables Pr, ve
JOHNSON [88] step in U, u*, v?, 1.0-1.1 uc 3.0 ;:_ Measurements
and [89] wall —_ . - Max - max = | made at only
temperature w, w, C, _ U,8C, 1 (ACO)2 two locations
W, ve, o2, 5.5x1072 1.0x10™2
w? |, v¥,
w? , ve? ,
BLOM [10] step in Red U, u?®, = 0.92 Several
see also wall _ »Mai - measuring
{861 temperature | = 2870 u , C , locations
e® , ve ,
ANTONIA step in Re c, e, 1.0-1.1 uc (— c? U profile not
et al. [90] wall heat $,0 . __max we max reported
“flux = 3070 ve , ue , ‘ UTCT \vepmax C’i
= 2.1 = 2.1 = 4.6

Table 4.7 Scalar Measurements in Smooth Flat Plate Boundary Layers
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wall boundary layers. Also the works of FULACHIER and his collegues (see
for example [87]) have presented considerable amount of data for boundary
layers with heat and mass transfer,

JOHNSON [88] presented a complete set of second order correlation
data in a thin thermal boundary layer growing inside a thick velocity
boundary layer. From measurements at two streamwise locations he could
calculate the shear stress and heat flux profiles implied by mean profiles. .
Though his measured uv is about 30% less than the values implied by
velocity profile, the measured heat flpx ve is in good agreement with .
calculated pc. . Because of rather short heating length the temperature
profie is probably not fully developed and the turbulent Prandtl number
seems rather high at about 1.0 - 1.1 .

BLOM [10] made measurements effectively under similar conditions
to that of JOﬁNSON [88]. However he concentrated on fewer variables over
a larger heating length. Mean quantities were presented in semi-logarithmic -
scale. In the semi~logarithmic region the Prt had a value of about 0.92.

ANTONIA et al. [90] presented conditionally sampled measurements
of scalar correlations in a thin thermal boundary layer created by a step
in wall heat flux. They obtained a value of 0.41 for comstant Kc in
equation (4.15), implying a Prandtl number of about 1.0 . Their wall heat
flux calculated ffom the entha;py integral equation was about 207 higher
than the actual wall flﬁ#.

Johnson's value of 3.0 for the ratio of streamwvise to lateral heat
flux in the near wall region is higher than the values found by ofhers.

ANTONIA et al. [90] indicated ¥& of 2.1 similar to the value obtained in
ve i
the rough surface boundary layer experiments of PIMENTA et al. [91]. As

seen later this value is consistent with the near wall value of “£ in pipe
: vz
flows. The correlation coefficient of the streamwise heat flux obtained

in Johnson's tests was about 0.75 near the wall and this value is the same

as that obtained by Pimenta in his experiments.
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For comparison with numexical predictions Qf heat transfer in the
flat plate boundary layer, the data of ANTONIA et al, [90] is employed.
They have reported measurements of mean and turbulent scalar variables
for several locations along the plate and prediction of this development

should be a testing task for the turbulence models.

4.6.2 Pipe Flow

Measured second order turbulent correlations of scalar fields in
pipes are so few that some data sets with only mean flow measurements
are considered here for comparison with numerical.predictions.

The investigation of BREMHORST and BULLOCK's [92] and that of
BOURKE and PULLING [93] are the only two known attempts’at measuring second
order scalar correlations in pipe flows. Both investigations were for

fully developed thermal boundary layer inside a pipe. The first

presented the mean scalar C ,.02 ,.u2 and UC whereas Bourke and Pulling

reported ‘radial heat flux, e? , C and U . Bourke and Pullings measurements
were confined to the inner 70% radius of the pipe and hence its use as a

guide for numerical solutions is limited. The non-dimensional streamwise

uc

scalar flux reported in [90] has a value of about 2.1 in the

Uzl
near-wall region. This is the same as the values found in flat plate

boundary layers. The normalised scalar fluctuations Qé.has a near wall - -
value of 2.5 in [92] whereas flat plate boundary layggfinvestigation of
ANTONTIA et al. [90] indicated a value of about 4.6 .

Quarmby and his colleagues presented several non axi-symmetric
scalar transfer measurements in pipes which are discussed in. the following
section. In order to suppliment these works QUARMBY and ANAND [94] presented
axi-symmetric mass transfer measurements in fully developed pipe flow.

Thelr experimental investigation was to make measurements of mean

concentration at several axial locations downstream of two types of mass
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sources. In the first type, Nitrous Oxide gas was made to diffuse
through a permeable ring of 1.5 diameters length fitted to the wall of
the pipe. The second mass source was a "point" source of Nitrous Oxide at

the centre of the pipe so that it diffused towards the wall due to

turbulent and viscous action. In all cases the passive scalar was conserved.

A rather suprising aspect of their investigation was that they could
satisfactorily predict the concentration profiles at downstream locations
by making an assumption of unity-tﬁrbulent Schmidt number throughout the
flow. In the description of the velocity profiles using a mixing length
hypothesis, however, they used a von Kiarmdn constant of 0.36, a rather low
value. Further their expression for eddy diffusivity made by combining
Van Driest expression and a Reichardt formulation is not consistent with
the mean velocity profile except in the viscous sublayer. Thus their
theoretical calculations, even with a very good final agreement with
expefiment can not be considered very useful. Moreover on reanalysing the
data of [94j, QUARMBY and QUIRK [11] found that indeed the variation of

turbulent Schmidt number inside the pipe can best be fitted by

-1 z-1
Prt(z) = 1 + 400 (4.21)

where 2z 1is the non-dimensional radius. This is quite at variance with

their previous assumption of unity Sct throughout the pipe.
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4.7 Review of Data in Three-dimensional Scalar Transport

Several experiments have been reported in which the hydrodynamic
field was a two-dimensional thin shear flow type and the scalar field was
three-dimensional, although again, boundary layer type. Thus the scalar
field had significant scalar fluxes in both directions normal to the mean
velocity vector. The aim of these experiments was to find out the extent
of anisotropy in the diffusivities of theseé fluxes. All experiﬁents on this
topic reported here were performed in circular pipes with a fully developed
velocity field. The only measurements reported are the mean temperature
or concentration and wall fluxes; no turbulent correlation measurements
appear to have been reported yet. All authors chose to compare their results
with theoretical expectations based on assumed diffusivity models.

Table (4.8) summarises the methods employed in order to create and
measure the three-dimensional scalar fields. QUARMBY and ANAND's [59]
case;b was for diffusion of nitrous oxide from a dimetric line source. In
all other experiments the three-dimensional fields were created by
circumferentially non-symmetric wall scalar fluxes.

Quarmby and his collegues chose to investigate three-dimensional
scalar transfer from a short length (for example,"i%D in [59]) of non-zero
wall scalar flux. This ﬁill create situations where the three-dimensionality
of the scalar field is decreasing. Since the asymmetric scalar field at
the end of the short section is not fully developed, the scalar transfer
situation inside the pipe may be highly influenced by the transport effects.
The experimental situation investigated by others [13], however were on
situations where the three-dimensionality is maintained. Over large length
of such boundary conditions fully developed three-dimensional scalar profiles
can be expected to attain. Due to the limited facilities available the works
of CHAN et al. [60] and indeed the present experimental investigation were
focussed on wall properties only. Still they present challanging data for

development of variation in Nusselt numbers.
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Conclusions

Remarks

Type of Scalar Scalar Input Re_ Range of C | Measurements Made (made by the
Transfer and ' b : and Techniques Used respective
Fluid :authors) on
: Diffusivity
BLACK and | Self heating, long 7500 - | AC 11 1) Outside wall Diffusivity
SPARROW [13], stainless steel tube} 58000 wakbl,max temperature by ratio of 10
also BLACK with sinusoidal < 70°F Chromel-Alumel near wall
{957 variation in thermocouples. decreasing to
thickness; givin AC unity beyond
Heat transfer; sinusiodal ﬁeat s bulk,maz 2) Total power y+ =Y20 .
air, Pr = 0.7 flux along the = 43°F . supply by ammeter '
circumference, X voltmeter.
period = 271 .
3) Air flow by ASME
orifice.
4) Air temperature
by thermocouples
as in (1).
QUARMBY and a) Four porous 20000 1) Concentration Diffusivity
ANAND [591]; ' segments in the |-120000 measurements in ratio

Mass transfer;
nitrous oxide
to air,

Se = 0.77

wall, period =T
length = 1} Dia?
width = 7/4 .

b) Diametric line
source,
period = 7 .

flow by infra-red
gas analyser.

2) Total contaminent
' input by
rotameter gauges.

3) Flow velocity by
pilot tubes.

i.e. Se, ,
unity tgrough
the flow domain

0

Table® 4.8 Three-Dimensional Scalar Experiments in_Fuily Developed Pipe Flows
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Experimenter; : Conclusions
Type of Scalar Scalar Input Re Range of C | Measurements Made (made by the Remarks
Transfer and D and Techniques Used respective
Fluid authors) on
. Diffusivity
QUARMBY and Electrically heated 10000- Surface 1) Temperature by Pr, in radial Large heat
QUIRK [11]; stainless steel 100000 temperature Chromel-Alumel direction is loss through
strip, period = 2w up to 70°¢C. thermocouple about 0.5 near the wall
a)Heat transfer; | length = 3 Dia. probe. wall varies apparent in
air, Pr = 0.7 | width = 7©/16. ‘ : smoothly to ¢ profiles.
' 2) Flow of air by unity at the
pilot tube. axis. Apparent
effect of
Tangential buoyancy
b)Mass transfer; | Short porous slot 6000- 1) same as in [59]. | diffusivity is | in C
nitrous oxide in the wall, |, 170000 larger than - profiles.
to air, | period = 27 the radial
Se = 0.77 . length = % Dia. diffusivity
‘ width = w/25 . near wall. This
ratio is unity
over most other
parts of the
flow. '
QUARMBY and Porous segment in 5230 - 1) Concentration The high
QUIRK [96]; the wall 21780 ‘ measurement by Schmidt number

period = 7 electrical has no effect
Mass transfer; length = (not conductivity on diffusivity
brine to air, reported) probe. ratios.
Se = 760-1200 width = 7/2

Table 4.8 Three-Dimensional Scalar Experiments in Fully Developed Pipe Flows

- vST -
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Experimenter; _ Conclusions
Type of Scalar Scalar Imput Re Range of C | Measurements Made (made by the Remarks
Transfer and b and Techniques Used respective
fluid authors) on
Diffusivity
CHAN et al. Stainless steel 10000- ‘Acb'lk 1) Outside wall
[60]; tube segmentally 100000 u temperature by
_ heated from outside < 19 . Chromel-Alumel
Heat transfer; heaters, period = 27 thermocouples
water, width =11 . :
Pr = 6.0 . ' : 2) Wall heat flux
by microfoil
Sensors
3) Flow measurements
by ASME orifice
and by rotameter.
Present Glass tube .20000- 11 1) Outside wall see Chapter 7.| For details
experimental segmentally heated 90000 wack,max temperature by see
investigation; from outside by an = 10°C Chromel-Alumel Chapter 5.
’ electrically thermocouples.
conducting coating, Acbu7k
Heat transfer; period = 27 "0 2) Total power input
width = 7 . <1lcC. by ammeter

air, Pr = 0.7

X voltmeter.

3) Air flow by
pilot tube.

Table 4.8 Three-Dimensional Scalar Experiments in Fully Developed Pipe Flows

(&
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One other aspect which is of interest is the shape of the wall flux
profiles. In mass transfer experiments it is possible to create (or assume)
rectangular wave shape wall fluxes whereas, in heat‘transfer experiments,
due to circumferential conduction within the tube material the wall flux
profiles display an S-shape variation. Thus profiles of the wall meterial
and goemetry become important in the numerical predictions of these -
situations. In the present experiment (see Chapter 5) the three-dimensional
heat transfer in a segmentally heated thin glass tube was investigated.

Here the objective was to design a three-dimensional heat transfer situation
where the circumferential variation of wall heat flux is close to a square

- wave profile.



CHAPTER 5

EXPERIMENTAL INVESTIGATION

5.1 Preliminary Considerations

5.1.1 Aim of the Experimental Investigation -

The aim of this experimental investigation was to obtain data for
the case of transversely non-symmetric heat transport situation in a
wall~affected two-dimensional shear flow. Previous workers e.g. BLACK and
SPARROW [13], QUARMBY and ANAND [59], have made measurements in non-
symmetrical scalar situations in tubes. Flow in circular tubes has been
used for these studies because of its wide practical application. Further,
it is a convenient and a simple geometry to investigate under laboratory
conditions. For this reason it was adopted as the geometry understudy in
the present investigation.

In mass transfer experiments it is possible to establish boundary
conditions of square-wave form in the circumferential direction. In heat
- transfer experiments due to circumferential conduction in the tube wall
such a situation can not be exactly achieved., However, the present heat
transfer experiments were designed to minimise the circumferential conduction
in the tube wall. Thus the three-dimensionality of the scalar field obtained
is far stronger than that of [13]. It was hoped that this will provide a
rather stringent test for the turbulence model employed in numerical
calculations. Furthef the present experiments were carried out at low
témperature difference levels (maximum of 1.5°K in bulk temperature rise)

and hence can be assumed to be void of any significant property variation.
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5.1.2 Facilities Available and thgiLevel of_Megsurements

As the present investigation was mainly aimed at the theoretical
and numerical aspects of the solution of three~dimensional scalar transport
situations, only a short, limited period was available for the experimental
investigation, At the time of this‘investigation, the laboratotry facilities
at the writer's disposal required the exploration be limited to the study of
wall heat transfer characteristics for the case of non-symmetric heating
of a circulér tube. A regulated supply of water and compressed air was
available for use as the fluid medium. Previously, CHAN et al. [60] had
made investigations using these facilities. Their experimental investigation
was conducted to determine the heat transfer characteristics of turbulent
flow of water in a circular stainless steel tube with non-uniform boundary

conditions.

5.1.3 Methods of Obtaining Circumferentially Non-Uniform Heating Rates

Circumferentially non~symmetric heating is common in practical
engineering applications. Under laboratory conditions, however, one has
the additional task of quantifying the non-uniformity i.e. one should be
able to make measurements of heat fluxes and temperatures around the inner
surface of the tube. As in the present investigation, if the measurements
ére to be made at the outer surface of the tube, then one would like to
keep the temperature drop across the tube wall to a minimum. The methods
of obtaining and making measurements of non-symmetrical heating, as adopted
by previous workers, are the following:
(a) Heat generated by an electrically conducting tube having a non
uniform thickness (as in BLACK and SPARROW's [13] experiment).
Here the heat flux profile through the inner surface of the tube

depends on the geémetry of the tube, circumferential conduction
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and the fluid heat transfer characteristics, As [13] points out,
accurate construction of a tube with given non~uniformity in
thickness is really a difficult task.
(b) A tube segmentally heated by an outside source as. in CHAN et al.
[60]. Here the outside source is placed at a given distance
away from the tube. The uniformity of heat flux within the
segment, however depends on the uniformity in the gap distance
between the tube and the heater. Accurate and reliable measurement
of the outer surface temperature of the tube is quite difficult,
as found by [60], under these circumstances.
Recently GIESBRECHT [97] explored methods of achieving a constant
heat flux boundary condition on long tube lengths. He considered methods
of obtaining thin metallic film deposits on tubes. If the tube is of an
electrically non-conducting material then the conducting film can be heated
by supplying a voltage along its length. The uniformity of the heat flux
in thié case depends on the uniformity of the metallic film. Thin and uniform
coatings of metallic substance can be obtained for example, by vacuum
deposition, chemical deposition or by metallic painting. As for getting
such deposit on 1oﬁg tubes, Giesbrecht pointed out that metallic painting
is the most convenient. His investigation of heat transfer from a yawed
cylinder to air with a constant heat flux wall boundary condition seems
to indicate the reliability of the method of obtaining metallic film déposit
on non cohducting (electrically) cylinders. His results for cross-flow
tests are in gdod agreement with previous experiments and his new data for
yawed cylinder show excellent self consistency. In the present investigétion
this method is extended to obtain thin uniform metallic film segments on
the tube. It can be expected to give square-wave profiles of heat‘flux to

the cylinder.



- 160 -

When chogsing the tube material for the present experiment, the

following criteria were used.

(a) Once it was decided that the tube be heated at its outer surface
by passing a current through the matallic film, the tube had
to be made of electrically non-conducting material,

(b) A one-dimensional consideration of the heat flow in the
circumferential direction shows that, the extent of
circumferential conductidn is proportional to K@ E., where
Kw is the thermal conductivity of the tube material and ¢
the thickness of the tube of mean radius R . So that, if
circumferential conduction is to be minimised, the thickness of
the chosen tube should be a minimum. The thermal conductivity
should also be low to reduce the circumferential conduction

(c) Since the measurement of temperature is to be made at the outer
surface of the tube, it would be best to have only a small
temperature drop across the fube material. Again, one-dimensional

consideration of the heat flow to the fluid shows that,

‘4-¢ - st 1 .1
cq-ci KfNuZn[R;O_]

R;
where X K

w K and Ny are the thermal conductivity of the wall
material, that of the fluid and the Nussélt number (assumed
constant) of the flow situation.respectively. Here C is the
bulk temperature and suffixes i and o stand for inner and outer
surfaces respectively. Equation (5.1) suggests -that for a given

fluid flowing inside a thin tube at a given Reynolds number the

temperature drop across the tube material is inversely proportional

R
t .

should be as high as possible.

to Kw Thus, the thermal conductivity of the wall material
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The first requirement rules out commonly used stainless steel tubing.
Commonly available electrically insulating tube materials are glass,
plastic and some synthetic compounas. The thermal conductivity of plastic
and other synthetics depends of their composition; however, on average it
is about one-~fifth that of glass, Although it is possible to obtain rather
thin synthetic tubing, consideration of the qﬁantity Kw %. suggest that

a glass tube of 1.92 cm diameter is more suitable than available plastic

tubes of nominally similar size,.

5.1.5 Choice of Fluid

The choice could be made beﬁween the laboratory supplies of air and
water to suit the -aims and limitations of the experiment. As one would
like to minimise temperature drap across the tube wall, again, reference
is made to equation (5.1) in deciding the fluid be used in this experiment.
For a given Reynolds number, the heat transfer characteristics of a given
fluid can be obtained empirically by using, for example the Petukhov-Pepov
equation along with an expression for the friction factors (e.g. the
Filinenko equation (see for example KARLEKAR and DESMOND [98] page 300)).

‘At a Reynolds number of 20000, the equation (5.1) gives

for air,
c,~-C
X" = 11.75
c -C.
9] 7

and for water,
cC.-C
L = 0.1695
c - C. :
] 7

This shows that as far-as the temperature drop across the tube wall is
concerned air is seventy times better than water. Therefore in the present

investigation air was selected as the working fluid.
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5.2 Experimental Equipment

5.2.1 Design of the Tube

The glass tube used in the present investigation is a commonly

available T6~-type fluorescent tube with a nominal diameter of 3/4 in.. The

inner and outer diameters of the tube are 1.715 cm and 1.920 cm respectivily.

In preparing the tube for mettalic spraying the steps taken are the following;

(a)

(b)

()

(d)

Carefully remove the aluminium caps and electrodes from an
already used fluorescent tube. This was done in a suitably
protected'surrounding. Once one end is broken open, the tube

is kept in a well ventilated place.for a short period so that

its gas can diffuse out.

The two ends of the tube are now cut off using a glass cutting
machine. The tube is then washed well so as to remove the
phosphorous dust. The micrometer measurements of inner and outer
diameters were made next. Then half an inch thick plexi-glass
flanges were fitted to the two ends of the tube using a self
drying adhesive.

The spraying technique used here provides a satisfactorily uniform
coating [97]. In the present werk, however, a method of obtaining
two-segments of conducting strips has to be developed. After
considering several methods, it was decided to stick two very thin
(about 1 mm in width) strips of adhesive tape (sellotape) along
the length of the tube spaced 180° apart (see Fig. (5.1)). In

a tube of 1.92 cm outer diameter, each piece of tape covers
roughly a 67 arc.

The eiectroconducting paint used in the present investigation

(as in GIESBRECHT [97]) is the "Flexible silver No. 16" manufacturec
by Englehard of New Jersey; This paint cures at room temperatures

and can be thinned for spraying. The spraying was done on a lathe



(e)

(£

bed where a precision spray gun was mounted to get a transverse
motion at a constant speed, The spray paint was then applied

in very thin coats on the rotating glass tube. The rotation speed
was several times larger than the transversing speed. Several
passeé were made until the desired coatinglresistance was achieved.
A period of about two minutes between the passes was allocated
for the spray to dry out. A rough check on the resistance along
the length of the sprayed section was made using an ohmmeter,

this was used as the guide in deciding the total film to be
applied.

Safety requirements (with regard to. the lathe), made it necessary
to spray the tube in two sections each about 30 - 40 D. One
section was masked while the other was being sprayed. Our original
intention was to get the tube sprayed over its whole length and
then to supply a suitably adjusted electrical inputs to the

two sections so as to get the same heat flux in both sections.

The resistance measurements, to be discussed later, ruled out this
possibility and only a length of 26.5 D was chosen as the hea£ing
length of the present work.

Now, the two adhesive strips were carefully removed from the tube
so as to get two segments of sprayed silver. The width of a
segment can be considered as about 174° arc at the outer surface
(see Fig. (5.2)).

The initial testing‘of the tube for uniformity of the coating in
the longitudinal direction was done at this stage., (described in
Subsection (5,3.1)). The circumferential uniformity within a
segment was not measured as there is no conveniently simple

method of doing so.
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(g) Four copper strips each of width 5 mm were clamped to the silver
" coated glass tube, two at each end of selected lengthk s0 that
each segment of the coating made contact at its end'with,a given
pair of strips (see Fig. (5.3)). This allowed the heating of

the two silver segments independently.

5.2.2 Thermocouple Installation

The thermocouple installation was made with the aim of obtaining as
much information as possible of the circumferential and longitudinal
development of the temperature distribution of asymmetrically heated
situations. Thermocouples were installed at five axial locations: 5 , 10 ,
15 , 20 and 25 (internal) diameters from the start of the copper strip.

The thermocouple used in this installation were of 3 mil (0.003 in
diameter) teflon covered Chromel-~Constantan wire which is the most sensitive
commonly used type suitable for low temperature measurements. The conversion
factor as given by the manufacturers of ﬁhese thermocouples is 0.060 mv/°K .
The wires were drawn from the same pair of spools to minimise any difference
in quality between thermocouples.

At each axial location six thermocouples were installed, as shown
in Fig. (5.4) spaced 36° apart. Since the silver coating was rather fragile,
extreme care was taken in installing these thermocouples., The method adopted,
. was the following. First the thermocouples were placed on the adhesive eide
of a sellotape so that their beads just stuck out of the strip-and the

distance between the beads was equal to %%;D . Then another strip was placed

o
on top of the former so that nonradhesive sides were at the outer sides, This
strip was then carefully positioned on the glass tube without damaging the
silver coating.

The cold junction was installed in front of the heating region and thus'.
the thermocouples could be used in a differential manner, The potentiometeg

used had an accuracy of 0.02 mV and the thermocouple readings were in the

range 0 - 1.0 mV . The thermocoeple circuit is shown in Fig. (5.5).
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5.2.3 Power Measurement

'

As the two segments were to be heated independently, the measurement
of their power inputs were likewise made separately, The resistances of
the segments were of the order of 1 ohm and, for the highest Reynolds
number flow investigated (Re = 90000), the total power requirement was about
20 watts to get a bulk temperature rise of 1.0 ~ 1.5 °K . Thus the experiment
could be conducted at very low voltages and currents. The electrical circuit
simply consisted of a stepdown variac and an ammeter in series with each
segment. This is schematicaly shown in Fig (5.6) . The ammeter used could
be read to the nearest 0.05 amp . The voltage drop across each segment was
measured using a digital voltmeter with an accuracy of * 6.5% . With this
system it was possible to adjust the variacs so as to obtain a predetermined

total power input to a given segment.

5.2.4 TFlow Measurement

The air supply to the experiment was from the laboratory compressed
air unit. The regulator valve dould be adjusted in order to get the required
manomatric height which reépresent the difference between total and static
heads as read by a Pitot tube. The Pitot tube was mounted at the end of the
glass tube so that it was lacatea on the tube axis. After passing through
the regulator air enters a long stainless steel tube of nominally the same
diameter as the glass tube. The length of the stainless steel tube is about
80 diameters. The glass tube is rigidly'attached to this stainless steel tube
and there is 35 diameters of giass tube length preceding the heated section.
Thus it can be conveniently assumed that the air flow is fully developed
by the time it reaches the heating section. For the range 0 - 8 em (0 - 3 in)
an inclined water manometer which could be read to the nearest 1/8 cm

(0.05 in) was used. At Reynolds numbers of 40000 and 90000 a vertical
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manometer which could be read to the neagest 1/4 cm (0.1 in) was used., In
calculating the total flow rate it was assumed that the velocity on the

axis was 1.20 times the average velocity,



The verification of the uniformity of the coating is a necessary step
. prior to any other measurement. This was done before installing the |
thermocouples, After segmenting the silver coating the tube was allowed to
dry overnight and then the total resistances of the two segments were

5.8 ohm and 6.0 ohm . After considerable heat curing this resistances
decreased to a steady level of about 1.5 ohm each.

In order to evaluate the uniformity.of the coating the voltage drop
along the tube was measured at 2 cm intervéls. Over a length of 45 diameter;,
the root mean square deviation was 9.67 . This unsatisfactorily large value
was due to a small section in the tube (between 7 = 28 D and 32 D) which had
large irregularities. It was decided at this point that: the glass tube .be

heated only in the first 26% D length where the root mean square deviation

was less than 5% . The resistances of the segments for a length of 26% D were,

(a) for top half, Resistance 0.99 - 1.00 ohm

(b) for bottom half, Resistance 0.91 - 0.92 ohm .

The discreéepancy between the resistances in top and bqttom segments gives

some indication of the level of non-uniformity in the circumferential direction.
Even though the resistances were different, since the voltage supply to each

segment could be adjusted so as to get the required volt-ampere (V X I) rate,

the total heat production in each segment could be controlled as desired.
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5.3.2 Uncertainties in Measurements

The largest uncertainity in this experiment concerns uniformity of
the coating. The silver spraying was done in order to get best uniformity in
the longtudinal direction., Since the tube was rotated at a higher :
circumferential speed as compéred to the transverse speed of the spray gun
it could be assumed that the circumferential uniformity was satisfactory
as well. Initial measurements of resistance variation along the tube suggest
that there could be variations upto 5% in longtudinal direction. This was
considered satisfactory as GIESBRECHT [97] obtained considerable
reproducibility in his experiment with similar variation in resistace of
his tube. The circumferential variation of resistance could not however be
exactly quantified. Ideally, one would expect a heat flux variafion as shown
in Fig. (5.7). In the region of the groove ( where sellotape strip was removed),
however, it is possible that the adhesion of the silver coating to the surface
waé weakened. Even though extreme care was taken while removing these tapes,
it was found that there was minute damage to the paint. This would of course
increase the local resistance and consequently the heat flux profile may
look like that in Fig. (5.8). By heating both segments and observing the
resultant circumferential temperature profile one could hope to quantify
the modification to the circumferential heat-flux profile before studying the
fully asymmetric situation.

There are some other uncertainties which can be considered to have
only minor effect. They are

(a) Possible inequality in the size of the two segments; This can

come about due to the difficulty in laying out the adhesive tape
strips along the length of the pipe. Although it is easy to lay
one strip along the length, it is not easy to position the other
exactly 180° apart from the first. The error associated with this

is about *2°
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(b) The voltage drop across the contacts to the silyer coating; Since
the silver coating was fragile it was not advisable to press the
prong of the voltmeter on the coating. Thus the veoltage drop
across the length of the tube was measured as tha; between one
copper strip and the other. The voltage drop across the copper
strip is very small and hence neglected. The copper strip fits the
shape of the tube and further it was hand painted with the flexible
silvér at the contacts. It is possible however that due to the
stress in clamping, the contact is not uniform. This may cause a
distorted voltage drop pattern. Its effect however is confined to

areas very close to the contact points.
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5.4 Experimental Results

Only the different conditions for which the tests were carried out are
mentioned here. The wall temperature obtained in these testé are presented
along with the numerical predictions of the same.

Heating Condition: Two heating conditions were investigated. In the first
the voltage applied to each segment was adjusted to give

equal volt-ampere inputs to the segments. If the gap between the‘segments
was negligibly small, in a uniformly goated tube, this would be equivalent
to a uniform heat flux bouﬁdary condition. All measurements were repeated
several times over a period of about two hours until the readings showed
complete steadiness. The other boundary condition used was that where only
the top segment was heated., This condition creates a strongly three-dimensional
temperature field. | |
.Reynolds Number: Tests were carried out at three different Reynolds numbers:

20000 , 40000 and 90000 . The air supply valve was manually
adjusted several times during a test so as to counter any fluctuations in
the supply system.
Temperature Range: The total power supplied to the tube was predetermined

so as to get a total bulk temperature rise of only

1.0 - 1.5 % over a length of 26} diameters of heating. The maximum wall
temperature rise was in the range of 12°K . For this temperature difference
the percentage variation of thermal conductivity, specific heat and density
of air are 3.52 , 0.085 and.3.60 fespectively. Thus the heat transfer
situation under study could be satisfactorily assumed as a passive scalar

transfer.
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CHAPTER 6

PREDICTION OF TWO=DIMENSTONAL SCALAR TRANSPORT

Introduction

Turbulence models described in Chapter (2) are examined here by

applying them in flow geometries where consistent experimental measurements

exist.

The numerical schemes employed for this purpose have been described

in Chapter (3). As the scalar transport precesses are heavily dependent on

the hydrodynamics, a considerable number of explorations were made of

flow field predictions. When comparing the predictive performance of

models, as far as possible, a single aspect or effect of the models were

chosen, so that it was possible to draw definite conclusions. As for the

basic hydrodynamic turbulence model, the following models as in LAUNDER

et al.

and

[15] was chosen.

(a) Pressure-velocity gradient correlation by the complete Launder
et al. model (equations (2.11) and (2.14)) - denoted by Rsl ,

(b) Turbulent diffusion of stress by the tensor invariant form,‘
equation (2.6) - denoted by Dsl s

(c) Near-wall effects of (a) by Launder et al. model, equation

(2.22) - denoted by stl .

When comparing the scalar transport models, the above hydrodynamic model is

employed along with the following basic scalar transport model.

and

(a) Pressure-scalar gradient correlation by linear destruction of
flux (equation (2.48)) and redistribution of generation of
flux (equation (2.58)) model ~ denoted by Rcl )

(b) Turbulent diffusion of scalar fluxes by gradient diffusion
model (equation (2.45), éee Table (2.2)) = denoted by DeZ ,

(c) Near~wall effects of pressure-scalar gradient correlation by

equation (2.70) - denoted by Rcwl .
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6.2 Erediction of Free Shear Flqus

The aim here is to compare the performance of the pressure-~strain
and pressure-scalar gradient models with experimental data. The basic
preésure strain models, (described in the previous section) is compared
with the redistribution of production model (equation (2.19)) denoted

by R_, . In both models, the turbulent part (¢ij1

) is represented by

the linear-return-to-isotropy model (equation (2.11)) with different
coefficients (see Table (2.1)). For scalar transport, the performance of
the quasi~isotropic model (equation (2.61) and (2.57) denoted by Rég) is
compared with the basic model described in the previous section. Models

Dsl and Dc were employed to simulate the diffusion of stresses and

2

scalar fluxes respectively.

6.2.1 The Plane Jet

The plane jet in stagnant surroundings is considered first. RODI
[61] has concluded that the plane jet measurements of ROBINS [65] and
BRADBURY [72] .display the best internal consistency and it is these data
that were employed for comparison with predictions. Figures (6.1) and
(6.2) show thevmeasured and predicted mean veiocity and shear stress
profiles across the jet cross section. The agreement is quite satisfactory
in- the bulk of the cross section, but tends to be poor as the free stream
is approached. The spreading rates obtained by the two models are 0.116
and 0.107 for modeis Rsl and RSZ respectively. The mean experimental
value for thé spreading rate quoted by Rodi is 0,11 , The difference
between the predicted maximum shear stresses can be directly attributed
to the ahove diffe;ence in sbréading rates. The predicted turbulence
intensity profiles are given against the data’df Bradbury in Fig. (6.3).

RODI [61] has pointed out that the rather implausible result of v% > y?
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at the centre of the jet is unique to Bradbury's data. The turbulence
energy production rate (all of which enters via the.;E:equation) has its
maximum around 0.8 of the half width of the jet; the mechanism which
makes any turbulent component very much larger away from this region is
not clear. Certainly no linear effect could produce such behaviour. Over
the whole of the jet cross-section, the predicted levels of;;? are about
15% larger than data, whereas the corresponding difference between predicted
and measured levels in ;? is slightly smaller. Although this discrepancy
is large, being a free shear layer they may be within the uncertainty of
the measurements. The difference between v2 and ;? profiles obtained from
the simple pressure-strain model RsZ is purely due to diffusion coefficient
for ;? being about three times as large as that for.;? . With a simple
gradiént diffusion model for stresses, on the other hand, model Rgg would
predict identical profiles for ;E.and ;?'. The turbulent intensities
closer to the free stream indicate that the use of the same coefficient
Cs in the diffusion model for both ¢ij models is inappropiate. It seems
that the simple pressure-strain model requires a lower value for Cs than
the other model. This aspect, which has not been pursued further in the
present ihvesgigation, indicates that one can not identify with certainty
between effects due to diffusion or to pressure-strain effects unless one
has directly available measurements of the magnitudes of the processes
themselves,

The scalar transport predictions of plane jets are shown in
Fig. (6.4) to (6.7). The predicted mean temperature profiles seem to
agree quite well with data of JENKINS and GOLDSCHMIDT [68] and those of
VAN DER HEGGE ZIJNEN [67]. Note here that the same hydrodynamic model is
employed with both scalar transport models Rcl and ch s, thus any difference

between their performance is due purely to differences in the scalar

transport models. Model Rcl produces a better mean temperature profile
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than model RcZ . The spreading rates of the temperature field from models

R,; and R, are 0,145 and Q,134 respectively, which are 25Z and 15% higher

cl 2

than the spreading rate of the velocity field; experiments suggest an
increase of about 257 in agreement with model Rcl . As there are no
measurements available on cross—stream heat flux profiles, the predictions
are compared with Bz'profiles obtained by applying a mean enthalpy balance
to the measured temperature with the assumption of seif similar profiles.
This is obtained with the help of the expressions given in Table (4.3).
The agreement is quite satisfactory in this comparison. The Figures (6.6)
.and (6.7) show the predictions of the ratio of the heat fluxes (streamwise
to cross-stream) and turbulent Prandtl number of the plane jet, Over the
bulk of the flow the streamwise flux is about 1.2 - 1.3 times larger than
the cross-streaﬁ flux. At the plane of symmetry, the cross—stream heat
fiux drops to zero but the streamwise flux stays up thus giving a lérge

UC . The Prandtl numbers as predicted by the two models show a considerable

Zifference. The profile from model Rcl can be considered satisfactory as
the average - level predicted by ;hat model is about 0.70 . The non-linear
medel ch produces too high Prandtl numberé near the centre of the jet.
Although this effect could have been reduced by adjusting the coefficients
of model Rc2 , With non-linear terms it will always produce higher Prandtl
numbers near the centre than ovef the other parts of the flow. Thus any

adjustments in Fhé coefficients will change the levels of Pr and gg:overA
larger regions of flow. It can be seen that if the effects of thevion—
linear termé in -‘the model RGZ are to be small near the symmetry axis (which
is necessary to produce a more plausible variation in turbulent Prandtl
number) then the normal stréss field should be closer to isotropy than

predicted by present hydrodynamic models, This possibility is, however,

not supported by the experimental data shown in Fig. (6.3).
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6.2.2 The Plane Wake

In Figures (6.8) to (6.10) the flow predictions of a far plane
wake are compared with the measurements of TOWNSEND [62] and FARRLS [81],
The calculations were carried out until the velocity deficit was only
about 5% of the main stream velocity, for which level self similarity is
achieved with certainty, In the selected data positions of Townsend and
Fabris, the velocity defects are 3.1% and 5.7% respectively, The agreement
of predictions with models Rsl and ng with above data are not satisfactory;
the level of maximum shear stress being 227 iower than the experimental
value. This in turn is seen in the predicted spreading parameter S being

0.074 and 0.071 with the models Rsl and Rs respectively, as compared

2
to the average level of 0.098 reported by RODI [61]. The predicted spread
of the half width of the layer is lower than in data. This is responsible
for rather poor agreement of all components of turbulence kinetic energy

]
in regions near the free stream. At the plane of symmetry, Townsends U_

U?
is only 0.072, whereas that from prediction, by both models Rsl and °

RSZ , is about 0.095 , It must be noted however that this predicted level

of ;? agrees well with data of ALEXOPOULOS and KEFFER [99] and that of
UBEROI and FREYMUTH [100]. The level of ;E-predicted by model R, agrees
well with data over the inner half of the layer, whereas in the outer

half, along with other components this too falls far too rapidly to the

free stream levels. As in Bradbury's plane jet data, Townsend's measurements
of ;Z show a maximum at the plane of symmetry; a feature not obvious from
the stress equations.

Considering the large discrepancy between predicted and measured
spreading rates of the flow field, it is unwise to expect to obtain correct
behaviour in the predicted scalar fields; relative magnitudes can however
be compared. The predicted temperature field given in Fig. (6.11) show

considerable departure from data, especially for the linear model Rcl .
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The measured cross—stream heat fluxes from Townsends experiment are
consistent with his self similar mean profiles. The measured levels of

ve of Fabris, however, are about 45% lower than what is implied by self
Siﬁilar_analysis of his mean velocity and mean temperature profiles.
Present predictions — with a rather low spreading parameter - agrees well
with data of Fabris. The predicted ratio of half-widths of the temperature
and velocity field are 1.17 and 1.09 for the linear (Rcl) and non-linear
(ch) models respectively. Corresponding ratio from the experiments are

in the range of 1.20 to 1.30 . The predicted levels of ratio of streamwise
to cross-stream heat fluxes and of turbulent Prandtl number are quite
similar to those obtained from the plane jet predictions. Again, the
implausible Prandtl number levels near the central plane obtained from

the non-linear model ch can be attributed to the anisotropy of stresses
in that region. In Figures (6.15) and (6.16) the prediction of streamwise
heat flux and the temperature fluctuation are compared with the experimental
data of FABRIS [81]. Although in the view of discrepancy between measured
¢ and ve , even the streamwisé heat flux is to be expected too low, the
ratiO'ggé from the experiment is suitable for comparison. The predicted
level g? 1.30 to 1.40 in the bulk of the layer compares well with the

range 1.40 to 1.50 obtained by measurements of Fabris.

6.2.3. The Plane Mixing Layer

First attention is given to the prediction of a mixing layer between
two moving streams. Fig. (6.17) shows the predictions by models Rsl and fg o
compared with the data of WATT [73]. The ratio of the velocities at the
two streams is 0.5 . The prediction of mean velocity profile by models

R, and RSZ are indistinguishable and .are in quite good agreement with

sl

the measured profile. The spreading rates of the mixing layer predicted

‘by-the models R ] and K P are 0.0486 and 0.0462 respectively and they can
) 8
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be considered satisfactorily close to Watt‘svre?orted spreading rate of
0.045 . The predicted level of shear stress is about 15% too high when
compared with the measured level; however, the sghear stress calculated
from Watt's mean velocity pfofile is much closer to the pfesent predicted
levels, the maximum of i%i being about 0,105 . Over the bulk of‘the
layer, the predicted leins of turbulence intensity ptrofiles, shown in
Fig. (6.19), are in good agreement with measurements. At the centre of
the layer, the relative levels of the turbulent components predicted by
model Rsl are in excellent agreement with data, whereas, model ng
predicted the ;? component (r.m.,s. value) about 5% too high; moreover,
the difference between ;; and ;E‘at the centre of the layer is reduced by
half. (As remarked above, any difference between ;;.and ;;-in prédictions
by model ng is purely duevto the non-isotropic diffusion model Dsl’)
Near the free streams the agreement of the predictions with measurements
deteriorates, the prediction being consistently lower than the measurement.

The mean temperature profiles predicted from models Bc and Rc

1 2

are again identical and they compare satisfactorily with the measurements
of Watt. The predicted spreading rates of the temperature layer are 0.0547
and 0.0554 for models Rcl and RcB respectively and they compare well with
the Watt's measured level of 0.051 . Certainly the ratios of spreading
ra;es-of temperature and velocity layers are in good agreement. Watt's
measurements of cross-stream heat flux are in serious error by a factor

of four. Thus the az'profiles as deduced from measured mean velocity and
temperature fields under self similar conditions are emplofed for comparison
with present predictions. Except near the faster moving edge the agreement
is within 10%; a large fraction of this discrepancy is due to the
disagreement in spreading rate of the velocity mixing layer,vThere is a
considerable difference betwéen the predicted and calculated heat flux

profiles near the faster moving edge. This aspect is similar to the
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behaviour noticed in predicting the plane wake, Figures (6.22) and (6.23)

show the predicted ¥C and the turbulent Prandtl number variation across
ve
the layer. The two models show a similar overall variation ewenthough the

levels of Y€ are different in the two cases.

Conzidered next is a mixing layer formed in the initial region of
a jet. RODI [61] recommended data of BRADSHAW et al. [75] as the most
consistent with respect to compliance with self similar velocity = shear
stress relatioﬁ. The predicted variations of the mean velocity profile
obtained with models, Rsl and ng are identical except at the faster moving
edge. The predicted profiles are in good agreement with data except in
that region. The predicted spréading rates are 0.158 and 0.152 respectively,
for models Rsl and ng . As thereé is considerable scatter in the gpreading
rates among experimental data these predictgd spreading rates can probably
be considered satisfactory in comparison with Bradshaw's value of 0.165 .
The predicted shear stress profiles agree wéll with measurements of
Bradshaw et al.. It Should be noted however, that the discrepancy of about
10% between calculated and measured -levels of shear stress (see [61]) in
Bradshaw's data is hidden in the present predictions by a similar
discrepancy in the rate of spread.

Shown in Fig. (6.26) is the predicted variation of mean temperature
across the layer compared with the data of SUNYACH and MATHIEU {[74]. The
predictions from models Rcl and RcZ are not distinguishable. Again the
largest discrepancy between predictions and measurements lies in the faster
moving edge. The spreading rates of the temperature layer predicted by
models Rel and R, are 0.198 and 0,201 respectively. The spreading rate of
the velocity field as measured by Sunyach and Mathieu is 0.18 which is the
highest value reported in Rodi's review, thus this reported spreading rate of
0.249 for temperature field can likewise be considered too high. Predicted

profiles of cross-stream heat flux are shown in Fig, (6,27). The maximum



O 0 0 0 49 Ukl b o8

level of —UE—EC__ implied by Sunyach and Mathieu's mean data is ahout 60%
higher thanotﬁe predicted 1evels.'The aﬁerage.level in the ratios of
spreading rates between temperature and velocity mixing'1ayers are 1,37
and 1.28 from measurements and predictions respectively. Théigg-and Ty
profiles predicted by models Rcl and ch are shown in Figuresv26.28) and
(6.29). They are quite similar to those obtained for the case of mixing

between two moving streams.

6.2.4 Conclusions

The hydrodynamic'prédictions of the three free shear flows discussed
above show on average satisfactory agreement with corresponding experimental
data. Predictions with both pressure-.strain models Rsl and.R82 show similar
behaviour, model RsZ gives slightly smaller spreading rates than méodel Rsl'
In predictions reported in LAUNDER et al [15}, the simple pressure-strain

model with Cs = 1.5 was employed along with the gradient diffusion model.

I
Present predictions by the simple model with Co1 = 1.7 along with the

tensor invariant diffusion model Dc , show on average, improvements over

1
the above predictions of Launder et al.. As far as the measurements employed
are concerned, the largest uncertainity lies in the normal stress levels

at the planes of symmetry in the palne wake and the jet. Even though the
data of Bradbury and Townsend show considerably larger values for thevgf
component than other components, measurements by PATEL [lOl] and by

CHEVRAY and KOVASZNAY [102] do not show such effect. Ihus no attempt had
been made to improve the predictions in this regard. As far as the numerical
predictions ére concerned, the largest discrepancy was seen near the fast
moving boundaries in plane wake and in mixing layers, Consistently the
predictions show more abrupt épproach to free stream conditions than do

the measurements. The numerical predictions were thoroughly checked to

make sure that this behaviour is not a numerical .shortcoming.
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The linear and nonrlinear models (Bél and RGZ) for the pressure~
scalar gradient correlation show similar mean temperature predictions.
The prediction of large turbulent Prandtl numbers near the symmetry plane
by the non~linear model RcZ however, is quite unacceptable, As seén before,
model chccan be expected to give a more acceptable Prt profile only if
applied with a hydrodynamic‘model which predicts near isotropy in regions
closer to the planes of symmerty. For this reason this.model is not
considered for further investigation., The scalar field predictions to be
reported in the remainder of the Thesis with thus be made only with

model REZ .
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6.3 Flat Plate Boundary Layer

The flat plate boundary layer in a zero pressure gradient with no
mass transfer through the wall provides excellent conditions for the
verification of the models for near-wall effect terms of the pressure-
velocity gradient correlation. Similarly the models for the pressure-
scalar gradient correlation can be verified with flat plate boundary layer
heat and mass transfer data. Here the near-wall models discussed in
Chapter (2) are employed with corresponding ¢ij models as follows:

(a) The LAUNDER et al. [15] near-wall model given in equation (2.22)

is employed with the complete pressure-strain model given in

equation (2.14) and is denoted by stl s

(b) The GIBSON-LAUNDER [31] near-wall model given in equations
(2.26) - (2.27) is employed along with the simpler version of ¢ij

(equation (2.19)) and is denoted by stg ,

(c) The isotropic‘near—wall model for ¢ic given in equation (2.70)
is employed along with the linear model Rczv(equapions (2.48)

and (2.58)) and is denoted by Rcwl .

(d) The Gibson-Launder model for near-wall effects of ¢io (equations

(2.71) and (2.72)) is employed along with model Rcl and is

denoted by Rch .

Model Rcw is employed in conjunction with model RS while model

1 wl

R is used along with st

cwl 2 °
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6.3.1 Hydrodynamic Predictions

As data of KLEBANOFF [32] relate to turbulence measurements in
zero~pressure gradient, smooth flat plate boundary layer, they arevvery
suitable for the verification of

(a) different models for wall effects on the pressure-strain

correlation
and (b) different decay functions (controlling how fast wall effects
disappear at distances away form the wall).

The predictions with near-wall effect models st] and st are

2

compared with Klebanoff's data in Figures (6.30) to (6.32). For this test,

3/2
the near-wall effect function of f « K and the tensor invariant form

gy
(equation (2.6)) of the stress diffusion model were employed. The distance

from the wall to the point where U = 0.995UE » where UE is the free stream
velocity, was taken as the-boundary layer thickness § . The mean velocity
profiles predicted by models st

and st are in moderately good agreement

1 2

with data. The predicted friction coefficients by models st and st are

2 2
larger by 6.0%Z and 2.7% respectively than the value implied by the power

law formula given by HINZE [26], p.638 . The predicted shear stress profiles
are however indistinguishable from each other with these two models. Fig.

(6.32) show the predicted normal stress profiles against data of Klebanoff.

Model stl shows considerably better agreement with data than model A

swl '
Model stl\correctly predicts the increasing trends in magnitudes of u? and
w? components, as the wall is approached. The difference between the models

in predicting the u® component is appreciable.where that of E?Vcomponents
is purely due to different boundary‘conditions applied in order to be
consistent with the extents of redistribution expected by near-wall-effect
models.

