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ABSTRACT 

A fluid dynamics model for the evolution of salt domes and ridges 

is presented. The model assumes a rigid substrate, finite thickness of 

both strata with no slip and a rigid or free surface of overburden. 

Inertial terms in the Navier-Stokes equations are neglected due to the 

large viscosities considered and the initial perturbation is taken to be 

sinusoidal. Finite sine and cosine transforms are used to solve the 

flow equations and the resulting systems of equations reproduces the 

velocity field equation of Ramberg's model. Assuming an initial interface, 

the infinite series solution is truncated to obtain the constants of the 

integration from the boundary conditions. The interface is then moved 

to a new position. Thus, the new shape for the interface can be traced 

for any time. 

For small perturbations, we obtain results that are approximately 

those obtaine4 by the linear theory. Results of the numerical solution 

of the model for both large and small perturbations are presented. 

* Permanent address. 
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1. INTRODUCTION 

The relative high mobility of saline rock, particularly the evolution 

of salt-domes and ridges, renders salt-dome tectonics as an example for 

the tectonic evolution of many geological and geophysical phenomena. In 

most of these phenomena, a gravitational instability is the underlying 

cause. A gravitational instability will result whenever a lower density 

material is overlain with a higher density material. This observation was 

demonstrated experimentally by Parker and McDonnell, 1955, who also found 

that this process is independent of the value of the viscosities of the 

materials. Many theoretical treatments for the gravitational instabilities 

of layered systems, as well as experimental results, have also been 

reported in the literature for a long time, e.g., Rayleigh, 1883; Chandra-

sekhar, 1955; Biot, 1961; Danes, 1964; Biot and Ode, 1965; Ramberg, 1967, 

1968a, 1968b, 1972a, 1972b; and Berner et aI, 1972). 

Lord Rayleigh, in 1883, considered a periodic disturbance in 

an incompressible heavy fluid of variable density horizontally stratified. 

He found that for the case of two uniform fluids of densities P and P 
I 2 

(the subscripts 1 and 2 refer to the upper and lower fluids respectively) 

separated by a common boundary, the amplitude of the disturbance grows 

at proportional to e ,where 

2 a (1.1) 

k denotes the wave number of the disturbance considered, and g is the 

acceleration of gravity. Thus, if PI> P
2 

[in Eq. (1.1)], a 2 is positive 

and the magnitude of the disturbance grows unbounded with the smallest ~ 

growing the fastest. Hence, the system would be physically unstable. 
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However, if P2 > PI the a is imaginary and the solution is periodic 

(Allred and Blount, 1954). 

The above simple res\llts were for perfect fluids with neglect of 

the viscosities, surface tension, and quadratic terms in the veloci.ttep. 

Pennington and Bellman, 1952, and Birkhoff and Ingraham, 1952, discussed 

these effects on Taylor instabilities (Taylor, 1950) and showed that 

surface tension does affect the nature of the instabi.lity. In essence, 

the surface tension puts a limit on the wave number and slows the 

instability. However, it is unlikely that surface tension plays a 

pignificant role in any of the physical systems which are of interest 

geologically and for which we shall seek a solution; hence, surface 

tension effect will be neglected. 

To discuss the effects of viscosity on the motion of the interface 

in a multilayered system we start with the general fluid flow equation 

anq consider a simple configuration which consists of two horizontal 

layers of homogeneous materials of density PI and P
2 

and viscosity nI 

~nd n , resting on a rigid base. The interference between the two layerp 
2 

normal to the direction of the gravitational force is subjected to a 

perturbation of given period and small amplitude (Fig. 1). 

If the densities are constant, then the equation of continuity 

for either fluid becomes 

-+ 
V· (u.) 

1 
o , i 1 or 2 , 

~nd the equations of motion become the Navier-Stokes equation (Landau 

and Lifshitz, 1959; and Berker, 1963) 

-+ 
duo 

1 2 -+ 
- - yV (u.) 
dt 1 

1 
F - - VP. 

P 1 
1 

(1. 2) 

(1.3) 
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In two dimensions these equations reduce to 

du" 2 
dP. 

1 1 
P. cit - n·V u. - -ax-1 1 1 

dv" 2 dP· 
1 1 

p. Cit - n·V v· -P,g - - i = 1 or 2 , (1. 4) 
1 1 1 1 dy 

du. dV' 
1 1 
~+ay= o 

where u and v are the x and y components of the particle velocity, 

respectively, and P is the internal pressure. 

The set of equations (1.4) is nonlinear due to the convective terms 

that appear in the total time derivatives du/dt and dv/dt. A solution 

subject to the simplest boundary conditions is very difficult to find. 

If, however, we neglect all these nonlinearities, then u and v will 

satisfy the biharmonic equation and will possess well known solutions: 

and i 1 or 2 . (1. 5) 
du. dv. 

