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ABSTRACT 

This ~hesis presents a fundamental numerical study of turbulent 

heat and mass transport processes in two-and three-dimensional convective 

flows. The model of turbulence employed is of the type referred to as a 

second-order closure. In this scheme transport equations for all non-zero 

components of the Reynolds stress tensor, for the isotropic dissipation 

rate of turbulent kinetic energy, for all non-zero scalar flux tensor 

components and for the mean square scalar fluctuations are solved by a 

finite difference method along with the mean momentum and mean enthalpy 

(or concentration) equations. The model used.for the stresses has been 

developed in an earlier work. In the present study parallel ideas were 

utilised in obtaining a model for turbulent heat and mass transfer 

processes. 

The study has focused especially on the problem of non axi­

symmetric convective heat and mass transport in pipes, which arises when 

the boundary conditions are not axi-symmetric. The few available 

experimental data on such situations have indicated anisotropy in 

effective diffusivities. To expand the available data base an experiment 

was conducted to obtain heat transfer measurements in strong three­

dimensional heating conditions. 

Numerical procedures, especially suitable for incorporation of 

second-order turbulent closure models have been developed. The effect of 

circumferential conduction in the tube material, (which is influential in 

the asymmetric heating data currently available) was accounted for directly 

by extending the finite difference calculations into the pipe wall. 

The principal goal of predicting three-dimensional scalar transfer 

has been achieved. The predictions of the mean temperature field are in 

much closer~greement with experiment than an earlier study using 
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isotropic diffusion coefficients. lhe prediction of free shear flows have 

been only partially successful. lhe present model does not fully account 

for the variation in effective Prandtl number, among free shear flows 

observed in experiments. The prediction of wall flows indicate that the 

turbulent time scales of velocity and scalar fields are not proportional 

in the vicinity of adiabatic (or impermeable) surfaces. The implications 

of this result for the further refinement of the model is discussed. 
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Specific heat of fluid 

A gradient diffusion model for scalar flux (Table (2.2» 

A gradient diffusion model for scalar flux (Table (2.2» 

Tensor invariant model for scalar flux (Table (2.2» 

A production of Reynolds stress like .term (equation (2.16» 

Tensor invariant diffusion model for stresses (Table (2.1» 

Gradient diffusion model for stresses (Table (2.1» 

Suffix denoting the down-stream location 

Third-order tensor defined by equations (2.66) and (2,67) 

Coefficient in logarithmic law of the wall for 
velocity (equation (3.30» 

Coefficient in logarithmic law of the wall for 
scalar (equation (3.31» 

Near-wall effect function in modelling <Pi' and <Pi terms, 
also, dimensionless velocity profile (Seciion (4.3.2» 

Dimensionless cross-stream velocity (Section (4.3.2» 

Gravitational vector (i = x , y , z or e , r , z or 
1,2,3) 

Dimensionless shear stress (Section (4.3.2» 

Flux through a boundary 
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Thermal conductivity of fluid 

Thermal conductivity of tube wall 

Turbulent kinetic energy 

Convection through boundaries (Appendix (E» 

Mixing length 

Dissipation .lengtb scale 

Mass flow rate,also, dimensionless mean scalar (Section 
(Section (4.3.2» 

Nusselt number 

Exponent in decay of turbulence, also, dimensionless 
cross-stream scalar flux (Section (4.3.2)) 

Unit normal vector (a = x , y , z ) 

Time averaged value of pressure,- also, production of 
turbulent kinetic energy 

Instantaneous value of pressure 

Production of scalar fluctuations (Section (2.7.4» 

Peclet number 

Production of scalar fluxes (Section (2.7.3» 

Production of Reynolds stress tensor (equation (2.15» 

Molecular Prandtl number 

Turbulent Prandtl number 

Fluctuations in pressure, also, pressure and dimensionless 
streamwise scalar flux (Section (4.3.2» 

Pressure correction 

Dimensionless difference between streamwise and 
cross-stream normal stress (Section (4.3.2» 

Wall flux of C 

Radius of pipe, also, ratio of time scales of turbulent 
scalar and velocity fields 

A near-wall effect model for ~ (Table (2.2» 'l'ic 

A near-wall effect model for ~ (Table (2.2» 'l'ic 
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A. JIlQd.el J;or preSSUl:'e,..,scalal:' g;r:adient cor;t;'elation 
(Table (2.2)) . 

A model for pressure~scalar gradient correlation 
(Table (2.2») 

Reynolds number 

Inner radius of tube 

Outer radius of tube 

Launder et al. near-wall model (Table (2.1) ) 

Gibson-Launder near-wall model (Table (2.1» 

Launder et al. isotropic model (Table (2.1» 

Launder et al. Simple model (Table (2.1» 

Radius 

Time averaged generation of C per unit volume, also, 
spreading parameter in a wake (equation (4.12» 

Instantaneous generation of C per unit volume 

Surface integral term in equation (2.47) 

Surface integral term in equation (C.9) 

Surface integral term in equation (2.9) 

Surface integral term in equation (C.10) 

Source of. ~ in equation (3.9) 

Turbulent Schmidt number 

Stanton number 

A period of time (equation (1.5», also Transport 
coefficient of ~ (Appendix(E» 

Diffusion term in equation (2.41) (equation (2.44» 

Diffusion term in equation (2.2) (Section (2.2.2» 

Time variable 

Streamwise mean velocity 

Time averaged velocity component (i = x , y , z or 
e , r , z or 1 , 2 , 3 ) 

Instantaneous value of velocity component 
(i = x , y ; z or e , r , z or 1 , 2 , 3 ) 
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Suffix denoting the up~tream plane 

Streamwise conponent of Reynolds normal stress 

Fluctuations in velocity (i = x , y , z or 
e , r , Z or 1 , 2 , 3 ) 

Time averaged components of scalar flux 
(i = x , Y , z or e , r , z or 1 , 2 , 3 ) 

Time averaged correlation of velocity-scalar-scalar 
(i = x , Y , z or e , r , z or 1 , 2 , 3 ) 

Time averaged components of Reynolds stress 
(i and j = x , y , z or e , r , z or 1 , 2 , 3 ) 

Time averaged correlation of velocity-velocity-scalar 
(i and j = x , y , z or e , r , z or 1 , 2 , 3 ) 

Time averaged triple velocity correlation 
( i , j and k == x , Y ,_ z or e , r , z or 1 ,2 ,;3 ) 

Quadruple velocity correlation 

Time averaged correlation between velocity and dissipation 
fluctuations (i = x , y z or e , r , z or 1 ,'2 , 3 ) 

Streamwise scalar flux 

Reynolds shear stress 

Cross-stream velocity 

Cross-stream component of Reynolds normal stress 

Cross-stream scalar flux 

Streamwise mean velocity in e , r , z coordinates 

Transverse component of Reynolds normal stress 

Displacement vector (= x , y , z or i = e , r , z or 
1,2,3) 

Distance to the virtual origin 

Cross stream direction 

Distance in cross-stream direction 

Non dimensional distance away from a wall 

Effective distance to the wall (equation (A.3» 

Distance in z-direction 
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GREEK SYMBOLS 

a' e 
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r. 
1.-
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o 
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e 

o .. 
1.-J 

E:: 
e 

E:: •• 
1.-J 

n 

n 
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K 

K 
e 

Coeff1.c;i..ent 1..n modelled t,'o1,'m of <P i . 2 
.J 

(equat;i.,on (2,14)) 

C oe;f;E :lc:i.en t in the linear :form of em. (e<luat;Lon (2,55») 
n1-

Coeff1.c:i.ent 1.n the linear form of ~i (equa t:i.on (2.68» 

Coeff1.c1.ent in modelled form of<P "2 (equation (2.14» 
1.-J 

Wall-effect tensor in Daly-Harlow model 
(a and b = x , y , z ) (equation (2.23» 

Coeffic:i.ent in the linear form of 
m 

(equation (2.55» e 
ni 

Coefficient in the linear form of cf1 (equat:i.on (2.68» 
U 

Diffusion coefficient 

Diffusion coefficient of ~ in the direction-i 

Turbulent diffusivity of scalar property 

Kinematic diffusivity of scalar property 

Coefficient in modelled form of <P" 2 (equation (2.19» 
1.-J 

Characteristic length for the hydrodynamic field 

Characteristic length for the scalar field 

Kronecker delta (= 1 for i = j , = 0 for i + j) 

Dissipation rate of turbulent kinetic energy 

Dissipation rate of scalar fluctuations 

Dissipation tensor (i and j = x , y , z or e , r , z or 
1,2,3) 

Weighting factor in hybrid difference formula 
(equation (3.13» 

Coefficient in modelled form of <P . . ~. (equation (2.22» 
1.-Je-w 

Coefficient in modelled form of <Pij2 (equation (2.14», 
also, d~ensionless distance for hydrodynamic field 

Dimensionless distance for scalar field 

The von Karman constant 

Coefficient in the logarithmic law for C 

Ratio of free stream velocities in a mixing layer 
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Dynamic Vi.scos.:lty 0;1; flui.d 

Kinemat;lc viscos;i..ty of flu;td 

Turbulent viscosity 

Coefficient in the linear m form of cni (equation (2.55)) 

Coefficient in the linear form of an . 
n1-

(equation (2.68) 

Cartesian components of position vector 
(i = x , y , Z ), also, the weighting factor in 
equation (3.11) 

Net flux of ~ in equation (3.13) 

Angle of 1800 expressed in radians. 

Density of fluid 

Turbulent Prandtl number or Schmidt number 

Characteristic time scale of decay of turbulence 

Any dependent variable 

Interpolated value of variable ~ at regular grid node 

Pressure-scalar gradient correlation 

Turbulent part of cp. 
1-C 

Mean strain of cP • 1-C 

Turbulent part of the near-wall effects of CP. 
1-C 

Mean strain part of the near-wall effects of cp. 
1-C 

Pressure-strain correlation 

Turbulent part of cP ; • 
1-J 

Mean strain part of cp .. 
. 1-J 

Turbulent part of the near-wall effects of cp .. 
1-J 

Mean strain part of the near-wall effects of cp .. 
1-J 

Stream function 

Near-wall effect function in equation (2.25) 

Weighting factor (Appendix (E» 
. c k 

Equals ~ (Appendix (D» 
E: 
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C k 
Equals ~ (Appendex (D)) 

E: 

w Non dimenl'l;i.onal stream £uncti.on (equat;i,on (3.1)) 

OTHER SYMBOLS AND NOTATIONS 

D( ) 

~( ) 
Dt 
E 

eff 

I 

(I) 

(I+i) 

i 

(J) 

(J+j) 

(K) 

(K+k) 

0 

tot 

tUl'b 

wall 

E( ) 

M ) 

+ 

Diffusion of ( ) 

Substantial derivative equals ~ ( 
at 

'Exterior' boundary 

Effective 

'Interior' boundary 

) + U
j 

_d_ ( 
ax· 

J 

Ith grid position .in e-direction or w-direction 

) 

(I+i)the grid position in e-direction or w-direction 
(i = +1 , +~ , -1 , -~ etc) 

Inside surface of the tube 

Jth grid position in r-direction 

(J+j)th grid position in r-direction 
(j = +1 , +~ , -1 , ~~ etc. ) 

Kth grid position in z-direction 

(K+k)th grid position in z-direction (k = +1f and .,..~) 

Outer surface of the tube, also, characteristic value 

Total 

Turbulent 

At the wall 

Summation of ( ) 

Increment in ( ) 

Position on the higher side of displacement component 

Position on the lower side of displacement component 

e.g. f . means the covariant differential of f with 
~1.-

respect to direction-X. 
1.-
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Most fluid flows and heat transfer processes of practical interest 

to engineers involve turbulence. Methods for quantitative evaluation of 

turbulent flows are thus needed for optimum designing of the equipment 

involved. Before the advent of large electronic computers, this need 

was meet by experimental investigations of the gross flow characteristics 

and empirical correlation of the same. The applicability of such 

information was limited and could at best provide broad guide-lines 

for the flow evaluation. Analytical and semi-empirical methods available 

to the designer were based mainly on ,intuitive ideas on turbulence 

phenomena. These again had limited applicability. No general analytical 

solution of the equations governing fluid and heat flow processes are 

available to date, but the numerical solution of these equations, 

facilitated by the advent of computers, has become a reality. During 

the last two decades a considerable proportion of fluid dynamic and 

heat transfer researchers have directed their efforts on numerical 

solution of the flow and heat-tr~nsfer equations; considerable success 

has been achieved. Now, with the ever increasing computational capability, 

it has become possible to embark into the investigation of increasingly 

complex flow situations, including three-dimensional flows. 

It has long been assumed that the Navier-Stokes equations which 

comprise a closed set of equations for instantaneous velocity and 

pressure field govern the motion of both laminar and turbulent flows. 

For a laminar flow, with a set of well defined boundary conditions, 

these Navier-Stokes equations, at least in principle, can be numerically 



- 28 -

solved to any required degree of accuracy. In the case of turbulent flows, 

meaningful results for the instantaneous velocity and pressure fields 

from a numerical precedure can be expected only if the numerical 

discretisation is finer than the smallest scales of turbulence. 

This would demand computer storage and time, several orders of magnitude 

larger than the capabilities of present day computers. An alternative 

approach based on an averaged form of the governing equations together 

with a model of the statistical parameters appearing in them is 

utilised in the numerical analysis of turbulent flows; this approach is 

well within the capabilities of modern computers. 
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1.2 Equations of Fluid Motion and Scalar Transport 

Since the equations are needed in their general three-dimensional 

form, the Cartesian tensor notation is used for compactness, ignoring 

the distinction between covariant and contravariant tensors and using 

the repeated-suffix summation convention so that 

a. b. 
1- 1-

Further, the compact comma suffix notation is used for differentiation, 

so that 

For a Newtonian fluid of uniform density p and kinematic viscosity 

v, the Navier-Stokes equations derived from Newton's second law applied 

to a unit control volume, in the absence of body forces, take the form, 

= (1.1) 

~ ~ 

where U. is the component of velocity in the direction x. , P is the 
1- 1-

pressure and t is the time variable. 

For an incompressible fluid, the continuity equation assumes the 

form, 

~ 

U • • = O. 
1-,1-

The instantaneous momentum equations obtained by applying 

(1. 2) in (1.1) are, 
~ A A 

U. t + U. U •• 
1-, J 1-,J 

(1.2) 

(1. 3) 

Correspondingly, the low-speed transport of heat or passive matter 
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is describable by the following equation. 

A 

A A A 

C' + U'. C • 
.J t J.JJ 

= (1.4) 

where C is the passive scalar (e.g. enthalpy, concentration of a chemical 

'" species etc.), r is the kinematic diffusivity of the property and S is 
A 

the generation of C per unit volume (for example, by chemical reaction) 

at the point considered. 

'" ...... ...... 
Now taking the statistical average of variables U. , C and P 

1, 

with respect to time, obtain 

U. 
1, 

etc •• (1.5) 

Here the equation (1.5) should be convergent and independent of t . o 

Further, T denotes a period of time larger than the time scale of the 

slowest fluctuations and smaller than the time scale over which 

significant variations in the averaged quantities occur. Equation (1.5) 

implies that the fluctuations u. etc. of the variables defined by, 
1, 

u. 
1, 

= 

should satisfy, 

A 

U. 
1, 

U. 
1, 

etc. 

to+T 

o ~ LtT+oo ~ J Ui dt 

t 
o 

etc .. 

(1. 6) 

(1. 7) 

Now substituting (1.6) in the instantaneous equations (1.3) and 

(1.4) with the above definitions yields, 
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( u.u. ) . 
'/" J ~J 

(1. 8) 

(1. 9) 

The equations for mean momentum (1.8), differ from the equations 

for the instantaneous momentum due to the appearence of the fluctuating 

velocity correlation tensor, U.U. , known as turbulent or Reynolds stress. 
'/" J 

Similarly (1.9) has additional dependent variable, U.C , representing J . 

the turbulent scalar flux in direction x .• Thus differences between the . J 

laminar fluid flows and passive scalar transport to that of their 

turbulent counterparts should be solely attributed to the effects of 

the turbulent stresses and fluxes. In laminar flows equation (1.3) 

with the continuity relation (1.2) form a closed set which in principle 

may be solved; this in turn allows the solution of (1.4). To solve 

equations (1. 8) and (1. 9), however, additional equations or expressions 

are needed determining u.u. and u:;. The provision of a model for these 
'/" J J 

correlations forms a significant fraction of this thesis. 
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1.3 Closure Levels 

In order to.solve the mean momentum and mean scalar equations 

in turbulent motion one needs to have some information regarding the 

correlations u.u. and U.c. It is this information that is supplied in 
'& J J 

a turbulent closure model. At the practical level most proposals for 

turbulence closures have been on Boussinesq's idea of a "turbulent 

viscosity". He suggested in 1877 that the local turbulent shear stress 

(i.e. the cross correlation of fluctuating velocities) could be expressed 

as the product of the turbulent (eddy) viscosity and the local mean 

velocity gradient, a clear analogy with laminar stresses. The turbulent 

viscosity was considered to be a function of the flow field rather than 

a property of the fluid. Thus, in a simple shear flow where U1 = Ul~ x 2 f~ 

= ( 1.10) 

the minus sign ensuring that momentum is diffused down the velocity 

gradient as in laminar flow. The idea of a turbulent viscosity was 

conceived to deal with situations where only one shear stress component 

exists. In practice there are many relatively simple but important flows 

where such a situation prevails. Implied in (1.10) is the notion that 

the turbulent shear stress vanishes in the absence of a gradient in 

mean velocity. 

As a tensorial extension of (1.10) one may write 

u.u. = 
'& J 

1 
- V t ( U. . + U. . ) + 7" 0.. U U 

'&~J J~'& u ~J m m 
(1.11) 

which relates all the components of the stress tensor to the mean strain 

field and the turbulent kinetic energy. In (1.11) the turbulent viscosity 

V
t 

is a scalar quantity. The term ~ 0 .. u:u- to the right hand side of 
u 1-J m m 

(1.11) accounts for the fact that, in the absence of mean strain, the 

normal stresses do not vanish and that they are equal in magnitude. 
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Even for weak turbulent shear flows this is not exactly true. 

Alternatively, considering the turbulent viscosity as a second-order 

tensor, one may write, 

- u.u. = 
1- J 

(LIla) 

or even assuming a fourth-order tensor for the turbulent viscosity, 

u.u. = 
'/- J (l.Ilb) 

The components of the turbulent viscosities in (l.lla) and (l.llb), 

however, should satisfy the conditions imposed by the incompressibility 

of fluid and symmetry of U.u. tensor. 
'/- J 

The scalar counterpart of equation (1.10).' is the definition-of 

eddy diffusivity of heat or matter given by, 

= (1.12) 

The tensorial extensions of the equation (1.12) can be written in forms 

parallel to (1.11) and (l.lla). 

In practice it is often the ratio of eddy viscosity and eddy 

diffusivity, denoted by turbulent Prandtl number, that is used in 

describing the scalar fluxes. This quantity 

(1.13) 

should merely be considered as the ratio of diffusivities in a direction 

where non-zero mean gradients are present, or else if Prt is considered 

as a tensor, then it's components should be permitted to take finite, 

infinite or indefinite magnitudes. 
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1.3.1 Mean-Field Closure Models 

In mean-field closure models, the turbulent stresses and scalar 

fluxes are expressed by algebraic expressions containing mean quantities 

only. Most of these models are based on the eddy viscosity-eddy diffusivity 

concept described in the previous section. An example of an algebraic 

formula for the turbulent viscosity is provided by Prandtl's mixing 

length hypothesis, 

= (1.14) 

Here again in order to find vt ' the mixing length Z , should be 

prescribed. For example in wall boundary layer flows, the mixing length 

Z may be expressed by two separate expressions covering the "inner" 

and "outer" regions. These expressions have been extensively tested mainly 

for turbulent wall boundary layer flow calculations where it seem to 

perform very well. Numerous empirical and intuitive formulae are available 

which include various physical effects like that of low Reynolds number, 

the transition region, compressibility, mass transfer, pressure gradient, 

transverse curvature etc. on the behaviour of the wall boundary layer. 

A useful account of this is given by REYNOLDS and CEBE.CI [1]. 

The corresponding closure of the scalar equation is generally 

achieved by specification of PP
t 

as a function of geometrical and 

flow parameters. Several formulations of eddy viscosity generalized to 

three-dimensional compressible and incompressible wall layers are also 

given in [1]. 

In the case of free shear layers it is the specification of vt 

(assumed constant at any section in the shear flow) rather than the mixing 

length Z , that is common. Some empirical formula for Vt ' as functions 

of characteristic flow parameters, which will give best agreement with 

self preserved mean profiles in simple free shear flows can be found in [1]. 
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1.3.2 Turbulent Transport Models 

In turbulent transport models one or more additional partial 

differential equations will be supplied. These partial differential 

equations will implicitly or explicitly determine the shear stress ulu2 

and scalar flux u2c. These closure models can further be classified 

according to the number of additional partial differential equations 

considered for determining Vt . 

(a) One-Equation Models 

Usually a transport equation for the turbulent kinetic energy 

forms the basis of one-equation models. Now, instead of Vt being related 

to mean flow quantities, it is expressed in terms of turbulent velocity 

and length scales as 

(1.15) 

Further, in order to solve the partial differential equation for turbulent 

kinetic energy a length scale has to be prescribed in approximating 

the dissipation term. As with zero-equation models the length scale is 

prescribed here with prior knowledge of behaviour of the flow. 

(b) Two-Equation Viscosity Models 

The use of an additional turbulence partial differential equation 

for the length scale t or a related variable eliminates the need for 

prescribing one to facilitate solution of turbulence kinetic energy ~. 

equation. Transport equations for several length scale related quantities 

were studied by researchers, a summary of this is giyen in LAUNDER and 

SPALDING [2]. The most successful one which is now tested in a vast 

range of flow conditions is the transport equation for the isotropic 

dissipation rate £. (The modelling of this equation supplementary to 

the Reynolds stress model is given in the next Chapter). 
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Even at the level of one-and two-equation models the closure of 

the mean scalar equation is done by prescribing the scalar diffusivity, 

or more often, the turbulent Prandtl number. 

(c) Stress and Flux Transport Models 

At all the levels of closure mentioned before, the shear stress 

is expressed by way of the Boussinesq expressiQn (1.11), where the shear 

stress is made to respond at once to changes in the mean strain field. 

This is not correct in most fluid flow situations. Thus the need for a 

model which is capable of predicting a non-equilibrium flow arises. 

Reynolds stress models in which transport equations for the Reynolds 

stress tensor components are solved is the simplest model which is 

capable of doing this. The solution of partial differential equations 

for the Reynolds stress components has been suggested by CHOU [3], 

ROTTA [4] and later by many others. The partial differential equation 

for the Reynolds stress tensor can be obtained by differentiating and 

then manipulating the equation for the fluctuating component u. of the 
~ 

velocity vector. The resultant transport equation for u.u. contains 
~ J 

contributions from various physical processes; if these are modelled 

correctly then all components of the stress tensor u.u. can be estimated. 
~ J 

This will allow the determination of the mean velocity field without 

recourse to the notion of an effective viscosity. 

Parallel to the Reynolds stress equations it is possible to 

formulate partial differential equation for the scalar flux tensor, thus 

obviating the need for an effective diffusivity model. The partial 

differential equation for the scalar flux tensor can be derived starting 

from transport equations for the fluctuating velocity u.and the fluctuating 
~ 

component of sealar a. 
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1.3.3 Higher Order Closures 

In the transport equation for the components of the Reynolds 

stress tensor there appears the triple correletion u,u.u7 which represents 
"/, J v 

the contribution of the transport by the fluctuating velocity of U.U. 
"/, J 

in direction xZ. One may either approximate this quantity in terms of 

the Reynolds stress and mean velocity field (as in a second-order closure), 

or alternatively one may obtain from the solution of transport equation 

for u.u.u . Models which incorporate solution of partial differential 
"/, J Z 

equations for this correlation are called third-order closures. 

Correspondingly, it is possible to formulate the partial differential 

equation for the components of the correlation u.u.c whose gradients 
"/, J 

appear in the transport equations for the scalar fluxes. 

Likewise, it is possible to generate transport equations for higher 

and higher order correlations but the modelling of the contributing terms 

become more and more abstract due to lack of experimental evidence 

to understand their behaviour. 

1.3.4 Other Closures 

At least one method which needs mention here is the three-dimensional 

time-dependent numerical computation of the large scale turbulence. Here 

only the small scale turbulence is modelled, the large scale turbulence 

being obtained from the time-dependent numerical solutions. 
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1.4 Evaluation of Available Models 

In this section the capabilities and limitations of available 

hydrodynamic and scalar transport models described in the previous 

section are evaluated. This is done by comparing expected performance 

of a given model with corresponding evidence from experiments. 

1.4.1 Eddy Viscosity Models 

In local-equilibrium flows the generation and destruction of the 

components of the Reynolds stress tensor are nearly equal, the mean and 

turbulent transport being negligible. In self preserving shear flows 

these two quantities, although not equal to each other, are proportional; 

the constant of proportionality being a function of non-dimensional 

cross-stream distance only. In these flows it is possible to obtain 

simple relations between Reynolds stress components and the components 

of the mean-rate-of-strain tensor. The eddy viscosity model is a 

generalisation of this possibility. Thus in local-equilibrium regions and 

in self preserving flows, the eddy viscosity models with correctly 

chosen empirical constants can be expected to perform satisfactorily. 

Indeed in the calculation of wall boundary layers where the near-wall 

region outside of the viscous layer is in local equilibrium, the eddy 

viscosity formulation with empirical corrections is known to give 

satisfactory results for a variety of physical and boundary ~onditions. 

( see Ref [5], Chapter 6) 

Similarly, in the calculation of self preserving flows, for 

example the plane or radial jet, Prandt1 mixing length formula can be 

employed to obtain satisfactory agreement with experimental observations. 

The relationship between the mixing length and the width of the respective 

flow, however, needs to be adjusted if the rate of spread of the flow 

is to be predicted correctly. This heavy reliance on empirical formulae 
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is one of the major weaknesses in the mixing length models even in 

predicting equilibrium or self preserving flows. 

The one-equation models have some capability of representing the 

dependence of shear stress on flow history. Although it is a major 

step towards the true representation of the flow bahaviour, the need to 

prescribe a turbulence length scale, in order to model the dissipation 

term, greatly reduces its usefulness in flow calculations. Since 

accurate prior knowledge of the turbulence length scale is not always 

available the empiricism associated with the mixing length models becomes 

apparent in these schemes as well. Further, due to the neglect of 

transport effects On the length scale itself, the advantages of a 

one-equation model over a mixing length model are limited. 

Two-equation models incorporate the transport effects of length 

scale (often a length-scale-related quantity of the form kaZb ) into the 

turbulence model. Thus, they may be expected to perform satisfactorily 

in both developing as well as developed flows. RODI and SPALDING [6] 

reported that with a single set of constants it is possible to make 

satisfactory predictions of the spreading rates of plane mixing layer, 

plane jet and radial jet. The predictions of LAUNDER et al. [7] show 

satisfactory agreement in a large variety of free shear flows, in 

many cases significant improvements over predictions from the mixing 

length hypothesis are obtained. 

It appears however, that the effective viscosity concept is 

inadequate for describing some turbulent flow situations. In these 

situations often the transport effects on the Reynolds stresses are 

dominant. For example in flow through an annulus or in an asymmetric 

duct or in a wall jet, the maximum velocity surfaces do not coincide with 

the zero shear stress surfaces. This pheomenon can not be accounted for 

with an effective viscosity formulation. The secondary motion that 
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develops in corners of straight axis ducts due to cross stream gradients 

of Reynolds stresses is another class of flow where isotropic eddy 

viscosity models are inadequate. The concept also fails to allow 

satisfactory prediction of flows with influential body forces; gravitational 

effects on turbulence is an example. The direct effect of the mean 

velocity tensor on the stress tensor diminishes with increasing influence 

of the body forces on the turbulent structure; hence the eddy viscosity 

model becomes less relevant in representing the turbulent stresses. 

1.4.2 Eddy Diffusivity Models and Turbulent Prandtl (or Schmidt) Number 

The eddy diffusivity models have widely been applied in parallel 

I 

with eddy viscosity models, in calculating scalar transfer problems. 

Again the eddy diffusivity formulation is a generalisation of the 

possibility that in local-equilibrium regions and in self preserving 

flows there exist some simple relation between the scalar flux tensor 

and the gradients of the mean scalar tensor. In flow regions where both 

hydrodynamic and scalar fields are in local equilibrium, Le. when 

the transport effects are negligible in both shear stress equations as 

well as in scalar flux equations, the effective diffusivity and simple 

formulations for turbulent Prandtl number can be expected to give 

satisfactory agreement with experiments. The velocity and scalar fields 

close to the wall (the so-called "semi-logarithmic region") is one where 

one may assume local-equilibrium structure and where an eddy diffusivity 

formulation should perform satisfactorily. The review paper by KADER 

and YAGLOM [8] clearly indicate that in the semi-logarithmic regions of 

a variety of wall flow geometries under a large range of Reynolds 

numberrs and molecular Prandtl (or Schmidt) numbers, the implied turbulent 

Prandtl (or Schmidt) number is indeed a constant in the range of 0.9. 

The predictions of PATANKAR and SPALDING [9] and others, of wall boundary 
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layers with prescribed turbulent Prandtl number of 0.9 show good 

agreement with experiments. 

There are numerous engineering applications, however, where the 

scalar field is far from fully developed or self preserved. Correspondingly, 

several experimental investigations aimed at examining the diffusivity 

in developing flows has shown considerable disagreement with the idea 

of constant Prt (or Sat)' 

BLOM's [10] investigation of wall boundary layer with a step in 

wall temperature indicated clearly that the turbulent Prandtl number is 

a function of both streamwise and lateral distances. His temperature 

profiles show that an assumption of Prt of 0.9 would substantially in 

error at least in the developing region of the boundary layer. 

QUARMBY and QUIRK's [11] measurements of temperature and 

concentration profiles downstream of a short heated (or porous) $ection 

in a pipe, again imply that the turbulent Prandtl number is far from 

constant across the flow. In their flow situations the transport e~f:ects 

playa significant role in determining the scalar field. 

The eddy diffusivity models which incorporate prescribed Prt 

(or Set) variations across the flow can not be expected to give 

satisfactory agreement in predicting flows such as that of Quarmby and 

Quirk or that of Blom, where the transport effects are important. 

The turbulent flow situations. where the effect of buoyancy on 

the turbulent structure is significant, the eddy diffusivity model 

becomes less relavant. In such situations the turbulent Prandtl number 

is known to vary considerably with relative effect of the buoyancy 

forces. For example in stably stratified flows the turbulent Prandtl 

number increases sharply with increase in Richardson number (which is 

a measure of the negative of the production of turbulent kinetic energy 

due to buoyancy as a fraction of prod.uction due to mean shear). Thus, 
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satisfactory predictions of buoyancy influenced flows with the use of 

eddy diffusivity models will certainly require some ad-hoc corrections. 

In asymmetrically heated shear flows, the zero heat flux plane 

may not coincide with the plane of zero temperature gradient. For example, 

the study of slightly heated two-dimensional jet expanding into a plane 

mixing layer by FULACHIER et al. [12] indicate the presence of ac~eg~on 

where the temperature gradient and the lateral heat flux are of the same 

sign. In this region, the production of temperature fluctuations is 

negative. Their spectral analysis of lateral heat flux in the negative 

production region confirm the fact, that the high frequency components 

are related to the local gradient, whereas, the low frequency components 

are related to the larger eddies. An eddy viscosity/diffusivity hypothesis 

which assume a simple relation between local properties can not accommodate 

these complex effects. 

In three-dimensional scalar transport, diffusivities need not 

be isotropic. Certainly the measurements of three-dimensional heat 

transfer in pipes by QUARMBY and QUIRK [11], indicate that the tangential 

diffusivity of heat is much larger than the radial diffusivity in regions 

close to the tube wall. Similar experiments by BLACK and SPARROW [13] 

suggest the same. An eddy diffusivity model, if employed, needs 

considerable empiricism in order to predict this behavioar. 
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1.4.3 Reynolds Stress Models 

Unlike eddy viscosity models~_ in Reynolds stress models the 

transport effects of the Reynolds stress tensor are incorporated directly. 

Thus, this model in principle, can be expected to give a satisfactory 

representation of the turbulence in flows with and without influential 

transport effects. Of course there is an additional task of modelling 

several unknown correlations which appear in the transport equation 

for u.u.~ Since the solution of the partial differential equations produce 
'l, J 

the stress components explicitly their incorporation in the mean velocity 

equation is now directly possible. Therefore,_ in principle, none of the 

restrictions associated with the eddy viscosity formulation apply to 

Reynolds stress model. For example, the effects of buoyancy, effects of 

asymmetry, the secondary flow generation due to gradients in stresses 

in three-dimensional ducts etc. are all within the capabilities of a 

Reynolds stress model. 
~ 

Among the applications of this type of model, HANJALIC and 

LAUNDER [14] obtained satisfactory predictions of several shear flows 

including a strongly asymmetric channel flow, using a three-equation 

(Reynolds shear stress-turbulent kinetic energy-and its dissipation rate) 

model of turbulence. LAUNDER et al. [15] showed further capabilities of 

Reynolds stress models by solving for all non-zero stress-components in 

several two-dimensional shear flow situations. 
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1.4.4 Scalar-Flux Models 

Corresponding to the capabilities of Reynolds stress models, the 

scalar-flux level of closure appears capable of giving satisfactory 

representation of several flow situations where the eddy diffusivity 

formulation is inadequate. Often transport effects of scalar transfer 

are even more predominant than those on the flow field. Therefore the 

use of a scalar-flux model may be required even when the hydrodynamic 

field is in local equilibrium. In modelling scalar flux equations, 

however, accurate knowledge of the stress tensor, particularly the normal 

stresses are required. Therefore the scalar-flux models are often 

associated with Reynolds stress models which are capable of determining 

the normal stress components accurately. 
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1.5.1 Theoretical Contribution 

The aim of the present theoretical investigation is to devise and 

verify a model of turbulence capable of predicting convective heat and 

mass transport in three-dimensional temperature and concentration fields. 

Emphasis will be placed in obtaining a closure simple enough for practical 

calculations yet with least amount of empiricism. 

1.5.2 Choice of Turbulence Model 

The most crucial feature of the flow that this investigation 

attempts to understand and formulate is the non-isotropic diffusivity 

in three-dimensional scalar transfer. The experimental evidence of 

BLACK and SPARROW [13] and QUARMBY and QUIRK [11] clearly indicates that 

the anisotropy of the diffusivity is quite significant and increases as 

the wall is approached. The data of [11] suggest that in fully developed 

turbulent pipe flow the circumferential diffusivity near the wall is more 

than three times as large as the radial one. As mentioned in Section (1.4.2) 

the experimental findings of BLOM [10] and QUARMBY and QUIRK [11] suggest 

that the diffusivity in two-dimensional flow is not constant in either 

the streamwise or lateral directions. So in three-dimensional flows 

the diffusivity of a scalar can be expected to vary in all three directions. 

If an eddy diffusivity model is to be used in this investigation 

without any ad-hoc modifications, it would produce only an isotropic 

diffusivity effect. On the other hand if the directional bias of the 

diffusivity is to be incorporated in someway, far too much information 

from the same experimental situation that the investigation is trying to 

simulate, will have to be given as an input to the model. ,Even though 

this could lead to satisfactory prediction of the flows concerned, it 

would not amount to more than a sophisticated curve fit. The contribution 
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of such an investigation towa~ds the understanding o~ conyective tu~bulence 

transport would be very small. 

The scalar flux transport model, however, solves for the component 

fluxes in all three directions and the anisotropy of the scalar diffusivity 

will be an output rather than an input as in the eddy diffusivity model. 

Further the model would ideally be a general one, applicable in two-and 

three-dimensional free shear flows as well as those affected by a wall. 

and would not contain ad-hoc modifications. A scalar flux model has 

therefore been chosen for the. closure of the mean scalar equation. 

For the hydrodynamic closure the Reynolds stress models have shown 

a greater range of applicability than eddy viscosity models. Even though 

an eddy viscosity model with suitably chosen empirical constants is 

adequate to predict the mean flow features of the flow situations considered, 

the component of the stress tensor which are required in the scalar 

transport modelling can not be obtained with sufficient accuracy from 

that model. Therefore the Reynolds stress model was chosen as the mean 

flow closure model. This would enable the proposed numerical scheme to 

be extended to solve fully three-dimensional hydrodynamic as well as 

scalar fields where the eddy viscosity models have had only modest success. 

1.5.3 Path for Verification of the turbulence Model 

For the purpose of establishing the validity of the turbulence 

model it is necessary to make systematic computations in flow geometries 

where accurate experimental data are available. First the flow geometries 

should be identified with their known physical characteristics. It is 

well known that the structure in near-wall turbulence is vastly different 

from that away from a wall. Large gradients in mean velocity and large 

anisotropies in the turbulent stress tensor are the main characteristics 
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in flows affected by walls,whe~eas free shear flows are characterised 

by only moderate gradients and anisotropies. Further, in near-wall regions, 

the length scales associated with turbulence increase in size with 

increase in distance to the wall. In regions remote from the influence 

of walls, on the other hand, the turbulence length scale is more or less 

constant in size. It will be seen in the following chapter that present 

modelling directions clearly distinguish the wall effects in simulating 

pressure interaction correlations in the stress and scalar flux equations. 

Thus, the turbulence model is first tested in free shear flows. 

In the present investigation the plane mixing layer, the plane jet and 

the plane wake are simulated and predictions obtained of their hydrodynamic 

and scalar fields. Even though they are all self-preserving flows they 

cover a large range of turbulent production/dissipation rates. Thus, a 

model capable of satisfactorily predicting all these flow situations can 

be expected to perform well in many more free shear flows. 

The turbulent model is next applied to wall affected flows such 

as boundary layers, channel and pipe flows. Here the near-waIl-effect 

parts of the pressure interaction correlations are included in the model. 

All other terms and coefficients in modelled terms are kept unchanged 

from the forms employed in predicting free shear flows. In the near-wall 

regions it is these additional terms that are under test, whereas away 

from the walls where turbulent transport is influential, it is mainly the 

diffusion models that are being scrutinized. 

As for investigating three-dimensional scalar transport problems 

the turbulence model is virtually unchanged from the above. 
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1.5.4 Numerical Contribution 

The present numerical investigation has been aimed at providing 

numerical schemes for solving problems of two-and three-dimensional 

turbulent scalar transport in two-dimensional boundary layer type flow 

field, using second-order closure models. 

As the first step in verifying the turbulence model, calculations 

were made in two-dimensional situations with the use of numerical procedure 

of PATANKAR and SPALDING [9] modified so as to facilitate efficient 

calculation of second order turbulence variables. After a considerable 

amount of testing it was decided to incorporate a staggered grid arrangament 

for turbulence variables so as to remove some numerical instabilities 

found in the conventional finite difference grid arrangement. All . 

free sh~ar flow calculations and flat plate boundary layer calculations 

were performed with this numerical scheme. 

Development, testing and use of a numerical scheme capable of, 

solving variables in a three-dimensional. marching fashion forms the 

remainder of the present numerical contribution. This basic solving scheme 

is a three-dimensional marching numerical scheme used by others (SYED [16] 

and BRYANT [17]) in simulating free shear flows. The contributions by the 

writer are the following. 

(a) Modification of the three-dimensional numerical scheme so 

as to allow economical calculation of two-dimensional situations. 

This was an obvious step as the present calculations 

considered only two-dimensional flow fields. The modifications 

were made to facilitate the solution of both two-and three­

dimensional situations with only a small number of modifications. 

(b) The simplification described later in Section (3.3.5), valid 

for two-dimensional internal flow calculation was incorporated. 

For example, in a laminar flow situation, this requires only 
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a single partial diffe):'ential equation (instep,d of three 

equations) to be solved to obtain the velocity field. 

(c) Incorporation of second-order closure model set out in a , 

staggered grid scheme (in place of the two-equation model in 

the original program). As pointed out later in Section (3.5) 

for two-dimensional flow problems, it is convenient and 

sufficient to calculate all turbulence variables in.a grid 

shifted only in the cross-stream direction. 

(d) Calculation of channel and pipe flow hydrodynamic and scalar 

transport problems in two-dimensional form. 

(e) Solution of three-dimensional scalar transport problems. Here 

the ,solution of corresponding two-dimensional hydrodynamic 

flow fields were obtained first and then frozen, before 

making three-dimensional calculations. Simultaneous calculation 

of hydrodynamic and scalar fields can however be made with 

little modifications to the computer code. 

(f) Finally, in order to allow proper account to be taken of 

circumferential conduction in thick-walled tubes subjected to 

three-dimensional heat-transfer, the numerical scheme was 

extended to include the tube wall as well the flow in the tube. 

This facilitates simulation of experimental situations where 

the heat source is applied externally. 
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1.5.5 Exper~mental Contribut~on 

The present experimental program has aimed at prov~d~ng a set of 

data for the circumferentially non symmetric heat transfer problem. With 

the limited facilities and time available for exploration, measurements 

were made only of the outer surface of the tube wall. In three-dimensional 

heat transfer situations, circumferential conduction is unavoidable. In 

the present investigation it was minimised by chosing a glass tube. Thus 

this experiment should closely resemble a three-dimensional mass transfer 

situation where circumferential conduction is absent. Further it should 

provide the turbulence model a stringent test than other available 

three-dimensional heat transfer situations (e.g. BLACK and SPARROW [13]). 
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CHAPTER 2 

TURBULENCE MODEL 

2.1 Introduction 

It-was decided in the previous chapter that the Reynolds stresses 

and the turbulent sealar fluxes needed for the closure of mean velocity 

and mean scalar equations in the present investigation could best be 

obtained by solving transport equations for those variables. In this 

chapter those transport equations are presented. As there are several 

unknown terms in those equations they have to be modelled in terms of 

other known variables. In Section (2.2) a model for the Reynolds stress 

transport equation in formulated. The transport equation for the 

isotropic dissipation 

£ = 'V ( u. .u . . ) 
't~J J~'t 

(2.1) 

is presented in Section (2.3) and its modelling discussed. Section (2.4) 

contains the modelling of the scalar flux equation and Section (2.5) 

deals with the scalar fluctuation equation. The chapter concludes by 

presenting in Sections (2.6) and (2.7), a summary of the models and the 

transport equations in modelled form. 
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2.2 Reynolds Stress Equation and its Trace 

An exact equation for the transport of the components of the 

Reynolds stress tensor can be derived from the Navior-Stokes equations, 

equation (1.3). By multiplying equation (1.3) by u. and adding the 
J 

same equation with suffixes i and j interchanged and time averaging the 

sum, one obtains, 

U.U. t + Uk u.u. k 
~ J~ ~ J~ 

Convection 

= - (UiUk Uj~k + UjUk Ui~k) 

(a) :rroduction 

-2VU, kU' k ~~ J~ 

(b) Dissipation 

- (u. U 'Uk - v U. u. k 
~ J ~ J~ 

+ l2.O (01~';U, + 0k'U)) 
p "-.J ~ ~ ~ ~k 

(c) Diffusion 

+p (u .. +u . .J (2.2) 
p ~~J J~~ 

(d) Redistribution 

In deriving equation (2.2) fluctuations in body forces are 

omitted. This limits the equation (2.2) to flows unaffected by the 

gravitational forces. Gravitational effects on turbulence transport is 

discussed in'LAUNDER [18]. 

The equation (2.2) contains mainly two types of terms, those 

expressible as spatial gradient terms always represent transport of the 

conserved quantity from one place to the other, as such their integrals 

over the whole flow volume are zero; whereas the integrals of other 

terms over the whole flow volumes are generally non-zero. 

The trace of the equation (2.2) may be written 

= UiUk Ui~k 

(a) Production 

-VU'kU'k ~~ ~~ 

(b) Dissipation 

- (kuk - V k~k +~ kiUi)~k 
(c) Diffusion 

(2.3) 
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where 

k = 1 u.u. 
'2 1.-1.-
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'I ;J. l 

(2.4) 

is the turbulent kinetic energy. Terms in equations (2.2) and (2.3) 

represent the contributions from different physical effects to the 

maintenance of the corresponding transportedquantrty 0_ The redistribution 

term (d) in equation (2.2) does not have a corresponding term in (2.3) 

because it vanishes by continuity. Thus, it represents only an exchange 

between the components of turbulent kinetic energy. 

The left hand side of (2.2) and (2.3) represent the transport due 

to mean motion of u:,u. and k respectively. The time derivative terms 
1.- J 

are zero in statistically stationary flows. In the present investigation 

these time derivatives are neglected though their inclusion when 

necessary would not require any further approximations in the turbulence 

model. 

The term (a) of equation (2.2) whose integral over the whole flow 

volume is non-zero will generally have the same sign as u.u.; it 
1.- J 

represents the generation of U.U. by interactions of the turbulent motion 
1.- J 

with the mean-rate-of-strain field. In equation (2.3), the production 

term (i.e. term(a» represents the rate at which turbulence is generated 

by shear interaction which equals the amount of energy transfered from 

the mean flow to turbulence. The flow regions where the u.u. and its 
1.- J 

production are of opposite sign such as velocity maximum region in a 

wall jet are often marked by large transport effects. 

The term (b) of equation (2.2) represents the destruction of 

U.U. due to viscous action. In the normal stress terms, they are 
1.- J 

negative definite and prov.ide mechanism of turbulent kinetic energy 

dissipation, (b) in equation (2.3). 
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Term (c) in equations (2.2) and (2.3) represent the transpo;J;'t 0;1; 

u u and k due to three distinct actions. They are transport by velocity 
i j 

fluctuations in the direction x
k

' transport due to fluctuations in 

pressure field and transport by viscous action. 

Term (d) in equation (2.2) is the mean product of fluctuating 

pressure and the fluctuating strain fields, and is called the 

pressure-strain term. It's effect on normal stress components is clearly 

to diminish the differences between them. In the shear stress equation 

this term acts as a sink term. 

In the present form, the equation (2.2), contains a number of 

turbulence correlations whose determination is necessary prior to it's 

employment in a closure model. Those terms, namely the destruction, 

diffusion and pressure-strain terms are modelled as described in the 

following sections. 

2.2.1 The Viscous Destruction Term 

It is a well established experimental fact that the turbulence 

is dissipated by small scale eddies i.e. at high wave numbers. Further, 

spectral measurements of turbulent components clearly indicate (see for 

example LAWN [19] or HANJALIC and LAUNDER [20]). that at high wave numbers 

the turbulence is isotropic. Thus, at high Reynolds numbers where the 

dissipating wave number range is remote from that of the energy-producing 

wave number range, the dissipation process can be considered isotropic, i.e. 

s.· = f(S .. s 
~J :3 ~J 

(2.5) 

where s is the dissipation rate of turbulent kinetic energy given by (2.1). 

The transport equation for s can be derived starting from the 

equation for velocity fluctuations. This is done in Section (2.3). 
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2.2.2 The Diffusion Term 

The diffusion term in equation (2.2) is 

T .. 
1-J 

= - (U~UJ,Uk - v U.U. + P (Oh~U, + 0k'U ,)) 
v 1- J P f\V 1- 1- J ~k 

The first term is the triple velocity correlation which has to be found 

algebraically or via a partial differential equation for its transport 

equation. Some components of u,u,u
k 

are measurable and their gradients 
1- J 

are found to be significant. The second term of T .. represents the 
1-J 

transport of u.u. due to viscous action. At high Reynolds numbers this 
1- J 

term is small and hence generally neglected but it's inclusion if 

needed is straight forward. Little is known about the diffusion due to 

pressure fluctuation interaction. LUMLEY [21] has pointed out that the 

separation of transport and redistribution parts of the pressure 

interaction in the Reynolds stress equation is not unique. He argues 

that the correct form of the redistribution term is 

- 1 (p .U. + P .u) + 2 1 
P. ~ 1- J ~J 1- 3P 

6 (pu) 
ij k ~k 

and the corresponding transport part is 

- 2 1 
"3P 

O. ,(pu
k

) k 
1-J ~ 

Thus, there is no pressure transport of shear stress. Anyway, the 

measurements by HANJALIC and LAUNDER [20] in asymmetric plane channel 

indicated that the term ~ (pu2) in the turbulent kinetic energy 
&2 

equation is small compared to other terms appearing in that equation. 

Due to lack of any other experimental evidence, the transport term due 

to pressure interaction is neglected here. 
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This leaves the triple correlation to be modelled in order to 

determine T, " A transport equation for u,u,uk had been proposed by 
~ ~J 

CHOU [3], KOLOVANDIN and VATUTIN [22] and others. This equation contains 

quadruple velocity correlation and pressure-stress correlations. As 

the turbulent ~ransport terms in the stress equations are of relatively 

minor importance in most of the flows considered, it is found inappropriate 

to adopt such an elaborate treatment of u.u,u
k

• Thus, an algebraic 
~ J 

formulation of uiujuk is attempted by direct referance to the terms in 

the transport equation for uiujuk • HANJALIC and LAUNDER [14] obtained 

the following formulation for u,u,uk • 
~ J 

- u,u,u
k ~ J 

= C k (u ,u". U ,Uk '1 + U 'U'1' uku , '1 + UkU'1' u""u
J
'. '1) s E: ~ ~ J' ,~l- J v 1.;~ v v" ~ v 

(2.6) 

The assumptions made in obtaining the above formulation are: 

(a) flow is at high Reynolds number - viscous terms are negligible, 

(b) the triple correlations are small and have Gaussian properties 

and thus following MILLIONSHTCHKOV [23]: 

---- ---- ----= u u .U u + u.u .U u + u u .u.u 
i j k l ~ k j l i l J k 

(2.7) 

(c) the terms of the form UiUjU Z Uk~l are comparatively small 

and hence neglected, 

(d) the pressure stress correlation can be modelled as proportional 

to .,. f uiujuk . 

and (e) convective transport of u,u,u
k 

is neglected. 
~ J ' 

All except assumption (c) are elther asymptotically exact or are necessary 

for closure at this level. At least in two-dimensional boundary layer 

flows, assumption (c) is not necessary although its employment greatly 

simplifies the algebra. The measurements of HANJALIC and LAUNDER [20] 

in asymmetric plane channel indicated that assumption (c) was reasonable 
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in their flows. Therefore equation (2.6) in chosen as the model for 

UiUjUk in the present study. The coefficient Cs has to be found by 

reference to established experimental data. 

An alternative model is that suggested by DALY and HARLOW 12~ 

where the first two terms of equation (2.6) are omitted. Thus 

(2.8) 

Equation (2.8) is not compatible in its symmetry properties, only 

the left side being independent of the order of the indicies i~j and k. 

LAUNDER et al. [15] employed the equation (2.8) in predicting several 

free shear flows and found satisfactory behaviour. REECE [25] made 

prediction of plane wall flows using both (2.7) and (2.8) and found no 

advantage to employing the more numerically complicated form (2.7). 

It can be seen from the diffusion transport term of turbulent kinetic 

energy, that for consistency, the coefficent C' should be about 1.8 C . s s 

The computer optimised values of C = 0.11 and C' = 0.20 obtained by s s . 

Reece quite closely tally with the above. 

In the present investigation forms (2.7) and (2.8) are compared 

in axisymmetric wall flows •• 
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2.2.3 The Pressure-Strain Term 

The main characteristic feature of the pressure-strain term 

p 
~ (u, , + u, ,J is its redistributive effect on normal stresses (see 
p 1-3J J31-

HINZE (Ref. [26], pp 323-328». 

The appearence of pressure in the pressure-strain term can be 

eliminated following CHOU [ 3 ], by first formulating a Poisson 

equation for the fluctuating pressure and multiplying by the fluctuating 

strain. On averaging, there results 

p 
- (u, .J ~ i~ J[(UzU~)'UnUi,j + 2-.v' u' u ---+ s ,] dVo Z 

P 'l,3J Z~m m3Z i3j (X-YJ ij 

q, .. 
1-J = 

VoZ 

q, , '1 1.-J + q, "2 1-J + S .. 
1-J 

(2.9) 

(2.10) 

where, terms with and without a prime relate to values at X and Y 

respectively. The term S" is a surface integral having significance 
1-J 

only in flows affected by the presence of rigid walls. Equation (2.9) 

suggests that the pressure-strain correlation originates, apart from 

wall effects, from two distinct effects. The first part q,"l is generated 
1-J 

purely from turbulence interactions, whereas the second part q,"2 relates 
1-J 

to interactions between turbulence and mean rate of strain. 

In non-isotropic homogeneous flows with negligible mean strain 

the turbulence decays towards an isotropic state. The process q,"l is 
1-J 

the only one in (2.9) that can promote an equalising of the normal stress 

components and a diminishing of shear stress components. With this in 

mind ROTTA [4] proposed the following plausible form: 

(q, .. +</> .. J1 1-J J1- = 
£ [_ 2 I c 1 - u,u, - - 0 ' ,kl 

S k . 1- J J 1.-J) 
(2,11) 

where C
s1 

is assumed to be a constant which determines the rate of return 

to isotropy and the quotient ~ is the characteristic dacay time of the 
e: 

turbulence. If isotropy is to be established the constant Csl should 
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take a value greater than unity. It is the form (2.11) that is adopted 

in the present investigation. 

Though some workers, for example DALY and HARLOW [24], have 

neglected the part <p. '2 in their modelling of the pressure-strain term, 
1.-J 

CROW [27] has pointed out that the effects of <Pij2 may even be larger 

than <Pij1 under conditions of rapid distortion. Following ROTTA [4] <Pij2 

is expressed as 

mi 
<P "2 = U aZj 1.-J Z~m 

(2.12) 

where ru'u avoz mi 1 m i 
aZj = 

2rr. OSZOSj (X-YJ 
(2.13) 

VoZ 

and the SS are the Cartesian components of the position vector (X-YJ. 

Equation (2.12) is a rigorous consequence of (2.9) when the inhomogeneities 

of the turbulence are only minor and the second and higher order 

derivatives of the mean velocity are negligible. Rotta pointed out that 

mi 
the fourth_order tensor a

Zj 
should satisfy certain symmetry and mass 

conservation constraints. The most general fourth-order tensor satisfying 

these constraints and comprising only linear combination of Reynolds 

stresses is given in LAUNDER et at. [15]. With that tensor form, the 

mean strain part of the pressure-strain correlation can be written 

(<P,,+<p .. J
2 1--J J1.-

= _ ex: (P" 
1.-J 

2 
- 8 .. PJ 
3 1.-J 

- S k (U • • + u . . J 
1.-~J J~1.-

2 
- n (D ij - 3" 8 ij P J (2.14) 
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where 
p, , - (U'Uk u, k + U ,uk u, k) (2.15) 

1-J 1- J ~ J 1-~ 

and 
D, , - (uiuk Uk ' + U ,uk Uk 1-) (2.16) 

1-J ~J J ~ 

and 1 
P - "2 Pkk 

is the production of kinetic energy. The coefficients ~, Sand n can be 

expressed by relations containing a single constant Cs2 as 

1 
~ = - (C 2 + 8) 

11 8 

1 
S = 

55 
(30 C 

82 
- 2) 

1 
2) n = - (8 C 2 -11 s 

(2.17) 

This is the form of ~"2 that will be used in the present investigation. 
1-J 

The following inferences are useful to note: 

(a) in isotropic turbulence subjected to sudden distortion, 

equation (2.14) reduces to 

(~ .. + ~")2 1-J J1- = (2.18) 

which is same as derived by CROW's [27] detailed analysis 

(b) the degenerate form, 

(<P" + <P")2 1-J J1- = - y (P, , 
1-J 

2 
_io. ,P) 
oJ 1-J 

(2.19) 

of the equation (2.14) can be considered as a parallel of 

equation (2.11). Here the action of mean strain is to 

isotropize the production tensor Pij whereas the action of 

~. '1 was to isotropize the stress tensor. NAOT et al. [28] 1.,.J 

proposed the form (2.19) as a replacement for ~ij1' whereas 

here it is considered in addition to the ~"1 term. Here 
1.,.J 

again for sudden distortion in isotropic turbulence requires 

y to take a value 0.6. 
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In the present investigation both ;forms~ i.e. equation (2.14) and 

equation (2.19), are employed as the model for Wij2 and compared. 

The present model for CP •• is exactly the same as that used by 
. "tJ 

LAUNDER et al. [15] in predicting a variety of wall and free shear flows. 

Previous to that HANJALIC and LAUNDER [14] modelled the mean strain part 

cpo '2" in terms of non-linear combinations of Reynolds stress. Through 
"tJ 

their chnice for CB1 of 2.8 they had found it necessary to include 

non-linear terms in CP"2 in order to predict correctly the stress levels "tJ 

of nearly homogeneous shear flow data of CHAMPAGNE et el. [29]. 

The model of cpo . given here still has two coefficients to be 
"tJ 

determined. CB1 and CB2 (or CB1 and Y). The ideal information to 

evaluate these coefficients are that of CHAMPAGNE et al. [29], where 

the transport effects are negligible in the stress equations. Further, 

the production and dissipation of kinetic energy are in equilibrium 

1e~ding to simple algebraic relations for the relative magnitudes of 

the Reynolds stresses. Noting the inability of the "redistribution of 

production" model (equation (2.19» to predict the difference between 

the magnitudes of lateral and transverse normal stresses, for best 

possible agreement with the data of CHAMPAGNE et al. the coefficients 

of cp .. models can be obtained as, 
"tJ 

(a) C
B1 

= 1.5 in equation (2.11) and CB2 = 0.4 in equation (2.14) 

or (b) C
B1 

= 1.8 in equation (2.11) and Y = 0.6 in equation (2.19). 
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2.2.4 Wall Effects in the Pressure~Strain Te~ 

In modelling the ~ .. term in flows unaffected by walls the 1-J 

surface integral Sij in equation (2.9) was neglected. The influence 

of this term on ~ .. must be included in modelling the wall region. When 
1-J 

~ij is affected by a single flat wall the surface integral can be-

eliminated from equation (2.9) and the resultant equation expressed as: 

u .. 
1-~J 

= -1.. J [(u u ) 'u. . + 
4rr 7., m~ 7.,m 1-~J' 

V 
(2.20) 

where suffixes 1 and 2 stand for streamwise and lateral flow directions 

and y* is the image of point Y with respect to the wall. As with 

equation (2.9), it can be inferred from equation (2.20) that the near-

wall effect of ~ij also arises from two effects, one due to turbulent 

interactions and the other due to mean velocity gradients. Thus, as a 

framework for divising a model of the near-wall effects, one is 

led to write 

(~ .. + ~ .. ) = [c 1 f.. (u.u. - .?o . . k) + U-r (b~~ + b~~)l f/t-t-' 
1-J J1- wsw k 1- J 3 1-J v~m vJ v1- x 2 

(2.21) 

where the function ff~ has the effect of diminishing (~ij + ~ji)w 
x 2 

with increasing distance from the wall. The fourth order tensor 

should have the following properties. 
mi 

(a) In order to be redistributive, bZi = o. 

(b) Since the relative levels of the transverse component 

(i.e. the component parallel to the wall and normal to the 

flow direction) of the Reynolds stress in free flows and in 
23 

wall flows are more or less equal, the component b
13 

should 

be small. In fact it is assumed zero. 
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Applying those propert~es, LAUNDER et al. [15] obtained the ~ .. as 
1-J1;) 

E: (-- . 2 ~ J C 1 - u. u. - - v.. . k 
S w k 1- J ;5 1-J 

+ C 2 (P •• - D • .) 
s W 1-J 1-J 

+ Sw k (U .• + u .. J f.( z,E:.; . 
1-.oJ J.o1- x2 

(2.22) 

In order to obtain the numerical values for the coefficients 

Cs1W' C
s2w 

and s1;) reference is made to near-wall flows. There the 

transport terms in the stress equations are again negligible. Therefore 

it is possible to obtain algebraic expressions for the relative stress 

levels in that region. Further, if the near wall effect function fiZ,Sf 
x2 

is defined so that it takes a numerical value of unity in near-wall 

region, then the numerical values for the coefficients in equation 

(2.22) can be obtained as Cslw = 0.5, CS21;) = 0.06 and Sw = O. 

An alternative model was suggested by DALY and HARLOW [24] 

who were the first to recognise the need for a separate near-wall 

contribution in pressure-strain modelling. They proposed that ~ijw be 

modelled as 

ex: (2.23) 

where the wall-effect tensor ~ab is of importance for the enhancement 

of anisotropy near a wall. The last term of equation (2.23) ensures 

the redistributive property of ~ijw' In this form equal amounts of energy 

is transferred from the turbulent stress component normal to the wall, 

to streamwise and transverse components. 
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An integral formulation of the near~wall effect tensOr Sab 

for a flat plate takes the form: 

Syy ex: 1 
y 

(2,24) 

and 
S = S = 0 
xx zz 

where y is the normal distance to the wall. SHIR [30] considered the 

Daly-Harlow model and incorporated unit normal vectors to represent the 

wall effect tensor, as 

S = n n ljJ 
ab a b 

(2.25) 

where ljJ is a decay function which accounts for the diminishing effects 

away from the wall. 

In a recent investigation of ground effects on pressure fluctuations 

in the atmospheric boundary layer, GIBSON and LAUNDER [31] extended the 

formulation of DALY and HARLOW [24] to cover the mean strain part ¢' '2 
1-J W 

and gravitational effects of ¢,' • (In the Daly-Harlow proposal no -
1-Jw 

near-wall influence on ¢ij2 was present and the gravitational influence 

was omitted altogether.) In the Gibson-Launder model the near-wall effect 

of ¢ij2 was considered to be the redistribution of ¢ij2 itself with 

respect to the wall orientation i.e. 

= E: -- ;) -- ;) -.-
C 1 - (u.. u nkn 0.. - - uku, nkn, - - uku, nkn,) 

S W k /( m m 1-J 2 1- J 2 J 1-

(2.26) 

and 

(2.27) 
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The effect of the mean strain part ¢ ... is also to redistribute 
1.-J 2w 

energy from the component normal to the wall, equally between longitudinal 

and transverse parts. The experimental data of well documented wall 

flows however do not support this.behavtour. There it seems that the 

energy transfer is essentially from the normal to the longitudinal 

component only, and that the transverse component is more or less 

uneffected. The attractiveness of this model is that it is possible to 

extend the basic idea to cover other effects in pressure redistribution 

(e.g. gravitational effects). Further, its extension to the case of 

pressure-scalar gradient distribution term is clear. In the present 

investigation the Launder et al. model (equation (2.22»is compared with 

the Gibson-Launder model (equations (2.26) and (2.27»' in plane and 

axi-symmetric flows. 

The form of the dacay factor f in (2.21),(2.26), (2.27) 

(or Sab in (2.23» determines the effectiveness of ¢., terms for 
1.-Jw 

positions away from the wall. REECE [25] has shown by examining the 
.. 

HANJALIC and LAUNDER [20] asymmetric channel and KLEBANOFF's [32] flat 

plate boundary layer data that ¢ .. terms as a whole should decrease as 
1.-Jw 

the inverse of normal distance to the wall. Since the production Pll or 

P decreases inversely with the distance from the wall, Z should be more 

or less constant in the near-wall region. The results of LAUNDER et el. [15] 

suggest that 

f ex: (2.28) 

is an appropriate non-dimensional decay form for a single wall, where'l€ 

is the length 

be considered 

scale of energy containing eddies. The length scale Z€ can 

either as k3
/

2 
or as luvI

3
/

2
, though of course they produce 

€ € 

slightly different decay functions. If there are two walls present 

(e,g. channel flow), the effects are assumed to be additive, so that the 
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factor i.6. revi.~ed to read 

[ le 
Z 

J (2 ~ 29} 
fchanneZ 

CI: -+ ·s 

Y D '"' Y 

where D is the width of the channel. The above form could account for the 

'" slow decay of near wall effects felt in the HANJALIC and LAUNDER [20] 

flow and in the symmetric channel .flow of COMTE-BELLOT.[33]. 

In the case of a round pipe, the effect of near wall terms should 

be even more pronounced in positions away from the wall. From geometrical 

consideration (see Appendix A) of equation (2.28), extended to the case 

of a circular pipe, the following form emerges: 

z 
f. 0:: S -p1-pe Yo 

(2.30) 

where 

R 
Yo = 

Tf 
(2.31) 

J 
1 - b cosS de 

(1 + b2 _ 2bcos6J 3/2 

0 

where b = r/R is the dimensional radius. 

LAUFER's [34] pipe flow data however does not show any stress 

anisotropy near the axis which would suggests that the near wall terms are 

very small near the axis. More recent measurements by LAWN [19] in pipe 

flow, on the other hand, suggest substantial anisotropy in stresses which 

may be either due to wall effects or due to some turbulent transport 

effects. 
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2.3 The Transport Equation for Isotropic Dissipation Rate 

The exact transport equation for £ == V U. "7u, has been 
1.-" v 1.-" Z 

presented by many workers (see for e.g. HARLOW and NAKAYAMA [35]) and 

it takes the form: 

;t + Uk~k = - 2v Ui"k(Ui"ZUk"Z + UZ"iUZ"k) 

A B 

- 2v (Ui"ZUk"ZUi"k) - 2 \)2 (Ui"kkUi"ZZ) 

C D 

- 2v (Ui"ZUk) Ui"Zk 

E 

- U £' 
k "k 
F 

2pV ( ~{k"Z)"k + ~ V £"kk 

G H 

(2.32) 

Terms F, G and H represent the transport of £ in direction xk 

due to turbulent interaction, pressure fluctuation and viscous action 

respectively. Term E is negligible in the fully turbulent region. The 

terms B, C and D represent the sources and sinks of dissipation rate £ • 

.. 
HANJALIC and LAUNDER [14] considered the term B as the generation 

term in (2.32) and C and D as the sink terms. LUMLEY and KHAJEH-NOURI [36] 

on the other hand argued that the term B is negligible and that the terms 

C and D together represent the generation minus destruction of £. The 

final forms of generation minus destruction of £, arrived by [14] and [36] 

however are similar. It is 

£ ( - C u.u. U . . - CC2 £ ) • 
k. £1 1.- J 1.-"J c;. 

(2.33) 

In formulating the diffusive term in (2.32) the following considerations 

are applied: 

(a) the viscous transport term, H is negligible at high Reynolds 

numbers 
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(b) at the p~e~ent level o~ qlosu~e the te~m G ahould be neglected _0_-
(consistant with the practice in closing the uiuj equation) 

(c) an algebraic expression for the term F should be obtained with 

reference to the transport equation for uk£f • 

The tra~sport equation for the correlation Uk£f at high Reynolds numbers 

can be simplified to an algebraic form by neglecting convective transport 

of uk £' • HANJALIC and LAUNDER [14] proposed that for boundary layer flows 

the algebraic relation can further be simplified to obtain 

U £' = 
k (2.34) 

Thus, the modelled form of equation (2.32) is 

= C £--u - col r. U.U . . . 
c:. "- 1.- J 1.-~J 

£2 k UkU Z 
C £2 T - C £ ( £ £~ Z ) ~ k 

(2.35) 

The equation (2.35) contains three coefficients which need to be determined. 

The exponent of the decay of turbulent kinetic energy in isotropic 

turbulence is about - 1.1 (see for example COMTE-BELLOT and CORRSIN [37]). 

For this condition equation (2.35) and the kinetic energy equation (2.3) 

can be rearranged to the form 

= 1 1 - -
n 

(2.36) 

where n is the decay exponent. Therefore C takes a value 1.90 . 
£2 

A further relationship between the coefficients in equation (2.35) 

can be obtained by reference to the constant stress layer adjacent to a 

wall. There 

(a) the convective transport of £ is negligible 

and (b) production and dissipation of turbulent kinetic energy are equal. 

Equation (2.35) then may be reduced to: 

= (2.37) 



u u 

where K is the von Karman constant; and U the fr!ct!on veloc!ty. The 
T 

most suitable numerical magnitude for C£ and hence Cel via equation (2.37) 

can only be obtained by computer optimisation with reference to a variety 

of flow data. LAUNDER et al. [15] arrived at C£l = 1.44 and hence C = 0.15 
£ 

by computer optimising the £ equation in several free and wall boundary 

layers. 

Thus, in the present investigation equation (2.35) with C£l = 1.44, 

C = 1.90 and C = 0.15 will be used as the model for determining the 
£2 £ 

isotropic dissipation rate £. 

An alternative form of dissipation model has been suggested by 

LUMLEY and KHAJEH-NOURI [36]. They a~gue that the source of £ due to 

strain applied to the flow cannot come purely from the term B of equation 

(2.32). Instead they argue that the source of £ by strain should be 

modelled in terms of anisotropy, b .. of the Reynolds stress tensor, where 
t.J 

b .. 
t.J 

-- - - 0 .. 
[ 

UiUj 2 1 
k :3 t.J 

Then they propose 

where 

(Source - Sink) of £ = 

b2 = b .. b .. 
t.J t.J 

(C' . 
£2 

(2.38) 

(2.39) 

Reynolds [38] has shown that in the case of a two-equation model of 

turbulence, where b2 should be found from the constitutive relation (1.11), 

equation (2.29) may be re-expressed as: 

(Source - Sink) of £ = P £2 
(C' - C* -)-

£2 £1 £ k 

which is the same as the form (2.33) obtained by many others e.g. 

LAUNDER et al. [15]. 

(2.40) 
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OWEN [39] treated terms C and D in equation (2.32) as the (source, 

sink) terms and modelled the difference between them with reference to 

the decay of grid turbulence. His equation for isotropic dissipation rate, 

therefore lacked a positive source term but satisfied equation (2.37) 

to obtain a large diffusion coefficent (c€ = 0.64). He made numerical 

predictions of pipe flows with this model for € using a near-wall boundary 

condition of dissipation rate equal to the production of kinetic energy. 

The absence of a positive source term here was compensated by large 

diffusive leakage of € • His model would have been completely unsatisfactory 

for free flows without a generation term in € equation. 
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2.4 The Scalar Flux Equation 

The correlation U.C represents the rate of transport in direction 
1.-

xi of the scalar C by turbulent velocity fluctuations. The exact transport 

equation for uic can be obtained by multiplying the instantaneous scalar, 

(C+c) equation (1.4) by ui component and adding it to the xi component 

of the Navier-Stokes equation (1.3) multiplied by c. The time averaged 

form of the sum is 

= (-- C U) + pIC uiuk ~k + ukc i~k -p- gi 

Convection (a) Generation 

- rr + v) c kU ' k 
~ 1.-~ 

(b) Dissipation 

- (u,ukc - r u·c k - v cu. k + E£ Q'k) k 
1.- 1.- ~ 1.-~ P 1.- ~ 

(c) Diffusion 

+ P.. c . 
p ~ 1.-

(d) Pressure interaction 

(2.41) 

This equation is valid,. for incompressible flows with small gradients 

in mean scalar C so that the fluctuation in the molecular viscosity and 

molecular conductivity are negligible. The fluctuations in density of the 

fluid too is assumed negligible in all terms except the gravitational 

term i.e. the second term on the right hand side of equation (2.41). 

A more general form of the exact equation for the transport of U.C can 
1.-

be found in RUBESIN and ROSE [40]. 