The next test to be reported here is the effect of the near-wall-

effect function on the predictions of turbulence intensitiles. Two functions
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x3/2 [uv] /% . .

were tested, f « KX and fe 77t . The proportionality constants were
ey €Y

chosen so that, with boundary values of near-wall stress levels, f-takes.a

value of unity. The models stl and Dsl were employed along with above

functions and predicted behaviour was compared. The mean velocity profile
and the shear stress profile were identical in the two cases; the normal-
stress profile shown in Fig. (6.33), however, were considerably affected.
As the shear stress is practically constant in the near-wall region, with
the dissipaeion rate being inversely proportional to the distance from the
wall, function f « JEELL_. is rather flat over'a considerable -distance

away from the wall. On the other hand the turbulent kinetic energy is roughly
k3/?

€Y
decreases considerably with distance from wall. Comparison between turbulence

proportional to y-n vhere 7 is about 0.20 - 0.25 and therefore f «

intensities predicted by these two functions with Klebanoff's data indicate
3/2
that f « ._é represents the correct decay in effects of ¢ g terms
a;ls/z
whereas f provides excessive levels of u -due to near-wall:.actions,
€y
Fig. (6.34) shows the effects of turbulent diffusion models Dsl ,
the tensor invariant form and DsZ , the gradient diffusion model. The
coefficient Cs in these two models was given values 0.11 and 0.20
respectively. Model st2 was used here as the model for ¢ij . The mean

velocity and shear stress profiles are again identical for the two models.

Jhe gradient-diffusion model produces excessive diffusion in stress -

componentsj;? and w? and has negligible effect on the v? component., Fig.
(6.35) shows a rather interesting effect that was seen in the shear
correlation coefficient. In Klebanoff's reported data, the correlation
coefficient is constant at 0.5 upto 80% of the boundary layer thickness
and then drops linearly to zero at 1,2 § . The predicted shear cofrelation
coefficient with model DsZ shows a similar behaviour but with sudden drop
to zero at l1.1 6, whereas model Dsl produces an implausible increase. This
however can not be considered a serious defect as the shear stress in this

region is anyway rather small.
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6.3.2 Scalar Transport Predictions

The investigation of a devéloping thermal boundary layer within a
thick velocity boundary layer provides an interesting problem for predictién
methods., ANTONIA et al. [90] have reported datailed temeprature field
measurements of such a flow (the velocity field measurements were mot
reported in datail). The momentum thickness Reynolds number at the upstream
edge of the heated section was about 3070 . The velocity and thermal
boundary layer thickness é\andxsc were defined as the distances to the wall
from positions U = 0.995UE and (C - C ) = 0.01 (Cw - C ) respectively. Two
major discrepancies were reported in their measurements: the skin friction
coefficients obtained'from the growth rate of the momentum thickness were
about 25% larger than those obtained from measured velocity profiles (using
a "Clauser" chart),and the wall heat flux implied by the mean enthalpy
integral equation is about 20% higher than the measured levels. These
discrepancies suggest a slight convergence of their streamlines, possibly
due to the growth of boundary layers on the side walls.
and Rcw of this flow aré shown in

1 a
Figures (6.36) to (6.40). The agreement of the predictions with the mean

The predictions by models Rcw

temperature data as shown in Fig. (6.36) is rather poor. The discrepancies
can be explained by looking more closely at the numerical treatment of the
near wall regién. Boundary conditions applied to the mean temperature and
cross-stream heat flux equations are that of a given wall flux which is
exactly known. There aré no other relations feeding the numerical schemeT.
Thus the discrepancy seen in Fig; (6.36) is due to

(a) the logarithmic law of the wall for temperature used in

evaluating wall temperature,

t+ TFor the case of known temperature wall boundary however, some auxiliary
relation (generally the logarithmic law for temperature) will have to
be used for the estimation of wall flux.
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and {(b) the turbulence model coefficients which expect a near-wall
Prandtl number of about 0.9 .

The logarithmic law of the wall used in evaluation the wall temperature .

is

¢ = Ly s, . (6.1)

K
e

where K, and Ec were taken as 0.46 and 4.5 respectively, which were obtained
from a consensus of near-wall data (see KARDAR and YAGLOM [8]). The value

of 0.46 for Ke is consistent with a Prandtl number of 0.9 , whereas the
coefficient Ee which represent the resistance by viscous sublayer to

heat transfer, was given a value which istOnsistent with values quoted by
JAYATILLEKE [103] in his extensive review of near-wall data (a slightly
different nomenclature was used in [163]).

The discrepancy between predicted and measured levels of Prandtl
number can be isﬁlated by looking at the temperature profiles in defect
coordinates. This is done in Fig. (6.37). The near-wall Prandtl nﬁmbers
implied by data at all experimental stations are in the range 1.0 - 1.3 ,
whereas predictions show a value of about 0.85 . The reason for rather.
high levels of Prandtl number obtained by Antonia et al. is not clear. The
values of Ot obtained by other workers who examined the problem éf developing
thermal layer however féll much closer to present predictions. For example,
the constant-wall-temperature experiments of FULACHIER [104] and that of
BLOM [86] and constant wall flux experiments of BRADSHAW and FERRISS [105]
all indicate values of 0, = 0,90 -~ 0.92 in the near-wall regions.

t
The data on Fig. (6.36) indicate that the additive constant Ec should

in fact be a function of the streamwise distance, whose asymptotic value
seems to have'reached by SK,of 11.4 . The review paper by JAYATILLEKE -[103]
however does not document Zuch an effect. As there are no such correlations,
in the present predictions, E’c was kept at a constant value which is

consistent with reviews by [8] and [103].
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The variation of Prandtl number across the thermal layer as
calculated by ANTONIA et al. [90] has a large scatter and does not seem
té approach a regular pattern at downstream locations. Self preserving
analysis however suggets an asymptotic behaviour for all variations. This
data is another piece of evidence on the unreliability of measurements of
Prandtl number. The predicted Prandtl numbers, shown in Fig. (6.38) against
data of Antonia et al., indicate a near-wall value of about 0.9 decreasing

- gmoothly away from the wall. The agreement of predicted Prandtl number
variation with the data of FULACHIER [104]7and BLOM [86] in the inner 407
of the thermal boundary layer is sétiSfactory. In the outer regions of the
layer, where estimation of mean gradients in data are less reliable, the
variations in O, in data of

e ANTONIA et al. [90] do not show a clear pattern,

e FULACHIER [104] show an increase,

o BLOM [86], by turbulence measﬁrements, show a decrease,

e BLOM [86], by mean profiles, show an increase+,

e JOHNSON [89] show a decrease.

The present predictions show a decrease,

Antonia et al. report that the thermal layer thickness at the last
measuring station (i.e. at X = 42.9) was 66% of the velocity boundary layer
thickness at the same point.OThe corresponding predicted spreads of the
thermal layers are 81% and 82% from models Rcw] and Rch respectively. This

high rate of spread indicated by the predictions is consistent with

difference between measured and predicted levels of Prandtl numbers.

T The Prandtl number variation across the boundary layer given by Blom in
his Thesis [10] does not agree with his earlier reported version [86].
In [10], the Prandtl number profile across the layer calculated by

- turbulent variables as well as by-mean profiles show a decrease away
‘from a maximum of -about-0.90 at y = 50 . '



Predicted turbulent heat flux and temperature fluctuation profiles
are compared with data in Figures (6.39) to (6.41). The cross-stream heat
flux profiles show satisfactory agreement with measurements at all but first
two measuring stations. Predicted streamwise heat flux profiles shown against
data in Fig. (6.40) indicate that the boundary value of uc in the prediction
is too low. The near-wall effect model Rcwl does not seem to give sufficient
level of ;g‘. Model Rch , except very near to the wall, shows the correct -
decrease in uc away from the wall. Thettemperature fluctuation predictions
shown in Fig. (6.41) suggest insufficient diffusion of ;;.in the outer
parts of the layer. A value of 0.13 used for the gradient diffusion
coefficient Cg is however not an optimised value. Predictions of the far
plane wake also indicated an insufficient diffusion indicating that a higher

level of Cg » to about 0.18 - 0.20,would probably produce an overall

improvement.
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6.4 Pipe Flow

6.4.1 -Hydrodynamic Predic¢tions

The mean and turbulence measurements by LAUFER [34] in smooth-walled
pipes are a complete set of data suitable for comparison; Laufer made
measurements at.two Reynolds numbers Re = 50000 and Re = 500000 , and found
considerable Reynolds number dependence in mean and turbulence profiles.
More recently LAWN [19] made measurements of turbulence quantities
essentially for the same flow with more advanced electronics. He concluded
that for the range of Reynolds numbers 36000 - 250000 , the turbulence
intensities suitably non-dimensionalised with the friction velocity are
independent of Reynolds number. Shown in Fig. (6.42) are the fully developed
velocity profiles obtained from predictions with models stl and stg .
They agree reasonably well with data of Laufer. The shear stress variation
across the pipe radius as shown in Fig. (6.43) is mainly a check on the
- numerical procedure and on the fﬁlly developed character of the predictions.
As shown here, the viscous effects are significant only very close to the
wall at this high Reynolds number and for all other positions the shear
stress profile is essentially linear.

In Fig. (6.44) the turbulence intensity profiles predictéd from
models stl and st2 are compared with data of Laufer. The agreement of the
predictions with data are not very satisfactory; it is noted however that
the streamwise component of stress measured by Lawn is in good agreeﬁent
with predictions. The other components of normal stress obtained by Lawn
lie rather close to Laufer's data for Re = 500000 . While, as remarked above
Laufer's data indicate turbulence intensities which are highly dependent on
Reynolds number influence. In the near-wall region, even though the predicted

u?  and w? are within the scatter, the v2 component seems to be too low.
As a boundary condition the level of v* at the grid point closest to the

wall.is indirectly imposed as equal in magnitude to the local shear stress.

Laufer's data for Re = 500000 however imply a 26% larger level for v? in



this region, a behaviour inconsistent with most other near-wall data

(e.g. KLEBANOFF [32]).

Near the axis of the pipe the compon"ents.v2 and w? are predicted too
low. Higher levels for these two components can be obtained by increasing

the diffusion coefficient Cs , which however will increase the near axis

levels of u? as well, thus worsening the-agreement of this component with

experiment. The turbulent diffusion medels Ds and Ds are compared in

1 2
Fig. (6.45). Model DsZ » with a coefficient of C; = 0.20 , seems to have

rather too high diffusion rate. When C; was reduced to 0.15 model D32

provides more .acceptable stress levels near the axis; however no overall

improvement over model DS was seen.

1

6.4.2 Scalar Transport Predictions

The predictions in the models R and Rcw2 for the case of fully~

awl
developed temperéture fields in pipes are shown in Figures (6.46) to (6.49).
The predicted behaviour is compared with data of BREMHORST and BULLOCK [92]
for a Reynolds number of 34200 . Model Rcwl predicts a flatter mean
temperature profile than Rewz ; the agreement with data is satisfactory.
The radial heat flux profiles given by the two models are identical. The
streamwise heat flux profile shown in Fig. (6.48) is in excellent agreement
with data of [92]. Considering the slight scatter in the experimental values
it is not possible to choose which one of the near-wall models is more |
acceptable. The turbulent Prandtl number profile shown in Fig. (6.49) is
that obtained for fully developed pipe flow.

Shown in Fig. (6.50) is the prediction of concentration profiles
downstream of a small mass transfer region in the pipe wéll, a configuration
gtudied experimentally by QUARMBY and ANAND [94]. The first set of

experimental data is given for the position where the porous region ends.

There the agreement of the predicted profiles with data is quite satisfactory.
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Under adiabatic wall conditions, the concentration profile will develop
towards the asymptotic state of constant concentration across the cross-
section. The prediction of this development is only in moderately
satisfactory agreement with data.

At this point it is useful to look back at the modelling ideas and
assumptions employed in the scalar flux model. In modelling the éressure-
scalar gradient term in the scalar flux equation it was assumed that the
time scales of hydrodynamic and thermal turbulence fields, i.e. k and ;E;

€ 2€c
respectively, are proportional, This assumption is likely to be
satisfactory when

(1) mean velocity and mean scalar equations are nearly similar

i.e. having similar boundary conditions etc.,

(ii) the different contributing turbulence processes to the

~_... - maintenance of the turbulent kinetic energy and the scalar

fluctuations have the same relative magnitude, i.e. at any

given region of flow,

o c

P P

€
c

In situations where these conditions are not satisfied, the time scales

Kk and ¢* can not be expected to be proportional; then the use of one scale
g ;.28C

will not be sufficient to describe a process where both time scales are
influential. One of the limitations of the present model is that it assumes
proportionality of wvelocity and scalar time scales and we may there expect
anomalies: te show -up if the above conditions are not satisfied. The

QUARMBY and ANAND [94] experiment is one situation where the boundary
conditions for meanvvelocity and mean scalar are quite dissimilar, The mean
velocity field is.characterised by large gradients near the wall (i.e. non- .

zero wall friction) while the mean concentration profile downstream of the

porous>region has zero gradient at the (impermeable) wall. Thus while the



hydrodynamic turbulence field is in local equilibrium, (i.e. P 1.0), in
€

~the near-wall regions, the-concentration .fluectuation field is one of
decaying strength; the production of ¢? being nearly zero in regions close

P . . .

to the wall, i.e. 2€ - 0 , With less production, in the near-wall region,
€

— e

¢? is likely to decrease faster than ec . Thus the effect of the time scale

2
£ __ on the characteristic time scale (previously expressed as proportional
to ﬁ ) is to decrease its magnitude. If this process was to be accounted

€
for, in an ad-hoc manner, within the framework of the present model, one

would need to increase the coefficient Cc near the wall, thus decreasing

1
the effective thermal conductivity and raising the Prandtl number. This is
certainly the direction of change needed to procure agreement with the
measurements. In fact in the theoretical work of QUARMBY and ANAND [94] it
was assumed that the turbulent Schmidt number was unity, compared with -
values much less than unity obtained in present predictions (see Fig.
(6.51)) throughout the flow, and satisfactorily predicted the development
of the concentration field. Due to above mentioned dissimilarity between
velocity and scalar fields.some assumptions made in modelling turbulent

diffusion of scalar fluxes too become less relevant. Their implications

however are not very clear (see Appéndix (B)).

6.4.3 Conclusions
The prediction of flat plate boundary layer data of KLEBANOFF [32]

suggests that model st and that the near-wall

is superior to model st

1 2
3/2 —_—
effect function f « k¥ is more suitable than the function f « uUS/z.
€y gy

The models for near-wall effect of pressure-scalar gradient correlation do

not show any large differences in their predictions. Therefore model Rcwl

which parallel the near-wall model stl is chosen for further work. The
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tensor invariant diffusion model DSZ shows superiority over the model DsZ

in pipe flow predictions. Therefore it is the model Ds that is employed

z
in further applications. Models Da] and DcZ could not be distinguished

when predicting Quarmby and Anand's flow. The model.Dcz is thus chosen -

for further applications.



CHAPTER 7

PREDICTION OF THREE-DIMENSIONAL

SCALAR TRANSPORT

7.1 Introduction

Prediction of three-dimensional scalar transport provides a
searching test for the turbulence model chosen in the previous chapter.
For the first time all components of scalar fluxes become influential in
the predictions here. The main feature that is under test here is the
relative magnitude of the tangential scalaf diffusivity with respect to
the radial one. Ad-hoc assumptions, made by previous workers, on the ratio
of tangential to radial scalar diffusivity, Fg / Fi , are briefly,

(a) REYNOLDS' [106] assumption éf unity throughout the flow,

(b) SPARROW and LIN's [107] assumption of a diffusivity ratio
varing with radial position (for flow in pipes),

(c) QUARMBY and ANAND's [59] assﬁmption of an isotropic diffusivity
in predicting concentration profiles behind a short mass
transfer section in a pipe,

and (d) Consideration made by BERGELES et al. [108] where diffusivity
ratio was taken as equal to the ratio of transverse to
cross—-stream normal stress levels.
Out of these assumptions it is the last one (Bergeles et al.), that is
closer to generality. This relation is the form to which the present model
reduces when convective and diffusive transport effects and near-wall
effects are neglected. In the present investigation, where transport
equations for the turbulent fluxes are being solved, the diffusivities are
an outcome of the calculation rather than an input. It will be seen later,
that the ratio of diffusivities in the tangential to radial directions is

not a well-behaved two-dimensional function as assumed by previous workers,
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but a complex three-dimensional function strongly dependent on the
boundary conditions.
Section (7.2) reports preliminary testing of the three-dimensional
calculation procedure. The aim here was to ensure that,
(a) there were no asymmetries induced by the three-dimensional
procedure, (caused by the chosen sweép direction, etc.)
(b) the mean scalar was conserved,
and (c) the solutions were independent of the finite difference grid
chosen.
In Section (7.3) predicted results of three-dimensional scalar
transport situations are compared with experimental data.
They are the simulations of,
(a) QUARMBY and ANAND's [59] experiment, where the three-
dimensionality is rather‘weak,
(b) BLACK and SPARROW's [13] experiment, where the th;ee-
dimensionality is moderate and persisting,
and (c) .Present experimental situation (see Chapter (5)}, where the
‘ three~dimensionality is strong and persisting.
Section (7.4) concludes the chapter by sﬁmmarising the inferences

made on the three-dimensional calculations.



7.2 Verification of the Three-Dimensional Solution Procedure

The ~(6~r-z) numerical procedure described in Chapter "(3) .was utilised
previously in Chapter (6) in predicting two-dimensional scalar transport
situation. There the calculations were confined to a single (6-z) plane.

All three-dimensional scalar transport situations considered in this Thesis
had two-dimensional fully developed flow fields. Thus the flow field
calculations were performed on two-dimensional basis and the results were
transfered to the three-dimensional procedure and then made to spread over
all (6-z) planes. The three-dimensional scalar field was then calculated
with a frozen hydrodynamic field. The numerical solutions were checked

to ensure that they correctly represented the solutions of the finite

difference transport equations.

7.2.1 Check for Numerically Induced Asymmerty in.Scalar Field

. As the hydrodynamic field was obtained for a single 6-line in the
cross-section of flow and then all other 6-lines were assigned, the flow
field can be considered exactly symmetric. In the finite difference solution
of the scalar transport equations however, even under symmetric boundary
conditions, asymmetry can enter the calculations via

(i) the method of imposing boundary conditidns, which may make the
finite difference equation of a variable 9 at any control .

volume remote from a boundary different from one adjacent to

a boundary,
and (ii) incorrect interpolation practices.
In order to check that the computer code is free from these deficiencies, a
pseudo-three~dimensional calculation of heat tfansfer in a circumferentially
uniformly heated pipe was made. The mean temperature field showed no

asymmetry in the result. Also the diffusivity of scalar in the radial

direction,
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™ = - r (7.1)

showed prefect symmetry; the tangential diffusivity,

= . uec | (7.2)
_9¢
rab

however, showed asymmetry, less than 3% at any point. It should be noted

here that both uec and 9C should be zero under these boundary conditions
a0
and thus above accuracy is remarkably good. This makes it possible to

proceed in the knowledge that the asymmetries predicted with three-

dimensional boundary conditions are in fact real.

7.2.2 Check for the Conservation of Mean Scalar

In making calculations of scalar transport inside tubes (without
considering the conduction through the tube material), the wall scalar
fluxes are given as the boundary condition to the fluid medium. Conservation
of enthalpy or concentration is thus always achievéd; The solution of problems
where tube~wall conduction is present, however, presents an additional
requirement. Since the axial conduction is to be neglected, here one must
make sure that under steady state conditions, the heat generated (or.
supplied through the outer surface of the tube) in a given length of pipe
wall is exactly equal to the net gain in heat by the fluid passing along
the same length. Thus, for example, if the heat input per unit length is
constant along the pipe, the bulk temperature rise should be exactly linear.
As the general . form of the finite difference equations for control volumes
within the pipe wall (no turbuient transport) is strikingly different from
those for control volumes in the fluid, these equations-are not expected to
converge to the solution at the same rate. In calculations where the grid

was confined to the fluid inside the pipe it was found that at a given cross
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section it was sufficient to make two sweeps each, in the radial and
tangential directions, of the line-by-line solution of the finite difference
equations. In cases where tube conductian was considered, however, a

large number of sweeps was necessary to make sure that the fluid had
absorbed all the heat that was supplied under steady conditions. During

the first few steps of the calculation i.e. in the region close to start

of the heating, the mean temperature equation was swept eight times, whereas,
~as the calculation proceeded downstream the number of sweeps were gradually
reduced to fdur. This practice made sure that the total deficit in the bulk
temperature was less that 0.1% of the exact value at all positions along

the tube. As all turbulent variables were confined to the fluid, as before

two sweeps were sufficient for their convergence.

7.2.3 Check for Grid Independence of the solution

It is necessary té make sure that the final solution of the equations
was, for practical purposes, independent of the finite difference grid
employed. Apart from limitations in grid plaﬁement in near-wall regioms,
.as discussed in Sectien (3.6), one can . generally expect .to achieve
higher accuraéy by increasing the number of grid nodes across the region of
interest, however, with added cost in computing. In two-dimensional
calculations 22 grid nodes were used in the radial direction. Number of
grid nodes necessary in the transverse direction were checked in three-
dimensional calculations and 8 grid nodes were found to be sufficient to
give mean field results with 1% of what is obtained with 14 grid nodes. As
the computational time nearly doubled in the latter casé it was felt that

the accuracy with (8 X 22) grid was sufficient for the present investigation.
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73 Comparison of Predicted Results with Experimental Data

Three sets of experiments in three-dimensional scalar transport
(weak, moderate and strong in three-dimensionality) are compared here with
the predicted behaviour.

The first situation considered is QUARMBY and ANAND's [59]
measurements of concentration profiles downstream of a short mass transfer
section. This work followed their two-dimensional explorations [93] made
with the same apparatus and all details of the measurement technique and
measuring stations etc. were given then. The presentation of the results
in [59] however is rather misleading. The location x+ = (0 in the first
(axisymmetric) paper was at the downstream end of the mass transfer patch
on the wall. In the second paper no statement as to the whereabouts of the
origin was made. It was evident, however that it could not refer to a
position in the porous patch since the reported near-wall radial gradients
of concentration were low (indicationg an impermeable wall). The experimenter
reported that the stations were the same as for the axisymmetric tests
however. It was eventually discovered that by interpreting x+ = (0 as
corresponding to the next position downstream the values of x+ reported in

the two studies were indeed the same (see Table (7.1)).

Present Notation Notation in QUARMBY Notation in QUARMBY
X+ e and ANAND's [59] and ANAND's [93]
E’ Two-Dimensional Three-Dimensional
Experiment, 7 = & Experiment, 27 = &
R R
0 (Start of Porous Region)
1.493 0 (End of Porous Region)
3.558 4,13 0
8.208 13.43 =
12.858 22.73 18.60
19.058 35.13 31.00
29.388 55.79 51.66

Table 7.1 Measuring Stations for Quarmby and Anand's Experiments
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Now the predicted concentration profiles are compared with data of [59].

Shown in Fig. (7.1) is the variation of concentration at position (a) and

(b) (which are the maximum and minimum of concentrations close to the wall).

The agreement between the predicted variation and experimental data is

poor. Some useful inferences can however be drawn.

(1)

(i1)

(iii)

X

"Data at & =.3,558 indicate that the circumferential diffusion

D
of matter is much larger than what is implied in the predictions

(otherwise the concentration at (b) would not be so high).
Data at locations further downstream indicate that
circumferential diffusion is considerably smaller than that
implied in the predictions (otherwise difference between the
concentrations at (a) and (b) should decrease faster).

The variation of the near-wall concentration (denoted as CZD)
profile in QUARMBY and ANAND's [93] two-dimensional investigation
for the same Reynolds number (Re = 20800) is given in Fig.

(7.1). Their three-dimensional mass source was obtained by
blocking 507 of the porous ring used in two-dimensional
investigation. Therefore, for the purpose of comparison, the

intensity of mass source in three~dimensional case; dzp » can

be considered double as that for two-dimensional case; 9op > i.e.

9ep = Zdgp

In regions where diffusive effects are not predominant,
concentration is likely to be proportional to the local mass
flux. Therefore in regions close to the porous ring Ca should
be roughly 202D . Quarmby and Anand's three-dimensional
measurements, however, does not support this, indicating a
clear discrepancy between their measurements. It is most likely
that their three-dimensional measurements at X+ = 3.558 are

grossly in error.
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The above discussion indicates that QUARMBY and ANAND's [59] data are
neither consistent nor reliable. The fact remains however that the
circumferential diffusion of matter as indicated by their data is
substantially smaller than that implied in the present predictions. This
fact in the light of other experimental data is discussed later.

It is worth mentioning‘here that QUARMBY and ANAND.{[59] came out
with a set of assumptions which made it possible for them to predict their
flow satisfactorily. They assumed that the diffusivities of mass and momentum
are equal and that diffusivities of mass in radial and circumferential
directions are equal. They assumed profiles for mean velocity and effective
viscosity and then solved the concentration equation with the use of above
assumptions. As initial conditions they took the experimental results at
X = 3,558 . Their predicted profiles at downstream locations were in

D
excellent agreement with the experiment. It was seen earlier that data at

X = 3,558 however are inconsistent with above assumptions. Thus with these
D
assumptions, if their calculation started at £ =0 , it would not have been

D
possible for them to satisfactorily predict their data.

The next three-dimensional scalar transport situation to be considered
is the investigation of BLACK and SPARROW [13] (see also BLACK [95]). Here
the fluid is subjected to a circumferentially varing heat flux boundary
condition obtained by resistance heating of a stainless steel tube of varing
thickness. This boundary condition is applied to a length of 60 diameters
of tube and temperature measurements were reported at the position %.= 52 .
The ratio of maximum to minimum heat flux as implied by the variation in
thickness is 2.92:1.00; however, due to ciréumferential conduction in the
pipe wall this ratio of heat fluxes at the surface was reduced to a mere
1.31:1.00 at a Reynolds number of 7500 . Thus their situation can be

considered only moderately three-dimensional. Results were published for

several Reynolds numbers in the range 7500 - 58000 . For the present
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investigation two Reynolds numbers were chosen, 40500 'and 16800 , for
which complete sets of wall and flow measurements are available. (Wall data
for Re = 17200 are taken as that would prevail for Re = 16800). The
temperature and heat flux distribution at the inner wall (calculated by
BLACK [95] by solving+ the tube conduction problem) and the implied local

Nusselt number variation were reported at X = 52,0 . The predicted behaviour

D
of
(a) the wall heat flux through the inner surface of the wall

(b) the wall temperature at the inner surface of wall

and (¢) the implied local nusselt number calculated as
X
g. fw, 53 D.
muitw,$s = t D L (7.3)

X ) - X
Cofw, L3 - L3k,

at the two Reynolds numbers, are compared with calculated profiles of BLACK
and SPARROW [13] in Fig. (7.2) and (7.3). There are discrepancies of 4%

and 2.67% between the predicted and measured circumferential heat flux
vatiations at Re = 40500 and 16800 respectively. The predicted variation

in the inner surface témperature however agree well with data. It should

be noted that as Black did not apply an inner wall boundary condition in
his calculations, but relied on two boundary conditions at the outer surface,
the results of his calculation are liable to be rather sensitive to any
errors in those boundary conditions. The maximum discrepancies in

aNub{ W, %.4 are 6% and 2.8% for Re = 40500 and 16800 respectively. It

is thus clear that a major portion of the difference between the calculated
(by BLACK [95]) and predicted Nusselt numbers is due to difference in

g-profiles which in their case is probably in error.

¥ The boundary conditions used in solving the conduction problem are,
' (i) -Symmetry at w = 0° and w = 180°
(ii) Known temperature at the outer surface (measured values)
and (iii) Assumed adiabatic outer surface, (heat generation rate
calculated from measured enthalpy rise in air).
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The non dimensional temperature contours drawn from the data of [95]
and present predictions are compared in Figures (7.4) and (7.5). The
agreement of the calculated and measured behaviour is very satisfactory.
The radial diffusivity of heat implied in the predictions seems to be
slightly too low whereas the circumferential diffusivity seems just
correct éhown in Fig. (7.6(a) and (b)) are the measured temperature profiles
and predictions at %.= 52. The dashed lines indicate calculations made by
Black using SPARROW and LiN's {1071 analysis which assumed unity Prandtl
number and isotropic diffusivity for heat. Since the agreement of ﬁhe
present predictions with measured levels is far better than with the
isotropic assumption, it is possible to conclude that the notion of
isotropy is not in accord with experiment.

The development of the local Nusselt number in the streamwise
direction is shown in Figures (7.8) and (7.9). Five angular locations 45°
apart in the tube were chosen for representation. The following inferences
can be drawn

(a) The thermal flow has not become fully developed even at %.= 60,

(b) The Nusselt'numbers in the hotter areas seem to be close to

fully developed levels than do the others,

, L'The,fiﬁal:three—dimensional»scalar,transport situation to-be
considered is that of the experiment described in Chapter (5). Here the
three-dimensionality is obtained by heating only the top half of a glass
tube. Due to conduction through glass, however,a small fraction of heat
found its way through the non heated half. As the heat flux variation around
the circﬁmferencé.was not measured one had to make an assumption as to how
it varied in that direction. Preliminary calculation with a square—wavé
heat flux distribution in the 6-direction showed that the measured
temperature variations were by no means compétible with this distribution.

To find a more probable g-profile around the circumference measurements
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were made with both sides heated. Figures (7.9)-to (7.12) show the results
of these explorations. The aim here was to obtain a q, £ w # profile which
would give best agreement with wall temperature measurements made for the
Reynolds:numbers 20000 » 40000 .and 90000 . The profile of q, £ w # chosen
after considerable exploration is given in Fig. (7.9). The 9 £ w # profiles’
refer to the heat flux variation entering the fluid:. As expected the wall
conduction effects are more dominant at lower Reynolds numbers.

It should be noted here that the temperaturé profiles shown'in
Figures (7.10) to (7.12) are obtained without modifications to the turbulence
model, It was hoped that any shortcomings in the turbulence model would
still be evident with the adjusted qo profiles. On average predicted
temperature profiles indicate slightly lower values than that obtained from
measurements. This may be inferred as an effect of slightly high radial
diffusivity in near wall regions.

Shown in Fig. (7.13) is the streamwise development of local Nusselt
number (non dimensionalised with respect to the fully developed value for
the axi-symmetric case) at three different angular positions. The wall
fluxes corresponding to this‘case are those at Fig. (7.9(a)). The Nusselt
number profile at w = 45° for which point i@ is very nearly unity falls
along with that obtained in the axi—symmet3£c calculation described in
Subsection (7.2.1). The data of entrance region Nusselt number by MILLS
[109] for the case of uniformly heated tube (long calming section entrance)
are shown here for comparison. Considering the scatter in data the predicted
variation for the axi-symmetric cése can be considered satisfactory. The
non dimensional temperaturé contours at axial locations £ =5, 10 , 15,

20 , 25 for the case of Re = 40000 are shown in Fig. (7.14). The slight
asyﬁmetry created by the weakly three-~dimensional wall boundary condition

is evident here.
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The simulation of the situation where only one half of the tube was
heated will be discussed next. The outer wall heat flux distribution Zg
profile is that given in Fig. (7.15(a)). Again measurements and predicgions
were made for three Reynolds numbers 20000 , 40000 and 90000 . The results
of these tests are given in Figures (7.15) to (7.20), two figures for each
Reynolds number. The first of these show the given q, £ w # profile along
with predicted g, £ w # profile (qi £ w # varies in the axial direction as
well, however this variation is quite small). Again, larger influence of
conduction at lower Reynolds number is evident. The ratio of maximum to
minimum heat fluxes (predicted, inner surface of tube) was 51.5 , 131 ,
405 respectively for Reynolds numbers 20000 , 40000 and 90000 . (cf. Black
and Sparrow experiment where this ratio was 1.67 for Re = 40500) The
éredicted temperature profiles around the circumference suitably non-
dimensionalised-with respect to the local bulk.temperature show satisfactory
agreement with measurements .The discrepancy at %,= 5 could arise from two
possibilities; one, as mentioned before, a high radial diffusivity in the
prediction and the otﬁer a possibly low heat flux in the initial region of
the experimented tube. The Nusselt number profiles shown here indicates
negative values over most of the half where the heat flux is'very low.

(The local Nugselt number becomes negative when the wall temperature is
smaller than the bulk temperature at that axial location.) Non-dimensional
temperature contouré at five axial locations for Re = 40000 are given in
Fig. (7.21). The rather strong three~dimensionality obtained with present
boundary conditions is clear. The temperature measurements in the fluid,
had they been available, would have -provided an invaluable test for

the detailed turbulence modelling.
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The ratio of diffusivities in tangential to radial direction for two
representative cases are shown in Figures (7.22) and (7.23). The first
refers to the Black and Sparrow's experimental situation at Re = 40500 .
Here the three-dimensionality of the scalar field being only moderate, the
transport effects in the scalar flux equations are never dominant. This can
be seen in these contours which indicate values for ratio of diffusivities
in two directions quite close to ratio in réspective hormal stresses, Fig,
(6.23) which relate to the case of Re = 40000 in the present experiment
indicate that for strongly three-dimensional scalar situations the ratio

of tangential to radial diffusivities of heat is indeed clearly three-

dimensional.
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7.4 Conclusions

It was shown that the measurements of concentrations behind a short
mass transfer section in a pipe made by QUARMBY and ANAND [1l] are not
reliable. Their data however indicate that the near-wall diffusivities are
predicted too high. As noted before, similar impression was given by
predictions of their data for the two-dimensional problem as well. Other
two situations which the predictions were attempting to simulate were for
the cases where there were non-~zero heat fluxes at all cross—-sections of
the flow. The three-dimensionality of the scalar field in these cases were
much stronger and the predictions were in very good agreement with data
certainly far superior to the calculations with the assumption of unity for
the ratio between diffusivities in tangential and radial directions. It
was shown at the end that this ratio is in fact a three-dimensional function
very much dependent on boundary conditions and is far from well-behaved

ad-hoc assumptions found in the literature.



CHAPTER 8

CONCLUDING REMARKS

8.1 Achievements and Limitations of Present Work

The main theoretical contribution of this Thesis has been in the
area of extension and application of existing second-order closure models.
The Reynolds stress closure models employed have previously being tested
by others e.g. LAUNDER et al [15], in the same or similar experimental
situations. In the present work, the main concern was to apply the scalar
transport models in situations where reliable experimental data exist.
-Models for two terms, the pressure-scalar gradient term and the turbulent
diffusion term, that appear in the scalar flux equation were tested.
Attention was given to the modelling of influence of a rigid wall on the
pressure-scalar gradient term, and a new model based on ideas exactly
parallel to the modelling of near-wall effects of pressure-strain term is
presented.

Two existing numerical schemes, Patankar-Spalding (x-¥) procedure
and (6-r-z) procedure developed by Gosman and his colleagues, were extensively
modified so as to facilitate the study of hydrodynamic and scalar
transport problems with second-order closure models. New set of nodes,
staggered with respect to those at which the mean flow variables were
stored, were introduced for the calculation of turbulence variables. In
the (x-¥Y) procedure, for two-dimensional boundary layer flows, turbulent
variables were calculated in positions shifted half a grid node in the
¥-direciion. In (6-r-2) procedure the displacements of the turbulent grid
were chosen with due regard to‘the appearance of the;e variables in the
mean équations. This technique.clearly stabilized the numerical calculations
by keeping the correct degree of tightness bétween mean and turbulent

equations., Within the framework of the above numerical schemes, this idea
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of staggered grid for turbulent variables provided a much improved
arrangement for the solution of conservation equations in the second-order
closure models.

The final version of the (6-r-z) computer code contains a facility
that permit the solution of the mean temperature equation both within the
flow and in the wall of the containing piée. This enables one to take a
correct account of the effects of conduction in the tube wall under
circumferentially non-symmetric boundary conditioms.

The present work has provided measurements in strongly three-
dimensional heat transfer situations in a pipe. The technique of obtaining
uniform- heat flux boundaries in long pipes using metallic spray deposition
has been extended to obtain segments of uniform heat flux regions.
Experiments which were performed for three Reynolds numbers (20000 ,

40000 and 90000) provide a useful set of data for the verification of
turbulence model.

Several free as well as wall-affected two~dimensional flow and
scalar transport situations were numerically predicted using the second-
order turbulence models. The level of agreement obtained in the hydrodynamic
predictions'is similar to that obtained by previous workes. Even though
the predictions of the plane jet and of the mixing layer between two
moving streams is quite satisfactory, the plane wake and the mixing layer
with E£ = ( show too low spreading rates. The weak point there seems to
lie ig the mo&elling of the dissipation rate of turbulent kinetic energy,
The level of agreement obtained in scalar transport predictions is
satisfactory, however, it is always limited by the corresponding success
in the hydrodynamic predictions. The present pressure-~scalar gradient
model predicts about the correct level of turbulent Prandtl numbers in
free shear flows. The effects of considerably different production to
dissipation rates on the level of turbulent Prandtl number, while in the

correct direction, however seem to be underpredicted.



One of the major limitations of the present scalar transport model
is that it assumes proportionality between the turbulent velocity and -
scalar time scales. When the boundary conditions for velocity and mean
scalar are nearly similar this assumption is found to be satisfactory: The
computations of mass diffusion downstream from a wall source has shown
however that the supposition is inadequate when the boundary conditions
are dissimilar.

The major physical phenomenon under study was the anisotropy of
diffusivities in three-dimensional scalar transport situations. The
present numerical predictions clearly confirm that the distribution of the
diffusivities in the circumferential and radial direction is iﬁ fact quite
;omplex and three~dimensional and certainly far from isotropy. When the
three-dimensionality is only moderate the transport effects never being
dominant, the ratio of tangential to radial diffusivity seems to be close
to the ratio of corresponding normal stress levelg., Under conditions of
strong three-dimensionality, there are considerably larger regions where

transport effects are dominant and hence the ratio of the diffusivities of

scalar is a strongly three-dimensional function.
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8.2 . Suggestions f£or Future Work

(a) The experimental technique employed in the present investigation
can be improved in é number of ways: As the first step towards
perfecting methﬁdé of ‘achieving a more square-~wave-like heat
flui variation around the tube, the present tests should be
repeated with larger diameter tube. (A commonly available
T12 fluorescence tube of nominal diameter 1.5 in., if employed,
should reduce the conduction effects by a factor of three and
the damage in peeling the strip of silver off from the tube.
would be confined to a much smaller angular region).

Over a ;lightly longer time scale, attempts should be made to
make méan temperaﬁure and temperature fluctuation m;asurements
in the flow. It is only such detailed measurements that can
provide the depth of information needed for improving the
turbulence models.

(b) A complete rethinking in modelling of turbulent kinetic energy
dissipation rate equatiomn is necessary.vlt is rather sad to
note that even though the stress and flux modelling have
progressed considerably during last dacade, the medelling.of
dissipation rate equation has not changed very much. In this
regard,‘more recenf ideas of multiple length scale models
which take into account the transfer of energy between adjacent
wave number regions should Be pursued.

(c) As discussed in Sub section (6.4.2) the present assumption of
prbportiqnal time scales for the velocity and scalar fields
needs to be. replaced. The way forward would be to provide a

model for the dissipation rate of scalar fluctuations, Ee .



As the measurement of terms in the €, equation is relatively

easy (compared with teérms in the £ equation), the model of

-Sc may end up being a better representation of scalar

dissipation than does the model for € .
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' D



e,

Y 593

08112

[ ) SV

Fig., 7.22 Ratio of Diffusivity of Heat in Tangential to Radial
Direction : Prediction of Black and Sparrow's Flow,
Re = 40500 .

08 10 12 1 6 18 20 22 22

SOV L

Fig. 7.23 Ratio of Diffusivity of Heat in Tangential to Radial
Direction : Prediction of Present Experiment ,
Re =~ 40000 (Only Right Half Heated).
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APPENDIX (A)

A Form for the Near-Wall Effect Function

in Cylindrical Geometry

A form for the near-wall function can be obtained by considering the
respective geometric configurations. The Fig., (A.1) comnsiders the following
situations

(a) flow affected by a single plane wall,

(b) flow affected by two parallel plane walls,
and (c) flow inside a circular tube.

If the near-wall function,
Fo=reles (A.1)
Yo
is to depict the effective influence of the wall, then for a point at a

given distance, g , from the wall,

Fiap < Tioy < T (4.2)

Out of several plausible forms the following is chosen to represent

the effective distance to the wall.

of00
1 « o8 & dx . (A.3)
Y 2
-00
Thus for case (a),
/2
1 - I 2|  acos 8 sec?0dd| = 2 (A.4)
Y, ] a® sec? © a
0

Yy, = K, a . ' (A.5)



SRR I R

Lsesl 2o

The constant of proportionality in (A.3) is thus equal to ) . For the case

of two plane walls (A.3) can be applied to both walls to obtain,

1
Y = K . (A.6)
° ° (1)+(_1_.)]
a h-a

For the case of a cylindrical geometry,case (c),

I : '
1 2 Recos (6 -8 ) dg (A.7)
Yo R2 (1 +b%2~2bcosB)
where b = R-a
R
i.e.
y, = K K ' . (A.8)

° Jﬂ {1 ~Dbcos H ) de

0(1+b2—2bcos_e')3/2

Though the exact solution of the definite integral in (A.8) can be obtained
(see Table 67, BIERNES DE HANN [110]) its inclusion in a calculation may
be rather expensive. A fourth order polynomial equivalent of the integral

can however be easily obtained as

Y, k,Bg

where,

«Q©
li

q - 1.4955 q* + 1.2673 q° - 0.4535 ¢" (A.9)

and,

q =1-Db
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APPENDIX (R)

Simulation of the Diffusive Transport of uic and c®

The transport equation for the triple correlation uup e for high

Reynolds and Peclet numbers can be written as

ugge 4+ U, Uy 7 = - ( u;usC Uk,Z * Uty C,Z + Uy C Ui,l )

(a)

- UGG g - ( U;C P g twep s )

>
(b) (c)

+ ( Uce Uty + uiuk'ulc,l + ukc'”i“Z,Z)

(d)

.

(8.1)
The quadruple correlation u;upu,C can be simplified with reference

to MILLIONSHTCHIKOV's [23] hypothesis,

u.ukuzc_ = uiuk.u

e+ u.u
T 7

Uy C + U C U (83.2)

z A kL

which is strictly valid only in random fields with Gaussian probability
density distributions but approximately satisfied even in non-homogeneous

turbulence fields [22]. Therefore

(b) + (d) = - ( ukuZ. u'l:c_, Z + uzc. uiuk, Z + uiuz. ukc) Z) .
| (B.3)
The exact expression for the pressure-scalar flux correlation can be

obtained as,

1 = ._i i 4 !
5 ;e P g 3 | o Um,n we |k dvol
’ J \
v
+ _1_ ._1_. w'ulu.e dvol + S (B.4)
ar | 7 mn LS ,mmk )
\



This expression clearly has two distinct types, one expressing the
influence of the mean-rate-of-strain and the other involving only turbulent
quantities. The first process can be modelled, following the pattern of

'

pressure-strain modelling, by terms of the form a;a;E-Uﬁ,n . The second

term can be modelled following the approximation of ¢ij1 as - %.( EEZZE ) .
The parts of term (a) with mean velocity gradients are now neglected

following a similar action by HANJALIC and LAUNDER [14] in deriving the

algebraic model of Z;ﬂ;&; . Consistent with that step the mean strain terms

in the pressure-scalar flux correlation can be neglected too.

Finally, on neglect of the convective transport term in (B.1l) and on

substitution of the above formulations an algebraic expression for u.u ¢

K

emerges. That is,

(uu, . u.c . + U,Cou.u

U = - ¢€ A I L P

k
1k ¢ €

+ ‘I/L?:uz. ukc’ 7

* U Uy C,Z ) . (B.5)

In order to derive the corresponding algebraic expression for ukcz s

which appears in the diffusion term of c? , again reference is made to its
transport equation. As given for example in KOLOVANDIN and VATUTIN [22],

for high Reynolds and Peclet numbers,

2 2

2 _ - —
U C Lt + UZ ue 1T ( use %1 + 2 U@ C,Z') Uy s C J1
(a) (¢))
1 2. 2 A
-5 Py + (e wty g * 2 o use 4 ).
(c) (d)
(B.6)

Now following arguments and assumptions similar to those made in deriving the

algebraic form for u;u e one obtains,

ukcz = ..ngé—(ukuz—c—?,z+2;—z_c_._z:;g,z+Zukuzc C_,Z) | .

(8.7)



- 298 -

Inherent in the above formulations for Zgﬂzz'and ukcz is the
assumption that the velocity and scalar time scales are proportional. Under
circumstances of dissimilar hydrodynamic and scalar fields however, (for
example QUARMBY and ANAND's [94] experiment where the velocity field has
large gradients in near-wall region (due to wall friction) and scalar field
has zero gradients (impermeable wall)), the time scales are not likely to

be proportional. The second term in (B.4) was expressed as proportional

to Eizﬁf.where T was taken as equal to k | More accurately T should be a
T €

2
mixture of X and 2~ .
€ €

Moreover, in modelling the uiukc term, the effects of the production

term due to mean strain

-( U Uy C Uk,Z + U g C Ui,Z )

as well as mean strain contributions to é_atzrgjz.were neglected. It was
hoped that the effect of these terms would be small and conveniently be
absorbed in the coefficient C'c . Eventhough it is likely that this is
possible in situations where the scalar and hydrodynamic fields nearly
similar, under circumstances where %Z is large and 32 is small, the above
terms may even be the dominant. ’ K

These shortcomings may show up in predicting scalar transport

situations where strong dissimilarities between velocity and scalar fields

exist.



APPENDIX (C)

Derivation of the Exact Equation for

Pressure-Scalar Gradient Correlation

In order to obtain correlations of the type pressure-scalar gradient
T UG
P e i » bressure gradient-scalar flux < _p % one should first derive the
p ’ o] K
Poisson equation for p . Consider the equation for fluctuating component

of velocity u; obtained by substracting the mean velocity equation from the

instantaneous velocity equation. It is

- 1 —
ui,t + Uy, U % + U Ui,k + Wik = - B-p’i +V U kk f (uiuk),k .

(c.1)

Taking the divergence with respect to z; s and considering continuity,
U, . = 0 ' (c.2)

one obtains,

' _ 1
Ut %5, * Y, Va,k * ¥,k Y,i = " Pai T (%) ak o
(C.3)
Now
Cugg ) g = Cugg o) g = gt -
Thérefore
Y - -
5Pas = -~ 2uy g U g Cugg ) gt Cugg ) gy
(C.4)
or taking the derivative with respect to xk
1 _ - -
5 ( P x ),717,' = «2( Uy m Um,n ),k : (unum ),nmk + ( u ),nmk .

(c.5)
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The Green's theorem applied to a variable g is,

= 1 | Va .
a = - | 5 dav + Surface integrals . (C.6)
r

v

So that Green's theorem on fluctuating pressure p is

.
P = 1 | 1L yr yr gyr+ L | 1§y av!
o) 2T ) pt N,mM MmN 4 nt nm |,mm
14 14
'd
A I N Y avt + 8 . (c.7)
ar | 7 nm |,nm

Here p is a function at ( Xb , YO s Zo ) the point under

consideration and the right hand side of (C.7) is evaluated at ( X' , Y' , Z' )

points over the control volume V of surface 8. Similarly,

F
4 - 4
C
- ZJ}F % whu? ok WS (C.8)
7

The equations (C.7) and (C.8) can be used in obtaining various correlations

that appear as pressure related terms in turbulence equations.

In order to obtain the pressure-scalar gradient E.c Z correlation,
2
(C.7) is multiplied by ¢ i and time averaged, thus '
£
.
p = 1 1 ' ' X '
Y e ;T'Uh,n Uym ¢,4 AV
J
+ L L c g dv! + 85 (C.9)
ZE'J g ndm ),mm ©,7 i - .