In the present investigation only the transport of passive 

scalars is considered i.e. a hydrodynamic field completely unaffected by 

the scalar field. Under this condition the gravitational term in (2.41) 

will be neglected. LAUNDER [18] deals with the modelling of the 

gravitational terms in the Reynolds stress and scalar flux equations for 

active scalar transport situation. 
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Term (a) represents the generation of u.a due to the interaction 
1.-

of turbulence with mean gradients. It is interesting to note that gradients 

of mean velocity contribute to the generation of scalar fluxes. The widely 

adopted Boussinesq type formula does not contain this contribution of the 

mean velocity field. It must be noted that, however, in two dimensional 

boundary layer flows the contribution of the production due to mean 

velocity is negligibly small. In the case of developing flows where the 

streamwise scalar fluxes are important, the presence of these production 

terms may be significant. 

An order of magnitude analysis of the dissipation correlations, 

as presented by TENNEKES and LUMLEY [41], yields 

V ( a kU • k ) 'V o ( 
~ \- .. 

-.-}-
RetuZ'b ) (2.42) 

and 

-.-}-r ( a kU . k ) 'V o ( Pe turb 
) 

.. 1.-.. 
(2.43) 

In the present study the turbulent Reynolds number is assumed to 

be high. If the analysis is confined to fluids with close to unity 

Prandtl numbers, the dissipation terms (b) can be considered negligible. 

If the Prandtlnumber of the fluid differs markedly from unity then one 

of the above terms will become significant and should be retained in the 

analysis. OWEN [39] concluded that inclusion of these dissipation terms 

are necessary only for low Reynolds number flows of fluids with Prandtl 

number differing substantially from unity. 

Apart from the above, (2.41) contains the pressure-scalar gradient 

correlation (d) and the diffusive transport term (c) which need to be 

modelled in terms of known variables before (2.41) can be used in a 

closure model for the mean scalar equation. In the following subsection 

models for these terms will be presented. 
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2.4.1 The Diffusion Tenn 

The diffusion term in equation (2.41) is 

T. 
1.-

_ ( U U n - run _" nu + E£ ~ ) 
i k'-' i'-~ k v '"' i~ k p U ik ~ k (2.44) 

The first term of the right hand side of (2.44) represents the 

diffusive transport of U.C due to fluctuations in velocity. The experimental 
, 1.-

measurements of some of the components can be found in the literature 

and their gradients are found to be significant. The second and third terms 

represent diffusion of U.C due to molecular action and these terms are 
1.-

generally neglected along with dissipative correlations mentioned in 

Section (2.4). There is no information available about the magnitude of 

the diffusion term due to pressure fluctuations. So, parallel to the 

neglect of the pressure diffusion term in the Reynolds stress equation, 

pressure diffusion is neglected in the uic equation too. 

This leaves the triple correlation uiukc to be modelled. In order 

to obtain an algebraic relation for uiukc' reference is made to the 

transport equation of uiukc given for example in KOLOVANDIN and VATUTIN [22]. 

In appendix (B) it is shown that with some simplifying assumptions the 

correlation uiukc can be written as, 

= k ---- --- ---
Cc £ ( ukuZ uic~Z + uiuZ ukc~t + uzc uiuk~Z 

(2.45) 

As OWEN [39] and LAUNDER [42] have done, in the present investigation 

only the first two terms of (2.45) will be included as the model for uiukc. 

The coefficient C in (2.45) can only be determined by computer 
c 

optimisation. Its value is expected to be around 0.11 , which is the 

magnitude of computer optim~sed diffusion coefficient in the stress model. 
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The diffusion models suggested by other workers are often simplified 

versions of (2.45). WYNGAARD and COTE [43] retained only the fIrst of the 

terms in (2.45) with a coefficient of 0,15, whereas DONALDSON et al. [44J 

effectively expressed the stress components in terms of turbulent kinetic 

energy to suppose that 

ex: k
2 

( + ) UkC. U.C k s .,1.- 1.- , 
(2.46) 

LUMLEY and KHAJEH-NOURI [36] suggest that when gravitational effects 

are present the buoyant transport term is an order of magnitude larger 

than that due to scalar flux gradients. Further for unstratified conditions 

their model will have a k 2 
-term E 0ikUtC,t' in addition to the form suggested 

by LAUNDER [42] and OWEN [39]. 

In LUMLEY [45], a suggestion is made for the incorporation of a 

term like u.c(k2/s) k in order to account for the spatial variation in 
1.- , 

the transport coefficient. The third term in (2.45) has more or less 

this effect. 

2.4.2 The Pressure-Scalar Gradient Correlation 

The pressure-scalar gradient correlation E C . is the counterpart 
p ,1.-

of the pressure-strain correlation in the stress equation. This term 

provides the mechanism which limits the growth of the scalar fluxes. The 

exact equation for the correlation can be obtained by multiplying the 

Poisson equation for fluctuating pressure by the gradient of scalar 

fluctuations. On averaging the product one obtains (see Appendix (C) 

for details): 

E. c . 1 f 
P ,1; = 47T 

v 

<1>. = 
1.-C 

(u'u') C dVat +.L u' 
m n ,nm ,i (X-y) 27T n,m 

+ 

(U' C ) dVat+ s 
n,m,i (x-y) ci 

cf>ic2 + s . 
C1.-

(2.47) 
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where the prime puperscr;lpts on the right hand s;lde of (2,4 7} 1;'efer~ to 

quantities evaluated at Y' • 

Following CHOU [3] who showed that the surface integrals in the 

velocity correlations are negligible in positions away from free boundaries. 

the surface integral Sai is included for further examination in near.-wall 

situations only. Equation (2.47) would contain an additional term, if 

gravitational effects were included in the velocity equations. The 

first two terms on the right hand side of (2.47) fallon two categories, 

one aependent only on fluctuating quantities ~. 1 and the other ~. 
~e ~e2 

dependent on the interactions of the mean strain field. 

The most widely used form of the turbulent, part ~. 1 is based on 
~e 

Rotta's linear-return-to-isotropy approximation of the pressure-strain 

correlation. Here the effect is expressed as a linear function of the 

component scalar flux, i.e. 

= - c £ u.e 
el k ~ 

(2.48) 

Strictly the time scales for this process should depend on both hydrodynamic 

turbulence time scale ~ and the scalar turbulence time 
E: 

least in local equilibrium flows these two time scales 

2 
scale ~ • At 

2E:e 

can be a,ssumed 

proportional, hence the use of k is preferred over inclusion of two yet 
E: 

unknown quantities.~ and £a • This form of ~iel was suggested by MONIN 

[46] and then by LAUNDER [18], LUMLEY [47], DONALDSON et al. [44] and others. 

Equation (2.48) is the model for~. used in the present investigation. 
~el . 

In modelling the mean strain part of the pressure.-scalar gradient 

correlation A, the same steps taken in modelling ~ "2 are followed. It 
~ie2 ' ~J 

is assumed that any inhomogeneities in the flow do not make a major 

contribution to the integral ~ie2 . Therefore ~ie2 can be expressed as, 

= U em 
n,m ni 

(2.50) 
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1 J a2 
u,h a dVol 

2TI a~ a~. (X-YJ 
n 1.-

Vol 

(2.51) 

where ~'s are the Cartesian components of the position vector (X-YJ. The 

m 
third order tensor ani should satisfy the symmetry constraint, 

(2.52) 

Further, in order to satisfy the conservation of mass principle, equation 

(2.47) indicates that, 

m = 0 a . 
m1.-

(2.53) 

Also, applying Green's theorem to the integral in (2.51), away from 

boundaries, 

= (2.54) 

Equation (2.54) suggests that a linear combination of scalar fluxes may 

be suitable for expressing a~i' Thus the form 

(2.55) 

should satisfy the relations 

= Va 

= aa + Sa + 3Va 

2 = 3a + S +V (2.56) 
a a a 

implied by equations (2.52) - (2.54). Therefore the mean strain part of 

~ia can be written as 

~ia2 = 0.8 uma Ui,m - 0.2 uma Um,i (2.57) 
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LAUNDER [42] and later LUMLE~ [47] arrived at these expressions following 

more or less similar arguments as given here. 

An alternative formulation has been proposed by LAUNDER [18] 

in which the sole effect of~. was considered to be to reduce the 
1.-c2 

effect of generation of uic by mean gradients. This is parallel to the 

idea of redistribution of stress production as given in (2.19). Here, 

~ic2 = (2.58) 

Note that in two-dimensional boundary layer flows (2.58)does not 

contribute to the equation for lateral scalar flux, whereas (2.58) has 

- au a contribution of - 0.2 UC --a OWEN [39] adopted this model for his ay 
calculation of scalar transport in pipe flows. In the present investigation, 

equation(2.58) is employed as the model for ~. 2' Equation (2.57) will 
. 1.-C 

also be used as a comparison model in free shear flows •. 

An alternative form of a model has been suggested by LUMLEY and 

KHAJEH-NOURI [36], where the explicit appearence of mean strain terms were 

excluded from the analysis. Briefly, their method was, first to consider 

the £p . (consideration of £ C . would lead to the same result) as a 
p ~ 1.- P ~ 1.-

function of the form 

= F 

and then to make a Taylor series expansion to obtain 

where 
T 

C -p . 
p ~ 1.-

= 

k 
£ 

= 

; 

and 

b .. 
1.-;] 

IT 

= 

= 

U.U. 
1.- ;] 

-k-

b .. b .. 
1.-;] ;]1.-

2 Q 
3 ij 

. ., 

(2.59) 

(2.60) 
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In the present investigation a model consisting of only the first two 

terms in (2.60) is considered as an addition to ~. 2 form (2.57) and 
1AJ 

not as Lumley and Khajeh-Nouri proposed as a replacement for~. i.e. 
1-e2 

~ic1 = E: -­
C ~ue 
el k i 

C' ~ b u e 
el k iZ Z 

(2.61) 

Now in order to find the numerical values for the coefficients in 

the models of~. described above, the local equilibrium forms of the 
1-e 

scalar flux equations in free shear flows are considered. In these flows 

one should aim to get a Prandtl number of about 0.6 - 0.7 and a ratio 

of the scalar fluxes in streamwise to the lateral direction of about 1.2. 

(WEBSTER's [48] data indicate a value of 1.1 for this ratio; however, 
'2 

his measured levels of ~ are about 25% lower than the accepted level 
ti 2 

and hence his Ue is likely to be rather too low.) 
tic 

(a) Redistribution Model, i.e. Equations (2.48) and (2.58) 

Under local equilibrium conditions in a two-dimensional flow 

one obtains 

(2.62) 

With stress levels from the nearly homogeneous shear data 

of CHAMPAGNE et al. [29], and with crt = 6.65, Cel is obtained 

as equal to 2.9. 

The streamwise scalar flux equation in local equilibrium 

conditions reduces to 

ue 

ve 
(2.63) 

With a scalar flux ratio of 1.2 this implies that C
e2 

should 

be about 0.5, which is the value used by OWEN [39]. 
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(b) Quasi-Isotropic Model 

o 

If the equation (2.48) is used for ¢. l' along with the given 
UJ 

quasi-isotropic model (2.57), clearly incompatible magnitudes 

for Cal will be obtained from the two flux equations. Therefore 

in adopting the quasi-isotropic relation the non-linear form 

(2.61) for ¢. 1 will have to be used. The resulting flux 
1-0 

equations in local equilibrium form are 

- crt [ ": 1 [u: r 
+ 0.2 [ :] [~] 

- C cl 

- C 
01 

(2.64) 

- - C' b - - C' [ua] !ua] 
va 01 11 va 01 

(2.65) 

On substituting numerical values for at, ~ and stress levels 
va 

the coefficients Cal and C~l can be obtained as 4.3 and - 3.2 

respectively. 

2.4.3 Wall Effects on the Pressure-Scalar Gradient Term 

The surface integral term neglected in the analysis subsequent to 

equation (2.47) can be expected to have a considerable effect in 'near-wall 

flows. As in Section (2.2.4), this surface integral can be eliminated by 

manipulating the equation (2.47). The resultant form is 

E.a 
p .,i [ 

(u 'u ' ) a +' 2 U' u ' a ] [_1_ + _1 -J dV 
m n .,mn .,i 1.,2 2.,1.,i X-y X-y* 

v 
(2.66) 
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where, suffices 1 and 2 stand for the streamwise and lateral directions 

respectively. Further, y* is the image of Y with respect to the wall. 

Here again, the turbulent and mean strain parts can be identified 

and modelled in a manner exact~y parallel to that of the wall effects 

on the pressure-strain correlation. In a general form this can be 

written as, 

= [ - (2.67) 

The function f has the effect of diminishing~. 
1A:!W 

with increasing 
m 

distance away from the wall. The general third-order tensor dZi 

comprising linear combination. of scalar fluxes is 

(2.68) 

m 
This tensor should satisfy the symmetry requirement d

Zi 
and the 

mass conservation constraint am = O. They lead to 
mi 

S' 
c 

= \), 
C 

and o = a' + 4S' 
c c 

(2.69) 

Thus the resultant form for the wall effect on pressure-scalar gradient 

correlation is 

[ - E: - - - 1 f 1 x
Z

E:
2
1 C - u.c - 4S'o~.u c u~ + S'o .u~c u~ 

clw k 1" c 1/1" m I/~m c m 1/ I/~m 

(2.70) 

An alternative near-wall model has been suggested by GIBSON and 

LAUNDER [31] which parallels their near-wall pressure-strain model. The 

turbulent and mean strain parts of their model are 

~. 1 1"C W 
= E: - i Zt j C . -k ukc nkn. f --

C1"W 1" n .X. 
J J 

(2.71) 
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and 

(2.72) 

In the present investigation this near-wall model is used along with 

equations (2.48) and (2.58). The form in equation (2.70) is employed as 

a comparison model. 

Now, in order to find the numerical values for the unknown 

coefficients (two in each model) in these near-wall forms attention is 

turned to turbulent scalar characteristics in wall flows. As will be 

seen later in Chapter (4), the turbulent Prandtl number and the ratio of 

levels of scalar fluxes in the streamwise direction to that of lateral 

flow direction in two-dimensional flows are about 0.9 and 2.0 - 2.5 

respectively. 

(a) Gibson- Launder Model 

Equations (2.58) and hence (2.72) do not contribute to the 

lateral scalar flux equation in two-dimensional boundary layers, 

thus the coefficient C in (2.71) must be chosen in order to 
clw 

get a turbulent Prandtl number of 0.9. With near-wall stress 

levels, the local equilibrium form of vc equation imply a 

C 1 of 0.75. Equation (2.71) and (2.72) do not contribute to 
c w 

the streamwise scalar flux equation, therefore C in (2.70) 
c2w 

can not be found in two-dimensional flows. Further it means 

that the streamwise scalar flux equation is unchanged in the 

near-wall region. This implies a ratio uc/vc of about 2.0 

which agrees reasonably well with the experimental data 

though is perhaps a little low. 
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(b) Isotrop~c Model 

When equation (2.70) is employed in the local equilibrium 

regions, the scalar flux equations for the lateral and streamwise 

directions can be written in algebraic forms as, 

o = 
2 

1L cr + (C + C ) ~ + 8' uc 
uv t cl clw k c vc 

(2.73) 

and 

(2.74) 

With the above mentioned near-wall stress levels and scalar 

characteristics, these two equations can be solved to obtain 

C =0.25 and 8' ~ 0.06 • 
c;1w c 
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2.5 The' Transport Equation for" Scalar' Fluctuations 

The variable representing the level of scalar fluctuation is 

taken as ~oz , which corresponds to the' turbulent kinetic energy 

k = ~u~ . The transport equation for~oZ can be obtained by multiplying 
'Z-

the instantaneous scalar (C+o) equation by the fluctuation~o • On time 

averaging the result yields 

= 

(2.75) 

Convection = Generation - Dissipation - Diffusion . 

In order to solve (2.75) models have to be supplied for the 

dissipation and diffusion terms in this equation. 

The time scale of turbulence associated with the scalar turbulence 

is ~02/£~ where £~ = r 0 •• 0 •• • The assumption that there is a constant 
.... v 'Z-J 'Z-J 

ratio between the time scales of the scalar field and the hydrodynamic 

field yields 

= (2.76) 

where R is the time scale ratio. The magnitude of R , if it is a constant, 

should be evident from thedacay of turbulence behind a heated grid as 

the ratio of decay exponents is equal to the ratio of time scales. The 

survey of scalar fluctuation decay data compiled by LIN and LIN [112] . 

however show a large variation in dacay exponents. They imply time scale 

ratio between the extremes 1.26 to 0.35 • 

In computer modelling SPALDING [49] used a value of 0.5 whereas 

LAUNDER [18] used a value of 0.8 in predicting buoyant free shear flows. 

In the present study a value of 0.5 is used for the time scale ratio in 

(2.76). 

The more appropiatemethod of course is to solve forE via its 
o 
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transport equation, an attempt similar to solving € the dissipation of 

turbulent kinetic energy. Current modelling ideas have followed lines 

similar to that used in. closing the· € equation. Here however the presence 

of two time scales k/s and~c2/sc complicates the modelling a great deal. 

OWEN [39] has suggested a model for € ,but his equation containing no c 

positive source term is clearly incorrect. 

As for the modelling of diffusive transport of ~C2 reference is 

made to the transport equation for u.c2 
• The algebraic expression 

J 

obtainable with the level of assumptions used in modelling u.u.u
k 

of 
1., J 

u.u.c , is, 
1., J 

Cg~ [UkUj r,>o2J,k+UkOU/',k+UjUkOC,k 1 
(2.77) 

WYNGAARD [43] omitted the last terms in (2.77) thus retaining the 

usual gradient diffusion form. In the present investigation too only the 

gradient form is retained 

(2.78) 
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2.6 A Summary of the Models to be Investigated 

The turbulence models discussed in previous sections of this chapter 

are summarised here. Table (2.1) corresponds to the hydrodynamic closure 

models whereas T~ble (2.2) refers to the scalar transport models. The 

different models are identified here with different code names and the 

methods used in obtaining unknown coefficients that appear in modelled 

terms are mentioned. 



Term Name 

Pressure- Rsl 
-velocity 
gradient 
correlation 
cp •• 

1-J 
Rs2 

Near-wall R 
effects on swl 

cp .• 
1-J R 

sw2 

Turbulent Dsl 
diffusion 

Ds2 

Model 

Description Equation of Coefficient and Value Used 
its First 
Nention 

LAUNDER et a1. (2.11) and Cs1 = 1.5 and Cs2 = 0.4 
[15] isotropic (2.14) 
model 

LAUNDER et aL (2.11) and Cs1 = 1.5 and Cs2 = 0.6 
[15] simple (2.19) 
model; 
also in [31] (2.11) and C 1 = 1.8 and C 2 = 0.55 

(2.19) 
s s 

LAUNDER et al. (2.22) Cs1w= 0.5 and CSGw= 0.06 
[15] model 

GIBSON-LAUNDER (2.26) and C 1 = 0.5 and C = 0.3 
[31] model (2.27) s W s2w 

Tensor invariant (2.6) C = 0.11 
model s 

Gradient diffusion (2.8) c' = 0.2 
model S 

Table 2.1 Hydrodynamic Models Used in the Present Study 

How Determined 

Normal stress 
levels in nearly 
homogeneous 
shear flow 

Near-wall stress 
levels 

-

Computer 
optimisation 

I 
I 
I OJ 

'" 



(contd.) 

Model 

Term Name Description Equation of Coefficient and Value Used 
its First 
Mention 

Energy LAUNDER et al. (2.33) Ce;l = 1.44 
dissipation [15] model 
rate 
equation (2.33) Ce;2 = 1.90 

(2.34) C = 0.15 
e; 

-- -

Table 2.1 Hydrodynamic Models Used in the Present Study 

How Determin~d 

Computer 
optimisation 

Decay of grid 
turbulence 

Consistency with 
Von Karman 
constant and near-
wall stress levels 

r ... ·· '-, 

.' ___ "c 

~: 

.~""'''' 

ctJ. 
~ ... ,., 

~.­
~. 

~ v ..... 

.1:.: ... 



Term 

Pressure 
-scalar 
gradient 
correlation 
in flux 
equation 

<Pic 

Near-wall 
effects on 

epic 

Model 

Name Description Equation of Coefficient and a 
its First Tentative Value 
Mention 

R 1) Linear (2.48) Cal = 2.9 
al destruction 

2) Redistribution 
of production 

(2.58) C
c2 

= 0.4 

(due to mean 
velocity 
gradients) tensor 

Rc2 1) Non-linear (2.61) C
Cl 

= 4.0 and C' = - 3.2 
destruction 

cl 

2) Quasi-isotropic (2.57) exact term known 
model 

R 
Cl.Jl 

Isotropic model (2.70) Cclw = 0.25 and S~ = 0.06 

R Cl.J2 
1) A modified linear (2.71) C 1 = 0.75 

destruction term c 1.J 

2) Modified linear (2.72) C = not applicable in 
destruction term c21.J two-dimensional 

boundary layers 

Table 2.2 Scalar Transport Models Investigated in the present Study 

How Determined 

Prandtl number of 
0.65 in free flows 

Flux ratio of 1.2 
in free flows 

Prandtl number of 
0.885 in near-wall 
flows 

Flux ratio of 2.05 
in near-wall flows 

<Xl 
<Xl 



(contd.) 

Model 

Term Name Description Equation of Coeff icien t and a 
its First Tentative Value 
Mention 

Diffusive Dol Gradient diffusion (2.45) C = 0.20 
transport of 

0 

fluxes Do2 Gradient diffusion Co = 0.11 

Do3 Tensor invariant Ca = 0.11 
type 

Diffusive Gradient diffusion (2.78) Cg = 0.11 
transport of 
~ 

Destruction of Constant time (2.76) Cg2 = k = 1.3 -;- 2.0 
of scalar scale ratio type 
fluctuations 

-_ .. ----- -

Table 2.2 Scalar Transport Models Investigated in. the Present" Study 

How Determined 

Similarity with 
existing stress 
model coefficients 

, 

Similarity with 
kinetic energy 
equation 

Levels of scalar 
fluctuations 

Computer 
optimisation 

-' 
I 

. ""-" . ....... 
," 
~..,.." 

-<...." •. ; 

~:, , 

I'" .... , ....... ' 

~ 

00 
'fl. 

t::, 

i.o""~ 

if"" ....... .;., 
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2.7 Modelled Equations in Cartesian Tensor Form 

2.7.1 Reynolds Stress Equations 

The conservation equations for the Reynolds stresses are 

J2...( U. U.) = p.. + cp •. e: •. + D ( u.u. ) 
Dt 1-- J 1--J 1--J 1--J 1-- J 

where, 

(a) the convection, 

[ a a J-
(b) the 

D (u.u.) 
Dt 1-- J = - + Uk -- u.u. at ax 1-- J 

k 

production, r au. au .J 
-- J -- 1-­Pij = - u.Uk -- + u.uk --

l 1-- aXk J axk . 

(c) the pressure-strain correlation, 

for free flows, 

cp •• = CP··1 + CP··2 
1--J 1--J 1--J 

, 
and for wall flows, 

CP.. = CP··1 + CP. ·2 + CP··1 + CP •• 0., 1--J 1--J 1:-J 1--J W 1--Juw 

where 

(2.79) 

cp. ·1 1--J 
= - C e: ( u.u. - Ji o .. k ) 

81 k 1-- J ;) 1--J 
Models Rs1 and R82 . 

- f. P 0 . .J [ au 0 au oj 
cP ij2 = ( Ct ( p .. + f3 k ~ + --.iL 

1--J J 1.-J ax. ax. 
( - gp o .. )) J 1--

Model R81 + n D· . 
1--J J 1--J 

-
or cp. ·2 = - y ( P -!p 0 ) Model R82 

1--J ij ;) ij 

CPij1w = C e: ( u.u. - 2 k 0 .. ) f -(- Ze: f Model R 1 - 1-- J - swl 8 w k 3 1-J x2 
C 1 e: (ukU nk n 

3--
or CPij1W = 0 .. ,., - uku. nk n· 8 w K m m 1--J 2 1- J 

- ! ~Uj ~ ni 
) f f .te:_ f Model RSiJ~ x2 
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¢ .. c).,. 

~Juw 

z 
= C (l? "" D ,) f of XE -1 

s2w ijij 2 

¢ ij 2w = C C).,. (¢km2 nk n c5 •• - .Q. ¢k' n n. 
SuW , m ~J 2 ~2 k J 

x f of l.E,. 
x2 

p = ~ p 
mm 

r - dUk - ~Uk 1 
~ dX' J dX' 

= - l U'Uk --- + u.uk ---
J ~ 

Hodel R 
, swl 

-% cl>kJ'2 nknZ ) 

Hodel R 2 ' sw 

(d) the dissipation, 

E •• = §.. E 0 .. 
~J 3 ~J 

(e) the diffusion, 

_d_ C li. (l-- d -U~-'U-j -- d UjUk -- a uiUk l 
or l) Iu:{uj") 

= uku + U.U + U.U ' 
dXk S E m dXm ~ m dXm J m dXm 

Model Ds1 

Model Ds2 

2.7.2 Isotropic dissipation rate equation 

The conservation equation for the dissipation rate is 

D C 1 f-p 
2 

yjfJ E) = c E + D ( E ) 
E k E2 T (2.80) 

where 

(a) the convection, 

D 
[ ..2.. + Uk -" 1 £ Dt (E) = 

dt dXk 

and 

(b) the diffusion, 

( 1 D(E) d E -- dE = - c -l UkUZ -dX
k 

E k dXZ 
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2.7.3 Scalar Flux Equations 

The conservation equation for scalar fluxes are 

lL( u.e) = P. + $. + D ( u.e ) 
Dt 1,. t.e t.e 1,. 

where 

(a) the convection, 

lL( u:c ) 
Dt 1,. 

(b) the production, 

P. 
t.e 

= 

(c) the pressure-scalar gradient correlation, 

for free flows 

$ie = $iel + $ie2 

and for wall flows 

= $'1+$· +$. +$. t.e t.e2 t.elw t.e2w 
where 

$. 1 Gel 
E: --= - _ u.e 

t.e k 1,. 

or $iel = Gel £ u.e G' £ b· Z uZe k 1,. el k 1,. 

$ie2 
-- dUi = G u e--

e2 k dX1 K 

<P. 2 
-dUi . -dUk 

or = 0.8 u e __ - O.2ue--
t.e k dX

k 
k dX. 

1,. 

$ielw 
E: -- ZE: = G 1 - u.e f of _-,.f 

e w k 1,. x 

$ielw 
E: - 2 ZE: or = - G 1 k u e n n. f ~ -- ~ ew m m 1,. x 

2 

(2.81) 

Model Rel 

Model Re2 

Model Re] 

Model Re2 

Model R 1 ew 

Model R 
ew2 
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or ¢ic2w 
z£. 

= - C n2w ¢ 2 n n. f " - ~ '" mc mt- x 
2 

(d) the diffusion, 

or D ( uic ) 

Model Rewl 

Model R cw2 

Model D 
c1 

Model Dc2 

_13_ C k [-- a uic -- a ukc - a uiuk 1 or D ( u.c) = uku.., + U .u.., + uZc --:--'--'-'-
t- aXk c £. & axZ 1.- & axZ axZ 

Model Dc3 

2.7.4 Scalar Fluctuation Equation 

. The conservation equation for mean square scalar fluctuations is 

where 

!L ( c 2 
) 

Dt 2 

(a) the convection, 
2" 

D (~) 
Dt 2 

(b) the production, 

p 
c = -

(c) the dissipation, 

= 

= £. c 2 

£.c Cg2 k 2 

(d) the diffusion, 

(2.82) 
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CHAPTER 3 

NUMERICAL PROCEDURES 

3.1 Introduction 

The conservation equations for mean and turbulent quantities 

presented in the previous chapter can be solved using finite difference 

numerical methods. In general those equations are three-dimensional, 

unsteady and elliptic. In engineering practice, however, there are 

many statistically stationary or steady flows which are of interest. 

Further there are many important situations where the flow is. of boundary 

layer type, i.e. with at least one direction having negligible diffusive 

fluxes. In the present analysis the attention is limited to steady flows 

of boundary layer type. Although the present calculations are limited 

to incompressible constant property flows, the numerical procedures to 

be discussed can be generalised easily to variable-property flows. 

PATANKAR and SPALDING [9 ] presented a numerical procedure for 

the solution of partial differential conservation equations for steady 

two-dimensional, axi-symmetric boundary layer flows. This procedure 

is probably the most widely tested numerical scheme, designed to solve 

the above equations, available to date. In Section (3.2), the main 

features of this procedure and its application to the solution of mean 

and turbulent conservation equations are presented. The problems 

encountered, e.g. instabilities, their possible causes and cures are 

discussed there. 

The procedure used to predict three-dimensional boundary layers 

is an outgrowth of the two-dimensional elliptic numerical method of 

GOSMAN and PUN [50]. This procedure incorporates displaced grids for 

velocity and pressure, employed by HARLOW and WELCH [51]. Here, as in 

CARETTO et al. [52], a guess-and-correct procedure is used for the 
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velocity field. The correction of the velocity field is obtained through 

a linearised pressure-velocity relation which in turn satisfies continuity. 

This procedure with an obvious simplification to the case of 

two-dimensional internal flows is discussed in Section (3.3). 

The remainder of the chapter is concerned with adaptations to 

the basic structure of the codes that the writer has introduced to 

facilitate the introduction of a second-order closure. 

In Section (3.4), a finite difference staggered grid suitable 

for the application of a second order closure-model in a fully 

three-dimensional flow situation is described. The aim here has been 

to stagger the variables so that when they appear in the mean equations, 

requires a minimum of interpolation. This is expected to eliminate the 

instabilities encounted in using. numerical procedures outlined in 

previous sections. 

The idealised grid arrangement described in Section (3.4) is 

simplified in the Section (3.5), so that, it is economically applied to 

the solution of three-dimensional scalar transport problem in 

two-dimensional boundary layer flow situation. It is seen here that 

this modified grid arrangement simplifies the calculation of generally 

more predominant terms in the mean as well as in the turbulence equations. 

In Section(3.6) the limitations of cell layout and the application 

of the boundary conditions are discussed. The inclusion of a solid wall 

into the domain of the three-dimensional calculation procedure is 

discussed in Section (3.7). This allows circumferential conduction to 

be taken into account in instances where it is necessary. 
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3.2 The Patankar-Spalding Procedurefot Two~Dimens~onalBoundary Layers 

3.2.1 Main Features 

The Patankar-Spalding procedure for the solution of conservation 

equations for two-dimensional boundary: layer flows is widely used by 

research workers and in industry and is well documented in [9 ] • 

Accordingly only the main features will be mentioned here. 

(a) The Coordinate System: 

In this procedure the boundary-layer equations are transformed 

to x-w coordinate system, where x is the displacement coordinate 

in the main flow direction and w is the dimensionless stream 

function, given by 

w = (3.1) 

The stream function is defined so that ~ is a constant along 

a stream line and 

cf¥ = pUrdy (3.2) 

The edge stream functions ~I and ~E are chosen as functions 

of x , so that all the important variations in the dependent 

variables takes place within their limits, i.e. w values 

between zero and unity; this practice assures an efficient and 

flexible grid layout. 

(b) The Difference Equation: 

The finite difference forms of the conservation equations 

are obtained by integrating the partial differential equations 

over control volumes. (see Fig. 3.1) Being a boundary layer 

procedure, the control volumes at a given x-level are defined 

so as to cover only upto the immediate forward x-level. In 

w-space, the control volumes are defined by known discrete 
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w-levels, so that a given number of control volumes occupy 

the w-space between I and E boundaries. For the purpose of 

integration it is assumed that in the w-direction, the 

dependent variable ~varies linearly with w between.grid 

points. For convenience it is assumed that, in th~ x-direction, 

the variation of ~ is stepwise and it is the downstream 

level that is prevailing over the control volume. 

The individual terms of the conservation equation are 

integrated over the control volumes so as to obtain difference 

equations for each control volume. The resulting equations 

are of the form 

(3.3) 

where ~d+ and ~d- are the values of ~d's at adjacent control 

volumes in W-space. (The suffix d stands for the downstream 

level.) The coefficients A, Band C are explicitly evaluated 

with known ~'s at upstream x-level. 

(c) Treatment of Diffusion Terms: 

In the published version of the numerical procedure the 

diffusion terms of the momentum and heat transport equation 

are arranged to suit gradient diffusion models. Thus the 

incorporation of an "eddy diffusivity" model of turbulent 

transport is straight forward. In order to incorporate a 

Reynolds stress-Scalar fl~ closure, modifications are needed. 

The following sub section outlines alternative approaches. 
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3.2.2 Treatment of Turbulent Shear Stress and Scalar Flux 

Consider a control volume whose edge values of ware wand 
-~ 

w~ (see. Fig. (3.1)). The total shear stress at the edge w+~ is given by 

Tho = [11 [ au lJ - P uv 1 
"2 ay d +~ 

(3.4) 

With a gradient diffusion model, this is expressed as, 

(3.5) 

where l1
eff 

is the effective viscosity obtained by 

l1eff = 11 + l1turb (3.6) 

and the turbulent viscosity l1turb is obtained via a constitutive relation. 

With a Reynolds stress closure, however, equation (3.4) can be 

evaluated directly. Thus the turbulent shear stress term can be 

incorporated either, 

(a) by constructing a pseudo-viscosity and applying equation (3.5) 

or (b) as a source term in the momentum equation. 

If the effective viscosity method is to be pursued, the turbulent 

viscosity l1turb is calculated by 

( p uv ) +~ . ( y+1 - Y ) 

( U+1 - U ) 
u 

(3.7) 

Equation (3.7) is not satisfactory in regions of small velocity 

gradient unless measures are introduced to counteract instabilities. 

Alternatively the net diffusion due to turbulent shear stress can be 

written as, 

( p uv ~~ - ( p uv )_~ 

y+~ - y-~ 
(3.8) 
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J 

unlike equation (3.7), this equation can be incorporated unconditionally, 

even in regions where the mean gradient is negligibly small. Especially 

in flows with regions where the eddy diffusivity concept is not valid, 

e.g. maximum velocity region is a wall jet, equation (3.8) is satisfactory, 

whereas equation (3.7) is not. 

3.2.3 Instability in Solution and A ~ossible Remedy 

Several workers (e.g. REECE [25], MORSE [53]) making numerical 

computations of boundary layer flows using second-order closure models 

employed the Patankar-Spalding procedure for their calculations. In those 

investigations, the turbulent variables were evaluated at the same grid 

points as those of mean variables. In the present investigation as well, 

a large number of calculations were performed with that grid arrangement. 

It was sometimes seen however that numerical instability occured and that, 

when it did, the numerical scheme seemed apparently contained no mechanism 

for damping it. The following hypothetical situation will clarify how 

this happens. 

Consider a mean velocity profile as shown in Fig. (3.2) and suppose 

there is a peturbation in this profile at grid point (I) (dash lines), 

so that the velocity is now UrI) + oU(I) . Since the shear stresses are 

calculated at points (I-l) , (I) , (I+l) etc., velocity gradients have to be 

interpolated in order to calculate production and other terms due to mean 

gradients. Thus, the velocity gradient across the cell (I) is in fact 

unchanged whereas gradients across cells (I+l) and (I-l) are changed 

slightly. Thus, the resultant shear stress at (I) is unchanged whereas at 

(I+l) and (I-l) the shear stress will have changed in the right direction. 

Now since the interpolated values of shear stresses are needed for inclusion 

in mean velocity equation the net effect would be to change the velocity 

profile towards the stable solution but at a too low response level. 
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In order to ensure full exchange of information between mean velocity 

and shear stress equations, which are interlinked via their gradients, 

the scheme must be able to feel correct gradients created by the 

pertubation. POPE and WHITELAW [54] and ANDRE [55] proposed schemes which 

had staggered grid arrangements where the shear stress nodes are shifted 

by a half a grid node spacing from the mean velocity nodes. This idea has 

previously being used by CHORIN [56] and in PATANKAR and SPALDING [57] 

numerical procedures, with respect to the velocity and pressure nodes. 

In a staggered grid arrangement the shear stress values are 

calculated at points (I-~), (I+~)etc., shifted half a grid spacing away 

from (I-l) , (I) , (I+l) etc •• Now the production type terms of difference 

equations at (I-~) and (I+~) directly feel the total perturbation. The 

shear stress at (I+~) will be rapidly raised while that at (I-~)' will fall. 

The velocity cell at (I) , therefore, will experience a restorative force 

which will cause the perturbation to diminish. 

The above argument is satisfactory in regions of flows where the 

mean velocity (or scalar) and the corresponding flux are strongly linked 

to one another, i.e. having a predominant production due to mean shear 

term in the shear stress equation. In a weakly linked flow, for example 

a flow region with dominant diffusion effects, any instabilities in the 

mean profile will not be strongly felt by the corresponding flux equation 

so that the instability would vanish only very slowly. Even in such regions, 

however, the staggered grid can be helpful although to a lesser extent. 
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3.3 Description and Application of theThree~Dimensional (e, r, z) 

Boundary Layer Procedure 

The general form of the conservation equations written out in 

Section (2.7) can be reexpressed here as 

= 

a 
rae 

a 
rae 

a +--
rar 

ppUp$ 1 + ;2 [ PU2 $ 1 

[ pr~ :: 1 + :2 [ til 
+s (3.9) 

where til stands for any of the dependent variables Ue, Ur , Uz , k, £, U.U. 
1- J 

(with i = 1,3 and j = 1,3), C, uic (with i = 1,3) and .c2
• Here r! 

stands for the diffusion coefficient of til in the direction-i and Stil 

stands for the net generation of til per unit volume. 

Equation (3.9) can be interpreted in Cartesian coordinates by 

transforming (e, r, z) to (x, y, z) using 

a a 
= ax rae ; 

a 
ay = a 

ar ; 
a 
az = 

a 
az ; r = 1 . (3.10) 

The following discussion, however is made with respect to the (6, r, z) 

form and the Cartesian equivalent is always implied. 

For the case of a three~dimensional boundary layer with the main 

flow in the z direction, the diffusion in that direction is so small 

compared with convective processes that the term 

a [rtil dtil 1 . a;- 2 dZ ' 

is discarded. Equation (3.9) thus becomes first order (parabolic) in the 

z coordinate, permitting evaluation of all variables progressively in 

planes normal to direction-z, with the knowledge of .upstream and 

boundary conditions. It is this form that is solved in this numerical 

procedure. 
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3.3.1 Finite Difference Grid 

The finite difference grid for this procedure consists of three 

orthogonal sets of lines of constant 6, rand z. The (6,r) plane covers 

the cross-stream and the direction-z coincides with the main flow direction. 

The control volumes are centered around the grid nodes which are the 

intersection points of given (6, r, z) lines. These control volumes cover 

the whole domain of interset. The general equation being parabolic in 

the z direction, at a given moment in the calculation, attention is giYen 

only to a single z-spacing. 

In general, a compromise is sought, between the cost of computation 

and accuracy of results, in deciding the optimum number of lines to be 

used in grid formation. Some further limitations apply, under turbulent 

flow conditions, in laying out of the grid near walls and this is 

discussed later. 

The control volumes defined above are centered around the grid 

nodes where the pressure is calculated. As in the numerieal schemes of 

HARLOW and WELCH [51] and GOSMAN and PUN [50] the velocity components 

are evaluated at grid points shifted by half a node-spacing from the 

pressure grid. This allows a direct estimation of pressure gradients 

relevant to the velocity component equations. The positions of the 

dependent variables are denoted by their corresponding grid node numbers. 

For example ~(I~J) refers to the variable ~ at the position where grid 

lines I (in the 6-direction) and J (in the r-direction) intersect. 

(see Fig. (3.3» 
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3.3.2 Derivation of Finite Difference Equations 

Only a brief discussion is made here on the derivation of the 

finite difference equations. Datailed discussion of the topic has been 

provided by others, see for example SYED [16], BERGELES [58]~ 

The finite difference equations are derived by integrating the 

partial differential equation (3.8) for ~, over the control volume 

centering the point where ~ is required to be calculated. The net total 

of convection and diffusive fluxes of ~ leaving the control volume is 

equated to the net generation of ~ within the control volume. For the 

calculation of total flux of ¢ across any surface of the control volume, 

the value of ~ at that surface has to be approximated. This can be done 

by weighting the values of ¢ at neighbouring locations according to the 

local flow Peclet number. The one-dimensional analytical solution to the 

flux equation yields 

~ = S ~(I+l) + (l-s) ¢(I) (3.11) 

where ¢( and ¢ are ~'s at grid points at either side of the surface 
I) (I+l) 

(I+~) and S, the weighting factor is given by 

Fe 1 e -

Fe (I+l) 
e - 1 

(3.12) = 

where 

Fe (I+l) = 

and 

Fe 
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The net total flux of ip in direction I, can now be w,t;itten as 

II = ( apU ) [ I',; ip + ( 1 - I',; ) ip 

1 I (I+~) (I+~) (I) (I+~) (I+1) 

- ( apU ) [ I',; ip + ( 1 - I',; ) ip 

1 (I-~) (I-~) (I-1) (I-~) (I) 

(3.l3) 
where 

and 

1 
I',; = 1 - l; + 
(I+~) (I+~) Pe 

(I+V 

I',; 1 - l; 
1 = + 

(I-~) (I-~) Pe 
(I-V 

Here a and a denote the areas of surfaces normal to the direction(I). 
(I+~) (I-~) 

Use of (3.13). would require evaluation of l;' s which contain 

exponentials, which are expensive to compute. An alternative form of I',;'s, 

suggested in [50], is used with little loss of accuracy. 

For, Pe > 2 I',; = 1 ; 

Pe < 2 I',; = 0 ; 

~ 
2 

I',; = (1 + -) 
Pe 

(3.14) IPel < 2 

The first two expressions mean that whenlPel is high the flux 

of ip across a surface depends solely upon the upwind value. It is the 

exact solution for IPel + 00. In the third expression the surface value 

is taken as the central-difference, arithm.etic mean value of the 

neighbouring ip's. It is the exact solution for Pe = O. 

Th . Sip· h 1 t i . (3 9) e net generat~on term ~s t e on y erm n equat~on • 

remaining to be considered. The integral of Sip is expressed in the 

following linearised form 

J 
Sip dVo Z = hip ip + ~ 

(I~J) (I~J) (I~J) 
(3.15) 

VoUI~J) 
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~ ~ ~ 
where b(I~J) and C(I~J)may be functions of ~(I~J)' Values b(I~J) and 

~ 
C(I~J) are not unique, they can be chosen to enhance the stability of 

the procedure. It will be seen later in (3.33) that b?I~J) should in fact 

be negative, or small and positive, in order to achieve a stable solution. 

3.3.3 Assembly of Finite Difference Terms 

The finite difference forms of total flux expressions and net 

generation term derived in Section (3.3.2), when assembled gives 

where 

A~ 
(I+l~J) 

~ 
A 
(I-l~J) 

and 

= ( apU ) 

= ( apU ) 

~ 
(I~J) 

(I+~) 
( 1;; 

(I-~! 
( 1;; 

~ 
::;: A ~ 

(I+l"J) (I+l~J) 

+ A~ ~ 
(I~J+l) (I~J+l) 

~ 
+ A ~ 

(I" J "u) ( I ~ J ~ u) 

- 1 ) 
(I+~) 

(I-~) 
) etc. 

+ A~ 
(I~J+1) 

~ 
+'A ~ 

(I-l"J) (I-l~J) 

+ A~ ~ 
(I~J-l) (I~J-l) 

~ 
+ A ~ 

(I"J" d) (I~J"d) 

(3.16) 

The finite difference equation for neighbouring control volumes are 

kept implicitly connected by taking ~(I+l~J) etc. in the right hand side 

of (3.16) as equal to ~(I+l~J~d) etc •• 
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3.3.4 Finite Difference Equation for Velocity Component~ and SIMPLE Algorithm 

Assembled finite difference equation for velocity compontnts Ue, 

Ur ' Uz can be obtained by replacing ~ in (3.14) by these respective 

components. Here the pressure gradient terms will appear as part or 
U· , 'l-

whole of C terms. Due to the shifted control volume layout, 

Ue ( p - ) /:'X /:,X C tV - P(I-13J) (I3J) J K 

Ur 
( p - p ) /:,XI /:'xK C tV -

(I3J) (J,3 J - 1 ) 

U 
C z tV - ( p -p, ) /:'X M (3.17) 

(I3J3d) (I3 J 3U) I J 

As given in equation (3.8), the gradients of turbulent stresses 

appearing in U. equation can too be expressed as a source term. The 
'l-

CUi may contain a part or whole of that as well. Assuming that those 

stress terms are known, there still remains the pressure field to be found 

separately. 

In the SIMPLE algorithm of PATANKAR and SPALDING [57], the 

continuity equation is consulted in order to guess the correct pressure 

field. The supposition is made that the velocity component is a linear 

function of the pressure gradient in that direction. Thus 

= 
au 

U* + z ( /:,p*) , 
z a (/:'p*) 

etc. (3.18) 

where U~ is the velocity component in the direction z corresponding to 

the pressure difference field /:'p*, and (/:'p*) , an increment in (/:'p*) 

which will produce a new value U . On examining (3.16) and (3.17) it z 

can be seen that, 

= etc •• (3.19) 
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Suppose the corrected velocity field Ue, Urand Uz in (3.18) satisfies 

the continuity equation, then it can be shown that the increment in 

pressure at the point (I~J), necessary to cause this effect, is governed 

by the equation 

p 
P (I~J) AP 

P (1+1~J) 
P 

P (I-l~J) A(I~J) = + A (I-l~J) (I+l~J ) 

+ A~I~J+l) P (I~J+l) + A~I~J_l) P (I~J-l) 

+ AP p' P p' 
(I~J~u) (I~J~u) + A(I~J~d) (I~J~d) 

* + m(I~J) (3.20) 

where 

AP r dUe 1 ( bJ[J bJ[x ) = p (I+t) l d(f).p*) (I+t) (I+l~J) 

and 

* [ ( * ) ( bJ[J bJ[x ) (I+t) m(I .. J) = PUe (I+t~J) 

+ ( * ) ( f).XJ bJ[x ) (I-t) pUe (I-t .. J) 

+ ( pu* r ) 
(I .. J+t) (bJ[I bJ[x ) (J+t) 

+ ( pu* 
r ) (I .. J-t) ( f).XI bJ[X ) (J-t) 

+ ( * ) ( bJ[I M J ) (x .. d) pUz (I .. J~d) 

+ ( PU~ ) !MM) 1 (I .. J .. u) I J (X~u) 

m* is the net imbalance for the control volume (I .. J) as evaluated by 
(I~J) 

the U*, U*, U* flow field which resulted from the solution of the finite e r z . 

difference momentum equations. 
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The pressure correction equa.tion (3.20) is fully ellipti.c ;in 

character, AP being non zero. Thus an iuerative procedure, which 
(I.,J .. d) 

will require a larger computational capability is needed for its . 

solution. If there is a means· of correctly guessing the variations 

in the pressure field in z-direction (so that p(' = 0), the 
I .. J .. d) 

pressure correction equation too can be treated as parabolic in the 

direction-z. 

In the shear layers the mean momentum equation in the lateral 

direction can be written as 

o = 
1 'dp 
--+ F 
P d1" 1" 

(3.21) 

So, in the absence of body forces F1" in1"-direction, the pressure 

gradient in z-direction is given by 

(3.21a) 

As a boundary condition the right hand side of (3.21a) in known. Therefore 

correct pressure gradient can be incorporated in the Uz equation, so 

that the pressure correction p(' d is zero. This makes the equation 
I .. J.. ) 

(3.20) parabolic in z-direction for thin shear layers. 

For confined flows, the prior knowledge of the total mass flow 

rate enables one to estimate the error in the assumed streamwise pressure 

gradient. Linearising the z-direction momentum equation with respect to 

the pressure gradient,dp, one obtains, 
dz 

+ . . . . 

- ~ ( AX6X 6z ) 
dz 1 2 

(3.22) 
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U 
Usually b Z is zero, giving 

(I"J) 

Thus the mass flow rate across the control volume at CI"J), in 

z-direction is 

giving 
om 

Z 

[d
"" 1 M M_Azb.X M 
~ 1 ~ 1 2 + oonstant 
& A~ 2 

(I"J) 

= 
M1b.X2b.zM1M 2 

AUZ 
(I"J) 

Now, 

mZ(I,JJ ~ m=(I,J/ ~[I;l* A [ ! 1 

(3.23) 

(3.24) 

(3.25) 

where m * correspond to the pressure gradient [ d
a
P

z 
1 *. Now summing 

z (I"J) 

up equation (3.25) over the whole cross-stream plane. 

therefore 

= 

giving 

\' \' * L m - L m 
z(I"J) z (I" J) 

b.X1M 2b.zb.X1M 2 1 
Uz 

A (I"J) 

(3.26) 

(3.27) 



- 110 -

Equation (3.25) and (3.27) form a consistent set 0:1; correct;Lons to the 

Uz component and pressure gradient fields. The corrected Uzfield from (3.25) 

will satisfy continuity exactly and [ dp ) from (3.27) will be 
dz .' 'coX'X'ected 

a good assumption for the next calculation step in the z~direction. 

3.3.5 The Case ofAxi-Symmetric (or Plane- Symmetric) confined Flow 

In the previous subsection it was seen that it is possible to 

obtain a Uz-velocity field (equation (3.25» which satisfies the overall 

mass conservation requirement. In a symmetric flow there will be no 

transverse gradients of any of the variables. Thus, consideration of 

individual control volume mass-balance with the knowledge of Uz-fields 

in consecutive z-planes will give expressions for velocities in the 

lateral direction, (see Fig. (3.4» such as 

o = 

(3.28) 

At the symmetric boundary, however, the Ur velocity is zero. 

Therefore, the equation (3.28) can be successively applied in control 

volumes away from the axis to obtain the complete lateral velocity field. 

Thus, in the case of two-dimensional confined flows, the solution 

of finite difference equations for the lateral velocity Ur and that for 

the pressure-correction p' is unnecessary. 
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The numerical procedure is employed to calculate, in the order of 

importance, the mean variables Vi and C, their respective fluxes UiUj and 

ujc, and other quantities e.g. E etc •• The inevitable errors associated 

in using interpolation formulae in calculations can be minimised by 

choosing a grid system where the individual terms in all equations are 

calculable without extensive interpolations. In fact it is not possible 

to avoid interpolations entirely. The staggered grid system shown in 

Fig. (3.5) does allow one to obtain all terms (except the convective terms 

which require interpolations in any grid system) in the mean equations 

without interpolation. The variable locations for this grid system is 

given in Table (3.1). 

In this arrangement, however, interpolations are required in 

calculating terms in all the turbulent equations. Now, in boundary layer 

flow situations, where, the gradients in main flow direction are much 

smaller than those in lateral directions, this grid system can be modified 

to advantage with little loss of accuracy. 
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Variable Location 

Pressure p I .. J 
" 

K 

--- ------- - -
Mean Velocity U

e I-1f" J 
" 

K 

Components Uyo I 
" J-1f" K 

Uz I .. J 
" 

K-1f 

-
Shear Stresses -- J-1f" K-1f U U I 

" yo z 
--

I-1f" J K-1f ueuz " 
--

I-1f" J-1f" K ueuyo 
--- -

Mean Scalar C I 
" 

J 
" 

K 

- -
--Scalar Fluxes uec I-1f" J 

" 
K 

-- I J-1f" K U C " yo 
-- I J K-~ U C " .. z 

- -
-

Normal Stress u2 I e " 
J 

" 
K 

Components u2 I 
" 

J .. K yo 

u2 I 
" 

J 
" 

K 
z 

-
All Other Scalar I 

" 
J 

" 
K 

Variables 
-

e.g. E" k .. c2 

Table 3.1 Variable Lacations in an Ideal Grid 
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3.5 Staggered Grid Arrangement·tor·Ce .... 1"""'z) :Procedure tor Three,..and 

Two-Dimensional Scalar Transport ina Two-dimensional Hydrodynamic 

Field 

All equations under consideration in the present investigation 

are parabolic in z-direction. This enables one to refrain from.considering 

a grid system displaced in z-direction. In such a grid system the varia.bles 

can be located as shown in Fig. (3.6). Here all variables are known in a 

given plane-u and the finite difference equation can be formulated to 

obtain new values for the variables at the downstream plane, d. 

Further simplification to the grid system is now made by noting 

that only two-dimensional flow fields without a swirl component in 

velocity are treated. Consequently, Ue' ueuz, usUr are all_ zero.Therefore 

all mean and turbulent flow variables can be located in a single (1"-z) 

plane. 

In the present flow situation the gradients of the shear stress u1"uz 

are the most important in the Uz equation. The streamwise gradients of 

normal stresses have only a secondary effect in the Uz equation (through 

their effect on uruz ), Therefore the location of normal stress control 

volumes can be made so as to facilitate easier calculation of their source 

terms. Now it is obvious that, (I~J-~) point, where the non-zero shear 

stress uruz is located, is the best place for the normal stresses to be 

auz gradient _. __ can be evaluated 
'Or 

located. At this point the major velocity 

without interpolation. Further, the dissipation rate c: can also be 

evaluated at (I~J-~), so that the calculation of source terms in the 

c: equation as well as those containing c: In the stress equations can be 

made without interpolation. 

The scalar field (temperature or concentration etc.) however, being 

three-dimensional, its important flux variables should be located as in 

the idealised grid. The streamwise scalar flux whose streamwise gradients 
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have only an indirect effect however~ is located along with shear stress 

etc. so that calculation of its source terms becomes straight forward. 

The variable locations thus displaced to suit the present flow and scalar 

transport situation are shown in Fig. (3.7) (only non-zero variables are 

shown). 

3.5.1 Staggered Grid Arrangement for (x-~) procedure 

Being a two-dimensional boundary layer precedure, the control 

volumes can be displaced only in direction-~. It can be seen by reasoning 

similar to that of the previous subsection, that it is useful to shift 

the control volume for all turbulent quantities in the ~-direction by 

half a grid spacing. The derivation of the general finite difference 

equation in a shifted (x-~) coordinate system is presented in Appendix (E). 
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3.6 Cell layout and Boundary Conditions 

In both (x-~) and (6-p-z) numerical precedures cells are generally 

distributed in order to cover the full domain of interest and in 

particular, capable of giving closer attention to areas where important 

variations occur. Since the turbulence model described in Chapter (2) is 

valid only for high Reynolds number turbulence, it can not be applied in 

regions very close to the wall where the Reynolds number is small. Therefore 

limitations do apply in laying out the grid in near~wall regions. 

In Fig. (3.8), a typical grid distribution in a near-wall region is 

presented. Here, A is the node nearest to the wall where mean variables 

(1. e. U z and C) are evaluated. As a criterion the distance between the 

node A and the wall is chosen so that, 

> 30 

Thus A lies outside of the viscous sub layer and the mean variables at A 

satisfies the logarithmic laws to be described in the next sub section. 

Since the lateral velocity gradients in the near~wall region varies 

inversely with the distance to the wall more grid .points should· be 

concentrated in this area. In order to achieve this a non-uniform grid 

distribution should be employed in the near-wall regions. 

The method of applying boundary conditions in the (x-~) procedure 

is given in [9]. The same method can be employed for the variables 

evaluated in a staggered grid as well. 

In applying boundary conditions in the (6-p-z) procedure, the 

false-source technique of GOSMAN and PUN [50] is employed (see Fig. (3.9». 

Here, the flux of ¢ implied by the boundary condition is first explicitly 

J " evaluated. Then this flux, ,is supplied to the control volume closest 

to the boundary in a linearised source form given in (3.15), and further, 

the finite difference coefficient which connects the boundary value ¢b 

to the control volume value ¢ is set to zero. 
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The flux through the boundary JII can be calculated w~th the 

knowledge of prevailing physical conditions. These are discussed in the 

following subsections. 

3.6.1 Wall Boundary Condition 

(a) Mean Velocity Equation 

The total stress, t ,opposing the turbulent flow of fluid 
tot 

parallel to a rigid wall is used in defining the friction 

velocity UT with 

= (3.29) 

This friction velocity is supposed to satisfy the logarithmic 

"law of the wall", 

(3.30) 

where Uz is the velocity component parallel to the wall, at 

a distance y away from the wall. The von Karman constant K 

is taken,as equal to 0.42 and the constant E is taken as 9.85. 

In the numerical precedures employed here, the friction 

velocity UT is evaluated from (3.30) and the corresponding 

total stress at the wall is enforced as the boundary condition. 

(b) Mean Scalar Equation 

. " Generally as a boundary condition, the wall scalar flux, q 

or the wall value of the scalar itself Cwall is known. In 

either case it is the wall scalar flux that is enforced as the 

boundary condition for the scalar equation. When Cwall is known, 

the implied total scalar flux through the wall is calculated 
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/ 
J 

logarithmic law for scalar 

= ~ Zn [ yUT Ec 1 . 
KC V 

i.e. 

(3.31) 

Here C is the magnitude of the scalar at a distance y away 

from the wall. The constant Kc is taken as 0.46, and the 

coefficient E , which is a function of molecular Prandtl c 

(or Schmidt) number of the fluid, is chosen from equation 

(4.18) which represents a consensus of wall flow data. The 

total scalar flux through the wall 

q'! = p c U C 
~ P T T 

(3.32) 

can now be calculated with UT and CT obtained from (3.30) and 

(3.31) respectively. 

(c) Shear Stress and Lateral Scalar Flux Equations 

The control volume for uruz(or urc) closest to the wall is 

centered at B ( see Fig. (3.8». It is the diffusive flux of uruz 

(or u c) across the surface at A that is required as the 
r 

boundary condition. Now in order to evaluate the diffusive 

flux across A, the value of U-U-(or u c) at A needs to be known. r z r 

This value is estimated with reference to the relevant mean 

equation. By integrating the mean momentum Uz equation between 

the limits r = rb (1. e. at A) and r = R (1. e. at the wall) one 

obtains 

= [ 
auz 

U -+ 
z az 

au 1 ap 1 r U ~+-- rch> 
r ar p az 

+ [ r v" :~ z 1 -
r=R 

[ 
au~ 1 r v--
ar 

r=rb 

(3.33) 



where 

[ aU 1 r v Z 

ar .r=R 
= 
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T 
tot 

= 

Similarly, the integration of the scalar equation yields, 

= 
[ 

U 'de + 
Z 'dz 

rb 

+ [ r P: :~]".R -[ r P: .~~ t=Pb (3. 34 ) 
P P 

where 

[ ae ] r f-
ar r=R 

= 
pc 

p 

The right hand side of (3.33) and (3.34) can be explicitly 

evaluated. The diffusion coefficient in the equations for 

turbulence quantities are of the form, 

2" 

constant x 
k~ 

which increases linearly with y, in the local equilibrium 

region since E oc y-1 and the stresses are constant. Thus the 

diffusion of U U and urc through the surface A (see Fig. (3'.8» 
r z 

can be written as 

[ k€ti; t YA (UrUZ)A - (uIZ) 
flux of uruz through A constant 

r Z B 
= 

YB YA - YB 

and 

[ k U'] (urc) - (urc) 
. 1'1 YA A B 

flux of urc through A = constant 
E YB YA - YB B 

(3.35) 

The value· of the constant is determined from the diffusion 

model employed. 
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(d) All Other Turbulence Equations 

In all other turbulence equations, expressions similar to 

(3.35) are employed in calculating the diffusion fluxes 

through the'surface at A. For all normal stresses and remaining 

scalar fluxes, their magnitudes at A are taken as simply 

related to upuz and upc values obtained by equations (3.33) 

and (3.34) respectively, constants of proportionality are 

obtained from consensus of near wall data, as discussed later 

in Section (4.6). The value of dissipation rate at A i.e. EA 

is chosen in order to get the diffusive flux as implied by 

the relation 

E = (3.36) 

3.6.2 Symmetry Axis (or Plane) Boundary Conditions 

For all variables except the shear stress upuz and the scalar 

flux upc, the boundary condition at p = 0 is that of zero gradient, 

i.e. zero flux through the boundary. The values ofupuz and upc at p = 0 

is in fact zero by definition. In the three-dimensional problems the 

8-boundary condition too should be given. In a general problem a gradient 

of C in the 8-direction can be enforced by supplying the implied scalar 

flux. In the present investigation, however, two (i'-z) planes of symmetry· 

could always be identified. In these cases the transverse scalar flux 

is zero at the boundary. 

3.6.3 Free-Stream Boundary Condition 

The (8-p-z) procedure in its present form has a (p-8) grid which 

is invariant in the z-direction. In flows with free boundaries, however, 

due to the spread of the layer, it is undesirable to employ such a grid 
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in calculation. For such flows it is use;f;ul to have a g;rid which expands, 

along with the flow, in the main flow direction. Therefore problems with 

one or two free stream boundaries are tackled by Patankar-Spalding procedure 

which has an expanding grid facility. (Problems with free stream boundary 

were successfully solved with slightly different (8-r-z) procedure by 

SYED [16].) The free stream values of all variables can be evaluated with 

reference to their respective differential equation by assuming zero 

lateral gradients for all variables. This will yield equations of the form 

(3.37) 

which can be rearranged to an explicit form as, 

(3.38) 

where ~d and ~u are the downstream and upstream values of ~ respectively. 

The value ~d obtained from (3.38) can be incorporated in the procedure 

as given in [9 ] • 
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3.7 Treatment of Conducting Wall in the Numerical :Procedure 

Investigation of scalar diffusion in internal flows e.g. pipes, 

under laboratory conditions is common and practically very relevant. 

BLACK and SPARROW [13], QUARMBY and ANAND [59], CHAN e t al ~ [ 60].. and 

the present experimental investigation (see Chapter 5) considered 

three-dimensional scalar diffusion with a variety of wall boundary conditions. 

While the attainment of a perfectly impermeable wall in a mass transfer 

experiment presents no difficulties the same is not the case in a 

heat transfer study. Heat conduction in the pipe wall may signi!icantly 

modify the idealized boundary conditions particularly when the heat 

source is applied externally (an arrangement that simplifies the experimental 

task), Though conduction effects can be minimized by correct choice of 

materials, in three-dimensional scalar transport investigations they 

can not completely be neglected. In making predictions of such cases it 

was thus necessary that the mean scalar transport equation (which is the 

only variable relevant in the wall scalar transfer) be solved in an area 

covering both the wall and the inside of tube. 

Inclusion of a wall, with finite thickness, does not pose any 

additional problems in the numerical procedure, because the heat conduction 

is just a much simplified version of the convection equation. For 

generality, consider a tube heated by a flux q"(e; through its outer o 

surface (as in the present experimental investigation) and heated internally, 

by sayan electric current (as in BLACK and SPARROW's [13] experiment) 

C at the rate of S (r,,8; per. unit volume. Due to the circumferential 

conduction effects in the tube wall the heat flux through the inner wall 

can not be directly evaluated. The solution of the partial differential 

equation for C however require following additional relations, 

(a) Total heat from outer surface = q~(8; Ro~8 ~z (3.39) 
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(b) Generation of heat in wall control volumes 

= SC(r3 6) r2 66 6z (3.40) 
and 

(c) Total heat diffused from the tube to the fluid 

where 
= q~ (6) R. 66 6z 

1- 1-
(3.41) 

. 
[ r ac 1 q': (6) = (3.42) 

1- waH dr r=R. 
and 1-

. (C
b 

- C
A

) P (J U K 
q': (6) = 2. T (J (3.43) 

1- 'in ( y~E(J ) 

These relations of heat flow can be incorporated into the numerical 

procedure in the following manner. The equation (3.39) is the boundary 

condition applied to the outermost control volumes, E (see Fig. (3.10)). 

The heat generation (3.40) is included in the source form for all wall 

control volumes. The heat flow relations (3.41) - (3.43) can be incorporated 

implicitly by expressing them in the finite difference forms, i.e. (3.41) 

and (3.42) written as 

(3.44) 

The relevant coefficient AC of the control volume at D can be 

modified as 
(I3 J - 1) 

= r 
waH 

R. fie liz 
1- (3.45) 

Similarly the coefficient AC of the control volume A, can be 
(I3 J+V 

modified to read 

(3.46) 



:,:.',} : 'I . ' .. , 
- 123 -

In the present computa.tional code, however, there i{3 a grid node 

at b , having zero volume. Therefore its A
C
( ) and A

C
( ) coefficients 

I,J+l I,J-l 
should be adjusted so that they are equal to the right hand side of 

(3.45) and (3.46) respectively. This has the effect of solving (3.42) 

and (3.43) to obtain Cb• 
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CHAP'l'ER 4 
i.; , " t . 

REVIEW OF· EXPER.I:MEN!AL DA'l'.i\ 

4.1 Introduction 

Accurate experimental data are essential for the development 

turbulence models. It is these which direct the initial modelling ideas; 

mathematics follow next. Again, since the turbulence models are not fully 

analytic, determination of any unknown coefficients can be done only 

with reference to experimental data. 'l'hen in order to check the validity 

and generality more and more accurate experimental findings are necessary. 

Measurements of scalar fields are not as extensively available as 

those for hydrodynamic fields. Even among those available there are few 

which are relevant for this 'l'hesis. Moreover, judgement have to be made 

in order to establish their reliability. An extensive review of free 

shear flow hydrodynamic data are given by RODI [61]. Here in this 

chapter, attempt is made to survey free shear flow and wall flow scalar 

field data in situations covered by this 'l'hesis. 

Section (4.2) identifies the kind of data which are useful to have 

in order to formulate and validate second-order closure models in scalar 

transport. 'l'he basic criteria for assessment of these data are presented 

next. 

Characteristics of free shear flows, mainly with respect to self 

similarity, are presented in Section (4.3). 'l'he expressions for scalar 

flux in terms of mean scalar and local flow characteristics are obtained 

for the shear flows under consideration. 'l'his further enables one to 

obtain expressions of the eddy diffusivity ratio between momentum and 

scalar transport in terms of local characteristics. In Section (4.4) these 

relationships are used in checking the consistency of available data; 
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Characteristics and review of two-dimensional wall flows are 

presented in Section (4.5) - (4.6). This covers the hydrodynamic and scalar 

transport aspects of the flat plate boundary layer and the circular pipe. I 

The discussion is centered around the logarithmic laws for mean velocity 

and mean scalar. 

The three-dimensional scalar field data are discussed next. The 

different geometrical arrangements used by experimenters in obtaining 

three-dimensional scalar fields are given here. The comments made by them 

on the thermal or mass diffusivity, especially the anisotropy in the near 

wall region, are mentioned here. 
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4.2 Data Required and Criteria for Assessment 

In order to understand the scalar transport problem in turbulent 

flows it is useful to have accurate information on the individual terms 

in both hydrodynamic and scalar equations. Focusing attention solely on 

the scalar transport equations, Table (4.1) sets out the quantities whose 

measurements are desirable for better understanding and guidance to the 

solution of the problem. They are categorised in their order of importance. 

Mean scalar field measurements are the most important in understanding 

the flow situation. They are directly relevant in practical usage and 

reliability of these measurements is greater than for other quantities. 

In some flows the scalar flux field is directly expressible in terms of 

the main scalar field: Section (4.3). Hence these measurements can be 

used in chec~ing th~ accuracy of the flux field measurements. 

The second-order correlations i.e. the turbulent fluxes u.c and 
~ 

scalar fluctuations c 2 are very desirable to have, since it is these 

quantities that a second-order closure will solve for. Direct comparison 

of predicted correlations is possible only when accurate measurements of 

these quantities are available. The knowledge of other correlations are 

useful in modelling terms in the flux and scalar fluctuation equations. 
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4.2.1. Criteria for Assessment of Data 

Turbulence measurements of properties of the scalar field are rare 

in the literature. Often it is only the mean scalar field that is measured, 

sometimes scalar fluxes and scalar fluctuation correlation are reported 

and seldom any higher-order correlations. Thus the following criteria 

will be used mainly for the purpose of establishing credibility of data 

and understanding their applicability to the present investigation, and 

not necessarily for making any form of selection between them. 

Criterion (a) Hydrodynamic field measurements, ~f reported, should have 

high credibility. In the case of free shear flows, reference 

is made to RODI [61] where an ext7nsive review is given. 

In the absence of any analytical forms for the turbulent 

field, data will be assessed in the light of measur.ements 

by other workers. 

Creterion (b) The mean scalar should be conserved. 

NOTE: Most data in the literature are found in non­

dimensional forms, often implying satisfaction of this 

criterion. 

Criterion (c) The directly measured scalar flux field should agree with 

the corresponding fluxes obtained from mean scalar equations. 



o u I ') ,,J U :1 l 
_0/1 ,ei 

',~ .,.) 

- 129 -

4.3 Characteristics of ~ree Shear ~lows 

4.3.1 Integral Forms of Mean Equations 

The general behaviour of a free shear flow depends primarily on 

the total excess or deficit of momentum and that of scalar presen:t in the 

layer relative to the external streams. Integrating the momentum equation 

(1.8) over the whole cross-section of the layer defined by boundartes I 

and E , for plane flows results in the following equation 

~r [ 
o 

+ [ V IU - UE! ]E = 0 
I 

dVE Y
JE dy + & 

o 

(U - V ) dy 
E 

(4.1) 

In symmetric flows I is the plane of symmetry; therefore the ~ast 

term in (4.1) vanishes in those flows. In the present investigation only 

free shear flows in zero pressure gradient are considered. Hence equation 

(4.1) reduces to 

o 

(4.2) 

Similarly, by integrating the mean scalar equation between boundaries 

I and E and applying the boundary condition that the external-stream value 

of the mean scalar, CE ' is constant, 

YE 

~x J [U Ie - eE) + uo ] dy - VI leI - eE) = 0 

o 

The experimental data for the present investigation should satisfy 

equations (4.2) and (4.3). 

(4.3) 
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In fully turbulent flow there ex~sts a region of flqw OVer which 

the direct action of lliscosity on the mean flow is negligible. Within this 

region the mean and turbulent motion are determined by the boundary 

conditions alone. So that all terms in the mean and turbulent equations 

vary at the same rate in the streamwise direction. Sometimes there are 

features in a flow which prevent the occurence of a self similar form 

or allowing only an asymptotic self preserving form. In order to find out 

the relevant form for a given flow condition equations (4.2) and (4.3) 

should be checked in that flow condition. 

4.3.2 Definition of Self Similarity and Decay Laws 

Definition of self similarity as given in TOWNSEND 162] is, 

"For a particular flow to be self preserving, it is 

necessary that the variation of any quantity over any 

plane, x = constant should be expressible non-dimensionally 

through suitable scales of length and velocity, 0 and 

Uo ' as a universal function of y/o • The scales of 

length and velocity are functions of x only." 

In order to cover the scalar transport problem this definition is 

extended by prescribing a mean scalar scale Co which is a function of x 

only. It is often the maximum deficits in velocity and mean scalar at a 

given section that are used as characteristics of that section. As for 

characteristic length however, one can make a choice to suit the situation. 

In the present investigation the representative length scales are chosen 

so that they are easily comparable with available experimental data and 

that they are easily obtainable from numerical calculation. The Fig. (4.1) 

shows the characteristic lengths chosen. They are, 
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(a) For plane jet and plane wake~ 

15 = Vo distance between centre line and -- plane. 
2 

(b) For plane mixing layer, 

15 = distance between O.lVo and O.9Vo planes. 

Often in literature the scalar field measurements are presented with 

respect to another characteristic length 15 ,given by 
c 

(a) For plane jet and plane wake, 

C 
distance between centre line and ~ plane. 

2 
(b) For plane mixing layer, 

= distance between O.lCo and O.9Co planes. 

Here too 15 is chosen as the characteristic length for the scalar field, 
c 

noting that Qc is directly proportional to 15 in all flows. 

The self similar forms of variable profiles in the cross-stream 

can now be expressed as 

v = VE + Vo f tn;' 

V = Va g +n} 

uv = V2 h +n) 
0 

u2 _ v 2 = V2 q tn) etc. 
0 

and 

C = CE + Co m +nc). 

vc -, V C n +nc). 
0 a 

uc = V C p tn J- etc •• 
0 o c 

where functions f ~ g etc. are the non-dimensional variable profiles. 

For symmetric flows, 

n = 1L 
15 

For plane mixing layer, 

n = 

and 

and 

= JL 
(5 c 

= 

(4.4) 
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The conditions for exact self similarity can be obtained by substituting 

(4.4) into the mean momentum and mean scalar equations. They are: 

do constant ax = 

UE = constant 
Uo 

0 dUo constant 
7JCJiC = 

0 

doc 
= oonstant 

ax 
0 c dCo --- = constant (4.5) 
C- ax 

0 

The flows under consideration, if and when self similar, should 

satisfy equation (4.5). Of the three flow situations under consideration 

experimental data (see Section (4.4» suggest that the plane jet and the 

plane mixing layer satisfy (4.5). The plane wake does not satisfy 

UE = constant, exactly, but found to achieve an approximately self similar 
Uo U 
form when -.Ii » 1 • 

Uo 
Table (4.2) gives the decay laws which can be derived from 

equation (4.5). To be exact, the power laws given in Table (4.2) should 

have (X + Xo) as the basis, where Xo is the virtual origin of the flow 

This origin is found to depend on the exact conditions of flow generation 

and is generally estimated by back extrapolating data at known x-locations. 



r .... '· 
"-' 

~.: .... 

Flow UE 0 Uo Co °c 
;~ ..... , 

Plane Jet 0 0:: X 0:: x-~ 0:: x-~ 0:: X 

~ 

0 0:: X constant constant a:X 
Plane Mixing Layer 

~ 

constant 0:: X constant constant 0:: X f-" 
W ,,'''._ 
W "=. 

UE » 1 o::~ -~ -~ 1:-
Plane Wake 0:: X 0:: X ex: X2 r':~, 

UO 
~;.; . 

----- ---'----

Table 4.2 Decay Laws 
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4.3.3 Expressions for Shear Stress and Scalar Flux for Self Similar Flows 

The shear stress and scalar flux at the free edge is zero and at 

a plane of symmetry they change sign. Hence shear stress or scalar flux 

at any point in the layer can be calculated by integrating their respective 

mean equations. The expressions thus obtained are tabulated in (4.3). 

The shear stress relations were taken from RODI [63]. 

The expressions for scalar fluxes can readily be transformed to 

incorporate the characteristic length of the scalar field 0 and its c 

associated parameter n where 
c 

= on (4.6) 



Flow 

Plane Jet 
[} = 0 

E 

Plane Mixing 
Layer 
UE - = A­
U 

I 

Plane Wake 
UE --- » 1 Uo 

Shear Stress Relation 
(RODI [63]) 

n 

h = ~~ [ ~ f J f dn + n q ) 

h = do 
& 

o 

( ( 1 ~ A-

n 

) ( nf - I f dn ) -

o 

(4.6) 

n I f2 dn 

o 
-n n 

- ( f - 1 ) ( ( 1 ~ A- ) J f dn + I f2 dn 
o 0 

(n ) In 
+ J q dn + m f dn 

o . 0 

- f'q dn + ( n + n
I 

) q 1 
o 

h UE d0 2 

2U 0& nf 
o 

(4.8) 

(4.lO) 

Scalar Flux Relation 
(Present Work) 

n 

n = ~ ( ~ m f f dn + n p ) (4.7) 

o 

n = : ( ( 1 

n n 
L ) ( nm - J m dn ) - J fm. dn 

o 0 

n = 

n n 
( [ 1 ~ A- ) I m dn + I fm dn - ( m - 1 ) 

o 0 

n n 
+ I P dn ) + m I f dn 

o 0 

- Jnp dn + ( n + nI ) p ) 

o 

UE do 2 

2 U
o 

0 dx n m 

(4.9) 

(4.11) 

Table 4.3 Self Similar Shear Stress and Scalar Flux Relations 
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4.4 Review o;e Data ;eor :Free Shear :Flowa 
. . . . , , i • • ; 

In this section scalar transport data for free shear flows are 

discussed. The analytical, self similar scalar flux relations derived in 

the previous section are used here to calculate the shear stress and flux 

profiles implied by the mean equations. They are compared with measured 

profiles of uv and ve . 

4.4.1 Plane Jet 

Table (4.4) shows important flow parameters for some scalar 

measurements of plane jet. NEWMAN's [64] review suggest a value of 0.11 

for the rate of spread ~~ of plane jets. RODI's [61] review show values 
ax 

ranging from 0.102 to 0.11 for the same. Rodi's recommended target velocity 

profile of a plane jet is that of ROBINS [65] and it has a spreading rate 

of 0.103. In passively heated jets the value given in DAVIES et al. [66] 

comes closest to the above. Jet of VAN DER HEGGE ZIJNEN [67] can not 

possibly be considered passive because of its high temperature difference. 

Unfortunately there are no measured cross-stream scalar flux 

data available for comparison here. The maximas of calculated ve profiles 

show good agreement with each other. The ratio of the spreading rate of 

scalar field to that of velocity field has a value of 1.40 to 1.46 in 

all cases except that of Davies et al~, JENKINS and GOLDSCHMIDT [68J quote 

values of 1.41 and 1.40 for this ratio from experiments of REICHARDT [69J 

and SINGH and UBEROI [70]. The spreading rate ratio found by Davies et al. 

is even smaller than the value 1.25 generally quoted for round jets. This 

may imply that the low aspect ratio of 6 in Davies et al.'s experiment 

is not sufficient to give a fully plane symmetric jet. 

Davies et al. made conditionally sampled measurements of mean 

velocity and temperature fields and found that turbulent fractions of these 

fields spread at more or less similar rates, 0.155 and 0.140. They 
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concluded that the s.pread of the heated turbulent jet t$ better repre~ented 

by a variable associated un;tquely with the turbulent :f;lui.d and chose the 

half intermittancy point of U and C fields for comparis.on. The variation 

in U and C fields were coincidental. LAUNDER [71] reports that conditionally 

sampled measurements of JENKINS and GOLDSCHMIDT [68] indicate that for 

turbulent fluid in plane jet a Prandtl number of 0.40 , virtualy uniform 

across the jet. This is much lower than the implied value of 0.80 in 

the experiments of Davies et al.. 

Thus it seems that there is considerable disagreement between 

experiments as regards to the relative spreading rates of scalar and velocity 

fields. Since a value of 1.40 - 1.46 from unconditional (conventional) 

measurements seem more consistent, that value is chosen as the representative 

one suitable for comparison with numerical predictions. 

As for the hydrodynamic field, on the recommendation of RODI [61], 

ROBINS' [65] velocity profile and BRADBURY's [72] turbulent stresses are 

considered for comparison with numerical predictions. 

4.4.2 Plane Mixing Layer 

Table (4.5) lists the experimental conditions and some important 

flow parameters of scalar field measurements found in literature. 

RODI [61] pointed out that. the agreement in the spreading rates 

of the mixing layers he considered with given velocity ratio is rather 

poor. WATT's [73] velocity field spreading rate lies along the average 

value for that velocity ratio whereas SUNYACH and MATHIEU's [74] spreading 

U 
rate is slightly higher than the average level for ~= 0 . 

UI 
The spreading rates of the scalar field again depends on the ratio 

between the free stream velocities. The overall Prandtl number of the flow 

is inversely proportional to the ratios of the squares of spreading rates. 

Thus Watt's data imply an overall Prandtl number of 0.78 whereas Sunyach 

and Mathieu's dat? imply a Prandtl number of 0.5 • 
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Again there a.re no reported heat flux proUles. ;In pIa.ne m;lx;i.ng 

layer found in the literature, Watt has given a heat flux profile normalised 

with respect to the value at the centre of the layer, The heat flux vc 
--.h: 

calculated from his profiles of correlation coefficient VC/CV2. C2)2 , 

v 2 and c 2 has a maximum of about O.003UoCo ' which is only one quarter 

of what is implied form his temperature profiles, This raises serious 

doubts about the accuracy of other variable measurements. 

The hydrodynamic field measurements of SUNYACH and MATHIEU [74] 

are not in good agreement with more consistent data of others (for e.g. 

BRADSHAW et ale [75]). The measured shear stress has a maximum which is 

about 40% higher than that of Bradshaw et ale and also the kinetic energy 

is about double that found in measurements reviewed by RODI [61]. This 

appears due to the flow being still not fully self similar in turbulent 

producing central region of the mixing layer. 

The temperature fluctuation profiles of SUNYACH and MATHIEU [74] 

and those of FIEDLER [76] show remarkably similar uniform level over the 

central 50% of the layer. Fiedler pointed out that the corresponding mean 

temperature profiles has three inflection points and they in fact coincide 

with the two maximas and one minimum found near the mid regions of c 2 

profile. 

BROWN and ROSHKO [77] studied mixing between different velocity 

streams with different densities. Mixtures of Nitrogen and Helium were 

employed to obtain density ratio up to 1:7 and measurements were made of 

mean velocity and density. In this case density can be treated as the 

scalar. Their deduced value of the turbulent Schmidt number was only 0.16 

in the central regions of the mixing layer which is far lower than values 

reported for any other turbulent free shear flow. 

For comparison with numerical predictions, Watt's data will be used 

for the case UEI 0 
UI 

FIEDLER's [78] data 

and SUNYACH and MATHIEU [74] and WYGNANSKI and 

for the case UE = 0 • 
UI 
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4.4.3 PlaneWa.ke 

Plane wake can become approximately self similar for large values 

of VE • TOWNSEND [79] appears to be the first one to have conducted 
Vo 

detailed measurements in heated and unheated wakes. His results indicate 

that both mean quantities as well as turbulent structure become nearly 

self preserving for (X - XoJ/D > 500 , the former achiev.ing similarity 

earlier than the latter. Experimental findings of others given in Table (4.6) 

indicate that self preserving region for the mean variables can start 

as early as 100D • 

RODI's [61] review recommend Townsend's measurements of the 

hydrodynamic field as the best in consistency. The spreading parameter 

for a plane wake, 

(4.12) 

t 
in Townsend's case has a value 0.114, and is 10-15% higher than other reported 

wake data. The spreading parameters of other measurement sets are in good 

agreement with data sets presented in Rodi's review. 

The relative rate of spreads of scalar and velocity fields seem to 

be in reasonably good agreement with each other. In all cases, the implied 

overall Prandtl number, which is the inverse of the square of the relative 

rate of spreads, indicate values in the range 0.6 - 0.7 • 

Although TOWNSEND's [79] lateral hear flux data have large scatter~ 

agreement with level of flux implied by the mean temperature profile is 

reasonably good. The measured level of heat flux maximum in FREYMUTH and 

UBEROI's [80] data and that of FABRIS [81] are too small by 40% and 45% 

t Rodi has obtained a value of 0.098 from Townsend's data and correspondingly 
his calculated value of non dimensional shear stress maximum is 0.051 • 
This is in good agreement with Townsend's measured (uv/v~Jmax 



Reported 
Experimenter Flow Range; Variables; Vo S °a 

Geometry Technique U E ° 
- -

TOWNSEND Re = 1360 2 
V ~ uv ~ U ~ 0.093 0.114 1.30 

[79 ] circular - - - 0.031 
cylinder 2 2 V ~ W ~ C ~ 

X -- = 80 - 950 va ~ D 

FREYMUTH and Re = 960 V ~C ~ va ~ 0.0344 0.0934 1.22 
UBEROI [80] circular - -- at ! 

cylinder a2 va 2 D ~ ~ 

K = 25 -7 = 1140 
D E 

1140 a ~ 

Xo = 40 
D 

-
LA RUE and Re = 2800 C ~ a2 ~ 
LIBBY [82] circular 

cylinder 
X = 400 500 
TJ ' 
Xo = 40 
D 

FABRIS [81] Re = 2400 V ~ V ~ C->- 0.057 0.0958 1.26 
circular - - 2 va ~ ua ~ a ~ at ! 
cy'linder --2 --2 D 
K = 200, 400 va ~ ua ~ 

= 400 
D uva ~. v 2a 

I Hot wire 
I 
I 

.. 

Table 4.6 Scalar Measurements in Plane U~kes 

meas. calc. meas. 
uVm uVm vam 
-iT V2 

VoCo 

0.049 0.059 0.073-
0.086 

0.035 

0.050 0.034 

calc. 
vOm 
VoCo 

0.078 

0.056 

0.061 

(a 2 J% 
Co 

0.403 

0.351 

t-' ..,.. 
N 
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respectively. The'reason for such a large discrepancy is not clear~ at 

least in FREYMUTH and UBEROI's [80J measurements it is not due to lack of 

self similarity because their final measuring station is 1140 diameters 

from the cylinder. 

Fabris measured the streamwise heat flux ua and in the area of maximum 

lateral heat flux, the ratio ua is about 1.4 . At the plane of symmetry 
va 

the value of ua is about half the maximum ua • 

The levels of temperature fluctuations in wakes reported here seem to 

agree resonably well with each other. LA RUE and LIBBY's [82] le2 profile 

normalized with respect to the value at the axis coincide over most parts 

of the wake with profiles of Freymuth and Uberoi. The maximum value of I a2 

is 40% higher than the value at the axis. 

FREYMUTH and UBEROI's [80] measurements of temperature gradient 

fluctuations indicate local isotropy over the bulk of the wake. Although they 

have shown that the terms in temperature fluctuation equation are in balance, 

the overall accuracy may be rather suspect with the large discrepancy 

between measured and calculated heat flux profiles. 

The measurements of heated wake behind a flat plate made by KOVASZNAY 

and ALI [83] show some effects of buoyancy. Even though their mean velocity 

and mean temperature profiles are hardly affected, the shear stress and heat 

flux profiles across the wake show considerable asymmetry. 

For comparison with numerical predictions, TOWNSEND's [62], [79] data 

will be used. The data of others too will be presented for further comparison. 
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4.5 Characteristics of Flows Affected by Walls 

In flows which are affected by one orr.more walls, there exist thin 

layers adjacent to the walls where the viscous stresses are more significant 

than turbulent stresses. The principle of Reynolds number similarity can 

only be applied to the fully turbulent region where these viscous effects 

are negligible. The similarity and dimensional arguments show that (see 

for example TOWNSEND [62]. page 200), in the region of overlap between this 

viscous layer and the fully turbulent region, the mean velocity takes a 

universal distribution of the form, 

U = UT l UTY -n--+B (4.13) 
K \) 

where 

UT = 1 ~ -T 
P waU 

(4.14) 

K is the Von K~rman constant and has a value about 0.41 • (Different 

workers have obtained values between 0.35 and 0.43 from their experiments.) 

B too is constant and has a value gqual to about 5 , again determined from 

experiments. This is probably the most extensively used expression in 

wall flows. It has limited validity in adverse pressure gradient flows, 

while in strong favourable pressure gradient flows considerable deviations 

occur. 

Now, when the mean scalar equation is examined with the similarity 

and dimensional arguments parallel to previous considerations it can be 

seen (see for .example KADER and YAGLOM [8]) that the mean scalar takes 

the form 

where C w 

(C - c ) w 

is the wall 

C = 

c YU = --2:. In --2. + B (Prj. 
Kc \) c 

value of C , and C
T 

is 

q~ 
T P cp U

T 

(4.15) 

given by 

(4.16) 
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q-" is the total £lux of. C th:rough the wall, Rere agl3,;i.n Kc :i..a a cQn~tant 
W 

and B 'a function of. the molecular frandtl numher.of the flu;td, The c 

turbulent Prandtl number of the flow in the region whe:re the above 

logarithmic laws are valid can be obtained as 

= (4.17) 

4.5.1 Turbulent Prandtl Number in the Near Wall Logarithmic Region 

In the absence of any analytical forms for the mean velocity and 

mean scalar profiles, the turbulent Prandtl number can be found with known 

Reynolds stress and scalar flux only. Like in free shear flows, the stress 

and flux profiles implied by the mean velocity and scalar profiles can be 

obtained by integration. A knowledge of streamwise variation of mean 

variables and the values of wall stress and flux are however needed for 

the integrations. 

In the review paper by KESTIN and RICHARDSON [84], the Prandtl 

numbers were obtained by the above method. The numerical value of PPt 

close to the wall seems to lie in the region of 0.9 - 0.7 , however the 

dependence of PPt on the distance from the wall did not seem to follow any 

particular pattern. It is clear that if the mean velocity and passive 

scalar obey some universal logarithmic laws in the near wall region, then 

in that region the turbulent Prandtl number will come out to be a constant. 

KADER and YAGLOM [8] compiled heat and mass transfer data in boundary 

layer, circular pipe and channels and reploted them in semi-logarithmic 

coordinates in order to obtain Prt as from (4.17). Their findings clearly 

show that Prt in the logarithmic region is independent of the flow geometry 

and molecular Prandtl number of the fluid. Out of twenty one data sets 

only five were found to give Prt outside the range 0.8 ~ 0.9 . Also they 
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noted that the constant Be :j..n equat~Qn <..4.15) 1.,S a E;t!'"ong functi,on of the 

molecular l.'randtl number, Some curvefit express:j..Qns for Be arE:! given:j.n 

[8], for example 

Be ( air ~ Pr = O,? ) 

B (water ~ Pr ~ 6.0 ) e 
:: 30.0 

Be ( mercury ~ Pr ~ 0,026 ) = -B.O 

40,0 

-10.0 (4.18) 

It is important to note here that a range of 0.8 - 0.9 for Prt is 

representative only in regions where both mean velocity and scalar satisfy 

respective logarithmic regions, if at all present, can be very thin and 

will depend on the main stream distance in both the streamwise and 

cross-stream directions. 

Several workers have investigated -the effect of molecular Prandtl 

number on the turbulent Prandtl number. QUARMBY and QUIRK's [11] pipe 

flow diffusion studies covering a Schmidt number range of 0.7 to 1200 

show no detectable effect of Pr on Prt . 
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4.6 Review of Data for Wall rlows 

In the external wall flows, the characte~istic Reynold:; number of 

the flow does not generally stay constant. Therefore evaluation of shear 

stresses and, scalar fluxes from corresponding mean profiles is possible 

only if they are known at two or more streamwise locations. Since this 

evaluation can not be done very accurately using published mean velocity 

and scalar profiles, no attempt will be made to do so here. 

For fully-developed internal flows analytical evaluation of shear 

stress and scalar flux for fully developed flows can easily be obtained 

from; 

p uv =: T (!:) + ]J au 
W R aT' 

(4.19) 

and fR U r dP 

va =: q !i_1 _ O + r ac ---
W :r p ap fR p a dT' 

U T' dP P 

(4.20) 

0 

For the developing flows to. which attenticn is given in this thesis, 

the scalar flux can be evaluated only if the streamwise develcpment cf : 

mean scalar prcfile is fully dccumented. Here again no. attempt will be 

made to. calculate va frcm previcusly reported C prcfiles. 

4.6.1 Flat Plate Bcundary Layer 

As mentioned in Section (4.5.1) there are several investigations 

of turbulent heat transfer from flat plate boundary layers to. be found in 

the literature. Extensive measurements cf mean temperature fields with a 

variety cf wall boundary conditions was reported by REYNOLDS et al. [85]. 

Fcllowing them measurements of turbulent scalar correlations started to. 

appear. Table (4.7) gives some details of such available data for smooth 



Experimenter 

JOHNSON [88] 
and [89] 

BLOM [10] 
see also 
[86] 

ANTONIA 
et ale [90] 

-- ua 0
2 

Boundary Reo Reported Near- Wall ua 
Condition Variables Pr t 

va 

-
u 2 

., v 2 -
step in U ., 1.0-1.1 ua 3.0 2 ., 

max a 
wall = max = 
temperature 2" - Uo/:"Co (/:"Co) 2 

W ., uv ., C ., 
-

5.5xlO-3 1.0x lO-2 - -
0

2 ua ., va ., ., 

uv 2 
., v 3 

., 

vw 2 
., va 2 

., 

step in Re U ., u2 '" 0.92 
0., max 

., 
wall -
temperature = 2870 uv ., C ., 

-
2 -a ., va ~ 

- --step in Re C ., 0
2 ~ 1. 0-1.1 ua (-~ 0

2 

wall heat 0.,0 max /UCJ max 
- - UTCT C2 flux = 3070 va ~ uc, ., lVC max 

T 

= 2.1 = 2.1 = 4.6 

Table 4.7 Scalar Measurements in Smooth Flat Plate Boundary Layers 

--

Remarks 

Measurements 
made at only 
two locations 

Several 
measuring 
locations 

U profile not . 
reported I 

f-' 
.p-
o:> 
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wall boundary layers. Also the works o~ fULACH~ER and his co11egues (see 

for example [87]) have presented considerable amount of data for boundary 

layers with heat and mass transfer, 

JOHNSON [88] presented a complete set of sec.ond order correlation 

data in a thin thermal boundary layer growing inside a thick velocity 

boundary layer. From measurements at two streamwise locations he could 

calculate the shear stress and heat flux profiles implied by mean profiles. 

Though his measured uv is about 30% less than the values implied by 

velocity profile, the measured heat flux va is in good agreement with 

calculated va . Because of rather short heating length the temperature 

profie is probably not fully developed and the turbulent Prandtl number 

seems rather high at about 1.0 - 1.1 • 

BLOM [10] made measurements effectively under similar conditions 

to that of JOHNSON [88J. However he concentrated on fewer variables over 

a larger heating length. Mean quantities were presented in semi-logarithmic 

scale. In the semi-logarithmic region the PY't had a value of about 0.92. 

ANTONIA et a1. [90J presented conditionally sampled measurements 

of scalar correlations in a thin thermal boundary layer created by a step 

in wall heat flux. They obtained a value of 0.41 for constant K in 
a 

equation (4.15), implying a Prandt1 number of about 1.0 • Their wall heat 

flux calculated from the enthalpy integral equation was about 20% higher 

than the actual wall flux. 

Johnson's value of 3.0 for the ratio of streamwise to lateral heat 

flux in the near wall region is higher than the values found by others. 

ANTONIA et a1. [90] indicated ~ 6f 2.1 similar to the value obtained in 
va 

the rough surface boundary layer experiments of PINENTA et ale [91]. As 

seen later this value is consistent with the near wall value of ~ in pipe 
va 

flows. The correlation coefficient of the streamwise heat flux obtained 

in Johnson's tests was about 0.75 near the wall and this value is the same 

as that obtained by Pimenta in his experiments. 
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For compa:t;'ison w;i.,th nume:t;';i.c;:I,l pred;i.ct;Lon~ o( hea.t tr;a.ns~e:t;' ;i.n the 

flat plate boundal';'y layer? the data. of ,A,NTONl:A et al. [90J ;is employed, 

They have repol';'ted measu:t;'ements Q~ mean and tU:t;'bulent scala:t;' var;;i.ables 

for several locations along the plate and predtct;i.on o~ this development 

should be a testing task for the turbulence models. 

4.6.2 Pipe Flow 

Measured second order turbulent correlations of scalar fields in 

pipes are so few that some data sets with only mean flow measurements 

are considered here for comparison with numerical predictions. 

The investigation of BREHHORST and BULLOCK's [92] and that of 

BOURKE and PULLING [93] are the only two known attempts at measuring second 

order scalar correlations in pipe flows. Both investigations were for 

fully developed thermal boundary layer inside a pipe. The first 

2 2 presented the me'an scalar C ,0 ,u and uo whereas Bourke and Pulling 

reported radial heat flux, ;r , C and U . Bourke and Pullings measurements 

were confined to the inner 70% radius of the pipe and hence its use as a 

guide for numerical solutions is limited. The non-dimensional streamwise 

scalar flux ~ reported in [90} has a value of about2.1 in the 
UTCT 

near-wall region. This is the same as the values found in flat plate 

Z 
normalised scalar fluctuations ~ has a near wall 

C2 
T 

whereas flat plate boundary layer 'investigation of 

boundary layers. The 

value of 2.5 in [92] 

ANTONIA et ale [90] indicated a value of about 4.6 • 

Quarmby and his colleagues presented several nonaxi-symmetric 

scalar transfer measurements in pipes which are discussed in the following 

section. In order to suppliment these works QUARMBY and ANAND [94] presented 

axi-symmetric mass transfer measurements in fully developed pipe flow. 

Their experimental investigation was to make measurements of mean 

concentration at several axial locations downstream of two types of mass 
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sources, In the first type, Nit~ous Oxide gas was made to diffuse 

through a permeable ring of 1.5 diameters length fitted to the wall of 

the pipe. The second mass source was a "point" source of Nitrous Oxide at 

the centre of the pipe so that it diffused towards the wall due to 

turbulent and viscous action. In all cases the passive scalar was conserved. 

A rather suprising aspect of their investigation was that they could 

satisfactorily predict the concentration profiles at downstream locations 

by making an assumption of unity turbulent Schmidt number throughout the 

flow. In the description of the velocity profiles using a mixing length 

hypothesis, however, they used a von Karman constant of 0.36, a rather low 

value. Further their expression for eddy diffusivity made by combining 

Van Driest expression and a Reichardt formulation is not consistent with 

the mean velocity profile except in the viscous sublayer. Thus their 

theoretical calculations, even with a very good final agreement with 

experiment can not be considered very useful. Moreover on reanalysing the 

data of [94], QUARMBY and QUIRK [11] found that indeed the variation of 

turbulent Schmidt number inside the pipe can best be fitted by 

-1 z-l 
Prt(z) = 1 + 400 (4.21) 

where z is the non-dimensional radius. This is quite at variance with 

their previous assumption of unity Set throughout the pipe. 
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4.7 Review of Data in Th~ee-dimensional Scalar Transpo~t 

Several expe~iments have been reported in which the hydrodynamic 

field was a two-dimensional thin shear flow type and the scalar field was 

three-dimensional, although again, boundary layer type. Thus the scalar 

field had significant scalar fluxes in both directions normal to the mean 

velocity vector. The aim of these experiments was to find out the extent 

of anisotropy in the diffusivities of these fluxes. All experiments on this 

topic reported here were performed in circular pipes with a fully developed 

velocity field. The only measurements reported are the mean temperature 

or concentration and wall fluxes; no turbulent correlation measurements 

appear to have been reported yet. All authors chose to compare their results 

with theoretical expectations based on assumed diffusivity models. 

Table (4.8) summarises: the methods employed in order to create and 

measure the three-dimensional scalar fields. QUAR}ffiY and ANAND's [59] 

.case-b was for diffusion of nitrous oxide from a dimetric line source. In 

all other experiments the three-dimensional fields were created by 

circumferentially non-symmetric wall scalar fluxes. 

Quarmby and his collegues chose to investigate three-dimensional 

scalar transfer from a short length (for example,l~D in [59]) of non...,zero 

wall scalar flux. This will create situations where the three-dimensionality 

of the scalar field is decreasing. Since the asymmetric scalar field at 

the end of the short section is not fully developed, the scalar transfer 

situation inside the pipe may be highly influenced by the transport effects. 

The experimental situation investigated by others [13]," however were on 

situations where the three-dimensionality is maintained. Over large length 

of such boundary conditions fully developed three-dimensional scalar profiles 

can be expected to attain. Due to the limited facilit~es'available the works 

of CHAN et a1. [60] and indeed the present experimental investigation were 

focussed on wall properties only. Still they present challanging data for 

development of variation in Nusselt numbers. 



Experimenter; 
Type of Scalar 
Transfer and 
Fluid 

BLACK and 
SPARROW [13], 
also BLACK 
[95] ; 

Heat transfer; 
air, Pr = 0.7 

QUARMBY and 
ANAND [59]; 

Mass transfer; 
nitrous oxide 
to air, 
Sa = 0.77 . 

Scalar Input 

Self heating, long 
stainless steel tube 
with sinusoidal 
variation in 
thickness; giving 
sinusiodal heat 
flux along the 
circumference, 
period = 27f • 

a) Four porous 
segments in the 
wall, period = ~ 
length ~ 1~ Dia~ 
width = 7f/4 . 

b) Diametric line 
source, 
period = 7f • 

ReD 

7500 -
58000 

20000 
-120000 

Range of C 

6.C 
waU~max 

< 700 F 

6.C 
bulk~max 

= 43 0 F . 

Measurements Made 
and Techniques Used 

1) Outside wall 
temperature by 
Chromel-Alumel 
thermocouples. 

2) Total power 
supply by ammeter 

x voltmeter. 

3) Air flow by ASME 
orifice. 

4) Air temperature 
by thermocouples 
as in (1). 

1) Concentration 
measurements in 
flow by infra-red 
gas analyser. 

2) Total contaminent 
input by 
rotameter gauges. 

3) Flow velocity by 
pilot tubes. 

Conclusions 
(made by the 
respective 

.authors)on 
Diffusivity 

Diffusivity 
ratio of 10 
near wall 
decreasing to 
unity beyond 
y+ = 20 • 

Diffusivity 
ratio 
i.e. Sat ' 
unity through 
the flow domain 

Table 4.8 Three-Dimensional·Scalar Experiments in Fully Developed Pipe Flows 

Remarks f"'~'"'.. ...... 
c 

""-"" 

~ 

-of ••• " 

~ 

~., 

In 
u.> 
~; 

'" . 
c, 



(contd) 

Experimenter; 
Type 6f Scalar 
Transfer and 
Fluid 

QUARMBY and 
QUIRK [11]; 

Scalar Input 

I Electrically heated 
stainless steel 
strip, period = 2IT 

a)Heat transfer; I length '" 3 Dia. 
air, Pr ~ 0.7 width '" TI/16. 

b)Mass transfer; 
nitrous oxide 
to air, 
Sa = 0.77 . 

QUARMBY and 
QUIRK [96 ].; 

Mass transfer; 
brine to air, 
Sa = 760-1200 

Short porous slot 
in the wall, ! 

period = 2IT 
length = ~ Dia. 
width '" TI/25 • 

Porous segment in 
the wall 
period IT 

length = (not 
reported) 

width = TI/2 

ReD 

10000-
100000 

6000-
170000 

5230 -
21780 

Range of C 

Surface 
temperature 

0 up to 70 C. 

Measurements Made 
and Techniques Used 

1) Temperature by 
Chromel-Alumel 
thermocouple 
probe. 

2) Flow of air by 
pilot tube. 

1) same as in [59]. 

1) Concentration 
measurement by 
electrical 
conductivity 
probe. 

Conclusions 
(made by the 
respective 
authbrs) on 
Diffusivity 

Prt in radial 
direction is 
about 0.5 near 
wall varies 
smoothly to 
unity at the 
axis. 

Tangential 
diffusivity is 
larger than 
the radial 
diffusivity 
near wall. This 
ratio is unity 
over most other 
parts of the 
flow. 

The high 
Schmidt number 
has no effect 
on diffusivity 
ratios. 

Table 4.8 Three-Dimensional Scalar Experiments in Fully Developed Pipe Flows 

Remarks 

Large he'at 
loss through 
the wall 
apparent in 
C profiles. 

Apparent 
effect of 
buoyancy 
in C 
profiles. 

I-' 
V1 
~ 



(contd) 

Experimenter; 
Type of Scalar 
Transfer and 
fluid 

CHAN et al. 
[60]; 

Heat transfer; 
water, 
Pr ~ 6.0 • 

Present 
experimental 
investigation; 

Heat transfer; 
air, Pr = 0.7 

Conclusions 
Scalar Input ReD Range of C Measurements Made (made by the 

and Techniques Used respective 
authors) on 
Diffusivity 

Stainless steel 10000- !::.Cbulk 
1) Outside wall 

tube segmentally 100000 temperature by 
heated from outside < lOC • Chromel-Alumel 
heaters, period = 2n thermocouples 
width = rr . 

2) Wall heat flux 
by microfoil 
sensors 

3) Flow measurements 
by AS}1E orifice 
and by rotameter. 

Glass tube 20000- !::.C 1) Outside wall see Chapter 7. 
segmentally heated 90000 wall~max temperature by 
from outside by an = 100C Chromel-Alumel 
electrically thermocouples. 
conducting coating, !::.Cbu7.k 
period = 2rr 2) Total power input 
width = rr • < lOC . by ammeter 

x voltmeter. 

3) Air flow by 
pilot tube. 

Table 4.8 Three-Dimensional Scalar Experiments in Fully Developed Pipe Flows 

Remarks 

For details 
see 
Chapter 5. 

r~' 
"-' 

i;~."'" 

.~~ 

":'-';..t",. 

~~ 

c· 

,:.,1 

.~ 

VI 
~"VI 
\".." 

1 

'~ 

c 



- 156 -

One other aspect which is of interest is the shape of the wall flux 

profiles. In mass transfer experiments it is possible to create (or assume) 

rectangular wave shape wall fluxes 'whereas, in heat transfer experiments, 

due to circumferential conduction within the tube material the wall flux 

profiles display an S-shape variation. Thus profiles of the wall meterial 

and goemetry become important in the numerical predictions of these . 

situations. In the present experiment (see Chapter 5) the three-dimensional 

heat transfer in a segmentally heated thin glass tube was investigated. 

Here the objective was to design a three-dimensional heat transfer situation 

where the circumferential variation of wall heat flux is close to a square 

wave profile. 
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CHArTER 5 

EXPERIMENTAL INVESTIGATION 

5.1 Preliminary Considerations 

5.1.1 Aim of the Experimental Investigation 

The aim of this experimental investigation was to obtain data for 

the case of transversely non-symmetric heat transport situation in a 

wall-affected two-dimensional shear flow. Previous workers e.g. BLACK and 

SPARROW [13], QUARMBY and ANAND [59], have made measurements in non· 

symmetrical scalar situations in tubes. Flow in circular tubes has been 

used for these studies because of its wide practical application. Further, 

it is a convenient and a simple geometry to investigate under laboratory 

conditions. For this reason it was adopted as the geometry understudy in 

the present investigation. 

In mass transfer experiments it is possible to establish boundary 

conditions of square-wave form in the circumferential direction. In heat 

transfer experiments due to circumferential conduction in the tube wall 

such a situation can not be exactly achieved. However, the present heat 

transfer experiments were designed to minimise the circumferential conduction 

in the tube wall. Thus the three-dimensionality of the scalar field obtained 

is far stronger than that of [13]. It was hoped that this will provide a 

rather stringent test for the turbulence model employed in numerical 

calculations. Further the present experiments were carried out at low 

temperature difference levels (maximum of 1.50 K in bulk temperature rise) 

and hence can be assumed to be void of any significant property variation. 
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5.1.2 Facilities Available and the Level of Measurements ,. . , 

As the present investigation was mainly aimed at the theoretical 

and numerical aspects of the solution of three-dimensional scalar transport 

situations, only a short, limited period was available for the experimental 

investigation. At the time of this investigation, the laboratory facilities 

at the writer's disposal required the exploration be limited to the study of 

wall heat transfer characteristics for the case of non-symmetric heating 

of a circular tube. A regulated supply of water and compressed air was 

available for use as the fluid medium. Previously, CHAN et ale [60] had 

made investigations using these facilities. Their experimental investigation 

was conducted to determine the heat transfer characteristics of turbulent 

flow of water in a circular stainless steel tube with non-uniform boundary 

conditions. 

5.1.3 Methods of Obtaining Circumferentially Non-Uniform Heating Rates 

Circumferentially non-symmetric heating is common in practical 

engineering applications. Under laboratory conditions, however, one has 

the additional task of quantifying the non-uniformity i.e. one should be 

able to make measurements of heat fluxes and temperatures around the inner 

surface of the tube. As in the present investigation, if the measurements 

are to be made at the outer surface of the tube, then one would like to 

keep the temperature drop across the tube wall to a minimum. The methods 

of obtaining and making measurements of non-symmetrical heating, as adopted 

by previous workers, are the following: 

(a) Heat generated by an electrically conducting tube having a non 

uniform thickness (as in BLACK and SPARROW's [13] experiment)~ 

Here the heat flux profile through the inner surface of the tube 

depends on the geometry of the tubetcircumferential conduction 
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and the fluid heat transfer characteristics. As [13] points out~ 

accurate construction of a tube with given non~uniformity in 

thickness is really a difficult task. 

(b) A tube segmentally heated by an outside source as in CHAN et al. 

[60]. Here the outside source is placed at a given distance 

away from the tube. The uniformity of heat flux within the ' 

segment, however depends on the uniformity in the gap distance 

between the tube and the heater. Accurate and reliable measurement 

of the outer surface temperature of the tube is quite difficult, 

as found by [60], under these circumstances. 

Recently GIESBRECHT [97J explored methods of achieving a constant 

heat flux boundary condition on long tube lengths. He considered methods 

of obtaining thin metallic film deposits on tubes. If the tube is of an 

electrically non-conducting material then the conducting film can be heated 

by supplying a voltage along its length. The uniformity of the heat flux 

in this case depends on the uniformity of the metallic film. Thin and uniform 

coatings of metallic substance can be obtained for example, by vacuum 

deposition, chemical deposition or by metallic painting. As for getting 

such deposit on long tubes, Giesbrecht pointed out that metallic painting 

is the most convenient. His investigation of heat transfer from a yawed 

cylinder to air with a constant heat flux wall boundary condition seems 

to indicate the reUability of the method of obtaining metallic film deposit 

on non conducting (electrically) cylinders. His results for cross-flow 

tests are in good agreement with previous experiments and his new data for 

yawed cylinder show excellent self consistency. In the present investigation 

this method is extended to obtain thin uniform metallic film segments on 

the tube. It can be expected to give square-wave profiles of heat flux to 

the cylinder. 
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5.1.4 Chq:j.ce of Tube M;:1terial 
.; i ~ . • • . 

When ch,OQsing the tube material for the. I?resent expe;t;';lme.nt ~ the 

following criteria were used. 

(a) Once it was decided that the tube be heated at its outer surface 

by passing a current through the matallic film, the 'tube had 

to be made of electrically non-conducting material. 

(b) A one-dimensional consideration of the heat flow in the 

circumferential direction shows that, the extent of 

circumferential conduction is proportional to Kw i , where 
R 

K is the thermal conductivity of the tube material and t w 

the thickness of the tube of mean radius R . So that, if 

circumferential conduction is to be minimised, the thickness of 

the chosen tube should be a minimum. The thermal conductivity 

should also be low to reduce the circumferential conduction 

(c) Since the measurement of temperature is to be made at the outer 

surface of the tube, it would be best to have only a small 

temperature drop across the tube material. Again, one-dimensional 

consideration of the heat flow to the fluid shows that, 

= (5.1) 

where Kw ' K
f 

and Nu are the thermal conductivity of the wall 

material, that of the fluid and the Nusselt number (assumed 

constant) of the flow situation respectively. Here C is the 

bulk temperature and suffixes i and 0 stand for inner and outer 

surfaces respectively. Equation (5.1) suggests ,that for a given 

fluid flowing inside a thin tube at a given Reynolds number the 

temperature drop across the tube material is inversely proportional 

to Kw ~, Thus) the thermal conductivity of the wall mater;i,al 

should be as high as possible. 
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The first requirement rules out commonly used stainless steel tubing. 

Commonly available electrically insulating tube materials are glass, 

plastic and some synthetic compounds. The thermal conductivity of plastic 

and other synthetics depends of their composition; however, on average it 

is about one-fifth that of glass. Although it is possible to obtain rather 

thin synthetic tubing, consideration of the quantity Kw ~ suggest that 
t 

a glass tube of 1.92 cm diameter is mClre suitable than available plastic 

tubes of nominally similar size. 

5.1.5 Choice of Fluid 

The choice could be made between the laboratory supplies of air and 

water to suit the aims and limitations of the experiment. As one would 

like to minimise temperature drop across the tube wall, again, reference 

is made to equation (5.1) in deciding the fluid be used in this experiment. 

For a given Reynolds number, the heat transfer characteristics of a given 

fluid can be obtained empirically by using, for example the Petukhov-Pepov 

equation along with an expression for the friction factors (e.g. the 

Filinenko equation (see for example KARLEKAR and DESMOND [98] page 300». 

At a Reynolds number of 20000, the equation (5.1) gives 

for air, 

Cw - C 

C - C. o 1.-

and for water, 

c - C w 
c - c. o 1.-

= 11. 75 

= 0.1695 

This shows that as far·as the temperature drop across the tube wall is 

concerned air is seventy times better than water. Therefore in the present 

investigation air was selected as the working fluid. 
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5.2 Experimental Equipment 

5.2.1 Design of the Tube 

The glass tube used in the present investigation is a commonly 

available T6-type fluorescent tube with a nominal diameter of 3/4 in •• The 

inner and outer diameters of the tube are 1.715 cmand 1.920 cm respectivi1y. 

In preparing the tube for mettalic spraying the steps taken are the following; 

(a) Carefully remove the aluminium caps and electrodes from an 

already used fluorescent tube. This was done in a suitably 

protected surrounding. Once one end is broken open, the tube 

is kept in a well ventilated place for a short period so that 

its gas can diffuse out. 

(b) The two ends of the tube are now cut off using a glass cutting 

machine. The tube is then washed well so as to remove the 

phosphorous dust. The micrometer measurements of inner and outer 

diameters were made next. Then half an inch thick p1exi-glass 

flanges were fitted to the two ends of the tube using a self 

drying adhesive. 

(c) The spraying technique used here provides a satisfactorily uniform 

coating [97]. In the present werk, however, a method of obtaining 

two-segments of conducting strips has to be developed. After 

considering several methods, it was decided to stick two very thin 

(about 1 mm in width) strips of adhesive tape (se110tape) along 

the length of the tube spaced 1800 apart (see Fig. (5.1». In 

a tube of 1.92 cm outer diameter, each piece of tape covers, 

o roughly a 6, arc. 

(d) The e1ectroconducting paint used in the present investigation 

(as in GIESBRECHT [97]) is the "Flexible silver No'. 16" manufacturel 

by Eng1ehard of New Jersey. This paint cures at room temperatures 

and can be thinned for sprayirtg. The spraying was done on a lathe 
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bed where a precision spray gun was mounted to get a transverse 

motion at a constant speed. The spray paint was then applied 

in very thin coats on the rotating glass tube. The rotation speed 

was several times larger than the transversing speed. Several 

passes were made until the desired coating resistance was achieved. 

A period of about two minutes between the passes was allocated 

for the spray to dry out. A rough check on the resistance along 

the length of the sprayed section was made using an ohmmeter, 

this was used as the guide in deciding the total film to be 

applied. 

Safety requirements (with regard to the lathe), made it necessary 

to spray the tube in two sections each about 30 - 40 D. One 

section was masked while the other was being sprayed. Our original 

intention was to get the tube sprayed over its whole length and 

then to supply a suitably adjusted electrical inputs to the 

two sections so as to get the same heat flux in both sections. 

The resistance measurements, to be discussed later, ruled out this 

possibility and only a length of 26.5 D was chosen as the heating 

length of the present work. 

(e) Now, the two adhesive strips were carefully removed from the tube 

so as to get two segments of sprayed silver. The width of a 

segment can be considered as about 1740 arc at the outer surface 

(see Fig. (5.2». 

(f) The initial testing of the tube for uniformity of the coating in 

the longitudinal direction was done at this stage. (described in 

Subsection (5,3.1». The circumferential uniformity within a 

segment was not measured as there is no conveniently simple 

method of doing so. 
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(g} four copper 8.trips. ea.ch of width 5 JIlJll we;r;-e cla.Jl1ped to the s.ilyer 

coated glass tube 1 two at ea.ch end o~ selected length.1 so that 

each segment of the coa.ting made conta.ct at its end w~th a given 

pair of strips (see Fig. (5.3)). This allowed the heating of 

the two silver segments independently. 

5.2.2 Thermocouple Installation 

The thermocouple installation was made with the aim of obtaining as 

much information as possible of the circumferential and longitudinal 

development of the temperature distribution of asymmetrically heated 

situations. Thermocouples were installed at five axial locations: 5 , 10 

15 , 20 and 25 (internal) diameters from the start of the copper strip. 

The thermocouple used in this installation were of 3 mil (0.003 in 

diameter) teflon covered Chromel-Constantan wire which is the most sensitive 

commonly used type suitable for low temperature measurements. The conversion 

factor as given by the manufacturers of these thermocouples is 0.060 mV/oK • 

The wires were drawn from the same pair of spools to minimise any difference 

in quality between thermocouples. 

At each axial location six thermocouples were ins.talled~ as shown 

in Fig. (5.4) spaced 360 apa.rt. Since the silver coa.ting wa.s rather fragile, 

extreme care was taken in iastalling these thermocouples, The method adopted, 

was the following. First the thermocouples were placed on the adhesive side 

of a sellotape so that their beads just stuck out of the strip and the 

distance between the beads was equal to ~Do 
12 

Then another strip was pla.ced 

on top of the former so that non ... adhesive sides were at the outer si.des, This 

strip was then carefully positioned on the glass tube without damaging the 

silver coating. 

The cold junction was, installed in front of the heating region and thus '. 

the thermocouples could be used in a. differential manner, The potent:j:,OJD,ete1; 

used had an accuracy of 0.02 mV and the thermocouple readings were in the 

range 0 - 1.0 mV . The thermocouple circuit is shown in Fig. (5.5). 
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5.2.3 Power Measurement 

As the two segments were to be heated independently, the measurement 

of their power inputs were likewise made separately. The resistances of 

the segments were of the order of 1 ohm and, for the highest Reynolds 

number flow investigated (Re = 90000), the total power requirement was about 

20 watts to get a bulk temperature rise of 1.0 - 1.5 oK • Thus the experiment 

could be conducted at very low voltages and currents. The electrical circuit 

simply consisted of a stepdown variac and an ammeter in series with each 

segment. This is schematicaly shown in Fig (5.6) • The ammeter used could 

be read to the nearest 0.05 amp • The voltage drop across each segment was 

measured using a digital voltmeter with an accuracy of ± 0.5% . With this 

system it was possible to adjust the variacs so as to obtain a predetermined 

total power input to a given segment. 

5.2.4 Flow Measurement 

The air supply to the experiment was from the laboratory compressed 

air unit. The regulator valveuotild be adjusted in order to get the required 

manomatric height which represent the difference between total and static 

heads as read by a Pitot tube. The Pitot tube was mounted at the end of the 

glass tube so that it was lacated on the tube axis. After passing through 

the regulator air enters a long stainless steel tube of nominally the same 

diameter as the glass tube. The length of the stainless steel tube is about 

80 diameters. The glass tube is rigidly attached to this stainless steel tube 

and there is 35 diameters of glass tube length' preceding the heated section. 

Thus it can be conveniently assumed that the air flow is fully developed 

by the time it reaches the heating section. For the range 0 - 8 cm (0 - 3 in) 

an inclined water manometer which'could be read to the nearest ~/8 cm 

(0.05 in) was used. At Reynolds numbers of 40000 and 90000 a vertical 
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manometer which could be read to the nea;I;'est 1/4 cm (0.1 ;i.n) was used. In 

calculating the total flow rate it was assumed that the velocity on the 

axis was 1.20 times the average velocity. 
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5.3 Pre1;iminary Measurements 

5.3.1 Verification ofUnifotmity'of the Silver Coating 

The verification of the uniformity of the coating is a necessary step 

prior to any other measurement. This was done before installing the 

thermocouples. After segmenting the silver coating the tube was allowed to 

dry overnight and then the total resistances of the two segments were 

5.8 ohm and 6.0 ohm . After considerable heat curing this resistances 

decreased to a steady level of about 1.5 ohm each. 

In order to evaluate the uniformity of the coating the voltage drop 

along the tube was measured at 2 cm intervals. Over a length of 45 diameters, 

the root mean square deviation was 9.6% • This unsatisfactorily large value 

was due to a small section in the tube (between Z = 28 D and 32 D) which had 

large irregularities. It was decided at this point that:,the glass tube be 

heated only in the first 26~ D length where the root mean square deviation 

was less than 5% • The resistances of the segments for a length of 26~ D were, 

(a) for top half, Resistance 0.99 1.00 ohm 

(b) for bottom half, Resistance = 0.91 - 0.92 ohm 

The discrepancy between the resistances in top and bottom segments gives 

some indication of the level of non-uniformity in the circumferential direction. 

Even though the resistances were different, since the voltage supply to each 

segment could be adjusted so as to get the required volt~ampere (V x I) rate, 

the total heat production in each segment could be controlled as desired. 
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5.3.2 Uncertainties in Measurements 

The largest uncertainity in this experiment concerns uniformity of 

the coating. The silver spraying was done in order to get best uniformity in 

the longtudinal direction. Since the tube was rotated at a higher , 

circumferential speed as compared to the transverse speed of the spray gun 

it could be assumed that the circumferential uniformity was satisfactory 

as well. Initial measurements of resistance variation along the tube suggest 

that there could be variations upto 5% in longtudinal direction. This was 

considered satisfactory as GIESBRECHT [97] obtained considerable 

reproducibility in his experiment with similar variation in resistace of 

his tube. The circumferential variation of resistance could not however be 

exactly quantified. Ideally, one would expect a heat flux variation as shown 

in Fig. (5.7). In the region of the groove ( where sellotape strip was removed), 

however, it is possible that the adhesion of the silver coating to the surface 

was weakened. Even though extreme care wa~ taken while removing these tapes, 

it was found that there was minute damage to the paint. This would of course 

increase the local resistance and consequently the heat flux profile may 

look like that in Fig. (5.8). By heating both segments and observing the 

resultant circumferential temperature profile one could hope to quantify 

the modification to the circumferential heat-flux profile before studying the 

fully asymmetric situation. 

There are some other uncertainties which can be considered to have 

only minor effect. They are 

(a) Possible inequality in the size of the two segments; This can 

come about due to the difficulty in laying out the adhesive tape 

strips along the length of the pipe. Although it is easy to lay 

one strip along the length, it is not easy to position the other 

exactly 1800 apart from the first. The error associated with this 

is about ±2° 



o J 

(b) The voltage drop across the contacts to the s~lye~ coating; Since 

the silver coating was fragile it was not advisable to press the 

prong of the voltmeter on the coating. Thus the voltage drop 

across the length of the tube was measured as that between one 

copper strip and the other. The voltage drop across the copper 

strip is very small and hence neglected. The copper strip fits the 

shape of the tube and further it was hand painted with the flexible 

silver at the contacts. It is possible however that due to the 

stress in clamping, the contact is not uniform. This may cause a 

distorted voltage drop pattern. Its effect however is con~ined to 

areas very close to the contact points. 
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5.4 Expertmental Results 

Only the different conditions for which the tests were carried out are 

mentioned here. The wall temperature obtained in these tests are presented 

along with the numerical predictions of the same. 

Heating Condition: Two heating conditions were investigated. In the first 

the voltage applied to each segment was adjusted to give 

equal volt-ampere inputs to the segments. If the gap between the segments 

was negligibly small, in a uniformly ~oated tube, this would be equivalent 

to a uniform heat flux boundary condition. All measurements were repeated 

several times over a period of about two hours until the readings showed 

complete steadiness. The other boundary condition used was that where only 

the top segment was heated. This condition creates a strongly three-dimensional 

temperature field. 

Reynolds Number: Tests were carried out at three different Reynolds numbers: 

20000 , 40000 and 90000 . The air supply valve was manually 

adjusted several times during a test so as to counter any fluctuations in 

the supply system. 

Temperature Range: The total power supplied to the tube was predetermined 

so as to get a total bulk temperature rise of only 

1.0 - 1.5 oK over a length of 26~ diameters of heating. The maximum wall 

temperature rise was in the range of 120 K . For this temperature difference 

the percentage variation of thermal conductivity, specific heat and density 

of air are 3.52 , 0.085 and 3.60 respectively. Thus the heat transfer 

situation under study could be satisfactorily assumed as a passive scalar 

transfer. 



CHM'TER 6 

PREDICTION OF TWO~IMENSIONAL SCALAR TRANSPORT 

6.1 Introduction 

Turbulence models described in Chapter (2) are examined here by 

applying them in flow geometries where consistent experimental measurements 

exist. The numerical schemes employed for this purpose have been described 

in Chapter (3). As the scalar transport precesses are heavily dependent on 

the hydrodynamics, a considerable number of explorations were made of 

flow field predictions. When comparing the predictive performance of 

models, as far as possible, a single aspect or effect of the models were 

chosen, S.o that it was possible to draw definite conclusions. As for the 

basic hydrodynamic turbulence model, the following models as in LAUNDER 

et al. [15] was chosen. 

(a) ,Pressure-velocity gradient correlation by the complete Launder 

et al. model (equations (2.11) and (2.14» - denoted by Rsl ) 

(b) Turbulent diffusion of stress by the tensor invariant form) 

equation (2,6) - denoted by Dsl ' 

and (c) Near-wall effects of (a) by Launder et al. model, equation 

(2.22) - denoted by R 1 . . sw 

When comparing the scalar transport models, the above hydrodynamic model is 

employed along with the following basic scalar transport model. 

(a) Pressure-scalar gradient correlation by linear destruction of 

flux (equation (2.48» and redistribution of generation of 

flux (equation (2,58» model'"" denoted by Ral ' 

(b) Turbulent diffusion of scalar fluxes by gradient diffusion 

model (equation (2.45), see Table (2.2».,... denoted by Da2 ' 

and (c) Near~wall effects of pressure-scalar gradient correlation by 

equation (2,70) .,... denoted by Rawl ' 
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6.2 J;lredict:j.Qn o~ :Free Shear·:FlQWs. 

The aim here is. to compare the per;!;orm,ance of; the pressure..-,strain 

and pressure-scalar gradient models with experimental d~ta. The ba~ic 

pressure strain models, (described in the previous section) is compared 

with the redistribution of production model (equation (2.19» denoted 

by R 2 . In both models, the turbulent part (~, '1) is represented by 
a ~ 

the linear~return-to-isotropy model (equation (2.11» with different 

coefficients (see Table (2.1». For scalar transport, the performance of 

the quasi~isotropic model (equation (2.61) and (2.57) denoted by R
c2

) is 

compared with the basic model described in the previous section. Models 

Dal and Dc2 were employed to simulate the diffusion of stresses and 

scalar fluxes respectively. 

6.2.1 The Plane Jet 

The plane jet in stagnant surroundings is considered first. RODI 

[61] has concluded that the plane jet measurements of ROBINS [65] and 

BRADBURY [72] ,display the best internal consistency and it is these data 

that were employed for comparison with predictions. Figures (6.1) and 

(6.2) show the measured and predicted mean velocity and shear stress 

profiles across the jet cross section. The agreement is quite satisfactory 

in the bulk of the cross section, but tends to be poor as the free stream 

is approached. The spreading rates obtained by the two models are 0.116 

and 0.107 for models Ral and Ra2 respectively, The mean experimental 

value for the spreading rate quoted by Rodi is 0,11 • The difference 

between the predicted maximum shear stresses can be directly attributed 

to the above difference in spreading rates. The predicted turbulence 

intensity profiles are given agaihst the data of Bradbury in Fig. (6.3). 

RODI [61] has pointed out that the rather implausible result ofV2 > u2 
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at the centre of the j et iJ~ un;lque to Br~dbury ~fl data~ The turbulence 

energy production rate (all of which enters v;la the.u 2 equat;lon) has its 

maximum around 0.8 of the half width of the jet; the mechanism which 

makes any turbulent component very much larger away from this region is 

not clear. Certainly no linear effect could produce such behaviour. Over 

the whole of the jet cross-section, the predicted levels of .u2 are about 

15% larger than data, whereas the corresponding difference between predicted 

and measured levels in w2 is sl~ghtly smaller. Although this discrepancy 

is large, being a free shear layer they may be within the uncertainty of 

the measurements. The difference between V2 and w2 profiles obtained from 

the simple pressure-strain model Rs2 is purely due to diffusion coefficient 

for;r being about three times as large as that for.w 2 
• With a simple 

gradient diffusion model for stresses, on the other hand, model Rs2 would 

predict identical profiles for v 2 and w2 
• The turbulent intensities 

closer to the free stream indicate that the use of the same coefficient 

Cs in the diffusion model for both $ .. models is inappropiate. It seems 
1-J 

that the simple pressure-strain model requires a lower value for Cs than 

the other model. This aspect, which has not been pursued further in the 

present investigation, indicates that one can not identify with certainty 

between effects due to diffusion or to pressure-strain effects unless one 

has directly available measurements of the magnitudes of the processes 

themselves. 

The scalar transport predictions of plane jets are shown in 

Fig. (6.4) to (6.7). The predicted mean temperature profiles seem to 

agree quite well with data of JENKINS and GOLDSCHMIDT [68] and those of 

VAN DER HEGGE ZIJNEN [67]. Note here that the same hydrodynamic model is 

employed with both scalar transport models Rcl and Rc2 ' thus any difference 

between their performance is due purely to differences in the scalar 

transport models. Model Rcl produces a better mean temperature profile 
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than model Re2 ~ The sp1;"eadi,ng rates o;t; the temperature f:leld ;f1;"om modelE! 

Rei and Re2 are 0,145 a,nd 0,134 respectiyely~ which aJ;'e 25% and 15% h;i,ghe;J;' 

than the spreading rate of the velocity field~ experiments suggest an 

increase of about 25% in agreement with model Rei • As the~e are no 

measurements available on cross.,-stream heat flux p.rofiles~ the predictions 

are compared with ve profiles obtained by applying a mean enthalpy balance 

to the measured temperature with the assumption of self similar profiles. 

This is obtained with the help of the expressions given in Table (4.3),. 

The agreement is quite satisfactory in this comparison. The Figures (6.6) 

and (6.7) show the predictions of the ratio of the heat fluxes (streamwise 

to cross-stream) and turbulent Prandtl number of the plane jet. Over the 

bulk of the flow the streamwise flux is about 1.2 - 1.3 times larger than 

the cross-stream flux. At the plane of symmetry, the cross-stream heat 

flux drops to zero but the streamwise flux stays up thus giving a large 

ue -. The Prandtl numbers as predicted by the two models show a considerable 
ve 
difference. The profile from model Rei can be considered satisfactory as 

the average level predicted by that model is about 0.70 • The non-linear 

model Re2 produces too high Prandtl numbers near the centre of the jet. 

Although this effect could have been reduced by adj'usting the coefficients 

of model Rc2 ' with non-linear terms it will always produce higher Prandtl 

numbers near the centre than over the other parts of the flow. Thus any 

adjustments in ~he coefficients will change the levels of Pr and ue over 
ve 

larger regions of flow. It can be seen that if the effects of the non-

linear terms in the model Rc2 are to be small near the symmetry axis (which 

is necessary to produce a more plausible variation in turbulent Prandtl 

number) then the normal stress field should be closer to isotropy than 

predicted by present hydrodynamic models. This possibility is, however, 

not supported by the experimental data shown in Fig. (6.3). 
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6.2.2 The Plane Wa.ke 

In Figures (6,8) to (6.10) the flow predictions of a :Ear plane 

wake are compared with the measurements of TOWNSEND [62] and fABRIS [8lJ. 

The calculations were carried out until the velocity deficit was only 

about 5% of the main stream velocity, for which level self similarity is 

achieved with certainty. In the selected data positions of Townsend and 

Fabris, the velocity defects are 3.1% and 5.7% respectively. The agreement 

of predictions with models Rsl and Rs2 with above data are not satisfactory; 

the level of maximum shear stress being 22% lower than the experimental 

value. This in turn is seen in the predicted spreading parameter S being 

0.074 and 0.071 with the models Rsl and R s2 respectively, as compared 

to the average level of 0.098 reported by RODI [61]. The predicted spread 

of the half width of the layer is lower than in data. This is responsible 

for rather poor agreement of all components of turbulence kinetic energy 

u2 
in regions near the free stream. At the plane of symmetrY1 Townsends 

U2 

o 
is only 0.072, whereas that from prediction, by both models Rsl and 

Rs2 ' is about 0.095 • It must be noted however that this predicted level 

of u2 agrees well with data of ALEXOPOULOS and KEFFER [99] and that of 

UBEROI and FREYMUTH [100]. The level of w2 predicted by model Rsl agrees 

well with data over the inner half of the layer, whereas in the outer 

half, along with other components this too falls far too rapidly to the 

free stream levels. As in Bradbury's plane jet data, Townsend's measurements 

of v 2 show a maximum at the plane of symmetry? a feature not obvious from 

the stress equations. 

Considering the large discrepancy between predicted and measured 

spreading rates of the flow field, it is unwise to expect to obtain correct 

behaviour in the predicted scalar fields; relative magnitudes can however 

be compared. The predicted temperature field given in Fig. (6.11) show 

considerable departure from data, especially for the linear model Rcl • 
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The measured cros.s""·s.trea,ro, he@.t :l;luxes. ;l;rom TQwus.ends experiment are 

consistent with his self simila.r mean proU.1es,. The measured levels 0;1; 

ve of Fabris J however, are about 45% lower than what is ;implied by self 

similar analysis of his mean velocity and mean temperature profiles. 

Present predictions - with a rather low spreading parameter - agrees well 

with data of Fabris. The predicted ratio of half-widths of the temperature 

and velocity field are 1.17 and 1.09 for the linear (Rel ) and non-linear 

(R
e2

) models respectively. Corresponding ratio from the experiments are 

in the range of 1.20 to 1.30 • The predicted levels of ratio of streamwise 

to cross-stream heat fluxes and of turbulent Prandtl number are quite 

similar to those obtained from the plane jet predictions. Again, the 

implausible Prandtl number levels n,ear the central plane obtained from 

the non-linear model Rc2 can be attributed to the anisotropy of stresses 

in that region. In Figures (6.15) and (6.16) the prediction of streamwise 

heat flux and the temperature fluctuation are compared with the experimental 

data of FABRIS [81]. Although in the view of discrepancy between measured 

C and ve , even the streamwise heat flux is to be expected too low, the 

ratio' ue from the experiment is suitable for comparison. The predicted 
ve 

level 0;1; 1.30 to 1.40 in the bulk of the layer compares well with the 

range 1.40 to 1.50 obtained by measurements of Fabris. 

6.2.3. The Plane Mixing Layer 

First attention is given to the prediction of a mixing layer between 

tTNO moving streams. Fig. (6.17) shows the predictions by models Rsl and Rs2 

compared with the data of WATT [73]. The ratio of the velocities at the 

two streams is 0.5 . The prediction of mean velocity profil~ by models 

Rsl and Rs2 are indistinguishable and ,are in quite good agreement with 

the measured profile. The spreading rates of the mixing layer predicted 

by the models Rsl and RS2 are 0.0486 and 0.0462 respectively and they can 
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be considered sati~factQrily clQ~e to Watt~~ reported s.pread~ng r?,te o~ 

0.045 • The predicted level of shear stres~ is about 15% too hi$h when 

compared with the measured 1evel~ hQwever~ the shear stress calculated 

from Watt's mean velocity profile is much closer to the present predicted 

levels, the maximum of uv being about 0.105 • Over the bulk of the 
U2 

o 
layer, the predicted levels of turbulence intensity profiles, shown in 

Fig. (6.19), are in good agreement with measurements. At the centre of 

the layer, the relative levels of the turbulent components predicted by 

model Rsl are in excellent agreement with data, whereas, model Rs2 

predicted the u2 component (r.m.s. value) about 5% too high; moreover, 

the difference between w2 and v 2 at the centre of the layer is reduced by 

half. (As remarked above, any difference between w2 and v 2 in predictions 

by model Rs2 is purely due to the non-isotropic diffusion model Dsl ') 

Near the free streams the agreement of the predictions with measurements 

deteriorates, the prediction being consistently lower than the measurement. 

The mean temperature profiles predicted from models Rel and Re2 

are again identical and they compare satisfactorily with the measurements 

of Watt. The predicted spreading rates of the temperature layer are 0.0547 

and 0.0554 for models Rel and Re2 respectively and they compare well with 

the Watt's measured level of 0.051 • Certainly the ratios of spreading 

rates of temperature and velocity layers are in good agreement. Watt's 

measurements of cross-stream heat flux are in serious error by a factor 

of four. Thus the ve profiles as deduced from measur~dmean velocity and 

temperature fields under self similar conditions are employed for comparison 

with present predictions. Except near the faster moving edge the agreement 

is within 10%; a large fraction of this discrepancy is due to the 

disagreement in spreading rate of the velocity mixing layer. There is a 

considerable difference between the predicted and calculated heat flux 

profiles near the faster moving edge. This aspect is similar to the 
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behaviour noticed :i.,n pred:;t,cting, the p:Lane wake. F:;Lgure::; (6.22) and (6.23) 

show th,e predicted ua and the turbulent f>randtl numb.er var:i.at:i.;on acros.s. 
va 

the layer. The two models show a similar overall variation e\lenthough the 

levels of uc are different in the two cases. 
vc 

Considered next is a mixing layer formed in the initial region of 

a jet. RODI [61] recommended data of BRADSHAW et ale [75] as the most 

consistent with respect to compliance with self similar velocity - shear 

stress relation. The predicted variations of the mean velocity profile 

obtained with models, Rsl and Rs2 are identical except at the faster moving 

edge. The predicted profiles are in good agreement with data except in 

that region. The predicted spreading rates are 0.158 and 0.152 respectively, 

for models Rsl and Rs2 . As there is considerable scatter in the spreading 

rates among experimental data these predicted spreading rates can probably 

be considered satisfactory in comparison with Bradshaw's value of 0.165 

The predicted shear stress profiles agree well with measurements of 

Bradshaw et al •. It Should be noted however, that the discrepancy of about 

10% between calculated and measured levels of shear stress (see [61]) in 

Bradshaw's data is hidden in the present predictions by a similar 

discrepancy in the rate of spread. 

Shown in Fig. (6.26) is the predicted variation of mean temperature 

across the layer compared with the data of SUNYACH and MATHIEU [74]. The 

predictions from models Rc1 and Rc2 are not distinguishable. Again the 

largest discrepancy between predictions and measurements lies in the fas.ter 

moving edge. The spreading rates of the temperature layer predicted by 

mod~ls Rcl and Rc2 are 0.198 and 0.201 respectively. The spreading rate of 

the veloCity field as measured by Sunyach and Mathieu is 0.18 which is the 

highest value reported in Rodils review, thus this reported spreading rate of 

0.249 for temperature field can likewise be considered too high. Predicted 

profiles of cross-stream heat flux are shown in Fig. (6;27). The maximum 
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level o~ ~ implied by SunY9.ch and Mathieu ~ s me~n dat~ ~s about 60% 
UoCo 

higher than the predicted levels. The average level i.n the ;t;'atio$ of 

spreading rates between temperature and velocity mixing layers are 1.37 

and 1.28 from measurements and predictions respectively. Theua·and 0t 
va 

profiles predicted by models Ral and Ra2 are shown in Figures (6.28) and 

(6.29). They are quite similar to those obtained for the case of mixing 

between two moving streams. 

6.2.4 Conclusions 

The hydrodynamic predictions of the three free shear flows discussed 

above show on average satisfactory agreement with corresponding experimental 

data. Predictions with both pressure-strain models Rsl and Rs2 show similar 

behaviour, model Rs2 gives slightly smaller spreading rates than m6de1Rsl ' 

In predictions reported in LAUNDER et a1 [15], the simple pressure-strain 

model with C 1 = 1.5 was employed along with the gradient diffusion model. s, 

Present predictions by the simple model with Csl = 1. 7 along with the 

tensor invariant diffusion model Dcl ' show on average, improvements over 

the above predictions of Launder et a1 •• As far as the measurements employed 

are concerned, the largest uncertainity lies in the normal stress levels 

at the planes of symmetry in the palne wake and the jet. Even though the 

data of Bradbury and Townsend show considerably larger values for the V2 

component than other components, measurements by PATEL [101] and by 

CHEVRAY and KOVASZNAY [102] do not show such effect. Thus no attempt had 

been made to improve the predictions in this regard. As far as the numerical 

predictions are concerned, the largest discrepancy was seen near the fast 

moving boundaries in plane wake and in mixing layers. Consistently the 

predictions show more abrupt approach to free stream conditions than do 

the measurements. The numerical predictions were thoroughly checked to 

make sure that this behaviour is not a numerical shortcoming. 
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The Unear a,nd non .... U,near models (Ral and R c:2) for the p~essure,., 

scalar gradient correlation shoW' similar mean temperature p~edtctions. 

The prediction of large turbulent Prandtl numbers near the symmetry plane 

by the non-linear model Rc:2 however t is quite unacceptable. As seen before, 

model Rc:2:can be expected to give a more acceptable P'JIt profile onlyi.£; 

applied with a hydrodynamic model which predicts near isotropy in regions 

closer to the planes of symmerty. For this reason this model is not 

considered for further investigation. The scalar field predictions to be 

reported in the remainder of the Thesis with thus be made only with 

model Rc:l • 
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6.3 Flat Plate Boundary Layer 

The flat plate boundary layer in a zero pressure gradient with no 

mass transfer through the wall provides excellent conditions for the 

verification of the models for near-wall effect terms of the pressure-

velocity gradient correlation. Similarly the models for the pressure-

scalar gradient correlation can be verified with flat plate boundary layer 

heat and mass transfer data. Here the near-wall models discussed in 

Chapter (2) are employed with corresponding ~ .. models as follows: 
1.-J 

(a) The LAUNDER et al. [15] near-wall model given in equation (2.22) 

is employed with the complete pressure-strain model given in 

equation (2.14) and is denoted by R 1 ' 
SlJ) 

(b) The GIBSON-LAUNDER [31) near-wall model given in equations 

(2.26) - (2.27) is employed along with the simpler version of ~ .. 
1.-J 

(equation (2.19» and is denoted by R 2' sw. 
(c) The isotropic near-wall model for~. given in equation (2.70) 

1.-0 

is employed along with the linear model Rol (equa~1ons (2.48) 

and (2.58» and is denoted by RCWl ' 

(d) The Gibson-Launder model for near-wall effects of~. (equations 
1.-0 

(2.71) and (2.72» is employed along with model Rol and is 

denoted by RCW2 • 

Model RCWl is employed in conjunction with model R
S

lJ)l while model 

RCW2 is used along with R
S

lJ)2 • 
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6.3.1 Hydrodynamic Predictions 

As data of KLEBANOFF [32] relate to turbulence measurements in 

zero-pressure gradient, smooth flat plate boundary layer, they are very 

suitable for the verification of 

(a) different models for wall effects on the pressure-strain 

correlation 

and (b) different decay functions (controlling how fast wall effects 

disappear at distances away form the wall). 