This is same as the equation (2.47) used in Section (2.4.2), Similarly
scalar flux-pressure gradient correlation is obtained by multiplying (C.8)

by uic and time averaging the product,

r '

uje - 1|1 s s '
- P,k = EE'J nr Uﬁ,n YliCom |,k av
e
( ¢
1 1 1 '
+ ZE'J =7 unumuic,mnk av'’ + Sik . (C.10)
v

This equation is utilised in Appendix (B) in obtaining the algebraic

expression for u,ukc .
T
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APPENDTX (D)

Modelled Reynolds Stress amd Scalar Flux Equations

in Cylindrical Polar Coordinares

Reynolds stress and scalar flux equations presented in Chapter (2)

are in Cartesian tensor form. In order to transform them into any curvilinear
coordinate system, the contravariant and covariant character of the tensors
involved should be recognised. The covariant differentials appearing in

exact and modelled terms of present set of equations can be reexpressed
~in partial differential forms using expressions involving Christoffel

symbols of the second kind. A complete account of such tensorial manupulations,
with particular reference to fluid mechanics, is given in ARIS [111l]. In

Table (D.l), the modelled forms of Re&nolds stress equations as employed

in the present study are displayed. They are valid for

e two-dimensional, non swirling i.e. Ue =0 , g%.= 0
® steady i.e.’i{= 0
9t
e boundary layer, with negligible streamwise gradients i.e._éi.= 0
F4

(except for convection terms).
flow situations only.

These equations have previously being obtained by others, for e.g.
MORSE [53].

Presented in Table (D.2) are the scalar flux equations in the forms
utilized in the numerical prediction of situations covered by tﬁis Thesis.
These equations are relevant only for the flow situations mentioned above.
In addition the lateral velocity U, is neglected too. The scalar field is

e three-dimensional

e boundary layer type i.e..jL = ( except in convection terms.

9z



Stress Component

Term;
Model - -
, 2 2 2
Uy Up _ Ug Uply
8? 3_2 =2 2 7 "y ‘
L (uzus) v, ey Mz Uzauf Ur,auf’ Uz%wr,a_”?_ UzaurquPauz,uz
Dt 9z or 9z or 9z or 2z or
3 U. =1/
b4 r 2 2°°3
Pij ‘Z”ruzg;‘ 0 B '“rgg"
-€.. -2g -Z¢ ~-2¢ 0
LW 3 3. 3
el,2.2 - E|y2.2 ~ € 2 e
¢ijl Cslk z gk CSIZ r Ek Cslz'u gk Cslk iz

Table

D.1

Modelled Reynolds Stress Equations in Cylindrical Polar Coordinates

o)

Nt



(contd.)

Stress Component

Term;
Model - — —
z
U, u, Ug wu,
4 {——au Up—s 2 3y Up—s [ Up~—3 { 53U,
LRPPe = |50 (gt — 5+ Lug ~{ 2o |upu, B+ Tu -1eojupuy B+ T -|-afup2
U ol 3y
. _Bok_Z _gokr _gexr et
¢ gy 0z or r dr
AR ‘
P s N R o]
r r dr r 3r r ar j
_________________________________ 8
* Rsz same as R ; with a.= Cgp , B=v =20
, slwz'uz_s slug ur'g slwy, u6_3 f slwzuruzf
o K '
swl L ,
o R .. 2 —20., Eu2 .. Eu2 SBe ., &y
w2 slw zf slwk rf slwk rf P slwk r zf

Table D.1

Modelled Reynolds Stress Equations in Cylindrical Polar Coordinates
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(contd,)

Stress Component

Term;
Model - e _
2 .2 2
u, U, ue U,
oy 3 3 — —
o U, U
“7 =205 2 upuz—-‘i+—r’u§ f 2C g g1y | Upthz __§+_r’u8 f 0 Cogy| (ugmup) —2|f
o F 9 r ar r or
swli
| o0 3 :
° stZ Cszw¢rr2f 2032w¢rr2f 032w¢rr2f 2 32w¢rz2
u? —_du? —du? duU_U
—_— °] 9 2 rz
Dlu.u.ls 9 lpo.u2—2 9 _|pou2 L I P o YR 4 2 rQasu
v rar[ Y rd o rar| © or ror| © lor
* Ps1 ~20802 (U272 ) £2°502 (12 -u?) -2 Y,
8 "r™7e 0 8 8 “r”z
3 2 ——— S
e D 5 ven _2_.2rﬂsuruz Yrtz +_§_.2rﬂs ;_EE +_§_.293ué(u;-ué) +_§_.rQS ;. r’z
s P3r or ror or 73y rir or
Q™77 7% Q772,77 77 RIZH)
_2;§u6(ur-u8) +2_;ue(u ue) _Eue u M,
N2 —_—n 7 2
29§u2§39 +2¥§u2352 +.§_.rﬂsupuz§22
r Udp r Tor ror or

Table D.1

Modelled Reynolds Stress Equations in Cylindrical Polar Coordinates



Term; Flux Component
Model
u,c u,c Uge
D duye dugpe duge
_-(uic) U, 2 za_
Dt Y 9z 93
) Y% 7 oC —2.23C 2 9C
Pic U, —2~uu, o2 U, ue,_
r dr or rob
Cbicl’ c c c
o B ~Co1=Uzc ~Co1=Upc ~Co1-tgC
el k k
0" el (uP-2x el (u?- ' E(WE-2k)ne
R, e o=ClEl (u-2k)u ctu u,  u c c=CloEN(u, ﬁk)urc+uruz.uzc coo=CliE(ug-2k)uge
k 3 k 3 k 3
¢i02 ’ -—23U
C g2 0 0
e R ea ' 5p
el
— 93U
o R 0.8u c-gi -0.2u_c__% 0
e r 3p 2 or
Table D.2 Modelied Scalar Flux Equations in Cylindrical Polar Coordinates
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' (contd.)

Flux Components

Term;
Model
o use uge
d. .
zelw’
- - €
R Cclwgu"cf Cclwgyrcf Ccluryecf
® Yewi K k k
. Rch 0 Ccl £y cf 0
¢i02w’ U U
o B -4Béurc__5. Béuzc__i 0
cwl r or
e - e e e e e e e o e e e e e e o e e e e e e e e . . . —— e —— . ot —— . e m—— e | — . mn — e e —— — . — — —— — — —— —
* cwe 0 0 0
—_ —_— — ( —_— '__;
s, 3 |po azau e .8 g ;}Buzc 3 |no ;?Surc _chg-auec+urc 3 LQ ;Eau cf&hgzzﬁuec
1 — 1" ey ™8 |7 ey -6 c"r — %r
ror or raf rdb rar or r rd r rarl dr | r Oor
° Dcl —> | 8uU,e uUpe W 8? e UG
+ 9 (Quub| " X0-"0 +9_|Qud| T
r3b 738 r || P39L krae r

Table D.2

Modelled Scalar Flux Equations in Cylindrical Polar Coordinates

Fa
A



(contd.)

Flux Component

Term;
Model
u,e u,C uge
e .y dugc el
D(u.c); |..+-9_ rQ U “rC - rﬂcu; “r€ +.9 rﬂcué “p® He¢
ke ror or | ror or ror re6 r j)
D é_—J duge ——fa"‘“'“‘"\
a2 uge T2dupce 2| duge , Upc
+ 910w 760 +9 |9 un 70 ] +.9 Qug | She e iadt
a6 ar ) rob ar rab (38 1 })
gguz duge u.c +?§ 2 aurc~ggi
r O{r3s »p r ref r
( — N
oD 40 |10 wotrta I P T e o0 10 une(ui-u)
e3 c’r c"0 r 70
ror ar ror ar ror
un Q — _ ol
+2 |Q s Iz +-2 | e g (uZ-u) SN [yl
r3b r raf| r ra6 dr
Q__ ol UgC —y —
-fu 2 +Q = (u-uz)
r ¥ 3r cpt r B

Table

D.2

Modelled Scalar Flux Equations in Cylindrical Polar Coordinates
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APPENDIX (E)

Derivation of Finite Difference Equation for Variables

Stored in Staggered ( x-¥ ) Grid

The finite difference equation to be solved in a staggered grid

(see Fig.(E.l)) is same as in_convéntional grid. It is

% 4 (qabw) 2 = B (8%) 44 (E.1)
ox ow ow ow
where,
ay
@ = - —2 71
WE - WI dx
1 d
b = - =—(Y,-Y_.)
- E I
YE WI dxe

Here the notation is same as that in Chapter (3). The suffices
I and E denote the interior and exterior boundaries of the layer, whereas
(I) denotes the grid point. Here & is the variable to be stored in the
staggered location. Note that the mean velocity is stored at regular
grid points i.e. at [I) , (I-1) etc.

Consider a control cell shifted half a grid node from (I) in the
(minus) w~direction, and denote the variable to be calculated at this point
Y 8r)

Notation: Except for the variable ¢ , suffix (7) stands for that quantity
at (I) the regular node. @rI)rstands for the variable ¢ stored

at the shifted grid node and (1) denotes the interpolated

value of ¢ at the regular grid point (I) . The suffixes d and u
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stand for quantities evaluated at downstream and upstream :

locations respectively,

Now assume that the variation of ® between the shifted nodes is linear.

( The variation of mean velocity U between its nodes too is assumed to

be linear.) In order to obtain the finite difference equation for ¢

(1)

multiply (E.1) by dw and integrate between the limits (I-I1) and (I)

(1) (1)
(a) 3 gy = L ® -0
dx Ax (I,d) (I,u)
(I-1) (I-1)
(1) (I)
3 _
(b) a + bw ] ™ dw = b q)(I,m)
(I-1) (1-1)
(b1)
(1) ) (1)
(c) licﬁlm= e 32
W dw W
(I-1) (1-1)
(1) (1)
1 0 _
(d) i ST dw = d,~dw
(1-1) (I-1)

] dw (E.2)

(I)
(

dw + l( a+ bw ) &
(1r-1)
(b2)
(E.3)

4

(E.S5)

In order to evaluate the right hand sides of (E.2) to (E.5) values of

at some intermediate locations should be known. To facilitate that, define

weighting factors
+
Q =
(1)
and
(1) .

+
Uy and Sop) bY

0.5 L) = ¥ir-g)
(Wire1) = 91-1)

0.5 L%m) = %)’

— k]

(wer) - Wereg) )

(E.6)

(E.7)



so that (see Fig. (E.1)),

_ + _ +
o = Wp) b PO ) ¥ (E.8)
and
D = + - 4 E.9
Vo) = 2y Yy (I ET ) (E-9)

Further, in obtaining partial derivatives with respect to w , the values
of ¢ at x = x4 are chosen. This is same as the practice of [ 9] and is both

unconditionally stable and convenient. i.e.

@m = @d . ‘ (E.10)
Therefore .
(I) (I)
= 1 1
(a) + (bl) = z;. Q(I;dv dw - Z;. ¢(I;u) dw
(1-1) (1-1)
(1)
. (Vg =¥plg= (Y=Y ), |
(¥ - ¥ ) bz (1,d)
(1-1)
(E.11)
Substituting
(Y- )y,
Ax
and

Ax

um = @

and with (E.8) substituted on two halves of the shifted cell at (I) ,



(a) + (bl)

Rearranging,

(a) + (bl)
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Wer) = Yra1)
2

1
( WE - ¥

I)u
+ + -
x {( P+.G ){ Yren,a) )t e (2% - W )

* Q1,4 ) ]

+ : + -
- P [ ®ren,w Yt (2% - S/

The balance of the term (b) is,

b2) = (a
but,

(a+ bw) =
Denoting )

L+ = -

(I)
and )

Loy =

\

B!
) .
O rw Yo J) (E.12)
(wip)y = wr_g) !
s (v -V )
( b
—+ — - -
x [ NEE A R S S J
4
+
+ 4 ( Q(I) P+ @G) ®(I+1,d) - P ®(I+Z,u) J
1 3\
4 Q- P [0} - P9 .
AR PG (I1-1,1) J
(E.13)
+ bw ) ® -(a+bu) (] (E.14)
(1) (T) (I-1)  (I-1)
(b - ¥ ), | o dr  dx
av
(1-w )—Liry E (E.15)
(1) (1) dr
av av
I E
- — R E.16
(-0 ) =5+ %) de (E.16)
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equation (E,14) reduces to
(b2) = L A ) N A :
(¥, =¥, ) (I) (1,d) (1) (I-1,d)
I u
Substituting 6}I,d) etc. from{(E.9), obtain
_ (
(b2) = 1 [cb *. (1-29" )
' (I,d) (1) (1)

- " 1-2Q
(1) ( (1) g ]

+ + - -
* e T 2% T Yr-n,a) T 2 )
(E.17)

Note here that L?I) and L;I) are different from L' and I~ of [9] .

3\
(c) = l e %%.J - [ e %%.} ) (E.18)
(1) (I-1)

The w-differences across the regular grid can be written as

Oreg) ~ Oz = TP Uiy (Yipm) ~Yipg )/ (Y- ¥, )

and
i T Orery) C TP V) Yy Y ) (Yt Y
(E.19)
The transport coefficients at the edges of the cell are
= r : -
= Tt Y T Yy
T = M lepp i) Yy Y 0 €0

Therefore (E.18) can be reexpressed as

= 1 )+ @ -7t
(c) (1) (I+1,d) (I)

. (1t + T
(¥ - ¥7 ), (1)

- %ra

0] - .
*Prna T } €-20)
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Lastly, the source term can be integrated so as to read

= 1
(d) T [ Su + Sd Q(I;d) . (E.22)
E I

Now summing up the terms is (E.13), (E.17), (£.21) and (E.22) and

rearranging,

= - - * - ~
0 ®(I,d) [( P+aG)¢( w(I) w(I—Z) ) (2 Q(I) Q(I) )

+ + - -
2 — - -
+ L(I) ( 1 2 Q(I) ) 2 L(I) ( 1 2 Q(I) )
r 2T 27T, 28
(r) t 4t 45,
+ + o u
0] P+ G - Q 4 -
P |[(EFEICw e ) Sy F ALy 72 T(I)}
+ & (P+G)(w - w ) +4L° o - 27
(1-1,d) (r)  (r-1) " (p (1) (1) (I)J
- o o )2 -F -q )
Pl (%0 ™ %) "%
+ 0 (0w -w ) af
(I+1,u) (I) (1-1) (1)
+ & (w - W ) Q + 25 .
(I<1,u) (I) (I-1) (I) u
(E.23)

This is the finite difference equation for the variable ® at (I) . As in
(9] , implausible effects of this equation due to the linearity assumption
of the ® v w relation in high lateral flux situations can be removed by

modifying the transport terms as

™ = x(r+ |2+l T-]20l]l) . (E.24)

Consequences of this modification and the implausibility of the

uncorrected form is discussed in [9]
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Thus (E.23) can be rearranged to the form,

D o} = A 0] B (0] .
(1) “(1) () e TP e S (E.25)
where,
= 4 _ -+ + _ ) - o
Ay = BT )Yy - (PAGI ey e ) S
L. 3 - - -
By = 20t 4 - (B+ 6wy =0, )8,
c = P - )| o (e-9F - )
(1) 0" Y- | Cinw () "
+ @ af  + 0 o +28
(F+1,u) (1) T (I-1,u) (1) u
and
Digy = Apy t By PER Oy -0, -85,

Simultaneous solution of equations of the type (E.25) can now be done in

a marching fashion with known initial and boundary conditionms.
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APPENDIX (F)

Computer Program for the Solution of Two~and Three~Dimensional

Scalar Transport Problem

F.l Introduction

The computer code to be described is an outgrowth of the TEACHL
program outlined in GOSMAN and PUN [50]. It incorporates the staggered grid
arrangement as deéscribed in Section (3.5). The program_is arranged to solve
the flow and scalar transport equations described in Section(2.7). The flow
considered is of two-dimensional boundary layer type, whereas the scalar
transport problem can either be two-or three-dimensional in character. The
three-dimensional situations were considered with frozen hydrodynamic field
obtained from two-dimensional calculations made before hand. Simultaneous
solution of all equations can however be easily arranged.

This computer code was developéd in CDC 7600 and CDC 6600 computers
in the "update" mode, however, it can easily be adopted for other machines.
The program is written in FORTRAN IV language.

In the Subroutine SOURCE which evaluates the source terms of all
equations of the second-order (stress and scalar-flux) closere model, it
was attempted, to retain the tensorial character of the terms. This may
.enhance the clarity and facilitate understanding of the evaluation of the
source terms.

The coordinate system in which the equations are written is the
cylindrical polar (6-r-z) and can be converted to Cartesian coordinates
(x-y-3) by changing an index. The notation followed is, for directioms,

xe = xz N Z, = xZ 5 xz = x3 ’
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F.1l.1 Base Case
The program is set for the solution of mean and turbulent equations
in a cylindrical geometry. As described in Section (3.3), for this case the

partial differential equatiomns for U, , Ur and P! are redundant. Thus these

6
equations have been excluded from consideration here. These equations can
however be incorporated easily as in TEACHT program. (Relevant turbulent
stresses in Ue and Ur equations can be inserted in a manner parallel to that
of Uz = W equation described here.)

The boundary condition for the scalar transport situation considered

is that discussed in Section (3.7). Note here that all other cases under

investigation can be generated from this base case.

F.1.2 The Grid System

Main calculation domain is a segment of a circular area of radius
R(NJ) . See Fig. (F.l). The enclosed angle of © can be chosen as desired.
NI is the number of grid lines in the angular direction, whereas NJ is the
number of lines covering the radius. This enables one to have (NI-2)x(NJ-2)
grid nodes for solution of the equations, The region between NJ and NJO
represent the thick wall where only the partial differential equation for

mean temperature is solved.
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Fig. (F.2) shows the control volumes around the point P . The control
volume for Uz = W equation is centered at P whereas those for Ur = W and
Ue = U are shifted in -r and ~0 direction respectively. All hydrodynamic
turbulent variables, in the present base case are solved at the shifted grid
point V . The scalar fluxes Z;E and Zgg are solved at V and U respectively.
The dimensions of the main and shifted control volumes are shown in

Fig. (F.2).
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F.2 Listing of FORTRAN Symbols

Given below is the list of all-the important FORTRAN symbols that
are used in the program. Symbols that only have a local meaning in the
subroutines are not listed here, Whenever possible the variables are grouped

together to avoid an unnecessary long index,

FORTRAN Symbol Description : - Dimension
AD, AE, AN, AP, Coefficients of the general finite ITXJT
AS, AU, AW difference equation
AREA S/ »r dr do
BVE, BVS, Weighting factors near boundaries
BVW, BWS
C Mean scalar variable ITXJT*2
CAPPA Kk ; the von Karman constant
CAPPAC K, ; Coefficient in log law for C
CBULK , C ; Bulk temperature
CC, CCl, €C2, | | C_, C,ys Chos Copis Cogy s
CCIW, CC2W g’ Tel? e clw * "¢

J Coefficients in scalar flux model
CEPS, CEPSL, | c ,C ., C .
CEPS2 e’ el ” el

) Coefficients in modelled €-equation
CG, CG2 Cg s 092 ; Coefficients in.Z? equation
CMU CU ; Coefficient in two-eéquation

model of turbuelnce
CRS, CR1, CR2, c ,C¢c.,C_,¢C s C 3
CRIW, CR2W §° 817 827 “slw” sw
Coefficients in stress model
cT - Cr ¢ Friction scalar IT
D Dij ; see equation (2.16) 3%3
DCDXJ C . o.5. DCDXI(2) =3C 3
¢

Table F.1l Listing of FORTRAN Symbols
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(contd.)
FORTRAN Symbol Description Dimension
DCDZB {%gq in the near-wall cell IJ
2
DEL 6ij : Kronecker delta 3x3
DEN 0 ; Density of fluid ITXJTX2
DENSIT 0 ; Density of fluid
DET, DETU, Geometrical parameters denoting tube IT
ET, ETU wall control volumes
DIF F® 3 Diffusion coefficient of ¢ TTXJTX2
DIS Eij ; Component of dissipation tensor 3x3
DISCSQ €, 3 Scalar dissipation rate
DPDZ §§'5 Streamwise pressure gradient
oU.
DUIDXJ _ L i e.g. DUIDXJ(3,2) = ¥ 3x3
ox A or
J
DXEP, DXPW, Geometrical variables, see Fig. (F.2) IT
DXEPU, DXPWU
DYNP, DYPS, Geometrical variables, see Fig. (F.2) JT
DYNPV, DYPSV
DYW Geometrical parameter in thick wall
' control volumes
DZ dz 3y Step size in streamwise direction
. ____auk
DIC - ge K 3
dx.;
]
EC €, 3 Scalar dissipation rate ITXJT
ECCEN Eccentricity of the tube wall
ED € ; Isotropic dissipation rate ITXJT
ELOG E ; Coefficient in log-law for velocity
ELOGC Ec ; Coefficient in log-law for scalar
ENUSS Nu ;3 Nusselt number
ES Power input per unit vloume of tube wall

Table F.1 ‘Listing of FORTRAN Symbols




(contd.)
FORTRAN Symbol Description Dimension
EXCHAT Kf ; Thermal conductivity of fluid
EXCHAW X, ; Thermal conductivuty of wall
material
FF (uy - u2) 3 ITXJT
FLOWIN e v, r dr do ;
FRA Step size controlling factor
FU, FV Ugh, s UM, OT Ugl , UC 3 ITXJT
Fluxes in 6 and r directions
FWL f 3 Near wall effect function
FWM1 f in near wall cell
Fl, F2, F3 Coefficients in ¢ij2 model
GAM I ; Molecular diffusivity of C ITXJTx2
GINLET Total mass flux at the inlet
GREAT A large numerical wvalue
GSTAR Total mass flux in the new step
Gl, G2 Coefficients in ¢i02 model
HEDU - HEDVIS Variable titles 4

ICON

IDIF

IEND

IHT

= 0 ; Starting run
= 1 ; Continuation run

= 1 ; Gradient diffusion model
= 2 ; Tensor invariant model of
diffusion

Number of steps required for the
calculation

= 0 ; Scalar transfer problem not solved
= 1 ; Two-dimensional:scalar
transport

Three-dimensional scalar

transport

=2

we

Table F.1 Listing of FORTRAN Symbols
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FORTRAN Symbol

Description

Dimension

I3

IJET

LJT

INCALU - INCALR
INDCOS

INDEX

INDIFF

INDPRI

INPRO

INTURB
INUM

IPRO

IQUE

IRUN

ISTEP

Array dimension in x (30) direction

=1 ; for jet flow (this should be
set to zero)

LIXJT

Logical variables denoting the
equations to be solwved

= 1 ; Plane flow
= 2 ; Round flow

= 0 ; At the starting step in
calculation
= 1 ; After the first step

FALSE ; Turbulent stresses or fluxes
to be treated in source form
TRUE ; Same to be treated in
diffusion form

Limited print-out control

" FALSE ; Constant transport
coefficients
TRUE ; Variable transport
coefficients

FALSE ; Laminar flow
= TRUE ; Turbulent flow

Number of points for which the initial
conditions are given

Argument for ZDPRO
= 0 ; Prescribed wall scalar value
boundary condition
= 1 ; Prescribed wall flux
5 First run
; Second and subsequent runs in
three-dimensional scalar

calculation

Step number

1
= 2 ; Two-dimensional scalar calculation
3

Table F.1 Listing of FORTRAN Symbols
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FORTRAN Symbol

Description

Dimension

IsC

IT

ITESC, ITESU

ITEST

IU

IVAR

IWALL

JUU - JEC

JT

K .

KT

MCW

MODEC

MODEL

0 ; Mean scalar equation
1 ; Mean velocity equation

Array dimension in O-direction

= 1; When the source balance of
respective equations are
needed in the output

An index used when details of finite
difference coefficients are required

0 ; Hydrodynamic field not solved
1 ; Two-dimensional flow field
2 ; Three-dimensional flow field

n

or scalar variables are
under consideration

= 0 ; Wall control volumes ignored in
calculations

= 1 ; Wall control volumes considered

Indices denoting turbulent variables

Array dimension in r-direction

1 ; Upstream plane
2 ; Downstream plane

"
b
-

; In boundary layers
=1 ;.Model Rcwl

= 2 ; Model Rcw2
=1 ; Model E,;
= 2 ; Model ch
= 1 ; Model Rsl
= 2 ; Model ng
= 1 ; Model st]

= 2 3 Model stg

IU or IHT ; Depending on whether flow

Table F.1 Listing of FORTRAN Symbols




- 324 -

PSIWl, PSIW2

iel ’ ¢i02 towl ’ ¢icw2 )

3
Terms in model of pressure-scalar
gradient correlation

(contd.)
FORTRAN Symbol Description Dimension
NI Number of grid nodes in x
(or O-direction)
NIMl = NI~-1 , NIM2 = NI-2
NJ Number of grid nodes in r-direction
NJO Number of grid nodes in r-direction
(including wall) NJOM1 = NJO-1
NJP Same as NJ , NJP1 = NJP+1 ,
NJPM1 = NJP-1
NK Number of grid nodes in z-direction
= 2 ; in boundary layers
NSWPU - NSWPR Number of times a certain equation be
solved at a given streamwise plane
NUMPRI Full printout controlling index
OLDU - ODPDZ Variables transferred from
two-dimensional calculations
P Pij 3 Stress production tensor 3%3
! (see equation (2.15)
PC P, ; Flux productioen tensor 3
(see equation (2.41)
PCSQ Generation rate of scalar fluctuations
PE P : Pressure ITXJT*2
PI m
PHI ® ; General dependent variable ITXJTX2
| PHI1l, PHI2, Dovr 'y Poee s G 5 .. 3 3x3
PHIW1, PHIW2 tg1 7 Mgz 7 Tigul T Tigwa
Pressure strain model
PP P! ; Pressure correction ITXJT
PRANDT Pr ; Prandtl number
PSIl, PSI2, ¢ s> 0. 3

Table F.1 Listing of FORTRAN Symbols
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FORTRAN Symbol Description Dimension
PT Production of.turbulent kinetic energy
PlC P s 2
e’ TN
QLENTH Heating length
QUE Heating flux entering the fluid IT
QuUo Heating flux at the outer wall IT
of the tube
R, RV, RCV Radial positions of the grids JT
(see Fig. (F.2))
RINNER R;; Inner radius
ROUTER Ro; Quter radius
RS Dummy turbulent variable ITXJT
RSWALL Boundary condition of turbulent 14
variables
SAVE Array for saving contents of the Depends on
common block COMALL IT and JT
SEW , SEWU Geometric variables, see Fig. (¥.2) IT
SNS, SNSV Geometric variables, see Fig. (F.2) JT
SDEX Extra sources due to diffusion term 14
SEX Extra sources due to polar grid 14
SMALL Numerically small near-zero number
Sp, SU Parts of linearised source term ITXJT
SPS, SUS Parts of linearised source term IJT
SPHEAT cp ; Specific heat of fluid
SPH = 1.0 ; In momentum equation
= SPHEAT ; In C-equation
STAN = St ; Stanton number
S1, S2 Parts of source terms of turbulent 14x1JT

L

variables

Table F.1 Listing of FORTRAN Symbols
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(contd.) E—
FORTRAN Symbol Description Dimension

TE = Kk ; Turbulent kinetic energy ITXJT
U Ue s Transverse velocity ITXJTx2
uc uec ; Transverse scalar flux ITXJT
UIUJ uiuj ; e.g. UIUJ(2,3) = uu, 3x%3
uT UT ;3 Friction velocity IT

2
U, Uv, UW ue R ueup 5 ueuz ITxXJT
UUMAX etc. Maximum magnitudes of variables

(input conditions)
UUl etc. Array of dimensionless UU etc. INUM

(input conditions) :
URFS Under-relaxation factor for source

terms near axis
v Ur ; Cross—stream velocity ITXJT*2
vC U 3 Cross=-stream scalar flux ITXJT
VIS M ; Molecular viscosity of fluid ITXJTX2
VISCOS U ; Molecular viscosity of fluid

v k;g
VISUU ITxJT
€
VISVV = ITxJT
VMEAN Ub 3 Bulk mean velocity -
vV vu; ; Cross-stream components of ITxJT
Reynolds stress
W UM, Reynolds shear stress ITxJT
W U ; Streamwise component of - ITxJTx2
mean velocity

WeC UyC 3 Streamwise turbulent scalar flux ITXJT
WCORR Correction to the W velocity

Table F.1 Listing of FORTRAN Symbols
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(contd,) .
FORTRAN Symbol Description Dimension
WFE, WFW Weighting factors IT
WFN, WFS Weighting factors JT
WW ug ; Streamwise component of ITXJT
Reynolds stress
X, XU Transverse coordinates of grid IT
(see Fig. (¥.2))
XTOT Maximum value of X, i.e. total angle
covered by the domain
Y,YV Cross—-stream coordinate of grid JT
(see Fig.(F.2))
YTOT Maximum value of Y, i.e. radius of tube
YTOTO Outer radius of tube
yU
YPLUS yh =21
\) -
Y2 Dimensionless Y locations for which INUM
initial profiles are given
Z, ZW Stréamwise coordinate of grid 2
ZDPRO Streamwise locations for which output 18

is required, ZDPRO is in number of
diameters '

Table F.1 Listing of FORTRAN Symbols
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-E.3 Description of the Subroutines and Common Blocks

As the program listing given in the next Section is produced by
"update' mode each line in it is identified by a name and a sequence
number. If that name is same as that of the particular subroutine then
it identifies a line that is common to both two~and three-dimensional versions,
If the identifier is DIM3, then it corresponds to a line which should be

present only in the three-dimensional version. The sequence numbers on these

identifiers clearly indicate whether any statements were deleated during
this modification. All such deletions are explained after the following

subroutine descriptions.

Comdeck COMALL

This common block contains all the:variables that are needed to be
transferred between subroutines. In the present form it allows a maximum
of 15 grid points in the transverse direction and 30 grid points in the
radial direction.

The array SAVE is equivalent to the bulk of the commom block and it
is used in saving contents (via TAPE 4) from one run so that it can be used
as input (via TAPE 3) in the next. This is a convenient and economical
facility specially during the program development stages. It ensures fast
turnaround from the computer too. Similarly, the array TRANS transfers
relevant information of the two-dimensional hydrodynamic variables obtained
in a previous run. This facilitates one to carry out variety to three-
dimensional scalar transport explorations ( for example, grid dependency

tests, various model testing) with an established hydrodynamic field.
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Broadly the contents of the main common block can be described

as follows.

Line No. Contents

1 Location of main grid nodes

2 Description of main control volumes

3 Description of staggered control volumes

4 The radial location and weighting factors

5 Mean flow variables and mean scalar

6 -8 - Turbulent variables

9 Density, kinematic 'and turbulent transport coefficients

10 - 11 Coefficients of finite difference equation

12 Useful wall paraméters

13 Fluid properties

14 - 15 Coefficients of the turbulent model and wall laws

16 Identifying integers for turbulent variables

i7 Limits of the calculation domain and that of arrays

18 | Headings for the output

19 Logical variables

20 Number of sweeps in the solution for tri-diagonal
matrix algorithm

21 Choice of model and choice of output

22 - 23 Dimensionality and other details of the particular run

24 Flow conditions, boundary conditions for turbulent
variables

25 : Output.manipulation parameter and some near boundary
weighting factors

Table F.2 Contents of Comdeck COMALL
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The next two lines carry the variables that are relevant to the thick
wall calculations, The main common block ends here, The next common block
contains the variables that need be transferred from previous two—dimensional
flow calculation.

The comdeck COMALL appears in all subroutines except LISOLV and PRINT.

Subroutine MAIN

This is the main section of the program which does the management

of the calculation scheme. Briefly its major actions are the following.

e Call the subroutine INDATA(l) for initial conditions of the problem.

e Supply the main grid to cover the domain of interest,

e Call INTIG to get the geometric variables ready.

e Call INITO to set variables to zero.

e Call INDATA(2) in order to get the dependent variable profiles.

e Print out the problem heading and fluid properties.

e Call OUTPUT in order to get a full output of the initial cohditions.

o Then enter the calculation loop which is to-be traversed as many times
as the number of steps taken in z-~direction.

® Calculate the forward step by calling STEP.

e Call PROPS to calculate the fluid properties and kinematic and
turbulent transport coefficients at all nodes.

® Calculate the source terms for all turbulence equations by entering
the SOURCE subroutine at CALSOR.

e Call CALCRS in order to calculate finite difference coefficients and
then to solve the turbulence equations. This step is taken for all
turbulence variables.

e Call CALCM in order to solve the W-momentum equation.

@ Call CALCM in order to solve the mean scalar C equation,

e If any intermediate output is required, call QUTPUT.



e Check for conditions for termination of the calculation. If more
calculations are to be performed return to the begining of the
calculation loop.

o If to be terminated, then produce an output just before stopping.

In additiom to theée, one thiﬁg worth a mention is that when solving
turbulence equations, it is the shear stress Z;ﬂ;'E VW and the lateral scalar
flux Z;E-E VC equation that are solved first. This was done because
description of near-wall boundary condition of all other turbulence variables

are specified in terms of these two.

Subroutine INDATA

This subroutine supplies the external input data to the program. It
has two entry points.
At the first level,

e Identifying integers forvturbulence equations are prescribed.

e If necessary, data is read from a previous run (via SAVE or TRANS).

o Supply choice of model, turbulence constants, necessary numerical
constants and controlling indicies.

e Supply the wall properties.
At the second level,

e Dimensionless profiles and their multiplying factors for all
dependent variables are read from data.

e The mean .profiles are. interpolated to obtain. values.corresponding
to the regular grid.

e The turbulence profiles are interpolated to obtain values
corresponding to the respective shifted grid.
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Subroutine SOURCE

This subroutine calculate the'sourpe terms for all turbulent variables.

It has three entry points SORCEI, CALSOR and SORCE, SQRCEIL is entered
only once in a given run, Here some arrays are initialised and some
coefficients relevant to the tﬁrbulence model are calculated. The section
CALSOR in entered once in every calculation step. In this section the tensorial
character of the source terms of the turbulence equation is attempted to
be maintained. Since most of the turbulence variables are to be evaluated
at the grid shifted half spacing in direction -r, here the node refers to
that at V (see Fig. (F.2)). In the Section CALSOR, for every shifted control
volume the following calculations were made.

® Perform necessary initialisatioms.

e Assign the Reynolds stress tensor at the node (i.e. at V).

® Obtain gradients of Reynolds stress that are required in evaluations
to follow.

e Similarly assign the scalar fluxes and evaluate any necessary gradients.
e Calculate mean velocity gradients.
e Calculate mean scalar gradients.
With these prelimineries now one is in a position to evaluate the source
terms, and they are done in the following order.
(a) Evaluate sources for Reynolds stress equations
e Calculate Production terms.
e Calculate modelled terms of pressure-strain and dissipation terms.
@ Evaluate the near-wall-effect terms of pressure—strain relation.

e Evaluate sources due to tensor invariant diffusion model, and those
additional terms due to cylindrical polar grid.

e Assemble the source terms,
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(b) Evaluate source terms for turbulent kinetic energy equation (in a
two~equation model of turbulence),

® Calculate the production and assign the dissipation term in
source form.

() Evaiuate source terms for the dissipation rate equation
(d) Evaluate sources in turbulent scalar flux equations
o Calculate production terms
e Calculate the pressure-scalar gradient correlation terms.
e Evaluate the near-wall effects of the same.
¢ Evaluate additional sources from the diffusion model.

e Assemble the source terms.

2
(e) Evaluate sources in %.equation,

Now one has the option of taking an output of source balance in
component stress equations and turbulent gcalar equations.

For a given step the third section SORCE is entered as many times
as there are dependent turbulence variables. Here the source terms
calculated in CALSOR are picked up by each variable, in the linearised

source form.

Subroutine INIT

This subroutine provides the igigialisation of variable fields and
calculation of geometriq parameters, It has three entry points, namely,
INITG, INITO and STEP. The INITG is for the evaluation of the geometric
variables. If it is the first run this section is entered once and on
continuation runs this is not entered at all. This section calculates the
16cations and relevant weighting factors, distances for regular as well
staggered grid systems. For three-dimensional heat transfer problems, the

wall goemetry is calculated here.
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In the Section INITO, the variables are set to zero and a call is
made to SORCEI where some arrays are initialised,

In two-dimensional problems calculation is made only for one radial
plane. In STEP all such planes were filled with those calculated values.
This is done merely for cosmatic reasons and obviously is skipped in

three~dimensional situations. The forward step calculation is also made here,

Subroutine PROPS

This subroutine prescribes the material properties and turbulent
diffusion transport coefficients for the problem. If the hydrodynamic field

is kept frozen then PROPS is called only once in a run.

Subroutine CALCM

Calculation of the mean variables (¥ and () are dome in this
subroutine. When calling for solution of ¥ -momentum equation, specify
ISC = 1, and for C-equation specify ISC =70. Other arguments of the call
statements can be easily recognised (see call statements in MAIN).

The first section of the subroutiné calculate the finite difference
coefficients. Note here that the turbulent stresses or fluxes can be expressed
either as diffusion terms or (as will be seen next) as source terms. A call
to the relevant section of PROMOD (i.e. MODW or MODC) is made now to obtain
boundary conditions and other problem modifications, Next the coefficients
are assembled and solved in LISOLV. Next the pressure gradient is calculated
and corresponding velocity corrections are made. The lateral velocity field
is obtained next by considereing the mass continuity in individual cells.

Lastly the variable W or C at the boundaries are calculated,



Subroutine CALCRS

This subroutine calculate the turbulent variables, such as, Reynolds
Stresses, scalar flux etc,. It is done in the relevant shifted grid described
previously. First section of CALCRS calculates the finite difference
coefficients, the second section will perform the problem modification and
assembly of coefficients. The equations are solved in subroutine LISQLV

next and then the boundary values are calculated.

Subroutine PROMOD

This subroutine supplies the relevant ngblem.gggifications to all
dependent variable equations. MODW supplies the modificationé for W-momentum
equation. Here

e the logarithmic law of the wall is applied,

e the source term due to turbulent stresses are calculated,

e other boundary conditions for momentum equation supplied.
In the Section MODC, the modifications to the (C-equation are made. For the
sake of clarity the modifications for the case of a thick conducting wall
islgiven seperately. Here

e the logarithmic law of the wall for (-equation is applied,

e the source term due to turbulent scalar fluxes are calculated,

e boundary conditions of CQequation supplied.
For the thick wall case in addition to these,

e finite difference coefficients for the wall control volumes are
calculated,

e sources of heat (say, due to electrical heating) are integrated,

e sources of heat externally applied to the tube (as in the present
experimental arrangement) are integrated,

e and other boundary conditions supplied.
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The Section MODRS supplies necessary boundary information to all turbulent
equations. The near~wall boundary conditions of shear stress VW and scalar
flux VC are obtained with respect to their corresponding mean equations,

The near-wall boundary condition for other turbulent variables are expressed

in terms of the boundary values of VW and VC.

Subroutine OUTPUT

This subroutine supplies the main output of the calculations. The
first section éupplies the characteristic single variable outputs,
e.g. skin friction coefficient, Nusselt numbers etc.. Outputs of mean and
turbulent hydrodynamic variables and any necessary details of these are
obtained next. Similarly outputs of mean and turbulent scalar fields are
obtained next. For three-dimensional problems these variables are printed

in block form by calling subroutine PRINT.

Subroutine LISOLV

A line by line §9}xing.procedure is utilised in solving the finite
difference equations geneérated in CALCM and CALCRS, Here, the tri~diagonal
matrix algorithm is employed in each line to be solved. In three~dimensional
problems the domain is swept in both transverse (west-east) and radial

(north-~south) directions.

Subroutine PRINT

This subroutine printout two-dimensional arrays in block form.
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A note on deleted liﬁes (as can be seen by missing .sequence numbers)

e The comdeck COMALL has replaced a line (e,g. MAIN,3) in each
subroutine,

e DIM3.92 can well be same as INIT,123 .,

‘e DIM3.94 has replaced "DO 710 J = 1,NJ" (as NJO is not defined
in the two-dimensional case).

e DIM3.153 has replaced DO 670 J = 2,NJ" for the same reason.

e DIM3.165 has replaced "I = 3" ( in two-dimensional flows only
one I-plane is solved.

e DIM3.226 has replaced "LISOLV.4 and 5" which had a smaller
three-dimensional array.
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F.4 Listing of the Computer Program

A listing of the computer program used in the present study in
solving two-and three~dimensional scalar transport problems is given in
the next few pages. This listing was obtained by running the program in

update mode. The meanings of the identifiers were explained before in

Section (F.3).



MAIN
l.

2.
3.
*.

Se

[- 2%

Te

8.
-

10.
1.
12.
13.
l‘.
15.
16,
17.
18.
‘9.

0000008

9022058
0022058
0022058

0022058

0022058

0022058

0022058
0022058

0022058
0022078
00220738
0022118
0022128
0022128
0022138
0022148
0022158
0022218

E*PIIGRAM NIIN(lNPUprUTPUT.YAPEB.TAPEQ.TAPES'INPJT.TQPEb-)UT?UT)*‘
PROGRAMY MﬂXNlINPUf.0UTPUT.TAPE3’TAPE§'TAPE5=INPUTvYAPE6'DUTPUT)

cﬁ.“'lllttkltti‘kt“t‘itt‘t.ﬁl*ttttti#t%ﬁ‘t‘tt##ttﬁ“#t*ttt*t*t“*k#'*t

COMMON BLOCKS

ctttct'itktucttt&tttttntttttttat*ttgnautt*t&twtt**t#tttttdt«ttttcttttttt
. JIMENSIJN SAVE(20229)

JIMENSIUN TRANS(512)

SOMMON

LX{15),Y(30),2(02)sXU{15),YVI3)),2W(02),

L1OXEPLLS) g OXPWILS) g DYNP{30},DYPS(30)sSEW(L5)¢SNS(3D1,y

LOXKEPULLS) s DAPWUIL5) » SEHULLS) ,0OYNPVI30),DYPSVI30)ySNSV(3D),

L3033 4R3I yRCVIID Iy WFN(30) s WFS (300 ¢ WFE(LZ) ) WFWIL5)D,

10(15.3012),V(15130|2)yW(lSyBOyZ),PE(15'30.Z),C(15.3012)pPP(15o3le

1JULL5930)0UVILS 301 yUd155300),VV{15,30) 4VWI1Ss30)sHW(15,30),

lEO(lStBJ)yTE(15'3J|'FFl15'33’vUC(15'3D)vVC(15v3D)1HC(15.3D)1

1021 1543000E821(15430)4RS115,30),

lDé*(lSlJJ;Z)pV[S(15133'2)'GAM(15'3012)pVXSUU(15'30)yVISVV(15'3°)'

LAR(15433F s AE (15320 4ANL1543D19AS(15+30)9AD(15+30),AUL15,30!y

LAPLL5,3010SJ(15,430),5P(15,30),

1UT(153,5F(15),QUELLS5),DCDZBL151,QUO(15),

10ENSIT,vISCOSyPRANDTSPHEAT EXCHAT,

1CMJsCRLs LR29CRS,CRLWyCR2W,CEPS1,CEPS2,CEPS,CAPPACELDG,

10CLsCC29CcrlClW,CC2A9CG24CGyCAPPAC,ELIGC, :

lJUJ'JUV'JJﬂ|JVVyJVW,JW#'JEDyJTE'JFF1JUC7JVC'JHC’JC2'JEC'

INToNIML e NIMZ ) NI g NUMLgNIM2yNK g NKMYp IT 9 T o KTy 13Ty

ldEDUlQ),HEDV(4)'HEDN(4)yHEDP(@)'HEDC(Q).HEDR(4)'HEDDlQ)'HEDVlS(Q’v

11NCALU.[V:ALV'INCALdoINCALPv!NCALC!INPRO-INCALR(14)vINfURBplNDIFF.

INSHPUSNSWP YV NSHPWeNSHP P, NSWPEC,HSHWPRy

LMOUEL ¢ 4)DSCe MRWsMCWN L QUE »IDIFs 1JETo ITEST, ITESU,ITESC,ICON,

LIRUN L IAdT, 10U, 1U2,1C,1C2,11,12)INDCOSsFRA,

1< 40ZyISTEP+ISTPLyNRSs [NDEX+DPULy

LFLInIN, V4E ANy QLENTH , SMALL yGREAT XTDTy YTOT,RSWALL{14)

LZDPRI(LB) ¢ IPROy IEND, INDPRIZNUMPRI,BVEsBVH,BVSyBWS

SOl . :

l&TllS)vEfJ(lSl'DEr(lslvDEYU(15)vDYH,NJPyNJPlvNJPMlv!HALLI

1RGUTERy REYNERYECCEN ES yMIO, YTOTULEXCHAW HJOMT

SUMMIN  ULDUL30),3L0DVI30),CLONE30),0LDP(30),
OLOUUL30),0LDUVI30),0L0UW(30),0LDVVI30),JLDVW(30),
OLDwwW({30)CLDTE(30),CLOED(30}+OLOFFL30])y
JLDUEN{30),0LDVIS(30),0vISUUL30),0VISVVI20),
OLDUTA,CDPOZ

LIGICAL INCALU,INCALVyINCALW,INCALP,INCALC,[NPRD,
INCALRyINTIRBy INDIFF

EQUIVALENCE (X{1),SAVE(1l)])

EWIVALENCE (OLDU(}),TRANS(L1))

e g

T TR L T T L e P T A R 2 L e LT

RUN SPECIFICATICUNS

C#t#“t#ttﬁttk‘.*t#tt#*ttt*t#ﬁtﬁtt#t*ttttit‘*t“.l**#t*ttttttttk*&tt'ttlﬁt

CALL INOATA{1l}

INUEXED

IFIIRUNGENS3) GD TD 10
[STEP =0

1CON=)

1FRI=]

Lii1=23e)

CUNTINUE

TFLIRUNSNELL) CALL INITO
IFUIYUNCEQe3) CALL OUTPUT

PAGE

MAIN,2
COMALLS2
COMALLL3
COMALLe#%
0I43.1
DIM3,2
COMALLGS
DIM3.3
DIM2.4
pI~3.5
DIM3.6
0IM3,7
DIM3.8
DiM3.9
DIv3.10
DIM3.11
DIv3.12
DIM3.13
DIM3.14
CCMALLG.LS
COMALL.2D
CCHMALL.21
CoMALL .22
CCMALL.23
CCMALL.24
COMALLL25
COMALL.26
COvALLL27
£oMALL.28
COMALLL29
CCMALLL3D
CRNMALLL3L
DIM3,15
DIM2,16
DIM2,17
DIM2.18 .
DIM3.19
DIv2,20
DIM3,.21
DIM3.22
CCMALL .32
CCM3LL.33
COMBLL.34
DIM3,23
MAIN. S
MAIN,S
MAIN.6
MAIN,7
MATIN.8
MAIN,S
MAINL10
MAINGLLL
MAING12
MAIN.13
MAIN,16
MAINL1S
MAIM,16
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MAIN
©20.

21.
22

23.
24.
25.
26,
27,
28,
29.
30.

31.
32.

33.
34.

35.
35,
37.
38.
39.
40.
41.
42.

43,
44,
&5,
46.
47.
48.
49,
50.
51.

52,
53.

54,
55.
56.
57.
58.
59

60.

0022258

0022268
0022278

0022348
0022368
022408
0022438
0022458
00224638
0022468
3022478

0022508

0022538

0022558
0022568

0022618
0022618
0022618
0022648
0022678
0022738
0023048
0023058

0023108
0323158
0023208
0023248
0023308
0023348
0023403
0023448
0023508

0023538
0023538

0023568
0023578
0023578
0023628
0023728

0023728.