The predictions with near-wall effect mo.dels Rawl and Raw2 are 

compared with Klebanoff's data in Figures (6.30) to (6.32). For this test, 

k ~/2 the near-wall effect function of f oc ___ and the tensor invariant form 
f:.y 

(equation (2.6» of the stress diffusion model were employed. The distance 

from the wall to the point where U = O.995UE ' where UE is the free stream 

velocity, was taken as the· boundary layer thickness 8 . The mean velocity 

profiles predicted by models R 1 and R 2 are in moderately good agreement aw aw 

with data. The predicted friction coefficients by models R 1 and R 2 are aw aw 

larger by 6.0% and 2.7% respectively than the value implied by the power 

law formula given by HINZE [26], p.638 • The predicted shear stress profiles 

are however indistinguishable from each other with these two models. Fig. 

(6.32) show the predicted normal stress profiles against data of Klebanoff. 

Model Rawl shows considerably better agreement with data than model Raw2 . 

Model R 1,correcely predicts the increasing trends in magnitudes of u2 and aw 

ui 2 components, as the wall is approached. The difference between the models 

in predicting the u2 component is appreciable where that of w2 components 

is purely due to different boundary conditions applied in order to be 

consistent with the extents of redistributton expected by near-waIl-effect 

models. 

The next test to be reported here is the effect of the near-wall-

effect function on the predictions of turbulence intensities. Two functions 
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3/2 luvl 3
/

2 
were tested, f ~ ~ and f~. . Xhe .proportionality constants were 

€y €y 
chosen so that, with boundary values of near-wall stress levels, !.takes a 

value of unity. The models R 1 and D 1 were employed along with above 
sw s 

functions and predicted behaviour was compared. The mean velocity profile 

and the shear stress profile were identical in the two cases; the normal-

stress profile shown in Fig. (6.33), however, were considerably affected. 

As the shear stress is practically constant in the near-wall region, with 

the dissipation rate being inversely proportional to the distance from the 

1
-ls/2 

wall, function f ~uv is rather flat over a considerable ~istance 
€y 

away.from the wall. On the other hand the turbulent kinetic energy is roughly 

proportional to y-n where n is about 0.20 - 0.25 and therefore f ~ k
3
/

2 

€y 
decreases considerably with distance from wall. Comparison between turbulence 

intensities predicted by these two functions with Klebanoff's data indicate 

that f ~ k
S
/

2 
represents the correct decay in effects of ~ .. terms 

s.y _ / 1.-Jw 
.. luvl3 2 -

whereas f a:. provides excessive levels of u2 due to near-wall. actions. 
€y 

Fig. (6.34) shows the effects of turbulent diffusion models Dsl ' 

the tensor invariant form and Ds2 ' the gradient diffusion model. The 

coefficient C in these two models was given values 0.11 and 0.20 s 

respectively. Model RSW2 was used here as the model for ~ij . The mean 

velocity and shear stress profiles are again identical for the two models. 

,:j:'he gradient diffusion model produces exces-sivediffusion in stress 

2 2 2 components.u andW and has negligible effect on the V component. Fig. 

(6.35) shows a rather interesting effect that ~as seen in the shear 

correlation coefficient. In Klebanoff'sreported data, the correlation 

coefficient is constant at 0.5 upto SO% of the boundary layer thickness 

and then drops linearly to zero at 1.2· 0 • The predicted shear correlation 

coefficient with model DS2 shows a similar behaviour but with sudden drop 

to zero at 1.1' 0, whereas model Dsl produces an implausible increase. This 

however can not be considered a serious defect as the shear stress in this 

region is anyway rather small. 
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6.3.2 Scalar Transport Predictions 

The investigation of a developing thermal boundary layer within a 

thick velocity boundary layer provides an inter.esting problem for prediction 

methods. ANTONIA et ale [90] have reported datailed temeprature field 

measurements of such a.flow (the velocity field measurements were not 

reported in datail). The momentum thickness Reynolds number at the upstream 

edge of the heated section was about 3070 • The velocity and thermal 

boundary layer thickness a and. a were defined as the distances to the wall 
c 

from positions U = 0.995UE and (C - C ) = 0.01 (C - C ) respectively. Two 
00 w 00 

major discrepancies were reported in their measurements: the skin friction 

coefficients obtained from the growth rate of the momentum thickness were 

about 25% larger than those obtained from measured velocity profiles (using 

a "Clauser" chart),and the wall heat flux implied by the mean enthalpy 

integral equation is about 20% higher than the measured levels. These 

discrepancies suggest a slight convergence of their str.eamlines, possibly 

due to the growth of boundary layers on the side walls. 

The predictions by models Rcwl and RCW2 of this flow are shown in 

Figures (6.36) to (6.40). The. agreement of the predictions with the mean 

temperature data as shown in Fig. (6.36) is rather poor. The discrepancies 

can be explained by looking more closely at the numerical treatment of the 

near wall region. Boundary conditions applied to the mean temperature and 

cross-stream heat flux equations are that of a given wall flux which is 

exac;tly known. There are no other relations feeding the numerical scheme
t . 

Thus the discrepancy seen in Fig. (6.36) is due to 

(a) the logarithmic law of the wall for temperature used in 

evaluating wall temperature, 

t For the case of known temperature wall boundary however, some auxiliary 
relation (generally the logarithmic law for temperature) will have to 
be used for the estimation of wall flux. 
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and (b) the turbulence model coefficients which expect a near-wall 

Prandtl number of about 0.9 • 

The logarithmic law of the wall used in evaluation the wall temperature 

is 

1 + = -' - In y E(] (6.1) 
K 

(] 

where K and E were taken as 0.46 and 4.5 respectively, which were obtained 
(] (] 

from a consensus of near-wall data (see KARDAR and YAGLOM [8]). The value 

of 0.46 for K is consistent with a Prandt1 number of 0.9 , whereas the 
(] 

coefficient E which represent the resistance by viscous sub layer to 
(] 

heat transfer, was given a value which is consistent with values quoted by 

JAYATILLEKE [103] in his extensive review of near-wall data (a slightly 

different nomenclature was used in [103]). 

The discrepancy between predicted and measured levels of Prandt1 

number can be isolated by looking at the temperature profiles in defect 

coordinates. This is done in Fig. (6.37). The near-wall Prandt1 numbers 

implied by data at all experimental stations are in the range 1.0 - 1.3 , 

whereas predictions show a value of about 0.85 • The reason for rather 

high levels of Prandtl number obtained by Antonia et a1. is not clear. The 

values of at obtained by other workers who examined the problem of developing 

thermal layer however fall much closer to present predictions. For example, 

the constant-waIl-temperature experiments of FULACHIER [104] and that of 

BLOM [86] and constant wall flux experiments of BRADSHAW and FERRISS [105] 

all indicate values of at = 0.90 - 0.92 in the near-wall regions. 

The data on Fig. (6.36) indicate that the additive constant E should 
(] 

in fact be a function of the streamwise distance, whose asymptotic value 

seems to have' reached by -t. of 11. 4 • The review paper by JAYATILLEKE [103] 
o 

however does not document such an effect. As there are no such correlations, 

in the present predictions, E was kept at a constant value which is 
(] 

consistent with reviews by [8] and [103]. 
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The variation of Prandtl number across the thermal layer as 

calculated by ANTONIA et ale [90] has a large scatter and does not seem 

to approach a regular pattern at downstream locations •. Self .preserving 

analysis however suggets an asymptotic behaviour for all variations. This 

data is another piece of evidence on the unreliability of measurements of 

Prandtl number. The predicted Prandtl numbers, shown in Fig. (6.38) against 

data of Antonia et al., indicate a near-wall value of about 0.9 decreasing 

· .. $,moothly away from the wall. The agreement of predicted Prandtl number 

variation with the data of FULACHIER [104] and BLOM [86] in the inner 40% 

of the thermal boundary layer is satisfactory. In the outer regions of the 

layer, where estimation of mean gradients in data are less reliable, the 

variations in crt in data of 

• ANTONIA et al. [90] do not show a clear pattern, 

• FULACHIER [104] show an increase, 

• BLOM [86], by turbulence measurements, show a decrease, 

• BLOM [86], by mean profiles, show an increaset , 

• JOHNSON [89] show a decrease. 

The present predictions show a decrease. 

Antonia et ale report that the thermal layer thickness at the last 

measuring station (Le. at JL = 42.9) was 66% of the velocity boundary layer 
00 . 

thickness at the same point. The corresponding predicted spreads of the 

thermal layers are 81% and 82% from models Rcwl and Rcwa respectively. This 

high rate of spread indicated by the predictions is consistent with 

difference between measured and predicted levels of Prandtl numbers. 

t The Prandtl number variation across the boundary layer given by Blom in 
his Thesis [10] does not agree with his earlier reported version [86]. 
In [10], the Prandtl number profile across the layer calculated by 
turbulent :variables as well as by+mean profiles-show a decrease away 
from a maximum of about 0.90 at y ~ 50 • 
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Predicted turbulent heat flux and temperature fluctuation profiles 

are compared with data in Figures (6.39) to (6.41). The cross-stream heat 

flux profiles show satisfactory agreement with measurements at all but first 

two measuring stations. Predicted streamwise heat flux profiles shown ag~inst 

data in Fig. (6.40) indicate that the boundary value of ua in the prediction 

is too low. The near-wall effect model Rewl does not seem to give sufficient 

level of ua • Model R 2' except very near to the wall, shows the correct . ew 

decrease in ua away from the wall. The temperature fluctuation predictions 

shown in Fig. (6.41) suggest insufficient diffusion of a 2 in the outer 

parts of the layer. A value of 0.13 used for the gradient diffusion 

coefficient C is however not an optimised value. Predictions of the far 
g 

plane wake also indicated an insufficient diffusion indicating that a higher 

level of C ,to about 0.18 - 0.20,would probably produce an overall 
g 

improvement. 
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6.4 Pipe Flow 

6.4.1 . Hydrodynamic Predictions· 

The mean and turbulence measurements by LAUFER [34] in smooth-walled 

pipes are a complete set of data suitable for comparison, Laufer made 

measurements at two Reynolds numbers Re = 50000 and Re = 500000 , and found 

considerable Reynolds number dependence in mean and turbulence profiles. 

More recently LAWN [19] made measurements of turbulence quantities 

essentially for the same flow with more advanced electronics. He concluded 

that for the range of Reynolds numbers 36000 - 250000 , the turbulence 

intensities suitably non-dimensionalised with the friction velocity are 

independent of Reynolds number. Shown in Fig. (6.42) are the fully developed 

velocity profiles obtained from predictions with models R 1 and R 2' sw sw 
They agree reasonably well with data of Laufer. The shear stress variation 

across the pipe radius as shown in Fig. (6.43) is mainly a check on the 

numerical procedure and on the fully developed character of the predictions. 

As shown here, the viscous effects are significant only very close to the 

wall at this high Reynolds number and for all other positions the shear 

stress profile is essentially linear. 

In Fig. (6.44) the turbulence intensity profiles predicted from 

models R 1 and R 2 are compared with data of Laufer. The agreement of the sw sw 
predictions with data are not very satisfactory; it is noted however that 

the streamwise component of stress measured by Lawn is in good agreement 

with predictions. The other components of normal stress obtained by Lawn 

lie rather close to Laufer's data for Re = 500000 . While, as remarked above 

Laufer's data indicate turbulence intensities which are highly dependent on 

Reynolds number influence. In the near-wall region, even though the predicted 

u 2 and w2 are within the scatter, thev2 component seems to be too low. 

As a boundary condition the level ofV2 at the grid point closest to the 

wall is indirectly imposed as equal in magnitude to the local shear stress. 

Laufer's data for Re ~ 500000 however imply a 20% larger level for .v 2 in 
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this region, a behaviour inconsistent with most other near-wall data 

(e.g. KLEBANOFF [32]). 

Near the axis of the pipe the components .v2 and .w2 are predicted too 

low. Higher levels for these two components can be obtained by increasing 

the diffusion coefficient Cs ' which however will increase the near axis 

levels of .u2 as well, thus worsening th~agreement of this component with 

experiment. The turbulent diffusion models Dsl and Ds2 are compared in 

Fig. (6.45). Model Ds2 ' with a coefficient of C~ = 0.20 , seems to have 

rather too high diffusion rate. When C~ was reduced to 0.15 model Ds2 

provides more' .acceptable stress levels near the axis; however no overall 

improvement over model Dsl was seen. 

6.4.2 Scalar Transport Predictions 

The predictions in the models Rowl and ROW2 for the case of fully­

developed temperature fields in pipes are shown in Figures (6.46) to (6.49). 

The predicted behaviour is compared with data of BREMHORST and BULLOCK [92] 

for a Reynolds number of 34200 • Model Rowl predicts a flatter mean 

temperature profile than ROW2 ; the agreement with data is satisfactory. 

The radial heat flux profiles given by the two models are identical. The 

streamwise heat flux profile shown in Fig. (6.48) is in excellent agreement 

with data of [92]. Considering the slight scatter in the experimental values 

it is not possible to choose which one of the near-wall models is more 

acceptable. The turbulent Prandtl number profile shown in Fig. (6.49) is 

that obtained for fully developed pipe flow. 

Shown in Fig. (6.50) is the prediction of concentration profiles 

downstream of a small mass transfer region in the pipe wall, a configuration 

studied experimentally by QUARMBY and ANAND [94]. The first set of 

experimental data is given for the position where the porous region ends. 

There the agreement of the predicted profiles with data is quite satisfactory. 
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Under adiabatic wall conditions, the concentration profile will develop 

towards the asymptotic state of constant concentration across the cross-

section. The prediction of this development is only in moderately 

satisfactory agreement with data. 

At this point it is useful to look back at the modelling ideas and 

assumptions employed in the scalar flux model. In modelling the pressure-

scalar gradient term in the scalar flux equation it was assumed that the 

time scales of hydrodynamic and thermal turbulence fields, i.e. ~ and ~ 
E: 2£ 

respectively, are proportional. This assumption is likely to be 
a 

satisfactory when 

(i) mean velocity and mean scalar equations are nearly similar 

i.e. having similar boundary conditions etc., 

(ii) the different contributing turbulence processes to the 

maintenance of the turbulent kinetic energy and the scalar 

fluctuations have the same relative magnitude, Le. at any 

given region of flow, 

p 

E: E: 
a 

In situations where these conditions are not satisfied,. the time scales 

~ and ~ can not be expected to be proportional; then the use of one scale 
82E:a 
will not be sufficient to describe a process where both time scales are 

influential. One of the limitations of the present model is that it assumes 

proportionality of velocity and scalar time scales and we may there expect 

anomalie.sta show·up if the above conditions are not satisfied. The 

QUARMBY and ANAND [94] experiment is one situation where the boundary 

conditions for mean velocity and mean scalar are quite dissimilar. The mean 

velocity field is characterised by large gradients near the wall (i.e. non-

zero wall friction) while the mean concentration profile downstream of the 

porous region has zero gradient at the (impermeable) wall. Thus while the 
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hydrodynamic turbulence field is in local equilibrium, (i.e. ?. + 1.0), in 
e: 

the near~wal1 regions, the'concentration:fluctuation fie1d±s one of 

decaying strength; the production of .~ being nearly zero in regions close 

to the wall, 

e 2 is likely 

i.e. Po + 0 • With less production, in the near-wall region, 
EO 

to decrease faster than e: • Thus the effect of the time scale a 
2 
~ on the characteristic time scale (previously expressed as proportional 
2e:e 
to ~) is to decrease its magnitude. If this process was to be accounted 

for, in an ad-hoc manner, within the framework of the present model, one 

would need to increase the coefficient Cel near the wall, thus decreasing 

the effective thermal conductivity and raising the Prandt1 number. This is 

certainly the direction of change needed to procure agreement with the 

measurements. In fact in the theoretical work of QUARMBY and ANAND [94] it 

was assumed that the turbulent Schmidt number was unity, compared with 

values much less than unity obtained in present predictions (see Fig. 

(6.51» throughout the flow, and satisfactorily predicted the development 

of the concentration field. Due to above mentioned dissimilarity between 

velocity and scalar fields some assumptions made in modelling turbulent 

diffusion of scalar fluxes too become less relevant. Their implications 

however are not very clear (see Appendix (B». 

6.4.3 Conclusions 

The prediction of flat plate boundary layer data of KLEBANOFF [32] 

suggests that model R 1 is superior to model R 2 and that the near-wall 
SlU SlU 

effect function f ~ k
3
/

2 
is more suitable than the function f ~ UV

S
/

2 
• 

e:y e:y 
The models for near-wall effect of pressure-scalar gradient correlation do 

not show any large differences in their predictions. Therefore model Rozul 

which parallel the near-wall model R 1 is chosen for further work. The 
SlU 
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tensor invariant diffusion model Dsl shows superiority over the model DS2 

in pipe flow predictions. Therefore it is the model Dsl that is employed 

in further applications. Models Del and De2 could not be distinguished 

when predicting Quarmby and Anand's flow. The modelDe2 is thus chosen 

for further applications. 



o !J ,J .'.j U ,.U J/ 
- 193 -

CHAPTER 7 

. 
,,) 

PREDICTION OF THREE-DIMENSIONAL 

SCALAR TRANSPORT 

7.1 Introduction 

Prediction of three-dimensional scalar transport provides a 

searching test for the turbulence model chosen in the previous chapter. 

For the first time all components of scalar fluxes become influential in 

the predictions here. The main feature that is under test here is the 

relative magnitude of the tangential scalar diffusivity with respect to 

the radial one. Ad-hoc assumptions, made by previous workers, on the ratio 

C C 
of tangential to radial scalar diffusivity, ra / rr ' are briefly, 

(a) REYNOLDS' [106] assumption of unity throughout the flow, 

(b) SPARROW and LIN's [107] assumption of a diffusivity ratio 

varing with radial position (for flow in pipes), 

(c) QUARMBY and ANAND's [59] assumption of an isotropic diffusivity 

in predicting concentration profiles behind a short mass 

transfer section in a pipe, 

and (d) Consideration made by BERGELES et ale [108] where diffusivity 

ratio was taken as equal to the ratio of transverse to 

cross-stream normal stress levels. 

Out of these assumptions it is the last one (Bergeles et al.), that is 

closer to generality. This relation is the form to which the present model 

reduces when convective and diffusive transport effects and near-wall 

effects are neglected. In the present investigation, where transport 

equations for the turbulent fluxes are being solved, the diffusivities are 

an outcome of the calculation rather than an input. It will be seen later, 

that the ratio of diffusivities in the tangential to radial directions is 

not a well-behaved two-dimensional function as assumed by previous workers, 
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but a complex three-dimensional function strongly dependent on the 

boundary conditions. 

Section (7.2) reports preliminary testing of the three-dimensional 

calculation procedure. The aim here was to ensure that, 

(a) there were no asymmetries induced by the three-dimensional 

procedure, (caused by the chosen sweep direction, etc.) 

(b) the mean scalar was conserved, 

and (c) the solutions were independent of the finite difference grid 

chosen. 

In Section (7.3) predicted results of three-dimensional scalar 

transport situations are compared with experimental data. 

They are the simulations of, 

(a) QUARMBY and ANAND's [59] experiment, where the three­

dimensionality is rather weak, 

(b) BLACK and SPARROW's [13] experiment, where the three­

dimensionality is moderate and persisting, 

and (c) Present experimental situation (see Chapter (5», where the 

three-dimensionality is strong and persisting. 

Section (7.4) concludes the chapter by summarising the inferences 

made on the three-dimensional calculations. 
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7.2 Verification of the Three-Dimensional Solution Procedure 

The'(6-1'-z) numerical procedure described in Chapter -(3) . was 'utilised 

previously in.Chapter (6) inpredlcting twq-dimensiona). scalar transport 

situation. There the calculations were confined to a single (6-z) plane. 

All three-dimensional scalar transport situations considered in this Thesis 

had two-dimensional fully developed flow fields. Thus the flow field 

calculations were performed on two-dimensional basis and the results were 

transfered to the three-dimensional procedure and then made to spread over 

all (6-z) planes. The three-dimensional scalar field was then calculated 

with a frozen hydrodynamic field. The numerical solutions were checked 

to ensure that they correctly represented the solutions of the finite 

difference transport equations. 

7.2.1 Check for Numerically Induced Asymmerty in Scalar Field 

As the hydrodynamic field was obtained for a single 6-line in the 

cross-section of flow and then all other 6-lines were assigned, the flow 

field can be considered exactly symmetric. In the finite difference solution 

of the scalar transport equations however, even under symmetric boundary 

conditions, asymmetry can enter the calculations via 

(i) the method of imposing boundary conditions, which may make the 

finite difference equation of a variable ~ at any control 

volume remote from a boundary different from one adjacent to 

a boundary, 

and (ii) incorrect interpolation practices. 

In order to check that the computer code is free from thes.e deficiencies, a 

pseudo-three-dimensional calculation of heat transfer in a circumferentially 

uniformly heated pipe was made. The mean temperature field showed no 

asymmetry in the result. Also the diffusivity of scalar in the radial 

direction, 
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de 
dr 
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showed prefect symmetry; the tangential diffusivity, 

= 

(7.1) 

(7.2) 

however, showed asymmetry, less than 3% at any point. It should be noted 

here that both uea and de should be zero under these boundary conditions 
de 

and thus above accuracy is remarkably good. This makes it possible to 

proceed in the knowledge that the asymmetries predicted with three-

dimensional boundary conditions are in .fact real. 

7.2.2 Check for the Conservation of Mean Scalar 

In making calculations of scalar transport inside tubes (without 

considering the conduction through the tube material), the wall scalar 

fluxes are given as the boundary condition to the fluid medium. Conservation 

of enthalpy or concentration is thus always achieved. The solution of problems 

where tube-wall conduction is present, however, presents an additional 

requirement. Since the axial conduction is to be neglected, here one must 

make sure that under steady state conditions, the heat generated (or. 

supplied through the outer surface of the tube) in a given length of pipe 

wall is exactly equal to the net gain in heat by the fluid passing along 

the same length. Thus, for example, if the heat input per unit length is 

constant along the pipe, the bulk temperature rise should be exactly linear. 

As the general _ form of the finite difference equations for control volumes 

within the pipe wall (no turbulent transport) is strikingly different from 

those for control volumes in the fluid, these equations-are not expected to 

converge to the solution at the same rate. In calculations where the grid 

was confined to the fluid inside the pipe it was found that at a given cross 
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section it was sufficient to make two sweeps each, in the radial and 

tangential directions, of the line-by-line solution of the finite difference 

equations. In cases where tube conductian was considered, however, a 

large number of sweeps was necessary to make sure that the fluid had 

absorbed all the heat that was supplied under steady conditions. During 

the first few steps of the calculation i.e. in the region close to start 

of the heating, the mean temperature equation was swept eight times, whereas, 

as the calculation proceeded downstream the number of sweeps were gradually 

reduced to four. This practice made sure that the total deficit in the bulk 

temperature was less that 0.1% of the exact value at all positions along 

the tube. As all turbulent variables were confined to the fluid, as before 

two sweeps were sufficient for their convergence. 

7.2.3 Check for Grid Independence of the solution 

It is necessary to make sure that the final solution of the equations 

was, for practical purposes, independent of the finite difference grid 

employed. Apart from limitations in grid placement in near-wall regions, 

as -discussed in Section (3.6), one . can generally expect to achiev.e 

higher accuracy by increasing the number of grid nodes across the region of 

interest, however, with added cost in computing. In two-dimensional 

calculations 22 grid nodes were used in the radial direction. Number of 

grid nodes necessary in the transverse direction were checked in three-

dimensional calculations and 8 grid nodes were found to be sufficient to 

give mean field results with 1% of what is obtained with 14 grid nodes. As 

the computational time nearly doubled in the latter case it was felt that 

the accuracy with (8 x 22) grid was sufficient for the present investigation. 
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7.3 Comparison of Predicted Results with Experimental Data 

Three sets of experiments in three-dimensional scalar transport 

(weak, moderate and strong in three-dimensionality) are compared here with 

the predicted behaviour. 

The first situation considered is QUARMBY and ANk~D's [59] 

measurements of concentration profiles downstream of a short mass transfer 

section. This work fallowed their two-dimensional explorations [93] made 

with the same apparatus and all details of the measurement technique and 

measuring stations etc. were given then. The presentation of the results 

in [59] however is rather misleading. The location x+ = 0 in the first 

(axisymmetric) paper was at the downstream end of the mass transfer patch 

on the wall. In the second paper no statement as to the whereabouts of the 

origin was made. It was evident, however that it could not refer to a 

position in the porous patch since the reported near-wall radial gradients 

of concentration were low (indicationg an impermeable wall). The experimenter 

reported that the stations were the same as for the axisymmetric tests 

however. It was eventually discovered that by interpreting x+ = 0 as 

+ corresponding to the next position downstream the values of x reported in 

the two studies were indeed the same (see Table (7.1)). 

Present Notation 

~=! 
D 

o 
1.493 

3.558 

8.208 

12.858 

19.058 

29.388 

Notation in QUARMBY 
and ANAND's [59] 
Two-Dimensional 
Experiment, x+ = ~ 

R 

Notation in QUARMBY 
and ANAND's [93] 
Three-Dimensional 
Experiment, x+ = ~ 

R 

(Start of Porous Region) 

0 (End of Porous Region) 

4.13 0 

13.43 -
22 . 73 18.60 

35.13 31.00 

55.79 51.66 

Table 7.1 Measuring Stations for Quarmby and Anand's Experiments .... 
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Now the predicted concentration profiles are compared with data of [59J. 

Shown in Fig. (7.1) is the variation of concentration at position (a) and 

(b) (which are the maximum and minimum of concentrations close to the wall). 

The agreement between the predicted variation and experimental data is 

poor. Some useful inferences can however be drawn. 

(i) "Data at! = 3.558 indicate that the circumferential diffusion 
D 

of matter is much larger than what is implied in the predictions 

(otherwise the concentration at (b) would not be so high). 

(ii) Data at locations further downstream indicate that 
, 

circumferential diffusion is considerably smaller than that 

implied in the predictions (otherwise difference between the 

concentrations at (a) and (b) should decrease faster). 

(iii) The variation of the near-wall concentration (denoted as C2D) 

profile in QUARMBY and ANAND's [93] two-dimensional investigation 

for the same Reynolds number (Re = 20800) is given in Fig. 

(7.1). Their three-dimensional mass source was obtained by 

blocking 50% of the porous ring used in two-dimensional 

investigation. Therefore, for the purpose of comparison, the 

intensity of mass source in three-dimensional case; q3D ' can 

be considered double as that for two-dimensional case; q2D ' i.e. 

In regions where diffusive effects are not predominant, 

concentration is likely to be proportional to the local mass 

flux. Therefore in regions close to the porous ring C should a 

be roughly 2C
2D 

• Quarmby and Anand's three-dimensional 

measurements, however, does not support this, indicating a 

clear discrepancy between their measurements. It is most likely 

that their three-dimensional measurements at X+ = 3.558 are 

grossly in error. 
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The above discussion indicates that QUARMBY and ANAND's [59] data are 

neither consistent nor reliable. The fact remains however that the 

circumferential diffusion of matter as indicated by their data is 

substantially smaller than that implied in the present predictions. This 

fact in the light of other experimental data is discussed later. 

It is worth mentioning here that QUARMBY and ANAND. [59] came out 

with a set of assumptions which made it possible for them to predict their 

flow satisfactorily. They assumed that the diffusivities of mass and momentum 

are equal and that diffusivities of mass in radial and circumferential 

directions are equal. They assumed profiles for mean velocity and effective 

viscosity and then solved the concentration equation with the use of above 

assumptions. As initial conditions they took the experimental results at 

! = 3.558 • Their predicted profiles at downstream locations were in 
D 
excellent agreement with the experiment. It was seen earlier that data at 

! = 3.558 however are inconsistent with above assumptions. Thus with these 
D 
assumptions, if their calculation started at ! =0 , it would not have been 

D 
possible for them to satisfactorily predict their data. 

The next three-dimensional scalar transport situation to be considered 

is the investigation of BLACK and SPARROW [13] (see also BLACK [95]). Here 

the fluid is subjected to a circumferentially varing heat flux boundary 

condition obtained by resistance heating of a stainless steel tube of varing 

thickness. This boundary condition is applied to a length of 60 diameters 

of tube and temperature measurements were reported at the position ! = 52 • 
D 

The ratio of maximum to minimum heat flux as implied by the variation in 

thickness is 2.92:1.00; however, due to circumferential conduction in the 

pipe wall this ratio of heat fluxes at the surface was reduced to a mere 

1.31:1.00 at a Reynolds number of 7500 • Thus their situation can be 

considered only moderately three-dimensional. Results were published for 

several Reynolds numbers in ·the range 7500 - 58000 • For the present 
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investigation two Reynolds numbers were chosen, 40500 'and 16800 , for 

which complete sets of wall and flow measurements are available. (Wall data 

for Be = 17200 are taken as that would prevail for Be = 16800). The 

temperature and heat flux distribution at the inner wall (calculated by 

BLACK [95] by solvingt the tube conduction problem) and the implied local 

Nusselt number variation were reported at X = 52.0 • The predicted behaviour 
D 

of 

(a) the wall heat flux through the inner surface of the wall 

(b) the wall temperature at the inner surface of wall 

and (c) the implied local nusselt number calculated as 

Nu -+ w " K.;. D 
= 

I E]J 1 D. q. "t W " .,. 

------~~--~----------. ~ 
c. -+ 
~ 

w" K.;. 
D 

- Cb -+ K .;. K 
D W 

(7.3) 

at the two Reynolds numbers, are compared with calculated profiles of BLACK 

and SPARROW [13] in Fig. (7.2) and (7.3). There are discrepancies of 4% 

and 2.6% between the predict~d and measured circumferential heat flux 

vatiations at Be = 40500 and 16800 respectively. The predicted variation 

in the inner surface temperature however agree well with data. It should 

be noted that as Black did not apply an inner wall boundary condition in 

his calculations, but relied on two boundary conditions at the outer surface, 

the results of his calculation are liable to be rather sensitive to any 

errors in those boundary conditions. The maximum discrepancies in 

Nu -+ w " K.;. are 6% and 2.8% for Be = 40500 and 16800 respectively. It 
D 

is thus clear that a major portion of the difference between the calculated 

(by BLACK [95]) and predicted Nusselt numbers is due to difference in 

q-profiles which in ,their case is probably in error. 

t The boundary conditions used in solving the conduction problem are, 
(i) . Symmetry at w = 0° and W = 180 0 

(ii) Known temperature at the outer surface (measured values) 
and (iii) Assumed adiabatic outer surface, (heat generation rate 

calculated from measured enthalpy rise in air). 
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The non dimensional temperature contours drawn from the data of [95) 

and present predictions are compared in Figures (7.4) and (7.5). The 

agreement of the calculated and measured behaviour is very satisfactory. 

The radial diffusivity of heat implied in the predictions seems to be 

slightly too low whereas the circumferential diffusivity seems just 

correct shown in Fig. (7.6(a) and (b» are the measured temperature profiles 

and predictions at I = 52. The dashed lines indicate calculations made by 
D 

Black using SPARROW and LIN' s[107) analysis which assumed unity Prandtl 

number and isotropic diffusivity for heat. Since the agreement of the 

present predictions with measured levels is far better than with the 

isotropic assumption, it is possible to conclude that the notion of 

isotropy is not in accord with experiment. 

The development of the local Nusselt number in the streamwise 

direction is shown in Figures (7.8) and (7.9). Five angular locations 45° 

apart in the tube were chosen for representation. The following inferences 

can be drawn 

(a) The thermal flow has not become fully developed even at I = 60, 
D 

(b) The Nusselt numbers in the hotter areas seem to be close to 

fully developed levels than do the others • 

. c -'rhe. finaL-thX'.ee-dimensional· scalar transport situation to be 

considered is that of the experiment described in Chapter (5). Here the 

three-dimensionality is obtained by heating only the top half of a glass 

tube. Due to conduction through glass, however,a small fraction of heat 

found its way through the non heated half. As the heat flux variation around 

the circumference-was not measured one had to make an assumption as to how 

it varied in that direction. Preliminary calculation with a square-wave 

heat flux distribution in the 6-direction showed that the measured 

temperature variations were by no means compatible with this distribution. 

To find a more probable q-profile around the circumference measurements 
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were made with both sides heat.ed. Figures (7. 9)c~,to (7.12) show the results 

of these explorations. The aim here was to obtain a q ~ w ~ profile which 
o 

would give best agreement with wall temperature measurements made for the 

Reynelds ,numbers 20000 , 40000 _'and 90000 • The profile of qo of w ~ chosen 

after considerable exploration is given in Fig. (7.9). The q. of w ~ profiles 
1.-

refer to the heat flux variation entering the fluid. As expected the wall 

conduction effects are more dominant at lower Reynolds numbers. 

It should be noted here that the temperature profiles shown in 

Figures (7.10) to (7.12) are obtained without modifications to the turbulence 

model. It was hoped that any shortcomings in the turbulence model would 

still be evident with the adjusted q profiles. On average predicted 
o 

temperature profiles indicate slightly lower values than that obtained from 

measurements. This may be inferred as an effect of slightly high radial 

diffusivity in near wall regions. 

Shown in Fig. (7.13) is the streamwise development of local Nusselt 

number (non dimensionalised with respect to the fully developed value for 

the axi-symmetric case) at three different angular positions. The wall 

fluxes corresponding to this case are those at Fig. (7.9(a». The Nusselt 

number profile at w = 45° for which point qi is very nearly unity falls 
q. 

along with that obtained in the axi-symmetrrc calculation described in 

Subsection (7.2.1). The data of entrance region Nusselt number by MILLS 

[109] for the case of uniformly heated tube (long calming section entrance) 

are shown here for comparison. Considering the scatter in data the predicted 

variation for the axi-symmetric case can be considered satisfactory. The 

non dimensional temperature contours at axial locations K = 5 , 10 , 15 , 
D 

20 , 25 for the case of Re ~ 40000 are shown in Fig. (7.14). The slight 

asymmetry created by the weakly three-dimensional wall boundary condition 

is evident here. 
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The simulation of the situation where only one half of the tube was 

heated will be discussed next. The outer wall heat flux distribution qo 
qo 

profile is that given in Fig. (7.1S(a». Again measurements and predictions 

were made for three Reynolds numbers 20000 , 40000 and 90000 • The results 

of these tests are given in Figures (7.1S) to (7.20), two figures for each 

Reynolds number. The first of these show the given q + W f profile along 
o 

with predicted q. + W f profile (q. + W f varies in the axial direction as 
~ ~ 

well, however this variation is quite small). Again, larger influence of 

conduction at lower Reynolds number is evident. The ratio of maximum to 

minimum heat fluxes (predicted, inner surface of tube) was Sl.S , 131 , 

40S respectively for Reynolds numbers 20000 , 40000 and 90000 • (cf. Black 

and Sparrow experiment where this ratio was 1.67 for Re = 40S00) The 

predicted temperature profiles around the circumference suitably non-

dimensionalised·withrespect .to the local bulk. temperature show satisfactory 

agreement with measurements .The discrepancy at ! = S could arise from two 
D 

possibilities; one, as mentioned before, a high radial diffusivity in the 

prediction and the other a possibly low heat flux in the initial region of 

the experimented tube. The Nusselt number profiles shown here indicates 

nega~ive values over most of the half where the heat flux is very low. 

(The local Nusselt number becomes negative when the wall temperature is 

smaller than the bulk temperature at that axial location.) Non-dimensional 

temperature contours at five axial locations for Re = 40000 are given in 

Fig. (7.21). The rather strong three-dimensionality obtained with present 

boundary conditions is clear. The temperature measurements in the fluid, 

had they been available, would have provided an invaluable test for 

the detailed turbulence modelling. 
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The ratio of diffusivities in tangential to radial direction for two 

representative cases are shown in Figures (7.22) and (7.23). The first 

refers to the Black and Sparrow's expertIDental situation at Be = 40500 • 

Here the three~dimensionality of the scalar field being only moderate, the 

transport effects in the scalar flux equations are never dominant. This can 

be seen in these contours which indicate values for ratio of diffusivities 

in two directions quite close to ratio in respective normal stresses. Fig. 

(6.23) which relate to the case of Be = 40000 in the present experiment 

indicate that for strongly three-dimensional scalar situations the ratio 

of tangential to radial diffusivities of heat is indeed clearly three-

dimensional. 
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7.4 Conclusions 

It was shown that the measurements of concentrations behind a short 

mass transfer section in a pipe made by QUARMBY and ANAND [11] are not 

reliable. Their data however indicate that the near-wall diffusivities are 

predicted too high. As noted before, similar impression was given by 

predictions of their data for the two-dimensional problem as well. Other 

two situations which the predictions were attempting to simulate were for 

the cases where there were non~zero heat fluxes at all cross-sections of 

the flow. The three-dimensionality of the scalar field in these cases were 

much stronger and the predictions were in very good agreement with data 

certainly far superior to the calculations with the assumption of unity for 

the ratio between diffusivities in tangential and radial directions. It 

was shown at the end that this ratio is in fact a three-dimensional function 

very much dependent on boundary conditions and is far from well-behaved 

ad-hoc assumptions found in the literature. 
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CHAPTER 8 

CONCLUDING REMARKS 

8.1 Achievements and Limitations of Present Work 

The main theoretical contribution of this Thesis has been in the 

area of extension and application of existing second-order closure models. 

The Reynolds stress closure models employed have previously being tested 

by others e.g. LAUNDER et al [15], in the same or similar experimental 

situations. In the present work, the main concern was to apply the scalar 

transport models in situations where reliable experimental data exist. 

Models for two terms, the pressure-scalar gradient term and the turbulent 

diffusion term, that appear in the scalar flux equation were tested. 

Attention was given to the modelling of influence of a rigid wall on the 

pressure-scalar gradient term, and a new model based on ideas exactly 

parallel to the modelling of near-wall effects of pressure-strain term is 

presented. 

Two existing numerical schemes, Patankar-Spalding (x-~) procedure 

and (6-r-z) procedure developed by Gosman and his colleagues, were extensively 

modified so as to facilitate the study of hydrodynamic and scalar 

transport problems with second-order closure models. New set of nodes, 

staggered with respect to those at which the mean flow variables were 

stored, were introduced for the calculation of turbulence variables. In 

the (x-~) procedure, for two-dimensional boundary layer flows, turbulent 

variables were calculated in positions shifted half a grid node in the 

~-direciion. In (6-r-z) procedure the displacements of the turbulent grid 

were chosen with due regard to the appearance of these variables in the 

mean equations. This technique clearly stabilized the numerical .calculations 

by keeping the correct dagree of tightness between mean and turbulent 

equations. Within the framework of the above numerical schemes, this idea 
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of staggered grid for turbulent variables provided a much improved 

arrangement for- the solution of conservation equations in the second-order 

closure models. 

The final version of the (6-r-z) computer code contains a facility 

that permit the solution of the mean temperature equation both within the 

flow and in the wall of the containing pipe. This enables one to take a 

correct account of the effects of conduction in the tube wall under 

circumferentially non-symmetric boundary conditions. 

The present work has provided measurements in strongly three-

dimensional heat transfer situations in a pipe. The technique of obtaining 

uniform-heat flux boundaries in long pipes using metallic spray deposition 

has been extended to obtain segments of uniform heat flux regions. 

Experiments which were performed for three Reynolds numbers (20000 , 

40000 and 90000) provide a useful set of data for the verification of 

turbulence model. 

Several free as well as wall-affected two-dimensional flow and 

scalar transport situations were numerically predicted using the second-

order turbulence models. The level of agreement obtained in the hydrodynamic 

predictions is similar to that obtained by previous workes. Even though 

the predictions of the plane jet and of the mixing layer between two 

moving streams is quite satisfactory, the plane wake and the mixing layer 

with UI ~ 0 show too low spreading rates. The weak point there seems to 
UE 

lie in the modelling of the dissipation rate of turbulent kinetic energy. 

The lev.el of agreement obtained in scalar transport predictions is . 

satisfactory, however, it is always limited by the corresponding success 

in the hydrodynamic predictions. The present pressure-scalar gradient 

model predicts about the correct level of turbulent Prandtl numbers in 

free shear flows. The effects of considerably different production to 

dissipation rates on the level of turbulent Prandtl number, while in the 

correct direction, however seem to be underpredicted. 



o 

One of the major limitat~ons of the present scalar transport model 

is that it assumes proportionality between the turbulent velocity and 

scalar time scales. When the boundary conditions for velocity and mean 

scalar are nearly similar this assumption is found to be satisfactory. The 

computations of mass diffusion downstream from a wall source has shown 

however that the supposition is inadequate when the boundary conditions 

are dissimilar. 

The major physical phenomenon under study was the anisotropy of 

diffusivities in three-dimensional scalar transport situations. The 

present numerical predictions clearly confirm that the distribution of the 

diffusivities in the circumferential and radial direction is in fact quite 

complex and three-dimensional and certainly far from isotropy. When the 

three-dimensionality is only moderate the transport effects never being 

dominant, the ratio of tangential to radial diffusivity seems to be close 

to the ratio of corresponding normal stress levels. Under conditions of 

strong three-dimensionality, there .are considerably larger regions where 

tr.ansport effects are dominant and hence the ratio of the diffusivities of 

scalar is a strongly three-dimensional function. 
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8.2 Suggestions for Future Work 

(a) The experimental technique employed in the present investigation 

can be improved in a number of ways. As the first step towards 

perfecting methods of achieving a more square-wave-like heat 

flux variation around the tube, the present tests should be 

repeated with larger diameter tube. (A commonly available 

T12 fluorescence tube of nominal diameter 1.5 in., if employed, 

should reduce the conduction effects by a factor of three and 

the damage in peeling the strip of silver off from the tube. 

would be confined to a much smaller angular region). 

Over a slightly longer time scale, attempts should be made to 

make mean temperature and temperature fluctuation measurements 

in the flow. It is only such detailed measurements that can 

provide the depth of information needed for improving the 

turbulence models. 

(b) A complete rethinking in modelling of turbulent kinetic energy 

dissipation rate equation is necessary. It is rather sad to 

note that even though the stress and flux modelling have 

progressed considerably during last dacade, the modelling. of 

dissipation rate equation has not changed very much. In this 

regard, more recent ideas of mUltiple length scale models 

which take into account the transfer of energy between adjacent 

wave number regions should be pursued. 

(c) As discussed in Sub section (6~4.2) the present assumptibn of 

proportional time scales for the velocity and scalar fields 

needs to be replaced. The way forward would be to provide a 

model for the dissipation rate of scalar fluctuations, € c 
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As the measurement o~ terms in the E equation is relatively 
(J 

easy (compared with terms in the E equation), the moc;lel nf 

E may end up being a better representation of scalar 
(j 

dissipation than does the model for E • 
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Fig. 7.17 Variation of (a) Heat Fluxes and (b) Local Nusselt 
Number, Around the Tube Wall . 
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Fig. 7.21 Predicted Non-Dimensional Temperature C - Cmin contours 
Present Experimental Situation; C - C . max m-z,n 
Only Right Half Heating, Re ~ 40000. 
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Fig. 7.22 Ratio of Diffusivity of Heat in Tangential to Radial 
Direction: Prediction of Black and Sparrow's Flow, 
Re = 40500 . 

Fig. 7.23 Ratio of Diffusivity of Heat in Tangential to Radial 
Direction: Prediction of Present Experiment , 
Re ~ 40000 (Only Right Half Heated). 
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AJ?J;lENDLX (A) 

A Form for the Near-Wall Effect Function 

in Cylindrical Geometry 

A form for the near-wall function can be obtained by considering the 

respective geometric configurations. The Fig. (A.I) considers the following 

situations 

(a) flow affected by a single plane wall, 

(b) flow affected by two parallel plane walls, 

and (c) flow inside a circular tube. 

If the near-wall function, 

f ;;;: f {. Zs ~ 
Yo 

(A.I) 

is to depict the effective influence of the wall, then for a point at a 

given distance, a , from the wall, 

< < (A.2) 

Out of several plausible forms the following is chosen to represent 

the effective distance to the wall. 

1 a: raos a ~ 
Yo Z2 

(A.3) 

-00 

Thus for case (a) , 

1 2 r2 

a 
cos e sec 2 e de ;;;: 2 ;;;: -

Yo a2 sec2 e a 
(A.4) 

0 
i.e. 

Yo ;;;: Ko a (A.S) 



0 u , , 
::.,:f ?} J : t ~~,; \, J • 2~5 6 -

The constant of proportionality in (A.3) is thus equal to ~ • For the case 

of two plane walls (A.3) can be applied to both walls to obtain, 

(A.6) 

For the case of a cylindrical geometry,case (c), 

L a: 

Yo 
II 2 J R cos ( e - 13 ) dl3-

R2 ( 1 + b 2 
- 2 b cos 13 ) 

(A.7) 

where b R - a = :':""'_0"-

R 

i. e. 

R (A.8) 

ITI ( 1 - b cos e ) de 

o ( 1 + b2 
- 2 b cos e )3/2 

Though the exact solution of the definite integral in (A.8) can be obtained 

(see Table 67, :BIERNES DE HANN [110]) its inclusion in a calculation may 

be rather expensive. A fourth order polynomial equivalent of the integral 

can however be easily obtained as 

Y = k R g o 0 

where, 

g = q _ 1.4955 q2 + 1.26?3 q3 _ 0.4535 q4 (A.9) 

and, 

q = 1 - b 
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APPENDJ:X (B) 

Simulation of the Diffusive Transport of "ii":(i and a 2 
1- --'-::;=--"--

The transport equation for the triple correlation uiuka for high 

Reynolds and Peclet numbers can be written as 

= - ( uiuZa Uk~Z + uiukuZ C~Z + uZuka Ui~Z ) 

(a) 

(b) (c) 

-----
+ ( uia,ukuZ~Z + Uiuk·uZa~Z + uka,uiuZ~Z) 

(d) 

(B.I) 

The quadruple correlation uiukuZa can be simplified with reference 

to MILLIONSHTCHIKOV's [23] hypothesis, 

(B.2) 

which is strictly valid only in random fields with Gaussian probability 

density distributions but approximately satisfied even in non-homogeneous 

turbulence fields [22]. Therefore 

(B.3) 

The exact expression for the pressure-scalar flux correlation can be 

obtained as, 

1. u.a p 
p 1- ~ k 

1 J 1 + 4Ti ;-; 
(B.4) 

V 



[) ,) 
eel / 

This expression clearly has two d~stinct types, one expressing the 

influence of the mean-rate-of-strain and the other involving only turbulent 

quantities. The first process can be modelled, following the pattern of 

pressure-strain modelling, by terms of the form U U cU. The second 
p q m~n 

term can be modelled following the approximation of ~. '1 as - ~ ( u.ukc ) • 
~J k ~ 

The parts of term (a) with mean velocity gradients are now neglected 

following a similar action by HANJALIC and LAUNDER [14] in deriving the 

algebraic model of UiUjUk • Consistent with that step the mean strain terms 

in the pressure-scalar flux correlation can be neglected too. 

Finally, on neglect of the convective transport term in (B.l) and on 

substitution of the above formulations an algebraic expression for uiukc 

emerges. That is, 

= Cc ~ ( UkuZ.'Uic~ Z. + UZ.C'Uiuk~ Z. + UiUZ.'Ukc~ Z. 

(B.5) 

2. In order to derive the corresponding algebraic expression for ukc . 

which appears in the diffusion term of c2. , again reference is made to its 

transport equation. As given for example in KOL.oVANDIN and VATUTIN [22], 

for high Reynolds and Peclet numbers, 

= Uk~Z. + 2 ukuz-c C~z-') ~ 

(a) 

+ (c2. UkuZ.~Z- + 2 UkC'UZ-(!~Z- ) 

(d) 
(B .6) 

Now following arguments and assumptions similar to those made in deriving the 

algebraic form for uiukc one obtains, 

(B.7) 
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Inherent in the above formulations for uiuko and u
k

0 4 is the 

assumption that the velocity and scalar time scales are proportional. Under 

circumstances of dissimilar hydrodynamic and scalar fields however, (for 

example QUARMBY and ANAND's [94] experiment where the velocity field has 

large gradients in near-wall region (due to wall friction) and scalar field 

has zero gradients (impermeable wall)), the time scales are not likely to 

be proportional. The second term in (B.4) was expressed as proportional 

U~Uko k to _-~ ____ where T was taken as equal to • More accurately T should be a 
T € 

k _02. mixture of _ and 
€ € 

Moreover, in modelling the uiuko term, the effects of the production 

term due to mean strain 

as well as mean strain contributions to i uio P,k were neglected. It was 

hoped that the effect of these terms would be small and conveniently be 

absorbed in the coefficient C 
° 

Eventhough it is likely that this is 

possible in situations where the scalar and hydrodynamic fields nearly 

similar, under circumstances where au is large and ac is small, the above 
ay ay 

terms may even be the dominant. 

These shortcomings may show up in predicting scalar transport 

situations -where strong dissimilarities between velocity and scalar fields 

exist. 
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APPENDIX (C) 

Derivation of the Exact Equation for 

Pressure-Scalar Gradient Correlation 

In order to obtain correlations of the type pressure-scalar gradient 

u·c 
, pressure gradient-scalar flux ~p k one should first derive the 

p " 
Poisson equation for p • Consider the equation for fluctuating component 

of velocity ui obtained by substracting the mean velocity equation from the 

instantaneous velocity equation. It is 

= 

(C .1) 

Taking the divergence with respect to xi ~ and considering continuity, 

U· • = 0 
'Z-.)'Z-

one obtains, 

Uk . u'k + uk . U. k + u· k uk . 
,,'Z- 'Z-" ,,'Z- 'Z-" 'Z-.. .)'Z-

Now 

( u.uk ) 'k 
'Z- .. 'Z-

= = 

Therefore 

(C.2) 

= r p .. + ( U ,uk )'k 
p ,,'Z-'Z- \- .. 'Z-

(C ,3) 

u. k uk . 
'Z-.. ,,'Z-

r p .. = - 2 u. k Uk . - ( U ,uk) 'k + ( U ,uk) 'k p ,,'Z-'Z- 'Z-....'Z- 'Z-,,'Z- 'Z-,,'Z-

(C.4) 

or taking the derivative with respect to x
k 

(C.5) 
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The Green's theorem applied to a variable a is, 

a == 2. f V
2
a dV + Surface integraZs 

47T r 

V 

So that Green's theorem on fluctuating pressure p is 

:~ f ;, [ u 'u' 1 dv' + S n m .. nm 

V 

Here p is a function at (X ,y ,Z ) the point under 
000 

(C.6) 

(C.7) 

consideration and the right hand side of (C.7) is evaluated at ( X, , y' , Z, ) 

points over the control volume V of surfaces. Similarly, 

~ ;. f ;, [ dV' + i~ f ;, [ u~u~ j,rrmk dv' 

V V 

i~ f ;, [ u~u~ ],mnk dV' + S (C.8) 

V 

The equations (C.l) and (C.S) can be used in obtaining various correlations 

that appear as pressure related terms in turbulence equations. 

In order to obtain the pressure-scalar gradient ~ c ~ correlation, p .. v 

(C.7) is multiplied by c . and time averaged, thus 
.. 1.,. 

+ 2. f 47T 
1 (u 'ui.. ) c' dV' + S' y;r n--m .. mn .. 1.,. 1.,. (C.9) 
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This is same as the equation (2.47) used ~n Sect~on (2,4.2), S~milarly 

scalar flux-pressure gradient correlation is obtained by mUltiplying (C,B) 

by u.c and time averaging the product, 
1-

'1e 
P,k = in J :' [ U';',n u~uie,m ]'k dV' 

V' 

+..LJ..L 4n r' [ u'u'u.c k] dv' + S'k n m 1- >mn 1-

V' 

(C.lO) 

This equation is utilised in Appendix (B) in obtaining the algebraic 

expression for u.u c . 
1- k 
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APPENDJ;X CD) 

Modelled Reynolds Stress and Scalar Flux Eguations 

in Cylindrical Polar Coordina~es 

Reynolds stress and scalar flux equations presented in Chapter (2) 

are in Cartesian tensor form. In order to transform them into any curvilinear 

coordinate system, the contravariant and covariant character of the tensors 

involved should be recognised. The covariant differentials appearing in 

exact and modelled terms of present set of equations can be reexpressed 

in partial differential forms using expressions involving Christoffel 

symbols of the second kind. A complete account of such tensorial manupulations, 

with particular reference to fluid mechanics, is given in ARIS [Ill]. In 

Table (D.l), the modelled forms of Reynolds stress equations as employed 

in the present study are displayed. They are valid for 

• two-dimensional, non swirling i.e. Ue = 0 ~ d~ = 0 

• steady i.e. -~ = 0 
dt 

• boundary layer, with negligible streamwise gradients i.e. __ d_ = 0 
dZ 

(except for convection terms). 

flow situations only. 

These equations have previously being obtained by others, for e.g. 

MORSE [53J. 

Presented in Table (D.2) are the scalar flux equations in the forms 

utilized in the numerical prediction of situations covered by this Thesis. 

These equations are relevant only for the flow situations mentioned above. 

In addition the lateral velocity Ur is neglected too. The scalar field is 

• three-dimensional , 

• boundary layer type i.e. ~ = 0 except in convection terms. 
dZ 
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A.P:PENDIX (E) 

Derivation of Finite Difference Equation for Variables 

Stored in Staggered ( x-~ ) Grid 

The finite difference equation to be solved in a staggered grid 

(see Fig.(E.1» is same as in conventional grid. It is 

where, 

()¢ .£! + ( a +bw ) = 
dX dW 

a = 1 d'¥I ----
~E - ~I dx 

b = 1 L ( ~E - 'l'I ) 
'l'E - ~I dx 

c = 

d = 

r2 p u rett 
('r _'l')2 

E I 

_1_ SfP 
P U ' 

(E .1) 

Here the notation is same as that in Chapter (3). The suffices 

I and E denote the interior and exterior boundaries of the layer, whereas 

(I) denotes the grid point. Here ¢ is the variable to be stored in the 

staggered location. Note that the mean velocity is stored at regular 

grid points i.e. ~t II) ~ (I-1) etc. 

Consider a control cell shifted half a grid node from (I) in the 

(minus) w-direction, and denote the variable to be calculated at this point 

by ¢(I) • 

Notation: Except for the variable ¢ , suffix (I) stands for that quantity 

at: (I) the regular nodE:. ~tI) stands £or the variable ¢ stored 

at the shifted grid node and ¢(I) denotes the interpolated 

value of ¢ at the regular grid point (I) . The suffixes d and u 



- 310 -

stand for quantLties evaluated at downstream and upstream ; 

locations respectLvely. 

Now assume that the variation of ¢ between the shifted nodes is linear. 

( The variation of mean velocity U between its nodes too is assumed to 

be linear.) In order to obtain the finite difference equation for ¢(I) 

multiply (E. 1) 

(I) 

(a) 
J 

(I-1) 

(I) 

(b) 

J 
(I-V 

(I) 

( c) 

J 
(I-V 

(I) 

(d) J 
(I-lJ 

by dw and integrate between the limits 

(I) 

2!dw ==1- J dX !:Jx 

(I-V 

[ a + bw 1 a¢ dw 
dW 

[laa·law = 
dW dW 

_1_ S¢ dw 
p U = r 

(I-V 

[. -. law (I~d) (I~u) 

(I) 

== - b 
J ¢ (I~m}dw + 

(I-V 

(I) 
(bl) 

[ a :: 1 
(I-V 

(I..;l) and (I) • 

(E.2) 

(I) 
( 

1 l( a + bw ) ¢ 

(I-V 
(b2) 

(E.3) 

(E.4) 

(E .5) 

In order to evaluate the right hand sides of (E.2) to (E.5) values of ~ 

at some intermediate locations should be known. To facilitate that, define 

+ weighting factors n(I) and n(I} by 

n+ 0.5 ( weI) - w(I_1} } 
(E.6) == 

(I) 
( w(I+V - w(I_1) ) 

and 

n - 0.5 
( w(I) - WCI_1j~ (E.7) == ~ 

(I) 
( w(I) - w(I_2) ) '." 



U d 1 
I"'j 

so that (see Fig. (E.I», 

and 

(E .8) 

(E.9) 

Further, in obtaining partial derivatives with respect to W , the values 

of ¢ at x = x d are chosen. This is same as the practice of [9] and is both 

unconditionally stable and conv~nient. i.e. 

Therefore 
(I) (I) 

(a) + (bl) = ~J ¢ (I> d) mu-~J ~(I>u) dw 

(I-l) (I-l) 
(I) 

+ 1 ( UJE, - UJI )d - ( UJE - UJI )u 

J 
~ 

( 'fE - UJI ) /lx (I> d) 
(I-l) 

(E.ll) 

Substituting 

and 
( UJE - UJI)d - ( UJt - UJr )u 

~ ~ ~ G 

and with (E.8) substituted on two halves of the shifted cell at (I) , 

dw 
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(a) + (bl) = 1 wCI) - w(I_.1) 

( '¥E - '¥I )u 2 

x [( P +G )[ "(I+l,d) 
+ 

~(I) + ip (I~ d) ( 2 ~ ~(I) ~ ~(I) ) 

+ 11 (I-1~d) ~(I) ] 

- P [ " (I+l,u) 
+ 
~(I) + 11 (I~ u) ( + 

2 - ~(I) 
+ 

- ~(I) ) 

+ ip ~-
(I-1~ u) (I) ]] (E .12) 

Rearranging, 

(a) + (bl) = 
( weI) - w(I_1) ) 

8 ( '¥E - '¥I )u 

[ 4 ( 2 - n~I) - n(I))[( P + G) x 
11 (I~d) - p ip 

(I~u) 

+ 4 ( ~~I) )[(P+G) ip(I+1~d) - P 1I(I+1~U) I 
J 

)[(P+G) 

") 

+ 4 ( ~- 11 
(I-1~d) 

- p ip I (I) (I-l~ u) 
) 

(E.13) 
The balance of the term (b) is, 

but, 

Denoting 

and 

(b2) = ( a + bw ) ¢ 
(I) (I) 

( a + bw ) ¢ 
(I-l) (I-1) 

( a + bw ) 

[ ::] L+ 
d'¥ 

= - ( 1 - w ) -.!... + w 
(I) (I) ax (I) 

L(I) - [ ( 1 
d'¥I ::] = - w(I_l) ) -+ w 
dx (I-1) 

(E.14) 

( E.15) 

(E.16) 

") 

J 



(J U : .. i j 0 ;J - ,J13~ - ! ,,' 
'j ". ,.) ~.) 

equation (E.14) reduces to 

'(b2) L [L+ ~ ... L~ cI:> := 

(If ~ If ) (I) (I .. d) (I) (1 ... 1 3 d) 
E I u 

Substituting ~(I3d) etc. from
r

(E.9), obtain 

(b2) : (~E _l~I )u [ ·(I,d) [L7I) ( 1 - 2 n~I) ) 

- L- (1 - 2 n- ) 1 
(I) (I) 

1 

Note here that L~I) and L(I) are different from L+ and L- of [9] • 

(c) = [c 0$ I

J 
- [ c 0cI:> 1 

oW (I) oW .(1-1) 

The w-differences across the regular grid can be written as 

and 

(E.17) 

(E.18) 

W - W (I-lf) (I-1lf) ~ r p U(I_1) ( Y(I~lf) - Y(I-1lf) ) I ( IfE - If I ) 

(E .19) 

.The transport coefficients at the edges of the cell are 

T+ =(rf ) I(y -y 
(I) eff (I) (I+lf) (I-lf) 

T(I) = (r f efr ) (I-l) I ( y (I-lf) - y (I-1lf) ) (E.20) 

Therefore (E .18) can be. reexpressed as 

(E .21) 

1 . 
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Lastly, the source term can be integrated so as to read 

(E,22) 

Now summing up the terms is (E.13), (E.17), (E.21) and (E.22) and 

rearranging, 

n- ) 
(I) 

+ 2 L~I) ( 1 - 2 n~I) ) - 2 LrI) ( 1 - 2 n(I) ) 

+ 2 T;I) + 2 T~I) - 2 Sd 1 

[('"P + G.)( w(I) - W(I_l) ) n+ 4 L+ n + 
(I) (IJ (IJ + 1 2 T 

(I) 

[( P+ G ) ( W - W ) n- + 4 L- n- - 2 T- J (I) (I-l) (I) (I) (I) (I) 

- [ P [ • ( 
W(I) - W ) ( 2 - n+ - n- ) 

(I~ u) (I-l) (I) (I) 

+ cI> ( W - W ) 0,+ 
(I+l~ u) (I) (I-l) (I) 

+ cI> ( W - W ) 0,-
] + 2 S ]. 

(I-l~u) (I) (I-l) (I) u 

(E.23) 

This is the finite difference equation for the variable cI> at (I) . As in 

[9] , implausible effects of this equation due to the linearity assumption 

of the cI> ~ W relation in high lateral flux situations can be removed by 

modifying the transport terms as 

T* = ~ ( T + I 2 L 0, I + I T - I 2 L 0, II ) (E.24) 

Consequences of this modification and the implausibility of the 

uncorrected form is discussed in [9] •. 
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j 

·I .. ~Y :'.'? U"o 

"') \~) 

Thus (E.23) can be rearranged to the form, 

where, 

and 

D ¢ = A ¢ +B ¢ +C 
(I) (I) (I) (I+l) (I) (I-l) (I) 

C 
(I) 

= P (w - w )[ ¢ 
( I ) ( I -1 ) (I., u) 

+ ¢ n+ + ¢ n-
(I+l., u) (I) (I-l., u) (I) 

D = A +B +2P(w -w )-28 
(I) (I) (IJ (I) (I-l) d 

(E.25) 

28 
u 

Simultaneous solution of equations of the type (E.25) can now be done in 

a marching fashion with known initial and boundary conditions. 
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APJ?ENDIX (F) 

Computer Program for the Solution of Two-and Three~Dimensional 

Scalar Transport Problem 

F.l Introduction 

The computer code to be described is an outgrowth of the TEACHL 

program outlined in GOSMAN and PUN [50]. It incorporates the staggered grid 

arrangement as described in Section (3.5). The program is arranged to solve 

the flow and scalar transport equations described in Section(2.7). The flow 

considered is of two-dimensional boundary layer type, whereas the scalar 

transport problem can either be two-or three-dimensional in character. The 

three-dimensional situations were considered with frozen hydrodynamic field 

obtained from two-dimensional calculations made before hand. Simultaneous 

solution of all equations can however be easily arranged. 

This computer code was developed in CDC 7600 and CDC 6600 computers 

in the "update" mode, however, it can easily be adopted for other machines. 

The program is written in FORTRAN IV language. 

In the Subroutine SOURCE which evaluates the source terms of all ' 

equations of the second-order (stress and scalar-flux) closere model, it 

was attempted, to retain the tensorial character of the terms. This may 

enhance the clarity and facilitate understanding of the evaluation of the 

source terms. 

The coordinate system in which the equations are written is the 

cylindrical polar (8 7 p-z) and can be converted to Cartesian coordinates 

(x-y-z) by changing an index. The notation followed is, for directions, 

; ; x z 



· . 
J ~I 

f 
(3 
J 

and for velocities, stress 

Ue - U ~ 

u2 - u2 
~ e 

uae - ue ~ 

F.I.! Base Case 

- 317 -

and flux 

U -
r 

u2 -r 

ure -

I 
J 

components 

V ~ U z 

.v2 
~ .u2 

z 

ve ~ u z 

- W 

- 7 etc. 

e - we 

The program is set for the solution of mean and turbulent equations 

in a cylindrical geometry. As described in Section (3.3), for this case the 

partial differential equations for Ua ' Ur and P' are redundant. Thus these 

equations have been excluded from consideration here. These equations can 

however be incorporated easily as in TEACHT program. (Relevant turbulent 

stresses in Ua and U
r 

equations can be inserted in a manner parallel to that 

of U = W equation described here.) 
z 

The boundary condition for the scalar transport situation considered 

is that discussed in Section (3.7). Note here that all other cases under 

investigation can be generated from this base case. 

F.I.2 The Grid System 

Main calculation domain is a segment of a circular area of radius 

R(NJ) • See Fig. (F.!). The enclosed angle of e can be chosen as desired~ 

NI is the number of grid lines in the angular direction, whereas NJ is the 

number of lines covering the radius. This enables one to have (NI-2)x(NJ-2) 

grid nodes for solution of the equations. The region between NJ and NJO 

represent the thick wall where only the partial differential equation for 

mean temperature is solved. 
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Fig. (F.2) shows the control volumes around the point P • The control 

volume for U ~ W equation is centered at P whereas those for U ~ Wand z r 

Ue = U are shifted in -r and -e direction respectively. All hydrodynamic 

turbulent variables, in the present base case are solved at the shifted grid 

point V • The scalar fluxes urc and ueC are solved at V and U respectively. 

The dimensions of the main and shifted control volumes are shown in 

Fig. (F.2). 
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F.2 Listing of FORTRAN SyPlbols 

Given below is the list of all-the important FORTRAN symbols that-

are used in the program. Symbols that only have a local meaning in the 

subroutines are not listed here. Whenever possible the variables are grouped 

together to avoid an unnecessary long index. 

FORTRAN Symbol 

AD, AE, AN, 
AS, AU, AW 

AREA 

BVE, BVS, 
BVW, BWS 

C 

CAPPA 

CAPPAC 

CBULK 

) 

CC, CCl, CC2, 1 
CClW, CC2W 

CEPS, CEPSl, 1 
CEPS2 

CG, CG2 

CMU 

CRS, CRl, CR2, ] 
CR1W, CR2W . 

CT 

D 

DCDXJ 

Description 

Coefficients of the general finite 
difference equation 

II r cw de 

Weighting factors near boundaries 

Mean scalar variable 

K ; the von Karman constant 

K ; Coefficient in log law for C e . 

C ; Bulk temperature 

Cq ~ Cel ~ Ce2 ~ Celw ~ Ce2w ; 

Coefficients in scalar flux model 

C ~ C 1 ~ C 2 ; E £ £ 

Coefficients in modelled E-equation 

Cg ~ Cg2 ; Coefficients in ~ equation 

Cll ; Coefficient in two-equation 
model of turbuelnce 

C ,Cl'C .C .C " s ~ s ~ s2 ~ slw ~ s2w 

Coefficients in stress model 

CT : Friction scalar 

D .• 
1..-J 
ac 
ax. 

J 

; see equation (2.16) 

; e.g. DCDXJ (2) == ac ar 

Table F.l Listing of FORTRAN Symbols 

Dimension 

ITXJT 

ITXJTX2 

IT 

3x3 

3 



(contd.) 

FORTRAN Symbol 

DCDZB 

DEL 

DEN 

DENSIT 

DET, DETU, ) ET, ETU 

DIF 

DIS 

DISCSQ 

DPDZ 

DUIDXJ 

DXEP, DXPW, ) DXEPU, DXPWU 

DYNP, DYPS, ) DYNPV, DYPSV 

DYW 

DZ 

DiC 

EC 

ECCEN 

ED 

ELOG 

ELOGC 

ENUSS 

ES 
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Descri.ption 

( J' l~~ in the near~wall cell 

0 .. : Kronecker delta 
1-J 

p ; Density of fluid 

p ; Density of fluid 

Geometrical parameters denoting tube 
wall control volumes 

rW ; Diffusion coefficient of W 

E .. ; Component of dissipation tensor 
1-J 

Ec ; Scalar dissipation rate 

dP S' d' az; treamW1se pressure gra lent 

aUi - aw --- , e.g. DUIDXJ(3,2) = --ax aT' 
j 

Geometrical variables, see Fig. (F.2) 

Geometrical variables, see Fig. (F.2) 

Geometrical parameter in thick wall 
control volumes 

Dimension 

IJ 

3x3 

ITXJTX2 

IT 

ITXJTX2 

3x3 

IT 

JT 

dz ; Step size in streamwise direction 
__ '?JU

k - ukc --- 3 
aXj 

EC ; Scalar dissipation rate 

Eccentricity of the tube wall 

E; Isotropic dissipation rate 

E ; Coefficient in log-law for velocity 

Ec ; Coefficient in log-law for scalar 

Nu ; Nusselt number 

Power input per unit vloume of tube wall 

ITXJT 

ITXJT 

Table F.I Listing of FORTRAN Symbols 
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(contd. ) 

. i 
1 -I 
·-1' 

FORTRAN Symbol 

EXCHAT 

EX CHAW 

FF 

FLOWIN 

FRA 

FU, FV 

FWL 

FWMl 

Fl, F2, F3 

GAM 

GINLET 

GREAT 

GSTAR 

Gl, G2 

REDU -+- REDVIS 

ICON 

IDIF 

lEND 

IRT 

"10 1.0 .; 

" 

Description 

K
f 

; Thermal conductivity of fluid 

Kw ; Thermal conductivuty of wall 
material 

(u 2 _ u 2 ) 0 

e 1'" 

II p U 1" dr de 0 

z ' 

Step size controlling factor 

Fluxes in e and 1" directions 

f ; Near wall effect function 

f in near wall cell 

Coefficients in ~ij2 model 

rC ; Molecular diffusivity of C 

Total mass flux at the inlet 

A large numerical value 

Total mass flux in the new step 

Coefficients in ~ic2 model 

Variable titles 

= 0 ; Starting run 
= 1 ; Continuation run 

= 1 ; Gradient diffusion model 
= 2 ; Tensor invariant model of 

diffusion 

Number of steps required for the 
calculation 

= 0 ; Scalar transfer problem not 
= 1 Two-dimensional'scalar 

. 
; 

transport 
= 2 0 Three-dimensional scalar , 

transport 

Table Fol Listing of FORTRAN Symbols 

Dimension 

ITxJT 

ITxJT 

IITXJTX2 

4 

solved 
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FORTRAN Symbol 

IJ 

IJET 

IJT 

INCALU -+ INCALR 

INDCOS 

INDEX 

INDIFF 

INDPRI 

INPRO 

INTURB 

INUM 

IPRO 

IQUE 

IRUN 

ISTEP 
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Descr;ipt;ion 

Array dimension in x (=6) direction 

= 1 ; for jet flow (this should be 
set to zero) 

IJXJT 

Logical variables denoting the 
equations to be solved 

= 1 ; Plane flow 
= 2 ; Round flow 

= 0 ; At the starting step in 
calculation 

= 1 ; After the first step 

= FALSE ; Turbulent stresses or fluxes 
to be treated in source form 

= TRUE ; Same to be treated in 
diffusion form 

Limited print-out control 

= FALSE ; Constant transport 
coefficients 

= TRUE ; Variable transport 
coefficients 

= FALSE ; Laminar flow 
= TRUE ; Tur.bulent flow 

Number of points for which the initial 
conditions are given 

Argument for ZDPRO 

= 0 ; Prescribed wall scalar value 
boundary condition 

= 1 ; Prescribed wall flux 

= 1 ; First run 
= 2 ; Two-dimensional scalar calculation 
= 3 ; Second and subsequent runs in 

three-dimensional scalar 
calculation 

Step number 

Table F.l Listing of FORTRAN Symbols 

D ;i.mens ;t on 
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(contd.) 

FORTRAN Symbol 

ISC 

IT 

ITESC, ITESU 

ITEST 

IV 

IVAR 

IWALL 

JUU -+ JEC 

JT 

K. 

KT 

MCW 

MODEC 

MODEL 

MRW 

u {] 
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Description 

= 0 ; Mean scalar equation 
= 1 ; Mean velocity equation 

Array dimension in 6-direction 

= 1; When the source balance of 
respective equations are 
needed in the output 

An index used when details of finite 
difference coefficients are required 

= 0 ; Hydrodynamic field not solved 
= 1 ; Two-dimensional flow field 
= 2 ; Three-dimensional flow field 

= IU or IHT ; Depending on whether flow 
or scalar variables are 
under consideration 

= 0 ; Wall control volumes ignored in 
calculations 

= 1 ; Wall control volumes considered 

Indices denoting turbulent variables 

Array dimension in r-direction 

= 1 ; Upstream plane 
= 2 ; Downstream plane 

= 2 ; In boundary layers 

= 1 ; Model Rawl 

= 2 ; Model Raw2 

= 1 ; Model Rcl 

= 2 ; Model Rc2 

= 1 ; Model Rsl 

= 2 ; Model Rs2 

= 1 ; Model Rswl 

= 2 ; Model Rsw2 

Table F.I Listing of FORTRAN Symbols 

Dimension 
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FORTRAN Symbol 

NI 
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Description 

Number of grid nodes in x 
(or e-direction) 
NIMI = NI-l , NIM2 = NI-2 

Number of grid nodes in r-direction 

Number of grid nodes in r-direction 
(including wall) NJOMI = NJO-l 

Same as NJ , NJPl = NJP+l , 
NJPMl = NJP-l 

Number of grid nodes in z-direction 
= 2 ; in boundary layers 

Number of times a certain equation be 
solved at a given streamwise plane 

Full prin,tout controlling index 

Variables transferred from 
two-dimensional calculations 

p .. ; 
1,J Stress production tensor 

(see equation (2.15) 

Flux production tensor 
(see equation (2.41) 

Generation rate of scalar fluctuations 

P : Pressure 

1T 

~ ; General dependent variable 

~ijl ~ ~ij2 ~ ¢ijWl ~ ¢ijW2 ; 

Pressure strain model 

pI ; Pressure correction 

Pr ; Prandtl number 

Terms in model of pressure-scalar 
gradient correlation 

Table F.l Listing of FORTRAN Symbols 

D;i.m~nsion 

3 

ITxJTx2 

ITxJTx2 

3x3 

ITxJT 

3 
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(contd.) 

FORTRAN Symbol 

PT 

PIC 

QLENTH 

QUE 

QUO 

R, RV, RCV 

RINNER 

ROUTER 

RS 

RSWALL 

SAVE 

SEW , SEWU 

SNS, SNSV 

SDEX 

SEX 

SMALL 

SP, SU 

SPS, SUS 

SPHEAT 

SPH 

STAN 

Sl, S2 
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Description 

Production of turbulent kinetic energy 
_ ollj 

P 1(J ; - uk(J "oXk 

Heating length 

Heating flux entering the fluid 

Heating flux at the outer wall 
of the tube 

Radial positions of the grids 
(see Fig. (F.2)) 

Ri; Inner radius 

R . Outer radius 
0' 

Dummy turbulent variable 

Boundary condition of turbulent 
variables 

Array for saving contents of the 
common block COMALL 

Geometric variables, see Fig. (F.2) 

Geometric variables, see Fig. (F.2) 

Extra sources due to diffusion term 

Extra sources due to polar grid 

Numerically small near-zero number 

Parts of linearised source term 

Parts of linearised source term 

(Jp ; Specific heat of fluid 

= 1.0 ; In momentum equation 
= SPHEAT ; In C-equation 

= St ; Stanton number 

Parts of source terms of turbulent 
variables 

Table F.l Listing of FORTRAN Symbols 

Dimension 

IT 

IT 

JT 

ITXJT 

14 

Depends on 
IT and JT 

IT 

JT 

14 

14 

IJT 

14xIJT 
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FORTRAN Symbol 

TE 

U 

UC 

UIUJ 

UT 

UU, UV, UW 

UUMAX etc. 

UU1 etc. 

URFS 

v 

VC 

VIS 

VISCOS 

VISUU 

VISVV 

VMEAN 

VV 

vw 

W 

WC 

WCORR 
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Descr;iption 

= k ; Turbulent kinetic energy 

Ve ; Transverse velocity 

UeC ; Transverse scalar flux 

U.U. ; e.g. UIUJ(2,3) = U U 
'/; J r z 

V • Friction velocity 
T ' 

Maximum magnitudes of variables 
(input conditions) 

Array of dimensionless UU etc. 
(input conditions) 

Under-relaxation factor for source 
terms near axis 

V ; Cross-stream velocity 
r 

UrC ; Cross-stream scalar flux 

~ ; Molecular viscosity of fluid 

~ ; Molecular viscosity of fluid 

k u2 

e 
E: 

k -;;z 
r --

E: 

Vb ; Bulk mean velocity 

-
u2 ; Cross-stream components r 

Reynolds stress 

U U ,Reynolds shear stress 
r z 

V 
z 

; Streamwise component of 
mean velocity 

of 

UZC ; Streamwise turbulent scalar flux 

Correction to the W velocity 

Table F.l Listing of FORTRAN Symbols 

Dimen:;;ion 

ITXJT 

ITXJTx2 

ITXJT 

IT 

ITxJT 

INUM 

ITXJTx2 

ITXJT 

ITXJTx2 

ITxJT 

ITxJT 

ITxJT 

ITxJT 

ITxJTx2 

ITxJT 



n 
~..J J 

(contd, ) 

FORTRAN 

WFE, WFW 

WFN, WFS 

WW 

X', XU 

XTOT 

Y,YV 

YTOT 

YTOTO 

YPLUS 

Y2 

Z, ZW 

ZDPRO 

" 
1 , ) <:. l 

Symbol 

t} u ;3cb l 
, 

/:) ~~j:! - , 

Description 

Weighting factors 

Weighting factors 

u~ ; Streamwise component of 
Reynolds stress 

Transverse coordinates of grid 
(see Fig. (F. 2» 

Maximum value of X, i.e. total angle 
covered by the domain 

Cross-stream coordinate of grid 
(see Fig.(F.2» 

Maximum value of Y, i.e. radius of tube 

Outer radius of tube 
yU

T 

Dimensionless Y locations for which 
initial profiles are given 

Streamwise coordinate of grid 

Streamwise locations for which output 
is required, ZDPRO is in number of 
diameters 

Table F.I Listing of FORTRAN Symbols 

Dimension 

IT 

JT 

ITXJT 

IT 

JT 

INUM 

2 

18 
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. E.3 Description of the·Subroutines and Conunon Blocks 

As the program listing given in the next Section is produced by 

"update" mode each line in it is identified by a name and a sequence 

number. If that name is same as that of the particular subroutine then 

it identifies a line that is conunon to both two-and three-dimensional versions. 

If the identifier is DIM3, then it corresponds to a line which should be 

present only in the three-dimensibnal version. The sequence numbers on these 

identifiers clearly indicate whether any statements were deleated during 

this modification. All such deletions are explained after the following 

subroutine descriptions. 

Comdeck COMALL 

This conunon block contains all the,variables that are needed to be 

transferred between subroutines. In the present form it allows a maximum 

of 15 grid points in the transverse direction and 30 grid points in the 

radial direction. 

The array SAVE is equivalent to the bulk of the conunom block and it 

is used in saving contents (via TAPE 4) from one run so that it can be used 

as input (via TAPE 3) in the next. This is a convenient and economical 

facility specially during the program development stages. It ensures fast 

turnaround from the computer too. Similarly, the array TRANS transfers 

relevant information of the two-dimensional hydrodynamic variables obtained 

in a previous run. This facilitates one to carry out variety to three­

dimensional scalar transport explorations ( for example, grid dependency 

tests, various model testing) with an established hydrodynamic field. 
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Broadly the contents of the ma;in common block can be descr;Lbed 

as follows. 

Line No. 

1 

2 

3 

4 

5 

6 - 8 

9 

10 - 11 

12 

13 

14 - 15 

16 

17 

18 

19 

20 

21 

22 - 23 

24 

25 

Contents 

Location of main grid nodes 

Description of main control volumes 

Description of staggered control volumes 

The radial location and weighting factors 

Mean flow variables and mean scalar 

Turbulent variables 

Densit~ kinematic 'and turbulent transport coefficients 

Coefficients of finite difference equation 

Useful wall parameters 

Fluid properties 

Coefficients of the turbulent model and wall laws 

Identifying integers for turbulent variables 

Limits of the calculation domain and that of arrays 

Headings for the output 

Logical variables 

Number of sweeps in the solution for tri-diagonal 
matrix algorithm 

Choice of model and choice of output 

Dimensionality and other details of the particular run 

Flow conditions, boundary conditions for turbulent 
variables 

Output manipulation parameter and some near boundary 
weighting factors 

Table F.2 Contents of Comdeck COMALL 
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The next two lines carry the v<:lJ;j,a,bles that aJ;e relevant to the th;i.,ck 

wall calculations. The main common block ends here. The next common block 

contains the variables that need be transferred from previous two-dimensional 

flow calculation. 

The comdeck COMALL appears in all subroutines except LISOLV and PRINT. 

Subroutine MAIN 

This is the main section of the program which does the management 

of the calculation scheme. Briefly its major actions are the following. 

• Call the subroutine INDATA(l) for initial conditions of the problem. 

• Supply the main grid to cover the domain of interest. 

• Call INTIG to get the geometric variables ready. 

• Call INITO to set variables to zero. 

• Call INDATA(2) in order to get the dependent variable profiles. 

• Print out the problem heading and fluid properties. 

• Call OUTPUT in order to get a full output of the initial conditions. 

• Then enter the calculation loop which is to be traversed as many times 
as the number of steps taken in z-direction. 

• Calculate the forward step by calling STEP. 

• Call PROPS to calculate the fluid properties and kinematic and 
turbulent transport coefficients at all nodes. 

• Calculate the source terms for all turbulence equations by entering 
the SOURCE subroutine at CALSOR. 

• Call CALCRS in order to calculate finite difference coefficients and 
then to solve the turbulence equations. This step is taken for all 
turbulence variables. 

• Call CALCM in order to solve the W-momentum equation. 

• Call CALCM in order to solve the mean scalar C equation. 

• If any intermediate output is required, call OUTPUT. 
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• Check for conditions for termination of the calculation. If more 
calculations are to be performed return to the begining of the 
calculation loop. 

• If to be terminated, then produce an output just before stopping. 

In addition to these, one thing worth a mention is that when solving 

turbulence equations, it is the shear stress u u = VW and the lateral scalar 
r z 

flux u-c = VC equation that are solved first. This was done because 
r 

description of near-wall boundary condition of all other turbulence variables 

are specified in terms of these two. 

Subroutine INDATA 

This subroutine supplie~ the external input data to the program. It 

has two entry points. 

At the first level, 

• Identirying integers for turbulence equations are prescribed. 

• If necessary, data is read from a previous run (via SAVE or TRANS). 

• Supply choice of model, turbulence constants, necessary numerical 
constants and controlling indicies. 

• Supply the wall properties. 

At the second level, 

• Dimensionless profiles and their mUltiplying factors for all 
dependent variables are read from data. 

• The mean .. ptofiles are interpolated to obtain values corresponding 
to. the regular grid. 

• The turbulence profiles are interpolated to obtain values 
corresponding to the respective shifted grid. 
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Subroutine SOURCE 

This subroutine calculate the source terms for all turbulent variables. 

It has three entry points SORCEI, CALSOR and SORCE, SORCEI, is entered 

only once in a given run. Here some arrays are initialised and some 

coefficients relevant to the turbulence model are calculated. The section 

CALSOR in entered once in every calculation step. In this section the tensorial 

character of the source terms of the turbulence equation is attempted to 

be maintained. Since most of the turbulence variables are to be evaluated 

at the grid shifted half spacing in direction -r, here the node refers to 

that at V (see Fig. (F.2». In the Section CALSOR, for every shifted control 

volume the following calculations were made. 

• Perform necessary initialisations. 

• Assign the ReYnolds stress tensor at the node (i.e. at VJ. 

• Obtain gradients of Reynolds stress that are required in evaluations 
to follow. 

• Similarly assign the scalar fluxes and evaluate any necessary gradients. 

• Calculate mean velocity gradients. 

• Calculate mean scalar gradients. 

With these prelimineries now one is in a position to evaluate the source 

terms, and they are done in the following order. 

(a) Evaluate sources for Reynolds stress equations 

• Calculate Production terms. 

• Calculate modelled terms of pressure-strain and dissipation terms. 

• Evaluate the near-waIl-effect terms of pressure-strain relation. 

• Evaluate sources due to tensor invariant diffusion model, and those 
additional terms due to cylindrical polar grid. 

• Assemble the source terms. 
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(b) Evaluate source terms ~or turbulent k~netic energy equat~on (~n a 

two~equation model of turbulence), 

• Calculate the production and assign the dissipation term in 
source form. 

(c) Evaluate source terms for the dissipation rate equation 

(d) Evaluate sources in turbulent scalar flux equations 

• Calculate production terms 

• Calculate the pressure-scalar gradient correlation terms. 

• Evaluate the near-wall effects of the same. 

• Evaluate additional sources from the diffusion model. 

• Assemble the source terms. 
"2 

(e) Evaluate sources in £ equation. 
2 

Now one has the option of taking an output of source balance in 

component stress equations and turbulent scalar equations. 

For a given step the third section SORCE is entered as many times 

as there are dependent turbulence variables. Here the source terms 

calculated in CALSOR are picked up by each variable, in the linearised 

source form. 

Subroutine INIT 

This subroutine provides the initialisation of var~able fields and 

calculation of geometric parameters. It has three entry points, namely~ 

INITG, INITO and STEP. The INITG is for the evaluation of the geometric 

variables. If it is the first run this section is entered once and on 

continuation runs this is not entered at all. This section calculates the 

locations and relevant weighting factors, distances for regular as well 

staggered grid systems. For three-dimensional heat transfer problems, the 

wall goemetry is calcula~ed here. 
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In the Secti.on INITO, the va~;i..ables are set to ze;r;-o and a call is 

made to SORCE I where some arrays are i.nitialised. 

In two-dimensional problems calculation is made only for one radial 

plane. In STEP all such planes were filled with those calculated values. 

This is done merely for cosmatic reasons and obviously is skipped in 

three-dimensio.nal situations. The forward step calculation is also made here. 

Subroutine PROPS 

This subroutine prescribes the material ~erties and turbulent 

diffusion transport coefficients for the problem. If the hydrodynamic field 

is kept frozen then PROPS is called only once in a run. 

Subroutine CALCM 

Calculation of the mean variables (Wand C) are done in this 

subroutine. When calling for solution of W -momentum equation, specify 

ISC = 1, and for C-equation specify ISC = O. Other arguments of the call 

statements can be easily recognised (see call statements in MAIN). 

The first section of the subroutine calculate the finite difference 

coefficients. Note here that the turbulent stresses or fluxes can be expressed 

either as diffusion terms or (as will be seen next) as source terms. A call 

to the relevant section of PROMOD (i.e. MODW or MODC) is made now to obtain 

boundary conditions and other problem modifications. Next the coefficients 

are assembled and solved in LISOLV. Nex.t the pressure gradient is calculated 

and corresponding velocity corrections are made. The lateral velocity field 

is obtained next by considereing the mass continuity in individual cells. 

Lastly the variable W or C at the boundaries are calculated. 
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Subroutine CALCRS 

This subrouti,ne calculate the turbulent va1:iable~, such ~s 1 !eynolds 

~tresses, scalar flux etc •• It is done in the relevant shifted grid described 

previously. First section of CALCRS calculates the finite difference 

coefficients, the second section will perform the problem modification and 

assembly of coefficients. The equations are solved in subroutine LISOLV 

next and then the boundary values are calculated. 

Subroutine PROMOD 

This subroutine supplies the relevant problem modifications to all 

dependent variable equations. MODW supplies the modifications for W-momentum 

equation. Here 

• the logarithmic law of the wall is applied, 

• the source term due to turbulent stresses are calculated, 

• other boundary conditions for momentum equation supplied. 

In the Section MODC, the modifications to the C-equation are made. For the 

sake of clarity the modifications for the case of a thick conducting wall 

is given seperately. Here 

• the logarithmic law of the wall for C-equation is applied, 

• the source term due to turbulent scalar fluxes are calculated, 

• boundary conditions of C-equation supplied. 

For the thick wall case in addition to these, 

• finite difference coefficients for the wall control volumes are 
calculated, 

• sources of heat (say, due to electrical heating) are integrated, 

• sources of heat externally applied to the tube (as in the present 
experimental arrangement) are integrated. 

• and other boundary conditions supplied. 
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The Section MODRS supplies necessa~y boundary information to all turbulent 

equations. The near~wall boundary conditions of shear stress VW and scalar 

flux VC are obtained with respect to their corresponding mean equations, 

The near-wall boundary condition for other turbulent variables are expressed 

in terms of the boundary values of VW and VC. 

Subroutine OUTPUT 

This subroutine supplies the main output of the calculations. The 

first section supplies the characteristic single variable outputs, 

e.g. skin friction coefficient, Nusselt numbers etc .• Outputs of mean and 

turbulent hydrodynamic variables and any necessary details of these are 

obtained next. Similarly outputs of mean and turbulent scalar fields are 

obtained next. For three-dimensional problems these variables are printed 

in block form by calling subroutine PRINT. 

Subroutine LISOLV 

A line by line solving procedure is utilised in solving the finite 

difference equations generated in CALCM and CALCRS. Here, the tri-diagonal 

matrix algorithm is employed in each line to be solved. In three-dimensional 

problems the domain is swept in both transverse (west-east) and radial 

(north-south) directions. 

Subroutine PRINT 

This subroutine printout two-dimensional arrays in block form. 
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A note on deleted lines (as can be seen by missing sequence numbexs) 

• The comdeck COMALL has replaced a line (e,g. MAIN.3) in each 
subroutine. 

• DIM3.92 can well be same as INIT,123 

• DIM3. 94 has replaced "DO 710 J = 1,NJ" (as NJO is not defined 
in the two-dimensional case). 

• DIM3.153 has replaced "DO 670 J = 2,NJ" for the same reason. 

• DIM3.165 has replaced "I = 3" ( in two-dimensional flows only 
one I-plane is solved. 

• DIM3.226 has replaced "LISOLV.4 and 5" which had a smaller 
three-dimensional array. 
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F.4 Listing of the Computer Program 

A listing of the computer program used in the present study in 

solving two-and three-dimensional scalar transport problems is given in 

the next few pages. This listing was obtained by running the program in 

update mode. The meanings of the identifiers were explained before in 

Section (F.3). 



"'lIN 

1. 

2. 
3. 
~. 

5. 

6. 

7. 

8. 
9. 

10. 
11. 
12. 
13. 
1 •• 
15. 
16. 
17. 
lB. 
19. 

OOOOOOB 

.,022058 
0022058 
0022058 

0022058 

0022058 

0022058 

0022058 
0022058 

0022058 
0022078 
002207~ 
0022118 
0022128 
0022128 
0022138 
0022148 
002215B 
002221t3 

•• P~J~RAM ~'INIINPvr,OUTPUT,TAPE3,TAPE4,TAPE5·I~PJT,T~Pe6.JUT~UTIt. 

PROGRA~ MAINIINPur,ourpUT,TAPE3,TA~E4,TAPE5sINPUT.TAPe6.0UTPUTI 

c·····~·······························~··············· ••.......••..•.•.• C CO~MJ~ BLOCKS 
C······.·············································· ...•.............. 

)IME~SlJ~ S4VEI202291 
JIMENSIU~ T~ANSIS121 
:OI4MJ'I 

1" 11. 5 I , Y I 30 J, II 021 ,X UIISI ,YVI 3) I , HII 021 , 
lQXEPI15j,JXP~(ISI,uYNPI30),OYPSI301,SEWllSI,SNSI3JI, 
10 "EPU( i. 5 I, O",PI'U( 151, SE wUI151 ,O'fljPVI301, OyPSVI3 0 I, SNSVI3J I, 
1~(3)1,~~(3JI,RCVI3JI,~FNI301,~FSI301,WFE(151,WFW(151, 
1~115.3),21,Vl15,3).21,WI15,30,21,PEI15,30,21,C(15,30,21,PPI15.3',. 
1 JU 115,.3 J I , uv I 15 .3 J I ,U~1l5. 3 0 I • VV 115,30 I • VW( 15 • 301 ,W" I 15 ,301 r 
1 = 0 I 15, 3 J I , TE ( 15 .3) I • F F 11 5.3 J I , UC 115 r .3;) J r vC 115. 3" I , wC I 15,30 J , 
1:'2l 1:;.301, E:; 115,3;)1 .RSl 15.301. 
10~'I115,j),21,V(SI15.3J.ZI,GAMI15.30,21.vISUUI15,301,VI5VVI15.301. 
14"l15,3Ji~4EII5.3)I.A"115,3)I.ASI15.301,40115.301,~UI15,301, 
LAP' 15.j,l/. SJ115.301 ,SPIl5.301, 
lJ r 115 I , : r 115 I, Que 1151 • DC Dl B I 151, QUO 115 J , 
IJE~Slr.~'ScOS,PRANOT,SPHEAT.EXCHAT, 
lCMJ,CR~,L~2,CRS.CRl~iCR2W,CEPS1.CEPSZ,CEPS.CAPP~.ELOG. 
1:Cl.C~2,~;,~Clw.CC2~.CG2.CG.CAPPAC.ElJGC, 
IJUJ,Juv.JJ~,JVV,JV~,JW~,JED.JTE,JFF.JUC,JVC,JWC,JC2,JEC, 
1~I,NIM'.~lM2,NJ.NJM1,NJM2,NK,NK~1,lr,Jr,KT,IJT, 
1~EO~141,rlEDVI41,HED~141,HEOPI41.HEJCI".HEDR(41,HEODI41,HEDVI5(41, 
II~CALU,l~:ALV,INCAL~,INCALP,I~CALC,I~PRO,I~CALRll".INTURB,INDIFF, 
INS~PU.NS"PV,NSWPK.NSWPP,NSWPC,HS~PR, 
l~OuEL,~J~=C,MRW.MCW,I~UE,IDIF.IJET.ITEST.ITeSU,IrESC.ICON, 
lIRJ~,lJ,lrlr.IU1,IU2,IC!,IC2,Il.I2,I~OCOS,FR', 
l(.Dl,ISTEP.ISTPl,NRS,iNDEX.OPOl, 
lFL)~1~,~~EAN,QLENTH,SH~Ll,GRE4T,XTOT,YTOr,RSWALL{141, 
Il0P~JI1~1,IPRO,IE.D,INOPRI,NUMPRI,BVE,8VW,BVS.8~S 

CC'1'1H 
1~T'151.ErJI151.DErl!51,OErU(151,OYW,NJP,NJP1,NJPM1,IWALL. 
1~0UTER,'IN.~R.ECCEN.ES,~JO,YTDTU,ExCH&W,NJOMI 
:~H'1JN U~OJI30J,)LDV(301.CLO~(301.0LDPI301, 

1 OLDUUI301.0LDUV(301,OLDUw'301,OLDVV(301.JLDVWI30I, 
1 OLO~~(30'.CLDTEI301,aLDEO'30J.~LDFFI30J, 
1 OLDUEN(301,OLOVISI301,OVISUU(301.0VISVVI30J, 
1 DLDUTA.COPDl 
LJGIC~L INC4LU.IN:ALV,INCALw,INCALP,I~CALC.(~PRO, 

1 INCALR,INrJRB.INOIFF 
EQUIVlLENCE (Xlll,SAVEIlll 
E~UIVALE~CE lOLOUlll,TRA~SI111 

c·····~······~····*··*···~*···*·*····················· ...•...•...••..••• C RUN SPECIFICATIONS 

c···.················································· ................. . 
CALL (~JlUIlI 
INUI:)(c;J 
IFIIRUN.E~.31 GO TO 10 
LSTEf>-O 
lCO~·) 
L 1'1(0"1 
lUI-).;) 

10 :ONtP41JE 
IFIIRU~.NE.ll CALL IN(rO 
IF(l~JN.E~.31 CALL OUTPUT 

PAGE 

MA 1 /II. 2 
cnM~lL.Z 
C0'1ALL.3 
CC''''UL.1t 
OJ~3.1 

OIM3.2 
COMALL.6 
0(H3.3 
0("'3.4 
OI~3.5 
01"13.& 
01'0.1 
DI~3.8 

01'" 3.9 
OI"3.1J 
0IM3.11 
01"13.12 
OIM3.13 
OIM3.14 
C(MALL.19 
CO"lAlL.20 
CCfIALL.21 
COMALL.22 
CCMUL.23 
CCl'UL.24 
COMII.LL.25 
CCMJlLL.26 
CC"lALL.27 
COMA.LL.2B 
C('M~LL.29 
CC,..ALL .3) 
Cr:'''~LL. 31 
01"3.15 
OIM3.16 
01113.17 
OIM~.lB 
011-13.19 
01'0.20 
DIM3.21 
OP13.22 
CC"'ALL.32 
CC"'~LL.33 
COM6LL.34 
OIM3.D 
MAI~.4 

MAIN.5 
MHN.6 
"'AI".7 
MA.IN.8 
MAI".9 
'1HfIl.I0 
MAIN.ll 
MA1,...12 
MAI"'.13 
M&II-'.14 
MAIN.15 
MAIN.16 

1 

c 
" -
'""""",', 

. 
""","v 

,-
..... ;.1" 

t;r 
1.0 

I.c:...;; ....... 

. o~ .. ,~, 

cc 



/'lAIN 

20. 

21. 
22. 

23. 
21t. 
25. 
26. 
27. 
28. 
29. 
30. 

31. 
32. 

33. 

3't. 

35. 
36. 
37. 
3B. 
39. 
'to. 
~1. ,.2. 
It3. 
44. 
45. 
It6. 
It 7. 
4t!. 
49. 
50. 
51. 

5Z. 
53. 

Sit. 
55. 
56. 
57. 
58. 
59. 

60. 

0022258 

0022268 
0022278 

00223't8 
OOZ,ZJ6S 
oenltos 
0022't3S 
0022458 
0022'>613 
0022468 
Q022H8 

0022508 
0022538 

0022558 

0022568 

0022618 
0022618 
0022616 
0022048 
0022678 
0022738 
0023048 
0023058 

0023108 
0023158 
00232,)8 
00;:3248 
0023308 
0023348 
00.2340a 
0023448 
0023508 

0023538 
0023538 

0023568 
0023578 
0023578 
0023',28 
002:n 28 
0023728. 

0023738 

•• P\JGR~1 ~'INIINPUT,DUTPUT,TAPE3,TAPE4,TAPE5·INPUT.TAPE6-0UTPur) •• 

IF'I~U~.NE.11 GO TJ 2~O 

C •••••• ·_············································· •••••••••••••••••• 
C GRID DIMENSIONS 
C •••• ••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 

Pl-3.L4L59 . 
IF'INDC)S.E~.2) XTJT-xrOT.PI 

C-----GRIU S~~:lN; 
OU 1l) I-l.NI 

10D AIII~~'ll.XTOT 
DO 11~ J-l.~J 

110 YIJI=YIJI'YTOT 
llll-J.O 
llll-llLJ 
Dl=~.O 
1(&2 

C·.· ... ·······························•··············· ................. . C INITIAL OPERATIC~S 
C ••• •••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C---CALCULIlTC GECI1ETRICAL QUANTITIES AND SET VMHASLES TJ lER:J 

CALL l~IT; 

CALL INHJ 
C--~--INITIALISE VA~IABLE FIELDS 

ZOO IfIIRU~.EJ.3) GO rJ 400 
C-----~EAD l~ l~ITIAL PROFILES. IlERO DEFAULT VALUES SET IN INITO) 

CALL IVA rAI21 
C-----INfLOw CALCJLATION 

fLO<il ~ .. o.o 
ARt:A;(). 
DU ~:)5 J-Z ,NJ.'l1 
DO 20S l-lUI,rU2 
A~EA·A~EA.RCVIJI.S~SIJI·SEWII) 

Z05 FLJwl~;fLW~1~.DENII,J,21.RCV'J)·SNSIJ)~SEWIII.W(I.J,21 
vMtAi.FL)~I~/AREA/DE~SIT 
iE·VH~A~~uENSIT*2.J*Y(NJI/VISCOS 

C-----PRJBLEI1 HE~JING AND IiFORMATICN 
wRlfEI6,"'lOI 
"'kl TEl 0,,,201 
.. RITE(6,2301 RE 
"KITElb,2 .. 01 VHEAN 
wF.I Tf:l6,25JI PRANJT 
~Rlr~I6,2I>OI SPHEAT 
"f..lTElb,2701 vlseoS 
.. RITEI6,2BOI DENSIT 
.. RI TE 'I> ,2.10) 

C-----!NlrIAL OUTPUT 
K~2 

CALL OUT?UT 
C.···········*········································ •••••••••••••••••• 
C ITERATION LOOP 

e····················································· .•.•..•....•.....• 
300 ISTEP-ISTEP.1 

·1 STPlal srEPq 
IfllSrEP.Lr.IE~DI GJ TO 400 
..RlT~'41 SAvE . 
GO T) WD 

~OO ec~rzNJE 
C-----STEP FUKw~RD NOW. 

CALL Sf:P 

MAIN.17 
"1AI".18 
MAI",.19 
:-IAIN.20 
MAIN.2l 
MAI".22 
MAIN.23 
"IAI".24 
MAIN.25 
I1Alr..26 
MAIN.27 
MAI~.28 

M.e IN.29 
MAIN.30 
MA1".31 
MAIIJ.32 
MAI'j.33 
l1onN.34 
M~IN.35 

MAPl.::!6 
'1AH'.37 
'1AIN.38 
I1AIN.39 
MH!'.40 
I1AI'j.41 
MAIN.42 
MAIN.43 
MAIN.44 
MAI~.45 

'IAI".46 
I'AI/'.47 
MAIN.4B 
I1AIN.49 
M~I~.50 

"'AI'I.51 
I1AIN.~2 
IoI41N.53 
MAIN.54 
I1AI)I.55 
.'UI'I.S& 
1141"'.57 
M~IN.58 

MAIN.~9 
MAIN.60 
MA 1'1. n 
MAIN.62 
"'I\IN.63 
"1AIN.t4 
MAIN.65 
MAIN.t6 
MAIN.67 
MAIN.68 
MAiN.69 
MAIN.70 
MAIN.7l 
MAIN.7Z 
"1hIN.73 
I1AI"'.74 

PAGE z 

w 
~ 
o 



HA IN 

61. 

62. 

63. 
61t. 
65. 
bb. 

61. 
68. 
69. 
10. 
71. 
1Z. 
73. 
74. 
75. 
76. 
77. 

78. 

79. 
aO. 
81. 
8Z. 
83. 

84. 
85. 
86. 
87. 
88. 
B9. 
90. 
91. 
9Z. 
93. 
94. 

95. 
96. 

. 'H. 

98. 

99. 
100. 

101. 
102. 
103. 

·0023758 

00H008 

00210038 
00Zlt055 
0024108 
0024138 

002'>208 
0024238 
002426!:1 
002431a 
0024H8 
0024378 
0024428 
0024458 
0024508 
0024538 
0024568 

0024618 

0024648 
0024658 
00·24678 
00Z4b78 
0025\)48 

0025048 
00250"8 
0025138 
002514B 
0025218 
0025236 
0025248 
0025258 
0':>253"8 
1l1l25318 
0025328 

0025338 
0025358 
0025368 

00Z5368 

0025378 
0!)25,>la 

0025"28 
,)025423 
0025428 

.•• PRJ",UI1 H' I N( INPUT .OUTPUT. TAPE3. TAPE'" TAPES-I ~P:JT. TAPE6·JUTPUTl "" 

IFII~p~)) CAll P~JPS 
C.·······.· .. ·······························•········· ..... " .......•.... 
C-----CAlC~l'rE SJURCE TE~~S fOR All TURBULENT EQUATIJ~S. 

[FIINTUk~) CALL CAlSOA(r.S.N~S,S~,Sp,IJT,Il,121 

C •• ••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••• ~ •• 
C-----~pGArc MEAN VARIABLES. 

00 HJ [·1,~ I 
DO 41,) J ...... J 
~(I,J,lla~(I,J,ZI 

410 CIl,J,ll~:(l,J,ZI 
C-----.CALCU~ArE VARIABLES AT THE NE04 STEP. 

IF(IN:4L~(JVW)1 CAll CAlCRS(V04,JVw,CRS ,IT,JT,I:.I ,IUl,IUZ) 
IFII'CAll(JUUII CALL CAlCRS(UU,JUU,CRS ,IT,JT,IU ,IUl,IU21 
IF'I~CAL~IJvVII CALL CALCRS(VV,JVv,CRS ,IT,JT,IU ,IUl,IUZI 
(FtI ~:~L.:U J .. w) I CALL CALCRS( wW,JW>I,CRS ,n,JT,IU ,1:Jl, IU21 
IF(I~CA.~(J(EII CA.l CALCRS(TE,JTE,C~S .IT.JT,IU ,IU1,IU21 
IFI(~C'L~(JEOII CAll CAlCRS(EO,JEO.CEPS,IT,JT,IU ,IUI,IU21 
IFII~~A.~'JvCI' CAll CAlCRS(V:,JVC,:: ,IT,JT.lrlT,IC1,ICll 
IF(I~;'lR(JUCII CALL CAlCRS(UC,JUC,CC ,IT,JT,IHT,ICl,ICll 
IFI (~:HHJ .. CII CALL CAlCRS( "C,JWC,CC ,IT,JT,IHT,ICl,I(2) 
IF'IN~AL~'JC2)1 CAll CAlCRS(C2,JC7.,C~ ,JT,JT,IHT,ICl,IC21 
[F'[N:~l .. ' CALL C4LCM(w,V(S,Uw,vw,1.0 ,IT,Jf,lu ,1, 

I IUl,(U2,~SwpWI· 
IF(I~CALCI CAll CALCM(C,GAM,UC,VC,SPHEAT,IT,JT,IHT,O. 

1 [Cl,IC2,~S~pCI 

IF(lwAll.EQ.OI GO ro 445 
Du 44,) ("I,NI 
UU~(I)·~X:HAW.(C(I,NJpl,KI-C(I,NJ,KII/DET(II·2.0 

1,40 CON T [NUl: 
445 Cu'H ISuE 

C ••••• • •• ·.··············*····*··················*···· •..••........••.•• 
C-----(NrER~EDI~TE OUTPUT 

o(·Z 
IfIMUdIISTEP,INDPPII.EQ.OI CALL OUTPUT 
Lu~lI2)IYrOT/2.0 
IF(lD.ur.lDPRO(IPRJ+lll IpRO=IpRO+1 
IFllO.lr.LDPRO(lpRJII GO TO 45\) 
~U'lPa.'IJ"p-!, I 
NUMpU-IHEP 
CALL JUTPUT 
I P;!.i)aIPRJ+l 
NUI1PU aNUMp 

loS;) CU"'TI~J= 
c-----rtRMIN~r(~N TESTS 

IFIISTEP.;T.IE~DI ~O TO 600 
HW::X"l 
GO TJ 3JU 

C····················································· •.••..•••..•...... 
600 CONT INJE 

C-----F(SAl JJTpUT. 
CALL J:HPUT 
STOP 

C···.················································· ...•............ ~. C ForMAT srATEMENTS 

C •• ·····.······················*··*··················· ......•..........• 
21;> F0R'IAT(/lllHO,lZO(LH.IIII) 
220 FDkM~TllHJ,40X.. TURBULENT pIPE FLOw ·,,111 
230 fO~~4rllrlU.15X,.R:YSnLDS NUMBER.,T50,lH~.3x,lpEl1.31 

MAlN.75 
'1AIN.76 
MAI'I.77 
MAIN.78 
'1Al~.79 
MAIN.a!) 
MAIIJ.1'l1 
MAI'I.a2 
MAIN.83 
MA PI. a4 
MAIN.tl5 
'IAIIJ.86 

.MAPI.87 
MAIIJ.aa 
MAI "I. a9 
MAIN.9:J 
MAII-J.9I 
MAIN.9Z 
M61'-:.93 
MAIN.94 
MAIN.95 
I1A[IJ.96 
MAIN.91 
MA HI. 98 
MAI"'.99 
OI~3.24 
011013.25 
OIM3.26 
01'13.27 ' 
010013.28 
MAIN.l:>:I 
MAP •• IOI 
MAIN.In 
MA [.'1. 103 
MA!'I.I04 
MA I N.l:15 
'III. 1'1.106 
MA I 'I. 1 !)7 
MAIN.108 
MIII"'.109 
M~.IN.l1:l 
I'AIN.lll 
MAI'l.1l2 
MU~.l13 
MA I IJ .114 
MUN.1l5 
MAPI.llb 
MAn.!l7 
'1~ Ill. 11 B 
'1AIN.1l9 
Mill N.12J 
MAIN.lll 
'1API.122 
MAIN.123 
MUIJ.12" 
MAIN.l25 
114/,",.126 
MAIN.I27 

PAGE 3 
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MAIN 

104. 0025428 
105. 0025428 
lOb. 00.25428 
1')7. 0025428 
lOS. 0025428 
109. 0025428 

240 
25) 
26e. 
27J 
280 

•• PROGRAM Hb.INIINPUT,DUTPUT,TAPE3,TAPE4.TAPE5-INPUT,TAPE6-OUTPUT,~* 

FGR~ATIIIIIHO,15x,~MEAN INITlAL VELJCITY*,T60,lHa,3X;lPEll.31 
FG~~~rllH~,15X,*P~ANOTL NUMBE~*,T60,lH3,3x,lPEl1.~1 
FORMAT(1HU,15x,.FlUIO SPECIFIC HEAT*,T60,lH=,3X,lPEll.3' 
FUiMAr"Hl,~5X,.FlUIO VISCOSITY*,T60,lH-,3X,lPEll.3' 
fQ~MAT(lrt~,15X,.fLJIO OENSITY-,T60,lH=,3X,lPEll.3111' 
~NO 

MAIN.l2S 
MU'!.129 
MAIN.BO 
Mr.IN.13L 
MAI~.132 
MAIN.133 

PAGE 4 
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INOATA 

1. 

2. 
3. 
4. 

5. 

6. 

7. 

8. 
'9. 

10. 

11. 
12. 
13. 
14. 
15. 
16. 
11. 

0000008 

0000008 
0000008 
OOC0008 

0000008 

0000008 

0000008 

OOOOODS 
0000003 

oeoooes 

0000008 
0004468 
000450B 
0004508 
00C452B 
0004536 
uu0454B 

~.SJSRJJTINE IN04TAILEVELJ·. 

SU&RJJTI~E INOATAILEVELI 
C •••• •••• •• ••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C COMM3N'8LCCKS 
C ••••• •••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 

OI~E~SlJN.S'VEI202291 
OI1ENSIJ~ rRANSI5121 
COMMON 
1~1151.rI3JI.lI021.~U(151.YV(301,lW(021, 
1D~i:P (151, l)~P w(l51.0Y'lP DOl .OYPS( 301 .SE ~(lSI. SNS( 301, 
lDXEPUI151,l)XPWU(151.SE"UI151,OYNPVI3JI,OYPSVI301'S~SV1301. 
1.~ (3 J I. ~ "1301 , RC V 13J I , "F~ (301; "FS DOl, wFE 1151 , WFWI 15' , 
lJI1S,3j.21,V(15.30.21,WI15,30.21,PEI15,30,21,CI15,30,21.PPI15,301, 
1 -'UI15, 30 I • UV 115 ,30 I ,U fillS, 3 01 , V ill 5 , 30 I , Vw ( 1 5 • 3 Jl • ww 115,301 , 
lEO(15.3JI.rEll~.301.FF(l5,301.UCI15,3)I,VCI15,301,kC(15,301. 
1:: 2 ( 15 ,3:> I , E::: 115 .30 I .?s 115,')0 I , 
lDc'U 15,.;:), 21 ,VI SI15,30,21 ,GAMI15,30.21, V!SUUIl5,3JI. v[ svvI15.301. 
11\ .. 115 • 311 • II. ~ 115. 3 (H • A'I ( 1 5, 30 I • AS ( 15 • 3 J I , ~ 0 I 15, 30 I • 1\ U I 15 • 301 • 
l.\P( 15.31.11. SUi 15.301 .SP( 15.301. 
1 J r 1151 • C r ( 15 I • QUE 115) • DC Ol B ( 151 • QU~ I 151 , 
IJE'ISI r •• 1 SCD 5, PR~NOT, SPHEAT. EXCliIlT, 
1::HU,C~t,C~2.CRS.CRl~.CP2W.CEPSl,CEPS2,CEPS,CAPPA.E~OG, 
lCCi.CC2.CC.CClk,CC2W.CG2.CG.CAPPAC.ELJGC. 
IJUu.JJV,JUW,JVV.JV~.J~w.JEO.JTE.JFF.JUC.JVC.JWC,JC2,JEe, 
1~I,~IM1,~I~2.NJ,NJ~1,NJH2.NK,NK~1,[T.JT.KT,IJT, 
IHEUU('I,H!OVI4/,HEOWI'I,HlOPI41.HEOC(".HEORI41.HEODI41.HEDVIS(41, 
IIN:ALU.IN:ALV.1~CALW.INCIILP.INCALC.[NP~O.INCALRI14/,1~TUR8,INOIFF, 
1'1S~PJ.'15~pV.NS"PW,~SWPP.NSWPC.NSWPR. 
1~0)!L.MJ~eC.~R~.HeW,IJU~.IOIF.IJET.ITESt.ITESU.ITESC.tClN. 
11~U~.LU.lrlr~IU1.IUl.IC1.IC2.!1.12.INDC~S,FR~, 
l(.Dl.lirEP.ISTPl.N~S.IND~X.OPDl. 
IFLJwlN.V~EA~.OlENTH.S~fLL.GREAT.XTUT.YTOT,PSWALLI1". 
IlDPRu(~~I.Ipno.IEND.INOPRI.NU~PRI.HVE.8VW.BVS.BWS 
::OMMJ~ 
lETLI51.ErUI151,OETI15/.0ETUI151.0Yw,~JP.NJPl,NJPM1,IWALL. 
l~UJrER.RI~NER.ECCEN.ES.NJO,YTJTa.E~CH~W.NJa~1 
::O~~J~ LLOUI301.0LUVI3DI~OLOwI301,rLOP(301, 

1 O_DJUI301,JLO~VI301.0LOuwI301,OLOVVI3QI.OLDVWI301, 
1 OLO~W(301,OLDrEI)01.0LOEDI301.[LDFF(301, 
1 JLOJENI301,OLDVIS(30J.OVISUU(30I.GV I SVVI3JI, 
1 ULOurA.OOPOl 

UlGICAL I'ICALU.I/I::;ALV.I/'CALW.INCALP.INCALC.INPRCI. 
1 INCII.LR.INTune.INOIFF 

:QU[VALENCE IX(1),SAV~1111 
EQJIVII.Lc~;E IQLDU(lJ.TRANSIIJI 

c· ••• ······~············*····*··*······*·············· ..•••••.•••••••••• 
OI~!NSIJ' Y2(21),WlI211,U~11.211,VV1(21"HHiI211.VW1(21),UW1(211, 

1 ELllI211,:il21I,UC1I211,V:1I211, ... C1I2i1.C211211,::11211 
c ••• ··················*······**·······*··············· ...•..•••••. ¥ ••••• C ~ISCELLANEOUS OI\TA 

C •••• ••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• JO TJ (loo.2001,LEVEL 
10J Ca~rl~JE 

t>~EU"1. lEf.30 
5MALLDi.O~-40 
JUJ-l 
Juv"2 
JU~,,3 

[NOAfA.2 
eOMALL.2 
eOI':I\LL.3 
COM.&LL.4 
0(M3.1 
OV13.2 
crMALL.6 
OIM3.3 
OPI~.4 

PAGE 

ot '13. 5 
OI~;.o 

011-'3.7 
01"'3.8 
0[M3.9 
0[M3.10 
O[W~.l1 

0[1'.3.12 
011013.13 
0IM~.1.4 
((lK~LL.19 

COMALL.20 
CCMALL.21 
COMALL.22 
COMALl.23 
CCMlLL.24 
C[1M~LL.25 
COMHL.26 
CGMALL.27 
CCMHL .28 
C"I"~LL.29 

COM!.LL.30 
COflA'..L.31 
01M3.15 
0[M3.16 
011013.17 
01'"1;.18 
01'13.1'1 
011013.20 
01"'3.21 
01M3.22 
CC'MtLL.32 
COMHL.33 
e~"'AlL.34 
0[~3.Z3 

INDAH.4 
l~oarA.S 
INOHA.6 
l"IOAH.7 
INOATA.8 
[NOAH..9 
PWATA.IO 
INOAH.ll 
INOAU.12 
I~OATl..13 
[NOH!I.14 
PWb H.15 
INDAU.16 

1 
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INOAU 

18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
.31. 
32. 
33. 
31t. 
35. 
36. 
37. 
38. 
39. 
~Q. 

~l. 
42. 
~3. 
~4. 

45. 
46. 
47. 
~8. 

109. 
50. 
51. 
52. 
53. 

5~. 

55. 
56. 

57. 
58. 
59. 
60. 
61. 
62. 
63. 
bit. 
65. 
b6. 
67. 
68. 
69. 
70. 
71. 

0004558 
000 ... 568 
0"0"'578 
0004608 
0004618 
000 ... 628 
0004638 
000 .. 648 
0004658 
0004668 
000 ... 678 
0004108 
0005068 
0005118 
0005208 
0005228 
0005270 
0005218 
000S318 
00C.5438 
0005H8 
0,)05458 
0005478 
OC05508 
0005528 
0005538 
0005658 

0005758 
00C6068 
00u6078 
0006118 
0006178 

. .)0::;6178 
0006218 
1)006328 
OOCtlt48 

0006618 

0006768 
0007068 

000716B 
0007168 
0007178 
0007178 
0007208 
0001248 
OaC'12 78 
000732B 
;)007358 
0001318 
0001428 
0007546 
000764B 
0007708 
0007778 

•• SU3~JuTINE INOAT4IlEVEll •• 

Jvv-4-
Jv,,-5 
Jw .. -6 
JEO-1 
JTI:-fj 
JFF-9 
J UC -1;) . 
J ~C311 
J .. ;:"12 
JC2~13 

JEC-H 
~E4015,OlOI HEDU,HEOV,HEDW,HEDP,HEDC 
READ(~,JIOI HEDR,HEDO,HEOVIS 
)u 120 l-l,14 

120 1~:4L~(LI-.FALSE. 
READIS,)2JI IRUN,IENO 
ll::ND'lE-lt: 'Ie' 
I RJ'lt:oI -I RUr4 
RcAO'5,J~OI NI,NJ,NK,IT,JT,KT 
IJr"IT-Jr 
NIM!-"41-i 
.'HM2'~'11-2 

NJ'11 G 'IJ-:i. 
t.JM2"NJ-2 
'4K'41=N.<.-1 
REAO(5,~351 IXIII,I-1,N!1 
Rl40(S,j351 IYIJI,J-l,NJI 

C----FUlL)oII'l:> CARD IS I.'14CfIVE IN TioI:l-DIMEI-'SICNAL PROBLEMS. 
IflI~JN.~~.,' READ(31 TRANS 
IFll~JN.~~.ll GO TO 430 
RUD(3) ).\vE 

130 : O'H I .\lUE 
lE~O-lE'O~E 
lIhJNz I KUNE " 
REAOl5,ul51 INCAlU,INCAlV,INCAlW,INCAlP,INCAlC 
R~AOl5,J'5) INTURB,I~C4lR(jTE),INCALRIJEOI,I\lPRJ,INOIFF 
KEAJ(5.J&j) INCALR(JUUJ,INCALRIJVV),I~CALP(JWWI,I~CAl\IJVWI 

1 ,INCAL~IJUwl 
READ(5,l151 INCALR(JUCJ,INCALRIJvCI,INCAlR(JwCI,I~CAL~lJCZI, 

1 fNCALRIJECI 
READ(;,OLO) MOOEL,~JDEC,MRw,MCW.IOIF 
KEAOIS,0201 fJET,INOCOS,IU,IHT,IQUE 

C-----Ol"lEIISIJt.U LIMITS. 
I Ul-3 
IUZ e 3 
lCla) 
I C2 "3 
IFIIU.E~.21 IU1=2 
IFIIu.EQ.21 IU2-NI'41 
IF( lriT.Eu.21 ICl"Z 
IFtlHT.Ew.2J IeZ-NIH1 
I la'4INJI lul, ICII 
I 2-'1~AOI 1 li2, IC21 
R~AOl5.J201 NSnPU,\lSWPV,NSWPW.NSWP?,NSW?R,NSWP: 
~~A)(5,J2JI ITEST,ITESU,lTESC,INOPPI,~UMPRI 
H:4,)I5.J':51 FRA 
RcAO(5,0251 CMU,CE?Sl -~S2,CEPS 
RE4Dt5,0251 CR1,CR2.C: RIW,CR2W 

PAGE 

INOATA.l1 
INO~U.18 
INOAT4.19 
IfolO~ TA.ZO 
INOATA.21 
INOATA.22 
II'OA H. 23 
INDATA.Z4 
INOA H.Z5 
I'-I0~TA.26 

INO,lTA.Z7 
INDHA.2B 
INOATfl.29 
INO,lU.30 
INOATA. :n 
INOA H .32 
INOATA.33 
INDHA.:!4 
t~OATA.35 

INOATA.36 
INOA"".31 
INUA TA.38 
INOATA.39 
It;OA TA. 40 
INO~TA.'tl 
INOl.rA.'t2 
ItWAH.t.3. 
INOH~.H 
011-13.29 
INOATA.46 
I NOH A." 1 
INO~TA.t.8 
HI0~H.49 
IN04TA.50 
INO~TA.51 
INOH6..52 
H'OATA.S3 
{,/DATA.54 
I NOHA. 55 
IND~TA.56 

INOAH.51 
I~OATA.SB 

INOATA.59 
H'iOt TA.60 
IIIDAH.61 
INDAH.62 
HWI\U.63 
INOATA.64 
INOATt..65 
II-IOATA.66 
INDArA.67 
iNO.\TA.68 
INOA TA.69 
INOfITA.70 
INOA H.. 11 
INOATA.72 
alDAU.]" 
INOATA.i' 
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INOAU 

72. 
73. 
710. 
75. 
76. 
71. 
78·. 
19. 
80. 
610 
82. 
83. 

Eft. 
85. 
86 •. 

87. 
88. 
89. 
90. 
91. 

92. 
93. 
9ft. 
95. 
96. 
97. 

98. 
99. 

10J. 
101. 
10Z. 
103. 
lOft. 
1.)5. 
IJ5. 
1:>1 • 
108. 
109. 
110. 
111. 
11Z. 
113. 
1110. 
115. 
116. 

0010078 
0010178 
00102108 
001,)318 
0010369 
0010459 
0010530 
0010S48 
00106ft8 
0010118 
0011008 
0011018 

0011508 
00116'18 
0011178 

001Z3Z8 
0012U8 
0012508 
0012S78 
001Z650 

0012709 
0012708 
0012718 
0013018 
00D078 
0013168 

00B238 
0013238 
0013348 
0013358 
J013468 
0013558 
0013668 
0013168 
0"1406B 
00H168 
0·)14268 
0014368 
0014468 
00110568 
00H658 
0014166 
0015068 
0015158 
001S268 

•• SU8ROUTIHE INOAT'ILEVELJ·· 

REAOl5,025J CCl,CC2,CC,CC1w,CCZ~ 
R~AD(S,lZ5J CG2,CG 
~EAOI5,J251 CAPP~,ElOG 
RcAJ(5.~Z51 (APpAe.ElOGC 

.READI5,03JI VISCCS,OENSIT,PRANOT~SPHEAT 
RtAOIS,0301 XTOT,YTOT,OLENTH 
~LENTH-~lE~TH.YTOT-2.0 
~EADIS,0301 RSWALL(11,RSWALLI31. RSWALLI41,RSWALLI51 
REAO(5,J3~1 RSWALL(61,RSWALLI81 
~EAOI5,J3ill RSWALL(10l,PSWALLI111,RS~~LLI121,RswALLI131 
REAUI5,J351 IlDPRJlll,I~1,181 
wkITE(~,J5JI INCALJ,t~CALV,INCALw,INCALP,[~CAL\(JTEI,[~C'L\(JEO), 

1 I NCI! l'l. ( JUU I ,I NC AlR I JVV) , ( NCAl R I J Wit I , I NCAL R I JVw) , 
1 INCALRIJJwl,I~D[FF,INC~L:,[NCALRIJUC),[NCALR(JVCI, 
1 INCAL~IJwCI,INCALR(JC2l.I~CALR(JECl 
~RlrE(6,055) [RUN.ICJ~,INDCDS,IU,IrlT,IQU~,IU1,[U2,IC1,IC2,11,I2 
~RITE(b,~bO) MODEL,HODEC,M~W,MCw,IDIF 
~RITEIO,Ub51 CMu,:~PSl,CEPS2,CEPS,CR1,CRZ,CRS,CRLW,CR2W, 

1 CAPPA,ELOG, 
1 CC1,CC2,CC,CClw,CC2W,CGZ,CG,CAPPAC,ELOGC, 
1 DENSIT,VISCOS,PRANOT,SPrlEIT 

C ••••• C~JTION ••• O~LY UNIFORM Y-SPACING [NSIDE TUBE WALL P~OVIDEJ. 
C IF WE NEED M GRID NODES INSIDE TUBE wALL,SurPLY NJO~NJ.M.l 
C-.,..--lf- IIllALI."'>, SUPPLY NJtJ 2 flJ, ROUTER=~IN~ER. ECCEN"O, EXCHAW=J 

~E'JIS,O~UI [WALl,NJa,rTQTQ,EXCrlAW 
wRl TEl 6,O(5) IWALL,)lJO,YTfJTO ,EXCHAw 
REAO(5,)~j) ROUTER,RIN~ER,ECCEN,ES 
wRITEI~,D~7) ROUTER,RINNER,ECCEN,ES 
RHURN 

C •• ••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• C I~ITIAL PROFILES 
C.· .. ·.······················**··············**······· ••..•.•.......•..• 

200 CD,'HINUE 
IflIHf.tu.ZI GO rJ Z05 
RElO(S,J3JI WMAX,UUMAX,VVMAX,WwMAX 
~~AJ(5,J3J) VWMAX,Uw~AX,EDMAX 

205 R~AOI5,J3JICMAX.UCMAX,VCMAX.wC~AX 
REAOI5,il3ul C2MAX,ECMAX 

C----l/'d TIAL :;J ,'W I TJNS I.~ OIMENSIOIILESS fORM 
INUM c 21 
REAvI5,J70) (Y2IJI,J~l,INUMI 
IFIIrlr.Eu.2) GO TO 205 
R~ADI5,J7J) (WlIJl,J"l,INUMI 
REAOIS,J701 IUU1{JI,J-l,INUMl 
~E"OI5.u7ill (vvlIJ) ,J:l,INUMI 
RE~O(5,OlJ) (WWIIJI,J=l,lNU~) 

.REUIS,J7JI (V~l(J1 ,J=l, INU"11 
i<E.l.OIS.J701 (uwlCJI rJ~1.rNUMI 
RfAOIS,37J. IE01IJl,J-I,INU"1) 

Z06 ~EAG15,J701 I CIIJI,J-l,lNUMI 
~EAUI5,J70) IUC!IJI,J-l,INUMI 
RcADI5,)7JI IVCl(J),J~l.INU"11 
REAOIS,J7JI "IClIJl ,J=I, INU"') 
RtAUl5,O/Ol IC21(JJ,J=l,INUM) 
R~ADI5.()701 IEClIJJ ,J:l, INUMl 
R~AJI5,07JI (CT([),(sl,NIl 
REAGI5,jlJI IQUE(II,I=I,Nll 
IF(I,H.E.I.21 GO Til 210 

PAGE 

tNOATA.75 
INDATA.76 
IND.4U.77 
INOATA.78 
INDAH.79 
INDHA.80 
p.;or. TA. 81 
PICATA.82 
INO~ TA.83 
INOAH.!s4 
INDHA.B5 
HIO~ TA. 8b 
INOATA.87 
INOA TA.tl8 
l'IOr.U.!l9 
IN(Jt.TA.9,) 
If'.;OA H.9l 
INDATA.9Z 
INDArA.9~ 
[~Oll TA.9~ 

t~oATA.95 
OI~3.30 
OI'1:?n 
O[M3.32 
O[M3.:!3 
01"13.34 
DIM3035 
OIM3.36 
INOATA.95 
l'JOAH.97 
r~OATA.98 

rtloH~.99 

INDAU.100 
I NO.a.TA..l 01 
INOHA.I02 
I~OAH.I03 
INOAU.IO~ 
IN06 TII.I05 
INOH~.106 

INO~ H.I0l 
INDATA.108 
IflOATA.I09 
INOr. H.110 
INOHA.111 
INOAlA.llZ 
I"'OATA.1l3 
INDATA.114 
INU~ H.ll5 
INOHA •. 116 
I~UATA.l17 
INDATA.llB 
I NOJI.TA.ll 9 
[NOAU.120 
INOH~.121 
INO~U.122 

INOHA.123 
INDI.TA.12~ 
[NOA H.l25 

3 

f"" 

\~ 

L 

.,.z.;;. 

, 
~-

w 
.::-.', 
VI' ' .. 

~;;.> 



INOAU 

117. 
118. 
119. 
120. 
121. 
122. 
123. 
12~. 
125. 
126. 

127. 
12tl. 

129. 

130. 
131. 

132. 
133. 
134. 
135. 
136. 
137. 
1313. 
139. 
140. 
lH. 
142. 
143. 
tH. 
145. 
146. 
147. 

148. 
14~. 
150. 
1~1. 
152. 
153. 
154. 
155. 
156. 
151. 
15d. 
15~. 
160. 
161. 
162. 
Ib3. 
16~. 

165. 
166. 
167. 

0015278 
0015318 
0015368 
0015~68 
0015"68 
0015478 
(101551 S 
01,)15518 
01,)15528 
00155"8 

0015546 
001555d 

0016018 

0016366 
0016376 

0016408 
001641 6 
001¢"38 
001H58 
0016508 
0016538 
0\)16518 
0016636 
00166~8 
0016618 
00Ie.H.tl 
0\)!10~8 

0017068 
0011106 
0017108 
G017i38 

0017218 
0017218 
0017238 
001 nbS 
0017328 
0017368 
0017406 
001 H28 
0017518 
0\)175713 
0011658 
0017148 
0020028 
0020118 
002u206 
OO~ 02e.a 
0020~48 
0020438 
0020518 
00205)8 

•• SU8RouTIHE INOAT'CLEVEL)·· 

If(IR~~.~E.1' GO TJ 210 
REAO(5.Jl~' OPOl . 
~EAUl5,0701 IUT(II.I-I,NI) 

213 Cu~rI~jE 
IflI .. "u.EQ.OI GO TO 212 
llO 21.t. l·L,~1 
\JUOI I I·../.JE 11 ) 
,JUEIII·u.u 

211 Co~ T I ~UE 
212 CONTi ~Uc 

C ••••• ~· •• ···~········································ •••••••••••••••••• 
Ifllrlr.E~.2) GO TO 215 
iiRI TE I b, \Iii 751 I J, Y2 (JI ,Wl( J) ,UUl' JI ,VV1 (J I. Will' J I, vW1 ,J" LId I J I 

1 ,EOIIJI,J·l,INU~1 . 
215 ~RIT!lb,OJ8JI IJ,Y2IJI.CIIJI,UCIIJI,VCIIJr,WCIIJI, 

1 C211 JI, E::l( JI ,J:l, INUMI 
C •• • ••• ·········································*····· ................. . 

I~UH1=I~UH-l . 
~Jl·'lJ .. l 

C-----p.rEH.POLHluN OF MEArt PROFILES. 
J "1 
DO 22) JJ·2,INUM 

220 ~2IJJlzY~IJJI·YTOT 
DO 250 JJ·l,INUM1 
IfIYIJI.Lf.¥2(JJII GO TO 250 

230 IFIYIJI ... T.Y2IJJ+11I GO TO 250 
RAfIO·IYIJI-Y2IJJII/(Y2IJJ"11-YZIJJII 
IFII:H.EIi.21 GO TO 240 
IFIIRJN.NE.ll GO TJ 240 
"INI,J.2Iz"1(JJI"R~TIO·IWl(JJ+ll-Wl(JJII 

240 C' .. l,J,d"'CIIJJI .. iUHIO.ICIIJJ+lI-CIIJJII 
J",J .. 1 
If(J.E~.NJl1 GO TO 250 
(';0 Tl 230 

25,) CuNrINUE 
lFllRu~.E,J.ll WI~I,NJ,21·0.0 

C •••••• ···.·······················*···················.~ ............... . 
C-----I~rERPOL~TI(;N Of TuRBuLENT PROfILES. 

J=2 
DO 28) JJ·1.INUMI 
II-"VIJI.LT.Y2IJJII GO TO 280 

260 IFlYVIJI ... T.Y2IJJ+111 G~ TO 280 
~ArlO:IY"IJI-y2IJJII/IY2'JJ .. 11-Y2IJJII 
IFII~r.Ew.21 GO TO 270 
IfIIRJ ... ~E.il GO TJ 210 
UUI .. I,JI·UUl(JJI .. R~TIJ.IUUl(JJ .. ll-JUlIJJII 
VVI'lI,JI=VVI1JJI.~~TIJ·IVVIIJJ .. II-VVIIJJII 
"wtNI.JI·~~lIJJI .. R.TIJ.I~WlIJJ .. ll-wWlIJJII 
Vwl"l.JI=VwlIJJI .. R.TIr,*IVWlIJJ.ll-VwlIJJII 
.Jw'~I.JJ·J~llJJI.R'TIJ.(U~l(JJ·II-JwlIJJII 
cOI"I,JlaEOlIJJI+R~TIU·(EOlIJJ+II-EOlIJJII 

210 JC''lI.JI·U:'IJJI''~'T.J.IUC1(JJ''II-UC1{JJII 
VCI~I,JI·"CIIJJI"RlTIQ.IVCIIJJ .. II-VCIIJJII 
wCI'lI,JI·WCIIJJI"R'T[O·IWCl'JJ+ll~WCIIJJII 
:21~I,JlzC21IJJI+~.rI).IC21IJJ"11-C21{JJII 
ECI'lI,JI-ECIIJJI+RATIO.{ECIIJJ .. II-ECIIJJII 
J "J-1 
IFIJ.Ew.NJll GO TO 28' 

PAGE 

I NOATA.l26 
INOATA.127 
INOATA.128 
INOHh.l29 
01M3.31 
Oll-I~. 38 
OIM3.39 
0IH~.40 

01'13.41 
01M3.42 
INDATA.130 
INO"H.l31 
1 'I OA TII.ln 
INOHA.l:B 
INOAH.134 
INllHA.135 
INO'U.13b 
INUAlA.l37 
INOHA.13a 
INOA TII.D'} 
INOATA.140 
I NOH A.l t.l 
INUATA.142 
INOATA.143 
HWA TA.144 
INOATII.145 
INOATA.Hb 
lfoiOATl.147 
INOATII.148 
I1'OATII.149 
H:O~H.l50 
INOHA.15l 
INOATA.152 
(NDATA.153 
INOATA.154 
INOAH.15S 
INOtTA.156 
If-IllHA.157 
II-'OATA.1S8 
INOtrA.l59 
H;;)AH.160 
INOHA.161 
INOAH.l62 
INOAT4.163 
INOAU.164 
INDATA.l65 
INOATA.16e. 
l"'OATA.161 
INOAU.l68 
INDAH..169 
It-OATII.170 
INOATA .171 
H'CATA.172 
INO~T4.173 

INDtTA.l74 
(I<OATA.175 
H/OATA.17· 
INOATA.) 
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, ~ 

[NOAT " •• SUSR:lJTINE IHOATUlEVEU" 
PAGE 5 

168. 0020548 GO TO 21ti) 
[~OATI\.178 

169. 0020548 280 CO" Tl 'IU= 
P!OAH.179 

C.··· .. ·························•··•·•················ ..•....•..•.•.•••. INOATA.180 

C-----;ALC~L~rE ACTUAL MAGNITUDES OF ALL VA~IA8LES. INOAH.lSl 

170. 00201)08 00 32,) l-l,'U INDATA.182 

171. 002il628 00 31() J-L,NJ I~D~a.183 

11Z. 0020b5S IF'I~v".'1=.I) GO TO 300 INDAU.184 

113. C'.l20678 I F( IHr ... "e:.ll GO TO 305 WDII TA.l85 

174. 0020n8 UIl,Jrll-)LDUIJI D1~3.43 

115. 0020768 U(1,J,21'ULDUIJI DIM3.44 

176. OOZ1018 VI(,JrU=:JLDV(JI DIM3.45 

111. 0021048 VllrJ,2PJLOVIJI DI'I3~46 

178. 0011078 wll,J,11'JLDWIJI IHM3.47 

119. 00211li3 ,,(l ,J, 2 I = J LO rli J) 01M3.48 

1 SO. 0021158 PlII,J,ll·D~DP(JI 
0IM~.49 

181. 0021108 PEII,J,21·0LDP(JI D1"l3.50 

16Z. 0021238 UUll,JI:)LOUUIJI 01113.51 

163. OJZ1268 U V ( 1 , J , - J I.. OJ V ( J I 01M3.52 

1 alt. 0021328 U .. II,JI"'JLOJWIJI 01M3.53 

11l5. 002136d VVll.,JI-':;LOVVIJI OIW3.54 

186. 0021428 V .. , I, JI-ULDVW IJ I 01113.55 

187. 0021408 10'" 1 ,J) ·JLOwWIJI 0IM3~!:1) 

Id8. 0021528 TEl I ,JJ-)LOTEIJ) 01M3.51 

189. 0021568 EO I I , J) .. J L O~ 0 I J) 011'13.58 

190. 0021628 Ffl I,JI"aLD~FIJI 01"13.59 

191. 0021668 OE~'I,J,ll-OLOOENIJJ OIM?60 

192. ;)021728 DENII,J,21"ClDOENIJI 0(M3.61 

193. 0021768 VISII,JoU-JLOVISIJI 01~~.62 

194. 0022:>28 V[SII,J.2'~DLOV1S(JJ OIM~.63 

195. 0022068 vI5UUIl,JI s OVlSUUIJI 01'13.64 

196. 0022128 VISVYII,JJ:)VISVYIJI 01M3.65 

197. 0022168 UTIlI =IJLJUTl 011013.66 

19B. 0022178 OPUlaJiJPOl 011'13.61 

199. 0022218 GO ra 3;)1) INOA fA.186 

200. 0022218 305 CO'lTI'Iue INOAU~187 

201. 0022238 .II,J.ll-~('II,J,21·WI1I1X INOATA.188 

202. 0022318 .. II,J,21-wINI,J,2J~rlMAX I~OA TA.189 

203. 0022378 UUII,JI·UJINI,JI~UUMAX INOHA.190 

za .... 002H58 ~VII,J,·vvINI,JI*YV'1AX IP-'OATA.191 

2;)5. 0022538 W .. II,JI,wwlNI,JJ*WWMAX INUHA.192 

20b. 0022618 V"II,JI·V~I~I,J'·VwMAX INOHA.193 

207. 0022678 U .. II,JI-U"lNI,JJ*UWMAX It-OHA.194 

20B. 0022758 EOII,J):~OI'lI,JI.E)MAX INOATA.195 

Z09. 0023038 rEII,J)-IJUI I,J'''VV(l,J, .. wW(I,JJ '·0.5 INOATA.196 

210. 0023118 FFII,JI:\JUII,JJ-VVII,JI INOAH.191 

211. 0023168 300 CII,J,2J·:I~I,J,21~CMAX IIJDtrA.198 

212. 0023248 CII,J,ll'CINI,J,2I t CMAX IrvOATA.199 

213. (,023328 J(II,JI-U:INI,JI*U:MAX l'IOATA.200· 

2H. 0023"08 VCII,JlaV:INI,JI*VC~AX INOHA.201 

l15. 0023468 "(ll,JJ-wCI~I,JI·WCMAX WOATA.202 

216. 0023548 ClII,JI·C21'1I,JJ*C2MAX INOA TA. 203 

217. 0023628 ECII,JI-E:INI,JI-ECMAX II'OAU.204 

218. 0023108 310 C con I.'IUE 11J0~H.205 

219. 0023738 320 co';rt'lJE: INOHA.206 

Z20. 0023763 1=3 I NOA H.. 201 

221. 002377~ wldrE16,J0851 I J , UU I I , J J , vvl I , J I ,ww ( I , J I, Viol I I ,J) , UW I I , J I IIJDAH.208 
1 , F F I I, J I , T F I I ,J I , EO ( I , J ) , J -1, N J ) IN06T~.209 

,,-, 
t..,., 

:~ 

~~ 

W·". 
~ ... -
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I~" 
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222. 0024618 wRl TEI6,OO901 IJ,CII,J,2),UC(I,JI,VCII,JI,WCII,JI,C211,JI, I~OAT A. 210 



IHOATA 

223. 
224. 
225. 
226. 
227. 
228. 
229. 
230. 
231. 

232. 

233. 

23 •• 

235. 

236. 

237. 
23B. 
239. 
HO. 
2.1. 
242. 
'~3. 