0023738

s#pRIGRAY 'ﬂlN(INPL.H'.‘.'IU\'PU‘I’.'I’APEB.TAPE’NTAPES'INPUYnTAli’Eé"L')UTPUI')"'l

IF(IRUNNE«L?) GO T3 220
cto:c-r:;cau«c:;tt-c;stuuutcttcatttqac-cu#tctuttttttcttttt«ttt
[+ GRID DIMENSIONS
Ctt#tcﬂ#ttttt!tdttttttttktt;#ttt#tttttt*¢§tﬁ‘tttttt‘ttt‘t###*tt#!tttttkt

PI=3.14L59

IFLINDCISeEQe2) XTIT=XTOT*PI
C-—===GRID SPAZING

00U 13D I=1,NI

102 X(1)3xi1)«XTOT

DG LLd J=igNJ

110 v{J)=Y(J)&YTOT

(1112040

Zi2i=Llil

D£=2.0

K=2
c‘tttttvttﬁc.ic'tt*‘tttu:tt¢*#tt*tttttt#tttt#ttt*ttt#t‘ttttt‘ttttt#&tttt
C {NITIAL OPESRATICNS
Ctt*tta*ttttvvttttt**t##t*tt**#**#tt*t*t*tttttt#t*tttt!l#'tt#**tttttt!t#
C—-—=CALCULATE GECMETRICAL QUANTITIES AND SEVT VARIABLES TJ ZERQ

CALL INITS

~ CALL INIVD
C---—=INITIALISE VARIABLE FIELDS
200 IF(IRUNLEJde3d) GO T2 400
C--—<-EAD IV INITIAL PROFILES o (ZERD DEFAULT VALUES SET IN INITO)
CALL INJATAL2)
C—==—==-INFLOW CALCJULATION

FLOAIN=0.0

AREA=D.

DU 225 Jd=2yNJIM]

00 205 I=ful,l1u2

AREA=AREZA+RCVIJII*SNS (J)XSEW(T)

205 FLIWINSFLUAINYOEN(T 3Js2)*RCVIJI®SNS{J)FSERITI XWIIsJy2)

VMEANSFEL) W IN/AREA/DENSIT

RE=VMCANFUENSIT*2,0%xY{(MNJI/VISCOS
C-==~-PRIBLEM HEADING AND INFORMATICN

WRITE(6,210)

wkITEL{G,220

wRITEL6,230) RE

wKITELH,240) VMEAN

WRITEL6,253) PRANDJT

WRITEL652601 SPHEAT

nhITE(6,270) VISCOS

WRITEL&,280) DENSIT

“RITELS,2101
C-——<={NITIAL DUTPUT

K=2

CALL BuTPUT
CERRBEEREREC R EE AR RS DR AR AR RRAR KT RAANRK AR AN R AR KRR R Rk kKR & kK
C . ITERATION LOOP
CHRRRGEEUP EREE SRR RE AR E RN E R KRR RN KRR ERAR KRR R KRR KRR R KRRk R Rk KR

300 ISTEP=lSFEP+]

A STPL=ISTEPH]

IFUISTEP.LTLYIEND) GI TD 400

WRITE(4) SAVE

60 TI 600

400 COUNTINJE
C==—==3TEP FORWARD NOW.
CALL STEP

sk dkakkkk

MAIN,17
vAIN.18
MATINL19
MAIN.20
MAIN.21
MAIM,22
MAIN.23
MAING24
MAIN.25
MAINL26
MAIN.27
MAIN,28
MAING29
MAIM,30
MAIN,31
MAIN,32
MAIN.33
MAINGS34
MAIN, 35
MAIN .26
MAIN.3T
MAIN.28
MAING39
MAIN, 40
MAIN.4Y
MAIN.42
MAING43
MAIN. 44
MAING 45
MAIN,4E
MAIM,. 4T
MAIN. 48
MAIN.49
MAINLS50
MAIN.S1
MAIN.S2
MAIN,S3

-MAINLSS

MAINLSS
MAINL.SS
MAIM,57
MAINSSS8
MAIN.Z9
MAINL SO
MAIN.€1L
MAIN.62
MAINLG3
MAIN.ES
MAING OS5
MAINJES
MAIN.OT
MAIN.68
MAINGG9
MAIN,TO
MAIN,71
MAINGT2
MAIN,73
MAIN,T4

PAGE
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MA IN
61‘

62.

63,
64e
65.
66e

67.
68‘
59
TD.
1.
72.
73.
T4
75.
T6e
7.

78.

79.
80.
8l.
82,
83.

84,
85.
36.
37
88.
8%
90.
91l.
92.
93.
94a

95.
9%.
-97.

98.

99.
100.

101.
102.
103.

0023758

0024008

0024038
0024058
2024108
0024138

0024208
0024238
Q024268
0024313
0024348
0024378
0024428
0024458
0024508
0024538
0024568

0024618

0024648
0024658
0024678
0024678
0025048

0025048
0025048
Q025138
0025148
0025218
0025238

0025248

0025258
0025308
0025318
0025328

0025338
0025358
0025368

0025368

0025378
0025418

0025428
3025423
0025428

CeSPRIGRAM HlIN(INPUT.DUTPUT.TAPE3:TAPEGoYAPES'lNPJT'TAPE6-3UTPUT)"

IFUINPRY) CALL PRIPS
C"“"‘.CCt00'lt'.‘tt‘tttOtchtttttltttttttI‘ttt#‘t#tt‘t.ttt‘tttﬁt“#ttt
C———--CALCULATE SJURCE TERYS FOR ALL TURBULENT EQUATIONS.

TFLINTUR3} CALL CALSOR(PSsNRSySUsSPy1JT,11,12)
c“tttlttt.cﬁtcttvttt.tctctt'tttt'tttt‘tt‘ttt*tt#tttttt&ttttttt‘ttttt&ﬁt
C~———-=UPUAfc MEAN VARIABLES.

0G 41) I=1,NIt

DO 41D Jy=av¥J

Hilsdslizdtleds2)

410 CUlledellzltiede2?
C~~—-CALCULATE VARIABLES AT FHE NEWA STEP.

FFCINCALRIJIVHI) CALL CALCRSU{VA,JVW,CRS oITyuT,IJ y IUL,TU2)

IF{INCALR(JUU)Y CALL CALCRSL{UU,JUU,CRS »IT,uT,IU ,1Ul,1U2)

LECINCALRIJV VYY) CALL CALCARSIVVJVV,CRS HITy»JT,1IU e IUL,102)

TFIINZALR L JnW)) CALL CALCRS(WWoJdWW,CRS Ty JT,1U »1J1s102)

TF(INCALRIJFEY) CALL CALCRS{TE JTELCRS ,IT,4T,IU s TUL,1U2)

IFUINCALR(JED) ) CALL CALCRSIED,JEDSCEPSyITouT,IU »IUL,IU2)

TFCENCACALIVC)) CALL CALCRS(VZeJVC.CC  wITyJT,IHT,ICL,IC2)

TF{INCALREJUC)) CALL CALCRS(UCsJUC,CC o ITouT,IHT,IC1,1C2)

IFCINZALILJnC)) CALL CALCRS{ ACsJWC,CC pITed T INT,IC1,1IC2)

TFLINCALRJC2)) CALL CALCRSIC2,4C2,C5 #IT, 4T, IHT,IC1,1IC2)

[FUINCALR) CALL CALCMIWyVISsUWgViHeleO 21T Ty 1U 1,

1 TUL,TU2, NSWPH)'
IF(INCALC) CALL CALCM(CyGAM,UC,VC,SPHEAT,IT,JTIHT,0,
1 1CL,IC2,NSHPC)

IF(INALLL.EQ.O) GO TD 445

DU 440 I=1,NI _

QUELTICEXCHANKICII o NJPLyKI=C T ¢NJyK))}/DET(I)*2.0

440 CONTINUE

445 CGNTINUE
Ctt*tOt*tkvtilt&#O#t*ttttatktt*t#t*#t*t*tttt*!ttt‘ttiltttt*tttt‘ﬁklit‘k'
C-———-INTERMEDIATE CUTPUT

K=2

IFIMOULISTEP,INDPPI}oEQe0O) CALL QUTPUT

LUsli2)/YTOT /240

IF(IDeLT «LDPRO(IFRI+1}) IPRO=IPRO+L

LF({D.LToZDPROCIPRI)) GO TO 459

NUMP=AJMPS

NUMPRI=ISTEP

CALL JuTpPur

fPRO=]PRI+1

NUMPRI=NUMP

450 CUNTINJZ
[ TERMINATION TESTS

LFLISTEPauwTs 1IEND) 530 TO 600

INDEX=L

G0 T2 3J)0
CREREN R CRh b e bR AR EER IR R RN RR AR KRR AR AR Rk R kbR hk b k%

€00 CZONTINJE

C——~FINAL JUTPUT.
CALL JuTpPUT
SToP

CCEEAE R AR RO R KRR R AR SRR b IRk KRR Rk R R R Rk ok

c FOPMAT STATEMENTS
c#ttttt*actu«tkutcttttttt«tttuw*tttwtat*t**~tt*wt*t*trtttt*tttt*tt*tt«t&
210 FURMAT(/7/1H0s120{LH*}//7)
220 FOURMATILHO 940X % TURBULENT PIPE FLOW *///7)
230 FOIMATUILAHO 15Xy #REVYNNLDS NUMBER®4T5091H=3X91PELLL3 )

MAIN.T75
MAIN.TS
MAINGT7

MAINL.T78

MAINGTS
MAIN.BD
MAIN,B1
MAIN.82

"MATN.83

MAIN.8%
MAIN.d5
MATN. 86

MAIN.87

MAINM,88
MATIN. 89
MAINLSD
MAIN, 9]
MAINGI2
MAENG93
MAIN, 9%
MAIN.95
MA[N.96
MAINGIT
MAL1M.98
MAIN_99
DIM3,.24
DiM3.25
DIM3.26
DIM3.27 .
DIM3.28
MATINLLD)
MATh.101
MAINGL1D2
MAIN.103
MAIMN.104
MAINL195
MA[N,106
MAIY.107
MAIN.108
MAIN.109
MAINGILD
MAIN,111
MAIN,112
MEIN,113
MAINLE14
MAINel115
MAING116
MATNLILT
MAIN.118
MAIN.119
MAING22)D
MATNLL21
MAINe122
MAIN.123
MAIN,124
MAIN.L25
MAIN,126
MAINL127
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MAIN

104.
105.
106,
197.
108.
109.

0025428
0025428
0025428
0025428
0025428
0025428

240
25)
260
27)
280

¢ *PROGRAM HAXN(lNPUTvDUTPUTvTAPE3|YAPEQ,TAPES‘lNPUT,TAPE6-3UTPUT)l*

FORMAT(///71HO,15X, ¥ MEAN INITYAL VELIDCITY®,T60,1H=»3X,1PELL.3}
FORMAT (LHO o 15Xy #PRANDTL NUMBER®,T60,1H=43X; 1PEL1La2)
FURMAT (1HU sLSXy*FLUID SPECLIFIC HEAT*,TE0,1H=,3X,1PE11.3)
FORMAT LAHO 9L 5X oy *FLULID VISCOSITY*,760y1H=,3X, 1PEL1243)
FORMAT(1AD 15X, *FLJIID DENSITY=®,T60y)1H=43X,1PELL.3//7)

END

MAIN.128
MAIN,129
MAINL120
MAIN.131
MAIN,132
MAING.133

PAGE 4
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INDATA
‘.

3.
‘.

Se

6o

Te

Qe

10.

11.
12.
13‘
14,
15.
16.
17.

0000008

0000008
0000008
Qoco008

0000003

0000008

0000008

0000008
0000008

0000008

0000008
0004468
0004508
0004508
00C4528
0004538
0004548

oS JBRIJTINE INDATA(LEVELj®e
SUBRIJTIVE INDATA(LEVEL)

c#:..c&.cou-----u.t-ot‘ac--utﬁta‘tctt.ttt-tttti#t.‘ttttttttttttttttt‘th-

COMMON 'BLCCKS .

C‘.“.‘l“‘.‘t“‘tﬁ'tttttlttt-“‘t“.t“‘#.C.*.“‘t.“t““..“ttttﬁt&it

DIMENSIUN, K SAVE(2D229)
DIYENSIIN TRANSIS12)
C OMMON

140153 Y(33)92(02)yXULLS5)sYVI3D)eIin{D2),

LOKEP(L5),OXPW(L15),0YNP(30),DYPS(30),SEwW(15),SNSL30),

lDXEPU(lS)'DXPHU(15)vSEHU(lS)vDYNpV(3J)vDYPSV(BOPvSVSV(30’v

LR3(30)9s3v1300 sRCVI3DI ¢ wFN(30) pWFSI20)yWFELLIS5) ,WFW(15),

lJ(15'33v2)oVf15r3072)yH(15130v2)pPE(15v30¢2)1C(15v30v2)vPP(1513Dl'

lUU(l5'3U)cUV(15930)1U4l15c30)yVV(ISvBQ)vVN(l5'3O)vHw(lSpBOl'
lED(lS'BJ).TE(15-33)'FF(15;39),06(15;3)).VC(lSyBO)th(lSyBO).

1020(15,3009ES(15930) 4RSS (154300,

10&4([5,33.2)pVI5(15'30'Z)'GAH(15'30,2).VISUU(15.33)'VISVV(ISnBO)v

1AW(15¢3)3¢AE(15,30),AN{15y30)9AS{15,3019AD(15,30),4U(15,30),

IAP(15,30),SU(15+30)+SP{15+301)¢ ’

1UT(L51,CT(15),QUEL15),DC02ZB(15),QUBLL5},

LIOENSIT, vISCOS.PRANDT,,SPHEAT s EXCHAT,

1CHMU9CR0 902+ CRS9PCRIWSCR2WICEPSL,CEPS2,CEPS,CAPPA,ELDG,

LCCR,CL2,CC,CC Wy CC2WyC524CGyCAPPACYELIGC

lJUd'JJVlJUHvJVVvJVﬂvJhn,JED'JTE'JFF.JUC,JVC.JHC'JCZyJEC'

lVI'NlHlyVI*Z.NJyNJleNJMZvNKvNKHIOlTrJT'KToXJTo

IHEUU(QJ'NEOVKQ),HEDw(b).H[DP(#).HEDC(Q),HEDR(@):HEDD(#)oHEDVIS(Q)'

IINCALUolNCALV.lNCALH;lNCALPylNCALCy[NPRO.INCALR([Q),lVfURB.lNDlFF,

INSWP N3 APV NSHP Ay NSHPP o NSWPCyNSHWPR

LMUIEL s MIVEC I MRAyMCW s TQUEWIDLFy IJET ITEST,ITESU, ITESC, ICON,

LIRUNy EU  IHTIUL,TU2,1CY,1C2,%1,12,INDCDSFRA,

1< DLy ISTEP,ISTPLINIS, INCEX,DPDL,

lFLJHIN,ViEAYyQLENTH'SHﬂLL'GREAT,XTUT,YTUT'RSHALL(IQ’v

LZDPRULLE) s IPRO, IEND, INDPRIZNUYPR Ty BVEBVW,BVSBHS

SUOMMON .
lET(l5},ETU(15l,DET(ISI’DETU(IS),DYH'NJP.NJPL,NJPMI'INALL'

LRUJTER,RINNERy ECCENSES yNJOGYTITO,EXCHAW, NJOM]

COMMIN LLDU(30)1,0L0VI30)DLOAI30),CLOPI3O),
D.0JU(30),3LDUV(30),0LDUWI30),0LDVV(30},0LDVRI30},
OLO#N{30)+OLOTE(DI) yGLOED(30)+{ LOFF(301},
JLDIEN(30),0LOVISI30),0VISUU(30),0VISVV(3D]),
OLDUTA,0DPDZ

LOGICAL [NCALU,INZALV,IMCALWsINCALP, [NCALC, INPRD,

INCALR,INTURB, INDIFF

SQUIVALENCE (X(1)9pSAVE(L})

EQJIVALENZE {OLOU(LI»TRANS(L1))

- e b

c‘*#'tlttttttﬁclI##t‘*‘tktttt*tklt&t*#**k*t!t*t#*****&t**‘****“l&#C*ﬁt‘

DIMENSIIN Y2(21) oWl (21)9UJLL21 )y VVLI(2L 1y WWi (21 )9 VHL{21),UWL(2L )y
EOY0211928021)UCE02Y),VIL1(21),ACE(28),020¢(21 0,221 121}

T T e e e L AL e I L R L I XL

MISCELLANEJUS DATA

C#t“i&ttttttt‘lttt*tt#kt*ttt****ti**t**tt*tt*i***‘*ttﬁ&ﬁ‘**ttt‘ﬁ‘*.ﬁI“

o0 TJ (1004200}, LEVEL
CONTINJE
GREAT=1.J0E+30

SMALLel  UE-40

Jud=1

JUv=2

JUnw=3

PAGE

INDATAL2
COMALL,2
comMALLL3
COMALL.S
DIM3.1
DIM3.2
CPMALLWS
DIM3.3
DIM2.4
DIM2.5
DIM2.6
DIM3.7
DIM3.8
DIM3.9
DIM3.10
DIM2,11
pIM3.12
DIM2.13
DIM2.14
COMALLLL19
CCMALL .20
CCMALL.21
CoMaLL,.22
COMALL,.23
CCMALL .24
ChMALLL25
COMALL .26
ChMaLL,L.27
CCMALL .28
CNMBLLa.29
COMALL .30
COMALL.31
DIM3.15
DIM3.16
DIM3.17
0l4zZ.18
DIM3.19
DIM3.20
DIM2,21
DIM3.22
COMALLGL32
CoMALLL33
COMALLL3%
DIM3.23
INDATALG
INDATA,S
INDATALG
INDATA.7
INDATA,SB
INDATA.9
INDATA.L1D
INDATALLL
INDATALLZ2
INDATALLS
INOSATA.L1S
INDATALLS
INDATALLG

1



INDATA

18.
19.
20.
21.
22.
23,
24,
25,
26#
27,
28.
29.
30.
31.
32.
33,
34,
s,
36.
1.
38.
39,
40.
sl,
‘2.
43,
LT

45,
46.
47.
48.
49,
50.
51.
52.
53.

54,

55.
56.

57.
58.
59.
60.
tle
62.
63,
64,
65,
66,
67.
68
69.
70,
7“

0004558
00045468
0304578
0004608
0004618
00040628
0004638
0004648
0004658
0004668
0004678
0024708
0005068
0005178
0005208
0005228
0005278
0005278
0ocs318
0065438
00035448
0005458
0005478
0C05508
0005528
0005538
0005658

0005758
00C6068
0006078
0006178
0006178

- 9008178

0006218
00C6328
00CE448B

0006618

0006768
0007068

0007168
0007168

0007178

0007178
00072038
0007248
00CT7218
0007328
3007358
0007378
0007428
0007548
000748
0207708
0007778

*«#SU3RJUTINE INDATA(LEY

JVV=4
JVw=5
Jrnnb
JED=7
JTE=8
JFF=9
JuC=1)
JvC=il
Jni=12
Jcz2=13
JEC=14%

READ(5,010) HEDUyHEDY,HEDW,HEDP,HEDC

READ(S,010) HEDR,HEDD»H
26 120 L=1l.l4%
120 INCALR{L)=.FALSE,
READ(55322) IRUN,IENOD
I ENONE=]END
LRUNEA=IRUN
READI5,320) NIGNJ,NK,ILT
[JT=1TesT
NIMl=sNI-1
NIH2aNL -2
NJ4Ll=Nd-a
NJM23NJ=2
NK41=NK-1
READ(S5,035) (X(I)yI=l4N
READUSsu331 (YUJ)pd=14N

C=—===FULLIAIN3 CARO IS INACTIVE IN TWJ-DIMENSICNAL PROBLEMS,.

1F{IRUN.Zdel) READ(3) T
[FFLIRUNLELLL) GO TD 130
REAU(3) SAVE

130 CONTINUE
TENO=IENINE
FRUN=IRUNENW

READ(5,ul5) INCALU,INCALV,INCALW,INCALP, INCALC
READ(S,yOL5) INTURByINCALREJTE) yINCALR{JED) ,INPRD,INDIFF
READ(S5,083) IMCALR{JUUI o INCALR(IVV )y INCALRUJWH) » INCALRLJIVH)

» INCALRJUH)

1
READ(54315) INCALRUJUC)y INCALRUJIVC), INCALRIJNWC), INCALRLJC2),

INCALRI JET)

1
READ(54020) MODELsMODECIMRW,MCH,IDIF
READ (540201 XJET,INDCOS, IUyIHT,IQUE

Ce~~==-DIMENSIINAL LIMITS.
[ul=3
Tueg=3
IC1=3
1C2=a3
[FLIVsEJs2) [ULl=2
IF(IULEQe2) LlU2=NI¥L
IF(iAT.EGs2) IC1=2
IF{IHT«Eua2) IC2aNIML
Il=4IND(IUly ICL)
[2=9ax0(1u2,1C2)

ReEAD(5,020) NSkPU,VSNPV,NSHPH.NSHPP-NSHPR.NSHP’
REAJL5,020) ITEST;[TESU.ITESC:INDPPI:VUHPRI

READ(5,0251 FRA
READ(5,025) CMU,CEPS1
READL5,025) CR1,CRZ2,C!

EL) ¢

EDVIS

’JT1KT

1)
J)

RANS

“nS§2+CEPS
R1WICR2H

PAGE

INDATALLT
INDATALLS
INDATA.L9
INDATAL20
INDATA.2Y
IMDATA.22
INDATAL23
INDATA.24
INDATA.25
INDATAL26
INDATAL27
INDATAL28
INDATAL29
INDATAL3O
INDATA.21
INDAT2,.32
INDATAL33
INDATAL2S
INDATAL.25
INOATAL36
INDATAL37
INDATAL38
INDATAL39
[LDATAL 40
INDATA,4)
INDATA.42
INDATAL43 .
INDATAL44
DIM3.29
INDATAL46
INDATAL47
INGATAL48
INDAT2.49
[NDATAL50
IND2TALS5])
INDATA,52
INDATAL53
INDATALS4
INDATAL55
INOBTA.56
INDATA,57
INDATA.58
INDATA.59
INDITAL60
INDATA,6L
INDATAL62
INDATA. 63
INDATA.64
INDATAL65
INDATAL GG
INDATA.67
INDATA,. 68
INDATAL6S
INDATA.70
INDATALT7)
INDATAL72
INDATALT7"
INDATALT
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INDATA

T2
T3,
Té.
TSe
76‘
77.
78
79.
80.
8le
82.
33.

E‘l
85.
86. .

87.
B8e
89
90.
9l.

92.
93.
94.
95
96.
97.

98.

99.
109.
101.
102.
103.
104.
1J5.
1360
127.
108,
109.
110.
111.
i12.
113.
114.
115.
116.

0010078
0010178
0010248
00190318
0010368
0010458
0010538
0010548
0010648
oo10718

‘0011008

0011078

0011508
0011678
0011778

0012328
0012418
0012508
0012578
0012668

0012708
0012708
0012718
0013018
0013078
0013168

0012238
0013238
0013348
0013358
2013468
0013568
0013668
0013768
0014068
0014168
0314268
0014368
0014468
0014568
0014668
0014768
0015068
0015168
0015268

#eSUBROUTINE

READ(5,025)
READ(59225)
READLS»025)
READL5,025)
.READ15,033)
READ(5,030)
GLENTH=QLENT
READ(5,030)
READI(5,930)
READ{5,0301)
READ(59J35)
WRITE(S,053)

Lk adas

wRITE(6,035)
WRITE(6r3060)
WRITE(O2U65)

INDATA(LEVEL)**

CCl,CC2,CCHCTIN,CC2W

CG2+CG

CAPPALELDG

CAPPAC, ELOGC

VISCOS,DENSIT,PRANDT e SPHEAT

XTOTeYTOT,QLENTH

HeYTOT*2.0

RSWALL{ 1) sRSWALL(3)+RSWALL(4),RSHALLIS)

RSWALL{6),RSWALL (B}

RSWALLE10) oPSWALL(L2 ), RSWALL(L12),RSWALLLL3)
(ZDPRI(I)e1=1,18)
INCALJvYNCALVvlNCALNrINCﬂLP'[“CAL((JTE)vI‘C!L‘(JED)r
ENCALRLJUUD pTNCALR{JIVV) o INCALRUIWH) oy INCALRUJVHID,
INCALREJUW )y INDIFF, INCALCy INCALRIJUC) ! NCALR(JVC)'
IRCALR(JWC Yy INCALR(JC2) 4 INCALRUJEC)
IRUN,ICIN THDCOSy IV AT IQUE,IUL,TU2,ICL91C2011,12
MODEL p MODEC ¢ MAW ¢ MCW o IDIF '
CHUI:-PSIQCEPSZ7CEPS'CRI)CRZ!CRS'CRLH1CRZH'

1 CAPPA,ELUG,
1 CC1,CC2yCCyCLIWICC2WCG290CGrCAPPAT, ELOGC,
DENSIT,VISCOSPRANOTSPHEAT
[ ekkkkCA JTIONe oo ONLY UNIFDRM Y-SPACING INSIDE TUBE WALL PROVIDEZD.
C IF WE NEED M GRID NODES INSIDE TUBE wWALL,SUFPLY NJG=aNJeMel

Cor—-1F IWNALL=),
READ(5,04U)
wRITE(64066)
READ{(5,263)
wRITELO,0ST)
RETURN

Corhsknnebbkhnbekks

C

200 CONTINUE
IF(IHT oEUde2)
KREAD{(5,333)
READ(54330)

205 READ(5,930)
READ(5,030)

SUPPLY NJU=tJ, ROUTER=AINNER, ECCEN’O' EXCHAW=)D
TWALL I NJOy YTOTOy EXCHAW

IWALL ¢ NJOPYTOTO yEXCHAW
ROUTERy RINMERy ECCENy ES

ROUTER yRINNER yECCENJES

tb‘#tttttt**ttttttit****ttﬁt*#t##ttt*ttt*tttttt.*ttt’t
INITIAL PROFILES

C‘*#ttt#t"ﬁi'*tt!t##*‘.********#t*utt‘ttttt*****!*ttt#‘lt*t#*#t#t‘t& ek

GO T3 205

WHMAX g UUMA Xy VVMAX » WAMAX
VWMA Xy UWMA Xy EDMA X
CHAX,JCHAXVVCMAX'HCWAX
C2MAXECMAX

C-——-INITIAL SJNOITINS IN DIMENSIONLESS FORM

INUN=21
REAL(5.270)
IFtInTaENe2)
READ(5,070)
READ(5, 370}
READ(5,070}
READE5,0701}
LRERDIL5,373)
READ(5+37O00
READI5,0570}
206 REALU5,370)

REAULS5,270)
READI5,279)
READIS5,272)
REAUL5,070)
READ(5,0370)
REAILS, 070}
REAG(5,370)
TFUIATLEQ.2)

(Y20J) 4%, TNUM)
GO TO 208

(WLTJ) pJ=1y INUM)
(UYL (S ydnxl,y THUM)
(VV1(d)pd=1, INUM)
(WWLtJ) =1, INUM)
(VWL(Jd) =1, INUM)
(UWL(J) g J=1, INUMY
(ED1UJ)93=1y INUM)
{ CLUJ) pu=1, IHUM)
(UCLLJ) eu=1pINUM)
(VE1{4)J=2, INUM)
(HCL(J)gJ=1y INUM}
(C211J)4J=1y INUM)
(ECL(J) pJ=2l, INUM)
(CTCD) 2 I=1 NI
(QUE(T)X=1,NI}
GO Td 210

PAGE

INDATALTS
INDATA.T6
INDATALTT
INDATA.78
INDATA.TY
INDATA.BO
INDATA.BL
INCATA.82
INDATA.83
INDATA.BS
INCATALB5
INDATAL. 86
INDATA.87
INDATALH8
INOATA. B9
INDATA 9D
INDATAL9L
INDATAL.S2
INDATA.92
INDATA.94%
INDATAL9S
01I¥3.30
0I42.21
DIM3.32
DIM3.23
DIM3.24
01M3.35
0IM3,36
INDATA.96
INDATAL9T
INDATAL98
IMDATAL99
INDATALL00

- INDATA.L1O0L

[NDATAL102
INCAT2.103
INDATAL10%
INDATALLOS
IND2TA.106
INDATA.107

INDATA.108

INDATA.109
INDATALL10
INDATALLLL
IMDATALL1L2
INDATA.113
INDATA.L114
INUATALLLS
INDATALLLS
INDATALLILT

"INDATA.118

INDATALL19
INDATALL120
INDATA.1Z1
INDATALL22

CINDATAL123

INDATALL 24
INDATA,125
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INDATA

117.
118.
119.
120.
121‘
122.
123,
124,
125.
126.

127.
123.

- 129.

130.
131.

132,
133.
134
135.
136,
137.
138,
139,
140.
141,
1424
143,
144,
145.
146.
147.

148.
143,
150.
1£1.
152.
153.
154,
155.
156.
157.
158,
153.
160.
161,
162,
163.
164,
165,
166,
167.

0015278
0015318
0015368
0015468
Q015468
0015478
0015518
0v15518
ooLs5528

0015548

0015548
0015553

0016078

0016368
0014378

0016408
001¢418
001£438
001£458
0016508
0016538
0016578
0016638
001 6658
0016678
0016763
0017028
0017068
0017108
0017108
€017138

0017218
0017218
0017238
0017268
0017328
0017368
0017408
0017428
0017518
0017578
0017658
0017748
0020028
oo2olls
0020208
0020268
0020248
0020438
0020518
0020538

212

211
212

*&SUBRJUTINE XNDAT!‘LEVEL)“

IFIIRUNLNELL) GO TI 210
READ(5,370) DPDZ ) ’
READL5,070) (UT(I),I=1,NI)
CUNTINUE

IF{InALL.EQ.O) GO TO 212
DO 21a I=t,¥I
GUOLTI)=QUEL])

JUELT)=060

CONTINUE

LONTINUE

C#‘*‘U‘04&#0#¢ttt.#‘.t“t“'#*‘*tt‘t#t‘#t#‘i‘#t#‘tt*tttt*“t%.‘#tt“'k.‘

215

IFUIHF.EQ.2) GO TO 215
WRITEL6,00T75) (Je¥2(J) e WLLL) 4UULLSN s VVLLI) o WHLLS D VWL (J)eUnl (D}
yEDRLJ ) U=1, INUMD

1
WRITZ1640280) (J'YZ(JIvCllJ)'UCLKJIyVCI(J)tHCI(J)p

C210 U1, ECL(J) yJ=l s INUM)

1
c*#‘#!.“t*'t*UOttttt##t&*#t#ﬁ***t*#t‘#***&ttt*#*‘##t#*ﬁt*##“t*t'tt*&ﬁ‘

INUML=1INUM~1
NJl=NJ#l

C—---~—INTERPOLATION OF MEAN. PROFILFS.

220

230

240

252

J=1

DO 22) JJ=2, INUM

¥Y2(JJ)=Y2LJJI*YTOT

DO 250 JJsel, INUML

1F(Y{J)ehfaY2(Jd)) GO TO 250
IFIYLJ)eOTaY2(Jd¢l}) GO TD 250
RATIOS{YLJ)=Y21J3))/0Y2044¥%2)~ YZ(JJ))
IFLTAT.EQ.2) GO TO 240

IF{IRIN.NELL) GO TD 240
WiNTeJg2)mnl (JJ) eRATIO*{ML(II+1)=WL(JJ))
CUNIpdp2)sCL(JJI+RATIO*(CLCJI*LI-CLLIJ)}
Jxu+l

1F(JaEQaNUL} GO TO 250

60 T3 230

CUNTINUE

{FIIRUNLEQaL) WINISNJ,2)=0.0

C“*‘*******‘U*U“*#“#*“**ttt**#t#ttt*ttttttt*t*#ttt&tl‘#ttttttttttttt#
C“—‘-INTERPDLQT!UN OF TURBULENT PRDFILES.

260

270

J=2

DO 28) J4d= I.INUMI
THiIYVIdIaLTaY2(JJ}} GO TO 280
IFLYV(JleOTaY2(JJ+l)) GO TD 280
RAYIO=1YV{J)=Y21JI) 1/ LY2(da+1)=Y2(4I)}
[FLIAT.EN.2) GO TO 270

IFLIRINLNELL) GD . T) 270

UUINT o 30 =UUL tJJ) «RATI« (UUL{UJ+L ) -JUL{IJ )}
YVINT  dsv VI EI) eATIISLYVILJY+L)-VV1ILU4I))
WHENT y i =Wl (JJY +RATID® (Ml JI el 1=~wWi(JJ))
Vel ML g d) SVNLIJUI+RATICA (VAL (JJ*1)-VNL(JJ})
UniNLyJnJAL{JI I RATID®(UWLISI+1)~UwdlJU))
EDINL,J)=EDL(JJII+RATICU*(EDL(JJ+1)-EDLI(UII}
JOINT» S =UZLIJI) eRATIOD®(UCL(JY+L I -uUCLUJ)})
VOINT, J1=vCL U} #RATIO®(VCLLJI+1}=-VELLJd))
WCANTpJ) »WCLEJI) +RATIO*R (WCLLJU+L)-WCLLUI))
C2UNLpd)=C2LIJII#RATII*(C21CJu*1)~-C2LLU4)) .
ECINT ¢ J)=ECL{JJ)+RATIOR(ECLIJI+1}-ECL{JUY)}
FENES

IFlJyeEVeNJl) GO TO 287

PAGE

INDATA.126
INDATALL27
INDATA.128
INDATA.L129
DIM3.37

DIM2.38

DIM3.39

DIM2.40

DIM3.41

DIM3.42

INDATALL13D
INOATALL3L
INDATAL132
INDATAL.133
INDATAL.134
INDATAL135
INDATALL3G
INDATALL137
INDATALL3S
INDATALL39
INDATALL4O
INDATALL4L
INDATA, 142
INDATALL43
INDATAL 144
INDATAL,L45
INDATALL 46
INDATAL147
INDATA.148
INDATALL49
[MOATALLS0
INDATA.151
INDATA,152
INDATAL153
INDATAL154
INDATA,155
INDLTALLES
INDATALLS?
INDATA.LS8
INDETALLSY
INOATALL160
INDATALL161
INDATALL62
INDATA,163

INDATA.164

INDATA.L165
INDATAL1606
INDATALLET
INDATAL168
INCATAL169
INDATALLTO
INDATA,171
IMCATALL172
INDATA 173
IND2TALLT74
INDATAL175
INDATALL T
INDATAL
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INDATA

168
169.

170.
171.
172,
173.
174,
175.
176.
1717,
178.
179.
180.
181.
132.
183,
136.
185.
186.
187.
138,
189.
190.
191.
1v2.
193,
194,
195.
196,
197.
198.
199,
200.
201.
202.
203.
204.
205,
206.
20 T.
208.
209.
210.
21l1.
212.
213.
214,
215.
216.
217.
218.
219.
220«
221,

222.

0020548
0020548

0020608
0020628
0020658
0220678
0020718
0020768
0021018
0021048
0021078
0021123
0021158
0021208
0021238
0921268
ov21328
0021268
pv21428
0021468
0021528
0021568
0021628
0021668
0021728
0021768
0022328
0022068
0022128
0022168
0022178
0022218
0022218
0022238
0022318
0022378
0022458
0022538
0022618
0022678
0022758
0022038
0023118
0023168
0023248
0023328
0023408
0023463
0023548
0023628
0023708
0023738
0023763
0023778

0024618

¢*SUSROJTINE INDATAILEVEL) e«

GO TO 26D

280 CONTINUE
C‘*‘tﬁtttt'lv‘t't‘tttt‘tantot'tt‘t‘t't#lt-*littt‘tt#ttt.#tttttt‘ﬁ&#ﬁ‘ﬁtt

C——=-ZALCUJLATE ACTUAL MAGNITUDES OF ALL VARIABLES.
DU 320 I=1,N1
00 310 J=isNJ
IFLIRUNLNELL) GO TD 300
IF(IHTaNEWL2) GO TO 305
Utledel)=JLOULI)
Utlyde22=0L0OULY)
Viledpld=0LOVII)
Viledp22=3LDVLY)
wWi{lsdsl)=ILDHII)
wligde2)=31L0W (D)
PE(Le)y2r)=DLDPLT)
PE(1,J,2)=0LDP(Y)
YUL L, J)=ILDUULY)
UVIEed)=dLDoVId)
Ut lsJ)=JL0OUNIJ}
vviLle3)=3LDVVID)
Vil ed)=ULOVWLI]
Wrilypd)=3LONW(I)
TE(L,J)=3LDTELJ)
ED(I,J)=uDEDL )
FFEi Lo J)=aLDFFLJ)
DEN(I, )k i=0LUDENCJ)
DEN(I4J92)3CLODENY)
VIStlydsL2=2LDVISUJ)
VIS(IyJds23=0LDVIS{I)
vISUULL,y ) 20VISUULS)
VISVVILyJd)=IVISVVII)
UTLL)=UlOUTA
DpPLZ=30P0Z
GO YO 39D
305 CONTINUE
wilsdepl)dmw(NTsJe2)enMAX
Wil de2)=niNI9Je2)®AMAX
VUL J) =UJINT o J)RUUMAX
vViLlsd2=vVINTJIRVVMAX
WO o J) =W (NT S RWWMAX
Vil D g ) aVval NIy J)AVWMAX
UnlIpJd)=UniINTJ)®*UNMAX
EDLE I =EDINT pJIREIMAX
TE(L o) mt UL T3¢V I, J)*HUWlIJ))%0,5
FFETJ)auUll o J)-VVII )
300 Cllyd,2)=0(0N1,0,2)%CMAX
Cllydyli=CINILJ,2)¢CMAX
JOUTsJ)aUZINLeJ)RUIMAX
VCLY,ud=2vi (NI, J)AVOMAX
WOl ed) = wCINTyJ)*WCMAX
C2tyu)nC2(NTyJ)*C2MAX
EC(IsJ)=ECINIJI®ECMAX
310 CONTINUE
320 CONMTINUE
1=3
WRITE(6,52085) (J,UUTTJ) oVVIT g J) oWWET o}y VWIT o} 4UW(IsJ)
1 eFFUIp )2 TE(L9J 0 ED(Iyd)yd=1yNJ)
WRITE(650090) (UyClI o p2)34UCLLI4UdsVEULaJd) oy WCLT ) sC2{1sd)

PAGE

INDATA.178
INDATALL179
INDATA.180
INDATA.LBY
INDATA.182
INDATA.183
INDATALL 84
IMDATAL185
DIM3,43
DIM3.44
DIM3,45
DI42,46
BIM3.47
DIM3.48
DIM2.49
DIM3,50
DIM3.51
DIM2,.52
DIM3.53
DIM2,54
DIM3,.55
DIM3.56
DIM3.57
DIM3,58
DIM3,.59
DIM2,.60
DIM3.61
DIvM2.62
0IM2, 63
DIY3.64
DIM2.65
0IM3.66
0IM3,67
INDATA.186
INDATAL187
INDATA.188
INDATA,.189
INDATALL90
INDATAL191
INUATALL92
INDETALL93
INDATAL194
INDATA.195
INDATAL.L96
INDATALLOTY
INDLTALLGS
IMDATAL L 99

IVDATA,200

INDATAL.201
INDATA,202
INDATAL203
INDATA, 204
INDATA.205
INDATAL206
INDATA, 207
INDATAL208
INDATAL209
INDATAL 210
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INDATA

223.
224,
225.
226,
227.
228
229.
230.
231.

232.

233.
234.

235.

236.

231,
238‘
1239
240.
251,
2424
283,

0025308
0025308
0025308
0025308
0025308
0025308
0025308
0025328
0025308

0025308

0025308
0025308

0025308

0025308
0025308

0025208

0025303
0025308
3625308
0€25308
0025328

#eSUBROUTINE INDATA(LEVEL)®®
1 EC(Led) gJ=l NI

C““"tt‘tﬁt'ttttttttttt-‘ctttttt:ttttttttttttcttttttttttttttttttt!ttit

C FUNMAT STATEMENTS
»Cttt‘t‘ttttittt'tt‘vt“ttt‘tt-tttt#‘tttctmtt‘t#t‘ttt“tktt&#

AREEEEEEEEEE

10 FORMAT(%AL10) .
15 FORMAT(5(4XsL1})
23 FURMATL7(7X,14))
25 FChMAT(S5¢0XeF6a3))
30 FORMAT{4(7X,1PEL0.31)
35 FORMATL&X)lPEEl11.3) .
040 FLAMAT(TAy 1%, 7TXs14,207X,1PELL&3))
045 FORMATL4X,4(4Xs1PELLL3))
5O FOAMAT(LAL///7¢5X,%¥SELECTION GF VARIABLES*y/
LOX, & Usm%, 1,% V=& Ll,® wW=k,L1l,* Paw,[ 1,/
L1OK,* TEx®,L1,% EOs*,L1y% UUskyLly® VV=#yL1ls* Wksk,lly
& Vask,L1,% UWxs,L1,%0DIF=%,11,/
LOX, & Cxkg[ly* UCumb,L1l,* VC=a%yl le% WCa®yL1,¢ C2=%,L1,
& ECx=%,[1)

55 FORMAT{(LH ,5Xs*RUN SPECIFICATIONS*,//
IJK'*IRUN“ylZy‘XCDN'*vIZ.*INOCUS'*!’21'1U"’[2|*!HT'*vl21
CIQUE=®, [2, %I UL=6€, [2,%1U2=¢,12,%[CLm*,12,%1C2=%,12,

*[ls*k, [2,%]12=%,12)
60 FDRMATI(1H 35Xy« TURBULENCE MODEL*,//
1S LK e#MODEL =€ 12 y*MODEC=#y [ 2 *MANEk [ 2, kMCH=k, 12, ¢ (DI Fuk,12)

65 FORMATELH 95X *TURBULENCE -CONSTANTS ETCo*,//

LIXs¥* CMU=“'F6.3.*CEPSIS*,56.3y*CEPSZ'*.F6-3'*CEPS=‘1F6.3/

120Xe% CRL=&,F5.3,% CR23%,F6a3s% CRS=%,Fbe3+

& CRlW=k ,F6.3 4% CR2A=*,Fba3/

LOX s« CAPPA=k F56.3,*%ELOG=%,F6e 3/

LOX,®¢ CCl=¢,F6.3,% CL2a%,F6.3s%

& [olWa%w,FH,.2,% CL2d=myFbe3/

LIXs* CG2a%k,FHaTe* Co=%,FE.2/

10X, K CAPAC=% ,F0a3 ¢4 *¥ELNGC=%;3FbL.3/

LOXy ®DENSITY=4,1PELL. 34 #VISCOSITYS*,1PELLLD/

LIXe®PRANDTL 2%, 1PE11a3,~SP. HEAT=%*,1PE11.3)

066 FIRMAT(////740H*%xxe UNIFORM Y-SPACING INSIDE WALL *&%x%x//,
110X.6HIMALL1'13’5X,4HNJD=pI3ySX,6HY'DfD=1IPE11.3p7HEXCHQH-'
21PEL1.3) '

67 FORMAT(7/24rSPARRIN AND BLACK S DATA,7THROUTER=,1PEl1e3y
1 TRRINVER=s 1PE11.347HECCEN =y 1PEL1e 2y 11HPOINER RATE=,1PELL,L3)

70 FORMAT{4X,1P6E11.3) :
75 FGRMAT(5Xx,13,1P8EL1l.3}
8C FORMATI5X¢E3,1P7E1L1.3}
85 FGRUAT(5Xy1341P8EL1L.3)
Gy FOAMATI{5Xe13,1P6ELLL3)

RETURAN

END

e P o e e

]

Cc=*|F6.3’

o P e e s P Pes et s P

PAGE

INDATA,211
INDATA,212
INDATA,L213
INDATAL214
INDATAL.215
INOATA,L216
INDATA,L217
INDATAL218
INDATAL219
INDATAL220
DIM3,.68

DIM3.69

INDATAL221
INDATA,L222
INDATAL223
INDATAL22%
INDATAL225
INDATAL226
INDETR.227
INDATA.228
INDATAL229
1KDATAL230
INDATAL 23
INDATAL232
INDATAL233
INDATR 234
INMDATAL235
INDATAL236
INDAT A, 237
INDATAL238
INDATAL 239
INDATAL240
INDATA.241
INDATAL242
INDATAL 243
DIM3,70

DIM2.71

DEM3LT72

DIM2,73

DIV3.74

INDATA. 244
INDATS.245
INDATAL 246
INDATA 247
INDATA, 248
INDATAL 249
INDATA,250
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SOURCE
1.

2.
‘3.
4o

Se

- 18

Te

Be
9.

10.

11.
12.

0000008

00009008
00C0008
000C008

0000008

0000008

0000008

00000038
0000008

0000008

0000008
0307358

¢*SUBRIJUTINE SOURCZ(PHI IRSySUSsSPSeTJMAXINLy1M2) %"
SUBROJTINE SOURCE(PHI, IRS,SUS,SPS, [JMAX, IML, IM2)

C"tlt..“.C‘.l#."tt.‘t‘t‘lt#l'.#‘t...“‘ii‘“t“‘ﬁ‘tﬁ.‘ﬁl".“.."‘t"

COMMOM BLOCKS

C“t‘tt“t““*t‘tt‘tttt(ttt#‘t.‘t*t#lttttt“tt*‘#!t‘t"““‘t‘t‘t#“‘“

OIMENSICN SAVE(20229)
DIMENSIUN TRANS(S512)
CU4MON

1ALLSIeY (309210209 XUILE),,YVI30),IWl(02),y

1IXEP(L5) yDXPWILS) ¢DYNP (30} ¢DYPS{30)ySEWILS5)eSNS(30)e

LUXEPULL5) 9 OXPAUIL1S1ySEWULLS)yOYNPVI3D),DYPSVLE3D),5NSVI30),

LR(30)9RVI301 sRCVI3I) g WFN{30) yAFSLID) ¢ dFE(LS) gy WFA{15),

100154326239V (15430,2)9Wl15430+2),PEL15¢2042)+C{15+30,2},PPL15,3D),

LUU(L593J) pUv(15¢20) sUNLL15430)eVVIL15432)9VA(15930)ynW{154301,

1ED(15,300 s TE(15,30) yFF{15+430),UCIL5¢301,VC{L15,301sWHCIL5,301,

1C2(15¢32)9ECUL15,230,RS{15,30),

1DEN(L5.30+2) oVISILS593342)9GAM{15,3042)VISUULL15,30),VISVVI15,30)y

ikd(lS.SUI.AE(XS.BOD.Aﬂ(&S,BOlyAS(lE-BO)oAD(lSoSO).AU(lS:BO)v

18P13543))95J€15433)45P (15,3010

1UTCL15) ,CT(15) ,QUELL5),DCDLBLL5),0UD(L15),

IDEiSIT.vlSCJS’PRAVJTySPHEAY,EXCHAT,

1oMUSCRLeLR29CRSyCRIWICR2W,CEPS1,CEPS2,CEPS»CAPPALELDG,

1CCLCo2,C0,2CIWoCC2W,C62,CGoCAPPACYELIGC

LJUU s JUVy JUR JVV y JVW 3 Jritey JED JTE9JFFeJUC JVE e JHE» JC 29 JEC,

INToNIMLyNIME NI NIML g NIM2 J KK yNKMLy ITp JT o KT o 1Ty

lHEUJ(wl.H:DV(#),HEDdlal.HEDP(Q)yHEDC(hl,HEDP(A).HEDD(h).HEDVIS(4)'

IINLALJ.IN-ALV.XhCALwaNCALPcINCALCo[NPRC;lNCAL!(l#)'INTURB,XNDXFF,

INSRPUs NS WPV NSHPHy NSHP P yNSWPC o NSWPR

L MOUEL, MUUEC, MRW MCW¢ IQUE,IDIF, 1JET  IVESYLITESULITESCyICONy

TIRUNS LU IHT TUL ¢ 1J2oICLe IC2411,12,1MDCDS,FRA,

1< U2y ISTEP, ISTPYLyNIS,INDEXsDPDZy

1ELIWIN, VMEAN; QUENTH» SMALL s GREATy XTIT, YTOT,RSWALLLLS),

LZDPI(Ld) o IPROYIEND s TNDPRI ¢yNUMPRIyBVEsBVHWy BYS,BAS

CUMMIN

LET(15),STULLS)»DETLILS) sOETU(15)9DYNR,y NJPyNJPlvNJPMl»!HALL'

liuurER.RIMVER,ECCEN.ES.rJO.YTOTO.EXCHAW.NJDM;

COMMON  OLDUI3014+0LOVIS0)OLOWI(301,0LDP(30),
OLOUUCI0),JLDUVI30)1,0LOUN(30),0LOVVI30) ,OLOVWI30),
OLOmw(20),0LOTE(30),0LDED(23D),0LDFF(30),
ULDDEN(30),0LDVISI30)yOVISSU(3ID),OVISVV(3D),
OLDUTA,DDPIZ

LOGICAL INCALU, INCALV, INCALW, INCALP, INCALC, INPR],

INCALR, INTURB, INDIFF

EGQUIVALENCE (X(1)y5AVE(L))

EQUIVALENCE (OLDU(L),TRANSI(1))

[ [k

DIMENSION UIUJ(343),DUIDXI(3,3),P1343)9D(393)yPHIL(3+319PHIZ(3+3)y
DISI343)yPHIWLI3,3)sPHIW213+3)20ELL3,3),
UJCL3),DCOXIL32,PC13),P1CL3),D1C{3),PSILI3)},PS12(3),
PSIWLIZ2)ePSIW2{3),

S2(1494531452{14,450),
SEX{14)45DEX(14),SOLD(14),
SUSTTJIMAX )Y SPSITIMAX), PHI(TJHMAX)

b s e s

Cttttt‘t*ttttt&tt*i*t*#ttt#tt*#v*ttti***-tttt#k#tttt&O*t*t*tltt*ttttt#tt

IHITIALISING SECTION

C*‘ﬁ‘t'tt'.*#ttt‘t*t‘t“‘k*tttt*#t*&**t*ttttttt*‘*#*‘&‘&#tttttttktttct&u

ENFRY SJKCEI
Cse=(32

SCURCE.2
COMALL.2
COMALLL3
CCMALL .4
DIiM3.1
DIM2.2
CCYALLWS
DIM3.3
DIMAL 4
DIM3.5
DIM3,.6
DIM3.T
OIlM3.8
0I¥3.9
DIM3.1D
DIMZ.11
pDIM2.12
DIM3.13
DIM3.14
COMALLLLY
CUMALL.20
COoMALL .21
COMALLL22
CCHALL.23
COMALL.24
COMALL.25
CCHMALLL26
COMALL.27
COMALL.28
coMALL .29
ceMatL.3o
COMALL.31
DIM2.15
DIM2.16
DIM3,.17
DIM3.18
DiM2.19
01M3.20
piM3,.21
DI42,22
COMALL.32
COMALLL33
COMALL.3%
0iM3. 23
SOURCE.4
SCURCE.S
SOUPZE.S
SOURCELT
SCURCE.S8
0I42,75
SCURCELLD
SOURZE.LL
SCURCELL2
SOURCE.13
SJURCE.L 4
SOURCE.LS
SOURCE.L16
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SOURCE
13.

14,
15.
16.
17.
1s8.
19.
20.
21l.
22.

23.
24,
25.
26a

27.
28.
29.
30.

31.
32,
33.

34.
35.
36.
37.
38.

39.
‘o.
4l
‘2.

‘3.

A4,
45,
bbe
47,
484
‘9.
50.
5le
$2a

53.
54,
55.

0307358

0307378
0307418
0307448
0307468
2207538
0307548
0307568
0307608
0307658

0307718
9307728
0307738

- 03077138

0307768
0210018
3310058
0310108

0310138
0310148
0310148

Q310178

0310208
0310218
0310238
0316258

0310338
03103238
0310358
0310368

0310408

03105628
0310658
0310708
0310728
0310758
0310758
0310758
031C768
0311008

0311028

. 0311058

o0airiios

«8SUBROJTINE SQURCZ (PHI» IRSSUSySPSy» IJMAX, IML, [M2) %%

URFS=0D.1
C~———==SEf INFERNAL VAR!ABLES TO IERQ INXTIALLY.
DO 10 IRS=1,1s
06 1D TJd=sl,1JT
S1(IRS,141=0.0
10 S2CIRS, 1431 =040
00 20 I=1+3
DO 20 J4=1,3
DEL(I,J2=0a0
1Fll.EWsd) DEL(I9J)}>1a0
20 CUNTINUE
Crknbbesscsts ltttttttttttttt*t#t*t#tttt*ttttt*tt#tttt'tt‘t‘tt‘#tttttttkt

C—~——-CALCULATE RELEVANT CONSTANTS.

C—-——-=REDISTRIBJTION OF PRODUCTION H4ODEL
Fl=-CS82
F2=0.0
F3=30.0
IFIMODELLEQ. 2160 1] 30
C~————L AJNDER-REECE-RODI “ODEL

Fla-{(S2¢8.0)/11.D
F25~(30.0%CS2-2.01/55.0
F3=~{b,)eCS2-2.0}/11.0
30 IF{IHT.Euws0) GO TO 40
C—m—-REGISTRIBUTION OF PRODUCTION (B8Y MEAN STRAIN} MDDEL
Gi=-Cl2
62 0.0 .
I F(MULEC.EQ.L) GO TO 40
C—--==yUAS{-1SOTROPIC MODEL
6l=-0.8
. 623 0.2
40 CONTINUE
RETURN

ENTRY CALSOR
Ct*ttttt«tt(###ttt*ttt*tt#tt#tt*tttﬂt*tt#*ttttt*ttt*tt#&#ttttttttt‘t#tk*

Cc PRELIMINARIES
CHFROE R AR R ERB R R RERRRRERRRRE R AR R KRR R SRR KRRk Ak kX
CSi=CR1
€ S=CRS
CEL=CEPSE
CE2=CEPS2

C—===DECAY FUNCTION AT THE NEAR WALL POINT.
FrMLsaGSIVANI3eNIML)*SQRT(ABS{VWI3,NUMLI))IZLEDI3,NIML)+SMALL)/
1 (Y{NSI Y (NJI=YVINIMLI®RYV(NJIM1})*2,0%Y(NJ) )
00 1200 J4=2,NJMl
DO 100L I=IM1leIM2
Luzl+[Te(d-1)
DO 11) IRS=1,14%
SULDLIA3}=0.0
SEALIRS)=0e0
SOEA{IRSI=J.0
110 CUNTINUE
IF{1.,6T.I41) GO T2 140
L L L P T T
CoreseeIEYNILDS STRESS TENSOR AND NECESSARY GRADIENTYS.
C-——~--AT THE NODE.
UIUJELa L) =Uutl,J)
JIVJLL2)=UVII,d)
UIudt2,1auvii Jg)

PAGE
SOURCE.17
SOURCE.L8
SOURCELL9
SOURCEL20
SCUPCE. 21
SCURCE.22
SCURCE.23
SJURCE.24
SOURCE.25
SOURCE.26
SJURCE.27
SOURCE.28
SOURCE.29
SOURCEL3D
SOURCE. 31
SCURCEL32
SOUFCEL33
SCURCE.34
SCURCEL35
SCURCE.36
SOURCE.27
SCURCE.38
SOURCE. 329
SOURCE.40
SCUR(CE.4]
SOURCE. 42
SOURCE.43
SCURCE. 44
SOUPCE.45
SCURCE.46
SCURCE.47
SOUKCE.%48
SOUPCE.49
SOURCE.ED
SOURCELSL
SCURCEL52
SOURCE.53
SCUPCE.S4
SOURCE.5S
SCURCE.56
SOURCE.S7
SCOURCE.58
SCUPCELS59
SCURCEL60
SOQUFRCE.S1
SQURCE. 62
SOUFCEL53
SOURCE. 64
SOURCE.&5
SCURCE.66
SQOURCE.&7
SCURCE.68
SCURCE.69
SOURCE.T0
SOURCE.TL
SQURCE.T2
SQURCE.T3
SCUSCE.7¢
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SOURCE

56.
57.
58.
5%.
60.
6l.
62
63.

64
65.
66,
67C
68,
69.
70.

1.
72.
73.
T4a
5.
76
T7.
78.

79.
80.
81.
82.

83,

84,
85‘
86.
87, -
88.
3%9.
30«
91.
92.
93.
4.
95
96,
97.
98.
99.
100.
101.
102.
1J3.

104.

0211138
0311168
0311218
0311248
0311278
0311328
0211358
0311418

0311468
0311558
0311648
311728
0312018
0212078
0312178

0312258
0212348
0312428
0312508
0312568
0312648
0312728
0313008

0313028
0313053
0313108
0313138

0313168
0313258

0313338
0313348

- 0313358

0313428
0313478
0313578
0313638
0313668
0313758
0314038
0314128
0314218
0314268
0314338
0314438
0314528
0314628
0314638
0314648

0315068

®eSUBROUTINE SOURCE(PHIZIRS,»SUSSPSsIJHAXs INL,IH2)*#

UVIUJILe3) =Uwil,J)
UIUJ(3yLli=Un(],J)
VivJt2,y2)=vvilJ)
UIUI(2e3)=Vi(l,4J)
UIVI(3,2)=VW(1d)
UIUJ{3,3)=unil, )
T=TELLyJ) ¢SHALL

E=ED(1ls4)+SMALL

C~=—==AT THE NIJIRTdA SIDE.

UUNSUJ L g JISHENTII¢UUL T I+ 1)1 21 0-WFN{J) )
VVNSVV(E pd ) EnFN(U)+VVIT el ) (1 0-WFNIJ))
VAaNeVall g JITWFN(J I #VNIT S+l ) x (1o 0-WFN( U}
TENRTECL g J I WFNIJI+TE( T Jel) *{1a0-WFNTJ))
EUNZEDLL » J)EWFNIJ)+ED(T o J+1) ¥ (10 O-nFNLJ))
DvvN= (VI (T d+)1=VV(I,J))70YV{Jsed}=-YVI))
DVaN=(Vull e d+11-VWIT, 30D 7CYVEI+L)-YVLID)

C———~AT THE S3UTH SIDE.

140

UUS=UU{T ¢ )€ (1 0-WFNLJ=2) )} +UULT, J-L)*WFN{J~11}
VVSaVVEL o ) ® (1a0-WFN(J=1))eVV{IsJ-1)*WFN{J~1)
VASAVALL 9 J ) ¥ (L eD=wFN{JI=-11)+VWLI,J-2) *¥WENLI-L)
TESETE(L ¢ J)® (L. O-WFNIJ=1))¢TEL{TgJ-1)*uFN{J-1)}
EOS=EVLT 91 ® 110 0-WFNIJ-1}I+ED( T J-1 ) WFN{J-1)
DWVS=(VVIIJ=VVITLyS=11)/74YVI)=YV(I-1}])
DVAS={ V(T g ) =VWIT,J-1)) ZLYV(JI-YV(JI-1)])
1F(IHT.Cues0) GO T3 150

C**%¢&SCALAR FLUX TENSCR ANOC NECESSARY GRADIENTS
C-—=-=--AT THE NIDE

TRIASSENIAR R
UJC(2)=viiIe )
UJCI3)=nlt I, d)
CSu=C2ll,y4)

C——==4T THE NJRTA SIDE

UVCN=(VCIl.JOII—VC(I.Jl)/(YV(JOl)-YV(J') 

C-———~AT TnE SJIUTH SIDE

150

160

1

CAMEAE R KRS R R R AR AR AR R RN ARR R RO AR KRR R Rk b

Coe¥rene

DVES=LVI{Lpd )=VCUT,d=121/70YVLII=-YV(JI-1))

CONTINUZ .

IF(IHT.NEL2) GO T3 160

UCned 56 JCLT ) +UCLL,J0-1))

UCE=J.5%{uCt I+1l,d)sUCII+1,0~-1))

VENEVIL Lo JIRWFN(J)+VOLT 4 J+ 1) % (1. 0-WFNLJD)

EUFPLeED(I yd+1)/UTE(TyJeL)eSMALL S

Uul=uutlyJel)

OVCmN={VClTr el )-VCII=-1,4+¢11)/7(X(T)=-X{1~-12)

DVEmS=UVE L Ly J)=VCLI=~1,J) )/ IXCL)=X{1=~1)}

QUCE=(UCTL +L 4 J)=UCI1,J})/7tXULT¢L)=XUCT)])

DULW2(UT(Ipd ) =UCII-2,J) )}/ IXU(T)-XU(E-1)+SMALL)

UCN=0.56(UC{L,J40}+UCLTI,U)}

UCS=0.5¢1JCl g3} +UCITsI-1)) ]

VENL=VE LI -1 J1*WFNTJI+VC (1=, J¢1 )% (1e0D-wFN(J))

DUZSE=(UCII+1le)=UsII+L,yd=-120/7LY(J)~Y(J=11})}

DUCSwaluCl e J1-UCII,u=1)271YLI)=-Y(4=-1))

COMTINUZ

EOT=E/T :

Fut2ABSLILUJI2,3)#SQRTIABSIUIUI(2,3))) )/ (E+SMALL)Y/
CYENUDIRYINI =Y VIJ) RYVISEI*2 0k YINT ) /(FWML&SMALL)

MEAN GRAQIENTS
IF{1eGTalN¥1l) GO T) 190

PAGE

SOURCEL 7S
SCURCE.T76
SCURCELTT
SOURCE.78
SCURCE.T79
SOURCE.80
SOURCELB1

© SCUFCE.B82

SOURCE.33
SOUPCE.84
SOURCE.85
SOURCE.86
SOURCEL8T
SIURCE.88
SOURCE .89
SOURCEL90
SOURCE.91
SOURCE.92
SCURCE. 93
SDURCE. 94
SOURCE.9S5
SOURCE.96
SCUPCEL97
SOURCE.98
SOURCE.S9
SCUFCE.100
SOURCEL101
SCURCEL102
SDURCEL103
SCURCE.104
SOUFCE. 105
SOURCE.106
SOURCEL107
SOURCE.108
SCURCE.109
SCURCE.113
STURCELL11
SOUPCE.112
SQURCE.113
SCURCE.114
SCURCE.115
SOUPCE.116
SOUFCE.117
SOURCE.118
SIURCE.119
SOURCEL12D
SOURCE.121
SOUPCEL122
SGURCE.123
SJURCE.124
SOURCEL125
SOURCEL126
SOURCE.127
SCUTCEL123
SDURCE.129
SOURCE.130
SCURCEL131
SOURCE.122
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SOURCE

los‘
106.
107.
108.
1390
110.
111.
112,
113,
114.
115.
116.
117.
11l8.
119.
120.

121.
122,
123,
124,
125.
126,
127.
128,
129,
130.
131.

132.
133,
134,
135.
136.
137.

138.
139.

140.
141.
142,
143,
144,
145,
146,
147.

148
149.
150.

0315103
0315158
0315208
0315218
0315268
0315328
0315358
0315358
0315368
0315378
0315378
0315408
0315408
0315418
0315448
3315558

0315568
0315528
0315658
9315728
0315768
0316012
0316088
0316138
0316228
0316258
0316268

0316308
0316328
3316348
0316353
0316358
0316418

0316528
0316618

0316678

02156718

0316738
0316748
0317008
0317038
0317068
0317118

Q217138
0317208
0317248

"SUBRDUT!NE‘SOURCE(PH!:IRS:SUSvSPS,!JHAleﬁl.IHZ)“

C———-VELICITY GRAOIENTS.

WPawllyJeX)

wPP=Mlilydyl)

JP=).D

VPaVilsdeK)

WS (led=1vX])

wWSPaR{I 2d=1,1)

OUIDXJ(Lyi)=0.0

DUIDXJ(Ll,2)=0.0

DUIDXJEL,31%0.0

DUIDXJ(29112040

DUIDXJ(2521=0s0

DUIDXJL243)=0.0

DUTDXJ{34i)=040

QUIDXJL A2 ) =i WwP~-WS) 7LY(3)=-Y(JI~1)1}.
DUIDXJ1343)m(HP+RS—WPP-HWSP)*0.5/12Z(2)~-2(1})

190 CONTINuUEZ

C~~——-SCALAR GRADIENTSa

C**‘Oﬁl*tut#ttuu&:*tt*‘tt‘t#t*#*#tittt*tt-&*&*t***tt##*t**tt#tt*tt##tttt
SOURCES FJR REYNOLDS STRESS EQUATJIONS

CREEEEE RO S KRR E RS ER AR KRR RO R SRR KR AR KR F R RNk b ok
T T Y Ly ey P e T P L L L e I D P L LS L LT

c

CP:C(I,J.&)

CPP=Cll,dsl)

CHE=CUI-1yJyK)

CCSS=Cilsd-1,K)

CSPaClil,d-1,11
DCUXJ(I)'!LP”CHE)/(R(J)‘(X(l, -X{1-1))}
DCOXJIL2)=4CP-CSSIZLYJ)-¥Y{J-1)])
VCUXJ (3 )= (CP +CSS—CPP-CSP)*0, 5/(2‘2)’2(1"
IFIMODEL.ER.33G0 T3 320

[FLIULEJ.Q) GO TO 500

IF(J.Eva2) GO YO 520

C#»x2ePRIDUCTIIN [ERMS

00 297 11=1,3
03 200 Jd=1,I1

PUIlyda)=2a0

DUIT,ud)=0.0

00 200 <<=1,3

PUIT,300=P {14 Jd)=(UTUJIIIsKK) ¥OUIDXJLTT KK} ¢+

1 UIUJLTE oXKKI*DUIDXJUJJI9KKE}
DUILpJdd}=DUI e Sd)=tUITUJIIL+KK)IXDUIDXIIKKeJI}*
1 UIUJI{JJ o KK #DUIDXJ (KK, L))

200 CONTINUE

C—-—-EXTRA TERMS FOR CYLINORICAL GRIOD.

TECINDCISLEQL1)IGO TO 210

UPR=UP/YVIJ)

VPR=VP/YVLJ)
Pil,li=sPll,1)-2.0%VPREUIUIIL,L)

PL2, 1) =Pl )+UPRFUIUILL 1)~ VPR*UIUJ(le)
PL2y2)=212,2)+2.0%UPR*UTUI(L,2)
PU3,115P{3 s )-VPR¥UIUI(L,3)
P(3,2)=P(3,2)+UPRSULIUILL,3)

DU1,1)=D{1l,1)¢2,0%UPR=UIVJI(1,2)-VPR*UIUJ(1s1)
D(2,11=062,1)-VPP*UIUJ(L,2)}+UPR*UIUI(242}
Di3,1)=013,1)-VPR*UTUJL],3)+UPRRUTUI(2+3)

C~—~——<CALCULATE PRODUCTION "7 TURBULENT ENERGY.

PAGE

SOURCE.133
SOURCE.134
SCURCE.135
SOURCE.136
SCURCEL137
SOURCE.138
SOURCEL139
SOUPCEL140
SQURCELLl 4]
SOURCE.142
SOUPCELL143
SCUFCELLl44
SOURCE.145
SOURCE.146
SOURCE.147
SOQURCE.L148
SGCUFCELL149
SOURCELL50
SOURCELL151
SQURCE.LLS52
SOURCE.153
SCURCE. 154
SOURCE.155
SOURCE.156
SOURCELL57
SOURCE.158
SQUFCE.159
SCURCEL1€0
SQUFCE.161
SCURCE.L62

SOURCE.L163 -

SCURCE.16%
SOURCEL165
SCURCE.166
SCURCE.167
SOURCE.1¢8
SDURCE.169
SDURCE.L170
SOUPCELLT]
SOURCELLT2
SOURCE.173

SOURCE.L174

SOURCEL1T5
SOURCE.176
SCURCE.177
SCURCEL178
SCURCEL179
SQURCE.]80
SOURCE.161
SOURCEL182
SOURCE.183
SOURCE.] B4
SOURCE.185
SOURCE.186
SOURCE.157
SDURCE.183
SOUCCEL189
SCURCE."
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SQURCE
151.

152.
153.
1544
1554

156«
157Q

158.
159
160.
1el.

162,
163.

164,
165.
166,

167.
168.
169.

170.
171,

172,

173.
174.
175.

176.

177,

178,
179.
180.
181.
182,
183,
184.
185,
186
187.
168'

0317318

0317358
0317378

0317418

0317508

0317708
0317748

0320008
0320018
0320053
0320078

0320108

. 0320108

0320338
0320358
0320378

0320418
0320538
0320618

0320628
0321008
0321168

0321238
0321258
0321258

0321448

0321668

0322038
0322058
0322138
0322238
0322278
0322308
0322338
0322368
03223718
0322408
0322418

®#SUBROUTINE SOURCE(PHI, IRS,SUS,SPSy1JMAX, IM1,IM2) &%

210 PT=(PLL,1)¢P(2,2)¢P(3,3))/24

T e e e L L LR S A LI DL D L L L Rl A b bt d bbb d

Cexne*pKESSURE STRAIN AND DISSIPATICN TERMS
DO 222 [1=1,3
DO 220 Ju=l,11
PHIL(LI yuJ)=~CSLAEOTR(UIUJITIT, JJI-2.%DEL(II,JJ)*T/3.)
PHIZUEN s 4 )=FLR(P(IT4JJ)~2e%DELUITJJ)&PT/30)

1 +F2*T*{DUIDXJ(I1,J4J1+DUIDXILII»IT))
1 CF3%(D(I19JJ)-2.%DELLLIvJJIPT/30)
DIS{I1sdJ)==2.%DELLII,JJIRE/3,
220 CONTINUE

C .

C—-—-EXTRA TERMS FOR CYLINDRICAL POLAR COORDINATES.
[FUINICISCEQ.LIGD TO 230
PHE2{241)=PHI2(2,1)-F2*UPR*Y
PHIZ{1s1) =PHI2{1y 1} -F2%2,0%VPR*T

230 CONTINUE , i
C*#“I&#!t(t‘.ti*tt*****ﬁ*‘tﬁ*l#*t**#‘***’*t***tt#“t.*t#t*#‘t***‘***ttt

Caxee&NEAR AALL EFFECT TERMS ON PRESSURE STRAIN
PHI2(2,3)=PHI2(3,2)
FwL=sABSIUIUJ{2+3)4SQRTIABSIUTIUSI2,303))/LE+SMALLYY/
1 (YEYIIEVINJI=YVIJI®YVIJ) ) %2, 0%Y{NJ)/LFNMLI+SMALL)
DO 250 I1=1,3

20 253 JJy=1,11

1FI4RWeEWa2) GO TI 24D

Cw~—=-LAUNDER~-REECE-RCDI MODEL
PHINLIIT¢JJ)=CRIWKEDTH(UIUILET yJ ) =2 kDELIT L9 JUI*T/30) *FHL
PHIW2(IL,JJ)=CR2WH(P{ITyJJ)-Dt1I1sJJ))EFNL
G0 T3 250

C~—---GIBSJIN-LAUNDER MODEL

240 PHIWL(II 4JJ} =CRLWEDT*(UIUJL2,2)*DEL(II,JJ)

1 ~leSHUIUI(2, IL)*DEL(2,JJ)~1a5%UTUI(2yJII*DELI2,11))%Fwl
PHIN2{ILsJdJ)=CR2WE(PHI2{2y) 2)*DEL{T11,JJ)-1e5%PHI2(2, 11} 4DELL2,JJ)
1 —1.5%PHI2(2,JJ)*DEL(2, IT}I*FWL :

250 CUNTINUE . .
C‘#*‘!"t-tittt‘ttttttttt*#t*itttt*ttt!tt#t#tttttttt#tttt*tttt*#tt#tt#t#
CxsxeeADOITIONAL SOURCES DUE T DIFFUSICN MIDEL
C——--SUURCES FROM TENSOR INVARIANT DIFFUSION MODEL

IFULDIF.EJel) GC T2 260
SDEX(Li=0.0
SUEX(9Im2e %2 S/YVIJ) KLY {J)XTEN/EDNRYVNRDVVN=

) Y(J-L)*TES/EDS®VVSEDVVSI/ZIY(JI~Y(JI-1))
SOEX(5)=CS/YVISI*{Y(J)=TEN/EDNR( VVNEDVIN+HVWN*DVVN]~-

1 YU{J-1)*TES/EDSELVVSEDVAS +VWSHDVVSII/ZLY(J)-Y{J=1)}])
SDEX(6I%2.%CS/YVIJ) LY (JI*TEN/EDN*VHNEDVWN~

1 Y(J~1)+*TES/EDS*VWS*DVWSI/LY(J)-Y{J-1))

C——-EXxT4 SOUICES DUE TD CYLMNDRICAL POLAR CUCORDINATES

260 [F(INDCIS.EU.1) G3 TO 270

SEX(LI=CS/EDT*2,/¥YVIJY/YVIJIR(UIUI(2,2)-UIUS(1,1))2%UIVI(1s]1)
IFlJebEde3) SEX(1)=URFS®SEX(L}+(1.0-URFSI*SCLD(I]}

IFlJetued) SOLDIII=SEX(Y)

SEX(4)=-SEX{1)
SEX(51==C3/7EDT*UTJIIIL, LI *UTUI(2,3)7YVEIII/YV(Y)

IF(IDIF.EQel) GO TO 270 ’

SEX{11x2.¢3SEX(L)

SEX{%)ul, *#SEX(4])

SEX(5)32,«SEX(5}
SOEX(L)25DEX{LI+2.%CS/YV{J)*( TENCUYN/ZDN®{ vVN-UYUN) -

PAGE

SAURCEL.LI91
SOURCE.L92
SOURCE.193
SOURCE.194
SOURCE.195
SOURCEL 196
SOURLCE1S7
SONURCE.198
SDURCE.199
SOUPCE.200
SOURCEZ.201
SOURCE.202
SOURCE.203
SCURCE.20%
SCURCE.205
SGURCE.206
SCURCE.207
SOURCE. 208
SOURCE.209
SCUPCE.210
SCURCE, 211
SOURCE.212
SDURCE.213
SOURCE.214
SOURCE.215
SOUPCE. 216
SJURCE.217
SOQUFCE.218
SOURCE.219
SOURCE.220
SDURCE.221
SOURCE.222
SDURCE.223
SOURCE.224
SOURCE.225
SCUFCFL.226
SOURCE.227
SOUPCE.228
SOURCE.229
SCURCE.232
SCURCE.231
SOURCE.232
SOURCEL233
SJURCEL 234
SOURCE.235
SCURCE.236
SOURCE.237
SOUPCE.238
SOURCE.239

" SJURCE.240

SOUPCE.241
SOURCE.242
SOURCE.243
SCURCE. 244
SCURCE.245
SOUPCE.246
SOURCE.247
SOURCEL248
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SCURCE

189,
190.

191.

192.
193,
194,
195.
196,

157.
198.
199.

220.
201.
202,
203.
204,
205.
206
207
208.
20%.
210.

211.
212.
213.
214,
215.
216.

217.

218.
219

220.
221.
222,
223.

224,

0322718

0323038

0323158

0323168
03231178
0323218
0323218
0323268

0323418
0323468
0323538

0323538
0323548
0323568
0323608
0323628
0323648
0323668
9323708
0323708
0323728
0323748

0324068
0324108
0324138
0324158
0324208
0324218

0324278

0324348
0324378

0324428
0324438
0324478
0324538

0324558

¢«SUBRJUTINE SCURCE{PHI 2 IRS,SUSySPSyIJHAX INLIM2)0¢

TESeUUS/EDS ®({VVS~UUS ]I /LY {J)=-Y{J=-1))

€24 %5 S/ZEDT/YVIII*ULUS L2420 # (UUN=-UUSI/ZIYLII=YI=-1D)
SOEX( &) =SOEX{4 }-2.*CS/EDT/YViJI*ulusl2, 2) ¥ LUUN-UUS)/
1 . ) (Y(3)~-Y(J~1))
SDEX(5)=SDEX(5)-CS/EDT/YVIJ)*UIUJI2,3) *(UUN-UUS)/
(Ygar-yid-1))

o 9

1
270 CONTEINUE
CORRARREEBEEEEC AR RRRAE RN ERERAA R RKRARE R RS TA KSR ENR R SRR AR
CeexkedSSEMBLY JF SOURCE TERMS
D0 280 [I=1,3
DO 280 JJ4=1,1I
LRS=11¢JJ
IfliJeEdel JIRS=IRS~1
SLEIARS TJImP LI, Jd} +PHIL(TIT,3J)+PRI2(TIT,JJ)
i $PHINLCIT s JJ)#PHIW2{ T4 JJD+SEXIIRSI¢SDEXLIRS)
SLIR3,,IJ)=DIS{II,dJ}
280 CUNTINUE

GC TJ 439
T L L kbl t AL L LA L L d AL Ll

C TWO-EQUATION MODEL OF TURBULENCE
T e T L L et dddds
CRRRRR N EEER R E RS AR R R Rk kR KRR R RN AR AR R KRRk Rk kb
Cx+e*e+TUIIULENT KINETIC ENERGY EQUATION
300 CONTINJUE
Slilel4)=0.0
S1(4,1J)=0.0
Sli6414)=0.0
S2(1+141=0.0
$2t4415)=340
$2(69131=0e0
PT=0, |
00 310 II=1,3
DO 310 JJd=1,3
310 PT=PT+{JUIDXJ(ILsJJ)+0UIDXINII» 1)) *DUIDXILTT I
C--~--2XTRA TERMS FOR CYLINDRICAL GRID.
IF(INLDCISHEQaLl) GO TO 329
TERML=vPE&2/R(J)*¥2
TEIM222,0%vP*DUIDXJ(1,1) /R{J)
TERM3Ia-UP* (DUTOXJI(1,2)+DUIDXI(2,1)} /R
TERM4=UP®®R2/R(J)**2
PT=PT+2.0%(TERML+TERM2+TEFM3) +TERMS

320 PT=-MUKT/LEDT+SMALLI*PT
C———<NCIE.50JRCE TIMES TwW0 TO ALLOW FOR LATER DIVISION BY TwO.
S1i1,10)1=2.%PT
SZilelil=-2.%E
CHERTEEREEFEAE RS KR RRRERAR R RR KRR KRB R R R AR RERF R AR R KRR R RE g
c SJURCES IN ISOTROPIC DUISSIPATION RATE EQUATION
CHERE SRR KRG RE KRR R R RR R R R KRR AR RN RR R KRR SRRk
400 COUNTINUJE ' :
S1{7,1J)=CEL*EDT*PT
- 5Z4Te1J)3-CE2*EDT*E
500 IF(IHT.EqsQ) GC TO 700
C##mututot‘cvu.&*tttattttttxvttt*tt*-tttc#tttvttttmtcttttttttutttttttt«t
c SJURCES IN TURBULENT SCALAR FLUX EQUATIOIN
Ct#tttctt‘tOO!#C*‘t*#*\l‘#*t-t*#*t*t#‘-k*t*t**t*tt#**'q‘tk‘gtgg.g*.“*."g“
C*+++xPRUDUCT [ON TERMS ) :
PCS5QU=0e D

PAGE

SOUPCE.249
SOURCE.250
SOURCE.251
SOURCE.252
SOURCE.253
SOURCE. 254
SOURCE.255
SOUFCE.256
SOURCE.257
SOURCE.258
SOURCEL259
SCURCEL260
SOURCE.261
SOURCE. 262
SDURCE 263
SOURCE.264
SOURCE. 265
SOURCEL266
SOUPCE.267
SIURCE.268
SOUPCEL269
SOURCE.270
SJURCE.271
SOUPCE.272
SOURCE.273
SOURCE.274
SOURCE.275
SIURCE.276
SOURCE.277
SOURCE.273
SOURCE.279
SOURCE. 280
SOURCE.281
SOURCE.282
SCURCE.283
SOUPCE.284
SOURCE.2d5
SOURCE.286
SOURCE.287
SOURCE.288
SOURCE.289
SCURCE. 290
SOURCE.291

'SOURCE.292

SDURCE.293
SCURCEL294
SOURCE, 295
SOURCE.296
SQURCE.297
SCURCE.298
SOURCE.299
SCUPCE. 300
STURCE, 201
SOURCE.202
SGURCE. 303
SOURCE.30*
SOURCELS;

SOURCE. 3L

&
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SOQURCE

225.
226.
227.
228.
229.
230.
231.
232.
233,
234,
235.
236.
237,
238,

239.
240.
241.
242,
243,
244.
245.
246,
247,
248.

249.
250.
251.

252.
© 253,
254,

255
256,
257.
258.
259.
2606
261.
2624

263.
264,
265.
266

267.
258,

0324558
0324578
0324578
0324578
0224608
0324638
0324718
0324758
9325008
0325028
0325078
0325148
0325168
0325208

0325228
0325248
0325268
0325308
0325328
0325338
0325358
0325378
0325408
0325458

0325468

0325478
0325518

0325558
0325578
0325618

0325658
0325678
0325718
0325768
0326058
0326068
0326148
0326168

0326228
0326248
0326248
0326448

0326608
0326638

e e UBROUTINE SOURCE (PHI v IRSySUSeSPSe LIMAX, [M1, IN2) 0

D0 520 JJe=1,3
PCLJIJI=IdJ)
P1ClJ41=0.0
01CtJI)2d.90
00 52) KKk=1.,3
PC(JJ)-’C(JJ)—UJC(KK)‘DU!DXJ(JJ-KK) UIUJ(JJ'KK)'OCDXJ(KK)
V1CC 343 =0EC1JI)=UICIKKI*DUIDXIIXKydS)
PLLLIS) =PLCI JS)~UJIC (KK) *DUIDXI (IS KK)
IF (JJ-1) S520+5104520
510 PCSU=PLSU~2.0%UJCIKK)*DCOXJI(KK])
520 CONTINUZ
FCEL)=2~JUNE®DCDXJI(1]}
{1F(J.EJe2) GO TO 530
1F(INDCIS.EQ.1) GO D 530 :
C----—-EXTRIA TERMS FOR CYLINDRICAL GRID
UpR=UP/YVI D)
YPR2vP/YVIIS)
STIRE=-yPR*UICIL)
P1C(L)I=PLCIL }+STORE
PCILl}=PCLLI+STORE
STIRE=vP(®UJC(]1)
PLC(2)=PLC(2)+STORE
PCi{2)=PCL2}+STCRE
pLC(2)=QLC(2)—UPR‘UJC(Z)*VPR*UJC(I)
£30 TONFINUE
Chkerbr koo bbbk *tt*tt‘ltttt**ttt**ttt###tt#*t*tttttttttttttttttttttt#t
C*x4s«PRESSJRE~SCALAR CIIRELATION
00 543 J4J=1,3
PSILLJU)==-CCLAEDTRUIC(IN)
PS12(JJi= GL#P1C(JS)
1 «G2*D1C1LJJ)
540 CONTINJE
DISCSI=-CG*EDT*CSQ
PSIL{L)=~-CCL*EDN/TEN®UICIL)
Ca» “#0tt‘tll(tttt##**‘*t‘*‘tt‘##t"tttttt*tt##*t‘*tttt&tttt‘i#tt.t‘tt.*
CeesseNEAR wALL EFFECTS UN PRESSURE-SCALAR CDRRELATION
00 563 su=1,3
[F(MCweELa2) GO TO 552
PSIWL(u)=~2CIW*EDT®UJIC(JI)EFAL
PSIN2{JJ)e~CC2W*(DLICIJJI*DEL (JJ92) -4 I*PLICLII)*DEL(JJe3))*Ful
L T2 S69
E50 PSIWLIJII=-CCLW*EDTAUJYCLJJI*DELLJII2) ¢FHL
PSIw2{J4J)=CC2W*PSI2L1JJI*DEL IS 2)%FHL
560 CONTINJE
Creranshuneranbe bk akbrkkk P I 21T 2323 R A28 2 1322122232330 27223231827
CexewsdDUI TIUNAL SCURCES FRIM DIFFUSION MO'DEL
[F{J.Eq.2) GO TO S80
IF(IDIF.EVel) GO TO 570
C—~--~SDUICES FROM TENSZ! INVARIANT DIFFUSION MODEL
SUEX{LL)=Cl7YVIJI*(Y{J)*TEN/EDN*VVN*DVCN=-Y{J-1) *TES/EDS*VVS*DVCS)/
1 trtay-v(J~11}
SDEX(lZ)-CCIYV(J’*(Y(J)*TEN/EDN*VNU‘DVCN-Y(J-I)UTES/EOS‘VHSODVCS)/
1 (YEJi=-Yld-11)
IFLIHT.NEL2) GO TD 570
SOEX{L0)=2C/Y(J)={UUL/EDTPLI*DVCAN-UIUI(1,1) /EDT®DVCWS)/
1 LYVES+L)=Yvid)
1 +CC/YLIV/YUJ)*TEN/EON*UUNK (DUCE~-DUCKH) /
1 (X{L)-x{r-11)

" PAGE

SOURCE.307
SCQURCE.308
SCURCE,. 309
SCUPCE.31D
SCURCE.D11
SOURCE.212
SOURCE.313
SCURCE.314
SOURCE.315
SOURCE. 316
SOURCE.317
SDuUPCE.318
SCURCE.319
SOURCE.320
STURCE, 321
SOURCE. 322
SOURCE.323
SOURCE.324
SOURCE.325
SCUPCE.326
SJURCE.327
SOUF.CE.328
SCURCE.329
SOURCEL23D
SOURCE.231
SCURCE.332
SOURCE.333
SOURCE.334
SOURCE.335
SCURCE.236
SCURCE.337
SOURCE.238
SCURCE. 239
SOURCE.340
SOURCE.341
SJURCE, 342
SOUPCE.343
SOURCEL 344
SJURCE, 245
SOURCE.346
SOURCE.347
SOURCE.348
SCURCE. 349
SOURCE.3Z0
SOURCE.351
SOURCE.352
SOUPCE.353
SCURCE. 354
SOURCE.355
SQURCE.356
SOURCEL357
SOURCEL358
SCURCELIS59
SCURCE.360
SOURCE.2EL
SDURCE. 362
SCURCE.363

SDURCE.36% "
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SOURCE
269,

270.

271.
272
273.
274.

275.

276
277,
278,
27%.

280.
281
282.
283,
284,

285.

286,
287.

288.

239.
290.
291.
292.

293.
294
295
296,

297,
298.

0327118
0327238

0327358
0327378
0327458
0327473

0327758

0330158
0320178
0320208
0330238

0320608
0330738
0330748
0320758
0330768

0331078

0331138
0331178

0331228

0331228
0331238
0331248
0331278

0331478
0331578
0331678
03317178

0232078
0332178

®9SUBRIUTINE SOURCE(PHI,IRS SUSySPSeIJMAX,IML,IN2)¢¢

SDEX{LLI=SOEX{11)eCC/YVI{JI/EDTOUIUIL2+2)*( DUCSE-DUCSHI/
1 {xJlL1e2)=-x0LL 1)
SOEX(12)=SOEX(12)+CC/YV{JI/EDI*UTUI(2,3)}*(OUCSE-DUCSWI/
1 (xutield-xu(ll}
~EXTRA SJURCES OUE T3 CYLINORICAL PDLAR COCROINATES
570 IF(INDCIS.EQ.1l) GO TO 580
SEX(11)=--C/EDT‘UIUJ(1.lltuJCKZ)/Yv(J)IYV(JI
IF(IrfeNEL2) GO TO £75
SDEXC1D0)2S0EX(10)¢2C/Y(J)RTEN/EDNSUUN/Y L J) = VEN-VTINL )/
(ALL)=-x(1-1))
OCC/Y(J)*TEN/EDN‘VVN'(UCN ~ucsy/
(YViIel)=YVI(I))
SDEX({Li)=SDEX(ILI~CC/EDTAUTUILL, LI/YVIJI/YVII)SLUCE-UTWY/
{xuiIrli-xutl))
.C/EDT*UIUJ(1'1)/YV(J)IYV(J)'(UCE UCh)/
(XULI+1)=xullIy)
575 IFUIDIF.EQ.1) GO T3 580
SEX(1112Z2.0«SEX{11}
IFLIATLNE.2) GO TO 530
buhxlld)-SDEX(IOI--CIY(J)*(UUlIEDTPl#UCN -UTUJLL,1)7EDT*UCS)/
Lyvig+li=yvidil
+SC/YUJIRTEN/EON®UUN/Y (J)*{VCN-VCNL )}/
{(X{I)-xt1-114)
+oCIYCIN/Y(I) «TEN/EDN®UUNR( { VCN~-VCNL Y/
(Xt1)=xt1-1))y-vsctl))
SDEX(II)-SDEK(II)-CC/EDT*UIUJ(1-l)/YV(J)/YV(J)‘(UCE-UCN)I
(XUCIel)=-xutlsy
580 CONTINUE
Ctt*“c##ttttt*‘t#**t*tt*tt#*#*ttt‘t**v&t*ttttt***tttt#tt‘tttt#tt##ttttt
Cos*s#A SSEHALY UF SOURCE TERMS
00 590 Ju=1,3
[hF=9¢JJ
S1{1dF, IJ)=PC(JJ)09$II(JJ)*PSIZ(JJ)*PSIHI(JJ)#?SIHZ(JJ)
1 +SEXLIHF) +SDEXIIHF)

590 S2{IHF9JJ}=0s0
Ct#tttcacvtttt¢«attt#ttcuttttt:*ttt:#ttttttttt***::*ttmt#tttt;ttcttttttt

SOURCES IN SCALAR FLUCTUATICN EQUATICN
CATAm R RE R R R TR kAR RS AR R R CR R E KRR RRR AR KRR KRR E Rk Kk
S1113,1J)3PCSQeDISCSY

$S2(13,101=0.0
Ctltltt*t!Ct!r*ttvtltttt#t*ttt**t-t‘tt*‘#t*tt*tttt*att#t*t*ttttttttttttt

C CPTIONAL 3JUTPUT
CHEFEEERE R ERERRERRRRTIK R R R R AR AR AR R RR KK E KRR R R R X
700 CONTINUZ
C-—=--S0URZZ BALANCE OF STRESS TENSOR COMPONENTS.
I1F(IJ.EQed} GO TO 750
IF{ITESU.EQ.O0) GO TO 750
IFIMIDUISTEP yNUMPRI}4NELO) GO TO 750
ARITE(H,720) 1pdsPllellsOFS(lel)ePU2,20,015(2,2)9P(393}4DI5(3,3)
1 ’ ePU342)4D15(302)¢P{341)4DIS(3,1)
WRITE(S5730) PHI2t1o10sPHIL(2,2)4PHIN(343),PHIL(3,2),PHIL(3,1)
WRITELS4730) PHI2(1 1) sPHI2(2¢2),PHIZ2(343),PHI2(342)¢PHI2(3,1)
ARITE(69730) PHIWLIL,1)yPHIWI(2,2),PHIWLL3,3),PHIWLI(3,2)
1 s PHINLE3,1)
WRITE(5,730) PHIW2U1,1)oPHIW2(292)yPHINZ(353)sPHIN2(3,2]}
1 9y PHIWN2(341)
dRITELOH,730) SEXE1}4SE:
WRITE(59730) SDEX(L1},SL

c

L ol ol

e s e

¢SEX(6)¢SEX(5)ySEXI3)
%) 9 SDE X&) 4 SDEXIS)»SDEX(3)

PAGE

SOURCE. 365
SOURCE.2366
SOURCEL367
SDUACE.268
SCUPCE.369
SCUFCE.370
SOURCE.3T1
SOURCE.3T2
SCURCE,.373
SOURCE.3T74
SNURCE.375
SOURCEL376
SOUFCEL377
SQURCE.378
SOURCE.379
SNURCE. 389
SCURCE.381
SOURCE.382
SOURCE.383
SOURCE.384
SOURCE.335
SOURCE.386
SOURCE.287
SOURCE.388
SOURCE.289
SCURCE39D
SOURCE.391
SOUPCEL392
SOURCE. 393
SOURCE.354
SOUSCE.395
SCURCEL396
SOURCE.397
SOUPCE.298
SOURCE. 299
SOURCE.400
SOURZE. 401
SQURCE.402
SOUPCE.403
SIURCEL40%
SOUPCE.405
SOURCE.406
SOURCEL407
SOURCE. 408
SOURCE.409
SQURCE.410
SQURCE.411
SOURCE.&12
SQURCE.413
SOURCE.414
SOURCE.415
SCURCE.416
SOURCE.417
SNURCE.418
SOURCE. 419

SOURCE.422>

SOUHCE. 4z
SJURCE.4 2z
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SOURCE
299.

300.
301.
302.
303.

304,
305.
306.
3T,
308.
309.
319%.
311.
31 2.
313.
314,
315.
316.
317.
318.
319%.

320.
32l.

322.
323.
324,
325.
326
327.
328.
329.

330.
331.
322.
333.
334,
335,
336.

337.

03322718

0333128
0333128
0333128
0333128

0323128
J333138
0333148
0323178
0323318
0333408
0333468
0333543
0333628
0333708
0333768
0334218
0334218
0335218
0334218
0334218

0334218
0334268

0334308
0334368
0334373
0334428
0334458
0334478
0334538
0334648

0334668
0334668
0334708
0334738
0334758
03350138
0335178

0335218

*#SUBRIUTINE SOURCE(PHI, IRSeSUSeSPSe IIJMAX, IML, IMN2) %%

WRITE(6,740) S1C1923J)sS2(191J09S1(491J0,5204,1J),5L(6,1J)
1 2520601395115, 10)952(5,1J3,52(3+1J)e52(3,1J)
1 pSYETo1J)S2(TeI N

720 FORMATI/2X4213,511P2E9.242X))

730 FORMAT(EXy5(1PEFL2s11X1)

740 FORMAT({iX, THSOURCE=,6(1P2E%.2¢2X)/)

750 CONTPINUEZ

Cmm——e SCURCE BALANCE OF SCALAR FLUX TENSOR CCOMPONENTS.

IF{IHT.EJe0) G3 TI 80D
IFLITESC.EQ.0) GO TO 8030
TFIMIDCISTEP yNUMPRI ) ,NELO) GO YO 800
ARETELS597602 1+J9PCLL},PC(2),PCL3]},PC52
WwRITE(5,770) PSIL(1),PSTL(2),PSI1(3),01I5CSQ
wRITE(6,780) PSI2(1},PSI2{2),PS12(3)
WRITE(6,782) PSINL{1},PSINI(2)yPSIWLL3)
wRITE{os780) PSIW2(1),PSIW2(2},P5Iw2(3)
WRITEL6,780) SEX{1D),SEXT11)+SEXL12) -
wKITE{5,780) SDEX{10),3SDEXIL1),SOEX{12)
WRITE(G2»790) S1(10pT1J)eSI{LL401J),SLCL2,1J),4SL1L3,1J)

760 FORMAY (/2X,213,1P4513,2)

770 FCRMAT(8Xs1P4E13.2)

780 FURMATIS8X+1P3EL13.2)

790 FURMAT{L Xy THSOURCE=41P4EL3.2)

800 CCNTINUE

c

1000 CONTINUE

RETURN

c
C“*“Ottttttttt“#*t***ttt*‘tt***t*%*ttt‘ﬁ*t*t#.**t#‘tt‘tl*‘*t##tt#tt"lt
c SOURCE TERMS PICK-UP LEVEL
Chrkne ket t‘ﬁt.*ﬁ*‘#ﬁt*'*tttt**‘t***t*#*k**#*tl*itt*t*t‘t*ﬁﬁt*****t'*
ENTQy SIRCE
IFCIRS.EQ.8) GO TG 1120
20 1110 I=1K1,iM2
DU 1110 J=2,KJML
1J=1¢1T#(J-1)
SUS{1J)=SLLIRS 1)
1110 SPS(IJ1=S2{IRS,yIJI/ (PHI{TIJ}+SMALL)
RETUARN
c .
C—--~SOURCZS FOR KINETIC ENERGY.
1120 CUNTINUE
D0 1132 1=IM1,IM2
00 1130 J=2,NJML
foslebT®gd=i)
SUSEIJI={SL{1eTJI+SLI4,1JI¢S1L6,100)/24
1130 SPSUTJIo(52019101¢5204sT1J1+5216413)1/2.7(PHICIJ}+SHALL)
RETURN
¢
END

PAGE

SOURCEL423
SOURCE.424
SOURCEL425
SOURCE.426
SOURCEL427
SOURCE.428
SOURCE.429
SCURCE.430
SOURCE.431
SOURCE. 432
SOURCEL433
SCURCE. 434
SCURCE. 435
SOURCE. 436
SCURCEL437
SJURCE.438
SOURCE.439
SOURCE. 440
SOURCE. 441
SCURCEL 442
SOURCE.443
SOURCE.%44
SOURCE.445
SOURCE.446
SOURCE. 447
SOURCE. 448
SOUFRCE.%49
SOURCE. 450
SGURCEL451
SOUPCE.452
SOURCE 453
SOURCE.454
SOURCEL 455
SJURCEL456
SOUECE.457
SOURCE.458
SOURCE.459
SOURCE. 460
SOURCE. 461
SOUFCE.462
SOURCE.463
SOURCE.46%
SCUPCEL465
SCURCE. 466
SOURCE.467
SOURZE.468
SOURCEL4569
SOUKCEL.4TO
SIURCEL4TL
SOURCE.4T2
SIUACEL4T)
SOURCEL4T4
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INIT

1.