0025306 
0025306 
0025308 
0025308 
002530tl 
0025303 
0025308 
00l53J6 
0025306 

0025306 

0025306 

0025308 

0025306 

0025306 

0025306 
0025308 
0025303 
0025306 
0025308 
0025306 
0025326 

•• SUBRourINE INOArAILEVElJ·· 

1 ECII.JJ.J-l.NJI 
C ••••• •••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• C FUr.MAT STATEMENTS 
C ••••• •••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 

11) FOR~AT( ~HOI 
15 Fu~M~r'5(4x.Llll 
2J fUR'1ATI 7( lX, 1411 
25 FC~M~TI5'oX,F6.311 
30 FORMArl417x,IPEIO.311 
35 FO~MATI4XIIP6Ell.31 

040 F~~M4T(7)(,14,7X,14,2(7X,lPEll.311 
045 FOR'14rI4X,4(4X,lPE11.311 
5~ FG~M4r(lrlllll,5X,.SElECTION OF VARIABlES·,1 

1 10x,* u •• ,~I,. V=*,ll,. ~z.,LI.. P··,Ll,1 
1 lax,. TEe.,LI,. Eo-.,Ll,. UU=.,LI,. VV2.,LI,* Wk·*,ll, 
I • v"~.,LI,* Uw-*,LI,.OIF=*,Ll,1 
1 lOX,. Cz.,LI,* UC·.,ll,. VC·.,LI,. WC·.,ll,. C2··,ll, 
1 • ECc.,LII 

SS FORMArl1H ,5X •• RU~ SPECIFICATIONS*,II 
1 IJX,*IRUN •• ,I2,*ICUN •• ,I2,.INOCOS·.,12,.IU-*,I2,.IHT •• ,12, 
1 .IQUE-.,I2,*IUl=.,I2,*IU2·.,I2,*IC1··,IZ,*IC2-·,I2, 
I *II~·,I2,·12a*,121 

60 FORMAT(lH ,5X,.TUR6UlENCE MOOEL·,II 
1 lJX, .MOOEL=., I 2 ,.",OOEC=., I 2, ,,'HW=*, 1 2, "MCW-I<, 12," 1 01 F ... ,I 21 

65 FOR~4T(lH ,5X,.TURBUlENCE CONSTANTS ETC.*,II 
1 1JX,. CMU:t<,f6.3'''CEPSl~.,F6.3,.CEPS2-.,F6.3'''CEPS~ .. ,F6.3/ 
1 IJX,. CRI·.,F6.3,* CR2~*,F6.3,* CRS·.,F6.3. 
1 .. Crlw=t<,F6.3,. CR2~ .. *,F6.31 
1 10X,.CAPPA=·,F6.3,*ElO~=·.F6.31 
1 10x,* CCl=.,F6.3,* CC2~*,F6.3,. CC2",F6.3. 
I * C;1~=.,F6.3,~ CC2~··,f6.31 -
1 IlX,.. CG2~ •• F6.3,· CG=*,Fc.31 
1 1~x,.CAPAC=.,F6.3,.EL0GC=*fF6.31 
1 LO.,"OENSITY=.,IPEI1.3,·~ISCDSlrr~·'lPEll.31 
1 LJx.*PRANOTL·.,lPEll.3,·SP. HEAr··,lPEll.31 

066 FJR .. UI/II140H .... UNIFORr~ Y-SPACPIG INSIDE wAll ..... /1. 
lLOX,6HI~~lL •• I3.5X,4HNJO=,13,5X.6HYrOr02,IPEll.3,7HEXC~~W·, 
21PEll.31 ' 

67 FQR'IAT(1124rlSPARRJW A~O BLACK S OAT4,7HROUTER=,lPE1I.3, 
1 7HRI~~ERz,lPE11.3,7HECCEN ·,lPEll.~,lIHPOwER ~ATE·.IPEll.3) 

70 FJ~~~T(4X,lP6Ell.31 
75 ~aR~Ar'5x,I3,lP8El1.31 
8~ FORMAr'5X,I3,lP7Ell.~1 
85 fGR"ATl5X,I~.IP6El1.31 
9u FO~~tTI5x,13,lP6EIl.31 

HrU'l.~ -
lihO 

PAGE 

INOATA.211 
INOATA.212 
(NOATA.213 
11-:01'TA.214 
INOATA.215 
INDA TA. 216 
I/<IOATA.217 
INO~TA.216 
INOHA.219 
INOATA.220 
01'13.68 
011'.3.69 
It.OAH.221 
I NO~.r 4.222 
If-'OATA.223 
I~OATA.224 
INOATA.225 
INOATA.226 
INOtH.227 
It-IOHA.228 
ISOATA.229 
H~OHA.230 
INOA TA. 231 
I NOA TA. 232 
II"OATA.233 
INOAH.234 
tl"OATA.235 
INOATA.236 
INOH~. 237 
1/110A TA.238 
INOHA.239 
INOnt..240 
PIDATA.241 
INOHA.242 
It-'OATA.243 
DI't3.70 
OPt~.71 

01'0.72 
o PH. 73 
01"3.74 
PWAH.244 
INOH~ .245 
INDA TA.246 
INOATA.247 
H104H.246 
INOATA.249 
INOHA.250 
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SOURCE 

1. 

z. 
3. 

•• 

5. 

6. 

7. 

8. 
9. 

10. 

11. 
12. 

ooooooa 

OOOOOOS 
ooe·ooos 
OOJOOOS 

OOOOOOB 

OOOOOOB 

oooooos 
0000008 
OOOOOOB 

oooooos 

oooooos 
030735B 

•• SUS~OUTINE SOURe:'PHI,IRS,SUS,SPS,tJ~AX,IM1,l~ZI·· 

SUBROJTlkE SOURCEIPHI,IRS,SUS,SPS,IJM~X,I~1,I~ZI 
c •• ·················*······~·*·················*··**·· ..•...•...•..•.••• 
C COMMOM SLOCKS 
C.·.·················································· ........•......... 

C 

JIHckSlCN SlVEIZOZ291 
OIME~SJUk TRANSI51Z1 
ClJ~MO.~ 

lAI15I,YI3JI,lIOZI,XUI1!I,VVI30I,lWIOZI, 
IJX=PIL5I,OXPWI15I,JYNPllOI.OVPSI30I,SEWI15I,SNSI30I, 
1ux~PUI15I,OXP~UI151,SEWUI151.0YNPVI3~I,OYPSVI301.S~SV1301, 
11( I 301 , ~ 1113 01 ,fl.C V I lO I , rlFI" 13 0 I ,~FS 130 I ,)o/F E 115 I , WF rl I 15 I • 
IJIl5,3J.ll,VI15.30,21,wl15,30.21.PEI1S,;0.21.CI15,30,2l.PP(1!,331. 
lUU(15,3JI,JVI15,301,UwI15.301.VYI15.3JI.VwI15.3QI."WI15.301, 
1EOl1S,3JI.TEI1S,301,FFI15.301,UCI15,30l,VC/15,301,WCI15,301. 
lC2115,JJI.ECI15,!)/,RSI1S,30), 
1)E~115,3D,ZI ,VISI15,3),2),GAMllS,30,21,VISUUI15,30l,VISVYI15.30l. 
i~ .. 1 L5,3UI, .... E 1 1~,301 ,A~I 15,3.')1 ,ASIl5,:;,al,AOl15 ,301 ,AUIlS ,301, 
1~PllS,3)j,SJI15,3Jl,SPllS,301, 
lUTl151 ,(;n 15' ,QUEll 51 ,0COlSI 151 ,OUOI15I, 
ID~~SlT,vI5CJ5,PRA~JT,SPHEAr,ExCHAT. 
1(;MU,CKi'L~2,CRS,CKIW,CR2W,CEPSl,CEPS2,CEPS,CAP?A,ELJG, 
lCCi,C:2,C:,:ClW,CC2w,CG2,CG,CAPPAC,ElJGC, 
IJuU,JJv,JUW,JVV,JvW,JrlW,J~O,JrE,JFF,JUC,JVC,JWC,JC2,JEe, 
INl,~lHI,NIMl,NJ,NJH1.NJM2,NK,NK~l,lr,JT,KT,lJT, 
1HEUJI~"~EOVI4,,HEOW(41,HEOPI4I,~EJCI4),HEOP(41,HEOOI4I,HEovISI41, 
11NCALJ,I~:AlV,I~CAL~,INCALP,IMCALC,INPA.C,INCAL~114I,1NTURB,INOIFF, 
l~SN~u,~~.PV,NSWPW,~SWPP,NS~PC,rtSwPR, 
l~ouEl,~U~EC,HRW,MCw,IiJUE,IOIF,IJET,I'ES,.ITESU,ITESC,ICON, 
11 RuN, I u, I H T. I U 1 , I J2 , I C 1, IC2 , !1 , 12, I 'lOCOS, FA. l, 
1(,ul.ISTEP,ISTP1.~~S;INOEX,OPOl, 
IFlJ~lN,~MEAN.QLENTH,S~ALL,G~EAT,XTJT,YrOT,RSWILLI141, 
llU;>Olldl, IPRO, IEN),INOPRI ,NW1PRI ,BVE,BVW •. BVS,S~S 

CC>lMH 
lETtI5J,:TuIISI,OETI1SI,OETUI15I,OYW,NJP,NJP1,NJ?Ml,IWALL, 
lRLUTER,~IN~ER,ECCE~,ES,~JO,YTOTO,EXCHAW,NJOM! 
ca~MUN OLOUI301,~LovI301,OLOWI30I,OLOPI3~I, 

1 uLOUU/JOI,JLOUVI301,OLOUwI301,OlOVVI30I,OLDVWI30I, 
1 OLO~wl~OI,OLOrE(301,OLOEO/301,OlOFFI301. 
1 ~LOOENI301,OLOVIS(30I,OV[SJUI30I,QYISVII130', 
1 OLDUTA,OOPJl 

L0GICAL INC~LU,INC!LV,INCALW,INCAlP,INCALC,INPRJ, 
1 I~CALR,IrHURBriNOIFF 
E~uIVALENCE IXI1I,5AVEI!" 
E~~IVALE~CE IOLOUIlI,TRANSI111 

OIMENSIO\l 
1 
1 
1 
1 
1 
1 

UIUJI3,31,OUIDXJ(3,3J,PI3,3I,DI3,31,PHIlI3.31,PHI21!,3I, 
0ISI3,3I,PHIWlI3,3I,PHIWZl3,31,DElI3,3), 
UJCI31,DCOXJI31,PCI3I,P1C/3I,DICI31,PSIlI31,PSI2131. 
PSlwl131,oSlw2131, 
S1114,45)1,52/14,4501, 
SEXI141,iOEXI14J,SOLOI141, 
SUSIIJMAXI,5PSIIJMAX),PHIIIJHAXI 

C·····~······~·~····················*~···············~ •...••.•.•..••.•.• C I~ITIALISING SECTION 
c •• •• ••• ··.······*·································**· ...•..........•.•• 

ENrRY SJKCEI 
CS2·C~2 

SOURCE.2 
COMALL.2 
COMALL.3 
CCMALL.4 
0(M3.1 
OIM3.2 
CQ~ALL.b 

01M3.3 
01~3.4 

011'3.5 
0110.6 
01M3.7 
01M3.B 

PAGE 

01 "3. 9 
0IM3.1:> 
0IM3.11 
01'l~.1.2 
0IM3.!3 
01M3.14 
COM~LL.19 
COMALL.20 
(OHALL.21 
C[lHALL.22 
CCI1ALL.23 
COMALL.24 
COI~HL.25 

CC"'~LL.2b 
COMALL.27 
COMALL.26 
COI"ALL.29 
cel"Al L. 3 tI 
COMALL.31 
0IM~.15 
OIH~.16 

01,..,3.17 
01M3.1B 
01'e.19 
01M3.20 
01M3.21 
01'l~.22 

CCMALL.32 
CO~ALL.33 

COMIILL.34 
01"'3.23 
SOURCE.1t 
snURCE.5 
SouP:E.6 
Sour.CE.7 
SQURCE.B 
01"3.75 
seur,c E.I 0 
S~UR:;E.l1 

$OUI'CE.12 
S:JURCE.13 
S3UPCE.!4 
SOUflCE.15 
SOURCE.lb 

1 
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" ......,....., 

~<~ 

I·~::'J:.'· 

w 
~'-. 

'" 
b~, 

''''-'" .. 
<,' 
I.t,..;: ...... 



SOUl~::E 

13. 0307356 

1~. 0307378 
15. 03;)7418 
16. 1l30H48 
17. 030H68 
18. J307538 
19. 0307548 
20. 0307568 
21. 0307608 
22. 0307658 

23. 0307718 
24. 0307728 
25. 0307738 
26. 0307738 

27. 0307768 
28. OlIO()l8 
29. .,310058 
30. 0310108 

31. 0310138 
32. 031014B 
33. 031014B 

31t. 031017B 
35. 0310208 
36~ 0310218 
37. 0310238 
38. 031C,25(1 

39. 0310338 
~O. 0310338 
~1. 0310358 
42. 0310368 

~3. 0310lt08 

44. 0310628 
~5. 031(658 
46. 0310708 
47. 1l31072B 
48. 0310758 
49. 0310758 
50. 0310758 
51. 03107b8 
52. 0311008 

53. 0311028 
54. 0311058 
55. 0311108 

•• SU8ROvTINE SOURC:IPHI,IRS,SUS,SPS.IJMAX,IM1,I~21 •• 

URFS-O.1 
C-----SE( INrE~~AL VARIA8LES TO lERO INITIALLY. 

vu 10 IRS-I, 1~ 
OGHI IJaltlJT 
S1I IRS,IJI-a.O 

10 SZ(IRS,IJI-O.O 
DO 2:> 1-103 
00 20 J:l,3 
DELI I, J/"O.O 
IFIl.Ew.JI DELCI,JI-l.0 

20 Cl..NTI'jUc 
C ••••••• •••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C-----CALCULATE RELEV~NT CONSTANTS. 
C-----REDISTit!tlJnON OF p~ODUCnON '100EL 

F.1:-CS2 
F2"0.;) 
F3"::l.J 
IF'~JJEL.EQ.2IGO TJ 30 

C-----LAJ~U~R-REE(E-ROOI ~DDEL 
Fl"-I(S2.8.01/11.~ 
f2a-I30.0·CS2-2.01/55.0 
F3"-lb.).CSl-2.01/11.0 

30 IFIIHT.E~.OI GO TO 40 
C~---REUIsrRl~UTlON OF PRODUCTION (8Y MEAN STRAINI MODEL 

Gl~-C:2 

GZ- 0.0 
IFI~UUtC.EQ.1J GO ro 40 

C-----~UASl-lSDTROPIC MODEL 
Gl--D.ll 
G2" 0.2 

40 C;;~TI"'U;: 
RHUR~ 
Er.TKY CALSO~ 

C ••• ·.·*·············································· ..•............... C PRELI~I~ARIES 

C ••• ··.··································*············ ............•..... C5l·C~1 . 
C S"CRS 
::EL"C:PSl 
CEZaCcPS2 

C-----J~CAY FU ... CTION AT THE NEAR WALL PO(~T. 
F ,,'11- ~ 6S I V oj I :3, NJM 11. SQR T lABS I VWI :3,'" J M 11/ J II I EO ( 3, NJMl J +SMALL 1/ 

1 Irl"'JI*YINJI-YVINJMll·YVINJMIII.2.0.Y(NJI 
DO 1JOO J-2,NJM1 
DO lO~U 1-(Ml,IM2 
I J"I+I T.I J-lI 
lJO 11) lU·L,l~ 
SULDl,KSJ"O.O 
::.EAII~SI"O.O 
SOE"l IRS I-·J. 0 

110 "(iNTI'WE 
Ifll.GT.I~11 GO Tl 140 

C·· .. ········•·········•·•············••·•············ •••••..•••.•.••••• C ••••• ~cy~J~JS ST~ESS TE~SOR AND NECESSARY GRADIENTS. 
C-----AT THE ~ODE. 

UIUJll,ll-Uull,JI 
JIUJll,21-UVII,JI 
UIUJIZ,ll a UVII,JI 

PAGE 

SOURCE.17 
SOURCE.18 
SOuRCE.19 
SOUPCE.20 
SCiUPCE.21 
SCUI'.(E.22 
Sr.U~CE.23 
SCIURCE.24 
SOURCE.25 
SOURCE.26 
SOURCE.27 
SDURCE.28 
SOUilCE.29 
SOUPCE.3,) 
SDU~CE. 31 
S:::uRCE.32 
SOUPCE.33 
SCUP.CE.34 
SOUPCE.35 
SO.URCE.36 
SOU~(E.;7 

S('UFCE.38 
SOURCE.:39 
StiURCE.40 
SOURCE.41 
SOUP(E.42 
SOUPCE.43 
SOURCE.44 
SOUPCE.45 
SQUr;CE.46 
SC'u~CE.47 
SOUf\CE.1t8 
SOUPC E. 49 
SOUPCE.~O 
S~uP(E.51 
SCURCE.52 
SOURCE.53 
SCUPCE.54 
SOURCE.55 
SCUF.CE .56 
SOURCE.57 
SOUP.CE.58 
SC'UPCE.59 
SC:URCE.bO 
sour.CE.61 
SOURCf.62 
SOUF.CE. ~3 
SOURCE.64 
SQURCE.b5 
SCUPCE.66 
SOURCE.67 
SGUPCE.68 
SCURCE.b9 
SOURCE.70 
SClUflCE.71 
SOUR(f.72 
SOURCE.73 
sru<:'CE.7< 

2 

W 
lJ1 
o 



SOURCE 

56. 
57. 
58. 
59. 
60. 
61. 6,.. 
63. 

6~. 

65. 
66. 
67. 
6!!. 
69. 
70. 

71. 
72. 
73. 
74. 
15. 
76. 
77. 
18. 

79. 
80. 
81. 
82. 

83. 

8~. 

85. 
86. 
B 7. 
88. 
139. 
90. 
91. 
92. 
93. 
94. 
95. 
96. 
97. 
98. 
99. 

100. 
101. 
102. 
1.)3. 

10~. 

O:H1l38 
0311168 
0311218 
0311248 
0311278 
0311328 
1l?1l35B 
031H18 

031146B 
0311558 
0311648 
:)311728 
0312018 
0~12078 
0312178 

0312258 
0312348 
0312426 
031250B 
0312568 
0312648 
0312728 
11313008 

031302B 
0313053 
0313106 
0313136 

0313166 

0313258 
0313336 
0313346 
0313356 
031342B 
0313478 
0313578 
0313b38 
0313668 
03137S8 
0314038 
()314LLB 
0)14218 
0314268 
0314338 
0314438 
03HS2B 
0314626 
031463 B 
03!'t648 

0315068 

•• ~UBROUTIHE SOURCEIPHl.IRS.SUS.SPS,lJ1AX,lHl.l~21.· 

UIUJIl,31·U~!i,JI 
UIUJI3,II-U"Il,JI 
UIUJt2 ,ZI -VVI (.JI 
U (UJ t Z, 31 • Vw I ( • J 1 
UlvJI3,21-VwII,JI 
UIUJ(3,3Is~~II,JI 

r-JEII,JJ+SMALL 
e-EO(l,JI+SMALL 

C----AT Trie 'D~Tri SIDE. 
UUN"UJI1. J I*I(FNI J 1 +;)U( I, J+1I.1 1.O-I(FN( J 1 I 
vV~=vVIl,JI_wF~(JI+VV(I,J+1)·(1.0-WFN{J)1 
Vw~.V"ll,JI.wF~IJI+VWtI,J+11·11.0-WFN(J)1 
rEN~rEI(,JI.WFNIJI+TE'I,J+l)·!l.O-wF~IJII 
EU~=EUII,JI'WFN(JI+EOIl,J+ll.Il.O-~FNtJ)1 
OVV~~IV.'I,J+ll-VVII,JII/(YVIJ+ll-YVIJI) 
o V .. 'l-' Vw ( I ,J + 11- V\oI! r ,J I ) II YV (J +1 I-YV I J 1 ) 

C---AT fHE S)UfH SIDE. 
UUS-vUII,JI·11.0-WFNIJ-III+UUII,J-11·wFNIJ-11 
VV~_Vvll,JI.ll.0-WFN(J-lll+VVI(,J-11·wFN(J-1) 
Vw~-V"Il,JI.(l.O-"FN(J-!I)+VWII,J-II.wFNIJ-ll 
T E S" IE I 1 , J I ~ 11. C -wF N I J -11 I +- TE I I, J-ll.wFN I J -11 
eUS·EuII,JI·ll.0-wF~(J-11)+EOII,J-1ItwFN(J-11 
O¥VS-(VVIl,JI-VVI(,J-lJI/IYVIJJ-YVIJ-111 
DvwSsj Vwj I ,JI-VWl r. J-llll1 YVIJ)-YVIJ-lll 

140 IFIIHr.c~.OI GO TJ 150 
C ••••• SC~LAR FLUX TENseR AND NECESSARY GRADIENTS 
C-----AT THE ~JOE 

U J(. III "J(; I I, J 1 
UJC(zlcV:;(IoJ) 
UJC 131"',/;: II, J I 
CS;,)-C2(I,JI 

C---H THE 'OHri SIDE 
v¥C)js ( VC 11, J +-lI-VC I I, JIll IYV I J +1 )-YVI J II 

C-----AT TriE S)UTH SIDE 
DVCS.IV:II,JI-VCII,J-111/IYVIJI-YVIJ-l)) 

150 CO'lr JNU" 
IFlJHr.~E.21 GO TJ 160 
U C .. ·:>. 5. I JC( I, J I +uC I I, J-ll 1 
UCE"J.S*' UCI (+-l,JI+UC( 1+1.J-lJ 1 
VC/t" V;: I l,JI*WFNI J,.·VCI I,J+U.U.O-WFNIJII 
EUrPl·EUII,J+ll/(rEII,J+ll+SM'lLJ 
UUl-uuI I ,J +11 
IHC .. ~= I vC ( I, Hl'-VC I 1-1, J +11 1/ (X (11- xl I -lJ 1 
D vC .. S. I vC I I , J I - v C II -1 , J I II I X I I I - X ( 1-11 I 
OU;:E-IUCI r +L ,JI-UCI I,J I I /I XU( (+I'-XUI I I) 
DUl." s I <.I;; I I, J I-UC I 1-1, J I III xu I I 1- xu I 1-11 +S MALL I 
U CN = O. 5 ~ I U C ( I , J + 11 + UC.I I , J I I 
vC!>-0.5-1 JCl I,J) +UCI I, J-1I1 
VC~l=VCl1-1,JI.wF~IJI+VCII-1,J+11*II.6-WFNIJII 
OU:SE"lUClldoJl-U:llq,J-lIII1YlJI-YIJ-llI 
OUCS.-( <.ICI I, JI-UC (I.J-IIII1Y IJ I-YIJ-lll 

160 ;:C,HINU: 
t:or'EI r 
F"L-AaSIJIUJI2,3ItSQ~TIABSIUIUJ(2,31111/1E+SM~LL)/ 

1 IYI~JI*Y\llJl-YVIJI-VV'JII.2.0-YINJIIIFioIM!.+SMALll 

C.····.····~···········t* ••. *******.**** •• * ••••••••• * ••••••••••••••••••• 
C ••••• HE~N GR~OIE~TS 

If(l.Gr.l~IJ GO T) 190 

PAGE 

SOURCE.75 
SOUP,CE.76 
SCUPCE.77 
SOURCE.78 
SOURCE.79 
SOURCE.80 
SoUnE.!ll 
SCUFCE.82 
S:JuPCE.B3 
SOuPCE.84 
SDU~CE.85 
SOURCE.B6 
sou~ C E. B 7 
SJURCE.88 
SOURCE.89 
S::JURCE.90 
SOURCE.91 
SCUF.C E. 92 
SCUFCE.93 
SOU!lCE.94 
SDURCE.95 
S::JURCE.96 
SCUPC E. 9 7 
SOURCE.98 
SOuPCE.99 
SCUFCE.IOO 
SOU~CE.l0l 
S('urCE.I02 
SOURSE.I03 
scunCE.104 
SOUFCE.I05 
S(lURCE.106 
SOUPCE.IOl 
SOURCE.IOB 
SCURCE.I09 
SC:UI:CE.IlJ 
SQuKCc.lll 
SOUPCE.1l2 
S[)UI',CE.l13 
SGURCE.1l4 
Sr.Uf!CE.1l5 
SOUPCE.116 
SOUPCE.117 
SOU~CE.1l8 
S)W;CE.119 
sru~CE.120 
SDU:;CE.12l 
SOURCE.l22 
50U';CE.123 
SJUPCE •. 124 
SOUflCE.125 
50URCE.126 
SOURCE.ll7 
SCU~CE.129 
S::JURCE.129 
S OU~CE .130 
SCURCE.131 
SOURCE.l32 
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SOURce 

105. 0315103 
100. 0315156 
107. 0315206 
108. 0315218 
139. 0315268 
110. 0315328 
111. 0315358 
112. 0315358 
113. 031536il 
114. 0315316 
115. 0315378 
116. 0315408 
117. 0315~08 
118. 031541B 
119. 0315466 
120. J31555S 

121. 031556B 
122. 031'502B 
123. 0315656 
124. 0315128 
125. 0315168 
126. 0316013 
127. 031606B 
128. 0316138 
129. 031622B 
130. 0310258 
131. 0316268 

132. 0316308 
133. 031632B 
134. 0316348 
135. 0310358 
136. 0316358 
131. 0316itl6 

138. 0316528 

139. 0316618 

HO. 031667B 
141. 0.316118· 
142. 0316738 
1\3. 031074B 
1~4. 031701lB 
145. 0311038 
1410. 0317066 
lit 7. 031711B 

148. 0317138 
149. 031720d 
150. 0317248 

•• SUBROuTl NESOURCE' PHI, IRS. SUS. SPS, I J'4AX. IM1, 11421·· 

C---VELlCITl' GR40IENTS. 
"P- .. II,J,IO 
.,PP-wll,J,1I 
~p-).:> 
VPaIlII;J,K' 
.. S-WI1,J-1,:<1 
., 5P - II 1 I , J -1 , l' 
OUID!lJll,l'-O.O 
OUIDXJIl,21-0.0 
DUIDXJIl,3I-0.0 
OUIOXJ(2,11-0.() 
OUIOXJI2,21:0.0 
OUIOXJI2,.'1l-0.0 
OU[O!lJ(J,LlaO.O 
OUIOXJIJ,2,alwp-WSI/IVIJI-YIJ-II' 
OUIOXJ'J,31-IWP~wS-WPP-WSPI.O.5/(Z(21-Z(111 

193 cord PW: 
C---SCAlH ~HOIENTS. 

C p.,c 1 I, ,J, K I 
CPpcCI I.J, 11 
CrjE-CII-1,J,KI 
CSS z etI,J-1,KI 
C SP aC 11, J-1, 11 
OCuxJI11·tC~-CwEI/IRIJI·(XIII-X(I-11" 
OCuXJI21=ICP-CSSI/IY(JI-Y(J-111 
UCuXJI31-ICP+CSS-CPP-CSPI.0.5/IZ121-Zllll 
IF(MO~EL.Eg.3IGO TJ 3)0 
I~'IU.EJ.OI GO TO 500 
IFIJ.E~.21 ~O TO 5)0 

C·· .. ·_·., ... · .. ······•·······•·················•····· ... * •••••••••••••• C SOURCES FJR REYNOLDS STRESS EQUATIONS 
c· ••• • •••• •••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C ••• _·.· ••• ,.··················-·················*···· ......•.......•... 
C ••••• PRJOU:rIJN (ERMS 

DO 23:; 11"1..3 
OJ 2;),) JJ-l,II 
PIIL,J-JI=J.O 
O(lI,JJI-u.O 
00 .200 (("1,3 
P(II,JJI:PI1I.JJI-IUIUJIJJ,KKI.OUIDXJIII,KKI. 

1 UIUJI II ,KKI "'OUIDxJI JJ,KKII 
OIII,JJ)zDIII,JJI-IUIUJIII,KKI.OUIOXJIKK,JJI. 

1 UIUJIJJ,KKI"'OUIOXJIKK,IIII 
200 CO-'TI 'WE 

C-----ExT~~ TE~MS FOR CYLI~ORICAL GRIO. 

C 

If( I'I)CJS.EQ.IIG.O TO Z10 
UPR-C/PI1Ii I J) 
VPil.,-IIP/Y"J) 
P'1,lJ.PI~,11-2.0·VPR'UIUJII.11 
P(2,11-PI~.ll+UPR'UIUJIl,ll-IIPR.Ulc/Jll,21 
PI2,21·~I2,21r2.0'UPR'UIUJll,21 
PI3,11-PI3,LI-VPR·UIUJll.31 
PI3,ZI=PI3,21+UPR.UIUJI1,31 

Oll,lJ-OI1,IJ.Z.O*UPR-UIUJIl,21-VPR.UIUJI1,11 
O(2,1)·D(~,11-IIPR·UIUJ(1,2J+UPR.UIUJ'2,21 
Ol),1)-u(J,11-IIPR.UIUJIl,31+UPR*UIUJI2,31 

C----C.ALCULHE Pii.QOuCTION ,,- !URBULENT EI>:EI\GY. 

P~GE 

SOURCE.133 
SOURCE.134 
SCURCE.135 
SOU!;CE.13b 
SOURCE.137 
SOURCE.138 
SOUIICE.139 
S()UPCE.1 4 0 
SCUP.CE.141 
SOUPCE.142 
sourCE.l43 
Sr.UFCE.144 
SOURCE.145 
SOURCE.Hb 
SOURCE .147 
SJURCE.148 
SCuFCE.149 
S(1URCE.150 
SOuPCE.151 
SOURCE.152 
SOUP.CE.153 
SOUPCE.154 
SOURCE.155 
SOUr.CE.IS6 
SOURCE.1S7 
SOURCE.158 
SOUFCE.159 
SOURCE.lEoO 
SOUtCE.161 
SCU~CE.162 
SQUPCE.163 
SCUPCE.164 
snuRCE.165 
SOur.CE.16b 
SOURCE.161 
SOUPCE.168 
souPCE.169 
SOURCE.17D 
SUUPC E.1 71 
SDUFCE.172 
SOURCE.l73 
SOuPCE.171t 
SOURCf.175 
SOURCE.l16 
SC'.uRCE.l77 
SCURCE.178 
SOURCE.179 
SOURCE.180 
SOUPCE.181 
SOURCE.182 
SOURCE.l B3 
SOURCE.1S4 
SCURCE.185 
SOURCE.la6 
SOur.CE.1e7 
snU~:::E.I!l8 

SOU~.CE.l 89 
SOUP-CEo " 

,. 
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SOURCE 

151. 

1501. 
153. 
154. 
155. 

156. 
151. 

158. 
159. 
160. 
1!:1. 

162. 
163. 

164. 
165. 
166. 

161. 
168. 
169. 

170. 

111. 

172. 

173. 
1110. 
175. 

176. 

171. 

178. 
179. 
180. 
181. 
182. 
183. 
1810. 
1~5. 
186. 
187. 
1138. 

0317318 

0311358 
0317318 
0317418 
0317508 

0317708 
0317748 

0320008 
0320018 
0320059 
0320078 

0320108 
0320108 

0320338 
03203513 
0320318 

0320418 
0320538 
0320b18 

0320628 

0321008 

0321168 

0321238 
0321258 
0321258 

03211048 

0321b68 

0322038 
0322058 
0322138 
0322238 
032221~ 

0322308 
0322338 
03223b8 
0322378 
0322408 
0322418 

•• SU8~ovrINE SOURC=(PHI.IRS.SVS.SPS.IJMAX.IM1.IM2J~· 

210 PT·IPI1.lJ.PI2.2J.PI3,3IJfZ. 
C •• • ••• ••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C ••••• P~ESSURE·STRAIN AND OISSIPATICN TeRMS 

C 

DO 2Zl 11-1,3 
DO 22~ JJ 2 1,[I 
?HIllll,JJJ--Cst.eaT.IUIUJIII,JJI-Z •• oEL(II,JJJ·T/3.1 
PHI2111,JJJ·f1.'PIII,JJJ-2.·oELIII,JJJ·PTf3.1 

1 +F2·T.loUIoXJIII,JJI+oUIoXJIJJ,IIIJ 
1 +F3.10(II,J~J-Z.·OELIII,JJI.PTf~.I 
DISIII,JJI·-2 •• 0ELIII,JJI·E/3. 

220 ~ONTINUE 

C---EXTIUTERMS fOR CYLlNoPICAl POLAR COORDINATES. 
IF'I~)CJS.EJ.1IGO TO 230 
PHX212,11·PHI2C2,1,-F2·UPR·r 
PHIZCl,11-PrlI211,11-F2*2.0*VPR*T 

230 CONfI~UE • 
C •••• ····················*·*··*······················· ••••••••••••• ~ •••• 
C ••••• ~E4~ ~'LL EFfECT TERMS ON PRESSURE STRAIN 

PHI212.31·PHI213.21 
F "L.'dSIUI UJI2, 3J*SQIH IA8SIUIUJIZ,311 I JlIE+SMALLlI 

1 IVI~JJ.YINJJ-VVIJI*VVIJII*2.0.Y(NJlflFWMl+SMALLI 
DO 25) 11-103 
)0 2Sl JJml, II 
IFC~R~.E~.21 GO TO 240 

C----LAUNDER-REECE-RODI NOoEl 
PHl .. 11II.JJI.C~lW.=oT.IUIUJ(lI,JJI-2 •• 0ELIII,JJI.Tf3.1·FWL 
PHX"2CIl,JJI~CR2~.IPIII.JJI-0(II,JJII~FWL 
GO fa 25J 

C----GI8SJ~-LAUNOER MODEL 
240 PHI~1(lI.JJI~CR1w.EoT*IUIUJI2,21.0ELIII,JJI 

1 -1.S*UIUJI2,III*DELIZ,JJI-1.5*UIUJI2,JJI·OELIZ,IIJI·FWl 
PHI,,211I,JJI=CR2W.IPHI212,ZJ.DELIII,JJI-1.5.PHI2IZ,III*OELI2,JJI 

1 -1.S*PHI2IZ.JJI.DELI2,IIII.fWL 
250 CONTl~UE , 

C •• ·.·········································*······· .................• 
C ••••• ~UOlfIO~~L SOURCES DUE TO DIFFUSION MODEL 
C----SUURCES FROM TENSO~ INV~RIANT DIfFUSION MODEL 

IFIIUIF.E~.ll GC fO 260 
SU£:XIII-O.O 
SuEX(~1·2.·:S/YVIJJ.IYIJI*TENfEoN.VV~.oVVN-

1 VIJ-11*TES/EDS*VVS-OVVS/IIYIJI-YIJ-ll) 
SOEX(5J·CS/YV(J).IY'J)*~ENfED~.(VV~.OV~N.VW~.DVVNI-

1 VIJ-IJ.TES/EOS.IVVS.OVwS.vwS*DVVSII/IVIJI-YIJ-111 
SOEXlbl·Z.*CS/VVIJI.IYCJI.TEN/EDN.VWN*OVwN-

1 YIJ-ll*TES/EOS.VWS.OvwSI/IVCJI-Y(J-ll' 
C---EJITH SD:HC"S DUE TO CYlNDRtCAL POLAR CCOROINATES 

260 IFI[~DCJS.EU.I) GJ TO 270 
SExIll~CS/EDT*2.IYVIJ)/YVIJI.IUIUJI2,21-UIUJI1,lll.VIUJIl.1) 
IFIJ.E~.31 SEXI11~URFS·SEXC11.Il.O-URFSJ·SrlUIIJ 
IFIJ.~U.31 SOLUII/=SExCll 
SEII141 "-SE XIII 
SExl51--~i/EOr·U[JJ'1,11·UIUJ'Z,31/YVIJlfYV'JI 
1~(IDIF.tJ.11 Gn TO 270 
SEXI 1 1"2. "SE xiiI 
SEXI~I·l •• SEX(4J 
SEAI51"l •• S!:XI5J 
SOc~Ill:~UEX'11+2.·CS/YV(JJ*'TEN*UUNf:oN.(VVN-UU~)-

PAGE 

S~URCE .191 
SOU C1 CE.l92 
SOURCE.193 
S::lURCE.194 
SOUItCE.195 
SDURCE.196 
SOURCE.l97 
SOUll.CE.198 
SOURCE.199 
SOUP.CE.200 
SOUI=.CE.201 
SOURCE.202 
S('Ur.r.E.203 
SCURCE.204 
SCURCE.205 
SOURCE.206 
SCURCE.207 
SOURCE.20S 
SOURCf.209 
SOUPCE.210 
SCUR CE. 211 
SOURCE.2I2 
SOURCE.213 
SOUKCE.2~4 
SOURCE.2l5 
SOUP((.216 
SJUI<.CE.217 
sourcE.2l8 
SOURCE •. 219 
SOIJPCE.220 
SOURCE.221 
SDUPCE.222 
sour,CE. 2 23 
SDURCE.224 
SOURCE.225 
srUrCF:.226 
SOURCE.227 
SOUPCE.228 
SOURCE.229 
SGURCE.23' 
SCUFCE.231 
SOUR::E.232 
SOUPCE.233 
SOURCE.234 
SOURCE.235 
SCuRCE.236 
SOURCE.237 
SDUPCE.238 
SOUflCE.239 
SJURCE.240 
sourCE.241 
SOUPCE.242 
Sour.r.E.243 
SOUPCE.244 
SCUI<.CE.245 
SOUPCE.246 
snURC E. 247 
SOURCE.248 
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SCURCE 

189. 

190. 

191. 

192. 
193. 
19-\. 
195. 
19£>. 

191. 
198. 
199. 

200. 
21l1. 
202. 
203. 
204. 
2e5. 
2\)£>. 
207. 
20B. 
2.)9. 
210. 

211. 
212. 
213. 
2H. 
215. 
216. 

217. 

Z18. 
219. 

220. 
221. 
222. 
223. 

22'>. 

0322718 

0323038 

0323158 

0323168 
0323178 
0323216 
0323218 
0323268 

0323U8 
0323468 
0323538 

0323538 
0323548 
0323568 
0323£>08 
0)2)628 
0323£>46 
0323£>68 
0323708 
0323708 
0323728 
0323748 

0324068 
"3241ol8 
0324138 
0324158 
0324208 
0324218 

0324278 

0324348 
0324378 

0324428 
0324438 
0324't 78 
0324538 

•• SU8~JUTINE SCURC:(PHI.IRS.SUS,SPS.IJMAX.IM1.IMZI.· 

1 rEs.uuS/EOS.IVVS~UUSII/CYIJI-YIJ-lll 
1 .Z •• :S/EDTltV'JI·UIUJIZ,21·(UU~-UUSI/'YIJI-Y(J-111 
SOEX'~I.SOEAI.I-2.·CSIEOTIYVCJI.UIUJ(2.21.(UUN-UUSJI 

1 CYIJI-Y(J-lil 
soe,151-S0EXISI-CS/EOT/YVIJI.UIUJIZ,31·'UUN-UUSII 

1 CYIJI-YIJ-lll 
270 C O.tH I N:JE 

C •• • •• •••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• C ••••• ~SSE~BLt JF SOuRCE TE~MS 
DO 260 11-1,3 
00 2!l:l JJ-l, II 
IRS-II+JJ 
JFIJJ.EJ.IIIRS-IRS-l 
Slll~S,IJlnPIII.JJI+PHIIIII.JJI.PHI2III.JJI 

1 +PH[W1III,JJ,+PH[WZ(II,JJI+SExlIRSI+SDEXCIRSI 
S21IRS,IJI-DISIII.JJI . 

ZBO ::CNTlNUE 
GC TJ It,).) 

C·.· ... ·.············•···•············••·············· .......•••.••....• 
C TWO-EQUATION MODEL OF TURBULENCE 

C •••••• ••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• C·.· ... ··············································· ................. . c ••••• rU~3uLENr KINETIC E~ERGY EQUATION 
300 CONrINU~ 

5111,IJI-0.0 
SlI4,IJI-U.u 
St(I>,IJI .. ..,.O 
S211.IJI"0.0 
521 4, 1..11 "'J.O 
S2( I>,{JI-O.O 
P roo. 
00 3U) Il-l,3 
DO 3l:J JJ-1,3 

310 PTcpr+jJuIOxJIII.JJI+OUIOXJCJJ.IIII·DUIOXJCIl,JJI 
C-----~xT~~ T£i~S FOR CYLINDRICAL GRID. 

C 

Ifll~uC)S.E~.ll GJ TO 3ZU 
TERMlzvP**Z/RIJI··Z 
TE~H2~2.0.vP.OUIOXJ'1,11/R(JI 
rlR~3·-U?IUUIOXJll.21+0UIOXJj2.111/R(JI 
TE~H4=UP •• 2/RIJI··2 
PT·pr .. 2.o.lrERM1+TER~2.TEFM31+TERM4 

320 ?T-~MU.r/lEJT+S~ALLI.PT 
C-----NOfE.iOJRCE TIMES TWO TO ALLOW FOR LATER DIVISION 6Y TwO. 

Slll,IJ'''2.~PT 
SLI 1,1 J 1--2 •• E. 

C ••• • •• ••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• C S)U~C~S IN ISOTROPIC DISSIPATION RATE EQUATION 

C •••••• ·······***·*····*·············~·············*·· ....•....•.•...... 
'>OU Cllt. TI NJE 

Sll7,IJI·CE1·EDT.PT 
~~'1,IJI2-CE2·EOT·E 

500 If-IIHT.E./.OI GO TO lOt) 
C •••••• ···········*········**~*·*···*····*····*······· ..............•... 
C SJUICES IN TURBULENT SCALAR FLUX EQUATIJN 

C ••••••• ······.··.·*········*··*·····~················ ......•.•...•..... 
C ••••• PKUDUCfION fERMS 

0324558 PCSQ-u.Q 

PAGE 

SOUPCE.249 
SOURCE.2S0 
SOURCE.ZS1 
saUJ>.CE.252 
SOUPCE.253 
SOUflCE.251t 
SOURCE.255 
SOUFCE.25£> 
SOU?CE.257 
SOURCE.258 
SOUfiCE.259 
SCUR::E.260 
SOURCE.2Cl 
SOURCE.262 
SOUPCE.263 
SOURCE.264 
sauRCE.265 
SOURCE.266 
SOUP~E.21>7 
SJURCE.Z66 
SOUI'CE.269 
S(lURCE.270 
SJUPCE.271 
SouPCE.272 
SOURCE.273 
SOU~CE.274 
SOU?CE.275 
S)UflCE.276 
SOUflCE.277 
snURCE.271l 
SOURCE.279 
SOU~CE.280 
SDUflCE.2Bl 
SOUllCE.262 
SOURCE.283 
SOU?CE.2134 
SOUP.CE. 2 tl5 
S::lURCE.28£> 
SOURCE.287 
SOURCE. 2 86 
SOUP.CE.Z89 
SCURCE.290 
SOURCE.291 
·SOURCE.292 
SDURCE.293 
SC'URCE.294 
SOu~CE. 295 
SQUPCE.29£> 
SOU~CE.297 
SGUPCE.29B 
SOURCE.299· 
SCUPCE.300 
S~URC!:.301 
SOURCE.3J2 
SOURCE.303 
SDURCE.30'· 
S['u~CE.3, 
SOURCE.3\.. 
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SOU":e 

225. 
226. 
227. 
228. 
229. 
230. 
231. 
232. 
233. 
234. 
235. 
Z36. 
237. 
236. 

239. 
240. 
241. 
242. 
2'>3. 
2104. 
245. 
246. 
2107. 
248. 

249. 
250. 
251. 

252. 
253. 
254. 

255. 
256. 
257. 
256. 
259. 
260. 
261. 
2b2. 

263. 
264. 

265. 

266. 

267. 
2~8. 

032455B 
032457S 
032'>578 
0324578 
0324608 
0324638 
0324718 
0324758 
\)325006 
0325038 
0325076 
0325148 
0325168 
0325208 

0325228 
0325248 
0325268 
0325308 
0325328 
0325338 
0325358 
0325378 
0325408 
0325458 

0325468 
0325478 
0325518 

0325558 
0325578 
0325618 

0325658 
0325618 
0325718 
0325768 
0326058 
0326068 
0326148 
0326168 

0326228 
0326246 

0326268 

0326H8 

0326608 
0326638 

•• ~U8"0~rlNe SOVRC:ePHr.rRS.SUS.SPSttJ"A~.lMl.1~21.· 

00 52i) JJ-l.3 
Pc( JJ)oJ.J 
PICIJJl o u.O 
01(;IJJ )oJ.') 
00 52J 1lII.0l,3 
PC'JJ)o~CIJJ)-UJCeIlKi.ouroxJeJJ'KKI-U(UJeJJ,KKI.OCOXJeKKI 
JICeJJI.OICIJJI-UJCIKIl'·OUIOXJeKK.JJ' 
PICtJJI·PICIJJI-UJCIKK,·OUIOXJeJJ,KKI 
IF IJJ-ll 520.510,520 

510 pcsu~PCSu-2.0·UJCIKKI·OCOXJIKK' 
520 COH1~u: 

FCI1'a-JJN·OCDXJllI 
lFIJ.EJ.21 GO TO 530 
IFII~DC)S.EQ.l) GO TO 530 

C-----EllTH TERMS FOr. CYLINDRICAL GRID 
Ur-~aU?IYV~ JI 
vPRaYi'lYVIJI 
STJ~E~-UPR.UJCll1 
PICltl-PIClll+STORE 
PCtll-PCI11.STORE 
S THE· v? ".UJC 1 1 ) 
PICI2,·P1CIZI·SrORE 
PCI21-PCI21+STCRE 
~tCI21~JlC(2)-UPR.UJCI21+VPR·UJCIIJ 

53J 'cuNfINUE 
C •••••• ••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C ••••• PRESSJRE-SCALAR CJ~RELATION 

DU H;, JJ"I,3 
PSI1(JJI"-:CI·EOT~UJC(JJ) 
PSI2IJJI- Gl*PlCIJJI 

1 +GZ.OICIJJ) 
540 C O'~ TI 'fJ E 

DISCSJ=-CG2*EOT·CSQ 
PSI1(ll a -:CL*EONITEN·UJC(1) 

C •••••••• ···········*································· ......•....•.•.••. 
C ••••• ~E~R ~4LL EFFECTS ON PRESSURE-SCALAR CORRELATION 

00 50) J-J-l,3 
IFIHC~.EJ.21 GO TO 55) 
PSlwi'JJI--;Clw·EJT*UJC(JJI·F~L 
PSlw2IJJI.-CC2w.101CIJJI.DEL(JJ,2J-4.~.PlC(JJI.OELIJJ.3IJ.FwL 
t>1.. TJ S6J 

550 PSlwleJJI--:Clw.EOT.UJCIJJJ.OELIJJ,ZI*FWL 
PSlft2(JJI=CCZ~·PSI2IJJI.OELIJJ.2/.FwL 

560 CQ\jTf\jJE 
C.· •. ·••··•···••••·••••·•··•·••·••··•••··••·•••••••••• •••••••••••••••••• C.* ••• ~DU[fIU\j~L SOURCES ~RJM DIFFUSION M~OEL 

I~IJ.i~.'1 GO TO 5&0 
IFII0IF.E~.11 GO TO 570 

C---SDU~Ce5 FROII TENSD~ I1NARIANT DIFFUSION MODEL 
SuE~(141.CC/yV(JI.IY(J/.TEN/EON.VV~.OVCN-yIJ-11.TES/EDS*vvS.OVCSJI 

1 (VIJI-YIJ-1II 
SOEXI12/.CC/YVIJI*(Y(JI.TEN/EON.YW\j.OVCN-i(J-11.TES/EOS.vwS.OYCSJI 

1 IYIJI-vIJ-IIJ 
IFIIHT.'IE.21 GO TO 570 
SOEXll01.:C/Y(JI*IUU1/EDTP1.0VC~N-UIUJ(1.1/IEOr.OVCwSJ I 

1 IYYIJ+lI-YVIJII 
1 +CC/Y(JI/YIJI·TEN/EON·UUN.(OUCE-OUCWII 
1 (XIII-XlI-III 

PAGE 

SOURCE.30T 
SOuRCE.308 
SCU~C E. 309 
SCUPCE.310 
SCURCE.311 
SOURCE.:H2 
SOURCE.313 
SC'uRCE.311t 
SOURCE.315 
SOURCE.3l1> 
SOuPCE.317 
SOUP.CE.3l8 
SCu~CE.319 

SOURCE.320 
S!~URCE. 3 21 
SOURCE.322 
SQURCE.323 
SOURCE.H4 
SOURCE.325 
SCuPCE.326 
SOURCE.327 
SOUr.CE.328 
SCUPCE.329 
SOURCE. B) 
SOuRCE.Bl 
SCURCE.332 
SOUPCE.333 
SOURCE.334 
SUu~CE. 3 35 
SCURe E. 33 0 
SOURCE.337 
SOURCE.B8 
SGU~CE.B9 
SOURCE.340 
SOUIlCE.341 
S:JURCE0342 
SOUI'CE.343 
SOUI'iCE.344 
S:lURCE.345 
SOuRCE.)46 
SOURCE.347 
SOUP.CE.348 
SCURCE.349 
SDURCE.350 
SOuRCE.351 
SaURCE.352 
sourCE.353 
SCuRCE.354 
SOURCE.355 
SOURCE.3Sb 
saURCf.357 
SGt.)RCE.358 
ScuRCE.359 
Sr.UPCE.360 
SOUJ::CE.361 
SOUr-CE.30Z 
saURCE.363 
SOUP.CE.36"4 
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SOURce 

269. 

270. 

271. 
272. 
273. 
274. 

275. 

276. 
277. 
218. 
279. 

280. 

281. 

282. 
283. 
28~. 

285. 

286. 
287. 

288. 

2£19. 
290. 
291. 
292. 

293. 
29~. 

295. 

296. 

297. 
298. 

0327118 

0327238 

0327358 
0327378 
032n58 
OlZH7£1 

0327758 

0330158 
033017a 
03l020S 
0330238 

0330608 

0330138 

0330H8 
0330756 
0330768 

0331018 

0331138 
0331118 

0331228 

0331Z28 
0:331238 
0331248 
0331278 

0331478 
0331578 
0331678 

0331718 

0332078 
03:32176 

•• SU8~)UTINe SOURCelP~I.IRS.SUS.SPS.IJMAX.I~1.IM2' •• 

SOExl 11 I -SOEX 111I.CC/'I'1I I J, IEoT.'" IUJ 12, 2'.' oucse-o~cs" 1/ 
1 CXJlr+U-xuU', 

SOEU 12J as oex 112, .CC/YVI J I/eOr.U IUJ 1 2. 31.1 Oucse-ouc sw' I 
1 IXUII+ll-)(U(l1I 

c-----eXTRA SJURCES OUE TJ CYLINDRICAL POLAR COCROINAreS 
510 If'INJCJS.E~.ll GO TO 580 

SeXIlll z -:C/EOT.UrUJI,.11.UJCI21/YVIJ'/YVIJ' 
IfllKr.N~.21 GO TO ~75 
SOEXIlDIsSOEXIIOI+:CI11JI.TEN/EoN.UUNI11JI.IVC~-V:~111 

1 I'(Il'-XII-lI' 
1 +CCI1IJ'·TEN/EDN.VVN.IUCN-UCS', 
1 (VVIJ+II-YVIJIJ 

SOEXllil_SDEXI111-CC/EOr*UIUJI1.11/VVIJJ/YVIJI.IU:E-U: WII 
1 IXI./".1/-XUllll 
1 _:C/EDT.UIUJI1.II/YVIJI/YV(JI·IUCE-UCWII 
1 IXUI1+1)-xulll1 

575 IFIIDIF.EJ.11 GO TJ 580 
SEXll1J a 2.0·SEXIlll 
If(lriT.NE.ZJ GO TO sao 
SUEXIIJlaSDEXI101-:C/YIJI*IUUl/EDTP1.UCN-UIUJ(1.lJ/EDT .UCSII 

1 IYVIJ+II-YVIJII 
1 +:C/YIJI.TEN/EON.UUN/YIJI·IVCN-VCN1II 
1 1.(IlI-Xll-111 
1 +:C/YIJI/YIJ1·TEN/EO~.UUN.IIVCN-VCN1JI 
1 (XII'-XII-1I1-0JCI1)) 

$OEX(111_SOEXIIII-CC/Eor.UIUJll.11/YVIJI/YVIJI.IUC:-U: wll 
1 (;(UII+'1I-XUIIII 

580 C ONT I ~"'E 
c •••• •• •• ••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
c ••••• ~SSEMaLr UF SOURCE TERMS 

LlO 59:) JJ:.1.3 
1 hF-9.JJ 
SlllHF.IJI:.PCIJJI+PSIlfJJI+PSI21JJI+PSIWlIJJI+PSIw21JJ1 

1 +SEXIIHFI+SDEXIIHFI 
590 SZI(HF,JJI-O.O 

c •••••••• ••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• C SOURCES IN SCALAR FLUCTUATION EQUATION 

c ••••• •••••••• .. •••••••••••••••·••••••••••••••••••••••• ••••••••••••••••••• Sl'13.IJI·PCSQ~0ISCSU 
52113. In-o. 0 

C ••••••••••• •••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C CPTIONAL ~UTPUT 
, •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * 

700 CO:HI~U=-
c-----SOUR:: ~~LANCE OF STRESS T~NSOR COMPONENTS. 

IfII"'.E~.JI GO TO 750 
IFllrES"'.E~.OI GO TO 750 
IflM)J((~rEP,NU~PR(I.~E.OI GO TO 750 
~ Rl lEI 1>.72:) I I. J. PI 1, 11.01 S' 1. 11 t PI 2.2 I .01 S 12.21 • P 1 3.31 to IS ( 3,31 

1 ,PI3.2I,OI513,2I,1>13.1I,0ISI3.11 
II IU T:: 1 t.. 7)0 I PH 1 It 1.11 , PHIl! 2.21 • PHIl 13,31 , PHIl 1 3.21 • PHIlI3.1) 
"RITEI6.730) PHI211,11.PHIZI2.ZI.PHIZI3,3J.PHI213.ZI.PHI213.11 
.. R I rEI 1>. H OJ Pti 1 \01111 ,11 , PHI H1I2. 21 • PHI w1l3 .31 • PHI wl13 .21 

1 ,PHI"ll3.11 
"RITE(0.7301 PHIWZI1,11.PHIWZIZ.2I,PHlw213.31.PHIW213,ZJ 

1 .PH1"213,1I 
.RITElo.730) SEX(1),SE' .SEXI61.SEXISI,SEX(3) 
.. RlrE(t..7301 SOEXIll,SL .41,SDEXI61.SDEXI51.SDEXI)1 

PAGE 

SOURCE.365 
SJURce.366 
S~UP.CE.367 
SJUil.CE.368 
SOUP.CE.369 
SCUFce.370 
SOURCE.311 
SOURCE.372 
SOU~CE.373 
SOUIlCE.374 
snufl.CE. 37S 
SQURCE.376 
SOU':CE.377 
SOU?CE.378 
SOURCE.379 
Sr.URCE.361) 
SOURCE.381 
SOURCE.382 
SOURCE.363 
SOURCE.36ft 
SOuRCE.3d5 
S::JUQCE.386 
SOUPCE. 3 e 1 
SDU'l.CE.368 
SQUIlCE.389 
sruRCE.39!) 
SOURCE.391 
SOUPCE.392 
SOUIlCE.393 
SOURCE.394 
Sou~.CE. 3 95 
SCURCE.39b 
SOURCE.397 
sourCE.396 
SOURCE.399 
SOURCE.ItOD 
SDUR::E.401 
SOURCE.402 
Sc)UPCE.403 
SJURCE.404 
S00PCE.1t05 
SOURCE.406 
SOUP.CE.407 
SOURCE.408 
SOURCE.409 
SOURCE.410 
SCUR:E.411 
SOURCE.HZ 
SCURCE.413 
SOURCE.414 
SOUPCE.ItlS 
SCUIlCE.416 
SOURCE.4!7 
SP.uRCE.H8 
SOuRCE.419 
SQUPCE.42) 
Sr.UECE.4;: 
SJUf<CE.42" . 
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SOUitCE 

299. 

3:)0. 
3"1. 
302. 
303. 

30~. 
305. 
306. 
301. 
308. 
3.:>9. 
31:>. 
311. 
312. 
313. 
314. 
315. 
316. 
317. 
318. 
319. 

320. 
311. 

3ZZ. 
323. 
324. 
325. 
326. 
321. 
328. 
329. 

330 .• 
331. 
3:32. 
333. 
33~. 

335. 
336. 

3H. 

0332278 

0333128 
0333128 
0333128 
0333128 

0333128 
,)333138 
0333148 
u333118 
u3:33318 
03334u8 
0333468 
0333546 
033J628 
0333708 
0333168 
0334218 
033~21B 
0334218 
0334218 
0334218 

0334218 
0334268 

033~308 
0334368 
0334376 
0334428 
033 .... 58 
0334418 
0334538 
0334648 

0334668 
0334668 
0334708 
0334738 
0334758 
0335038 
0335178 

0335216 

c 
c 

•• SU8RJUTINE SOURCEIPHI.IRS.SUS,SPS,IJMAX,IMl,IM21·· 

.RITE(6,7.0, Sl(l,IJ),SZ(l,IJ),Sl(~,IJ).S2(4,IJI,Sl(6,IJI 
1 ,S216,IJ),Sl(5,IJ),S2(5,IJ).Sl(3.IJI.S213.IJJ 
1 .S1l7.1JI,S2C7,rJI 

72:) FOR~Ar(/2x,213,511P2E9.2,2X)) 
730 F~"~'T(dX,5(IPE9.2,11xII 
7 .. 0 FO~~~Tlix,7HSOURC=·,611P2E9.2,2XI/I 
7S') ::ONTINu: 

C-----SGlJ~:E 6~LANCE OF SCALAR FLUX TENSOR CCMPONENTS. 

C 

c 

IF(IHT.EJ.O) G) T) 80) 
IFlIrEi~.~Q.OI GO TO 800 
If'M)UIISTEP,NUMP~II.~E.O) GO TO 800 
~RirE(3,7601 I.J,PCIll,PC(2),PCI31,?CSJ 
w~ITE(~,7101 PSIlllI,PSIl(2),PSIlI31,OISCSQ 
wRITEI6,7tiOI PSI211',PSIZIZI,PSI2(31 
.RIrE16,7dll PSIwllll,PSIwl(21,?SI~1(3) 
.RITE(~,7dOI PSIW2(1',PSIW2(21,PSlw2(31 
wRITE(6,7801 SEXIIOI,SEXI11I,SEX(12) 
.~ITE,),ldOI SDEXIlOI,SOEXI11I,SDEXI121 
.RITEI6,7jO) SlI10.IJI,SlI11,IJ),Sl(lZ,IJI,SI(13,IJ) 

760 FOR~~rI/2x,213,lP4~13.Z) 
710 FCRMlT(Bx,lP4EI3.21 
780. FG~~AT'6X,lP3E13.Z1 
790 Fu~MAT'lx,1HSOURCEs,IP4E13.21 
80~ CC~TINUE 

1000 COIITINUE 
~erUR ~ 

c···· ... ·····•·····••································· .......•.......... 
C SOU~CE TER~S PICK-UP LEVEL 

C.·.··.····················*········***·······*·······* ...... * ......... . 

C 

c~HY Slit:E 
IF(IRS.E~.BJ GO TO 1120 
)0 1110 I·IMI,IM2 
00 111l J-Z,NJM1 
IJ"'IHT·IJ-l) 
SUSIIJ)·Sl(IRS,IJ) 

1110 SP~IIJ/·S2IJRS,IJ)/IPHJ(IJI+SMALLl 
iU: TURN 

C-----SOURC:S FOR KINETIC ENERGY. 

c 

1120 CU'H I rluE 
00 1l3l I-IMl.IMZ 
OC 1130 J-Z,NJMI 
IJ·I +1 r.IJ-i, I 
SUSIIJI·ISI11,IJI·SI14,IJI.Sl(6,IJII/Z. 

1130 )P~11JI·IS211,IJI.S214,IJI+SZI6.IJIIIZ.ICPHIIIJI+SMULI 
;<ETui<~ 

H,D 

... 

P~G.E 

SOURCE.423 
SOUPCE.4Z4 
SOURCE.425 
SOURCE.426 
SOU'I.:E.421 
SOURCE.428 
SOURCE.429 
SOUPCE.430 
SOURCE.,>:n 
SOUilCE.432 
SOURce.,»3 
SOURCE.434 
SCU~CE.435 
SOUR(E.431> 
SOUi>CE.43T 
SJURCI:.43B 
SOURCE.439 
SOURCE.440 
SOURCE.441 
Sc·URCE.442 
SaUF-CE.443 
SOUPCE.to44 
SOURCE.445 
SOURCE.446 
SOUPCE.441 
saURCE.448 
SOUF.CE.449 
snuRCE.450 
SOURCE.451 
SOUf'CE.452 
SOURCE.453 
SOU~CE.454 
SOUPCE.455 
S:)URCE.451> 
SOU, CE. 45 7 
SOURC E. 458 
SOURCE.459 
SOURCE.460 
SOURCE.461 
sourCE.462 
SOURCE.463 
SOURCE.46it 
S(UPCE.465 
S~URCE.466 
SOURCE.467 
SQU<:(!:E.468 
SDUPCE.469 
snUI<CE'.HO 
SJU~Cf. 4 71 
SOlJPCE.~72 
S.lU~( f. 4 T3 
SrJUR.CE.414 

q 

rOo, ,-,. 

~ .... ...... ' 

... ~. 

,(;.. 

Cd 
VI'", 
-..J 

,...,... 

~ 



INIT 

1. 

2. 
3. 
'0. 

s. 

6. 

7. 

8. 
9. 

10. 

11. 

lZ. 
13. 
14. 
15. 
16. 
17. 

0000008 

OOOOOOS 
0000008 
0000008 

0000008 

0000008 

0000008 

0000008 
0000008 
0000008 

0000008 

0000108 
0000108 
0000108 
0000148 
00C0158 
0000178 

•• SU8~D~TINE INfT •• 

SUBRO\JrINE INIT 
C •••••• ••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C COM~JN 8LeCKS 
C •••••••• ••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 

JJ~ENSIJ~ S4vEIZOZZ91 
ul~E~S!JN fRANSISlZI 
CliMMON 
lX(lSI,Yl3JJ~ll021,XUI151,YV(30J,lWI021, 
IDXE~(151,UXp~115J,oi~PI301,OYPSI301,SEW(151,SNSI301, 
1\JA~PUl151 ,JXPkUI151,SEWU(151,OYNPVI301,UYPSVI301.S~SVI301, 
1Rlj)I.RV(301,RCV(301,~FN(301,~FSI301,~FE'151,~Fwl151, 
I\JI15,3J,21,VI1S,3J,21,1o/'15,30,21,PEI15.30,ZI,CllS,30,21,PPI15,3JJ, 
1UU115. JOI • UV I 15,301. uwll5 ,301, 'I'll 15 .301, vwll5 .301 • .,101115 ,301, 
1:: (J I 1 5. 3 J I , r E 115. 301 • F F 11 5 r3 0 " UC I 15 , 3;) I , vc , 15, 31) I , wC , 15 , 301 , 
lC·2( 15,301 ,EeIl5,301 ,RSI15,301, 
1 D E H 15,30, 2 I , 'II S115, 30,2 I , GA HI 15,30.21 , VI SUU, 15,30 I • VI S V VI 15,3 a I , 
lA~15,3JI,AE(15.3DI,A"115.301,ASI15,3ll,AO(15,301,AUII5.301, 
lA P I 15,3 v I , S\J ( 15.30 I ,SP I! 5,30 I , 
1.'Tl151 • C I ( IS I, QUE L151, DC Ol8 I 15 I , QUO ( 15 I , 
IJE~Slr,VISCUS,PRANJT,SPHEAT,EXCHAT, 
1~M\J,CRL,CR2,CRS,CRlw,CR2W,CEPS1.CEPS2,CEPS,CAPPA.EL3G. 
lCC1.CC2,CC,CClW,CC2~,CG2,CG,CAPPAC,ELJGC, 
1JUU,JJV,JUW.JVV.JVW,JwW,JEO,~TE,JFF.JUC,JVC,JWC,JCZ.JEC, 
1NI,NIM1,NIM2,NJ,NJM1,NJH2,NK,NKMl.IT.JT,KT,IJT, 
lrlEUUI4I,;EDVI41,HEDWI41,HEDPI4I,HEOCI41,rlEORI4I,HEOOI41,HEOVlS(41. 
11~CALJ,I~CALV,INCALW,INCALP,INCALC,INPRO,INCALR(141,INTUR8,INDIFF, 
INS~PU,~S.PV,NSrlP.,,~Swpp,~SWPC,NSwFR, 
IMCJEl,~JUEC,MRW~MCW,I~UE,IOIF,lJET,ITEST,ITESU,ITESC,ICON, 
lIRUN,lu,IHr,IU1,IU2,ICl.IC2.Il,I2.INDCOS,FRA, 
1(,Gl,ISTEP,ISTP1,NRSiINOEX,OPOl. 
IFLJwI~,V1EA~,QlENTH,SMAll~GREAT,XTOT,YTOT,RSWAlLI1~1. 
llJF~U'ldl,IPRO,IENU.INOPr.t,NUMPRI,8VE,Bvw,8VS,BWS 
COH~)N . 

lErlI5i,EfUI151,OErI15I,OETUI15I,OYW,NJP,NJPl,NJPM1,lWALL, 
n OUTE R, ~l N '1ER, ECCE 'I, E S ,t'JO, YTOTO, EXCHAw, r.J[ 1'.1 
Cu~~~~ 3LOU()OI.)LDV'30I,OLO~1301,JlOP(30I, 

1 ~lDUU(301,OlDUV(301,uLOJW(301.0l0VV'301,~lOVW(301, 
1 OlO~WI301.JlDTEI301,CLOEO(301,CLDFF(301. 
1 OLODEN(301,OLOVIS(301,OVISUOI3DI,OVISVV~301, 
1 OLD\JTA,OOPDl 

lJGICAL l~CAlU,INCALV,INCALW,INCALP,INCALC.INPRD. 
1 INCAlR,INTUR8,INOIFF 
E~UIVAlEN~E (Xlll,SAVEIIII 
E~JIVALt~CE IOLOU111,TRANSllI1 
;tEAL M4'<C.,MINC 

C.* .... ············***~····**···*·*···**···*··**······ ....•••.•.•••..... C GEOMETRICAL VARIABLES 

C.·*···· .. ························**···*······*··*···· .................• 
eNrRy Ii,rG 

C· ••• ·.·-··~·····~··········*········*····*··········· ........ ** ....... . C ••••• CALCUL~TIJ~ OF LOC4TIJ~ AND DISTANCES FOR P-CELlS 
O)'P"(lI"O.O 
O),~? ( ~ I I "u. I) 
DJ 101) I-i..tdMl 
u '<E P ( II -)\. ( 1 ~ 11-x ( II 

100 JAP~(I.LI-DXEPIII 
JYPSlll"J.J 

PAGE 

INIT.2 
COMA.Ll.2 
COMAlL.3 
COf'&'Ll.ft. 
0[>43.1 
OIM3.2 
COMA.ll.6 
011'13.3 
OIH;.ft. 
OIM~.5 
OIM~.6 
0[1013.1 
OIM3.8 
011'13.9 
01M3.10 
01112.11 
01113.12 
DIM3.!) 
0IM3.1ft. 
CCMALL.19 
COMALL.20 
COMALL.21 
CO.'tALL.22 
CQMALL.23 
COMALl.24 
COMALL.25 
CCMAll.26 
COMAll.27 
CC'1~LL.28 

COMHL.29 
CQ.'''ALl.30 
CCHA Ll. 31 
OIM3.15 
OIHJ.16 
0{.'13.17 
01113.18 
01M3.19 
01'43.20 

.01113.21 
OlMJ.22 
CC"'All.32 
CCHAll.33 
CDMALl.34 
OIM?23 
INIT.4 
IN IT. 5 
I/olIT .6 
1'1 IT .7 
Hur .8 
l\j IT. 9 
INIT .10 
INI T.11 
INIT.12 
INlT.D 
I"" IT. 14 
INIT .15 
1/oIIT.16 

1 

w 
V1 
(Xl 



INtT 

18. 0000118 
19. 0000208 
20. 0000Z38 
21. 0000246 

22. 0000268 
23. 0000268 
24. 0)C0328 
25. 0000358 
26. 0000366 
21. 0000406 
26. 0000426 
29. OOOC468 
30. 0000468 
31. OOJ0518 
32. 0000558 
33. 0000568 
34. 0000518 
35. 0000626 

36. 0000668 
37. 0000678 
38. 0000708 
39. 0000718 
40. 0000748 
41. 0001008 
42. 000100S 
43. 0001018 
44. 00n028 
45. 0001028 
46. 0001048 
41. 0001058 

48. 0001078 
49. 0001078 
50. 0001128 

51. 0001158 
52. 0001208 
53. 00:>1218 
54. 0001238 
55. 0001258 
56. 00:ll218 
57. 0001318 

58. 0001348 
59. 0001378 
60. 0001378 
61. 000H18 
~2. 0001448 
63. 000150B 
64. .OOO150S 
65. 0001518 
66. 0001528 
67. 0001528 
68. 0001548 

.*SU8ROJrINE INIT** 

onPlhJlaO.O 
DO 11., J a1 ,~JMl 
O¥NPIJI-YIJ+II-YIJI 

110 OYPSIJ+IJ-O¥NPIJI 
C----P-CELL JtME~SIONS 

SE .. ' 11-0. 0 
SEwl21-0~pwI21~0.5.0XEPIll 
S~w(Nl~lJ·O.5.0XPW(NIMlJ+OXEPCNIMll 
SE .. I ''II J =0. 0 
.'H'4~"·H "'1-1 
DO 20u 1=3 ,N11'I2 

lOO SEwll)-J.S*IOxEPCII+DXPWC[11 
SNS I U -J.J 
SNSIZJ-JYPS'21+0.5~DYNPC21 
S~Sl~J111·0rNPINJMll+0.S·0YPseNJM11 
SNSIIIJI=O.O 
i'tJ'1Z"'lJ'il-l 
DO 2lJ,J"3,NJMl 

l10 SNSIJi-o.,.eOY~PIJI+DYPSIJII 
C.··.······~**···········*·····*···············*·*··*· •••••••••••••••••• 
C ••••• CAlCUlATIUN OF LCCATlnM AND D[STA~CES FOR U-CElLS 

XU( 11 -JIll I 
xUIZI-xlll 
xllINl/"XI~l' 
DO ;,OJ '-3,IIIMl 

300 ~UII'~0.5·I~CII+XeI-IIJ 
Ox~wu( 11 -tloO 
o;"P .. v(~I=J.il 
O~EPue 11 ~J.O 
OJltPIJI H 1-0.0 
DO 31:> 1-1,NIMl 
()~EPU((I-)(Ull+lI-XUIII 

310 UAPwUI'~ll=UXEPUIII 
C-----u-CEll DIMENSIONS 

SEwuti)=O.O 
DO 32:l I-Z,N1 

3Z0 SE .. ulll "xlll -XC 1-11 
c----- .. tIGHTI~~ F4CT~RS I~ X-DIRECTION­

au 33:J 1-3,NPll 
.. fIori IJ"'SE"U( l-1IICSEWUII-U+SEWUIIII 
.. ftIIls)EwU(I+ll/eSEwuII+ll+SEwUCIJI 

330 C(),H1NUE 
.. FEIZI=SEwUI31/ISEWU(31+l.0.SEWUIlII 
wF"'3/~~E"UI21/ISE~UCZI+0.5·SEwue311 
hFEI~(M11",s:~ueNII/(SE"UINII+0.5*SEWU(NIMlll 

c •• ••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C ••••• CAlCUl'T1UN CF lrCAT[JN AND DISTANCES FCR V-CEllS 

ivel,-rell-SMAll 
'(vIZI"YIlJ 
,(VI ~JI DYe/OI 
DO 4J:l J-3,NJMl 

.00 YV(Jl z O.5.(Y(JI+YIJ-1IJ 
UYPSVI L J"J.D 
()YPSVI2/=J.O 
OY~"V( 11-0.0 
DY'if'VI'iJ/=J.O 
00 41:) Jzl,NJMl 
OY~?V(JI·¥V(J·Il-YVCJI 

[~IT.17 
INIT.18 
INIT.19 
I"'[T.20 
INIT.21 
INI T.Z2 
INIT.23 
1/-lIT.24 
[NIT.2S 
INtr .26 
[NIT.V 
If" IT .Z8 
1fJIT.29 
INIT .30 
INn .31 
INIT.32 
INIT .33 
INIT.34 
[NIT.35 
IN!r.36 
[NIT.:H 
INIT.38 
INIT.39 
(NIT.40 
INIT .41 
[~IT.42, 
[NIT.43 
INn.44 
INIT.45 
INlT.46 
[I"I T. 47 
INIT.48 
INIf.49 
Ir.:IT.50 
I1HT.Sl 
[NIT.52 
INIT.53 
INIT.54 
INIT.55 
1"1 IT .% 
IN[T.57 
INIT.56 
INIT .59 
[ NIT. 60 
INIT.&! 
INn .62 
[NIT.63 
INIT .64 
lNIT.oS 
INIT.66 
INIT.67 
INIT.68 
INIT .69 
[/<IIT.70 
INIT.71 
[NIT.72 
INIT.73 
INIT.74 
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INIT 