2e
3.
6.

5.

Se

Te

8e
9'
10.

11.

12.
13,
14.
15.
164
17.

0000008

0000008
0000008
000008

0000008

0000008

0000008

0000008
0000008
0000008

0000008

oocol108
oooo0li03
€ooo108
0000148
0000158
0000178

c“‘.‘..'l“‘."CC“‘C‘..‘..‘..t‘...“t"‘t

Ceaesesretségesss

S&SUBROUTINE INITa«

SUBROUTINE INIT
O.tt‘ttt#ttt‘tt‘ttt‘t#t“'ttt

COMMON BLCCKS

CEEEAESEREAAAAN AR ERAEEL SRR RERFRRRNISRERKRAREE S KERE SN
DIMENSIIN SAVE(20229)

DIRENSESN TRANS(S512)

CULMMON . ’

LX(LS5)evI30), 21020 4XUI15),¥YVI30),2ZH(02),
lDXEP(lS).UXPH(IS]'DYNP(30)oDYPS(30),SEH(15)oSNS(3Dl'
10&&’Ull51yOKPkU(15)'SEHU(IS)pDYNPV(EOI.UYPSV(30l1SMSV(3°’1
lR(BJ)yRV(BD).RCV(30),4FN(30),dFSlBO).HFE(lS),HFH(lS)r
lu‘l5o33o211V‘15v39'2,rﬁ(15,3°'2’9PE‘15;30!2"C415v30.2):PP(15933’0
IUU(lS,iol,Uv(l5.30l.UH(15730).VV(15p33)'VN(ISnBD).NH(l5o3Dlv
150(15.3)];[E(15,30),FF(IS.BO).UC(15133IyVC(lSpBDl.HC(15,30)'
102(15,300 ,EC(15,30) 4RSL1543010, : '
1051(15'30121pVIS(15p3DnZ)'GAH(15p3012)vVISUU(IS.EO)pVISVV(lS.BO)o
1An(15.3dl.AE(15130igAHIISrBDlnAS(15:33lvAD(15'30)vAU(15130lo
1AP115,300,5U(15,300,5P(25:30)> :
1UT(152,CH115),QUELL5),0C0ZB(151,QUOIL5),
10ENSIT,VISCOS)PRANITySPHEAT s EXCHAT,
ICHU.CRI'CRZpCR51CRlh.CRZH,CEPSloCEPSZpCEPS.CAPPA'ELDG.
ICClvCCZnCCoCCleCCZd'CGZ.CGvCAPPAC:ELJGCI
lJUU'JdV:JuwpJVV,JVH,JNH.JED;UTE,JFF.JUC,JVCyJHC.JCZ,JECp
lNI.NlMl'NlMZ.NJ.NJHI.NJHZoNK,NKHI.lT.JT.KT:[JT.
1HEDU‘4,'ﬂEDV‘4)!HED“(4,1HEDP‘4,|HEDC‘4)'HEDR‘4,tHEDD“"HEDV!S“)'
11NCALJ.KN£ALV:!NCALH.INCALP.INCALC,INPRO.!NCALR(!Q).INTURB,INDIFF,
INSWPUs NSwWP VyNSHP RNy NSHWP Py NSHPCeNSHPR,

‘lﬂCJELs*JUEC.MRNbMCH,()UE.lDlF,lJET,lTEST,ITESU.lTESC,ICDN'

LIRUNs 1Us IHF ¢ TUL, 1U2, [CLy IC2+ 11,12+ INDCOSFRAY

14 sCLs ESTEP oI STPL NRS; INDEX 40PDLs

LFLUWING VIEAN , QLENTH, SMALL ;GREAT, XTOT, YTOT,RSWALL(18),

1Z0FRO(Ld )y IPRO, IENU INOPRI \NUMPRI,BVE, BVwy BVS¢BAS

COMMIN . :

LETiL5) s EFUCLS),DET(15),0ETUC15)+DYRsNIPINJPI,NIPHL, IWALL

LRUUTER, RINNERECCENSES 10, YTOTO, EXCHAN ) NICHKL

CUMMIN  OLDUL30),3LDVI301,0LDHI30),IL0PI3G),
LLOUUT301s0L0UVI3D),40L0JA(30),0L0VV(30),3L0VHI3D),
OLDWW(30)33LDTE(30),CLOED(30),CLOFF(303,
GLODEN(301,0LOVIS(303,0VISUL(30),0VISVV{30),
OLOUTA,QOPDZ .

LIGICAL INCALUsINCALV,ENCALWINCALPINCALC+INPRO,
INCALR, INTURB ¢ INDIFF

EQUIVALENCE (X{11¢SAVE(L))

EGWIVALENCE (OLDUtL),TRANSIL))

REAL M&a£C¢MINC

CE ol ol

C##t‘tt*#t‘lv‘tvt!t##**t!tttt*#ttt*#*#t*'ﬁ‘i‘t*#t***#ttiﬁ‘iﬁtt#ltttttttt

GEDMETRICAL VARIABLES

C***UCC'ttlttttt#‘*#t**ktt‘t*****t**t#*"#ti#*4****###*&"ttt*t*t‘tt‘t‘t

ENTRY INATG

ctt*tou:vaccttva-uc‘ttttttcgaat*tttt‘*it*tttttvt**t*t:t*tt*ttt::.ttttttt
C*exasCALCULATION CF LOCATION AND DISTANCES FCR P-CELLS

DAPW(Ll)=2040
DXEPINIIaULD

03 100 (=i,nIM] )
DAEPLI) =sx(1¢e)-XL1)
OAPA(l+Ll)=DXEP(T)
J2YPS{11=042

PAGE

INIT.2
COMALLL2
COMALL.3
CCMALL.4
DiM3.1
DIM3.2
COMALLLS
DIM3.3
DIM2. 4
DIM2.5
0IM2,6
DIM3,.7
0IM3.8
DIM3.9
DIM3.10
DIMz.11
DIM3.12
DIM3,13
DIM3,.14
COMALL.19
COMALLL.20
COMALL.2)
COMALL .22
COMALL .23
COMALL.24
COMALL W25
CCOMALL.26
COMALL .27
CoMALL.28
COoMALL.29
COMALLG3D
CCMALL.3L
DIM3.15
DIM3.16

DIM3.17
DIM3.18

DIM3.19
DIM3.20

-DIM3,21

0IM3.22
CC“ALL.32
CCHMALLWL33
COMALL.34
DIM2,23
INIT.4
INIT.5
INIT.6
INITLT
INIT.8
INIT.9
INIT.10
INIT.LL
INIT.12
INIT.13
IN[TL14
INIT.1S
INIT,16
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INIT

18.
19.
204
21.

22.
23.
24.
25e
26.
27'
28,
29.
30.
31.
32.
33.
34
35.

36.
37.
38‘
39.
40.
41.
‘2.
43.
84,
45.
46,
47,

48.
49.
50.

51.
524
53.
54,
55
56.
57

58e
59
60.
6l.
520
53.
64,
65,
66,
67.
68,

0000178
0000208
0009238
0000248

0000263
0000268
03C0328
0000358
0000368
0000408
0000428
0000468
0000468
0030518
0000558
0000568
0000578
0000623

0000668
00005678
0000708
0000718
0000748
0001008
0001008
0001018
0031028
0001028
0001043
0001058

0001078
0001078
0001128

0001158
0001208
0001218
0001238
0001258
2021278
0001318

0001348
0001378
0001378
0001418
0001448
0001508

, 00061508

0001518
0001528
0001528
0001548

¢¢SUBROJTINE INITee

DYNP({NJ}=D.0
D0 11D J=i,NJH1
OYNPL{JInYLJel)-Y (U}
110 OYPSLJI+1)=DYNPLY)
C-——-pP-CELL JIMENSIONS
SEwW(l}=0.0
SEN{21=0APHI2) 0. 5*DXEP(2)
SEn(NIML)=Da5%0XPW(NIML) +OXEPININML)
SEmiNL}=0.0
NLvz=N[vL-1
DO 20U 1=3,NIM2
200 SEw{I)=0.5*%(DXEP(])«DXPHIID}
SNS(1)=3.2
SNS(2)}=0YPS{2)+0.5%DYNP(2]
SNSINSILI=DYNPINIML ) +D.S*DYPSINJIML)
SNSINJ)I=00
NJAM2TNIML -]
DO 212 J4=3,NJyM2
210 SNS(J)=0.5%(DYNPLJI+OYPSLY)) »
C“*t*&tv*‘ﬁtttu . ttt##tt*tttt**tttttl*tttttttttkttttttttttittt‘tttttttt
CoxwesCALCULATIUN OF LCCATINN AND DISTANCES FOR U-CELLS
Xutli=x(l)
xut2i=xil)
XUtNL)=XINT)
00 300 I=3,4NIMY
300 xULL)=aDe5%(X()+X(I~1}])
DXPRULL)I=V.0
DAPAULZ)I=De0
DAEPULL)I=JLD
DxePuiNl)=0.0
DO 21D I=1,NIML
DAEPULT I =AUl F+1)=XxUL])
310 OXPWU(L+1)=DXEPULL)}
C--—-u-CELL DIMENSIONS
SEwUliI=0.0
DQ 320 1a2,N1
320 SEnULL) =X(1)~X(I~1)
C———-wtlGHTI¥G FACT2RS IN X-DIRECTION-
DU 333 I=3,NIML
AFwi{1}aSEWU(I-1}/(SEWULTI-1}+SEWU(L))
WFELII=3EWU(TI+11/(SENU(I «1)+SEWULTD)
330 CUNTINUE
WFE(2)=SEnUI3)/{SEWUL3)+2,0%SEWUI2))
WEAC3I=SEAUL2) 7 ISERUL2)+0.5%SENUL2))
WFE(NIMLISSERUINII/(SEAU(NT) +0.5%SEWUININLY)
ctt**l‘ttttttttt*t*t&#*i&‘ft*t**u“t*k*tt:&tk*ttttttttt.‘tttlttt*tta‘ttt&t&
CHr¥¥exCALLULATIUN CF LCCATION AND DISTANCES FCOR V-CELLS
Yvil)=v(3i)-SMALL
YVvi2)=Y(l)
YVINJIDYINJ)
DO 429 J=3,NJM]L
400 YV{JI=0.5%(Y{J)+¢VY{J=-1})
DYPSVILI=JaQ
DYPSV(2)=0e0
DYNPVIL)I=0.0
DYNPVINJII=DeD
DO 41D .J=i ,NJML
QYNPVIJimYVIIeL)-YV{I)

N

INIT.17
INIT.18
INIT.19
INIT.20
INIT.21
INIT.22
INIT.23
INIT. 24
INIT.25
INIT,26
IN[T.27
INIT.28
INLT.29
INIT.30
INIT.31
INIT.32
INIT.33
INIT.34
INIT.35
INIT.36
INIT. 27
INIT.38
INIT.39
EIN[T. %0
INIT.4L
[MIT.42
INET.43
INIT. 44
INIT.45
INIT.46
INIT.47
INIT.48
INIT.49
INIT.50
INIT.EL
INIT.52
INIT.53
INIT.54
INIT.55
INIT.SS
INIT.E7
INIT.58
INIT.59
INIT.60
INITe6)
INIT .62
INIT.63
INIT. 64
INIT.65
INIT.66
INIT.E7
INIT. 68
INIT.69
INIT. 70
INITLT)
INIT.T72
INITLT3
INIT,.74

PAGE
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INIT
69.

70.
71l.

73.
T4
75.
76,
7.
18,
79.

80,

‘8le
82a
83,
84e
854
86e
87
88,

89.
90.
9l.
92.
93,
94.
, 65
Sbe
97.
93.
99,
100.

101,
102.
103.
104.
105.
106.
107.

108.

109.
110.
111.
112.
113,
114.

0001558
0001578

3001578

0001628

0001658
0001708
0001718
0001738
0001758
0001758
0002008
0022028

0002058
0002108
ooo02128
0002153
0002173
00022138
0002233
0002248

0002268
0002318
0002318
0022378
0002378
0002428
3002428
0002458
0032518
0002528
3002548
0002568

0002628
0002648
0002458
2002658
0002668
€002678

0002728

0003118

0003318

0003353
0003378
0003548
0003568
0003568

#*SUBROUTINE INITe#e

410 DYPSV{Jel)=DYNPVLJS)

C--—-v-CELL DIMENSICNS
SNSVIL)=0.0
DU 42) J=2.NJ

420 SNSV{JI=YIJ)-YlJ=~1}

C——==—nEIGHTING FACTORS IN Y-DIRECTION
0G 43).J4=3,NJMl :
AFSEJI=SNSVEJ=1)ZISNSV(J=1)+SNSVLJ)}
WEN(JI=SNSVEJ+LI/(SNSVJ+11+SASVIID)

430 CUNTINUE . :

WFN{1)=0e0

WEN{2)=SN3VE3 )/ ISNSV(3)+2.0%SNSVI(21)

WESU3)=SNSV{2)/{SNSV(2) +0.5%SNSV(3})

NENINJIAL IR SNSVINJ I/ (SNSVINS) +0o 5*SNSYINIML) )
C#tt‘l‘tt#ﬂ‘t chknhkkokRbRARRbRKRERR ****#*##tt****t*#***#ttt**tt*t#ttt#tt*
CremeeE xTLA wEIGHTING FACTDRS FOR APPROXIMATING BOUNDARY VALUES.

STORE=(UXEPIL)+DXEP(2))%*2 .

BVaA=STURE/ (STORE-DXEP (1) *%2)

STIRE=(LDAPH(NI) +DXPA(NIME) Jx%2

BVE=STIRE/(STOPE-DXKPWINI )**2}

STIRES{SNS{2)+SNS{3) ) e*2

BYS*x3FURE/ (STORE~-SNS(2)x*2)

STIRE={SNSVI3I) +SNSVI2) 1 %*2

BrS=STIRE/(STORE-SNSVI2)*%2)
cxttatuc«stavcc-tttt*t*ttt*ctat*ttttm*mttmtttt#*:*yttta#*ttatttrttttttct
CoxxswEXTRA VARIABLES DEFINED FOR CYLINDRICAL COCRDINATES

D0 653 u=lsNJ )

R{Jyavid)

600 IFLINUCDS.EV.1) R{J)=1.0

RvildaR(1l}

RvE2=3(1)

RVINJI=R(NJI)

DO 610 J33sNJIML

610 RVIEJIaI5*(R(JI+RII-1))

RCVILI=RIL)

RCVIAJI=RING)

DO £2) J=2,NJM1

620 ICVIJI)=0.5x(RVIJEL)+RVII)) ) :

C———-THICKYESS JF THE TUBE AS A FUNCTION OF THE ANGLE X
SNSEINJU=-NI=L .
NJOHl=v40~1
NJP=NY
NJPL=aNJ+L
NJPUL=NJ-L
DU 665 I=LleNI
ET(1)3SJRAT(ROUTER*ROUTER~-ECCENSECCENSSIN{X(I} ) *.SINIX(T})}

1 ~RINNER~ECCEN®COS(X(1))
ETULI)*SURAT(ROUTERKROUTER-ECCENXECCEN®S IN(XULT) I *SIN(XI(I))])
L ‘=IINNER-ECCEN*COS{XULL}}

DETLI)=Ev (1) /FLOAT{JUNCI
DETULLY =ETU(L)/FLCAT(JNC)
WRITELD,670) I,ET(I) ETULI)DETITI),DEFULT)
665 CONTINUZ .
6TQ FORMATI/LOXs1391P4EL3.3)
RETURN
CRERR R RERR R KRR O R R KRR SRR AR MR AR AR R KRR KRR R RRR KRR ERR
C INITYALISATIDN -~ DEPENDENT VARIABLE FIELDS
CRRREkEEh ok s Ene XuRkkoRk kKRS KRR R AR R KR RAR AR RN KR Kk kg

INIT.75
INIT.76
INIT.T7
(517.78
INIT.T9
INIT.8)
INIT.81
INIT.B2
INIT.83
INIT.8%
INIT.85
INIT.86
INIT.87
INIT.88
INIT.89
INIT.9)
INLT.91
INIT.92
INIT.93
INIT. 94
INIT.95
INIT.95
INIT.S7
INIT.98
INET.99
INIT.100
INIT.10L

INIT.102.

INIT.1D3
INIT.104
INIT.105
INIT.106
INIT.107
INIT.1D8
INIT.129
INIT.L1O
INIT.111
INITLEL2
DIM3.76
DIM3.T77
01M42,.78
DIM3.79
DIM3.80
DIM3.81
DIM3,.82
0IM3,53
DIM3.84
DIM3,.65
DIv32.86
0DIM2,87
DIM2.88
DI43.89
DIM32,90
DIM3,91
TNIT.113
INIT.L16
INITLL1S
INIT.116

PAGE
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INIT

115.
116.
117.

1i8.
119.
120.
121.
1220
123.
124.
125.
126.
127,
128.
129.
" 130
131.
132.
133.
134.
135.
136,
137.
138,
139,
140.
141.
142,
143,
144,
145,
146.
147,
148,
149,
150,
151,
152.
152.
154,
1554
156,
157.
158,
159.
160.

1514 :

162.
163.
164,

165,
166.

0003608
0003668
0003678

0003718
0003738
0003768
00064018
0004048
9034078
0004108
0004118
0004118
0004138
0004148
0004158
0004158
0004168
0004168
0004178
0004178
0004208
0004208
0004218
0004218
0004228
0004228
0004238

- 0004233

0004248
0024253
0004268
0094308
0004373
0004458
0004508
0004538
0004558
0004553
0004568
0004568
0004573
0004578
0004603
0004698
0004618
0004618
0004653
0004663
0004708
0034708

0004738
0004758

®*SUBROUT INE INIT®»

ENTRY INITO
IF(IRJUNC.NELL) GO T3 720
IFLISTEP.GT.0) GO TO 720
C—---SET VARIASLES TO ISRO

EXCHAT=vI3COS*S PHEAT/PRANDT
00 700 x=1.2
DO 700 J=1447
DO 700 I=l,NI
Ul y3sK) =30
VIiIsJexi=D.D
WillydeK}=JeD
PE({I249K)30.0
UuUtl,ai=d.
U¥l{lsJd)=0a
JW(lrJi=de
vvilsdi=ge
VnilrJ)=Us .
Wni(loJd)=0o
ED(Isd)=0a .
TE(I,J)=0.
FF{leJd)=Dae .
Cllydex)=0.0.
JC{I,J1=0.0
Vitlsd)=3.0 N
WC(I¢J1%0.0
C2(IyJ)=0.0
ECi1¢J4)=0.0
vISuU(l,sdi=De
VEISVV(I+3) =00
DENI{IoJy<)=DENSIT
VIS(IeJyKI=vISCOS
GAMU 1 JyXK ) 2E XCHAT
IF(JeoTeNJ) GAMIT,JoK)mEXCHANW

T00 JUNTINUE
0O 710 J=1,NJ0
DO 710 I=1,N1
PPilydl =00
AE(L,J43=J.0
Anilyd)=u.0
AN({I,J)=20.0
AS{1,u0=20.0
AUtLl,J1=0.0
AP{l¢J)20.0
AGLL 40 =0.0
Sullydi=D.0
SPILyJi=de

710 CONTINUE

720 CUNTINJUE
DG 730 [=1,NI1
DCOLBIT =00

T30 CONTINUE

CHhAha ek 6 R B0 A SRR R AR AR IR SRR AR RS KRR ERR R Rk
CosmealaLl INITIALISING SECTION CF SOURCE SUBROUTINE
CALL SJRZEI(RSyNRSySUsSP»I1JT»11,12}

REVURN
C##‘t*‘!-t##"‘f"#tt‘*t*k*ﬁtﬁt**ttt‘*m*t*tﬁ‘***ﬂ**t‘t*i#t*ttitt‘#!‘*ﬁtt

C FORWARD STEP

INITLLIL1Y
INIT.118
INIT.119
INITL12D
INIT.121
INITL122
DIM3.92

INIT.124
INIT.125
INIT.126
INIT.127
INIT.228
INITW129

T INIT.130

INIT.132
INITe132
INIT.133

- INITL134

INIT.135
INIT.136
INIT.137
INIT.138
INIT.139
INITe140
INIT.141
INIT.142
IMIT.143
INIT.16%
INIT.145
INIT 146
INITL147
INIT.148
0IM2.93

INIT.149
DIM3.94

INIT.151
INIT.LE2
INIT.153
INIT.15%
INIT.155
INIT.156
INIT.157
INIT.158
INLT.159
INIT.160
INIT.161
INIT.162
INIT,163
INIT.164
INIT.265
INIT.166
INITL167
INIT.168
INIT.169
INITL170
INIT.1TL
INIT.1T2
INITL173

PAGE

4



INIT

167.

168..

169.

170.
171.
172.
173.
174,
175.
176,
177,
178.
179.
. 180a
181.
182,
163.
xa‘.
185.
186.
137,
188.
139,
190.
191.
152,
193.
194,
155,
196.
- 197
198.
199.
230.
201.
z02.
203,
. 204
205.
206.

207.
208.
209.
210.
211.
212.
213.
214,
215«
216,
2117.
218.
219.

0004778
0005058
0005068

0005078
000148
0005168
0005218
0005218
0005208
0005338
0005408
0005458
3005528
0095578
0035643
0035718
0005768
0006033
0006108
0006158
0006228
0006208
2006378
0006458
0005548
0006628
0006708
0006758
0007028
0007108
0007178
0007258
0007278
0007368
0007438
0co7508
2007558
0007638
0007723
0010008

0010008
0010018
0010038
0010068

- 0010068

001078
0010128
0010158
qulo21s
0010273
0010318
0910338
0010358

®eSUSIDUTINE INIT«

Cresesesntassinesd
ENTRY STEP
1FULISTEP.EQ.1} GO TO 900
L(li=Lt2) ’

C“‘ttc.‘u“l"lt.t‘il‘t.#tttt‘t‘ttt“l“t‘t.“*ttt‘t.‘."‘t.'l‘ﬁ‘.t*.“

CexmesS YMMETRY 3F HYDRCOYNAMIC FIELD

1FIIUEVeD.AND. IHT.EQ.2) GO TO 900

DO 803 I=i,NI

DU 800 J=l,NJ

[1=3 .

IF(IUEQe2) I1I=I]
Ullsdedd=Uutlled,2}
Uitled92)2U(115J02)
VIladel)3VIT4d,2)
V(lgds2)2VIIT3d92)
u(l,J.Z)-u(II.J.Z)
PE(Lsdpl)sPELITJs2)
PE(L,4e2)=PELTIL0s2)
PPIIu)®sPPLIT,d)

VWil i=vu{lled)
Unilsd)=Unill,J)
UVEL,30=uviiled)
FRIT,Ji=FFEL1,3) .

UULL 4 J) =AMAXLISMALLUULIT D)
VV(l'J)=AMAX1(SHALL1VV(IX|J).
MWl ) 2AMAXL{SMALL o WW{IXsJ))
EULLgJ)=AMAXLISMALLJEDIT T3}
FE(IsJI=AMAXL(SMALL,,TELITd))
DENU(Isdsl) =DENLEL Je2}
DEN(144,2)=DENCLT4J,42)
VIS(Isds1)=VISUIL,J,2)
VIS(I3U92)=VISCIT,d02)

VISUULZ . J) =AMAXLESMALL  VISUU(IT,J))
VISVVI 3 J) =AMAXL (SMALL, VISVV(II,Jd))

{F(INT.NELL) GG TO 800
CiIvos21=CiIlyde2)
VCIL ) =svitEiTed)
WCILed)=nuClI1rs)
UCIT,Ji=uCillvyg)
C2(1vdl=AMAXLISMALLC2(IX2J})
EC{I,J)=AMAXY(SMALL,EC(ILsd))
800 TUNTINUE
900 CONTINUE

CRRAEE R R R E kR R KR AR R R KRR R AR AR KRR R KRR R E AR R Rk

CeexewFDRWARD STEP SIZE
OZ=FRAMY(DT
L(2)=¢(1)+D2
IF(IHT.E2.0) RETURN
MAXC=0.0
MINC=GREAT
00 91) I=ICLl,IC2
D0 910 J=2,NJ
MAAC=AMAXL(C{T,J,2) yHAXCY

91D MINC=AMINLI(C{IsJds2)sMINC)

DL3FRaA®ILUSEYTOT
2= Lt1)+0L )
IFIL12)LTSULENTH] GO ~ ‘20
IFLLLL1)aGELQLENTHY GO . 320

"t#"l‘.“.‘.““..".‘..‘.“.‘t.t‘..‘.‘#..“l‘.t‘*"l

INIT.174
INIT.175
INIT.176
INIT.177
INIT.178
INIT4179
INIT.180
INIT.181
IN{T.182
INIT.183
INIT.184
INIT.185
INIT.186
IN[T.187
INIT.188
INIT.189
INIT.190
INIT.191
INIT.192
INIT.193
INIT.194
INIT.195
INIT.196
INITL197
INIT.198
INIT.199
IN1T.200
INIT, 201
INIT.202
INIT,203
INIT.20%
INIT.205
INIT.206
INIT.207
IN1T,.208
INIT.209
INIT.210
INIT. 211
INIT.212
INIT.213
INIT.214
INIT.215
INIT.216
INIT.217
INIT.218
INIT.219
INIT,220
INIT.221

INIT. 222

INIT,223
INIT.224
INIT.225
INIT.226
INITL227
INIT.228
INIT.229
INIT.230
INIT.231

PAGE
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INIT

220.
221.
222.
223,
224.
225.
2264
227
228.

0010378
0010408
0210428
0010438
0010478
0010518
0010558
0010638
0010¢58

920

930

®&SUBROUTINE INITee

Z{2)=CGLENTH

DL=L(2)-4(1)

CUNTINUE

IF(Z(1}.EQ.QLENTH) CALL OUTPUT
JO 930 I=1,.NI
IFLZILl}oGELULENTHY CT(I)=0,0
TFCLUL) 4 GELQLENTH) QUELI)=0.0
RETURN

END

INIT.232
INIT.233
INIT.23%
INIT.235
INIT.236
INIT.237
INIT,238
INIT.239
INIT.240

PAGE
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PROPS
1.

2.
3.
4o

5

S

Te

8e
Qe

10.
11.
12.
13.
1‘.
15.
164
17.

Q000008

0000008
0000008
0060008

0000008

0000008

0000008

0000008
0000008

00¢0008
0000028
0002048
0000078
0000118
0000138
0000208
0300248

s8SUBRIUTINE PROPS*»
SU3BROJTINE PROPS

C'..t‘t.l‘.l'tlltt“t“'tt“.t!t*ttt*t‘t.!ttt‘tttt##‘#‘l#t“.“““.tt“

C

COMMON BLOCKS

Cttt"tt“‘.‘l"F“tt*‘#!t"t‘!‘#"###“t‘t#‘ttt#it#“""“‘ttt#‘*t‘&'.

[
C

DIMENSLIIN SAVE(20229)
DIMENSION FRANS(512)
CUMMIN .
LA(LS).Y(BOI.Z(OZ).XU(IS).YV(BO).ZH(OZ).
1DXKEPLLS5),UXKPNI15),DYNP{20)sDYPSI30)sSEWIL5)ySNSI30),
leEPU(lS).JwaU(IS).SEHU(IS).DYNPV!BO).DYPSV(BD).SNSV(30),
LRU331,RVE3D1RCVI3I I g AFNL30) pHFS (30} 4 dFELLS) s HFW(LE)
lu(15,33.2),V(15p3)'2).ﬂ(15.33.2l,PE(15'30,2)oC115,30.2)'PP(15130)-
LJUi159304,UVIL15,30) yUdl15530),VVI15,30),VW(L15+30) 4WHW(L15,301},
IED(IS.BJI.TE(15.30).FF(15.301}UC(15-30).VC(IS'BDI.HC(lS'BOl.
102015430) 4EC{15+30),R5115+301),
10&%(15.30.2).VXS(15,33.2).GAM(15’30'Z).VISUU(IS'BO).VlSVV(lS.BODn
LA w(1530)sAE{1545301 sAN(15,30),A5(15,30),40015+30),AU(15+30),
LAPIL5,30),Su{15,30),5P(15,30),
LUTI15),CELL51,QUEIL5),0CDZIBI15)2QUILLS),
1J3ENSIT, vISCOS,PRANIT,SPHEAT ) EXCHAT,
1:NU.CR1.CR2-CRS,CRIHyCRZN:CEPSI'CEPSZ.CEPS.CAPPA.ELJG,
10C1,CC24CCICCLWsCC2WeCG2,C6y CAPPAC, ELIGC
LdUUs dUVsdddy JVY s JVA s Sy JEDy JTEy JFF s JUC » JVC ¢ IHC 1 JC2 4 JEC,
LN NIML g NEM2 NIy NIMLy NIM2yNK ¢ NKML, 1T 9 JT 4 KT, 14T,
LAEDUL &) s ACOVI4) sHEDW{4 ) yHEDP {41 4HEDCL4) yHEDR (4} yHEDD(4) ¢ HEDVIS{4) s
1lNCALJ.I%CALV,!NCALw'INCALP.INCALC.INPRC.INCALR(IQ!-INTURB.IND!FF,
LNSAPUGNS AP VyNSHP W NSWPP s NSHPC NS wPR ‘
1MO0DEL s MIVEC s MRW yMCW o IQUE s IDIFy TJET, ITESToITESU, ITESCy ICON,
l(RUN,IinHf,xulvIUZ'IClv1C2'IleZIINDCOS'FR‘1
1K sDZ s ISTEP 1 5TPLyNRS,INDELsDPULy
LFLIwIN, VIEAN g QLENTH , SMALL sGREATy XTOTyYTOT4RSWALL(L14),
1240PRU(L181 ¢ IPRO, IEND, INDPRIpNUMPRI)BVE, BVW: BVS)BWS
COM4IN '
IET(lsl.Eru(lSD.DEr(15).OETU(IS).DYHyNJP.NJEI,NJPMI.lHALLf
130UTERsRI ANERECCEN ES ¢ NUO,YTOTO s EXCHAW,HIOML
COM4Y2Y  JLOU{301,3LDVI30),0L041301,0L0P(30),
2L.0JUL301,0LDUVI30)10LOUWI3D),0LDVVI20),0LDVAN(30),
OLOWHW(30),0LDTEL30),CLOED(30)NLOFE(30),
JLODEN({39)»3LOVIS{30),0vISUUC30),0VISVV(30),
OLDUTA,0DPDL : :

LOGICAL INCALU» INCALV,INCALW,INCALP, INCALC,INPRO,
INCALR, INTJRB, INDIFF

EQUIVALENCE (X{1)oSAVE(L))

EQUIVALENCE (OLDULL),TRANSIL)}

'

P e et e P

e L L R T L e e L Sy 2 L I LA L Ly L

JENSITY,VISCOSITY AND THERMAL EXCHANGE CIEFFICIENT

cnttttt‘aﬁmltictto#ttttcv##kt#m!*tt*mtttttttttmtmttgttttﬁt*tt:*ttmtttttg

c

~PFIPERIIES ARE UNIFORM FGR THIS PRLCBLEM
EXCAAT=YISCUS/PRANDT*SPHEATY

U0 500 Isll,12 :

00 500 :J%2,4NJ

00 500 K=1,2

IFUINUEX.NELO) GO TO 200
JENC{I,JeK)=DENSIT

VI1S(I,4,K)=vISCCS

GAMULeJyK) =EXCHAT

PAGE

PROPS.2
COMALLW2
COMALL.3
CCMALL.4
DimM3.1
DIM3,2
CCMALLS6
DI¥3.3
DIM3.4
DIM3.5
DIM3.6
DIM2.7
DIMZ,.8
DIM3,9
DIM3,10
DIM3.11
DIM3,12
DI43,.13
DiM3.14
COMALLLL9
COMALL.20
COMALL,.21
COMALL .22
COMALL.23
COGMALL.24
COMALL.25
COMALLL26
CoMALL.27
COMALL.28
CCMALL.29
CCHALLL3D
COMALLL 31
DIM3.15
DIM3.16
DIM3,.17
DIM2,18
DIM3,.19
DIM2.20
DIM3.21
DIv3,22
CCMALL .32
COMALL33
COMALL.34
0IM3,23
PRIPS. 4
PRIPS 5
PEDPSLS
PROPS.7

'PROFS5.8

PRCPS.9
PROPS.1D
PROPS.11
PROPS.12
PROPS.13 -
PROPS.14
PROPS.1S
PROPSe16

1
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PROPS

15.
19.

20.
21,

22.
23,
24,
25,
26.

27.

28.
29.
30.
31.
32.
33,
34,
35,
36.
37.
3a.

0000308

0000328

0000348
0000268

0000478
0000558
0000618
0000658
0000728
0000778

0000773
0001008
0001058
0001178
0001238
0001338
Q001358
0001358
0001448
0001468
0001508

#*SUBRJUTINE PROPS«s

IFtKeEJ.2) GO TO 530
200 IF(.NITLINTURB) GO TO S00
C———~ExTRA TERMS REQUIRED IN CALCULATION PROCEDURE

IFUMIDELLEQ.31G0 TI 400 ,
IF{NITINCALRIJTE) ITELT 45 )=CUULT, JV+VVII, ) +WHlT,J) ) /240
c
c‘t’.“‘.l“t.‘...‘tt‘*““‘#‘1‘##*.*l#‘ﬁ**‘tt"*’.“‘t*tttt"‘*‘i*‘**‘ﬁﬁ‘
c DIFFUSTVE TRANSPORT COEFFICIENTS FOR REYVOLDS STRESSES.

Ctt#‘tt‘tttlclttccttttttttztttt*tt*#tt#*ttﬁttt*tmtttttnttmatttm¢¢¢4¢¢ut‘:

TOE=TELI+JIZED(TyJ)*DEN{T4Js 2)

VISUULL ,J)=TDE*UU(L,+ )

VISVV(I43)=2TDE*VVII, J)

VESUULTyJ)=AMAXL(VISUU(TsJ)y VISCOS)

VISYVII J)=AMAXLUIVISVVLI »J) s VISCUS)

GG TI 309 :
CHERERE AR TR R E AR kAR ARER ML KRR KRR AR R AR R R RS R KRRk kRN R
C TW0 EQUATION MODEL VISCOSEITIES.

CHEREA R R R kR e R kb rg Ak hok R kdk R Rk Rk Sk kR kdokk kR kR ek ek kk kb k& k
400 CUNTINUE
IFLEDLLI)JI) aEQ.04.)G] TI 410
VISUUGT yJ) 2DENLT g e KIRTELT yJ)**2%CMU/ED(T,J)
410 vISJUlL, ) avISCOS )
506 COUNTINJE
DG 510 I=],N1
VISVV{1,2)=VISVV(I,3)%BVS+VISVV(1,4)%{1.0-BVS)
510 CONTINJUE

IF(IUJEJe0) INPRD=,FALSE.

RETURN

END.

PROPS.17
PROPS.18
PROPS. 19
PROPS. 20
PROPS.21
PROPS. 22
PRJIPS.23
PRNPS. 24
PROPS.2S
PROPS.26
PRIPS.27
PROPS.28
PROPS.29
PROPS.30
PROPS. 31

PROPS, 22 -

PRIPS.33
PRNPS.34
PRCPS. 35
PROPS .36
PROPS. 37
PRCOPS.38
PROPS.39
PROIPS.40
PROPS.41
PROPS. 42
PROPS.43
PROPS. 4%
PROPS. 45

PAGE
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CALCH
l.

2e
3e
4o

Se

29

Te

a.
9.
10.

11.
12.
13.

14.
15.
16.

0000008

0000008
0000008
0000008

0000008

0000008

0000008

0000008
0000008
0000008

0000008
0000048
9000048

0000058
0000058
0000108

«aSUBROUTINE CALCH(PHI.D!F.FU.FV;SPH'IHAX.JMAX;IVQR'ISC"‘

SUBROUTINE CALCN(PHI.DXF;FUvFVcSFHpIMAX.JHAX.IVAR'ISCv
1 : IM1 . IM2 NSWPHE)

C.‘#‘#.““‘t“C“t‘tt‘!".(ft#t*'t“t‘tl""t-".#‘tt"“t“*#‘tt‘t““

COMMON BLOCKS

C“"‘t‘t“ltt‘tO".ttt“c‘t“##*‘#t‘t..tt‘kt“!%tt“t‘#*t#.#‘*#"#*"‘*

DIMENSIJN SAVE(202291

JIMINSIIN TRANSI512)

CU%MIY .
1XI15),v(30),2(023XULL15),¥YV(30),IW(02)) .

10AEPL15) s OXPW(L15)»2YNP{30) 40YPSI30) ,SEw(15)4SNS(30),
lekPU(lS),DKPHU(IS)(SENU(ISI,DYNPV(BO),DYPSV(BOI.5NSV(30)9
13130} ¢RVI301 yRCV(30) 9 AFH(30) s WFS(30) 4y WFELL5),WFW{15),

10‘15030»23yV(15’30v2,1H(l5-30v2)|PE(15|30v2)15(1513002)v99(15'33l1'

1JU(15:3J):UV‘15130"UH(15’30)'VV(15135)de(15133‘vHH(15'30)|
lEU(1513J)'rE(15130)'FF‘15130)9UC(15130,IVC(15130)1HC‘15'30"
1C2{159330¢EL(152301,35(15,30),
l)EN(15'3JoZ)'VIS(1513392)'GAH‘15,3012)1VISUU(15'3D)VV15VV‘15.30)'
lAn(lS:BUJ.AE(lS.BO),A1(15.30).AS(15.30).AD(15.30).AU(15.301.
1AP{15,33),5U(15,30),5P(15,39),
1JTE150,CTE150,QUELLS),DCDLBLL5),QUC(L5]),
LOENSIT,vISCDS,PRANDT, SPHEATEXCHAT,
1CMU'CR1'CRZ|CR5'CRIH'CRZHyCEPSlvCEPSZ'CEPS:CAPPA'ELQGO
10CLsCo2,CC scCLWsCL2WICG29CGyCAPPAC,ELDOGC
1JUU|JUV'JJH|JVV'JVH'JNH,JED,JTE'JFF’JUC'JVC1Jﬂ:'JCZ'JECQ-
1311”1“1031HZ!HJINJHl'”JHZ'NKQNKMII(T'JT,KT'IJT,
ldEUU‘lehEDV(4,'HEDH(4)vHEDP(“)QHEDC(Q}'HEDR(4)'HEDD(4,1HE0VIS(§,'
llN:lLUtIN;ALVIINCALRvINCALP)INC&LC'INPRD'[NCALR(IQ)II“TURB'INDIFF'
INSHPUy NSwP Yy NSHP HNSHPP S NSHPC o NSWPR
lHUUEL.HDOéC'MRH,MCN,’QUE'IDIF'IJET,ITEST:ITESU;ITESCIICON'
llRUi'lU'ldTplUl'lUZolClllCZlllv[ZleDCDS,FRA'
1€ ¢DZyISTEP,ISTPL,NRS)INDEX,0P0L,
lFLD‘[N'VHEAN'QLENTH'SMALL,GR%‘T'XTDTIYTBr’RSHALL‘14"
1&0?13(18)p(PROrIEND'INDPRI1NUMPRI,BVE,BVH.BVS'BHS
CLMMON :
lETll5)'ETUlls)IDET‘IS),DETU(IS)gDYH.NJP,NJPIyNJPHl,IHALL'
lRUJYER.&l‘VER,ECCEV(ES)NJD,YTOTOpEXCHAN'NJUHX
COMMON OLDuU(30),0LDVI30),0L041301,CLOP(30),
DLDUUI30} »DLOUV(30),0LDUWI30) OLDVVIZOL,CLOVHI30),
J.0nw(30),ILOTE(30),0LOED(30),0LOFFE30),
DLDDEMI303,0LDVISI{30),0VISUUI3D),0VISVV(30]),
SLOUTA,00PDL .
LOGICAL INCALUyINCALVy INCALW, INCALP) INCALC+INPRO,
INCALRyINTURB ,, INOIFF )
EQUIVALENCE (X{1}sSAVE(1]))
EQUIVALENCE (CLOU(1),TRANS(1))
DIHENSIJN-PH[([MAX'JHGK)Z)’D[F(IHAXpJHAX1Z)'FU(INAX'JMAX’.
3 Fv (IMAX,JMAX)

[ ot e et

T e e L e L I T Ll Lt Ll

ASSEMBLY OF COEFFICIENTS

C#t#ttct#‘ttvt#ttttt#t*tt*!*&***##*##*#*#*#t#t***tm;.t**‘**y*ttt¢*."..‘

IFLISTEP«LT.5}) URF=0,05
[I=2.
CUNTINUE

K=l
DO 100 I=lML,IM2
DO 10) Jm2yNJM]

PAGE 1
CALCM.2

. CALCM.3

COMALL 2
CCMALLL3
COMALL .4
DIM3.1
DIM32,2
COMALL.S
DIM3.3
DIM3.4
DIM2.5
DIM3.6
DIM2.7
DIM3,.8
DIM3.9
DIM3.1)
pIM3.1l
DIM3.12
0IM3.12
DiM3.14
COMALL.19
CrMALLL20
ccHalL .21
COMALLL22
COMALLL23
COMALL .24
CCMALL.25
COMALL .26
COMALL .27
COMALL.28
COMALL W29
CUMALLL30
CCMALLL3L
DIM2,15
piM3.16
DIM3.17
0fM2.18
DIM2,19
0IM3,2)
DIM3,21
DIM2.22
CCMALLL32
CCMALL.33
COMALL.3S
DIM3,23
CALCM.5
CALCM. 8
CALCM. T
CALCM.8
CALCM.9
CALCM,10
CALCM.11
CALCM.12
CALCM,.13
CALCM, 14
CaLCM.1S
CALCM.16
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CALCM

17.
13.
19.
20.

2l
22,
23.

z‘.
254
26.
27.
23.
29.

30‘

31.
32
33.

34.
35.
36.
at.
38.
39.
#0.
51.
42,

43,
'Y

45.

46,
47,
43.
49.
50.
le
S2.

53.

5‘.
55a
Sée
57.
58.
59.
60.
61.

0000138
goools8
0000178
0000218

0000228
Q000218
0000428

0000528
0000618
0000748
00oglols
00C1048
0301078

‘0001338

0001548
0001558
0001578

0001658
0001718
0001748
0002058
0002118
oto2228
0002268
0002348
0002378

0002448
0002478

0002528
9202548
00c2558
0002568
00026C8
0002618
0002638
0002668

0002668

0003058
0003068
0003108
0003218
0003238
0C032438
0003258
0003268

€%SUBAOUTINE CALCM{PHI yOIF3FU,FV,SPHyIMAXy JMAX, IVAR, ISCo %%

C—-==-COMPUTE AREAS AND VOLUME
AREAN=SEw( ) *DI*®RV{J+]1)
AREAEw=D2*SNS(J)
AREAU=SZ AL 1) ®*RCVII) *SNS(J)
VOL=RCVIJI*DZ*SNS{JI ) *SEWIT)
C——~CALCULATE CCNVECTION COSFFICIENTS
CU2DENLT pJpKIEWI Ly JeK)*AREAURSPH
CN=)o5%(OEY L LpJ sy K)+DEN(T 4 J#1,K) )%V, J+1,KI*®AREAN®SPH
. CExDeS5*LVEN{IsJ K)rDE!(I+1nyKil*U(I+1,J'K)tAREAEH#SPH
C-—===LALCJLATE DIFFUSION COEFFICIENTS
DIFE=0.5¢1DIF(TyJeK)+DIF(1+1yJeK))
DIFN=045%{DIF(IsJyKI+DIF LY J+14K))
IFIMIOELLEQe3.0R.NOTLINDIFF) GO YO 120
FwNeFvil g+l
FUS=FUll+rr3)
VIFNSOIFN~FVYN/ (PHI(I,J¢1, K) PHI{XyJdyK}~- SMALL)*D‘N(I,J' }RSPH*
1 SNSVLJeL)
DIFE=DIFE-FUE/(PHI(I+Y, J.KI—PHI(IyJ.K) ~SMALL)*DENIT,JsX)*SPH%
1 RCVIJI*SEWULI+1)
120 CONTINUE
DIN=OIFN.AREAN/OYNP (J)
DIEsDLFERAREAEW/ (DXEPLIT)*RCV ()]
C~——~~ASSEM3LE MAIN COEFFICIENTS
AUlL,4)=2J
ACLI,40%0.0
AN(T,JI=AMAXY{ABS{Da5*CN),DIN)-0a5¢%CN
AS(IsJ)=ANTLyJd~1)
AE(f9Jd)*AMAXLLABS{D45*%CE)4DIE}~De5¢CE
Anl(l,J)=AE(L=~1¢J)
SULT»J3DPDL*FLOATLISC) *VCL
SP(le32%00
100 CUNTINUE
[ 2L T mttt«kuttt‘*#t#*tkttt*ﬁ*tt#lti*ttﬁtttk*t#*ttt*t#*t#t*ltt#tt#*t*tt‘l
CexxeePRISLEM MODIFICATIONS
FF{ISC.EGad) CALL MODC(PS,NRS,IT,JT,IC1l,IC2)
IFLI52eEUeld CALL MODW{RS,NRS,IT,JT,1UL,IU2)
Coeseer [NAL CUEFFICIENT ASSEMBLY
IF{15C.EQel} GO TO 210
IF{INALLLEQeO) GO TO 210
NJML=NJUML
NJU=NJI
210 CONTINUE
06 300 I=fML,IM2
VU 300 J=2yNJML
AP{L,d)=ADII 2} +AUCT,J)+AN(I+S)+AS(T, )
1¢AEL e JI+AALTL,3)-SPLLvJ)
300 CONFINJE
CEenrkEke CeRNEkh KK ttt'*ttt##tt**tt**i***tt*ttttt#‘ttltt&tttttttttttttt «k
C SOLUTIDON JF DIFFERENCE EQUATION
C‘ttttt‘lt‘ttt‘lt o o o R ok o o e ke ot e ok e R R ko R R R ORI ok Rk ok ok Rk P kR
K=2
DO 400 N=1 4NSWPHI
400 CALL LISOLVIZ2,2PHINy2s IVARyIML,IM2)
FFUISZaETel) GO TJ 450
If(IwalLLeEQs0) GO TO 430
NJ=NJP
NJHl=NgPML
450 CONTINUE

CALCM,17
CALCM.18
CALCM,19
CALCM,20
caLCML21
CALCML22
CALCM.23
CALCM.2%
CALCM. 25
CALCY.26
CALCM.27
CALCM,28
CALCM.29
CALCM, 30
CALCM, 3L
CALCM.32
CALCM.33
CALCM 3%
CALCM,. 35
CALCM,36
CALCM.37
CALCM,.38
CALCM,.39
CALCM, 40
CALCM,. 41
CALCM.42
CALCM,. 43
CALCH.44
CALCM. 45
CALCM,. %6
CALCM,47
CALCM,. 48
CALCM. 49
CALCM.5)
CALCM,S1
CALCM,.52
CALLM,.S3
DIM3.65

DIMZ.96

DIM3.97

' DIM2,.58

DIM3.99
CALCM. 54
CALCM.55
CALCM. 56
CALCM,.57
CALCM.58
CALCM,. 59
CALCM.5D
CALCH.61
CALCM. 62
CALCM.63
CALCM. 64
OIM2.100
DIM2.101
0iM3.102
DIM2,1023
DIM3.104

PAGE
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CALCH

624
b,.
64,
55
66e
67,
68,

59
100
7%.
12‘
73.
T4.
15.
76‘
17.
73
79.
80.
8l.
82.
a3.
B"
35,
86.
87.
88.
. 89
9Q.

91.
92.
93.
Y4

S5,
96

97.
98,
99.

100.

101,

122.

103,

104.

Q003308
0003318
3003328
0003358
0003358
0003468

0002468

0003478
0003478
2003508
¢003518
Q003548
0003578
00c3sln
0003708
0003728
0004008
3004058
0904278
0004128
0004158
00Cc4173
0004218
0004248
0004278
0004328
0004358
Q004378

© 00G444B

0004568
0004578
Qo04618
0004648

0004648
0005148

0005158
ocos5178
0005368
0005378
0005428
0005528
0235748
0005768

##SUBRIJTINE. CALCMEPHS yDIF ,FU,FVySPHyIMAXe JMAX I VAR ¢ ISC o &€

IFLISC.EWa1) GO TO 910

NJPM2eNJYu]

DU 905 1=1sNI

uCJLUllI-(Cll.NJ?iz.Zl-C(I'NJPﬂzol))/lleSHALL)
905 CUNTINUE

S0 T3 1250

910 LONTINUZ '
cvt#tt«a-;;utoucta:tvat«tttutttttt*ttcxttt@tttttttvattt;ttc«tttttttttttt

Cesses  ALZULATION OF PRESSURE GRADIENT
GINLET=FLIWIN
GSTAR=DG
OdUM=d.
00 1133 I=IMl,IM2
DU liou J=2,NJML
AREAD=SEwl T)%SNS{J) *RCVIJ)
DSUMLaAREADEAREADRD ZADEN{L,J,2)/AP1d)
DSUM=2ISUM+DSUML
SSTARL=AREAD*A{ 1,4, KI*DEN(I,492)
1100 SSTARaLSTAR+GSTARL
OPOLL=(GINLET-GSTAR}I/DSUM
JPLL=OPOL+OPOLL*URF
IF(OPD2eLZe0) STOP
UPCENT=ABS {DPDZ1/{DPDZ+SMALLY)
Ilall¢]
IF(DPCENTLGT.0.01} GO TO 1400
URF=AMAXL {URF,1.0/FLOAT(II )
PO 1200 I=iMl,IM2
D0 1233 J=2,NJML
AREADSSEWL LI ®SNS(J)*RCVIN
wCD3R=DPDLLI*AREADADL/ZAP(I 3}
1200 nil, J,R“N(lDJgK'*I‘CDQR '
C*tt««t-c&tlctﬁtvtttt#uﬁtt#tt**t**tttt#ttt*ttttt#tt‘ttt‘ttttttt%tt#ttttt

CrexexESTIYATION JF V-VELICITY

C-—=—=THIS SI4PLIFICATION IS AFPLICABLE IN AXISYMMETRIC INTERNAL
Cc FLUAS INLY
NJM2=NI-2

00 410 L=[lMl,IM2
D3 410 J=2,NJM2
Vilygd*lyx) =110/ IDZARVII+LI*SEWIT) ) )%
1 (eWilpdpl PERCVIIIRSENIII®SNS L)
1 Wi pJe2 YRRCY IS I RSEN( I I*SNS(J)
1 *V{1s Iy KIFDI*RVIJI*SEWLIL})
410 CONTINUE . .

1250 CONTINuUE
ct*t#ti“t#ttttmt&ttt*tttttttt#ttc*t*#*tltt&******##tttltt*ttt*tt#tt**tt

Cexsss3EF BOUNDARY CONDITIDNS FOR USE IN GRADIENT CALCULATIONS.
c {ASSUME PARABODLIC PRIDFILES NEAR SYHMETRY AXES)
00 401 I={1,12
401 PHl(l,l.K)aﬂwS*PHX(I:Z-Kl#(l O0-3nS)*PHI (934K}
NINZ=NIML-Y
00 %02 4=1,NJ40
PHI11.J.n1=eVacPHX(Z.J.Kl&(l.o—svultPHllB.J.Kl
402 PHI(NL yJoKI=BVEXPHI(NIMY 3J 9Kt (L 0-8VEI*PHLI(NIM2yd,4K])
RETURN
END T

PAGE

CALCM. 65
CALCML 66
CALCMLGT
CALCH. 068
CALCM. 69
CALCM. 70

© CALCM.T!

CALLM.T2
CALCHM.TI
CALCM.T4
CALCM.TS
CALLM.TS
CALCM.TT
CALCM.T8
CALCM.T9
CALCH. 80
CALGM. B
CALCM,.82
CALCM.83
CALECM .84
CALCM.d5
CALLCM, 86
CALCM.BY
CALCv. 88
CALCM.89
CALCM. 90
CALCM.9Y
CALCM,. 92
CALCML93
CALCM.94
CALLM.9S
CALCM.96
CALCM.97
CALCM. 98
CaLCM,. 99
CALCM.100
CALCML10Y
CALCM.122
CALCM,.103
CALCM.104
CALCM.105
CALLM, 106
CALCM.1D7
CALCM.108
CALCM.109
CALCM. 110
CALCM, 11
CALCM, 112
CALCM.113
CALC4. 114
0iM3.105
CALCM. 116
CALCM.117
CALCM. 118
CALCM.119
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CALCH

62.
63a
54,
65.
664
67a
68,

69.
70.
1.
2.
73,
74,
75
76
7.
78.
79.
80.
81.
82.
83.
84,
85.
86,
87.
B8
89,
90.

91.
92.
93.
94.

95.
96.

97.
98.
99.
100.
101.
132«
103,
104.

0003208
0003318
3003328
0003358
0003358
0003468
0002468

0003478

0003478
0003508
0003518
0003548
0003578
oU03618
0003708
0203728
0004008
J0040E8
9304078
0004128
0004158
0004178
0004218
0004248
000~278
0004328
0004358
0004378
0004448

0004568
0004578
0004618
0004648

0004648
0005148

0005158
0c05178
0005368
0005378
0005428
0005528
0005748
0005768

€ xSUBRIJTINE CALCMIPHI yOIF,FU,FVySPHeIMAXs JMAXyIVARHISCp%&

IF{ISC.EQ.1} GO TO 910
NJPH2=NJUL
DU 905 1=1.NI
DCOLBITII={CI T NIPHU2,2)-C(INJPM2,1))/IDZ+SMALL)
905 CLNTINUE
S0 T 1250
910 CONTINUZ
CREERE kK bRkt kE tttttﬁtttt*tttttﬁt*t#t***##t##tt&tt*&tntttttt‘ttt&tt#tlt
Ceseek ALZULATION OF PRESSURE GRADIENT
GINLET=FLIWIN
GSTAR®=D.0 .
OSUM=Q,.0
DO 1133 I=IMl,IM2
DU 1100 J=22,NJM)
AREAD=SEWL 1) =SNS(J)*RCVIJ)
DSUML=ALLADEAREADXD 2*%DENII,U92)/AP(1,4J)
DSU%=ISUMeDSUNML
. SSTARL=AREAD*W (I, Jy KI*DEN(IeJr2)
110G- 5STAR=STAR+GSTARL
OPULL=(GINLET-GSTAR) /DSUM
DPLL=DPUL+DFDLL*URF
LEF{DPDL4LESD) STOP :
QPCENT=ABS(OPDZ1/{DPOZ+SMALL)}
11all+]
IF(OPLENTLGT 0,01} GO TD 1400
URF=AMAXLLURF,1.0/FLOATIIND)
D0 1200 1=IM1,1M2
00 123) J=2,NJM1
AREADZSEWL L) *SNSLJ)=RCVID)
NCIRA=OPDLLICAREADXDZ/APLI N}
1200 willeJdeni=w{lsJoyK}+AdCORR
Crunearnebé bbbt bne ‘tttttttttt**t*tt&t*tttttﬁtt#*tt*t#‘tt*tttlﬁtt‘tltttﬁt

CredawESTIMATION J3F V-VELICITY

C—===~THIS SIAPLIFICATION IS AFPLICABLE IN AXISYMMETRIC INTERNAL
c FLUWS JNLY
NJM2=NJ=-2

DO 410 I=[Ml,INM2
DO 410 s=2,NIM2
V Lo Ll oK) =U L0/ (DZ*RVJ+LIESEW(TI)) )%
1 (eW{Eodr L I*RCVIJI®SEW(TII®SNS(S)
1 ~H{T1sJe2 )*RCVIJI*SEN(I)I®SNSLI)
1 tVIIadeKI*DZ%*RV(JI*SEWLLD)
410 CONTINUE

1250 CONTINUE
CRASECTRE puunmnhmhRAdh ARk sk hh bRl Rk Kk K Eor kbR k R Rk kR &

Cesxe«SET BOUNDARY CONDITIONS FOR USE IN GRADIENT CALCULATIONS.
C [{ASSUME PARABOLIC PROFILES NEAR SYMMETRY AXES) .
DO 401 I=Il1,12
401 PHITI 14K)=BWS*PHILI, ZvKlf(l 0-BWS)IEPHI(I,3+K)
NIM2=NIML-1
08 %02 J=Ll,NJO
PHI(LpJeX ) 33 VhePHI(2¢JyK)+(1.0~ BVH)QPHI(3'J.K)
402 PHI(NI»JyK)=BVEXPHI(NINL J K} +{1,0-8BVEI&PHIINIMZyJ4K)
RETURN
END

CALCM. 65
CALCM.66
CALCM.67
CALCM.68
CALCM.69
CAtCH.70
CALCM,T1
CALCM. 72
CALCM. 73
CALCM. 74
CALCM.TS
CALCM.T6
CALCM.77
CALCM. T8
CALCM. 79
CALCM. B0
CALCM,.81
CALCHM.B82
CALCM.33
CALCM. B4
CALCM.35
CALCM,. 86
CALCM.BT
CALCM, 88
CALCM.89
CALCM,. 9D
CALCM. 91
CALCM. 92
CALCML93
CALCM.9%
CALCM,95
CALCM. 96
CALCM.9T
CALCHM.98
CALCM.99
CALCML1D00
CALCH. 101
CALCM.132
CALCH.103
CALCM.L104
CALCM.105
CALCM.106
CALCM.1DT
CALCM.108
CALCM.109
CALCM. 110
CALCM,111
CALCM,112
CALCM, 113
CALCH,114
DIM3.105
CALCM.116
CALCM. 217
CALCM.118
CALCM, 119
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CALCRS
1.

2o

L

Se

Sa

7.

8.
9.
10.

11.
12.
13.
14.
15,
16
17.
18.
19,

0000008

0000008
0006008
0000008

0000008

0000008

0000008

ao00008
0000008
0000C08

0000008
00cocos
0000078
0000073
0000108
09500128
0003168
00002083
3000218

«#SUBRIUTINE CALCRS(PHI,IRS,COsIMAX,JMAXKyIVARyIML,IM2)E"
SUBRJUTINE CALCRS(PHI, [RS,CO, IMAX,JYAX, IVAR, IM1,IM2)

C‘O‘t“ttl""‘lt‘t*‘#*““*tttlttt'*‘ltt“t“t##“‘t“tttttt“'t.*ﬁ‘l'I

. CCMMON BLOCKS

c“““““““'““#t‘&!l*tttt#ttt‘*tttt#tt‘ittt““ttt“.t**tttttt‘t‘#

DIMENSIIN SAVE(20229)
DEMENSION TRANS(512)
. CUMMON )
1A1LS5)s¥030),20(02)4XULLS)YV(30),2ZW{02),
1UXEP(L5),OXPW(15),DYNP{30i,0YPS(30)SEW(15)sSNS(30),
LOXEPULL5) sOXPWULLS5) 4 SENULLS) ,OYNPV(23),DYPSVI30),S45VI(30),
13433),3Vi30) yRCVI20) 9 NFN{30) ¢ AFS(30) rWFE(LS) o WFWELS5 ),
1J(15'3512)1V‘15133,2)'H(15130|Z"PE(15'30'2)9C(15p3°'2)Qpp(15'30)’
lUU(l5v30)1UVll5n3O)vUN(15'30|'VV(l513DI,VH(151331-HN(15130)1
1ELLL5,30) 9 TELL5930)+FF(15,300,UC(15,30) oVC{15,20) s HC(15+30)
152159300 9ECE15930)4RS{125,301), ’
IUEN(15’30.2’gV[5(15’30.2)yGAM(15,30i2)1V!SUU(15:30)yVISVV(15'3°lf
147{15+30J¢2E(15+3D1,AN{15,30),A5(15:301+AD(15+301¢AU(15+30}),
1AP(15,30) 9 SUCLS5430) 4SPUL15+302,
1UT(L53,CTL15),QUEIL15),0CD2B(15),QUD(L15),
1DENSIT ¢ vISCOSyPRANDT y SPHEAT, EXCHAT,
ICHJ'CRl.CRZ.CRS:CRLNpCRZN:CEPSl,CEPSZ,CEPS,CAPPA.ELOG.
L0CLsCC2455sCCIWsCC2WsCG22:CGyCAPPAC,ELIGC,
1UUU s JUVy JUHp JVV 9. JV i JHHy JED) JTEy JFF yJUC»JVCy JWC JC2 ¢ JEC,
1111Y[ilyﬂl”ZvNJ'NJMl'HJﬂthKvNKMI'lerr’KTu[Jrv
THEDUL4) ¢ AEDV (%) yHEDW(4) y HEDP (4 ) s HEDC(4) ¢ HEDI {4 ) yHEDD{ 4) yHEDVIS(4)
lINCALJoINCALV,IHCALH'XNCALP.lHCALC.XNPRO.IVCALR(l@),INTURB.INDIFF'
1N§nPUp“SnPV,NSHPH.NSNPP,NSNPC:NSNPR' )
AMGUEL 9 MIO0ECy MR ¢MCW g LQUE 9 10IF y TJET, ITEST,ITESU,ITESC, ICCN,
1IRUNg TUIdF, TUL,TU2,1CY,IC2,11,12,INDCOS,FRA,
lKoDlvlSTEPolSYPI.NRSo]NDEX,DPDZt
IFLJle.VHEAN1QLEN71vSHALL,GREAT,XTOT.YTOT;RSNALL(19)’
120PR0U(LB1 s IPRO IENDy INDPRI g NUMPRIBVEsBVWeBVS,BWS
CUMMIN C
LET(L5) ,EFU(L5),0EM{15),DETULLS5},0YHNIPsNIPL,NIPMLeIWALL,y
LAGJTER G RINNERYECCEN ES4NJIO» YTOTOy EXCHAW,MJUOM]L
CUMMIN  OLOU(30),0LDVI20),CLDA(30),0L0P(30),
DLOJU(3931,3LDUV(30),0L0UWL30),0L0VVI30),3LDVAL30),
DLOWW(30)4JLDTE(30),0LDED(30),CLOFFI30),
DLDDENI3D),0LDOVESI30),0VISUUL3D),0VISVV(30),
LLOUTA,0DPDL
LOGICAL INCALU»INCALY,INCALW,INCALP,INCALC,INPRO,
INCALR, INVURS, INDIFF
EQUIVALENCE (X{1),SAVE(1))
EWJIVALENCE (OLBUIL ) TRANS(1))
DIMENSIUN PAL{IMAXy JMAX)

e g

T T T R L L P LYy Ty

ASSEMBLY OF COEFFICIENTS

C
Ty e Y Y Y Ty Yy Y

MRS=IRS
CALlL SGRCUE(PHIZIRS,SUsSP,IJT,IM1,[M2)

T K=l

1S1=IML

JS1=3

IF(IRSeZQaJUC) IS1s3
IF{IRS.EUaJUC) JSL1=2
DG 100 I=1Ml,IM2

Ul 1232 J=JS1,NJMl

PAGE

CALCRSW2
CONMALLG2
COMALL.3
COMELL. &
DIM3.1
DIM3.2
COMALL.G
0IM3.3
DIM3.4
DIM3.5
0Iu3.6
DIM3.T
DIM3.8
DIM3.9
DIM3.10
UIM3.11
DIM3.12
DIM2.13
DIM3.14
COMALL.L19
COMALL .20
cnMatt,.2l
COMALL.22
COMALL.23
CCMALLL 24
CoMALL .25
COMALLL26
COMALL.27
COMALLL28
COMALL.29

CCoMALL W30

CCMALLL3L
DIM3.15
DIM3IL16

DIu3.17

DIM3.18
DIM3.19
0IM3.20
DIM3.21
DIM3.22
CrMALL .32
COMALL,.33
COUMALLL3%
OIMZ.23
CALCRS. 4
CALCRS4S
CALCRS.S
CALCRS.7

.CALCRS .8

CALCRS.9
CALCRS.10
CALCRS.11
CALCRS.12
CALCRS.13
CALCFRS.14
CALCRS.15
CALCRS.1 -
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CALCRS

290.

21.
22.
23.
24,

25+
26e.
27.

28.
29.
30.
31.
32.
33.
34,
35.
3s.
37.
38,

39.
40.
4l.
426
3.
‘#.
45,
Ab.
‘4T
48,
49,

50.
S1e
52.
53.
54

55.
S56e
57.
58.
59.
60.
61,

62.

0000248

0000268
0000328
0000338
0000358

0000378
0000508
0000628

pooloo8
0001068
0001178
0001328
0001348
0001¢28
0001428
00014328
Jo01538
0001548
0001638

oool778
0002028

0002048
0002078
Q002128
3002228
0002278
0002408
0002448
0002508
0002548

0002618
0002718
00027238
0002758
0002753

0003108
0003228
0003278
00C3318
0003328
0003348
00063378

0003378

[

C—w-

«*SYUSIIYTINE CALCRSIPHI ,IRS,CO,IMAX JMAXyIVARPINL IM2) *#*

IF(IAS.EQeUC) GO TO 110
-COMPUTE AREAS ANO VOLUME

AREAN=SEn( 1 )*DZ*R(J)

AKEAEW=UL®SNSY U}

AREAUSSEW({ 1) *RVIJIRSNSVI)

VUL=RV{J)«DLESNSVIJIXSEW(T)
-CALCULATE CONVECTIJN CDEFFICIENTS

CU=)e3%(DENC s d o KIEW(Tp JgK ) +DENC Erd=1sKI%W (T d~ vi)l’AREAU
SNIEN{ Lo JoKIRUVITy S+l o KI* UL oO-nFNEJY ) +V T JeK)*WFN(J} ) *AREAN
CET0.5%(Je5€ (DENLTy JoKI+OENT{T¢LpJyK) yeU{T+1,J4K) ¢
1 DeS*(DENIIyJ=~1yK)¢DEN(I¢1sd=1,K)I*ULTI+1sJ-19K})XAREAEN

C-——-CALCULATE OIFFUSION COEFFICIENTS

110

120
Cmmmem

100

Crene

150
200
Ceexw

300

GAME=J. 5% {VISUULT,J) ¢VISUULT +1,J1)%CT

GAYN={VISVVE Lo J ¥ WFN{J)+VISVVI T, Jdeldk{1a~HFN(J)) I *CD
IF(JeEJeNIUE Y GAMN=VISVV(I ¢J)ACO®(YINJI)-Y{NJML)) /SNSINIML)
DIN=GAMN®AREAN/DYNPVLJ)

DIE= bAM&*AREAEH/leEP(l)‘RV(J))

60 TOo 140

CUNTINUE

CU=DEN Lo J oK I*H Ty K)*SEhU(I)*RCV(J)*SNS(J)
CN=CE=D.0
DINEVISYVIIoJtL)RCO®SERU(TI )RRV (J+1)%DZ/DYNPLY)
OIE=(VISJULL p JI#WFNCII+VISUUCT pJ+1) *(LaO-WFN( S} ) YRCO*SNS(JI*DZ/
1 tOAERPULLI*RCVIUNY

VOL=RZVIJ)*SEWULTI&SNSLJ)*DL

CUNTV INJE
-ASSEMBLE MAIN COEFFICIENTS

AUtTLa)aly

AULT u1=0.0

AN(T, J)=AHAXL{ABS{Qs5%CN]DIN)-0.5+CN
AS(Isu2=AN(L4J-1)

AE(L,J)=AHAXL{ABS(D«5*%CE) DIE)-0.5%CE
AwlIsJimAE(I-10J)

SULLsJ)=5Ull,J)%VOL

SPilsJ)=SP{Lsd)*VOL

CONV INJZ

C‘tt‘tt!‘lt‘t‘tl#t*.t**ttt‘*#ﬁti*tt‘###'ttt!***##*t‘ttitt'ttt‘t‘*ttttlt‘

«PRIBLEM MIDIFICATIINS

CALL MUDRS (PHI ,IRSyIMAX,IMAXy IM1,1IM2)

IFLIRSLEJLJUCY GO_TO 200

DU 15) [=IMi,IM2

J=2

CNmOENETp g IVl J®l  KI*{1aO0=HFN{JDI+VIIoJoK) EWFN(J) )&
1 SEW{II*DIR (I}

JIN=AVISVVIT g JIRnFN I +VISVVIT g U+l ) € {1 0-WFN{J) ) )*COXSEW(]I )€
1 DZ*RIJ)/DYNPVLJ)
AS(I,3)=AMAXL{ABS{D.5%CM),DINI-0.5%CN

CONTINUE

SCONVINJUE

®F INAL COEFFICIENT ASSEM3LY

JO 330 I=lSk,IM2

DU 300 J=JuS1l,yNJML
APUI,J)=AULL ) +AUCT ) +ANTT ¢ J}+ASIT I}
TeAE(T, ) AN T ISP (1,0}

CanTINUE

C#t*-tt“ttItCtttttt***t‘t**t*ttitttt*t*#**tit**t*#‘ttt#t‘#t**t‘kCtt&k#t

C

Ct**‘.tt#‘#‘tﬁ"“#‘**t#t*‘"ttttiﬁ‘tttt#ttﬁt!tﬁi*“ttiRﬁt*“k*‘ﬁtﬁ‘tt*‘

SCLUTIDON OF DIFFERENCE EQUATICN

PAGE

CALCRS.1T
CALCRS.18
CALCRS.19
CALCPS.20
CALCRS.21
CALCRS.22
CALCRS.23
CALCRS.24
CALCRS.25
CALCRS .26
CALCRS.27
CALCRS.28
CALCRS.29
CALCRS.30
CALCPS.31
CALCRS.32
CALCRS.33
CALCPS.34
CALCRS.35
CALCRS.36
CALCFS.37
CALCRS.38
CALLPS.39
CALCRS.40
CALCRS.41
CALCRS.42
CALCRS.43
CALCRS.44
CALCRS.45
CALCFS.46
CALCRS.47
CALCRS.48
CALCF5.49
CALCRS.50
CALCRS.5L
CALCPS.52
CALCRS.53
CALCPS.54
CALCRS.55
CALCRS.56
CALCPS.57
CALCRS.S8
CALCRS.59
CALCFS.60
CALCRS.61
CALCRS .62
CALCRS.63
CALCRS .64
CALCPS.65
CALCRS.66
CALCFS.67
CALCRS.68
CALCPS.69
CALCRS.70
CALCRS.T1
CALCFS.T72
CALCRS.T3
CALCRS .74

2



CALCRS

63.
64.
65,
66.
67.
58.
69,
70.
1.
124
73.
T4.
15.
76,
17,
78.

0003568
0003578
0003518
0323718
0003778
0004028
0004048
0004048
0004178
0004173
0004208
0004238
0004308
0004468
0004468
0004508

400

401
410

402
405

$8SUBROUTINE CALCRS(PHIIRSyCOoIMAX g JMAXe IVAR IML, IM2) €%

(=2

DO 403 N=l,NSWPR . '

CALL LISILVEISY1,JUSY,PHINy1,IVAR,IS1,1IM2)
IFUIRSEWaJUWLORGIRSL,EQeJUC) RETURN
JFUIRSeEJe JVWLORGIRSSEQeJVC) GO YO 410

DU 401 I=IMrsIM2
PHI(I,2)=BVS*PHI{[,30¢(1, O-BVS)*PHI(I 4)
CINTINUVE

CUNT INJE

IF(IVARLEQ.L) GC TD 405

DO 402 u=2,NJ4M1

PHItLyJ)=d Va%*PHI (2, J)+{1,0~ BVH)*PHI(B'J)
PHllﬂl:J)=BVE¢PHI(NIM1let(1 0-BVE) EPHIINIM2,4)
CONYINUE

RETURN

END

CALCRS.75
CALCRS.76
CALCRS.77
CALCRS.T78
CALCRSL.79
CALCRS5.80
CALCRS.81
CALCRS.82
CALCRS.83
CALCRS.8%
CALCRS .85
CALCRS.86
CALCRS.87
CALCFS.88
CALCRS. 89
CALCRS.90

PAGE
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PRIMID
1.

2.
3.
be

S5e

be

7.

8a
© 9
10.

11.

12.
13.
14,
15.
16.
i7.

0000008

0000008
Q0CJ008
0030008

0000008

0C00008

0030008

0000008
00000908
0000008

0000008

0003308
0003318
0003338
0003358
0003368
0003418

«*«SUBIDYTINE PROMOD (PHI s IRSy IMAX o JHAX, IM1, IM2)#®
SUBROUT INE PROMODIPHI, IRSy IMAX9JMAX, IU1,1IM2)

c*“.“‘tl‘i'.‘ttl“'*ﬁtklttt‘#t.tittiﬁ.t‘CR#t"*ttith.tt‘t““ttttt‘t.‘

COMMON B8LOCKS

C#*‘tttt“tl“##ﬂt#tt*tt#‘ﬁ'tﬁt‘t*tt*ttllt‘t*tﬁ‘tﬂ**tl‘t."‘t.#‘t‘*‘#tt‘

DIMENSION SAVE(20229)

DIMENSTIUN TRANS{512)

CUMMIN

LR(L5),7(30),4 20021 4XU{15),YV(30)sZW(02),

10XEP(15)sOXP W15} ,0YNP(30),0YPS(30),SEW(15)ySNS(30),
IJAEPU(15)|DXPHU(15)ySEHU(lS'vDYNPV(?O"OYPSV(30)ySNSV(}OI,
LRI3514RVI30) yRCV (301, NFN{30) g WFSI30) ¢ WFELLS) e WFWl15),
1U(l5130.239V(15;3D.2)pH(15730’2)yPE(15o3012)'C(15v3092),Pp(15y39’1
luU‘:5y30lpUV(15v30)1UH(15130)1VV(15v33)vVH(15v30)1HH(15v30),
lED(lS'JD).TE(1593D)vFF(ISpBO)-UC(15733)yVC(1503))INC(15730)'
1GZE15943004EC115930)94RS(1530) )
IDEN(1593O'ZD'VXS(15730'2,9GAH(l5130'2)oVISUU(15'30).VISVV(XS'SO),
1Ani15e35) vAELL5¢30) yAN{15+30),AS(15,30),A0(15,301,AU(15,20),
1AP(L35,30045U(15,30),5P{15,30),
LUT(L15)4CTLL15 ), QUELL5),DCDZBILS}QUDILS),
L10ENSITyVISCOSyPRANI T SPHEAT EXCHAT,
lCMJyCRl,CRZpCRSyCRlHvCRZHOCEPSvaEPSZvCEPSoCAPPQ'ELDGv
1CCLyC22sCC2CCLWeCC2WICG24CGyCAPPAL,ELIGC,

LUUU s JUV sd UMy JVV IVl g JH Wy JED s JTE JFF ¢ JUC s JVCy JWC # JC2y JEC
INTeNIMLp NIM2y NI o NJYT g NIM2 NKpNKMLp IT o ST oKTy1JTy
1HE)M(4‘.*EOV(4)vHEDN(4)1HEDP(4)pHEDC(Q)qHEDR(#)oHEDD(#)vHEDVlS(@)v
IINCALJ'INCALV,IHCALH,I"CALP,XNCALC'[N?QUvINCQLl(IQ)'INTURB.INDIFF'
INSRPUZNSHPVyNSHPHeNSWP P NSHPC o NSHPR, :
1*DUEL'*JQEC1MRHvHCHyIQUEvIDIFvIJETvIYESY.ITESU:!TESC'!CUNp
1[RJN'IU1IHT'lUlv[UZrlClvlCZvIlv[ZvINDCOSpFRAy

1< 902 o ESTEP yISTPLyNASHINDEX ¢DPDLy
lFLJnIN,VHEAV.QLENTH'SMALL'GREAT,XTOT.YTOT,RSRALL(1‘).
14DPR0(L3) o IPRO, IENDy INDPRIZNUMPRI,BVEsBVAy BVS»BWS

CLMYIN

LETI15) ,ETUCLS),CET(15140ETUL151,0YWsNIPyNIPLyNJPMLy IWALL,y
LROUTERy AINNERGECCEN¢ES oM IO, YTOTOHEXCHAW,NJOHL

COMNMIY  DLDJ(20),0L0V{30),0LDW(30),0LDP(37),

1 DLOUUI(30) 42LDUVI30},CLOYUWI(30),0LOVVI30),0LDVHI(30],
1 . OLOWW{301,3LDTE(30),CLDED(30) OLDFF{30},

1 OLODEN{30),0LDVISI30),CVISUUL30).0VISVVI3D},

1 GLOUTALCDPOL

LOGICAL INCALU,IMCALV,IMCALW,INCALP,INCALC,INPRO,
1 INCALRy INTURB,IMDIFF

EQUIVALENCE (X{1),SAVE(L1))

EWUIVALENCE (OLDU{l}+TRANS(1})

OIMENSION WNEAR(1S5914),
1 PHI{IMAX, JMAX)

ChRAb ok ek ek Rwkh kTR RO R SRR AR AR AR R R AR AR AR RAR AR R €

W MOMENTUM

C#ttt#ﬁtt*#ttt‘ttttt*#tt#ttut*tt*tttt**tt#‘tg**tgtg*t“at‘*yg.‘¢¢¢¢¢¢...

ENTRY MUDW

AN OUTER wALL
IF(.NOF.INTURB) GOTO 220
00 200 1=1M1,IM2
YREF=YVINJ)I-YINJIM]L)
vISREF=VISCOS
UENREF=JEN{L+NIML,41 1}
UVEC=w(IyNIML,1)

PAGE 1

PROMCD.2
COMALL.2
COMALLW3
CCMALL. 4
DIM3.1
DIM3.2
CNMALL.S
DIM3.3
DIM3.4
DIM3.5
DIM3.6

DIM3.7

DIM3.8
DIM2.9
DIM3,10
DIM3,.11
DIM3.12
DIM3.13
DiM3. 14
COMALL LYY
COMALLL20
COMALL.21
COMALL.22
COMALL.23

CCMALL. 24

COMALL.25
COMALL.26
COMALL.27
COMALL.28
COMALL.29
COMALL.30
COMALL,3L
DI¥3.15
DI43.16
DIM3.17
DIM3.18
DIM3,19
0I43.20
DIMa. 21
DIM2,22
COMALL .32
COMALL.33
CCMALL .34
DIM3,23

" DIM3.,106

PROMOD 5
PRCMNG.6
PRCMCOWT
PROMDD.8
PROMDDLY
PRCMCD.10
PPUNMDDLLL
PROMCD.L12
PROMODG13
PPOMCD.1 4
PRI4]D.15
PPOMCDLLE



PRONDD

18.
19.
20.
21.
22.

23.
24,
25.°
26.
27
28,
29.

30.
3l1.
32.
33.
34e
35.
5.
37.

38.

39.
40.
41.
42,
43,
44,
45,
‘60
47,
48,
*9.
50.
1.
52,
53.
54.
55.

5%.
57.
58.
59.
60.
€le
62,

63.
64a
65.
&6e
67‘

0003448
0033478
0003578
0003628
00C3648

0004008
0004038
0004068
0004078
0004+118
0004138
0004168

0004368
0004368
0004408
0004428
0004458
0004478
0004508
0004528

0004548

0004628
0004538
0004658
0004678
0004718
0004728
2064778
0005028
0605058
0005128
Q005218
0005308
0005208
0005418
00¢5503
0005558

0005578

0005758
0006008
0006038
0006048
0006068
0006108
0006138

0006418
00006428
0036438
0006458
Q006478

«#SUBRJUTINE PROMIO (PHI s IRS)INAX,JMAX, 1ML, IM2) &%

YPLUS=UTI1)# DENREFS YREF/VISREF
UT{I)=UVECECAPPA/ALIGIELOG*YPLUS)
Vel L yNJ )= =y TCEI*UT(T)
IF(.NOTLINDIFF) G3 TO 200
SPIIpNJHI)-SP(IpNJWI) U’(l)*UT(I)'SEH(XI‘R(NJI*DZ/
1 wi Lo NJHL,1) #DEH{ 1,NIML,1)
AN(IsNJH1 =040
200 CONTINUE
IFLINDIFF) GO TO 220
DO 231D I=IM1,IM2
ARCf g NUMLI=0.0
00 210 Jx2)NJML
210 SU(IyJ)'SU(I.J)—(VH(I'J*l)‘RV(J*1)°Vu(I’J)*RV(J))*DENII'Jvli
1 €SEnwl( [)*DZ
220 CONTINJE
TDE, 230 Jm29NJ
AW(IML,J)=0r0
AE(IM2,J)20.0
230 CONTINUE
DU 243 I=lML,IM2
240 AS(I92)=0.0
RETURN ’

Ctttttitttuotttﬁtt*tl#ttttt#t****#**tt*#*t#tt#t#*t*ttt*tt#t*tttt*t*tttkt

[

MEAN SCALAR

Cttt"t*t“‘f‘tl‘lt***#t*##**"t#*#*ttt*ttt##*‘t‘ti#tt‘t&t*.tt‘.‘tltttﬁt

C

ENTRY MOOC
AN OUTER wALL
IF{.NOT«INTJRB) GO TO 660
IH(InALL.EQ.Y) GO TO 660
.00 65U [=IML,IM2
L YKEF=YVINJIY-YINJIML)
VISEF=VISCUS
"DENREFaDEN(I,NIML,K)
YFLUS=UTL 1)k DENREF* YREF/ VI SREF
ITFUIQUE.EQLQ) GO T2 610
CT(IVaQUE (L) /(DENLT,NJ,21%UT (1) *SPHEAT)
COIF=2T(11/CAPPAC*ALAGIYPLUS*ELOGC)
CUEaNJ»y2a=Cl Ty NJML, 1) ¢CDIF
50 TO 620
610 COLF=A3S(CIE oMIpKI-CUINIML,K))
"r(l)=CDXF*CAPPAC/ALOG(ELDGC*YPLUS)
620 VCII, NJI==CTLLI*UTI(])
IF{NITJINDIFF) G3 TQ 630
SULT yNJMLI =SULT ¢ NIML)-VC (T NJIRDEN(T, NJMlpl)*SEHII)‘R(NJ)*DZ‘
1 SPHEAT
AN(T s NJIML) =040
630 CONTINUE
LECINULEF) GO TO 660
D0 650 I=IMLl,I(N2
ANLIoNJMLI=0.0
DO 651 J=2yNJML -
650 SULIed)=SULsJS)~SPHEATHDENCT ¢Jsl ) {SEN{1)%DZ%(VC (], JYI)VARV(J+1 )=
1 COVE{I 2 JI*RVIJ ) #SNSLII*DZ*(UC(T+1,J)-UCI143)))
660 CONTINUZ :
IFLIWALLLEQ.O) GO TO 669
DO 551 I=IMi,IM2
YREF=YVINJP) =Y (DIPML)
VISREF=svIS(I yNJPML,K])

PAGE

PRCMODL1T
PRIMGD.18
PPCHMCDL19
PRCMCD.20
PRCMOD.21
PROMCD.22
PROMED.23
PRCMCD. 24
PROMCD.25
PROMOD, 26
PRUMCDL 2T
PROMOD.28
PROMFD.29
PROMCD.20
PROMOD.21
PRCMOD.32
PROMOD.33
PRONCD. 34
PROMCD.35
PRLMCO.36
PROMBDL37
PROMOD. 28
PROMOD, 39
PRCM20,. 40
PROMODA %1
PROMID 442
PRCPCDL43
PPOMI D44
UIM3.107
PRAMCD, 45
PRCMEDL46
PRCMCD.47
PRIMNDL 4
PROMDD, 49
PROMOD.50
PRCMCO. 51
PROML D452
PRGMODLS3
PROMCD.54
PROMOD.55
PROMCD.SS
PRAMGDLS57
PROMOD. S8
PROMCD, 59
PRLHCD.60
PRCMODL61
PROMMDL 62
PRCMOD. 63
PRCMCD. 64
PROMODLE5
PROMNDL66
PRCMND.LGT
PROMCD. 68
PFOMCD. 69
DI~2.108

0IM3.129

DIM3.110

DIM3.111

2
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PROMID

68.
69
70.
T1.
72.
73.

The
75«
76.
7.

78.
79.
80.
8la
32.
’ 83'
84.
85
86e
87,
88.
89,
90.
91.

92.
93.
940
95,
96
97.

98.
99.
1300 N
101,
102.
103.

" 104%.
105.

106.
107.
1Ce.
10%.
110.

111,
11z,
112,
114,
115.
116,
117.
118.

0006548
0006608
0006628
0006668
0006758
Q007028

0007228
0007308
0007338

2007508

0007548
0007558
00C7578

© 0007428

0007638
0007648
0007708
0007718
0007748
00100uB
0010118
oulolse
0010268
0010348

. 0010768

0010768
0011038
0011048
0011068
ovlllls

0011378
0011408
0011428
0011528
0011548
0011608
0011628

00tlse23

0011648
0011678
6011738
0011748
0011768

0012008
012068
00121038
0012248
0012338
0012373
0012408
0012468

661
C———-

663
662

666
1

664

665

669

670

680

C“ttittl*t‘t*‘t*tl#t#*tt‘t*t***“*t**‘ﬁ*ﬁ‘t#t'*t**t*ttttt**t#‘*t#ttttﬁt

c
CHmkx

700

710

**SUBRDUTINE PROMOD (PHI, IRSy IMAX9JMAXy [M1yIH2]) %

DENREF=DENIINJIPMI K]
YPLUS=UT (I )*DENREF*YREF/VISREF
ARAALL=I(NJIP )} =SEwl1)sDL
AN(X.NJP)-GAH(X.NJPI.K)/DET(I)‘Z.O‘ARHALL
AS(IaniuPL) =ANCI ,NIP)
ASII'IJP!-CAPPAC*UT(I)‘DEN(I'NJPoKlﬁARHALL/
1 ALJGUELOGCHYPLUSI*SPHEAT
AN( T, NJPHML Y= ASTT NJPI
VC(I yNJPI=0,0
CT([)-CAPPAC*(C(IyVJP,K)—C(I'NJPHlvKI)/ALUG(ELOGC#YPLUS)
CONTINUE .
ECCENTRIC CONDUCTING ANMULUS OF SPARROW AMD BLACK S FLIWe
YMAXTNJU-NIP -] .
DO 562 I=IMi,IM2
DC 602 Msl,HMMAX
JENJP Y
EM=FLOAT (4) .
RAD‘Q&VJ?)O)ET(!)*(EH-O.S)
"RADL=RINJPIHDETLIN*EM
RADUL=R(NJP) +DETULT 41 }* (EM-D.5)
AwllydisAE(LI-1,J) .
AElle)-GAM(IvJvZ)/RADUIISEHU(X*l)‘DETU(I#ll*OZ
ASLIoJ)=ANIT »J-1)
AN(!;J)'GAH(I.JcZ)/DEr(I)*RADI*SEH(!)*DZ
SULLyJI=ES*RAD*SEWL [)*OET(1)%0Z )
IFLISTEPLEQ.L) WRITE(64663) ToJsAECL 0] JAWIT 4 sANIL4J)2AS(Ied)y
1 SUutlleJi}
FORMAT(L0DA2213,1P5E1143)
CUNTINUE
IF(INDIFF) GO TO 664
B0 666 [=fMLyIM2
DO 565 J=2,NJIML .
SU(IyJ)=SU(1-J)—SPHEAT‘OEN(!'J'Il*(SEH(I)*DZ*(VC(I.J*I)*RV(J*I)-
VC(I'J"RV(J’IOSNS(J)*DZ*(UC(I*I}J)-UC(IvJ))’
COUNT INUE
V0 665 I=[MlsIM2
SULTNJIMLIESUCT, NJOMI I +QUDIT) *(RINJP)I+ET(I) I*SEW(1)*DZ
ANGT ¢y NJUNL)=0.0 :
VCUI NP ==-CTLIIeUT LTI
CUNT INJE
CONTINUE
D0 57) J=2,,NJO
Aw(IMl,J) 20,0
AELI42,0)=20.0
DO 680 I=IMLyINM2
AS([,2)%0.0
RETURNY .

ALL TURBULENT VARIABLES

tttt#‘lt#ttt*!‘**#t‘**t*lt**t*k*t&‘*ﬁtt******t**‘.t#*tt*ttt‘tttttﬁt

ENFRY M4JDRS

VO 800 I=1ML.IM2

GO TY (710,710,710,720,700,710:720474047404760+7509760,y770}IRS
USAALLEJVwIx Y{NJMYL) /Y(NJ)-VISCOS/DENSIT/UT(I)/CAPPA/DYNPINJIML)
ANEEREL s JVN) =UT (1) *UT {1 )*RSWHALL(JIVH)

GG TJ 790

WNEARIIIRS) =WNEAR( I JVWI*RSHALLEIRS)

GO TQ 790

DIM3,.112
DIM3.113
DIM3.1l1l4
DIM3.115
0IM2,.116
DIM2,117
0iM3.118
0I“3.119
0lM3.,120
DIM3.121

© DIM2,122

DIM3,123
DIM2.124
DIM3,125
DIM3,126
pIM3. 127
DIM2,128
DI42.129
DIM2,12)
pIM3.131 .
DIM3.132
DIM3.133
DIM3.13%
DIM3,135
DIM3.136
DI42.137
DIM3.138
DIM2.139
DIM2.140
DIM3.141
DIM3.14%2
DIM3.143
DIM3.144
DIM3.145
DIM2, 146
DI43.147
DIM3.148
DIM3,.149
DI43.15)
DIHM3.151
0IM2,152
DIM2,153
PROMNDL TL
PPIMOD.T2
PRCMED. 73
PROMDD. 74
PROMUD. 75
PROMCD.T6
PROMIDLTT
PPOMOD. 78
PROMEDLT9
PROMOD. B0
PROMCD.BY
PRCMOD.82
PROMLD. 83
PRCMDO. 84
PROMOD.85
PROMGD. 86
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PROMOD

119.
120.
121,
122.
123.
124,
125.
126,
127.

128,

129,
130,
131.
132.
133,
134.
135.

136.
137.
138.
139.
140.
141.
142,
143,

144,
145,
166.
147,
143,
149.
150.
151.
152,
153,
154,
155.

0012478
0012578
0012608
0012638
0312638
0012648
0012558
0012718
0012768

0013168

0013348

0013428

0013508
0013578
00135664
0013718
0013748

0014048
0014t48

0014228

0014268
0014278
0014358
0014358
0014428

0014618
0014648
0014678
0014728
0014758
0015018
0015018

‘0015058

0015278
0015118
0015128
0015148

720
740
750

760

770
790

800

90UV
910

922
930

«*5UBROUTINE PROMOD(PHI,IRS, IMAXeJMAXy IML,IM2)%e

WNEAK (L9 JED) =WNEAR( 19 JVHI*UT (1) /CAPPA/DYNP(NIML)

60 T2 730

WNEAR(I 9 IRSI=0.0

G0 T3 799

CONT INUE

EPLPERNA RS

ROR={R{NJI*RINI)-RINIMLIHRINIML) I%0.5

T QwFeQUECL )RR INI) /DENCINJI92) 7SPHEAT

IF{QUE(1)eNECQ.0} DCOYB2(CL T NIML,2)=CUI o NIMZ92))/7SNSYINIML)*
1 SNSENJML)ZLYINJI)=Y{NIML))

IFIQUE(L)aEQ.0.0) 3COYB=(C(!,NJM1 Z)—C(I.NJﬁZoZ))ISNSV(NJMl)*
1 CYINS)I=Y(NJIML) ) /SNSINJIMEE
QVIS‘Q(NJMX)*GAH(I'NJNI'Z)‘OCDYB/DEN(l,NJerZ)/SPHEAT
JAX=UILIL L) * Wl 14 NJML,2) *ROR*D. 8
COAIP=(CLTI+LgNIJM1,2)=ClToNIML2) )/ (RCVINIMLIXSENU(T+1])
COXEM2LoL L yNIMLe2)~CLE=1,NIML,2) )/ (RCVINIML)I*SEWULTL D)
IF(I EdeIML) COXIM=00D

1F(feEWeIM2) COXIP=0.0
QV[SK-(:DK[P—CDXIHI/(RCV(NJHI)*SEH(I))*GAM(!vNJMInZl*RDRI
1 DENE Lo NIML,2) /SPHEAT

QUCs(UC{T#1yNIJMLI=UC LT o8 JIMLY )/ (RCVINJIHLI*SEWL 1) ) *RDR

VOB {-UAF+QVIS+QAX- QVISXFQUC)/RCV(NJMll

WNEAR(I,JVvC)I=V(CB

o0 T3 790

ANEAR(I s IRS) =#ANEAR{ I, JVCI*RSWALL (IRS)

30 T 790 ’
MNEARII,JC2)=CT{I)«CT{I)*RSWALLLUC2)

PHE(I4iJ) 2 (WNEAR(Ty IRSI*SNS (FUML )=PHILTI NIML)*DYNPINIMLS )/
1 (Y INJM1)=-YVINUML))

CONT INUE ’

FFUNKS.EJa JUWS DR NR S, EQ.JUC) GO TN 910

DO 93J J=2yNJ .

Anwl14l,4)20.0

AELIM2,41=0.0

CLNTINUE

IF(NRS.NELJUWLANDJNRS.NELJUC) GO 10 930

DI 920 l=IMi,IM2

aS(142)%0.0

CINTINUE

RETURN

EnND
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PROMND.BT
PROMOD.BB
PROMGD. 89
PROMZD.S0
PROMCODL 91
PRCMGD .92
PROMID.93
PROMIDL 94
PROMID.95
PROMDD,. 96
PROM0D.97
PRUMOD.S8
PROMCD.99
PRCMID.100
DIv3.154
DIM3.155
DIM2,155
DIM2,157
DIM2.158
DIM3.159
DIM3.160
DIM3.1¢&l
PROMC0,102
PRIMGDL103
PR5MUDL104
PROMNDL105
PROMUD.106
PRCMEDL107
PRI¥ID.108
PRCMUDL109
PROMOD.I10
PROMOD.111
PROMCD.IL2
PRO“ND.113
PRGMOD.114
PROMOD.115
PRIMTDLIL6
PRUMCDL117
PROMODL1LE
PROMOD.119
PRCMCD.120
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PROMQOD

119.
120.
121.
122,
123,
124.
125
126.
127.

128.

129
130.
131.
132,
133.
13"
135.