69. 0001558 

70. 0001578 
71. 0001578' 
72. 0001628 

73. 0001658 
74. 0001708 
75. 0001718 
76. 0001738 
77. 0001758 
78. 0001758 
79. 001)2008 
80. 00:12028 

81. 0002058 
82. 0002108 
83. 0002128 
84. 0002158 
85. 000217S 
86. 00022113 
117. 0002238 
88. 00022't8 

89. 0002266 
90. 0002318 
91. 0002318 
92. 0002378 
93. 0,)02378 
94. 00024)8 
'i5. 0002426 
96. 000H56 
91. 0002518 
9d. 0002526 
99. 0002548 

100. 0002568 

101. 0002628 
102. 0002646 
103. 0002656 
104. 1)002656 
105. 0002666 
106. C002618 
107. 0002728 

108. 0003118 

109. 0003318 
110. 0003358 
111. 0003318 
112. 0003548 
113. 0003568 
114. 0003566 

•• SU6~OUTINE INIT •• 

~lO DYPSVIJ.IJ-DYNPVIJJ 
C-----v-eELL ~lMEHSICNS 

)N:i~(11·0.0 
OU 42) J-2,NJ 

420 SNSVIJI-Y(JI-YIJ-1J 
C-----" EI ;;Hl J'~(; HCT:JRS V{ Y-OIRECTION 

Du 43). J-3,NJI'I1 
~fSIJI=SNSVIJ-11/'SNSV(J~11.SNSVIJII 
~~~IJI-S~SVIJ.11/'SNSVIJ.11.SNSVIJII 

430 ;; 1l.'H 1 HUE . 
wF.'H U-o.J 
"fN'21~SN:iV(31/ISNSVI3).2.0.SNSVI2JI 
~fSI3Ia~~SVI21/IS~SV'21.0.5.SNSV(3)1 
~f~(~J~lj·SNSV(NJI/ISNSV(NJI.0.5·SNSVINJM111 

C •• ·.····~··········*·~·······*··**·**·*··**·*···**··· •••••••••••••••••• 
C ••••• EAr~~ "EI~HrlNG F~CTORS fOR APPROXl~ATlNG 60UNDARY VALUES. 

SIO~=·luXEP(11.OXEPI2jl·*2 
bV~·Sr~IE/ISTORE-DXEP'11.*21 
ST)RE='UXPWINII.DXp~I~IMlll··2 
BV~~STJ~~/ISTOrE-DXpWINIJ··21 
STJ~E·IS~SI21.SNSI311·.2 
BVS.5tO'E/ISTO~E-SNS(21*·ZI 
STj~E·IS~5V'31.SNSVI211.*2 
6~s.SrJ~E/'STORE-S~SVI21.*21 

C •••• • •• ···-··········*························*··~··· •••••••••••••••••• 
C ••••• EXT'A V4RIABlES DEFINED FOR CYLINDRICAL COCRDINATES 

00 6;)) ,j-l.NJ 
~IJI'"'(IJI 

600 IFIINUC~S.E~.II RIJI-l.O 
Rvlll"'RIU 
R Vi 2 j"" 1 j 
RVINJI-~INJI 
DO biD J"3,NJMl 

610 RVlJI.~.5.IRIJI.RIJ-1Ij 
ReVill-Rill 
~ ev I j~J I -, I NJ I 
00 t2) ,j·2,~JMl 

620 'eVIJIKO.~·IAV(J.11.RVIJII 
C-----rHle~~Ess JF THE TUBE AS A FUNCTION OF THE ANGLE x 

J"::·NJU-IO-~. 
NJ::J~l·"'JtJ-l 
IjJp· 'IJ 
NJP1 .. \jJ.l 
\jJ?'11=·'1J-l 
OU 66) i"l,NI 
ETII)"SJ,T(ROUTER*ROUTER-ECCEN.EceEN*SINIXIIII.SIN(XIIIII 

1 -RINNER-ECCEN·COSIXIIII 
ETUIII.S~IT(ROUTER.ROUTER-ECCEN*EceEN.SINIXUII)I.SI~IXJIIIII 

1 -~l"'NER-EeCE~·COSIXUIIII 
DETIII-EfIII/FlOATIJNCI 
OETUII,aETUIII/FlOATCJNCI 
wRlrElo,67JI I,ETIII,ErUIII,DETIIJ,DErUIII 

665 CurHlIW: 
670 FO~'1~rlILOx,13,lP4E13.31 

RErURN 
c •• • •• ~.····~-············***·····*··················* .••••••••.••••••.• 
C l"'IrtALISATIDN DEPENOENT VARIABLE FIELDS 
C •••••••••••••••••••••••• *.~ 4 ••••• * .. ** .....•.•.. * ...••...•.•••••.•• 

INIT.75 
INIT.16 
INIT.77 
INIT.78 
INIT.79 
INlT .6) 
!tHT.81 
INIT .82 
INIT.83 
INIT.84 
INIT.65 
INlT.86 
INIT.87 
INIT.8tl 
11.;1 T. 89 
INIT .9:> 
INIT.91 
INIT.9Z 
INIT .93 
INIT.94 
IN IT .95 
INIT.96 
HHT.97 
INIi .98 
INI T.99 
INIT .1,),) 
INl T.lOl 
INIT.102 
UJI r.l)3 
IIJIT.I04 
INIT.105 
INIT.IOIl 
INIT.IOl 
INIT.108 
INIT.IJ9 
INI T .110 
INIT .111 
INIT.112 
011-13.76 
o po. 77 
~1"43. 78 
OIM3.79 
01fo'3.80 
011013.81 
011013.82 
DIM3.63 
01''13.84 
011013.65 
OI1I3.tl6 
011013.87 
011'13.88 
01'0\3.89 
oun.90 
0[1013.91 
PH T .113 
INIT.114 
IN!T .U5 
INIT.1l6 
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INIT 

115. 
116. 
117. 

118. 
119. 
120. 
1 ZI. 
12Z. 
123. 
lZ4. 
lZ5. 
1Z6. 
lZ 1. 
128. 
lZ9. 
130. 
131. 
13Z. 
133. 
134. 
135. 
136. 
137. 
138. 
139. 
HO. 
141. 
HZ. 
143. 
1lt4. 
145. 
146. 
147. 
148. 
149. 
150. 
151;. 
15Z. 
153. 
154. 
155. 
156. 
1-57. 
158. 
159. 
160. 
lH. 
162. 
163. 
164. 

165. 
166. 

000360B 
000366B 
000367B 

000371B 
000373B 
000376B 
000401B 
0004048 
,,00401B 
0004108 
000411B 
000411 B 
0004133 
0004148 
000'o15B 
000U5B 
0004168 
0004166 
0004116 
0004116 
00042013 
0004206 
0004218 
000421B 
0004228 
00042Z8 
0004238 
0004233 
0004246 
000425d 
00042.66 
000430d 
0004316 
0004466 
0004508 
0004536 
0004558 
0004553 
0004568 
00J4%8 
0004516 
00J4578 
0004603 
0004608 
0004618 
0004616 
0004656 
0004663 
0004106 
00;)410B 

000473B 
0004758 

•• SUBROUTINE INIT.· 

ENTl!. Y 1'>jJ TO 
IFIIRJ~.~E.1J GO T) 720 
IfIISTcP.GT.OI GO TO 120 

C-----SET V~~I~~lES TO l:RO 
EXCHAr-V!>CUS·SPHEAT/?RANOr 
00 70., 1\£1,2 
DO 100 J"1,JT 
00 10J I-I,NI 
U!l ,J,)(.I·".O 
vl1,J,.<.,-o.O 
wl1.J,)(.)=J.O 
PEl I. J, f(. I "0.0 
UUII,JlcJ. 
u~({ .JI "'0. 
J"I(,JI-J. 
vvll.JI-u. 
V"II ,J, -U. 
.... II,JIDO. 
EOII,Jj-O. 
Te(l,JI·O. 
F F! I • J I -0. 
CI1,J,,,,J"O.O. 
UClI,JI-O.O 
V(.I(,JI"J.O 
IIICII,JI-O.O 
C;211.JI-0.0 
eCII,JI:O.O 
vISUUI(.;I,.O. 
vlSvVI1.J) -0.0 
OE~(I.J,f(.I·OENSIT 
VlSII.J,,,,''''VISCOS 
GA~(I,J,KI"EXCHAT 
IF!J.~T.~JI GAM(I,J,K)-EXCHAW 

700 :;LJ~ TI ~lIE 
00 71;) J-I,r4JO 
00 710 I -1 ,NI 
~PII,JI~O.O 

AEII.JI-J.1) 
~ .. II,JI"1I.0 
ANII,JI"u.O 
ASI I ,JI:(J.O 
AUIl.JI"'u.O 
AP/I,J'-O.O 
AD! I .J) "'0.0 
SUII,J)-O.o 
SPII.J'''.).) 

710 CO~TlrW= 
72Q CGHIiJE 

00 731.1 1=I,NI 
OWLSt I J "0.1) 

730 CONTINUE 
c 
c.···················································· .......•.......•.. 
C ••••• :;~ll I~iTIALISING SECTIPN OF SOUPCE SUSROUTI~E 

CALL SJ~:=ItRS.NRS,SU,SP,IJT,Il.I21 
REiU~N 

c •••••• ••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C FORwARD STEP 

IN(T.1l7 
INIT.1l8 
(NtT.1l9 
HHT.120 
INIT.lZl 
1/-l1T.122 
01113.92 
(":IT.124 
IPJIT.125 
INtr.126 
(NIT.127 
INIT .128 
IPJIT.129 
INIT.130 
INlT .131 
I~IT.132 

INIT.B3 
11>1 IT. 134 
INIT.135 
INIT.D6 
INIT.I31 
I~lT .138 
INIT.139 
IIVIT.140 
INIT.141 
HI(T.142 
l"'n .143 
INIT.Ht, 
INIT.14S 
INIT.146 
INIT.I47 
INIT.14S 
01113.93 
(/lAfT.149 
01M3.94 
INIT.151 
HHT.l~2 
[NJT.153 
INfT.IS4 
INIT .155 
IPJIT.156 
INIT.151 
INIT.I5S 
'PJIT.159 
INn .160 
INI T .161 
IPJIT.162 
INIT.163 
I NIT .164 
I~IT .165 
INIT.166 
INIT.161 
INIT .168 
INIT.169 
11J1T.170 
INIT.ln 
I/lAIT.172 
INIT.l13 

P~.GE It 

c 
f""" 
' .. ~ 
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UHT 

167. OOO~77S 

168. 0005058 
169. 0005068 

170. 00050715 
171. ()OO~14s 

172. 0005168 
173. 0005Z18 
17~. 0005Z18 
115. 0005208 
.116. 0005338 
117. 0005408 
178. 0005458 
119. 00055Z8 
180. 0005578 
181. 00:>5648 
182. 00:>5718 
163. 0005168 
18~. 0006038 
165. 0006108 
186. 0006158 
1d1. 0006228 
lSd. 0006308 
1139. "006318 
190. 0006458 
191. 0006548 
192. 0006628 
193. 0006708 
194. 00::16158 
195. 0001038 
196. 00J1108 

·191. 0007118 
198. 0007258 
199. OJ0727B 
2JO. 0001368 
201. 0001438 
~02. OCO 7508 
203. U007558 
204. 0001638 
205. 0001728 
206. OU10008 

207. 0010008 
208. 0010018 
209. 0010038 
210. 0010068 
211. 0010068 
212. OJIC078 
213. 0010128 
2B. 0010158 
215. .),,)1,,)219 
216. OOlona 
211. ,)010318 
218. 0010338 
219. 0010358 

•• SUS~OUT[HE IHIT·. 

C ....... ••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••• 
Ekur STEP 
IfIISTEP.EQ.11 GO TO 900 
LUI-lIZI 

C·.··· ... ······························•·············• .....•...••....... 
C ••••• SrHHETRr JF HYORCOYNAMIC FIELD 

I~Ilu.E~.0.~~D.IHT.EQ.21 GO TO 900 
00 i;lOJ I-i.,NI 
OU tlOO ..I'"1,NJ 
11"3 
IFIIu.EU.21 II-I 
UII,J,!I-UIII,J,21 
UII,J,2)aulII,J,21 
IIU,J,1l"V(II.J,21 
Vll,J,ZlaVIII,J.21 
~(1,J,ZI-MIII.J,21 
PEII,J,11~PEIII,J,21 
PE(I.J,21=PEIII,J,21 
PP(I,JP'P?IlI,JI 
V~II,JI-V .. III,JI 
U .. , I ,Jj-UOiII I ,J) 
U II I I , J I .. U V I , I ,J I 
fFII,JI-fflll,JI 
UUI1,JI-AM~XlIS~AlL.UU(II.JII 
VV'I,JI=~MAXllSMALl,VVIII.JII 
WwlI.J'aAM~XliSMALL.WWIII.JII 
EOll,JI"'~MAXllSMAlL.EDIII.JI) 
rEII,JJ·AM~x1'sMALL.rcIII,JJI 
DE~ll.J.lJ2uENIII,J.21 
DE .. , I.J,ZI"OENI (I.J.21 
V!)II.J,II",vISIII,J,21 
VIS'I,J.21"VISIII,J,21 
V1SUUll.JJ2AMAXlISMALL,VISUUIII.JI) 
VIsvv'I,JJ=A~AXIISMALL,VISVV(II.JJI 
lFIIHT .... E.ll GO TO 800 
C'I,J,2J-CIII,J,21 
VC I I • J J • V ~ 11 I, J I 
wCII.JI=MCIII.JI 
UC I I , J I -uc I I I , J I 
C 21 1 , J J -A;j~)(11 SMALL. C 2 I I I , J J I 
ECII,JJaAMAx1ISMALL,ECIII.JII 

800 :'uIHHW!:: 
900 :::ul'4T I ~ut:: 

C··································*·········*·*······ ..... * •••••••••••• C ••••• FOR"~RO STEP SIZE 
OI·FR~"'((J r 
lI21-Llllf'Ol 
IFI IHf.c:.l.OI RETUR~ 
MAxC-().O 
141"':aG~EAT 
00 91J laIC1.IC2 
OLl 910 J'"2,NJ 
"IA ... CmA~~x~ ICI [,J,21 .HAXCI 

91J Ml~C·A~I~1ICII.J,21,MINCI 
DL"Fil. .. *u. US. YTOT 
LIZI-lI1J+Ol 
IFI£(2J.LT.IJLENTHI GO '20 
Ifl£11I.~E.QLENTHI GO ~20 

INIT.IH 
INIT.115 
INIT.176 
INIT.l77 
INIT .178 
JNIT.179 
INn.1SO 
INIT.ISl 
INI T.laz 
I~IT .183 
INIT.l84 
INIT .185 
It-!I T.186 
1"'[T.187 
INIT.l88 
IfII1T.189 
INIT.190 
INIr.l9l 
INIT.192 
INIT.l93 
INIT.194 
1~1T.195 
INIT.1'l6 
1~1T.197 
INIT.198 
INIT.199 
INI T .200 
[NIT .201 
INI T.202 
INIT .Z!)3 
INIT.204 
[NIT.205 
INIT .206 
INIT.201 
[~IT.208 
IN IT .209 
INIT.210 
INIT.Zll 
INIT.212 
I'4IT.213 
INIT .214 
INIT.215 
INIT .216 
INIT.211 
INIT.Z18 
[NIT .219 
INIT.220 
INIT .221 
INIT.222 
INIT .223 
INIT .224 
INIT.225 
INIr.226 
INIT.227 
INIT.228 
[Nti .229 
"'iIT.230 
INIT .231 
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IHIT •• SUBROUTINE INIT--

220. 0010378 lIll-"LE)lTH 
221. 0010408 Dl~l'21-l'1I 
222. OJI0428 920 Cu'H 1 ,.uE 
223. 01>10438 IFll'll.E~.QlENTHI CALL OUTPUT 
224. 0010478 )0 930 I~l,NI 
225. 001051B IFllI11.GE.~lENTHI CT(II-O.O 
226. 0010558 930 l~ll'll.GE.~lENTHI QUEIII-O.O 
227. 0010638 RETURI .. 
228. 0010658 END 

INIT.232 
INIT.233 
INIT .234 
INlT.235 
INIT.236 
IN IT .237 
INlT.238 
[NIT.239 
INlT.2ltO 

P"GE 6 

... ---.: 
C,t 

'.-.1-'" 

... '~. 

N' 

"'-...L':J. 

It~" 
4J 
S} 
kM 

.....,: ~. 



PROPS 

1. 

Z. 
3. 
<\. 

5. 

6. 

7. 

8. 
·9. 

10. 
11. 
1Z. 
13. 
l~. 
15. 
16. 
17. 

0000006 

0000006 
0000006 
00C0006 

0000008 

0000006 

0000006 

0000008 
0000008 

0000006 
00000Z8 
000004B 
0000078 
000011B 
OOCODB 
0000206 
0,)00246 

•• SU6\JUTINE PROPS •• 

SUoROJfINE PROPS 
C •• • •• •••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• C COMMJN BLOCKS 

C····.················································ ................. . 

c 

OI~E~SlJN S~VEI202291 
OI~ENSIJ~ rRANSI51Z1 
C (,~I1J~ 

lAI151,YIJOI,llOZI,XUI151.rVI301,lWI021. 
lDIEPI151,OXp~(15),OYNPI!01.OYPSI301,SEWl151.SNSI3~1. 
IDIEPUI1~),JXp~U'15).SEWU'15).DYNPVI301,OrPSVI301.SNSV1301. 
1R(3)),R~13JI,RCVI3)),~FN(301,WFSI301,~FEllSI,WFW(15). 
lU(15.3),~).VI15,3',2),Wl15,3~,2),PE(lS.30.2),CllS.30.2).PPIlS.30). 
1JUI1S.3J),UV(15,30).Unl15,30).VY(15.301,Vwl15.30).WWI15.30), 
lED{15,3)I,f~I15,30),fF'15,301,UCI15.301,VCllS.30),WC(IS.30), 
le21 15,3,)), EC (IS,30) ,RSI IS,30), 
lU~~I15,J~,21.VISIL5.3J.21,GAMllS.30,Z).VISUUl15,30).VISVVI1S.30), 
LA .. I 15,3 J J • AE 115,30 I ,All (1S, 30 I , AS US, 30 I ,~. 0 lIS. 30 I, AU 1 15,30 I • 
16. P ( L 5 ,.;l J I , Su ( 15,301 , SP 115,30) • 
1 uTl151 ,cr ( 15 I. CUE I1SI , OCOlB I IS" CUJ I lSI. 
l)ENSlr.VISCOS,PRA~)T.SPHEAT,EXCHAT, 
lCMU,CRl.C~2,CRS,CRlw,CR2~,eEPS1,CEPS2,CEPS.CAPPA,ELJG, 
leCl,CeZ,CC,CClw,CC2w,CG2,CG,CAPPAC,ELJGC, 
1JUU.JUV.JJ~,JVV,JV~,JwW.JEO,JTE,JFF,JUC,JVe,Jwe,Je2.JEe, 
1NI,NIML,NIH2,NJ,NJM1,NJH2,NK,NKM1,IT,JT,KT.IJ1, 
1rlEUU,~),~cDV'41.HEOW'41,HEDPI4),HEOCI~I,HEORI41,HEODI41,HEOVrS(4), 
IINCALJ,I~CALV,INCALw,lNeALP,I~CALC,INPRC,INeALRII4),INfUR8,INOIFF, 
I~S~PU,NS~PV.NSwP~,~S~PP.NSWPC,HSwPR, . 
l~OOEL.~JJEC.HR~,MCW,IOUE,IOIF,IJET,ITEST,ITf.SU.ITESe.ICON, 
1 I RUN, 1 U, 1 H r, lUI, IU2 , Ie!, lC2, II, 12, IN DCOS, FR~ , 
1~,UL,I~TE?ISTP1~NRS,INDE~,OPUl. 
IFL~~IN,V~EA~,CLENTH,SHALL,GRE'T,XTOT.rTOT,RswALL(14), 
lLaPRUlldl.IPRO,IEN0,INOP~I,NU~PRI,8vE,Bvw,evs,Bws 

CO."I'1)." 
lETI151,ErUI151.oErllSI,OETUI1SI,OYW,NJP,NJ~1.NJPI11,rwALL. 
l\OJTE~ •• l~"~R,ECCEN,ES,NJO,rTJTO.EXCH~W,NJOHI 
COM'1J~ JLOUI301,)LDVI301,OLOwI30),DLOPI30), 

1 JLOJUI301,OLOUVI301,OLDUWI3JI,OLOVVI!OI,OLDVW(30). 
1 OLOWWIJOI,CLOTEI]O),CLO~Ol301,OLOFF(301, 
1 )~OOEN(3JI,JLDV!SI30),OvISUU'301,OvISYVI301. 
1 DLOUTA,OOPDl 

LOGICAL I~CALU,lNCALV,I~CALw,INCALP.INCALC,INPRO, 
1 INCALR,INrJRB,INOIFF 
eQul~ALEN:E IX'll,SAVEI~11 
EQUlvALt~CE lOLOUl11,T~ANSl111 

c····.················································ ............•....• C JENSlTV,VISeDSITY AND THERMAL EXCrl6.NGE CJEFFICle .. T 
C •• ·.··.···················*·························· .••..........•••.. 
C---PF,)PE!UIES ARE U'lIFOR"IFG~ THIS PROBLEM 

EX~HAT·~lSCuS/P~ANOT·SPHEAT 
UO 500 I·U,12 
DO 50J .. J-2,NJ 
00 500 1(=1,2 
IF{I~uEx.~E.O) GO ro 200 
JE~II,J,KI·DENSIT 
V 1 ~ ( 1 , J , K j • vIse 0 S 
GAMII,J,I(I-EXCHAT 

PAGE 

PRQPS.Z 
CQMALL.2 
COHALL.3 
CCM~.LL. 4 
OH'!3.1 
01113.2 
CCMALL.6 
01" 3. 3 
01M3.4 
01M3.S 
01M3.6 
01M3.7 
OIM~.a 

011013.9 
01113.10 
01113.11 
01M3.12 
01"13.13 
01113.14 
COMALL.19 
COMALL.20 
C("~AlL.21 

CO~ALL.22 
COMALL.23 
CuHALL.24 
C0I1ALL.2S 
CO,..ALL.26 
CC,~ALL.27 

C(·:1ALL. 2 B 
CCMALL.29 
CCMHL.30 
C(1KALL.31 
011-<3.15 
01H3.16 
01M3.17 
01M3.18 
01113.19 
OI~~.20 

01113.21 
01'13.22 
CCM~LL.32 
C('MALL.33 
COMALL.)4 
OIM3.23 
P~JPS.4 
PR:iPS.S 
PPr.PS.6 
PPOPS.7 
·PROFS. a 
PRDPS.9 
PROPS.I0 
PROP 5.11 
PROPS.12 
PROPS.13 
PROPS.14 
PROPS.1S 
PP.oP S.l /) 

1 

W 
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PROPS 

18. 
19. 

20. 
21. 

22. 
23. 
24. 
25. 
26. 
Z7. 

2B. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 

000030S 
0000328· 

0000348 
0,)00368 

0000478 
0000558 
0000618 
00(10658 
0000726 
0000776 

0000776 
0001008 
0:)01058 
0001178 
0001238 
0001338 
0001358 
0001358 
0001448 
OOOH66 
0001508 

•• S~BRJUTI~e PROPS •• 

IFIK.e~.ZJ GO TO 5)0 
200 IF'.~Jr.l~TUR8J GO TO 500 

C---EAfH TEJ..· .. S REQUIRED IN CALCULATION PRt'CEOURE 
IFI")OEL.EO.3JGO T) 400 
IF{.~lr.l~CALRIJrEIITE(l,JJ.IUUII,JI~VV(I,JI~WW{I.J'JI2.0 

C 

c····· .. ····~········································· ......•.•.......•. C DIFFUSIVE TRANSPORT COEFFICIE~TS FO~ REY~OLOS ST~ESSES. 

C •••• • •••• • ••••• ••• ••• •••••••••••••••••••••••••••••• •••••••••••••••••••• 
rOE-TEII.J'/EDII,JI·OENII,J,21 
V1SUUI1,JJ-TDE*UU(I,JI 
V1SVVII,JJsTOE'VVII,JI 
VlSUU(I,JJ s 4MAXlIVISUU(I.JI,VISCOSI 
VISVYI1,JI=AMAXitVISVVII,JI,VISCOSI 
GG TJ 50) 

C •• • ••• •••••••••••••••••••• •• •• •• • •• • •• • ••••••• ••• ••• • •••••••••••••••••• 
C TWO EQUATIO~ MODEL VISCOSITIES. 
C •••••• •••••• •• •••••••• •••••• ••• •• • •••••• • ••••• •••• •• • •••••••••••••••••• 

400 C~~TI~uE 
IFIEUll.JI.EQ.O.IGJ TJ ~10 
vlSUUII.JleDENII,J,K)·TEll,JI··Z'CMU/EOII,JI 

~10 VlSJUll,JlaYISCOS 
50~ CU~rINJ5 

DO 51J lal,NI 
vISVV(1,llaYISVVII,3)·8VS~VISVVII.~I·11.0-8VSI 

510 CONTINue 
IFI1U.EJ.OJ INPRDs.FALSE. 
ReTU~N 
ENU 

PROPS.l7 
PROpS.1B 
PROpS.19 
PROPS.20 
PROPS.21 
PROpS.22 
pR::JPS.23 
PPIJPS.2't 
pROPS.25 
prOPS.26 
pRJPS.27 
pPOPS.2B 
1'1'')1'5.29 
pROPS.30 
pROpS.:n 
pPOPS.32 
PPJPS033 
pP.QP S. 34 
PRCpS.35 
PROpS.36 
P"OpS.37 
PRDPS.38 
PROP 5.39 
PRC'PS.40 
pROpS.41 
1'1101'5.42 
PPOpS.43 
pROPS.H 
PPOPS.45 
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CALC" •• SU8~QuTI~E CAlCMIPHI.OIF,FU.FV,SPH,IMAX,JMAX,IV'R.ISC, •• PAGE 1 

1. 0000008 SU8~OurlNe CAlCM(PHI,OIF,FU,FV,SPH.l~~X,JHAX,IVAR,ISC, CALCH.2 

1 IM1,lM2,NSwPtili CALCH.3 

C ••••• •••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
COHALL.2 

C COMMON 8LOCKS CCI':ALL.3 

C •••••• ••••• •••• •••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
CO".ALL .It 

z. 0000008 OJMENSIJN SAVEI202l91 01"'3.1 

3. 0000008 i) 1.'t:NSIjI\l TRANSI51l1 0IM~.2 

~. 0000008 CUM~jJ'~ 
COMALl.6 

1XI15j,V(3JJ,1102J,XUI15J,YVI30J,lWI02J, 0110.3 
1DIE?115j,JXp~1151.)Y~P(301.DYPS(30J,SE .. 1151.SNS(301. 01M3.1t 
1DX~PU(1~I,OXPWU(151.SEWUI15I,DYNPVI30I,OYPSV(30I,SNSV1301, 0IM~.5 

U 1301 ,i<\l1301 ,RCV(30I, ~FtH301, I'IFS(30J ,WFEIl51 ,WFwl 151, 01M3.6 
lU(15,3U,2J.V(15,30,2J,W(15.30,21,PEI15,30.2I,C(15,30,2I,PP(15,3JI. OIM3.7 
1JU(15,3)j,UV(15,301,~W(15,30J,VVI15,3JI,V~115,3JI,WW(15,301, 011013.6 
1E ()( 15,3 J I , TE 115,3 J I , FF ( 15,30 I , ue ( 15 ,30 I , \Ie (15,30 I, wC ( 15,30 I, 01"13.9 
lC 2115, 3J j , EL ( 15,3 () I , ~S ( 15,31) j , 

OIM3.LJ 
1)EN(15,3l,21 ,\lIS(15,31,21,GAMI15,30,2J,VISUU(15,3~I,VISVV(15,301, 011':3.11 
14 .. 1 is, ,,OJ, AE (15,301 ,A'I( 15,31)1 ,ASI15,301 ,A0I15 .301 ,AUIl5,301, OI~3.12 

1~P(15,]JJ,S~I15,301,SP(15,3JI, 01/-13 .13 
1JTI 151 ,e f( 15 I , QUE' 11 51 , DC ot 8 1 15 I , QUO ( 151 , 0IM3.11t 
ID~~5IT,~I~eaS,PRA~OT,SPH~AT.EXCHAT, COHALL .19 
1CM~,eRl,CR2,CRS,CR1~,CR2w,CEPS1,eEPS2tCEPSteAPPAtElJG, Cr.M~LL.20 w 
lCC1,C:2,CC,:Clw,eC2w,CG2,CG.CAPP~C.ELDGe, CCMAI.L.21 0--

1JUU.J~V,JJ~,JVV,JVW,J~w,JEO,JrE,JFF,JUC,JVC,J~:,JC2,JEC. COI~All. 2 2 0--

1~l,NIH1,~IM2.NJ,NJM1,NJM2.~K,NKMl,[T,JT,KT,IJT, COM.All. 2 3 
lrlEUUI~j,"EOV(41,HEOW(ItI,HEOP(ItI,HEDC(41,HEOR(41,HEOO(41,HEDVISI41, COMALl.ZIt 
11N:~LU,i~:AlV,INCALW,rNCAlP,INeILC, [NPROtl~CAL~(14J,I~TU~8.INOIFF, CC·I'AlL.25 
1~S~PU,~5w~V,NSWPW.NS~PP,NswPC,NswPR, COMALL.26 
l~OJEL,~QU~C,~RW,MCW,I~UE,IDIF,IJET,ITEST,ITESU,ITESC,ICON, COMALl.27 
11 Rei';, 1 U, 1 t1 T, lUI. 102 , 1 C 1, IC2 , 11 , 12, HIDCOS ,FR A, CDMHL.28 
1~,Ol,I~TEP,ISTP1,~RS,INOEX,OPOl. C()~All.29 

IFlO~IN,V~eA~,QLENTH,SMALL,GR~'T,XTJT,VTOT,RSW~Lll141, cr1MALl.30 
llUP~JI1~1,'PRO,IE~0,INOPRr,NUMPR',BVE,BVW,BVS,B~S CCMALL.31 

5. 0000008 C L.li/1UN OIM~.15 

lETI15j,ETUI15I,OET(15I,OETU(151.0Yw,~JP,NJP1,NJPM1,IWALL, opn.16 
1 ROJT ER, rd "IIER, ECCEII, ES ,"'JO, YTO TO, EXCHA\'h~JOMI 01113.17 

6. 0000008 CO.'lMO.1j OLOelI30J,OLDVI3DI,OlDwI301,rlDp(301, 0IM~.18 

I OlDUUI301,OLOUV(301,OLDUWI301,OLDVVI301,ClOVW(301, 01M3.19 
1 J~O.w(30),)lOiE(301,OLOEO(301,OlOFFI301, 011'13.2) 
1 DLD)E~(30I,OLD\I[SI301,O\lISUUI3JI,O\lISV\lI30J, OIM3.21 
1 :#100TA.OOPOl OI~3.22 

7. 0000008 LO~ICAL INCAlU,INCAl\l,INCAlW,INCALP.INCALC,INPRO, CC'MAlL.32 
1 !NC'LR,I~TUR8,I~OIFF CCM4LL.33 

8. 0000008 Eg~IVALE~eE IX(II,SAVE(lll C.OMALl.34 
9. 0000008 E QUI vALEN: E 'CLOU 11 I, mANS 11 J I 011-13.23 

10. 0000008 OIME~Sll~P~I(IMAX,JH~X,Z).0IF([MAX,JMAX,21,FU(IMAX,JMAXI. CAlC"!.S 
1 Fv IIMAX,J,'1AXI CAlCM.6 

C ••••••• ···································*···***···· ......•.....••.... CALCM.7 
C ASSEMBLY OF COEFFICIE~rs CAlCM.8 

C •••• ·················*······························· ...... * ..........• CHCI'.9 
u. 0000008 If' ISTEP.L T .51 URF=O.05 CALCM.IO 
12. 00000lt8 I J-J . CAlCM.ll 
13. 00000lt8 HOO ::1J!'-jfl~·jUE CALCH.12 

C CALCM.13 
1~. 0000058 /(-1 CAlCt-4.11t 
15. 0000058 00100 1-I141,[M2 CAlCM.1S 
16. 0000108 00 1l) J-2,NJMl CAlCM.16 



CALCM 

17. 
1 il. 
19. 
20. 

Zl. 
22. 
23. 

2~. 
25. 
26. 
27. 
29. 
29. 

30. 

31. 
32. 
33. 

34. 
35. 
36. 
37. 
39. 
39. 
40. 
H. 
42. 

43. 
44. 

45. 
46. 
H. 
4a. 
49. 
50. 
H. 
52. 

53. 

54. 
55. 
56. 
57. 
58. 
59. 
60. 
61. 

0000139 
0000159 
0000178 
0000218 

0000228 
0000318 
0000428 

0000528 
0000018 
000C748 
0001018 
OoJCloJ4S 
0001078 

0001338 

0001548 
(l00155B 
0001578 

0001658 
0001718 
0001749 
(1002058 
0002118 
oe02228 
0002208 
00023-+8 
0002378 

0002448 
000H7B 

00025~8 
')00254B 
0002568 
0002568 
00026CS 
0002b18 
0002638 
0002669 

0002668 

0003058 
0003008 
0003108 
00032IS 
(1003238 
0003249 
00032SB 
.)003208 

~.SU9\0~T{~E CALCMIPHI,DIF,FU,FV,SPH,IMAX,JMAX,{VAR,ISC,·· 

C-----COMPurE AREAS AND VOLUME 
'REO\ ~-SE"'I I).OZ.RV( J"l' 
ARI:AE .. -Ol.SNS IJ I 
lRE4u-SE .. lll.RCVIJI·SNSIJI 
VOL-~~v'JI·Ol·SNSIJI·SEWIII 

C-----CALCJLAr~ CGNVECTI0N CO~FFICtENTS 
CU~JE~(I,J,KI.WII,J,KI·AREAU.SPH 
CN·).5.(J~~(I,J,KI"OE~(I,J.1,KI).V(I,J.I,kl.~~E~N~SPH 
CE"). 5.' JEtH I, J, Klt-OE;-!! I .. l,J ,K I).U( 1"1, J,K ).AREflEW·SPH 

C"":---::ALCJUHE O[FFUSI0l1 COEFFICIE.'HS 
OIFE:O.5.IOIFII,J,KI"D(FIIf-1,J,KII 
O[f~sO.j·(OIFII,J,Klf-DtFII,J"l,KII 
IFI~J0EL.EQ.3.DR •• NOT.INDIFFI GO TO 120 
FvI4 .. FvII,Jt-ll 
F U:: - F U I 1 .. L ,.J J 
IJIF~sLlIFN-FVN/ IPHI (1, Jf-l,K I-Pt'll( I,J·,KI-SMALLJ*DENI I,J,KJ*SPH. 

1 SN SVI J ~ 11 
OIFE_LlIFE-FUE/IPHI(!+l.J,KI-PHIII.J,K)-SHALLI.OENCI,J,~!.SPH. 

1 RCVIJI·SEWUII+lJ 
120 :0'1 TI ~LI= 

OINsOIF~.~REAN/OYNP(JI 
OIE·UIF~~~~EAEW/IOXEPIII.RCVIJ)1 

C-----A~SE~dLE ~A[N COEFFICIE~TS 
AUI1,J)-:J 
AOII,JJ-u.o 
ANII,JJ-AMAXIIABSIO.5.cNI,DINI-0.5.CN 
AS( 1 ,J)s,"" .J-lI 
A E ( I, J , "~I4A)\1I A B S 10. 5.CE I, DI E 1-,). 5. CE 
A~II,JlcAE(1-1,JI 
SUII,JI-UPDL.FLOATIISCI*VCL 
SP(I,J/-u.o 

100 CO~H VW: 
C .. ·· .... ·······*·····*······~····················*··· ............••.•.• 
C ••••• PRJ~LEM MODiFICATIONS 

IF(ISC.E~.O) CALL MODCIPS,NRS,IT,JT,IC1,IC21 
IFIIS;.EY.ll CALL MOO~(P.S,NRS,IT,JT,ILll.IU21 

C ••••• FIN~L CUEFFICIENT ASSEMBLY 
IF(ISC.Ey.lI GO TO 210 
IFCI~ALL.EQ.OI GO ro 210 
NJMl s."JlIMl 
'II J"~JJ 

210 CUNf!NUE 
00 30D 1-11'11,11'12 
LHJ 3JJ J-2,"'iJM1 
APII,JlsADII,JI+AU( I,JIf-ANII,JIf-ASII,JI 

hAE( 1,J1+~,j1 [,JI-SPIt ,J! 
300 CO'lfI'lJE 

C.···················································· ........... ~ ..... . C SOLUTlJN JF DIFFERENCE EQUATION 

C············~········*·········*··**·*··········*···· ........... ~ ...•.. 
K'"2 
00 ~OO 'lcl,NSWPHI 

400 CALL LISOLV(2,2,PHI,N,2,IVAR,IMl.IM2) 
IFIIS:.EJ.1I GO TJ 45,) 
IFll~ALL.EQ.OI GO TO 430 
NJ"NJP 
NJM1-~JP!11 

~50 C UN TI NUe 

CALCH.l7 
CALCM.18 
CttCM.19 
CALCM.20 
CHCM.21 
CHCM.22 
CAlCM.23 
C.6lCM.2~ 
CALCM.25 
CHC~.26 

CALC,.,.27 
CAlCM.28 
CALCM.29 
CALCM.30 
CHCM.31 
CHC.'1.32 
CHCM.33 
C~.LCM. 34 
CHC"'.35 
CALCM.36 
C~.LCM. 37 
CHCM.38 
CHCM.39 
CALCH.40 
CAlC~.41 
CAL CM.4Z 
CALCM.43 
C~LO·.44 

CALCl'.45 
CALCM.41'> 
CALcr1.47 
CHC".4!:1 
CALCM.49 
CHCM.5) 
CALC"'.51 
C~LC~.52 

CALCM.53 
01M3.95 
DIM3.96 
01M3.97 
01M3.98 
01"3.99 
CALCM.54 
CALCM.55 
CALCM.5O 
CALCM.57 
CALCM.58 
CALC."!.5? 
CHCM.6) 
CALCM.61 
CHCM.6Z 
CHCM.63 
CAlCM.64 
01":.100 
DIM?lOl 
DIM3.102 
011'13.1)3 
01M3.104 

P~GE 2 

c 
c 
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~ 
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w 
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r., ~" 

G· ....... 



CALC" 

6Z. 
63. 
6 •• 
65. 
66. 
67. 
toB. 

69. 
70. 
71. 
7l. 
73. 
74. 
75. 
76. 
77. 
7il. 
79. 
80. 
Bl. 
8Z. 
B3. 
8 •• 
a5. 
86. 
87. 
a8. 
89. 
90. 

91. 
92. 
9). 
94. 

95. 
'lb. 

97. 
9a~ 
99. 

100. 
101. 
llZ. 
103. 
10'0. 

0003308 
0003318 
,)003328 
0003356 
0003358 
0003468 
000~466 

0003478 
0003476 
000350a 
0003518 
0003548 
0003578 
0003618 
0003708 
00037211 
00040J6 
()004058 
0004:)78 
0004126 
0004156 
0004178 
0004218 
OJOH4B 
000 .. 278 
OOCB28 
0004356 
0004318 
OJ041t46 

0004566 
0004576 
OoJ04616 
001,)4046 

0004HB 
0005148 

0005158 
OC05178 
0005368 
000537B 
0005428 
0005528 
0,),)5748 
0005766 

•• SU8RJJrl~E CALCM(PHI.OIF,FU,F~.SPH,IMAX,JMAX.IVAR,ISC, •• 

'FIIS:.E~.lJ GO TO 910 
NJP'IZ-NJ'Il 
00 905 1-1,NI 
utJL~I'I_(C'I,~JP~2.21-CtI,NJ'M2,lJI/IOl+SHAllJ 

905 CC'HI"UE 
;;U TJ lZ5i) 

910 coon 1 IIU: 
C.···················································· .....••..•••.••••• c ••••• :AL:UL~TION OF PRESSURE GRADIENT 

Gl .. LEr-FL)~IN 
GSTH-).,j 
OSU'IaJ.J 
00 11)) 1-[1'11.11'12 
O~ IlJU J~2.NJMl 
AREAD·5i~'I)·5~SIJI·RCV'J' 
OSu~1·A~cAD~AnEAD.Dz·DEN'I,J,2J/APll.J' 
o S\J"I·JSJ~.OSUHl 
~sr~Rl;AREAO.~'I,J,KI.OEN(I,J,2J 

1100 ;;ST4Ra~Sr~R.GSTARl 
OPOL1·(~I~LET-GSTARI/OSUM 
JP~L;0PO~.OPOLl·URF 
IFIOPOL.L:.OJ STOP 
OPCE~r·AasIDPOll/(OPOZ+sMALL" 
l1all·1 
IFIOPCtiT.GT.O.Oll GO TO 1400 
URF'AMA~l (URF,l.O/FLOATt II' I 
00 1201,) l-IH1.1M2 
Op 12)) J-2,NJHl 
AREA02SEwlll.SNStJI·RCVIJI 
wCJ~~·OPOL1.AREAD~OL/AP(I,JI 

1200 w(I.J.~j·Nll,J,KI+riCO~R • 
C.··*~···*··~···············***······················· .........•.•...... 
C ••••• EsrI~ATIJII JF V-VELJCITY 
C----THlS SI"U'LIF ICATION IS AFPLlCA6LE IN AXISYMMETRIC INTERNAL 
C F L(JotS JIlL t 

NJ;~2-)jJ-2 
00 410 '-11'11,11'12 
uo 41.) J"2.NJH2 
V'1,J+l.~j~'1.0/10l·RVIJ+l)·SEW'I»'· 

1 (+WII,J,ll.RCVIJI.SEwII).SNSIJI 
1 -WII.J,21.RCVIJI.SEWIII.SNSIJI 
1 +Vll,J.K'.Ol·RVIJI.SE~1111 

'HO CONf[l(uE 
125u CONTINUe 

C.······· .. ······································**·*· ..........•....... c ••••• sEr BOUiDARy CONDITIONS FO~ USE IN GR'OIENT CALCULATIONS. 
C L~SSUME PARA80LIC p~nFILES NEAR SYMMETRy AxES) 

00 401 [-11, 1 Z 
401 PHIII.ltK)~6wS.PHIII,2tKI+(1.O-B~SI.PHI(I,3.K) 

N 1'12·''111011-1 
00 '>02 J"l,NJO 
PH111,J.~I"oVft.PHI(2,J.KI.(1.O-BVWltPH((3,J,KJ 

~02 'Hlt~I.JtKI·aVE·PHI(NIM1,JtKI+(1.O-8VEI.PHIINIHZ,J,KI 
RErU!l.~ 
ENCl . 

PAGE 

CALCM.65 
CAlC~.66 
CAlCM.61 
CALC'4.66 
CALCH.69 
CALCH.70 
CALCH.7! 
CA Lt:. 1'1. 12 
CALCM.n 
CALCM.74 
CALCM.75 
CALCM.16 
CALCH.77 
CALCM.78 
CALC.'I.79 
CALCM.80 
CALCM.81 
CALeM.B2 
CALCM.83 
Ct-lCM.84 
CALcM.dS 
CALCM.B6 
CALCH.a1 
CALc".aa 
CALCM.89 
CALCM.90 
CALC~.91 
CAlCM.92 
CAlCM.93 
CALCM.94 
CAlCM.95 
CALCM.96 
CALCM.97 
CAlCM.98 
C4LC'I.99 
CHCM.100 
CHCM.10l 
CALCM.In 
CAlCM.103 
CALC"I.l04 
CALCM.105 
tALCM.10b 
CAlCM.l.J1 
CAleM.10B 
CAlCM.IOS­
CALCM.110 
CALCf.I.1l1 
CALC"I.1l2 
CALCH.1l3 
CALC~4.114 

01:-13.1.05 
CALCH.ll6 
CAlC.'I.ll 7 
CAlCH.ll B 
CALCM.1l9 

3 

W 
Q'\ 
(X) 



CALC .. 

62. 
63. 
64. 
65. 
66. 
67. 
68. 

69. 
70. 
71. 
12. 
13. 
14. 
15. 
76. 
11. 
78. 
19. 
80. 
91. 
8Z. 
83 .• 
84. 
85. 
86. 
87. 
8B. 
89. 
90. 

91. 
92. 
93. 
94. 

95. 
96. 

97. 
98. 
99. 

100. 
101. 
IJ2. 
103. 
104. 

0003~08 
0003318 
J003328 
0003356 
0003358 
00(13468 
0003468 

0003478 
000H78 
0003508 
0003518 
0003548 
000J518 
0003618 
0003708 
0003728 
00040;)8 
,)004058 
0004.)18 
0004128 
0004158 
0004178 
0004218 
OJ04248 
000 .. 278 
0004328 
0004358 
0004378 
0004448 

0004568 
0004578 
0004618 
0004648 

0004648 
0005148 

0005158 
OC05118 
0005368 
0005378 
0005426 
0005528 
00J51'.6 
0005766 

•• SU8RJJrI~E CALCMCPHI.OIF,FU,FV.SPH,IMAX.JMAX.IVAR,ISC,·· 

IFIIS:.EQ.11 GO TO 910 
NJP'42·~J'41 
00 905 l"i,NI 
OCO£8'II·ICII,NJP~2,21-CCI,NJPM2,III/(Ol+SMALLI 

905 CC'H IIIUE 
;;U TO 125il 

910 cc-.rIW: C····· *.* .................... *.* ••••••••••••••••••••••••••• " ............ " .• 
C ••••• ~AL:ULATI0N OF PRESSURE GRADIENT 

GI.'lLET"FLJWIN 
GSTU·J.u. 
OSU~"J.J 
00 I1Jl 1~[Ml.IMZ 
00 11JU J"2,NJMl 
AREAO·SewlII.S'ISIJI.RCVIJI 
OSU'41·A~~4D*AREAO.Ol·DEN(I.J.ZI/AP(I,JI 
OSU ... ·JSJ·'1+DSUMl 
~SfAR1=ARcAD·~CI,J.KI.DENCI,J,ZJ 

110G·;ST~R~GSr~~+GSTAR1 
DPU£l-l~l'lLET-GSTARI/DSUM 
)PLl=OPDl+DPD£1·URF 
IfiOPUL.LE.OI STOP 
OPCE~T.AaSIOPDll/'DPDl+SMALLII 

.11211+1 
IFIOPCt~T.GT.O.Oll GO T3 1400 
URF·~MA~llURF,1.O/FlOATlllI1 
00 1200 l·IHl,I~Z 
00 12J) J=Z,NJMl 
ARE~D~SEW'I).SNSIJI*RCV(JI 
~CJ~~-OPOll·AREAD~OlIAP([.JI 

1200 ~ll,J,~I=_(I,J,KI+~CO~R 
C.··.················································· .................. . 
C ••••• ESTIMATIJ~ JF V-VELJCITY 
C-----THIS SI~PL[FICATION [S APPLICABLE IN AXISYMMETRIC INTERNAL 
C FLU .. S J .. L t 

NJM2-NJ-2 
DO 410 ["IH1,II12 
00 ltlJ J-2,NJ I1 2 
vll,J+l,~lsll.O/IDl·RVIJ+l'·SEWCIIII. 

1 If- W I [ • J.l I •. 11. C V I J I • SE W ( II • SN S ( J I 
1 -WII,J,21.RCVIJ'·SEWIIJ.SNSIJI 
1 +VCI,J,K,·Dl*RVIJI.SEWIIII 

<HO CDNTI~LlE 
lZSu COi\jTlNUc 

C·····~····*·*········································ ................. . C ••••• iET bJU'DARr CONOlfIONS FO~ USE IN GR~D[ENT CALCULATIONS. 
C C~SSUME PARABOLIC p~nFrLES NEAR SyHMETRY AXES) 

DO ftOl l·U,IZ 
401 PHIII,l,KI-BwS.PHII I,2,KJ+Il.O-B,jS)~PHIII,3,K) 

14 1.'42~'1iHl-1 
00 4:J2 Jsl,NJO 
PHIIl,J,~13dV~.PHI(2,J,K)+(1.O-BVW'.PHII3,J,KI 

402 PH1(~1,J.~1.8VE·PHIINIM1,J,K).Cl.0-BVEI.PHIINIMZ,J.KI 
REiU;l.N 
EN) 

CAlCM.65 
CAlCM.66 
CAlCM.67 
CALC'!.68 
CAlCM.69 
CAlCM.70 
CALCH.71 
CALCM.72 
CALCM.73 
CAlCM.74 
CAlCM.7S 
CALCM.76 
CALCM.71 
CALC,,,!. 78 
CAL C ,'1. 79 
CALCM.80 
CALCM.81 
CALCM.a2 
CAlCM.a3 
CAtCM.84 
CALCM.d5 
C'!'LCIA.B6 
CALCM.a7 
CALCIA.88 
CALCM.tl9 
CAlC1~. 90 
CALCM.91 
CALCM.92 
CALCM.93 
CALCM.94 
CALCM.95 
CALCM.96 
CALCM.97 
CAlCM. '18 
C~LC'1.99 

CALCM.l:)O 
CALCM.IOl 
CALCM.In 
CALCM.I03 
CALC'1.1:J4 
CALCM.I05 
CALCM.I06 
CALCM.t:l7 
CAlCM.I08 
CALCM.I09 
CALC M.ll 0 
CAlCfo'.lll 
CALCM.1lZ 
CAtCM.1l3 
CALC~.114 
01"13.105 
CAlCM.1l6 
CALCM.ll 7 
CALC"I.1l8 
CALC"'. 11 9 
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CALCRS 

1. 

2. 
3. 
4. 

5. 

6. 

1. 

8. 
9. 

10. 

11. 
12. 
13. 
h. 
15. 
16. 
17. 
18. 
19. 

0000008 

oooooos 
OOOOOOS 
oooooos 

OOOOOOS 

0000006 

OOOOOOS 

oooooos 
0000008 
0000008 

oooooos 
OOC0006 
0000078 
0000076 
000:)108 
0,:)00128 
OOOJ16S 
0000208 
,)000218 

•• SU8~JUTI~E CALCRSIPHI.IRS.CO,IMAX,JMAX,IIIAR,IMI,I M21 •• 

SU8~JUT[~= CALCRSIPHI,IRS,CO,I~AX,J~AX,IIIAR,[Ml,[M21 

C •••• •• •• ••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• C COMMON BLOCKS 
C •••• ~ •••• •••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 

OIME~S[Jk SAvEI20Z291 
J[ME~SI~N TRANSI51Z1 
CIJ.'1MOOli 

iAI151,YI3JI,lI02I,XUIISI,YVI301,lWI021, 
liJXE P (15 I • OXP >1115 I , 0 Y,~ P 13 a I ,0 YP SI 30 I , SE W 1151 , SNS 130 I .. 
1J~tPU'15I,D)(PWUII51,SEWUl151,OY~PV'3~I,OYPSVt301,S~SV(301. 
1H 30 I , ~ IIi j 01 , RC V I ~O I, >lFN 1301 t rlFS (301, wFE H51 , wF w !lSI, 
IJI15,3J,ZI,\/(15,3J,2J,wI15,30,21,PEI15,30,2I,CI15,30,2I,PPI15,301. 
1 U UI 15,3 ul , U 11115,30 I , Uri 115,30 I , VIII15 , 3J I , VW 115,3) I ,ww I 15,30 I , 
1 C ill 15 , j 0 I , r E 115,30 I ,F FILS, 301 , ue U 5, 301 • VC 115 • 301 • we (15 ,30 I , 
1: 2115.3 J I , E C 115 ,J 0 I , ~S 115.30 I , 
lucN'i5.30.21,II[SI15,30.21,GA~115,30,21.VISUU'15,301,VISIIVI15,301, 
14~I15.3Jj,'EI15,3:)I,AN(15,3DI,AS(15j3)I,ADI15,301,AUI15.301, 
UP ( 15,3">1 • Su , 15.301 , SP I! 5,3') 1 , 
l:JT 1151, C IllS I, QUE 1151, DC Dl B( 151, QUO I lSI • 
IJENSIT,~[SCOS,PR1NDT,SPHEAT,EXCHAT, 
lCMJ,CR1,:~2.CRS,CRlw,CR2~,CEPS1,CEPS2,CEPS,CAPPA,ELOG, 
1:C1,C:Z,::,CC1W,CCZW,CGZ,CG,CAPPAC,ELJGC, 
IJUU,JIJII~JU~,JIIV"JVW,JWW,JEO,JTE,JFF,JUC,JVC,JWC,JC2.JEC. 
lil,~lil.~lH2,NJ,NJM1,NJM2.NK,NKM1,Ir,Jr.KT,IJT, 
IHEJIJI4} ,,,fEDIII41 ,HEDwI41 ,HEDP 141 ,HEDCI41 ,HEDr, (4I,HEODI4I,HEDIIISI41. 
lI~CAlJ,IN:AlV,INCAlW,INCALP,INCALC.INPRO,!~CALRI14I,INTURB.INDIFF. 
IN~"Pu,~iwPV,NSWPri,NSWPp.Nswpe,NS~PR, . 
l~GuEl.HJaEC,MRw,HCw,lJUE,IOIF,[JET,ITEST,[TESU,ITESC,[CON, 
lIRU~.lu,Irlr,IUl.IU2,Iel,IC2,Il,I2,INoeos,FRA, 
h ,Ol,!:) rEP, I S TPI.~HS"!lIDEX ,OPOl, 
IFlJ~IN,~MEAN.,QLENTi,SHALl,GREAr,XTOT,YTOr,RSWALL(141, 
1£DP~Ulldl.1PRO,[E~D,I~DPRI.NUHPRI.BVE,Bvw,BVS,BwS 

:"MHJN 
lErl151,ErJI151,OErI151,OETUI151,OYW,NJP,NJPl,NJPM1,IWALL, 
I HdT:: ~,,1.I ~.\jE P, EC CEN, ES.~' JO, YTOTO, E)(CHAw, NJOMI 

:uHM0N OlDUI301,JLOVI301,CLOWI301,DLDPI30I, 
1 O~OJUI3ryl,JLOUVI301,OLOUW(3~I,OLDVVI30},JLDVnI301. 
1 OLDwWI301,JLDTE(301,QLDEDI301,OLOFFI301, 
1 O~ODENI3DI,OLDVIS(301,O~ISUUI301.0VISVVI301, 
1 LLDuTA,ODPDl . 
LO~ICAL INC4LU,INCALV,INCALw,INCALP,I~CALC,INPRO, 

1 ['leALR.1NfURS,[NOIFF 
EQUIVALENCE (Xlll,SAVEIIII 
E~JIV4LE~CE IOLDUI11,TRAtiSIlII 
D!ME~SION P11([MAx,jMAXI 

C •• ·.··························***···*****···****·***· .•...•••..•..•.•.. C ASSE~BLY OF COEFFICIENTS 
C •• ·.···.···.··.················*···**·············*·· ..•..•...•.•.•..•• 

~RS"lRS 
CALL SO~:EIPHI,IRS,SU,SP.IJT.IML.IM21 
1\.=1 
ISL-VIl 
J 51*3 
[FIIRS.=U.JUCI [51*3 
!F'I~S.cu.JJCI JSI-2 
DO 100 1*11'11.11'12 
DO 1)) J*JS1.NJML 

CALCRS.2 
COfo'ALL.2 
COMALL.3 
COMtLL.4 
0[,..3.1 

PAGE 

OJ M 3. 2 
CCMALL.b 
01M3.3 
01M3.4 
0[M3.5 
OI~3.6 

OIM3.7 
OIM;!.B 
011'13.9 
01/1,3.10 
DI~3.11 
011'.3.12 
0IM3.13 
011'13.14 
CCMHL.19 
C()MALL.20 
Cf1MALL.21 
eOMHL.22 
COHALL.23 
CCMALL.24 
C0'1ALL.25 
C[)MALL.2b 
eC'~ALL.27 

cm~ALl.28 
COMHL.29 
COl',IlL .30 
eCMALL.31 
01"'3.15 
0[1'13.11> 
01'13.17 
OIM3.1B 
OI 1'13 .19 
01M3.20 
0[113.21 
0110.22 
Cr'1ALL.32 
eOM~Ll.33 
cc,I'.ft. L L. 3 to 
011'13.23 
CAlCRS.4 
CALCRS.5 
CAlCRS.!> 
CALeRS.7 

. CAoLer-S.B 
CAlCr.S.9 
CALCRS.LO 
CALCRS.ll 
CALC~ S.12 
CALCRS.13 
CALcr,S.1 to 
CALCRS.15 
CALCRS.) . 

1 

W 
"'-.I 
a 



CAleRS 

20. 

21. 
22. 
23. 
24. 

25. 
26. 
27. 

28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 

39. 
40. 

41. 
42. 
43. 
44. 
45. 
4b. 
41. 
48. 
49. 

50. 
51. 
52. 
53. 
54. 

55. 

56. 
57. 
58. 

59. 
60. 
61. 

62. 

0000Zlt8 

0000268 
0000328 
0000336 
0000356 

000(1378 
0000508 
0000628 

0001008 
0001008 
0001178 
0001326 
0001348 
0001\28 
0001428 
0001436 
0001538 
0001548 
0001638 

0001778 
0002028 

0,)02048 
0002078 
0002128 
0002238 
0002278 
0002408 
0002H8 
0002508 
0002548 

0002618 
0002718 
0002728 
0002758 
000275tl 

0003108 

0003228 
0003278 
0003318 

0003328 
0003348 
0003378 

0003378 

•• SU3~)~TINE CAlCRSIPHI,IRS,CO,IMAX,JMAX,IVAR.IH1,I M21 •• 

IFII~S.EQ.JUCI GO TO 110 
C-----CO~~uTE A~E~S ANa VOLUME 

AREAN-iEw( ll.OZ*RIJ I 
AkEAE .. ~LJl. S'4SV( JI 
AR~AU·S~ .. (I}·RV(JI~S~SVIJI 
VUL-lVIJj.Ol·SNSVIJI·SEwIII 

C-----CALCULATc C3NVECTI)~ COEFFICIENTS 
CUzJ.5.IO~~I I,J,KI.wII,J,K}+OENII,J-l,KI·WII,J-l,KII.IREAU 
:N~)E~Il,J,KI.(VII,J+1,K).I1.0-~FNIJ))+VII,J,K).WFNIJII·AREAN 
CE·0.5·Ia.5.(OE~II,J,KI+OEN(I.l,J,K)t·UII+1,J,K)+ 

1 0.5·IOENII,J-1,KI+OEN(I+1,J-1,KII.UII+1,J-1.KII.A~EAE~ 
C-----CALCULATE 01 FFUSID~ COEFFICIHHS 

GAHc·J.S.IVlSUUII,JI+VISUUII+l,JII·CO 
G.A.~.~" II I S "VI I , J I. wF 'I ( J) .. VI S VVI I , J +1) • ( 1. -WFN (J II I.CD 
IF(J.EJ.~J~LI GAMN~VISVVII,JI.CO.'YINJI-Y(NJ~lII/SNSINJMIJ 
OI~·G'M~·AR~AN/DYNPV(JI 
01E-~'ME·4REAEW/IDXEPIII.RVIJ)J 
GO TO "i) 

110 Cl.lHINUE 
CuzD~~I!,J,<J·W(l.J,KI.SE~UIII.RCV(JJ.S~S(J; 
CN·C~·J.i) 
UIN:VlS~VII,J+lJ.CO.SEWUIII.RVIJ+11·0Z/OY~PIJI 
~I~.fVISJUIl.JI.WFN(JI+VlSUUII,J.11.11.0-WFNIJ)II.CO.S NSIJI·OZI 

1 tJ,(EI'UIlI.~CV(JII 
VGL·~:VIJI·SEWUIII.SNSIJI.OZ 

12D Cu·'HIN~E 
c-----~SSEMULE MAIN COEFFICIENTS 

AUI I, JI,,:;\J 
AlJll,JI-D.O 
ANII,JI·4MAAIIA8SIO.S*CNI,DINI-O.S.CN 
~SII,Jla4Nll.J-ll 
AEll,JI-AMAAlIA8SIO.S·CEI,OIEI-0.5.CE 
AwII,JI-4cll-1.J) 
SUII.JI-SUIl,JJ·VOL 
S P I I • J I - S P I 1 • J I * VOL 

100 CONrINJ: 
C •• ··.·.················~····*························ ........•.....•... 
C ..... P~JBLEM MJOIFICATIJ~S 

CALL MOORS (PHt,Irs,IMAX,JMAx,I~1.IM21 
IFII;{S.EJ.JIICI GO TO 200 
ou 15) '.IM1,IM2 
J=2 
Ch.OE~II,J,(j.IVII.J+l,KI.(l.O-WFN(JII+VII,J,KI.WFNIJIJ. 

1 SEWIII·Ol·RIJI 
Jl~_'VlSV"'I,JI.wFNIJI+VlSVVII,J+ll.ll.O-WFNIJJII.CO.SEWIII. 

1 DZ·RIJI/OYNPVIJ) 
ASIl,31·~MAXl(ABSIO.5.CN1,OIN)-O.5.CN 

150 ca'lTI~u= 
20J :;ONIINJe 

C ••••• FINAL C~EFFICIENT ASSEMBLY 
JU ,)J I·'S~,IM2 
OU 3UU JSJS1,NJMl 
~P(l,JI=AUII.JI+AU(I,JI+ANII.JI+ASII,JI 

l'+Atll,JI+4wlI.JI-Spll,JI 
300 ::.J .. TlNUE 

C····················································· .•••.•.•..••.•••.• C SOLUTION OF DIFFERENCE EQUATION 
c.· •... ·.··•··························•·············•· ......••...••..•.• 

PAGE 

CALCPS.17 
CALCRS.18 
CALCRS.19 
CalC!> S. 20 
CALCPS.21 
CALCRS.22 
CALCRS.23 
CALCRS.2ft 
CALC~S.25 
CALCnS.26 
CAlC~S.27 
Ct.LCRS.26 
CALCRS. 2 9 
CALCRS.30 
CALCr-S.31 
CALCP.S.32 
CALCRS.33 
CALCPS.34 
CALCRS.3S 
CALCRS.36 
CALcrS.31 
CALCRS.3B 
CAlCPS.39 
CHC~ S. 40 
CALCRS.41 
CALCRS.~2 
CALCRS.43 
CALCI'S.44 
CHCf! S.45 
CALCr:S.4b 
CALCRS.it7 
CALCRS.48 
cncr S. 49 
CALCPS.50 
CALCRS.Sl 
CALcrS.52 
CALCRS.53 
CALCrS.54 
CALCRS.55 
CALCRS.56 
CALCPS.57 
CALCRS.56 
Ct.LCRS.59 
CALUS.60 
CHCRS.61 
CALCPS.62 
CALCRS.03 
CALCIlS.b4 
CALCl'S.b5 
CALCRS.66 
CALCr:S.67 
CALCRS.66 
CALCP.S.69 
CAlCRS.70 
CALCRS.71 
CALCFS.72 
CALCR S. 73 
CALCRS.74 
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CALCR.S 

63. 0003568 
64. 0003513 
65. 0003618 
66. 0')J3118 
61. 0003778 
68. 0004028 
69. 000'>048 
10. 0004048 
11. 0004178 
12. 000417a 
73. 0004206 
14. 0004238 
15. 0004308 
16. 0004468 
11. 0004468 
18. 0004508 

•• SU8il.OUTINE CALCRS(PH.t, IRS,CO,IHAX,JMAX, IVAR.IM1, 11'121" 

.(-2 
00 ~OJ ~-l,NSWPR 

~OO CALL LISlLVIlSl,JS1.PHl,N,1,I'IAR,ISl,IM21 
Ifll~S.e~.JlJw.OR.IR.S.eQ.JUCI RETUR~ 
Ifll~S.e~.JVw.OR.IRS.EO.JVCI GO TO 410 
01.1 401 I·IMl,I~2 
PHIII,21-SVS*PHI(I.31.Il.0-8YSI.PHI(I,41 

401 CJHI'4UE 
410 CU1'<rINJc 

If'lv~~.E~.11 GO TJ 405 
00 frOl J~2,~J~1 
PHltl,JI~dVh·PH[(2,JI.(1.0-8YWI.PHI(3,JI 

402 PH1'~1.JlcB~E.PHI'NlM1.JI.'1.0-8VEI~PH1'NIM2,JI 
~os CONrlNJc 

RETuil.N 
ENU 

CALCflS.75 
CALCRS.76 
CALCRS.7.1 
CALCRS.18 
CALCRS.79 
CAlCRS.80 
CALCRS.Sl 
CALeRS.82 
CALCI\S.83 
CALCPS.84 
CALCRS.1l5 
CALCFS.1l6 
CALCRS.lll 
CALCFS.B8 
CAlCRS.1:l9 
CALCPS.90 

PAGE 3 
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PRJI1JO 

1. 

2. 
3. 
4. 

5. 

6. 

7. 

8. 
, 9. 
10. 

11. 

12. 
13. 
H. 
15. 
16. 
17. 

0000008 

0000008 
00C')008 
0000008 

0000008 

0000008 

0000008 

0000008 
0000008 
OOOO)OOB 

OOOOOOB 

0003308 
000331B 
000)3338 
000335B 
000336B 
0003'018 

•• SUB\OUTINE PROHOOIPrlI,IRS,II1Ax,JMAX,IH1,IM21.· 

SUBROUTINE PROMOOIPHt,I~S,tMAX,JMAX,I~I,IM2' 
C •• • •••• ~·.~· •• ••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C COMMON BLOCKS 
C •• ••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 

DI~E~SIJ~ S'VE1202291 
OIM~NSIUN rRANSIS12J 
Cli"HIJ~ 

1AIL51,YI301,ll021,XUI151,YVI301,lW(021, 
IJXEPI151,OXP~11SI,OYNPIJOI,OYPS(301,SEwI151~SNS(301. 
1)AE?UI 151 ,OXPWUI 151 ,SE WUI 151 ,OYNPVI301, OYPSV 130 I, S'NSVC30 I, 
1~I3JI,~V'JO),RCVI301,ftFNIJOI,~FSI301,WFEI151,WFwI151, 
lUI15,3U,21,Vl1S,30,21,W(15,30,21,PEI15,30,21,CI15,30,21.PP(ls,301, 
1"UIlS,301 ,UVI15,30) ,uwI15,301 ,vVI15,3J) ,VWC15,301 ,wwI15,301, 
lECI15,30),T~115,30),FFI15,~OI,UCI15.3JI,VCI15,3)I,wCI 15,301, 
1C 21 15, 3vl , e:: 1 15,30 I ,RS 115.30 I , 
1DtNI15,30,21.VISl15,30,2J,GA~I15,30,21,VISUUI15.JOI,VISVVI15,301, 
lA~115.3jl.AE'15.301,ANI15,301,ASI15,301,AOl15,301,AUI15,301, 
lAP(15,3vl,S~115,3ul,SPl15,30I, 
1 <.J TI 15 J ,C TI 15 I , QUE 1151 , DC 0 l B I 15 I , OUO I 15 I , 
l')EqSlr,VISCOS,PRA~JT,SPHEAT,EXCHAT, 
lCMJ,C~1,GR2,CRS,CRl~,CR2~,CEPSl,CEPS2,CEP'S,CAPP"ELOG, 
lCC1,C;2,C~,CC1W,CC2W,CG2,CG,CAPPAC,ELJGC, 
1J~U,JJV,J<.J~,JVV,JVW,JWW,JEO,JTE.JFF,JUC,JVC,JWC,JC2,JEC, 
1~I,NIM1,~IH2,NJ,NJM1,NJM2,NK,NK~1tIT,JT,KT,IJT, 
IH~JYl41,~EOVI4I,H!DWI41.HEOPI41,HEDCI'I.HEORI41,HEOO(41,HEOVISl'ol, 
lINCALJ,I~CAlV,INCAlW,INCAlP.INCAlC.[N?'O,INC'L~II41,INrURB,INOIFF, 
liS.PU,~S"PV,NSWP~,NSWPP,NS~PC,NSWPR, 
IMJUEL.~)QEC,MRW,HCW,IQUE,IOIF,IJET,ITEST,ITESU,ITESC.ICON, 
lIRJN, I V. i ti r. 1 Vl , lU2 , 1 C 1, IC 2, 11 , 12, 1 NOCO S, F RA, 
1"Jl,(ST~P,ISTP1,N~5,INDEX,DPDl, 
lFlJ~IN,VMEA~.QlENrH,SMAll,GREAT,XTOT,YTOT,RSWAlll1\I, 
IlDP'Olldl,IPRO,IEND,INDP~I.NUHPRI,BVE,Bvw,BVS,BWS 

C(,M'1)'i 
lE1115I,EruI151,Cerl151,OETUI151,DYW,NJP,NJP1,NJP Ml,IWAll. 
1~OUTE~,~INNER,ECCE~,ES,NJO,YTaTO.EXCH'W.NJCMl 
G~~MJ~ OlDJ'!01,OLOVI3~I,OLD~I301,OlOPI31', 

1 OLOUUI30i.~LOJVI301,ClDUWI301,OLOVVI301,JlOVWI301, 
1 ULDnWI301,)LDTEI301,r.lDEOl301,OlDFFIJOI, 
1 OlOOEN(301,OlDVISI301,OvISUUIJOI,OVISVVIJOI, 
1 OLDVTA,CDPDl 

LOGICAL INCALU,INCAlV,I~CALW,INCAlP,I~CAlC,INPRO, 
1 INCAlR,IIITJRB,H!OIFF 

EQUIVALENCE IXI!I,SAVEI!II 
E i./UI VALENCE (OlOU n I, TP,\NS 11 1 I 
uI~ENSION ~NEA~115,141, 

1 PHI (IMAX, JHAX, 
C •••••••• ~ •••••••• *.* ••• * ••••• * ••. ~* ... * •......•.... * .....••... * ..... t •• 
C W MOMENTUM 
c •••••• ·.··~····*···*·······*··**·*·········*······**·.~ ...• * ..••.••...• 

ENT'lY MUO" 
C AN OUTER "ALL 

IFI.Nor.INTU~BI Goro 220 
00 20J l,lMl,IM2 
YREF=¥VINJI-YINJM11 
"I SKEF=Vx;,COS 
UE'~EF=JEN'I,~JMl,ll 
UVEC= .. ( I,NJMl.11 

PROM(,0.2 
C(,MALL.2 
COHAll.3 
CCMALL.4 
otM3.1 
OIM3.2 
CrJMALL.6 
DVO.3 
011013.4 
01M3.5 
01H3.6 
,011'3.7 
01M3.8 
01M3.9 

PAGE 

01 .. 3.11) 
0IM3.11 
01M3.12 
OtM3.13 
01M3.14 
co "I ALL .19 
CO~ALL.20 
COMALL.21 
CDMALl.22 
COMALL.23 
CClo'ALl.24 
CO~All.25 
CQI1ALL.26 
COM At l.27 
COMAll.2B 
CDI'All.29 
COHAll.30 
CO~All. 31 
01"3.15 
01M3.16 
01113.17 
OIM3.16 
01113.19 
01/013.2') 
01113.21 
DII1~.22 
CO,MAll.32 
CO"'ALL. 3 3 
CCl1bll.34 
01M3.23 
01113.106 
PROMOD.5 
P~(~~f1G.6 

PRCM~D.7 

PROMOO.B 
PRQHOD.9 
PPCM(,0.10 
PPUIo'P.D.11 
PRDM[0.12 
PROMOD.13 
prOMf'D.14 
PRJM.JO.15 
PPOMCO.16 
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PRO"lOO 

18. 
19. 
ZOo 
Zl. 
ZZ. 

Z3. 
Z~. 
Z5. 
Z6. 
Z7. 
Ztl. 
Z9. 

30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 

38. 

39. 
40. 
Itl. 
"Z. 
43. 

"". "5. "6. 
" 7. 
48. ,,9. 
50. 
~l. 
5Z. 
53. 
54. 
55. 

56. 
57. 
58. 
59. 
60. 
t1. 
62. 

63. 
64. 
65. 
66. 
67. 

0003"6 
00::lH76 
0003576 
00036Z6 
0003646 

0004006 
0004036 
0004068 
0004076 
0004118 
'>0,)4138 
0004168 

0004368 
0004368 
000H08 
0004438 
0004456 
000~H6 
000':'508 
00045Z8 

000~5't6 

0004626 
000':'038 
0004656 
0004676 
0004718 
0004728 
OQC4716 
0005028 
0005058 
00051211 
0005218 
0005308 
0005308 
0005H8 
0005508 
0005558 
0005578 

0005758 
0006008 
OC06038 
00l!6048 
0000068 
00061013 
0006138 

0006418 
0006'028 
0006'038 
0006458 
0006478 

•• SU8RJUrINE PRO~JOIPHt,IRS,IHAX,JHAX,IHl.IMZJ·· 

YPLUS_UTlIJ~OENREF.YREF/VISREF 
Urlll_UvEC.eAPPA/ALJGIELOG·YPLUSJ 
v"tl ,NJlzUf( [,"'uTI I J 
IF~.~JT.INOIFFI GJ TO 200 
SP'1.NJM11.SPI1.NJ~lJ-UrIII.UTII'.SEWIII*RINJI.OZI 

1 .. ,I.NJH1.U.OEtl( I.NJ1-41.1I 
ANII,NJ'f1jaO.0 

200 eO,'-jTI~uE 
IFII~DIFFJ GO TO 220 
00 21) l-IM1.IM2 
At. I 1 • N;MU =0.0 
DO 210 ;"'2,NJMl 

210 SUIl,JlaSull.JI-IVWI1'J.11.RVIJ+11-V"II.JI*RVIJII.OENII.J,l) 
1 .SE .. ( 11 *Ol 

220 eONrINJE 
'DG 23':> ;-2.NJ 
AWl PH.JI-O.O 
At:I IM2,Jj "'0.0 

230 CO .. TPlUE 
OU 24) 1-11'11,1112 

240 ASI [.21-0.0 
RETUR~ 

C •••• ~ ••• ·.·········*········*···················**···.* •••••••••••••••• 
C HFAN SCALAR 
C •••• ·.···························**·················· •••••••••••••••••• 

ENTRY MODe 
C AN OJTtR rlALL 

Ifl.~or&INrJRBI GO TO 660 
IHlrl4LL.EQ.ll GO TO 660 
00 6jU '-11011,1"12 
rkEF=rv(hJI-YINJM1I 
v lstEf"Vl seus 
DE~~EF20EN'I.NJMl,KI 
YfLUS.UT'[I~OENREF.VREF/VISREF 
IF'I~UE.E~.UI GO TJ 610 
CT(lj·~uE'[I/IDENII.NJ,2)*UT(II·SPHEArl 
eOlfz:TllI/CAPPAC.ALOGIVPLUS*ELOGCI 
:;1(.:-IJ.2j.C( 1,-IJMI,llt-eOIF 
;0 TO 6Z0 

610 CDlf-~:lS(CIl,NJ.KI-ClI,NJMl.KII 
:r(ll·CDIF.eAPPAC/~LOGIELOGe·YPLUSI 

620 'C'l,~J)"-CTlII·UTI[1 
IFI.NJr.I~DIFFI GJ TO 630 
SUII.NJHll2SU'1.~JMII-VCII.NJ).OE~(I,~JHI.1J.SEW(IJ.RI~JJ.DZ· 

1 SPHEAr 
ANI I. NJMll"O.O 

630 CC.~HI ~uc 
IfII~u[~fl GO TO 660 
00 b5D j-lMl.IM2 
ANIl,NJ,'111-0.0 
00 653 JzZ.NJMl 

650 S Ull , JI "S U II , J I -SPH EA T.OEN ( r • J .1,. IS EW( 1 I*OZ. (Ve cI ,J+l1 .RV C J +11-
I VCll.JI*RVIJI)t-SNSIJI·Oz·,uccrt-1.JI-UCII.JIII 

660 eor.TJNU~ 
If(lWALL.EQ.OI GO TO 669 
00 ~ol I-1ML,I M2 
¥REFzYVlhJPI-Y(~JPI111 

VI~R~F-vlS'I.NJPMl.KI 

PAGE 

PRePlOO.17 
PRJHOO.18 
PPCHC'0.19 
PRCMCO.20 
PF-CMOD.Zl 
PROML-0.Z2 
PROMGD.23 
PP,CI'.CD.24 
PRO"lCO.25 
PROMOD.26 
PRCMCD.27 
PROMOO.28 
PRGMrO.29 
PRD"IOD.30 
PROMOO.?1 
PRCMOD.32 
PROMOO.33 
PPf'lMCD.34 
PROHCD.35 
PPCMCO.36 
PRflMCJ.37 
PPOHOD.38 
PP,OI'(10. 39 
PPCPl~O.'tO 

PROMOO.to1 
PROl'rO.42 
PRCI'CO.'>3 
PPOI'I o. ~4 
01'0.1.)7 
PI<.OMCO.'>S 
PPCMCD.'t6 
PReMcD.47 
Pf(!)MI"'D.'>a 
PRaMGD.lt9 
PROMOD.50 
PRC'I~CO. 51 
PR:J"I( D. 52 
PRGMOD.53 
PRDMrD.54 
PROMOO.55 
PROH':'D.56 
PRDHOD.57 
PfI.O'lOO.58 
PRQI'CD.59 
PRe MC!D.60 
pf:C'MrO.bl 
PRCMr.O.62 
PPCMOD.63 
PRCMrO.64 
PRLl'lOO.65 
PRIJM"O.66 
PRCHfle>.67 
PROMCD.6S 
PF.WCD.69 
01";.108 
DI M3.1:>9 
011'13.110 
OIM3.111 

2 

W 
-....J 
.&:-



PIHI!4'O 

68. 
69. 
70. 
71. 
7Z. 
13. 

7~. 

75. 
76. 
77. 

78. 
79. 
80. 
81. 
<12. 
83. 
84. 
85. 
86. 
87. 
ss. 
89. 
90. 
91. 

92. 
93. 
9'0. 
95. 
96. 
97. 

98. 
99. 

1'0 •. 
101. 
10Z. 
103. 
104. 
105. 
106. 
107. 
Ie 8. 
109. 
110. 

111. 
11Z. 
113. 
114. 
115. 
116. 
117. 
118. 

0006548 
0000608 
0006628 
0006668 
0006758 
0007028 

0007228 
0007308 
0007338 
0007508 

0007548 
0007556 
00C7578 
0007628 
0007638 
0007648 
0007708 
0007718 
0007748 
0010008 
0010118 
O(.l10158 
0010268 
0010348 

.0010766 
0010768 
0011036 
0011048 
0011068 
(1)11118 

0011378 
0011408 
0011426 
0011528 
0011548 
0011608 
0011628 
0011628 
0011648 
0011676 
0011736 
0011746 
0011768 

0012008 
C012068 
0012108 
0012246 
0012338 
0012373 
0012408 
001H68 

•• SU8~OUTINE PROMOOCPHI,IRS,IMAX,JMAX,IMl.IM21·. 

OE~~EF·OE~(I,~JPMl,KI 
YPLUS·UTIII*OENPEF.Y~EF/V[SREF 
AR~4LL·~'NJP'·SEwIIJ·Ol 
ANCI,NJPI·GAMII,NJ?l,KI/DETIII.Z.0.ARWALL 
4SCI,riJPll·4NCI,NJPI 
AS'I,iJPI·CAPPAC.UT'I)*DENCI,~JP.KJ~ARWALLI 

1 ALJ~CELOGC.YPLUSI.SPHEAT 
AMI,~J~Mll-ASI[,'1JPI 

IICII,NJPI:O.O 
CT(I).C4PPAC.ICII,~JP,KI-CII,NJPM1,KJI/ALOGIELOGC.YPLUSI 

661. CU~TI'IUE 
C---- ECCE!-ITUC CLlNOUCT1NG ANllULUS OF SPARROW A~O 6LACK S FL)I,I. 

''''1~'<''''Ju-NJP-l 
00 ~62 l~lMl,IM2 
DC 61>l H-l,"''''AX 
J-NJP+'4 
EM:FlOAf (.'" 
~AO·~I~J~I+)ETIII·IEM-0.51 
'RAul:~i~JP)+OErII).eM 
~AOul·RINJPI+OETUII+11·IEM-O.5' 
Awll,JI·'EII-l,JI 
~EII,J'_GAMII,J,21/RAOU1/SEWU'I+11·OErUII+11.0Z 
4SII,J'''t\NII,J-lJ 
ANII,JJ·GAMII.J,21/0eTI!l.RA01·SEWIII·DZ 
SUII,JI"ES.R.~O.SEWI 1 ''''OETI l/.Ol 
IFIISTEP.EO.ll wRlrEI6,6631 I,J,AEII,J"AWll,Jl,~NII,J"ASII,JJ, 

1 S,",II,JI 
663 FORHATII0A,213,IP5EI1.31 
66i! CU!-ITI'Wt: 

IFIINOIFFJ GO TO 664 
00 660 1-IM1,IH2 
DO ~66 J-l,NJMl 

666 SUII,JI"SUCI,Jl-SPHEAT.OENII,J,II*ISEHIII.OZ.IVCII,J+lI·RVIJ+l,-
1 IIC(I,JI.RVCJII+SNS(Jl.Ol*IUC(I.1~J'-UC[I,J'" 

66~ CUNTINUE 
uJ 605 1=IHl,[H2 
S,",'I,~JJ'4LI.SUII,~J0'41J+QUOIIJ.IRINJPI+ETIIII"'SEW(I'*DZ 
Atll[,NJuH11"0.0 
1/(1 I, ~JPI"-CH II.UT I II 

665 cuM INJ2 
669 CO.II T I 'We: 

JO HJ J-2,NJO 
" .. IlMl,JI"O.O 

670 AEIIM2,JI-0.O 
DO ~BJ I-IH1,IHZ 

6804511,21·0.0 
RET\JRi 

c •••• ••••••••••••••••••••• ... ••••••••••••••••••••••••••• •••••••••••••••••• C ALL TUR6ULENT VARIA8LES 
C •••• ·.·*············································· ..•........... ~ .•• 

ENTRY .'1)O~S 

UO aoo 1"1111,IM2 
GO TJ 1710,710,710,710,700,710,720,740,740,760,750,760,77011RS 

700 ~ S~ ~LLI J 'Jw I- '(I NJMlI/Y ClIJ)- III seos 10EN SI T IUTlIII CAPPAI OY IIPI NJHlJ 
~N~tRII,JII~J.UTCI'·UTII)·RSWALLIJVWI 

GO TJ 790 
710 "NEARII,l~SJ.WNEARll,JVW).RSWALLIIRSI 

GO TO 79U 

PAGE 

0IM3.112 
0IM3.113 
011013.114 
01113.115 
DIM~.116 
DIM~.117 

01113.118 
D1~3.119 
Dlf':3.120 
DI1'3.121 
0IM~.122 
01M3.123 
DI"I3.124 
D1M3.125 
0'",3.126 
OIM3.!Z7 
01"'~.12B 
01"13.129 
DIM3.U) 
DIM3.131. 
DIM3.132 
0[113.133 
0IM3.134 
0IM3.1.35 
DI M3.136 
01"~.137 
D[113.138 
.0 I""? .139 
01 ... ~.14:l 
D1113.141 
OIM3.1!t2 
D1113.143 
DIM3.144 
01)13.145 
01113.146 
OP13.147 
OIM3.H8 
D[1'3.149 
01 '0.15) 
01M3.151 
DIM3.15Z 
OP13.153 
PRO"(lO~ 71 
PPJMOO.72 
PF· C;I'co. 73 
Pll(lMOO.74 
PFOMUO.75 
PRr~GO.76 

PIH1'OO.77 
PPOMOO.7B 
PR(1'1C:D.79 
PPOMOO.BO 
PP(Jl'cO.Bl 
PRc..,~o.a 2 
PROl'LD.B3 
PRGM(1n.tl4 
PPOMoo.a5 
PROMOO.86 

3 
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PROMOD **S~6RO~TI~e PROMODIPHI,IRS,IMAX,JMAX.IM1,IM21** PAGE 4 

119. 0012416 720 WNElKIl,JEOI~HNEARII,JVWI*UTIII/CAPPA/OYNP(NJMll PROMOO.61 

120. 0012576 GO T) Hil PROMOo.66 

121. 0012606 140 wNEARIl,lRS'-O.O PROMGO.89 

122. 001263S GO TO ?'ill PPJM'JD.90 

123. o Hlb36 750 CO'4rlNUc PROMDD.91 

124. 01l1l64S NJM2 ~.IIJ.'1l-l PIIOMOO.92 

125. 0011656 RDr\Z 1;1.( \jJ i ";1. INJ I-PI NJMll *RINJMlJ 1*0.5 PP 01400. 9 3 

126. 0012716 Q~F_~UEII~.RINJI'OEN'I,NJ,2I'SPHEAT PROMrO.94 

127. OJll766 IFIQU:IIJ.IIE.O.OI OCOY6~ICCI,NJM1,21-C'I,NJMZ,ZII'SNSVINJMll. PPOMJO.95 

1 5NSINJMll'IYINJI-YINJM111 PROf"OO.96 

123. 0013166 IFIQUEIII.E~.O.OI JCOY6~IC(I,NJM1,21-C(I,NJM2,211/SNSVINJM11. PR(1"10D.97 

1 IYINJI-YINJM1II/SNSINJMll PROMOO.98 

129. OJ133-\6 QVlSa~INJM11.GAMII,NJM1,21.0COY6/0ENI(.NJM1,2I'5PHEAT P=lOMUO.99 

130. 0OlH28 JA.)(cU;U3III*wll.NJ'11,21*RoR"'''.8 PP(.'MJo.I00 

131. OOD506 Co~[P.ICII.1,NJH1,21-C(I,NJMl,2illlRCV(~JM11*SEWUII.11I 01113.154 

132. 0013576 CO)([M.':Il,NJM1,21-CII-1,~JMl,21I'IRCVINJMII*SEWUIII) 01M3.155 

133. 001366d I F( I.Eo/.IMll COxI'1-0.il OIM~.l5!> 

13~. OJ13 716 IFIl.Eo/.IM21 CoXIP~O.O OIM~.151 

135. 0013748 ~V(5)(.I:~)(IP-COxIMI/IRCV(~JM11*SEWIIII.GAM(I,~JH1,ZI.R ORI 01"13.158 

1 O:NII,NJI'l1,2J1SPHEAT 01M3.159 

136. 0014048 QUC al uC, 1"1, NJMII-UCII .t·JMII ,,(ReVI "'JM11*SEW I III *ROR 01143.160 

137. 0014H6 v:~_I-~wF.QVlS.QAX-~VIS)(.QuCI'RCV(NJMll 01M3.lCl w 
138. 0014226 wNEAR(l,J~Gia~C8 P!'.OMrO.l02 '" 139. 0014268 ';0 Tl 790 PRJ"OO.103 0'\ 

140. 0014278 760 ~~EA.R(l,l~SI-~NEAR'I,JVCI*RSWALLIIRSI PPGMOO.I04 

141. 0014358 :;0 TJ 190 PR::).'1f10.105 

142. 0014366 770 "~EAR'I,JG2'~CT(II.CrlII*RSWALLIJC2) PROMOO.I06 
143. OOH~26 790 PHl'[,NJI~IwNEAnll.IRSI*SNSI~JMI)-PHI(I,NJM11*OYNP(NJ~ III1 PPr.'1GO.IOl 

1 (YINJMIJ-YVINJM111 PRJ~Jo.!08 

14~. 0014616 800 CONTINU: PPt:MOO.IC9 
145. 001~648 (F(~RS.E~.JUW.OR.NRS.EQ.JUC) GO TO 910 PRJ"IDO.I10 
146. 0014678 'UO 9JJ JaZ,NJ PRmmo.l11 
147. 0014726 4 .. ·1 Pll,J/"'O.U ?RuM!JD.1l2 
14:3. 001475:3 90U lEI lM2,J)-0. 0 PR'l"'D.1l3 
149. 0015018 9111 C\...'IfI~JE PPGMOD.1l4 
150. 0015018 IF(N~S.NE.JUW.ANO.NRS.NE.JUCI GO TO 930 PRr)MQD.115 
151. 0015058 OJ 92J ,-lMi.IM2 PRJ .... QO.1l6 
152. 0,)15.)78 92,) 11.511.21·0 • .3 PRl'MOo.lll 
153. 0015110 931l ::'JllrIIjJl: PROMOfJ.llB 
1510. OJ1512:3 KETu~ .. pnOMOll.1l9 
155. 0015l't8 ErjO PRCMC'0.120 



PROMOO 

119. 
lZ0. 
121. 
12Z. 
123. 
124. 
125. 
126. 
127. 

lZ9. 

129. 
130. 
131. 
13Z. 
133. 
134. 
135. 

136. 
131. 
138. 
139. 
HO. 
141. 
14l. 
143. 

144. 
145. 
146. 
lit 7. 
14:1. 
149. 
150. 
151. 
152. 
153. 
154. 
155. 

001H7B 
00LZ578 
0012608 
0012636 
0)12638 
01112648 
0012658 
0012118 
0012768 

0013166 

0013348 
001H28 
0013506 
0013578 
00131J6d 
001371S 
0013746 

0014046 
00H146 
00HZZ8 
0014266 
01l14Z76 
0014358 
01114368 
001H28 

0014616 
0014646 
0014618 
001HZS 
0014159 
0015018 
0015018 
0015056 
0015076 
0015118 
OiH51Z~ 
0015148 

•• 5USRo~rl~E PROMOOIPHI,IRS,IMAX,JMAX,IMl,IM21·. 

7Z0 wNE~R'l,JEOI-WNEAR'I.JVWI·UTIII/CAPPA/OYNPI~JMII 
GU T) 790 

740 .NcA~'I,IRSj-O.O 
GO TO 791) 

150 C.O'lfINUE 
,"'JM22~J.'41-1 
ROR·'~I~JI·RINJI-RINJ~11·RINJ~111·0.5 
Q~F.~uEIll.RINJI/OENII.~J,ZI/SPHEAr 
IFIQ~:(II.~E.O.OI DCDYB-(CII.~JM1.21-Clr,NJM2,211/SNSVINJMll. 

1 iNSINJ~II/IYINJI-YINJMlll 
IFl~UElll.EQ.O.OI OCOY6s ICll,NJMl,ZI-C(I,NJMZ,lII/SNSV(NJMll. 

1 lYINJI-YINJM!II/SNSINJMtl 
QvIS_llNJH11.GA~II,NJHl,21*OCOY8/0ENII,NJM1,ZI/SPHEAr 
JAx"O;U:H lI*w( 1 t~J"'1,21*RDR*O.8 
CDAIP'ICII.I,NJM1,ZI-CII,NJMl,211/IRCVINJMll*SEWUlI.11I 
CDXI~21:11,NJMl,21-Ctl-l,~JMl,211/lRCV(NJMll.5EwUtlll 
IFII.E~.IM11 eoxl~,o.J 
IFIl.Eu.IMll CDXIPsO.O 
~VlSA.I;lXIP-COXI~l/lRCV(~JMll*SEW(III.GAM(I,NJHl,ZI.RORI 

1 D:Nt [, NJHl, 211 SPHEAT 
Q uc.., uc, [ .1. I'i JMlI -UC ( [ ,t'JMll III Rev I tlJHl I*SEW t [ I I*RDR 

V;~21-QwF.QVIS.QAX-QVISX.QUCI'RCVINJMll 
wNEARII,JVCI-VCB 
';0 J) 790 

760.NEARII,IRSI-wNEARII,JVCI*RSWAllIIRSI 
:00 TJ 190 

770 wNEARII,JC21-CTIII.CTIII*RSWAllIJCZI 
790 PHlll,HJI.(.NeAn(I,IRSI*SNSI~JHII-PHIlltNJM11*OYNP(NJMII" 

1 IYINJMII-YVINJM111 
800 CONf [NUS: 

IF(~~S.EJ.JUW.OR.NRS.EQ.JUCI GO TO 910 
00 90,) J-l,NJ 
~ .. ([Ml,Jj-O.O 

900 AcIIHl,JI-O.O 
910 CI.·HI~JE 

IHIHS.~E.JUW.AI\IO •. ~RS.NE.JUCI GO TO 930 
OJ 9ZJ 1-IM1,IM2 

92J 1\511,21"0.0 
9311 ;:J'HI '4Jc 

~ErLJil.~ 

eND 

PAGE 

PROlmO.67 
PR:JMOO.68 
PP.OMOO.69 
PP:)MOO.90 
PRr.MOD.91 
P~O"l(;I).?l 

PPOMOO.?3 
PR D~r·D. 94 
PPO"l:::D.95 
PPOl'OO.96 
PRC''''OD.97 
PROMOD.98 
P~OlWO.99 

PRC'i"JO.I00 
01"13.154 
01113.155 
OIM3.15!> 
01~~.lS7 

01"'3.158 
0IM::I.159 
DIM3.160 
DI H3.1H 
P!'.OMrD.I02 
PRJIoIJO.I03 
P"[j~OD.I04 
PI\;)M80.105 
PROMUD.I06 
PPr."ICD.I07 
PRJ~JD.t08 

PPeMOO.le? 
PRJ"'lJD.110 
PROMUD.lll 
PI/OllCD.IlZ 
PP.'l":10.113 
PROMOD.1l4 
P't'l'oIOD.1l5 
PRO~OD.1l6 

PRCMOD.1l7 
PROMOO.1!8 
pnOMOlJ.1l9 
PRCM(,O.IZ0 

4 

o 
(;; 

~ 

~ 
w 
~,,~ 
-....I 

...... 
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OUTPUT 

1. 

z. 
3. 

•• 

5. 

6. 

7. 

8. 
9. 

10. 

11. 

12. 
13. 
lit. 
15. 
16. 
17. 
18. 

0000008 

00000,)8 
OOOOOOB 
OOOOOOB 

OOOOOOB 

OOOOOOB 

0000008 

0000008 
0000008 
00J0008 

OOOOOOS 

OOOOOOB 
0043558 
00,.3560 
004370B 
0043728 
OOB 74 B 
00103758 

•• SU8RJJT1NE OUTPUT •• 

-SUB~OUTINE OUTPUT 
C •••• ···.····················**······················· .............•.... C COMMON 8LOCKS 
C •••••••• ••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 

OIMEN~ION SAVEIZ02291 
JIME~SIGN TkANSI51Z1 
CU'iM),. 

1XIl51,Y(301,lIOZI,XUI151,YVI30I,lWIOZI, 
1UXEPIl5I,UXPWIlSI,JYNPI301,OYPS(30),SEWI151,SNSI30I, 
10XEPU(15I,OXPWUI151,SEWU(lS),DYNPV(~OJ,OYPSVI301,SNSV(30), 
lR UJI ,kill 3iH ,RCVnO I, wF/Il1301 , "FS 130 I, wFE 1151, wFwll51, 
IJ(lS,3J,2),\I11S,30,21,WI15,30,21,PEI15,30,ZI,CI15,30,ZI,PPI15,301, 
1UUI1S,3UI,U\l11S,30J,UW(lS,301,VVI15,301,VwI15,3JI,WW(15,30), 
leUI 15,30), TE I 15,301 ,FFI 15,301 ,UCI15,30) ,VCI15,301 ,kCIlS ,30), 
lCZI1S,3JI,ECI15,30),RSI15,301, 
1 J E N ( 15, 3;' , 21 , V I S ( 15, 30, 2 I , GJ. M ( 15,30,2 I , VIS UU I 15,30 I , V IS VV I 15,30 I , 
1:'"115,3:>1, AE 115,301,4''11 15,301 ,ASI15,301 ,AOI 15 ,301 ,AUI 15,301, 
1APIl5,jO),SJI15,301,SPI15,301, 
LU Tl15 I ,:: r I 15 I ,QUE Ii 51 , OS OLB ( 15 I ,QUO 115 I , 
lUt~$ IT, VI SC:JS, PRA'lJ r ,SPttEAT, EXCtiAT, 
lCMU,CA1,C~Z,CRS,CRlw,CRZw,CEPS1,CEPS2,CEPS,CAPPA,EL)G, 
lCC1,C:Z,CC,CClW,CC2w,CG2,CG,CAPPAC,ELJGC, 
IJUU,JU~,JUW,JVV,Jvw,JWw,JEO,JTE,JFF,JUC,JVC,JWC,JC2,JEC, 
1'l1,NIMl,NIH2,NJ,NJH1,NJM2,NK,NKM1,IT,JT,KT,IJT, 
lrltUU(+I,HtOVI41,HEUw(41,HEOPI41,HEDCI4),HEOP,141,HEOOI41,HE)VISI41, 
IlNCALU,INCALV.INC~L~.INCALP,INCALC,INPRO,INCALRI141,INTURB.INOIFF, 
I~S"PU,NSw~V,NSWpw,NSwPP,NSWPC.NSWPR, 
l~UUEL,MOO~C,MRW,MCW.I~U~,IOIF,IJET,IrEST,ITESU.ITESC,ICON. 
11 RU ~ " U, 1 H T, lUI, I U2 • I Cl , I C2 , 11 , 12,1 NUCOS, FRA, 
1"Ul,IsrEP.lSTP1,~~S,INOEX,OPUl, 
1F(U~IN,II"EA~.gLENrH,SMALL,GRFAT,XTOT,YTOT,RSWALLI141' 
lLD~~)li~).IPRO,IENJ,'NDPRI,NUMPRI,eVE,8vw,eVS;6WS 

C (J'iMON 
lETI151,ETUllSI,OETllS),OETUI151,OYw,NJP,NJP1,NJPMl,IWALL, 
lRUJr~R,~Ii~ER,ECCE~,ES,NJO,YTOT~,EXCHAW,NJOMI 
C(JMHO~ ULOUI3~),DLOVI30I,OLOwI301,OLOPI30I, 

L JLOUUI!OI,~LOUVI301,CLOU~'301,OLOYVI30J,OLOvwI301. 
1 OLOftwI301,OLOrEIJOI,DLOEOI301,OLOFFl301. 
1 CLODENI301,3LDVlS(301,DVISUUI301,CVISVVI301, 
1 JLOUTA,aOPOl 

LOGICAL INCALUrINCALV,I~CALW,'NCALP,INCALC,IMPRO, 
1 lNCALR.'~TURB,INDIFF 

EI.iUIVALENCE I XIlI ,S AVElll1 
Ew~IVALENCE IOLOUlll,r~ANS(lll 
UIHENS')~ ATI30I,JUl(15,301,OUZI15,301,OU3115,30I,OU4115,30), 

1 OJ 5 115030 I 
REAL MINC,M4XC 

C ••• • •• ••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C SINGLE VARIABLES 

C·.··················································· ................. . 
wRlrEI6,OlOI 
lO-llZI/HOT/2. 
~klrE'o,U201 ISTEP,lO,Ol.DPOl,UT(31 
IF(Iu.E~.J.ANO.INOEX.NE.OI GO TO 110 
ua 100 I-IU1,IU2 
lAu~Ur'll·ur(II·DENSIT 
Ifl.~JT.INrurBI TAU-YISCOS.IWlf,NJMl,ZI-WII,NJ,211 

OUTPUT.2 
COMALL.2 
COI'IALL.3 
CflMALL ... 
01.'13.1 

PAGE 

Of M3.2 
CC'MALL.6 
OfM~.3 
OIM~.4 

OIM3.5 
01M3.6 
01113.7 
011'13.8 
01M3.9 
OIM3.10 
OIM3.11 
OIM3.12 
DIM3.13 
01"13.1'> 
CCM/LL.19 
COMALL.20 
CC'1ALL.Zl 
CO"!ALL.22 
COMALL.23 
CO,'1ALL.24 
CClMALL.25 
CO'lHL.26 
C(,~~ALL.27 
COM4tL.26 
COMALL.29 
CD,",ALL.30 
CCMALL.31 
01113.15 
01M3.16 
01'13.17 
OI!~3.1B 
011'13.19 
011'13.20 
0110.21 
011'13.22 
CCMALL.3Z 
CC'1~LL.33 

COMALl.34 
011'13.23 
01.'13.162 
0IM~.163 
0IM~.16" 
OUTPUT.,. 
OUTPUT.5 
OUTPUT.6 
OuTPUT.7 
OUTPUT.B 
QUTPtJT.9 
OuTPUT.LO 
CUTPur.11 
OUTPur.1Z 
OUTPUT .1:> 

1 

" 

W 
'-.I 
00 



OUTPUT 

19. 
20. 
21. 
22. 
23. 
2~. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 

3~. 
35. 
36. 
37. 
38. 

39. 
40. 
41. 
ItZ. 
103. 
~~. 
itS. 
46. 
47. 
48. 
49. 
5J. 

51. 
52. 
53. 
54. 
55. 
56. 
57. 
58. 
59. 

60. 
61. 

62. 
63. 
64. 
65. 
66. 

00H138 
004420B 
00H218 
OOH22B 
0044258 
0044308 
0044348 
0044H8 
004~458 

0044558 
00H568 
OC44568 
00H56B 
OJ4461B 
0)044648 

0044768 
00~5C'08 
OJ45078 
0045168 
00)4524B 

004534B 
OJ45418 
0045438 
00105458 
0045538 
0045638 
00~570B 
0045758 
JJ46H8 
0046168 
0046178 
0046228 

004634B 
0046378 
0046428 
0046448 
0046478 
0046508 
0046548 
0041>568 
0046603 

00~71Z8 
001t 7178 

0047208 
OC47228 
0041Z68 
0041308 
OO~733B 

~.SU8RourINE OUTPUT •• 

1 IIYINJI-YINJH1IJ 
CF_TAU/IJ.5.DENSIr~~CI,l,KI.WCI,1,KII 

L>EU-O.O 
DELZ-O.J 
DO IlJ J-Z ,NJHl 
wR=wl (,J,21/WI 1,1,21 
DcLl=DEL1~(1.0-WRI~SNSeJJ 

100 UEL2=JELZ.wR·Il.0-WRI.SNSCJJ 
EH= Ol:l.I./' DEL. Z.1. E-) OJ 
wR1TEI6,u3JI CF,DELl,DEl2,EH 

110 (FtlnT.EJ.OI GO TO 140 
CfLU.(-I.l.:) 
:)ELe=l.!) 
00 lZ0 (-(C1,IC2 
00 1Z,) J"2,NJ 
:FlUX_:FlUXtWII,J,ZI.cel,J,ZI.RcVeJI.SEweII.SNSeJI.DENII,J,ZI 

1 "5PHf:AT 
.R·~I[,J,ll/WCI,l,ZI 
CR_C:t(,J,21-CCI,I,ZIJ/(C(I,NJ,21-C(I,l,21.SMAlLJ 

1Z0 Ul:lC=DElCtWR.CR.S~SIJI 
wRiTEt6,L>~01 OElC,:FLUX;CTI31 
CbJLK-CFLUX/(VHE~~.R(~JI.R(NJ'.0.5.IXU(I2.1J-XU(Ill'J/OENSIT 

1 / SPrlEA T 
",RITEI 6,51l J 
DO 133 l"l,NI 
THETA=AII'13.14159~lSO. 
COl FF- I: (1,'1 J. Z J -CBUlK IIIC8UlK +SMAlLl 
ST4~:~U~"'/CCII,NJ,2'-CBUlK+SMAllI/CDENSIT.VMEAN.SPHEATI 
ENUSS_~T~~.PRANOT.OEMSIT.VHEAN·2.0·YTOT/VISCOS 
IFIsrA~.GE.1.E.201 STAN"6H 
",klTEI6,0601 I,THETA,QUOIl"OUE(IJ,CTI1',COIFF,C8JLK,STAN.ENUSS 

130 CCH1~uE 
140 CLi~TINUi:: 

wRITElbrlOI 
l~IMoOtI~rEP,INOPRII.EO.O.ANO.MODIIsrEP.NUHP~I'.N=.OI RETURN 

c ••• ····~···~·······························~········· •••••••••••••••••• 
C JUT PUT FRJM HYDRODY~AMIC CALCULATIONS 
C·.· .. ·.·············································· ................. . 
C ••••• ~EA~ VElJ:ITY FIEl) 

1FIIU.E~.~.AND.INDEX.EQ.1' GO TO 500 
wRITE16.2401 
DO ZO) 1"IU1,IU2 
)0 lUi) J"l ,'~J 
ouTl"YIJ UYI NJ I 
JUT2-w(1,J,21/UTIII 
OUT3"IYINJ)-YIJII·UTIII/VISCOS 
D ur 4" ,,' I , J , 2 II W I I , 1 , 2 I 
w"l rEI6,250) J,YIJI ,UII,J.21,Vtl,J,21,WII,J,2),PE( I,J,2J,PPII,JJ 

1 ,OUTl,OUTZ,oun,OUT4 
200 CONrINu: 

IFI.NJT.INTURBI GO TO 500 
C •••• ••••••••••••••••••••••••••••••••••• .. ···········~· •••••••••••••••••• 
C ••••• T~J-E~UATION ~OOEl 

Ifl~JJEl.NE.31 GG TO 390 
wRIrCl6,34" 
DO 3~O 1=IU1,IU2 
DO 30) ;-1 .... JMl 
JuTlEYIJIIYLNJI 

PAGE 

OUTPUT.14 
OUTPUT.IS 
OUTPUT.16 
OUTPur .17 
OUTPuT.18 
OUTPUT.19 
OUTPuT.ZD 
DUTPUT.21 
OUTPUT.Z2 
OUTPUT. 2) 
JUTPUT.24 
OUTPUT.25 
(JUTPUT.26 
ourpur.27 
QUTPUT.2S 
DUTPUT.29 
OUTPUT.3D 
OUTPUT.~l 
JUTPUr.32 
OUTPuT.33 
OUTPUT.34 
ourpUT.35 
OUTPUT.36 
ourpur.37 
01M3.165 
OUTPUT.39 
OUTPUT.41 
JUTPUT.42 
QUTPUT.43 
OUTPUT.~4 

OUTPUT.4S 
OUfPU" .46 
GUTPUT.47 
OUTPUT.48 
OUTPUT.49 
OUTPUT.50 
OUTpur.~l 
UUTPUT.52 
OUTPUT. 53 
OUTPuT.54 
OUTPUT.55 
OUTPUT.56 
OUTPUT.57 
OUTPUT.58 
OUTPuT.59 
OUTJ>UT.60 
DUTPUT.61 
DUTPUT.62 
OUTPUT.6) 
OuTPuT.64 
OUTJ>UT.6S 
ouTPur.~6 
OUTPUT.67 
ouTPuT.6S 
ouTPUT.59 
OUTPUT.70 
our pur. 71 
OUTPtJT.72 

Z 

c 
C~, 

\':!.~~.i 

..;..... 

~.JG, 

,~ 

(.0 -
"","'" 
\0 

r-' 

;'" 

~~' 



OUTPUT 

67. 0047H6 
68. OO~H18 
69. 004 74~8 
70. OU47506 

71. OOH616 
72. 0050016 
73. 0050068 
74. 0050108 

75. 0050108 
7b. 0050138 
71. 0050158 
78. 0050208 
79. 0050216 
80. 0050258 
Ill. 0050276 
82. 0050316 
83. 0050338 

84. 0050468 

85. 0050728 

8b. 0050778 
87. 0051026 
d8. 00510 .. 6 
89. 0051(,,78 
90. 0051108 
91. 0051148 
92. 0051278 
93. 0051328 
94. 0051338 
95. 0051358 
96. 0051418 

97. 0051718 
98. 0051768 

99. 0051768 
100. 0052018 
101. 0052028 
102. ·0052068 
103. 0052108 
Ie ... 00S213E1 
lu5. OU52148 
106. 0052258 
107. 0052338 

loa. OOSH58 
1)9. 00)52638 
110. 0052708 

•• SU6ROUrI~e oUTPur •• 

OUTZ-TEII,JJ/UTIIJ/UTIII 
JuT3·EOII,JJ·V(~JI/UTIII.·3 
OUT4-vlSlr,J,ZI/UTIII/VINJI 
JUTS __ IVISI1,J,21+VISII,J+I,ZII.0.5.IWII,J+1,21-WII,J, ZIII 

1 IrlJ+IJ-VIJJI/UTIII/UTIII 
wRITEI6,350J J,OUTL,T~Il,JI,EOII,JI,OUT2,OUT3,OUT4.0UT5 

loa CO~T1'WE 
aEl UR:-' 

390 CU~TI!'jUE 
c •••••• • •••••• •••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• c ••••• ~E¥~~LDS STRESSES 

wRlTElb.4401 
DO 4)) r-IU1.IU2 
OG 400 J-Z.NJ 
lUTl"t'i'1 J I/'I'(NJ I 
OUT2=UU'I.JI/UTIII/UTI11 
JuT3"VIII I, JIIUTlIIIUT(II 
OUT4 •• wlI,JI/UTIII/UrIIJ 
OUT5",TeU,JI/UTIIIIUTlII 
JUT~.-V.II,JI/IWlI.J,2J-WlltJ-1.21-SMALLJ.IV(JJ-YIJ-lJ II 

1 klNJI/UTIII 
wRITEI~.45ul J.OUT1,~UII.JI.VVll.JI.WWII.J',OUT2,OUT3,OUT4 

1 ,UJr5.0UT6 
'tOO :C~HI~UE 

c----)u.'IE OH AIL£: 0 INfJ~MA HDN· 
"RITElb,~I:>()1 
00 470 l-IU1,IU2 
00 Hl J-'.~J 
luTi='(V(JI/'( INJ' 
Jur 2='1 .. ( I, JI/UTI 1 I/UTI I I 
JUf3.-~~'I,JI.I .. II,J.21-WII,J-1,2)l/lr(JI-YlJ-1I'/(EOII.JI~SM~LLI 
JUT4=EJI!,JI·VINJI/UT(I' •• 3 
llJTS-VlSUUII.J,/UTCIIIYINJ' 
LlUT:."vlsvvtl ,JI/Urt I )/'(NJI 
J U T7: v w ( I , J J " SOl' T( A 8 S ( w w ( I , J, .. VV ( 1 , J) ) 1+ S MA L L I 
.. RlrEI~,48()1 J,OUTI.V"tI,J"UWII,JI,EOII,J),OUT2,OUT3,OUT4 

1 . ,OU15,OUT6,OUT7 
0\-70 COHI"lUe 
500 CO:llTI'4uE 

c •••••••••• ••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C OUTPUT f~OM SCAUR TRA.'.ISPORT CALCULATIONS 

c ••••• •••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 
C ••••• MEA~ SCALAR fIELD 

IflIHT.EO.OI ReTURN 
(fl (Hf .Eo/.21 GO TO aoa 
"RIrElb,64()J 
~~ bOO (-ICl.IC, 
DO 6JO J c 2,NJ 
ouTl=rIJIIYlNJI 
OuT2=';( 1 ,NJ .21-C{ I ,J,2I'ICCTI I'.SMALLl 
uUT3=ICII,NJ,Z'-CII,J,ZII/ICII,NJ,21-:(I,l,2,J 
Our 4" t v .. t ! ,;J , • t ell, J. 21-c( [ , J-l. 2 I , II 

1 IVCII.JI.(wlI,J.2,-WII,J-1.211+SMALLI 
.RITEI~.~501 J,OU11,C([,J.21,OUT2,OUT3.0UT4 

600 Cll,-.TI"IJE 
IFI.NOT.INTURB' RErURN 

c ••• ••••••••••••••••••••••• e 
C •••• *SCALA{ FLuxes A~D seAL 

••••••••••••••••••••••••••••••••••••••••• 
.oLUCTUA HONS 

PAGE 

OUTPUT.73 
OUTPUr.7'> 
OUTPUT.75 
JUTPUT.76 
OUTPUT.71 
JUT?UT.78 
OUrpUT.79 
OUTPUT.80 
OUTPUT.al 
OUTPUT.82 
OUTPUT.83 
OUTPUT.B4 
OuTPUT.85 
OUTPUT.86 
OUrpUT.a7 
OUTPUT.aa 
OUTPUT.89 
OUTPUT.90 
OUTPUT .91 
OUTPUT .92 
OUTPUT.93 
OUTPUT.94 
OUTPUT.95 
OUTPUT.96 
OUTPUr.91 
OUTPUT.98 
OUTPUT.99 
OUTPUr.IOO 
OUTPUT.IOI 
OUTPUT.102 
OUTPUT.I03 
OUTPUT.I04 
oUrpuT.l05 
OUTPUT.I06 
JUTPUT.I07 
OUTPUT.I08 
OUTPUT.I09 
DUrpUT.1l0 
OUTPUT .111 
OUTPuT .112 
OUTPUT .L13 
OUTPUT.114-
OUTPUT .115 
OUTPUr.1I6 
aUTPUT.1l7 
OUTPuT .11a 
OUTPUT .·119 
OUrpUT.IZO 
CUTPUT.121 
JUTPUT.122 
OUTPUT.123 
OUTPUT .124 
OUTPUT.125 
OUTPuT .126 
OUTPUT.127 
OUTPUT. 1 ;>.n 
JUTPUT.l 
OUTPUT.Ie 

3 

w 
00 
o 



OUTPUT 

111. 
112. 
113. 
11 .... 
115. 
116. 
ll7. 
118. 
119. 

120. 

121. 

122.· 
123. 
12 .... 
125. 
126. 
127. 
128. 
129. 
130. 
131. 
132. 
133. 
134. 
135. 
131>. 
137. 
138. 
139. 
140. 
141. 
142. 
l'o3. 
144. 
145. 
1 ... 1>. 
147. 
146. 
149. 
150. 
H1. 

152. 

153. 

154. 

155. 

156. 
157. 
158. 
159. 
160. 

0052138 
0052768 
"053008 
OC53038 
0053048 
0053128 
0053148 
0053178 
0053228 

0053368 

0053668 

0053738 
0053758 
0053758 
0053768 
0054008 
0054038 
0,)54058 
0054068 
00540b8 
OC54078 
0054078 
0054138 
0054138 
0054158 
005H68 
0054168 
,)054218 
0054228 
0054258 
,),)54318 
0054338 
OC 54378 
0054418 
0-)54448 
0054538 
0054638 
0054678 
005ft728 
0054758 
0055008 

0055038 

0055068 

0055118 

0055H8 

0055178 
0055218 
0055248 
0055268 
0055278 

c 

•• SU8~OUTI~E OUTPUT •• 

wRHEI6,74JJ 
OU 700 1-lel,tCl 
00 700 J-z,~J 
Jun-v,/I JIIYINJI 
JUTZ-U:II,JI/IUTltl·CTIII+SMAlll 
uUT3~'/CII,JI/IUTIII*CTIII+SMALLI 
JUT4-MCll,JI/IUT(II.CTIII+SMALLI 
JUT5 s C2(I,JI/(CT(II.CTIII+SMALLI 
OUT~~-":II,JI/'C(I,J,2/-CII,J-I,ll+SM~LLI*(VIJI-V(J-11) 

1 -OtNSIT/VISCOS 
MRITEle.,7501 J,OUn,UCII,J/,VCII,J),W::II,J),C2II,JJ,e:II,JI, 

1 OUT2,JUT3,OUT4,OUT5,OUT6 
100 C on I ~UE 

R.ETU~~ 
800 Cu'HI'WE 

IFI(NOEK.~E.OI GO TO 805 
00 !JOlt l-l,IT 
DO !JJlt J"1, JT 
:lUll I ,JI"O.O 
JU2II,JI-.).0 
o U3 I I , J I '" J. 0 
o U4 I I , J I- v. 0 
OU51 I, J)-O.O 

80~ ;:,u ... T1NUE 
NT.~JJ 

805 cu,~T INJE 
'4A.\C--Gil.EAT 
Hl'IC-Gil.tAf 
00 8D J"l,NJ 
ATIJI-YVIJ)/YINJ) 
OU 8ll 1-1,1'11 
~INC=~HIN1(HINC,CII,J,~)1 
'4A)\C-A~AALI~AXC,CII,J,21) 

810 C U;\jf I HuE 
DO U20 J"'l,NJO 
DU tl2J 13 1,1'11 
.lui I I, JI -~ II ,J ,KIll CSULK+SMALLl 
JU2'I,J/_ICII,J,KI-HI~CI/IHAXC-MINC+SMALLI 

810 C ONT! :IluE 
IFIINCALCI :~ll PRINTt1,1,N(,NT,IT,JT,KT,X.Y,C,HEOc,21 
IFI(~;:'ALCI CALL PRINTI1,1,NI,NT,IT,JT,KT,X,Y,OUI,HEOC,11 
IFIIN:~LC) CALL PRINTIl,1,N(,NT,IT,JT,KT,X,V,OJ2,HEOC,1) 
IflI~:~LRtJUCIICALL PRINTI1,1,NI,NJ ,IT,JT,KT,X,A~,UC, 

1 40H TANGENTI~L SCALAR FLUX ,I) 
IFII~CAL~(JvCI)CALL PRIHT(I,l.NI,NJ ,(T,JT,KT,X,AT,VC. 

1 40H RADIAL SCALAR FLUX ,11 
1Ft 1'4:ALU JwCI )CALL PRlflTl1,1,NI,ru ,(T,JT,KT,X,AT,WC. 

1 40H AXIAL SOLAR FLUX ,II 
IFIINCALil.IJ::21ICALL PRINTI1,1,NI,NJ ,IT,JT,KT,X,AT,Cl, 

1 40H I SCALAR FLUCTUUION '''2 ,l) 
IFII~CALR'JECIICALL PRINTI1,1,NI,NJ ,IT,JT,KT,X,AT,EC, 

1 40H SCALAR DISSIPATION PATE ,11 
.)0 !J25 l-l,NI 
00 825 J~l,NJ 
J Ul I 1 , J I-0.0 
JU21I,JI-O.Il 

815 C OIH HwE 

.> 

PAGE 

OUTPUT.l31 
JUTPUT.132 
OUTPUT.D3 
OUTPUT.134 
OUTPUT.B5 
OUTPUT.136 
JUTPUT.B7 
OUT PUT .138 
aUTPUT.139 
OUTPUT.140 
QUfPur.l41 
OUTPUT.142 
our PUT .143 
OUTPUT.144 
OUTPUT.145 
OUTPUT.146 
0(113.166 
OI~3.167 
OII'~.168 
01113.169 
OIM).170 
0IM3.171 
01'13.172 
OIM3.173 
O(~3.174 

01'13.175 
01"3.176 
01"13.177 
01:-1).178 
01"\3.179 
OIM3.19~ 
DUB. lSI 
01H3.182 
O( H2. '-83 
01H3.184 
01'13.185 
01M2.186 
01113.187 
01H3.188 
011-13.189 
0("\3.190 
0[.'13.191 
0IM3.192 
01'13.193 
0IM).194 
OIH3.195 
OPI3.X96 
011'3.197 
01'13.198 
01"13.199 
01~3.200 

01 M 3. 2:ll 
011'3.202 
01'l::.20J 
01113.204 
01"3.205 
01113.206 
01M3.207 

It 

r-". ....... 
t·· .. <· 

""'.~. 

,-". 

..... ......:... 

...;; 

Cu.. 
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OUTPUT 

161. 
162. 
163. 
164. 
165. 
166. 
167. 
168. 
169. 

170. 

111. 

172. 

173. 

lH. 

175. 
176. 

177. 

178. 
119. 

180. 
1131. 

182. 
183. 

18~. 
185. 

186. 
187. 

188. 
169. 

190. 
I'll. 

192. 
193. 

005532a 
00553~a 
0055316 
0055528 
0055656 
005600S 
0056026 
0056056 
OOS611a 

005615S 

005617a 

0056216 

0056236 

0056258 

0056216 
0056278 

0056276 

0056218 
0056278 

0056278 
0056278 

0056278 
0056276 

0056278 
0056276 

0056218 
00Se276 

0056276 
JC56278 

0056278 
0056276 

005627S 
0056216 

•• SUbROUTINE OUTPUT •• 

00 630 l-lCl,IC2 
00 tI)ol J-2"IjJMl 
OullI,Jl __ VwlI,JI.1YCJ1-VCJ-111/CWCI,J,KI-WCI,J-l,KI-SM~LLI 
JU211,Jk __ V:II,Jk.IYCJI-YIJ-1111(CII,J,KI-CII,J-t,KI-SMALLI 
JU3CI,J) __ ~CII,JI/ICCI,J,KI-e(I-I,J,KI+SMALLI.SEWU1II.RCVCJI 
JU41I,Jk-uul(I,JI/IOU2CI,J)+SMALLI 
JU5II,Jk-)U3tl,Jl/tJU2II,JI+SMALLI 

83i) CuNTlNJ: 
IFtISTEP.LE.IJ CALL PRINTI1,1,NI,NJ,IT,JT,KT,X,AT,CU1, 

1 40H ~OMENTUM DIFFUSIVITY -p~oI~L- ,11 
CALL P~INT(I,l,NI,NJ ,IT,JT,KT,X,AT,OU2, 

1 40H SCALAR DIFFUSIVITY ~RADIAL- ,II 
CALL PRINrll,I,NI,NJ ,IT,JT,KT,x,AT,OU3, 

1 40H SCALAR OIFFUSIVITY -TANGENTIAL- ,11 
CALL PRlIjT(l,l,IjI,IjJ ,IT,JT,KT,X,Ar,OU4, 

1 40H PRANOTL NUMBER -RADIAL- ,II 
CALL P~lIjT'I,I,MI,IjJ ,IT,JT,KT,X,AT,CU5, 

1 40HRArl0 OF DIFFUSIVITIES~TANGENTIAL/RAOI~L.11 
::lETURN 

C ••••••• ·······························***·······*···· ................. . C FORMAT STATEMENTS 

C •••••••••• • •• ······*································· ................. . 
10 FJR~Arll/IIHO.12011H.kllll 
20 FOR~ATlli ,ZOX,.STEP-.,I4.3X,. lO·.,lPEIO.3,. OZ··,lPEI0.3, 

1 • OPOZ-.,lPE1Q.3,. UTAU··,IPEIO.31 
30 FURMATIli ,32X •• CF_.,lPElO.3,.OEL1-*,lPElO.3,* OEL2-·, 

1 lPElO.3,. EH:·,!PEIO.31 
~O FOR~Ar'lH ,31X,.DELCx*,lPE10.3,*eFLux •• ,lPEIO.31 
50 FOIMATI).X •• I THETA ,00 QI CTAU (Cw-C611:S· 

I ,. CBULK STAN NUSS·k 
60 FORMAr(33X,12,IP8Ell.31 

2~U FO~MAT(112X,* J V 
1 ,. P 
1 ,. YPLUS 

250 FJ~~AT(2A,12,IPIOEll.31 
3~~ FURMArl//2x,. J Y/R 

1 ,. ER/UT3 
350 FOR~ATI2A,12,IP7El1.31 
~4U fORMAT(112x,. J YV/R 

1 ,. UU/UT2 

PP 
W/WMAX 

U 

K.E. 
VIS/UTIR 

UU 
VVIUT2 

1 ,. W-DIFFUSlvITV./1 
450 FO~MAT(2X,12,lP9El1.31 
460 FuR~ATII12X,* J YV/R V~ 

1 ,. VW/UT2 PIE 
1 ,. VIVV/un VW/V/W*II 

480 FORMArlzx,I2,lPlOE11.31 
64~ fUR~ATI/12X,. J Y/~ c 

1 • PR*/I 
650 fOR~AT(2X,12,lP5Ell.31 
740 Fu~MAT(112X,* J VV/R UC 

1 • CZ EC 
1 • we/uTCT CZlCTcr 

150 FO~~~T(2X,I2,IPI1El1.3) 
END 

./1 

v 
Y/R 

ED 
SHEAR/UTZ.I J 

vv 
ww/UT2 

W. 
WPLUS· 

K/UT2· 

ww* 
TE/UT2· 

EO. uw 
ER/un VIUU/UTR. 

CPLUS 

vc 
UC/UTeT 

Ve/OCY·/) 

CBAR., 

we. , 
VC/UTCT*, 

PAGE 

01M3.208 
OIM3.2:l9 
01M3.210 
OI~3.211 
01M3.21Z 
0IM3.213 
01M3.2H 
DIM3.215 
011013.216 
OIM3.217 
01.'13.218 
01M3.219 
011013.220 
01M3.221 
01M3.222 
OIM3.223 
01"'3.224 
01'13.225 
OUTPuT.147 
OUTPU p .148 
OUTPuT.149 
DUTPUT.ISO 
OUTPur.lSI 
OuTPUT.152 
DUTPUT.153 
OUTPUT .15' 
OUTPUT.1SS 
OUTPUT.t56 
OUTPUT.1S7 
OuTPUT.1S8 
OuTPUT.159 
:lUTPUT.160 
OUTPUT.161 
OUTPuT.162 
:lUTPUT.163 
OuTPuT.16'> 
:lUTPUT .165 
ourpur.166 
OuTPUT.167 
OUTPUT .U8 
OuTPuT.169 
OUTPUT.170 
OUTPur.l7l 
OUTPuT.172 
DUTPUT.113 
OUTPuT.174 
JUTPUT.175 
:lUTPur.176 
OUTPUT. 1 77 
DUTPUT.178 
OUTPUT.179 
JUTPuT.180 
OUTPUT.lSI 
OUTPuT .182 
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LlSDtV •• Su8~0~rINE LlS0LV (iSrART,JSTARr,PHI1,N,KP,NS,IM1,I~ZI.· 

1. 0000008 SU&R~UTl~E LISCLV IISTA~T,JSTART,PHI1.N,KP,NS,IM1,IMZI 
C·.··················································· •••••••••••••••••• 
C COMMON 8LOCKS 
C •••• ••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• 

Z. 0000008 OIMENSI)~ S,IIE(202291 
3. 0000008 01~E.510~ rRANSI5121 
0\. ODD ODDS CGHMON 

1 .. 115) , Y 1 3 () I , II 02 I ,)(UIl51 , rVI 30 I ,l >1102 I , 
lUxEP 1151, 0)(p1o/1151 ,DY~PI:.'OI ,OYPS( 301,S:1o/1151, SNSI 301, 
IJJlEPU(15) ,DXPWUI151 ,SEkUI1S) ,OYNPVI30I,OYPSVI3()I,S~SVI3D), 
1RI~JI'KII1301 ,P.CVllJI,.lF'II301 ,wFS1301 ,WFEll5) ,WFIo/11SI, 
1UI15,30.l),VI15,3J,21,>l115,3n,21,PEI15,30,21,CI15,30,21,PPI15,301, 
1~UI1S, 301, UII115 ,30) ,U"'115, 301 ,IIVI15 ,301, Vw( 15 ,)01, wwll5 ,301, 
lEu(15,3~I,rE(15,3DI,FFI15,301,UCI15,30I,VCI15,30I,WC(15,301, 
1C.2115,3JI, ECI15t3JI ,ltSIl5t301, 
IDE~115,3J,2I,IIISI15,30,21,GAMI15,30,Z),VISUUI15,30).VISVVI15,301, 
1A"115,3JI,AEI15,30I,ANI15,30I,ASI15,30I,AOI15,301,AUI15,301, 
HPI 15,JJI, S~tl5,JOI ,SPI 15,301, 
lUTI151,CfI151,QUEI151,DCOl61151,QUOI151, 
llENSlT,lIlSCJS,PFANGT.SPHEAT,E)(CHIT, 
lC"J,C~1,tR2.CRS,CRlW.CRZW.CEPS1.CEPS2,CEPS,CAPPA.ELOG, 
lCC1.CC2.CC.CC1~,CC2~,CG2,CG,CAPPAC.ELJGC. 
1JUU,JU',J~>I.JIIV,JIIW,JWW,JED.JTE,JFF,JUC.JVC,JWC,JCZ,JEC, 
1~I,NI~1,~I~2.NJ.~J"II,~JM2,NK,N~Ml.IT,JT.KT,IJT, 
1rlEDU ('+) ,IIEOV 141 ,HEDWI41, HEOP 141, HEDC 141, HEOr.141, HEDDI 41, HED" IS I 41. 
IIN:ALJ,IN;ALV,[NCALW,INCALP,INCALC,INPRO,INCALRI141,1NTURB,INDIFF, 
l~!. ... PU,NS .. PII,NSWP .. ,'1S"'PP,NSWPG,NSWPR, 
I~OUELt"lJUEC,MRk,MCW,IQUE,IOIF,IJET,ITEST,ITESU,ITESC,ICON, 
llRJ~,'U,Jrlr.IU1,IU2,IC1,IC2,I1.IZ,INDCOS,F~A, 
1~tOltl~T~P,ISTP1,N~S,INDEX,DPDl, 
IFLJwIN.VMEAN,QLENr~.S~ALL,GREAT.XT3T,YTOT,RSWALLI141, 
llOP~OI1~I.IPRO,IE~O,INOPRI,NU'lPRI,BVE,BVW,8VS,BWS 

5. OOOOOOS CG:i.'IJ~ 
1~rl15ItErUI15),OETI151,DETUI151,OYW,NJP,NJP1,NJPH1,IWALL, 
I~UUrE:iI.,:u NIlE R ,ECCEN, ES ,~:JO, Y TOTO, E)(CH~.W ,I'IJ9Ml 

6. OOOOOOS :OIl'4~'1 ULDUI30I,OLDII1301,CLOw(30),QLDPI30l, 
1 OLDJU(30),OLDUVI3D),OLOUWI301,OLDVVI!OI,OLDVWI301, 
1 GLDn>l(301,JLDTEI301,OLOED(301,OlOFFI30), 
1 OLDOENI30I,OLOVISI30I,OVISUUI301.0VISVVI301, 
1 ULOuTA,COPDl 

1. OOOOOOS LOGICAL INCALU,INC~LV,I~CALW,INCALP,INCALC,INPRO, 

1 INCALR,INFJR6,IND[FF 
8. 0000008 EUU[VALENCE IXIll,SAIiEllI) 

,9. OOOOOOS E (,jUI VAL eN CE 10l0UIll,T~A~S(111 

10. ,OOJOOOS DIHEkS[~N P~Il(15,30,21,PHI'15,30,2)'A(301,61301,CAI501,D(301 

c ••••• -····*······*·~·****··~····*······**····***·***· •••• ~ ••••••• * ••••• 
c··· .. ·,.;E~r-EAsr S"EEP 

11. 0000008 JSTM1"J:.TAU-1 
C I'HTlALlSE PHI ARRAY. 

lZ. 002021S DO 10 1-I,NI 
13. 002023S DO 10 J"J"NJ 
10\. 01>2026S IF'~.E~.~'PHIII,J,I)·PHIl(I,J,l) 

15. 002035B 10 Pl1lI1.J,21"PHIlI[,J.KPI 
16. ()O20518 A IJST.'111·O.U 

. C---~t::-1'1E."CE .. -E SwEEP 
17. 0020516 DO 100 l-IML,IM2 
18. 0020548 CAIJ~rM11-PHI(I,JSrM1,KI 

P_GE 

LISOLII.Z 
CCMUL.2 
COI'!ALL.3 
COl'ALL.4 
011'43.1 
01113.2 
CO,",nL.6 
011'43.3 
011'.~.4 

0IM:!.5 
011'43.6 
0[1'43.7 
01'13.8 
011'43.9 
01H3.10 
OIM~.l1 
011'43.12 
01"13.13 
DIM3.14 
CCHALL.19 
CCMALL.ZO 
C!'MHL.21 
COMALL.22 
COMALl.23 
COMALL.24 
COMALL.2!i 
COM~LL.26 

COMALL.27 
CC'lALL.28 
CC'~ALL.29 
CC'MALL.30 
Cf'MALL.31 
DiM:.15 
DIM~.16 
011'43.17 
011'43.18 
D[M3.19 
DIM~.20 
DIM3.21 
011'43:22 
CCMALL.3Z 
COM~.L L. 3 3 
CGMALL.34 
011'43.23 
DPO.226 
LlSClLV.6 
LI SOL 11.7 
LlS(,LII.8 
LISOL V.9 
LlS'1LV.IO 
Ll5Dl v.ll 
LI SC'L v.12 
Ll SCL 11.13 
LISOLv.14 
LISOLII.15 
LI SDl V.16 
LIS(1LV.11 
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lISQlV 

19. 

ZOo 
21. 
2Z. 

23. 

H. 
25. 
26. 

27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
31. 
38. 
39. 
40. 

41. 
42. 

43. 
'44. 

45. 

46. 
47. 
48. 

49. 

50. 
51. 
52. 

53. 
51,. 
55. 
56. 
57. 
58. 

00Z060B 

00Z0648 
0020678 
0020108 

0021038 

002101,8 
0021078 
0021118 

0021168 
v.,21208 
0021218 
0021328 
0021358 
0021378 
0021418 
0021448 
0021538 
0021658 
0.;)21678 
0021678 
0021718 
002171,8 

0022128 
0,)22138 

0022138 
0022168 

oa22228 

0022268 
0022308 
0022328 

0022458 

0022468 
0022518 
OJ22!:38 

0022608 
0022628 
0022638 
0022148 
0022718 
0023018 

•• SU8RJ~TINE LISOLV IISTART,JSTART,PHI1,N,KP,NS,IM1,I M21·· 

C-----COMMENCE S-N TRAVE~SE 
DC 10L J·JSrART,~J~l 

C---ASSEMdLE TOI1A COEFFICIENTS 
AIJI-IIt.,·'" hJI 
dIJI·Il.SII,JI 
CAIJloAEII,JI.PH'I'+l,J,KI+AWII,JI.PHIII-l,J,K)+ 

1 A U I I , J I _ P rlI I I , J , K -11 + SUI I, J I 
OlJI=APII,JI 

C-----CAL~ULATt C~EFFICIENTS OF RECURRENCE FORMULA 
rER~cl./IOIJI-BIJI.A(J-lll 

AIJI:"JI*TERM 
101 CAIJIKIC~IJI+8IJ).CA'J-111.TERI1 

C-----ObUIN Nbl PHI~S 
00 102 JJaJSTART,NJM1 
J .... J.Ji(M1-JJ 

102 PHI11I,J,KPlaAIJI.PHI1(I~J+1,KP)+CAIJI 
100 CuI.Tl'lUE 

IfINS.t~.ZI Gri TO 150 
00 11 l-IST~RT,NIMl 
DO 11 J-J5TART,NJMl 
PH111I,J,KPI-PHI113,J,KP) 

11 PHlll,J,KI~PHI113,J~KPI 
REiUR,'j 

150 ;;C .. JII'/Uc 
DO 155 l-lSTART,NIMI 
DO 155 J-JSrART,NJ~l 

155 ?tH I 1, J,<I-PHIl lI,J ,KP) 
C ••••• -···························*··················· ••.....•...•.....• 
C ••••• SU~TH-NJRTH S"EEP 

lSnn-I;;URT-l 
AIIH"IU-IJ.J 

C CO~~EN:E S-N SWEEP 
DO 2:iJ J-JSrART ,NJ .... 1 
CAIISTMII-PrlIIISTHl,J,K) 

C CCMME~CE "-E TRAVERSE 
OU 201 I-ISTART,NI'll 

C ~SSEM~LE TOMA COEFFICIENTS 
AIII-A;:II,JI 
81l1-A .. Il,JI 
C All I • AN I 1 ,j I.PH I I I , J +1, K ,+.1. SI I, J 1* PHI' I , J-l , KI 

1 +AulI,Jl*PHIII,J,K-11+SU(I,JI 
o I·ll cAP I I , J I 

C CALCJ~ArE COEFFICIENTS OF RECUR~ENCE FORMULA 
TBM"'1.JIIOIII-dlll*AII-1l) 
AIII-lIIll·TERM 

201 CA'II-I~A'II+8(II·CAII-lll.TERM 
C JbT~I~ ~E~ PHI,S 

DO 202 II-ISTART,NIM1 
1=,~IHSTM1-11 

202 ?Hllli,J'"P'-AII'*PHI1II+l,J,KPI+CAIII 
200 Cur-.fINUE 

RETu~~ 
END 

PAGE 

LI SC'LV.18 
LI SOLV.19 
L1 SrlL V. 20 
LISOLV.21 
LISUlv.Z2 
LI SClV.23 
LISJLV.24 
LISCLV.25 
LIS:LV.26 
LI SOLVe 27 
LI SOLVe 2 8 
LISJlV.29 
LlSC'LV.30 
LI S'll v.31 
LISOl V. 32 
L1S[)lV.33 
LIS::lV.3't 
LI SOL V.35 
lISJlV.36 
LI SOL II. 37 
lISClII.38 
LISJLV.39 
LISOlV.~O 
LlSOLII.41 
LISOLV.42 
LI SC'L V.1t3 
lISJLV.1t4 
LISOIII.H 
LlSCllV.~6 

lIS0LV.41 
LlS'JLV.1t8 
LISOLV.49 
LISOLV.50 
LlSDLV.51 
LI S OL II. 5 2 
LISrLII.53 
1I SeL V. 54 
lISOLV.55 
USOLV.56 
LISI:LII.57 
LlSCLV.58 
LISJLV.S9 
L I $ OL V. 60 
USOLV.61 
LISOLV.62 
llSCLV.63 
llSGLV.64 
LI SOL V. 65 
LlSC'lV.66 
LISDLV.67 
LlSULV.68 
llSDLV.69 
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PRI!fT 

1. 
2. 
3. 
it. 

5. 

b. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
Zl. 
22. 
23. 
24. 
25. 

2(,. 
27. 
Z8. 
29. 
30. 
31. 
3Z. 

00:10008 
0000006 
00C0008 
0000006 

0000008 

0000008 
0000008 
0001068 
0001013 
0001156 
00:l1l68 
0001178 
00n206 
0001218 
0.).)1238 
0001258 
0001458 
0001506 
0001536 
0001548 
1>001608 
0001656 
00017Z6 
0001768 
0002176 

0002326 
0:l02346 
0002368 
,),)02368 
0002366 
0,)02368 
00C2368 

•• SUSROUTINE PRINT IISTART,JSTART,~[,NJ,IT,JT,KT,X,V,PH(,HEAO,KJ •• 

SUS~~UTINE PRINT (ISTART,JSTA~T,NI,NJ,lT,JT,KT,X,V,PHl,HEAO,KJ 
0[M~N5I)N PHIIIT,JT,KTJ.XIZOJ,VISOI,HEAOI41,STOREI501 
OI~E~SIJ~ FI7J,F"Illl 
OATA f/4HIIH ,4H,Ab,,4HI3, ,4Hlll ,4HlO. ,'H7X. , 

14HA6J I 
JAU F4/4H II 

1 'rl 11 
OArl rll.HYlbH 
I SK [P "1 
JSi\IP z 1 

.4H 21 ,4H 31 ,4H 41 .4H 51 ,4H 61' , 
,4H 81 ,4H 91 ,4HIDI ,4HllI I 

t - , 6H Y ~ I 

"~ITElb.llOIHEAO 
I STA-I STf<iH-12 

100 C u:.r I ~U= 
IS,r.·ISU+12 
IENO"lsr'+l1 
lE~J·~I~~INI,IENOI 
FI4'''F4(IE~U-ISTAI 
w~ITE(6,FI Ht. II,I-ISTA,IENO.ISKIP" HV 
loRI TEl 6.11ZI 
00 101 JJ2JSTART,NJ,JSKIP 
J-JSTHT+r.J-JJ 
00 12) i-ISTA.IENO 
l-PHIII,J,KI 
IF'Aa~I~J.LT.l.E-ZO' A~O.O 

120 STORE(I1-A 
101 ~RITE(b.1131 J.ISTOREIII,I-ISTA,IENO,ISKIPJ,VIJ' 

.RIT~I6,i141 IXII),I=ISTA,IEND,ISKIPI 
c------------------------------------------------

IHIE~U.LT.NIIGO T) 100 
REI"UR'l 

110 FuRM~rllrlO.20(2H*-1,5X,4AlO,5X,ZOl2H-*11 
112 FOR~ATI3H JI 
113 fLR~Ar'lrt ,I3,IPI2EI0.Z,OPF7.31 
11~ F)~~Ar(~HOX- ,12EI0.31 

ENU 

PRINT.2 
PRI NT.3 
PRINT.4 
PRIIJT.5 
PRINr.6 
PRINT.7 
PRI'IT .8 
PRINT.9 
PR H~ T .10 
PRINT.l1 
PRINT.12 
PRI'IT.13 
PRINT.l4 
PR!NT.15 
PRINT.I!> 
pp I ~ T .11 
Pr.INT.18 
PP.INT.19 
PRPIT.20 
PRINT.21 
PRtNT.Z2 
P~INT.23 
PPINT.24 
PRPH .25 
PJl.INT.2(' 
PRINT.Z7 
PRINT.28 
PRINT.29 
PRINT.3D 
PPHH.31 
PRINT.32 
PRINr.33 
PRH'T.34 
PRINT.35 
PRINT.36 
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(a) Single Wall 

(b) Two Parallel Walls 

(c) Inside a Cylinder 

Fig. A.I Near-Wall Geometries 
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Fig. F.I Calculation Domain 



0 n . i 

c~'~"' J (~ \J 1 I J 
U " .~," b' ~) ., 

- 389 -

I-l I . I+l 

... DXPW(I) DXEP(I) 
~ ~ ;;. 

~\ I J+l 

DYNP(J) 1- SEW (I) 
~I I 

W(J+l) 
1\ I 

Y V(J+l) 
II J 
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SNS(J) 
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II X(I-l) 

Y(J-l) 
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-

XU (I+1) > 
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~ 

Note: 

DXEPU(I) ::: SEW(I) ; DYNPV(J) = SNS(J) ; 

DXPWU(I) ::: SEft'( I-l) '.> DYPSV(J) ::: SNS(J-l) ; 

SEWU(I) ::: DXPW(I) ; SNSV(J) ::: DYPS(J) 

Fig. F.2 Grid and Related Dimensions. 
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