136.
137,
138.
139.
140.
141,
142,
143,

144,
145,
146.
147,
1439.
149.
150.
151,
152,
153.
154,
155.

0012478
0012578
0012608
0012638
0312638
0012648
0012658
0012718
0012768

0013168

0313348
0013428
Q013508
0013578
0013643

Q013718

0013748

0014048
0014148
0014228
0014268
0014278
0014358
0014368
0014428

0014618
0014648
0014678
0014728
00146758
0315018
0015018
0015058
0915078
0015118
0015128
0015148

720
T40

750

760

170
790

800

900
910

92)
939

*eSUBROUTINE PROMOD(PHIIRS, IMAXy)JMAXsIML,INM2)ee

WNEAR(L ¢ JED) =WNEARC 1, JYN)®UT{1)/CAPPA/DYNPINJINML)

GU I3 790

#NEAR(I¢IRS)I=0.0

GO T3 790

CONTINUE

NJIH2=NJML1 -]

ROR={I(NJ)®RINJ)-RINJMLI*RINIML) ) %0.5
QAuF=QUELL ) «RINJ)/DENLI,MJ,2) /SPHEAT

IF{QUSLI}eNED.0) DCOYB=ICI{TNIML42)-COTsNIJM2,2))/SNSVY(NIML)*
3 SNSINIMLIZLIYINI)=YINIML))

IF(QUELL) eEQe0e0) DCOYB={CIT¢NJML2)-CLINIM242))/SNSV(NJIML)*
1 CYINJ)-YINJIMLY ) /SNSINJIME)
QVISmRINIML) *GAMI T4 NIML, 2)%DCOYS/DENUTYNIMLy2) /SPHEAT
IAXZDZIL30T) * Wl 14 NJML,2)*RDR*Da 8

COARLP={C(1¢lyNIM1,2) = C(IvNJer2))/(RCV(NJH1)*S‘HU(I+1))
COXEM=( UL W NIML,2)-CLI- 11NJH112)l/(RCV(NJMl)‘SEHU(!)l
IF(I.EweaiM?) COXIY=0aD

IFl1.EQs1IM2} COXIP=0.0 .
QV!SK'(:QX[P~COXI4'/(RCV(NJMI)*SEN(!)"GAM(I'NJMIvZ)‘RDRI
1 DIN( e NIML,2) /SPHEAT

QUCs{UC({I*L1 ¢ NJML)-UCLE ' JM1) I/ (RCVINJML }*SEW(T) )*ROR

VIB2(~QWF+QVIS+QAX-QVISX+QUC) /RCVINIMLI

WNEAR(I»JVC)=VCB

s0 T3 790

WNEAR(IsIRS) «WNEARL Iy JVCIARSWALL (TIRS)

56 T 790

ANEAR(I¢JC2)=CTLI)*CT{I)*RSWALL(JC2)

PHL(L, NJ)’(hNEAﬂ(lvIRS)*SNS(FJHIJ PHI(X.NJHI’*DYNP(NJHI))/
1 (Y(NJHl"YV(NJHl’)
CONT INUE

IFINRS.EJs JUWSORLNRSLEQ,JUC) GO TO 910
DO 900 J=24NJ
Awl{[ML,J)=0.0
AELIM2,4)=0,0
CLNTINUE

IF(NRS.NEs JUNLANDJNRSNELJUCY GO TO 93D
03 920 I=lMiyIM2 .
AS(1421=0.0

SUNTINJE

RETURN
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PRCMED.1 07
PRJIVID.1208
PRCMCOL.1C9
PROMDDLILO
PROMUDW111

PROMCDL112.

PPOYIDL113
PROMOD.114
PaNMODLll5
PRIYOD.116
PRUMOD.117
PROMOU.118
PROMOD.119
PRCMCD.120

'y

¢

4



ouTPUT
1.

2.
3.
4e

Se

[T

Te

8.
9.
l1o0.

1l.

12.
13,
14,
15.
16.
i7.
180

0000008

0000008

0000008
0000008

0000008

0000008

0000008

0000008
0000008
Q020008

0000008

0000008
0043558
0043563
0043708
0043728
0043748
Q043758

*»SUBRIJTINE QUTPUT ==
"SUSROUTINE OUTPUT

C..‘#‘tt"l"}ttt‘t#***##t*tt**t***!##ﬁttt&t‘#tt‘**"Ct't“t“*#“tﬁtt#‘

: COMMON BLOCKS

C‘t#“!l‘#“tl#t‘t**#*tt‘t#"**##t*###*‘t*‘t‘f“'*****‘#t.ttt#‘##‘#‘*‘##

DIMENSION SAVE(20229)
DIMENSIGN TRANS(S512)
CUMMIN .

1X(150sY€30)2 ZL02),XULL5),YVI30)s2IW(02),

1DKEP(15)vUXPH(lS)pDYNP(BO)1DYPS(301,SEH(l5)pSNS(30)-

leEPU(lS).DxPuU(iS)gSEHU(IS).DYNPV(SOJ.DYPSV(BO),SNSV(BO).
13430).kvt30).RCV(30),NFN(BO).dFS(SO),HFE(lS)yHFH(lS)r
lJ(lS,ﬂJ,Z).v(15.30.2)1w(15'36p2).PE(15y30.Z)'Cll5,30.2),PP(15'30)'
1UU(15.30).UV(15,30).UH(IS.3D),VV(IS,BQ).VHK15.33).HH(IS.BO).
150(15,30),TE(15.30).FF(15r30)nUC(15,30).VC(lS.BO)'kC(lS.BO).
162(15,304.EC(15430),RS(15,30),
lJEN(ISyBD.Zl.VlS(lS.BO.Z).GAM(15.30.2).VISUU(15.30).VISVV(IS.30).
lAnllS,BD).AE(l5y30|'Aﬂ(15'3031AS‘15'3017AD(15'30)’AU(ZSvEOIn
1APEL543035U(15+30095P115,30),
1UT{150,CTE15),0UELLS5),0D00L£8(15),QUOCLS),

LDENSIT,VISCISyPRANIT,SPHEAT, EXCHAT,

1CHU,CRI!CR2'CRS'CRIH'CRZH:CEPSI'CEPSZ'CEPS)CAPPA'ELJG’

1CC1.C:2:CC;CCIH,CCZH'CGZ.CG’CAPPAC.ELJGCo

L JUU s JUV e JUNWs JVV g JVNs JWHy JED JTEGJFF y JUC s JVC 4 JHC 9 JC24 JECS

lﬂl.NlNl.NlHZ,NJ,NJMI.NJHZ.NK.NKMI.IT.JT.KT.IJT.

1HEDU(¥).HEDV(4),HEUH(4),HEDP(#),HEOC(#),HEDR(4),HEDD(Q).HE)V!S(Q’.
11NCALU;[NCALV.IHCAL&:I&CALP.INCALC,XNPHO,XNCALR(I@).INTURB.[NDIFF.

L19SAPUSNSWPVyNSHPWINSHPP yNSHPL s NSWPR,

lMUuELpHODEC,MRH.MCHvIQUE'IDIF,IJET,ITEST.ITESU.ITESC.ICDN,

1[RUVy(U"HT'lUl'IUZ'[CI'(CZI]lrlZ.lNDCQS'FRA'

1K 0Ly ISTEPI1STPL,NRS, INDEX,DPDZ,

lFLUuIN,VHEAN,QLENTH,SMALL,GREAT.XTOT,YTOT,RSHALL(14).

ILDPRJKlH).IPRD,!EHD.[NDPR[,NUMPR!.BVE.BVN.BVS,BHS

CUMMON :
lET(lS),EFU(lS).DET(15).DETU(IS),DYH,NJP.NJPI.NJPMI,lHALL.

LRUJTER) RINNERy ECCENESyNJO, YTOTI,EXCHAWNJON]

COMMCN  ULDU(3D),8LOVI30)«0LDAL30),0LLP(20),

1 JLOUUL201:3LDUYI30) ,CLOUWI30),0LDVVI30),0L0VH(30),
OLDAwW(30),0LOTE(30),OLOEDI30})sOLOFF(30),
CLODEN(30),2L0VIS(30),0VISUU(30),CVISVVI30),

© dLbUTA,30PDZ
LOGICAL INCALU#INCALV,INCALW, INCALP, INCALC, INPRD,
- INCALR, INTURBINDIFF

EQWUIVALENCE (Xx(1),SAVE(L1))

EQUIVALENCE (QLDU(L)TRANS(1})

DIMENSIIN AT{30),JU1(15,30),0U2015,30},0U3(15,30),0U4(15,30),

0J5(15,301

ey

1
REAL MINC,MAXC

Ctt‘t#t0##&0‘tt!tt‘#tt*‘ﬁtt*t***t*#l##**‘*ttti*#!**"'t#*t#“‘t#t‘#t“C*

SINGLE VARIABLES

c#ttt##t‘##‘#t*t#‘*tt*##ktt**t**##****t*t#t“t*t*t‘*#*tt!#tt#t*ttt*#t“*

WRITE(6,010)

1D=212)/YI0T /2,

wRITELS65020) ISTEPy2ZD,0DZ,DPOZ,UT(3)
IF{IUEdaD«ANDs INDEXNELO) GU TO 110

VO 100 I=1Ul,lU2

TAU=UT (1) =UT (T )*DENSIT

[FlnITJINTURB) TAU=VISCOS*{W(I,NJML,2)-W(IsNIy2)})

PAGE
DUTPUT,.2
COMALL.2
COMALLW3
COMALL.4
DIM3.1
DIM3.2
COMALL.S
DIM2,3
DiM2,. 4
DIM3LE
DIM3.6
DIM2.7
DIM3.8

‘DIM3.9

DIM3.10
DIM3.11
DIM3.12
DIM3.13
DIM3.14
cCMALLLLY
COMALL.20
CCMALLL21
COMALLL22
COMALL.23
COMALL 24
cOMALL.25
COMALLL26
COMALLL2T
COMALL.28
COMALLS29
COMALL.30
CCMALL 31
DIM3.15
DIM3.16
DIM3.17
0IM3,.18
DIM2.19
DINM3.20
DIM3.21
DIM3.22
CCMALL.232
COMALLL33
COMALL.34%
DIM3,23
DIM3,.,162
DIM2,163
DIM2,.164%
QuUTPUT . 4
OQUTPUT.S
JUTPUT.6
OUTPUT.7
QUTPUT, 8
OUTPUT.9
QUTPUT.10
CUTPUT.11
QUTPUT,.12
JUTPUT,. 12

~

3
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ouTPUT ¢*SUBROUT INE OUTPUT** PAGE 2

1 ZEYINJ)I=YINJIML)) DUTPUT.L4
19. 0044138 CFaTAUZ {J.ShDENSIT#W (L, LoKIXW(1,15K)) BUTPUT.15
20. 0044208 DEL120.0 QUTPUT.16
2l. 0044218 DEL2=0.0 - OUTPUT.17 : -
22. 0044228 DU 133 J=Z,NJML CUTPUT.18 =
23, 0044258 WR=w(Lodp2)/WIToLe2) JUTPUT.19
24. 0044308 DELL=DELL+{Ll.0-WR)&SNS(J) : QUTPUT.20 oo
25. 0044348 100 UEL22JEL2+WR* (1.0-WRI*SNS(J) , UTPUT.21 e
26. 0044438 EH=DELL/(DEL 2+¢14E-30) oUTPUT.22
27. 0064458  WRITE(63u30) CF,DEL1,DEL2,EN QUTPUT.23
28. 0044558 110 IFIIAT.EJ.0) GO TO 14D JUTPUT.24
29. 0045568 CFLUX=D . OUTPUT.25 -
30. 0C44568 JELL=2.0 BUTPUT.26 s
3l. 0084558 00 120 1=iCis1C2 QUTPUT.27 )
32, 0044618 D0 120 J=2,NJ pUTPUT.28 e
33, 0044648 SELUXSSFLUXEWIT 9 Je2)%CUT ¢ 92 )%RCVISI*SEWITIRSNS{SI€DENTT ¢ Js2) JUTPUT.29
' 1 ®SPHEAT OUTPUT.3D
34, 0044768 WRaw(lyJp2}/WiLels2) ouUTPUT, 21
35. 0045008 CRe(CUEd 20 ~Clloly 2007 (CIT4NI 20~ —CUI11s2)+SMALL) quTPUT.32
36. 0045078 120 DELC=DELC+WR*CRESNS(J) QUTPUT.33 ‘ o
37. 0045168 WRITE(6,0+0) DELC,CFLUXGCT(3) QUTPUT.34 |
38. DU45248 ChJLA=CFLUX/ (VMEANSRINS I¥R(NJ) #0 .5 {XU(12+1)-XUL11)) ) /DENSIT OUTPUT.35 o
/SPHEAT QUTPUT.36 . el
39. 00545348 ARITE(6450) OUTPUT.37 w0
40. 0045418 DO 137 I=1,NI DIM3,165 =
41. 0045438 THETA=X{1)/3.14159¢180. JUTPUT.39
42, 0065458 COIFF=(Z(1494y2)-CBULK)/ICBULK+SMALL) QUTPUT .41 _
43. 0045538 STAN=QUE(L )/ (CILoNJI»2)~CBULK+SMALL )/ (DENS [TAVMEAN®SPHEAT) JUTPUT. 42 o
44. 0045638 ENUSS=5TAN®PRANDT#DENSI T*VMEAN#2.0¢ YTOT/VISCOS : QUTPUT.43
45, 0065708 [F(STANGGE.1,E+20} STAN=&H : BUTPUT. 44 s
46. - 0045753 WRITE(6,0601 1, THETA,QUOLL), QUE(TT+CTUI),CDIFFyCBILKs STANS ENUSS QUTPUT.45 i
4T. 0046148 130 CCNTINUE QUFPUT <46
"48. 0045168 140 CUNTINUE CUTPUT.4T
49. 0046178 WRITE(5+10) JUTPUT.48
50. 0046228 LF(MOD(I5TEPy INDPRI ) oEQaO.ANDLHODI ISTEP yNUMPRI ) ANEL D} RETURN OUTPUT.49
C‘##tt&‘llCtﬁQ‘Itlkkt*‘**ttt‘t**#**‘ Y I T It 22 222 Y12 222 22 228 1] DUTPUT.S50
c JUTPUT FRIM HYDRODYNAMIC CALCULATICNS OUTPUT.E1
Crekss b sRbk b nkEEx t*#**ttt****tt*ttt#*t*t*t*‘*****t*#t#t*t*ﬁ*#l“tt&"‘* . JUTPUT. 52
CHekweYEAN VELIZITY FIELD QUTPUT.S3
51. D046348 IF(IU.EQ.J.AND.INDEX.EQ 1) GO TO 500 OUTPUTL54
52. 0046378 WRITE(6¢240) DUTPUT.SS
53. 0046428 00 202 I=1Ul,IU2 OUTPUT.56
S4e 0046443 J0 200 J=14HJ BUTPUT.S7
55. 0046478 QUT1=Y{J)/YINJ) OUTPUT.S8
56. 0046508 QUT2=Wil,d 21 /UTLI) DUTPUT.59
57. 0045548 JUT3={ YINJI=Y{J)I*UT(1)/VISCOS QUTPUT.60
58, 0046568 DUT4=atlpd s21/HET,142) GUTPUT .61
59, 0046603 WRITE(69250) JoY{d) sUlTede2) s VIIsde209WTsJe2)ePE(T14y2)9PPLI,J) JUTPUT.62
1 y0UTY,0UT2,0UT3,0U0T4 DUTPUT.53
&0. 0047128 200 CONTINUE DUTPUT.64
6l. 0047178 [F{.NIT.INTURB) GO TO 500 QUTPUT. 65
CHERREE KRS Ak ER KK ‘rttt*t’“ﬁ‘tt*t*‘ﬁ*‘it**‘*&*‘l“!t**tt#ﬁ&‘**ttk‘*t‘t##‘!"' QUTPUT L6
Coe®exT wJ-EQUATION MODEL QUTPUT.67
62. 0047208 1F(4IDEL.NE.3) GG TO 390 JUTPUT,68
83.  aC47228 WRITE(69349) : QUTPUT.59
84. 0047268 06 330 I=iUl,1U2 _ BUTPUT.T0
65. 0047308 00 300 J=l,NJML QUTPUT.TL

664 0047338 JUTL=YLJdd/ YNl : ouTPUT.T2



OUTPUT

67.
68.
69.
70.

71.
72
73.
The

75.
76.
7.
78,
79
ao.
8l.
82,
83.

B4.
85.

86.
87.
38,
89a
900
9l.
92'
93.
94,
95.
96

97
98.

99,
100.
101.
102,
103.
1C4.
105
106.
107.

108,
139.
110.

0047348
0047418
0047448
0047508

0047618
0050018
0050068
0050108

0050108
0050138
0050158
0050208
0050218
0050258
0050278
09050318
0050338

0050468
0050728

0050778
0051028
00510+8
0051478
0051108

0051148

0051278
0051328
0051338
0351358
0051478

0051718
0051763

0051768
0052018
0052028

‘0052068

0052108
0052138
0052148
0052258
0052338

0052458
0052638
0052708

**SUBROUFINE QUTPUT ##

QUTZ=TE(L ,4) 7UTLI)/UTHLI)
JUTISEU(L, J®Y{NJYI/UT(T ) »23
OUT4=vIS(I s d 923 /UTLII/Y (NS} . .
Jurs--AvIS(l'J.Z)ovlS(I.Jol.Z))‘O.S*(H(I.J*l.Zl-H(I.J.Z))/
1 (Yisrl)=Y(JI)/UTLII/UTLT)
wRITE(5,350) JeQUTL s TE(T,3) 4EOLL,44),DUT2,0UT3,0UT4y0UTS
300 CONTINUE
RETURN
390 COUNTINUE ’
Ctltl‘t.G-Ul#iCttt*tt*#‘t#‘#ttit#tttt“‘tt“##ttlt*tl“"ttt‘tt&'I‘t"&tt
Coxee e XEYNILDS STRESSES
WRITE{64440) ’
00 402 I=1Ul,IU2
DG 400 J=2,NJ
JUTI=YVJ) /Y (NJS)
QuT2=uuily ) ZUT(TI/UTHLT)
JUTax=vvileJd) ZUTCI)/ZUT(T)
QUY4eswwil ) Z7UT(II/UV (L)
DUTS=TE(L »J) JUT(TY/UT(T] )
Jurbn-v-ll.J)I(N(I.J-Z)—H(I'J-l.Z)—SMALth(Y(JS—Y(J-I)ll
RIENJIZUT L)
WRITE(S59450) JsOUTL UULT ) o VWL ¢J) o WHLT,J),0UT2,0UT340UTSE
’ 1 sUUTS5,0UTS :
400 CCNTINUE ]
C~—===3UME DETAILED INFIIMATION
WRITELG,4501)
DD 470 I=1Ul,IU2
00 4§73 J=2,NJ
JuTiaYV{JI/YLIND)
SUF2avinl Lo 4) ZUTLE)Z7UT(I)
dUr3-°Vl‘[vJ,‘(ﬁ(tlJlZ"H(!'J—IQZ),/(Y‘J)-Y(Jfl),/(EO‘IQJ)*SHALL)
JUT42EDLL 5 J) *YINSI/UT (1) ¥%3 )
JUTSavISUULL»J)/UTCII/YINY)
QUTS=VISVVIL ) /UT{I}/YINS)
JUTT=VallsJ) Z{SORTCABS(NWIT g a) ®VV{EgJ} ) )+SHALL)
WRITE(G,480) JeoOUTL,VWIT,J),UNILsJ)sED(I¢J}»0UT2,0UT3,0UTS
1 ¢OUT5,0UT6,0UTT
470 COYTINUE
500 CONTINUE
CRkRexEre e e ek ¥s #*#*‘ttt‘#*tt**t#t*t#t#*#i"l*##t*ﬁ‘*ttt#‘*tf*tttttttltt
[od OUT PUT FROM .SCALZR TRANSPORT CALCULATIONS
C##tt#l#t!tﬁt##t#t t*#ttt#*##*0‘tt*##t‘tt*t#tttt**#t#t##*#*t**###tt#*t#k#*
Cxx*xeeMEAN SCALAR FIELD :
IF{IHT4EQeO) RETURN
[FUIHT.Eve2) GO TO 800
WRITEL69640) .
06 600 f=ICl,IC2
D3 600 J=24NJ
QUTL=Y(J3/YIKI)
QUT23( (1 sNJr21=CUL9Je2) ) 7(CTLIYI+SMALL)
JUT3=(C{IeNIs2)=Cilsd,2) YZIC(I NS 2)~C1L I.1+2))
JUTe=l vl ) *tClEyJr21=ClIod=142))1}/
1 (VCLT g ) ¥l ndl(1s392)-W{Tsd-1,2))¢SMALL)
WRITE(54650) JeOUTLsCUI9Je2),0UT2,0UT3,0UTS
600 CUNTINJE ’ :
IFLaNOT 4INTURB) RETURN
CRRRBEPENERR KRN KR REARB B RKRE P T L Tt L T L YT I P e T T )

Ce*s¥xx5CALAR FLUXES AND SCAL. FLUCTUATIONS

PAGE

ouTPUT.73
oUTPUT. T4
DUTPUT.TS
JUTPUT.T6
QUTPUT.TT7
JUTPUT,. 78
QUFPUT .79
QUTPUT.B0
ouTPUT. 8L
ouTPUT.82
OUTPUT.83
DUTPUT .84
OUTPUT.85
JUTPUT. 86
QUrFUT,.87
guTPUT. 88
DUTPUT.BY
OUTPUTL90
QUTPUT.9L
QUTPUT.92
‘DUTPUT.93
QUTPUT,.S4
CUTPUT. 95
JUTPUT.96
DUTPUT.9T
QUTPUT.98 -
QUTPUT. 99
QUTPUT,.100
QUTPUT, 101
JUTPUTL102
QUTPUT.103
QUTPUT.104
QUTPUT.105
QUTPUT.106
JUTPUT.LIOT
QUTPUT.108
QUTPUTL109
QUTPUTL110
CUTPUT. 111
ouTPUT,.112
OUTPUT,.113
DUTPUT.11%
gureur.115
OUTPUT.116
QUTPUT.1LT
ouUTPUT.118
DUTPUT.119
ourpur.120
CUTPUT. 12}
JUTPUT.122
OuUTPUT,123
QUTPUT.124
ouTPUT.125
DUTPUT.126
uTPUT.127
puTPUT.Y2?
AUTPUT.L
OUTPUT.1:

3
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CuUTPUT

111.
112'
113.
11#.
115.
116.
117.
118.
119.

120.
121.

122. i
123,
124
125.
126.
127.
128.
129.
130a
131.
132.
133.
134.
135.
136,
137.
138.
139.
140.
14i.
142.
143
144,
145.
1545,
147.
143.
149.
150«
151.

1524
153.
154,
155.
156.
157.
158.

159.
160,

0052738
0052768
0053008
0CS3038
0053048
0053128
0053148
0053178
J053228

0053368
0053668

0053738
3053758
0053758
0053768
0054008
0054038
0054058
0054068
0054068
0C54078
0054078
0054138
0054138
0054158
0054168
0054168
3054218
0054228
0054258
0054318
0054338
054378
0054418
0954448
0054538
0054638
0054678
0054728
0054758
0055008

0055038
0055068
0055118
0055148
0055178
0055218
0055248

0055268
0355278

3
700

800

804

805

810

820

825

*xSUBROUTINE QUTPUT**

WRITE{6+74D)

DU T00 [=IC1,1C2

VO 700 J=2+NJ

ouTL=yYvIJl/Y(ND)

JUTZ=Ustied) ZLUT(II®CT{I)+SMALL)

OUT3=VC(I,4)/{UT(I1)*CT (1 )¢SMALL)

JUT4=wC LT od) Z7CUT(II.CTCI)+SMALL)

JUTS=C2(L,J) /(CT(II*CTIT }+SHALL) »

QUF55~v2 (T dD)/1CIT,Js20-CCTyJ=1,2)#SHALLI*(Y(JE=YLJ-1D)

3 ®DENSIT/VISCOS

WRITE(S5s 750) JoOUTL,UCTT 4o VCIT pd) s MCUT9d}sC20T9d1+EL(TsJ)y
: BUT2,3UT3,0UT4,0UTS,0UT6

CONTINUE

RETURN

CUNY INUE

IFLINDEXaNELO)} GO TO 805

DO 804 I=1,1IT

DO B84 J=1, JT

JUL{1,0)=0.0

JU2(1,30=3.0

0U3{lesli=dad

QU 1,31=0.0

oUS{I,44)=20.0

CGNTINUE

NT=NJD

CUNFINUE

YAXC=~GREAT

MINC=GREAT

DO 8L1) J=1.NJ

AT(JInYVES I/ YING)

DO 81) i=1,NI

HJINC=AMINL (MINC,C(I¢Js2})}

MAXC=AMAAL {MAXCyClIvdr2))

CUNTINUE

20 820 J=1,NJO

D0 82J I=1,NI

JULIL =Gl 4 3¢K) ZUCBULK+SMALL)

JU2LL,J)*tCLTvd e K)-MINC)/{MAXC-MINC#+SHALL)

CONTINUE

IFLINCALC) CALL PRINTII 1 oNIoNTIT5JT,KToXsYsCo,HEDC,2)

IF(INCALC) CALL PRINT (LI yNI gNToIT ¢UToKT9XpY,0UL ,HEDCo1}

IFUINCALL) CALL PRINT(LeLloNIgNT, ITeJTeKT o XeYy0U2,HEDC,1)

TFCINCALREJUCHICALL PRINT(L,2,NINJ s IT T oKTe X AT UC,
40H TANGENTIAL SCALAR FLUX 1)

IFLINCALRIJVCHICALL PRINT(Ly1yNIWNJ yIT9 JT KT s X9 AT 9V
40H RADIAL SCALAR FLUX '1)

TFCINCALRL InC)ICALL PRINT(Ls1l,NIoHJ s IT e JT KT Xs ATy WCy
40H AXIAL SCALAR FLUX 1)

IF(INCALRLJC2)ICALL PRINT(1y1yNTsNJ s IT o JT KTy XoAT L2
40H ( SCALAR FLUCTUATION )%%2 el

IF(INCALRCJECIICALL PRINTIL, /NI NJ pITodT KTy Xy ATHEC

1 40H SCALAR DISSIPATION RATE o1}

00 825 I=1,NI

DU 825 J=1,NJ

JulilyJi=0.0

JU211,41=040

CONTINUE

o e e e

PAGE

ouTPUT.131
DUTPUTL132
ouTPUT.133
QUTPUT.13%
DUTPUT.L35
QUTPUT.136
JUTPUTLL3T
DUTFUT.138
OQUTFUT. 139
DUTPUTL140
CUTPUT.L41
JUTPUT. 142
CUTPUT.143
DUTPUT. 144
DUTPUT.145
QUTPUT.146
DIM3.166
0IM3,167
DIr2,168
0iM3,.169
DIM3,.170
DIM3.1T1
0IM3,172
DIM3.173
DIM3,174
DIM3,175
DIM3,176
0143,177
0IM43,178
DIM2,179
DIM3,18D
DIN3,.181
0fM3.182
DIM2,183
DIM3.184
DI43,185
DIM2.186
DIM3,187
oIM3.188
0IM3,189

DIM3.190

0IM3.191
01M3,192
DIM32.,193
DIM3.19%
DIM3.195
DTM3,196
01M3.197
DIv3.198
DIM3.199
0I¥3.200
0IM3,.221
0lrM2,202
DIMZ.203
DIM3.204
01M3,205
DIM3.206
DiM3,207

&
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ouTePur

161.
162.
163.
164,
1656
166.
187
1684
169.

170.
171.
172.
173.

174,

1715.
176

177.
178,
179.
180.
181.
182.
- 183.
134,
155.

186,
187.

188,
189.
190.
191.

192.
193.

0035328
Q055348
0055378
0055528
0055658
0056003
0054028
0054058
0056118

- 0056153 .

0056178
0056218
0056238
0056258

0056278
0056278

0056278

0056278
0056278

0056278
0056278
0056278
0056278
0056278
0056272

0056278
005¢278

co56278
2056278
0056278
0056278

0056273
00546278

s«SUBROUTINE QUTPUT &*

DO 830 I=I1Cl.IC2

DO 830 J=2,NJM]
Oul(I:J)-—Vn(IqJ)‘(Y(J)-Y(J-ll)I(H(ltJvK)*H(lrJ-vi)‘SMQLLl

JUZ(I.J)--V:!!-Jl*(Y(J)—Y(J~1))/(C(XoJ'K)-C(I9J'viI-SMALL)
QUL ) ==UC (1 S}/ (CLEsdsKI=CLI-1sJoK}+SHALLI#SERULTI*RCVII)
Jus(ls J)=0UL Ly J)/7(0ULT9J ) +SMALL)
JUS(I,J)=3U3 L, ) /(0U20T,J)+SHALL)

830 CUNTINJZ
1FLISTEP-LELL) CALL PRINT(L,1,NI NI IT T KToXyAT,CULy

3 . 40H MOMENTUM DIFFUSIVITY ~-PADIAL- s1)
CALL PRINTIL,1sNI,NJ s IT9dToKTy Xy AT, 0U2Z,

1 40+ SCALAR DIFFUSIVITY —RADIAL- 1)
CALL PRINT(L,s1oNIsNJ s ITeJT KT s X,AT40U3,

1 40H SCALAR OIFFUSIVITY —~TANGENTIAL=~ '1)
CALL PRINTI(L,1¢NIoNJ s IT 9T oKT 2 X9 AT, 0U4,

1 40H PRANDOTL NUMBER -KADIAL- 1)

CALL PRINTIL R eNIoNJ 2 LT dT KTy X¢ATH0US,
4OHRAT IO OF DIFFUSIVITIES,TANGENTIAL/RADIAL(1)

RETURN

C‘**.t&#‘tt‘#t..tt******'*‘*#t***t*t*#*****t*tt#**ttkt#t*t*#t*#‘tl‘t*t&t

- FORMAT STATEMENTS

C“#‘CtllC“ttttti*t##‘#t*t#*tt*tt*ttt##ttt##***t***t*t**#tt#*t.##*ltk#t

10 FIORMATL///1HO,1200LH*)/7/)

20 FORMATULA 920X kSTEP=*k, 143Xy % 2D0%%)1PE1D3¢* O0Z=#y1PEL10.3,
1 & DPDIZ=*;1PELO.3,% UTAU=%,1PEL10.3)

30 FURMAT(LA 32X,* CF=#*,1PELD.3, %0ELL=%y1PE1D.3,* DEL 2=%,
1 1PE103,* EH=%,1PEL1D.3}

40 FORMAT{LH ,31X,*DELCx#*,1PE10.3,*CFLUX=%*,1PE10.3}

P50 FORMATI34X,«l THETA .Q0 QI CTAY (CwW-CB)/CB%*

1 % CBULLK STAN NUSS*)
. 6D FORMAT(33X,12,1PB8EL11.3}

240 FORMAT(//2X.% J Y U v HE
1 ) & p pp Y/R WPLUS*
1 , * YPLUS W/HMAX */)

250 FIRMAT(2X,12+1P10EL1L1.3) : :

340 FURMAT(//2X,* J Y/R ’ KeEw 30 K/UT2*
1 ¥ ER/UT3 VIS/UT/R SHEAR/UT2%/)

350 FORMAT(2K91241PTELLL3) .

440 FORMATU//2X,* J YV/R uu vv Weix
1 »® wusuT2 vVv/ur2 WW/UT2 TE/UT2%
1 +* W~DIFFUSIVITY®/}

450 SORMAT(2Xe12,1P9ELL3) )

460 FURMAT(//2Xy* J YV/R Vi Un ED«
1 o ® - VW/UT2 P/E ER/7UT3 VIUU/UTR*
1 & vIVvvY/UTl VR/V/r%/)

480 FORMAT(2x;12,1P10E1143)

640 FURMATL//2X,* J Y/R c cPLUS CBAR®,
1 « PR%/)

650 FORMAT(2X,12y1P5E11.3)

T40 FUIMATI//2Xp* J YV/R uc vC WCk,
1 [ cz2 EC Uc/urcT VC/UTCT*,
1 [] WC/UTCT c2/CTCT vC/0CY*/)

750 FORMATI(2xXx,12,1P11211.3)
END

PAGE

DIM3.208
0IM3.229
DIM23.210
DIM3.211
DIM3.212
DIM3,213
0IM32.214
0iM3.215
0IM3.216

T DIM3.217

DIX3.218

DIM3.219

DIM3,220

pIiM3,221

DIM3.222

DIM3.223

DI43,224

DIM3.225

CUTPUTL.147
BUTPUT.148
QUTPUT. 149
quTPUT.150
ouUTPUT.151
DUTPUTL152
OUTPUTW1E3
DUTPUT. 154
DUTPUT,L155
QUTPUT.L56
SUTPUT.157
JuUTPUT.158
DUTPUT.159
DUTPUTLLED
QuTPUT.161
ouUTPUT,.162
auTPUT. 163
QUTPUT. 164
JUTPUTL1 65
DUTPUT,L166
QUTPUT. 167
JUuTPUT.L68
QUTPUT.169
oUTPUTL1 70
ouTPUT.1T71
QUTPUT.172
JUTPUT.173
QuTPUT,.174
JUTPUTLLTS
JUTPUT 176
QUTPUTLLITT
QUTPUT.L T8
QUTPUTL179
JUTPUT.180
ourpPur.181
QuUTPUT.182
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LISOLY
1.

2,
3.
‘Q

5.

6o

11.

12,
13.
14.
15.
16

17.
l38.

0000008

0000008
0000008
0000008

0000008

0000008

0000008

0000008
0000008
0030008

0000008

0020218
0020238
0020268
0020358
0020518

0020518
0020548

*#SUBIOUTINE LISOLV (ISTART,JSTART,PHILsNsKPyNS IML 142} 6%
SUBROUTINE LISCLYV (ISTAPT JSTART PHIL,MNyKP,yNS,I1M1,1IM42)

Cttttk&tttttu‘tctt#ttttltttktttt*t!qtttttQ‘ttttn*tt#t.ttttt‘t#t*tttttttt

COMMON BLOCKS

CERERRAERELERREKKE 'tt.t#t#tltt*tttt#"t'**i*t‘tttﬁ‘*##ﬁt*‘#t‘l"tﬂﬁ#tt.ttt‘

DIMENSIIN SAVE(20229%)
DIMENSION TRANS(512)
CUMMON
LACLS),Y030),2002),XULL15),¥YVI30),ZW(02]), .
1DXEP(15)fDXPHlls)QDYNP(30)[DYPS(30)955"(15)!SN5(30"
lJXEPU(lS)'DXPHU(IS,1SEHU(15)9DYNPVl3OlyOYPSV(3D’vSNSV(30)o
LR(50)sRVI30) ¢PCVI3D) g AFHL30) ¢ WFS(30) ¢ WFE(15) yWFWILS]
lu‘15130!2)7V‘15'3J’2)yd(15'3012,tPE‘15030v2)vC(15'30y2lvPP(1593D,'
1UUL15,30),UVI15430) yUWl15,30),VVIL5+3D0} e VWELS5930) yWHI15,4303,
150(15'30)1TE‘15v39)'FF(15130)1UC(15'301nVC(15930)vHC(15930)'
10261543009 ECUL59230)4RS{15:30)y -
1051(15'3092)le5(15730'2)9GAM(15'30y2,'VISUU(15'3D)vVISVV(lSOBD"
1A"(l5733'1AE(15|30]'AN‘15v30’1AS(15130,1AD(15:30)'AU(15.30)'
18P115433),50L15,3005P{15,430), R
JUT{L5),CH(150,QUELL5),0C02B(15),QUO(L5),
1DENSIT¢VISCISePFANDT,,SPHEAT) EXCHAT,
chJ.Cal.tRz.CRS,CRLH,CRZN.CEPSI,CEPSZ.CEPS.CAPPA.ELOG'
lCCvaCZ.CC.CCIH.CC?W'CGZ,CG.CAPPAC;ELJGC:
lJUUQJUleUHyJVVvJVH'JNWyJED)JTE'JFF)JUCpJVC,JWC,JCZ.JECI
IVI'NI‘lv‘IWZ-NJyNJqlpNJHZyNKyNKﬂlglchT'KTyIJT'
1HEDU($),HEOV(4)vHEDN‘Q)vHEDP(“)pHEDC(“’vHED[‘“)|HEDD(4)'HEDVIS(4)'
l[N:ALJ'XN;ALVVINCALNvINCALP'INCALC,INPRU,(NCALR(!“"lNTURB,xNDIFF'
INSAPUSNS WP Y, NSHP Wy NSAPP o NSHPCyNSHPRYy
IQDOEL.NJUECpNRH;HCHV]QUEv[D[Fv IJET;ITEST'ITESU,ITESC'ICONv
LIRUNSIU IHT, UL, IU2,1C1,1C2,11,12,INDCOS,FRA,
1K 4DZ LSTEP,ISTPL MRSy THDEX,DPOLy .
lFLJHlN'V”EANvQLENT49SMALL!GREAT'XTUTOYTUT'RSHALL(lﬁ’1
120PR0(L8) s IPROy IENDy INDPRISNUMPRI BVEBVW,BVS,BWS
COMMON
lET(lS)yEfU(lS)vDET(ls’vDETU(15"DYHONJPONJP11NJPH1'IHALL'
LRUUTER yRINNERyECCEN,ES M IO, Y TOTO» EXCHAWyNIOML
COMMON  ULDUI(30),0LDV3D),CLON{30),TLDP(30),
OLDJUL30),0LDUVI30)y OLDUNI301,0L0VV(20),0L0DVHI30),
CLDWW{30)} »JLDTE(30}+DLDEDL3D),OCLOFF(30),
DLODENI30),0LOVIS{30),0VISUUL30},0VISVVI30),
ULDUTA,COPDZL
LOGICAL INCALU,INCALV,INCALWyINCALP,INCALC,INPRO,
INCALR: INTJURB, INDIFF
EQUIVALENCE (X{1)9SAVE(L})
EQUIVALENCE (CLDUIL),TRANS(L1))
OIMENSIIN PAIL(15430,2)9PHI(15¢30+23+A(301,8(303+CA(S50),0(3D}

e g

(S

CRk e e n s kM mk RGN RE KR KRR R R Rk TR R AR R R R R Rk Rk kb bk
Cresnw EST-EAST SWEEP :

JSTH1I=JSTART~1
INITIALISE PHI ARRAY.
00 10 I=1,NI
DO 10 J=1,NJ
TFINLEQ.2 I PHI(I»JpL)=PHII(I»J» 1)

10 PHILI 0, 20 =PHILII,JKP)

AlSTML)=0e0

- Ce—==~LCUMMENCE W-E SWEEP

DG 100 I=1ML,EM2
CA(JSIML)=PHILLyJSTMLyK)

PAGE 1

LISOLV.2
CCHMALLL2
COMALL .3
CCMALL .S
DIM3,.1
0IM3,2
COMALL. 6
DIM3.3
OIM2.4
DIM2,5
DIM3.6
DIM2.T
piu3.s
DIM2,9
DIM3.10
DIM2.11
DIM3.12
DIvY3.13
DIM3.14
CCMALLW19
CCMALL .20
COMALL.2Y
COMALL.22
COMALL.23
COMALL.24
COMALL.2S
COMALLL.26
COMALL.27
COMALL.28
CCMALL.29
COMALL .30
CCMALLWL3L
DiM2,.15
DIM2,.16

" DIM3.17

DIM3.18
DIM3.19
DIM2.20
DIM3.21
DIM3.22
CCMALL .32
COMALL.33
CGMALL,34
DIM3,23
DIM3.226
LISOLV.6
LISOLV.7
LISCLV,. 8
LISOLV.S
LISILV.10
LISOLV.1l
LISCLV.L2
LISCLV.13

. LISOLV.14

LISCBLV.15
LISOLV.16
LISOLV.1T7
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LISOLYV

19.

20.
2l.
22.

23.

24,
25.
26,

27.
28.
29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39,
40.

4l.
42,

‘3.
%4,

45,

46,
47.
48,

49.

50‘
51.
52.

53.
54,
55.
56a
57a
58.

0020608

0020648
0020678
0020708

0021038

0021048
Qo21078
0021118

0021168
J021208
0021218
0021328
0021358
0021378
0021418
0021448
0021538
0021658
0021678
0021678
0321718
0021748

co22128

0022138

0022138
0022168

0022228

0022268

0022308 -

0022328
0022458

0022468
0022518
0022538

0022408
0022628
0022638
0022748
0022778
0023018

«eSUBRIUTINE LISOLV (ISTART,JSTART,PHIL,N,KP NS, TML,INM2)0%

C——=--COMMENCE .S-N TRAVERSE
DC 104 J=JSTART,NJYL®

C—~——-ASSEM3LE TOMA CCEFFICIENTS
ALJJ=ANL Ly d)

B(JI=AS{I,yd)
CA(JJ-AE(I-J)*PHl(I*lkoK)*AH(!.J)‘PHI(I 1pdeKie
LAUCT 9 J ) 6PAT LT d)K~1)¢SULTy )

DiJiI=aP(IsJ)

C~=—-CALCULATE CUEFFICIENTS OF RECURRENCE FDRHULA
TER¥=1./10(J1-8(J)*ALJ-1})
ALJ)=ALJISTERN

101 CALJI=ICALJ)+BIIIECALI-2)I*TERNM

C———~-UBFAIN NEW PHI%S
DO 102 Ju=JSTARTNJML
JaNJ+difMl-dJ

10z PHll(lnJ.KP)=A(J)tPﬂll(I,J*I.KP)+CA(J)
100 CUNTINUE
. IFINS.Eue2) GO TO 150
DU 11 I=ISTART,NIML
DD 11 JmySTARTNUML
PHILII 3 )KPI=PHIL (3¢ JeKP)
11 PHIGIsJsRI=PHILI39J2KP)
RETURN '
150 JUNTINUE
DO 155 lzlSTART.NXHI
DO 155 J4=JSTART,NJIYL
155 PRI{LsJp <) =PHILLT ¢JoKP)

CHEEME RSN E R kR E K& e YT TI T T e et S PR L 2 SRR L2 S Lo bR by

CoexxsSUUTH-NIRTH SHAEEP
ISTM1sl5TART-1

. ALISTHLI=D.D

c COMMENZE: S-N SWEEP
00 230 J=JSTART,NJIML
CAUISTML) =PI (ISTHL s JsK)

C CLMMENCE n-E YRAVERSE
DU 201 I=[START,NIUL
c ASSEMBLE TDMA COEFFICIENTS

ALl )=AE(]+d)
Bll)=Awll 4}
CALI ) =aN(lJ)}*PHILL QJ*I’K’*AS( l,J"PH!leJ—’. 1K)

1 CAULT 9 J 1%PHILT g J g K- 1)0SU(X'J)
DLL)=AP( [y d)
C CALCULATE CIEFFICIENT3 OF RECURRENCE FORMULA

TERM=1,2/(D(1)-8{I)*A(1~-1))
ALL)=A{L)*TERM
201 CA(L)=(CALTI) +¢BLIJ*CALI-1))*TERM
c JBTAIN NEa PHIHS
DO 202 1I=ISTARTyNIM]
[=NI#{STHML-11
202 PHILLE 0y <PI=A(IYAPHILI(I+1,J4KP)+CAL])
200 CUONTINUE
RETURN
END

PAGE

LIscivels
LISOLVel9
LISNLV.20
LIsSOLVv.21
LISOLVe22
LISCLV.23
LISILVL24
LISCLVL25
LISILV.26
LIsSoLve27
L1snLv.28
LISIL V.29
LISCLV.30
Lisntve2l
LISOLV.32
LISOLV.33
LISILV.34
LISOLV.35
LIS3LVe3s
LISOLV.3T
LISCLV.38
LISZLV.39
LISOLV.40
LISOLVeal
LISOLV.42
LISCLV.43
LISOLVes4s

L1ISOt V.45

LISOLV.46
LISOLV.4T
LISOLV.48
LISOLV.49
LISOLV.5D
LISOLV.S51
LISOLV.52
LISPLV.S53
LISCLV.54
LISOLV.SS
LISOLV.56
LISCLV.57
LISCLV.58
LISILVeSS
LISOLV.S0
LIsoLv,. 6l
LISOtV.b62
LISCLV,63
LISGLV.64
LISOLV.65
LISCLV.b66
LISOLV.E7
LISOLV.68
LISOLV.69
LISOLV.70

2

- %8¢ -



PAGE 1

PRINT €*SUSRDUTINE PRINT (ISTART,JSTART NI NJsITpJTeKTsXsYyPHIpHEAD,K)**
1 0000008 SUBRIFUTINE PRINT (ISTART,JSTART NI¢NJIoITeJT KTy Xy YPHI,HEADIK) PRINT.2
2. 0000008 DIMENSIIN PHIUIT,JT KT} pX(20)4Y(E0)yHEAD(4)+STORELSD) PRINT.3
3. 0000008 DIMENSION FLTI),F4l(l1) PRINT.4 o
4. 0000008 DATA F/4HULH s4HgAbs24HI 3, ,4HLLL ¢4HLO» »4HTXy » . PRINT.LS
) : 14HAS) / PRINT. 6 .
S. 0000008 JATA F3/7&H LI ,4H 21 +5H 31 ¢4H 41 +4H 50 44H 61 PRINT.T T
L 4d 71 g4H 81 44H 91 ,4HLOI ,4H11I / PRINT .8
be 0000008 . DATA AL, HY/6H I = 4 §H Y =/ PRINT.9
Te ooo00008 ISKIPx1 . , PRIMT.10
8. 0001068 JSKIP=1 . PRINT.11 .
Fe 0001073 WRITELS,4110) HEAD PRINT.12 Y
10. 0001158 © ISTA«ISTART-12 PRINT.L13
i1. 0001168 100 CounFiInUE ’ PRINT.14 "
12. 0001178 . ISTA=[STA+12 PRINT.1S —
13. 0c21208 1END=ISTA+LL PRINT,16
14, 0O0O0l21B - FEND=HI VUL NI, 1END) PRINT.L7 <
15. 0001238 Fl4)=F4(IEND-ISTA) : PRINT.18
16. oopi2s8 WRITE(SF) MY, (1I=ISTA,LENDy ISKIP)y HY . PRINT.19 e
17. 0001458 wRITEL 6,112} PRINT,20 s
13. 0001508 DO 10! J4J3JSTART,NJ,JSKIP ) PRINT,21
19. 0001538 J=JSTART¢NI-UJ PRINT.22
20. 0001548 00 12) I=ISTALIEND PRINT.23 w
21. V001408 A=PHI{I4J¢K) PRINT. 24 o0
22. 0001658 IFIABS(A}oLTLaLaE=20) A=040 PRINT.25 “CH
23. 0001728 120 STORE{1)=A PRINT.26 .
© 24, 0001768 101 WwRITE(6r113) Je(STCRE(TI),I=ISTA,IEND,ISKIP),Y(J) PRINT. 27 AR
25. 0002178 WRITE{6,11%) (X{TI},1=ISTA,IEND,ISKIP) PRINT .28 -
(e m s m e e e PRINT.29
26a 0002328 TFUIENDLLTANINIGD T3 100 PRINT.3D =
27. 0302348 REVURN . PPINT.31
23. 0002368 110 FURMAT(1rH0,20(2H%~) 45X94A10,5Xs20(2H-%}} PRINT,.32
29. 0002268 112 FGRYAT(3H J) PRINT .33
30. 00023683 113 FURMAT(in +13,1P12E10.2,C0PF7.3) PRINT. 34
31, 0002368 114 FIIMATI4nOX= ,12E10.3) PRINT.35
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Fig, A.1 Near-Wall Geometries



Fig. E.1

Staggered Grid in w-Space
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Domain

Fig. F.1 Calculation
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Fig. F.2

Grid and Related Dimensions.
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