1 1 
-,,- + ~y 

aX a 
o 

One can further show that P will satisfy Laplace's equation with 

o (1. 6) 

Other nonlinearities appear in the boundary conditions at the 

interface. In many previous works on the motion of the interface, this 

boundary condition has been linearized (Harrison, 1908; Lamb, 1945; 

Chandrasekhar, 1955; Biot, 1961; Ode, 1966). 
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To examine this linearization, we let a perturbation y = Yl(x,t) 

pe given, then 

therefore, 

dY 
1 

at 
dY 

1 v-u -
dX 

(1. 7) 

If dy1/dx (the slope of the interface) is small, it is sufficient to write 

= v (1 r 8) 

which means that the new velocity is evaluated at the old interface, and 

the perturbation must be small. 

In the present work, we study the motion of the interface while 

including the slope of the interface in the boundary condition (see 

Appendix A). 

2~ BOUNDARY CONDITIONS 

Because of the periodicity of the initial perturbation we confine 

the study of the development of the interface to a single half wave, 

that is, part ABCDEF in Fig. 1. In this region we assume that the 

Navier-Stokes equations hold and that the boundary conditions are as 

follows: 

1) On the vertical sides AFE and BCD, u i = 0, and dVi IdX = o. 

This choice of condition is compatible with the periodicity 

of the perturbation. 



2) On the bottom ED, u
2 

= v
2 

= O. Particles next to a rigid 

surface usually adhere to it and do not move. 

3) On the top AB, one of two conditions may be used: 

a) A rigid top in which case u
1 

= vI = O. 

b) A free surface where the tangential viscous drag 

and the normal viscous force are zero. 

(J 
xy 

(J 
yy 

( 
dV 1 

n - + 
1 dX 

~) dy o 

o 

at y o 

at y o 

For simplicity we choose part a) of condition 3); though 

neither case presents any mathematical complications. 

4) At the interface, continuity of viscous forces and particle 

velocities is required (no slip), i.e., 

and 

U 
1 

V 
1 

U 
2 

( 
dV dU ) (dV n __ 1 + __ 1 -n ~_1 + 

1 dX dy 2 dX ~) dy 

where S = S(x) is the angle the tangent to the interface 

makes with horizontal. (See Appendix A for the derivation 

of the fourth boundary condition.) 

6 
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3. MATHEMATICAL PROCEDURES 

The total derivatives dul/dt and dv~jdt in Eqs. (1.4) contain 

convective terms which are the products of velocities and velocity gradients 

as well as in~rtial terms. For the physical system under consid~ration 

these products are extremely small and therefore negligible. An example 

of this comes from the calculation of the motion of the interface between 

two high-viscosity fluids. The velocities we shall neglect were found 

by Ode, 1966, to be of the order of 1 millimeter/lOa years. Thus, it is 

reasonable to neglect inertial terms relative to viscous forces, and the 

equations describing the system become 

2 
n·1l u. 

1 1 

2 
n·1l v· 1 1 

dU. dV. 
1 1 

a;c+ay 

dP. 
1 

dX 

a 

i 1 or 2 

The boundary conditions for this system are those given above 

and may be inferred from Fig. 2. 

Now, since u i = 0, and dVi/dX = a on the boundary of a finite 

region, we may apply the finite sine transform on u., and the finite 
1 

cosine transform on vi (Erd~lyi, 1954). In the following we take 

P. = P.gy+p. and k = TIn/a, n= 1,2,3, ... Therefore, we define 
1 1 1 n 

and 

u. 
1S 

sin k xdx 
n 

(3.1) 

(3.2) 
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a 
v. = f vi cos k x dx 

IC n 
0 

(3.3) 

and 

P. = fa p. cos k x dx 
IC o 1 n 

(3.4) 

Next we multiply the ui equation by sin knx, the vi equation by 

cos k x, and integrate over the interval [O,a]; thus, we have 
n 

sin 1 
a ,,2 

a u. 
k x dx + ____ 1 

n a 2 o x 

sin k x dx 
n = nl. fa 

1 0 

ap, 
1 

-,,-- sin k x dx • ox n 

(3.5) 

Integrating the second integral by parts twice, and using the 

fact that U· = 0 at x = 0 and x = a, we obtain 
1 

become 

u. 
____ 1 sin k x dx f

a a2 
- k 

2 
fa U· sin k x dx 

n 1 n . ,,2 n o ax o 

Integrating the right-hand side of Eq. (3.5), we have 

1 fa aPi 
-- --- sin n. ax 

1 0 

k x dx 
n 

_ kn fa 
n. 

1 0 

P. cos k x dx 
1 n 

Finally, Eq. (3.5) transformed becomes 

2 
d u. 

Is 
2 

dy 

2 
k u. 

n Is 

k 
-~P. n. lC 

1 

2 
-k u. . (3.6) 

n IS 

k 
---.!! p. n. IC 

1 
(3.7) 

(3.8) 

Similarly, the v. equation and the continuity equation transformed 
1 

2 
d v. 

lC 2 
- k v. 

n lC 

1 
n. 

1 

(3.9) 
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dv. 
Ie 

dy + ku. 
IS 

= o 

Eliminating P. and u· from Eqs. (3.8), (3.9), and (3.10), 
Ie Is 

we obtain 

o 

The general solution of Eq. (3.11) is 

v. (y,n) 
Ie 

k y -k Y 
(A. + B.k y)e n + (C. + D.k y)e n 

I In 1 In 

where A., B., C., and D. are constants of integration. 
1 1 1 1 

Differentiating Eq. (3.12) with respect to y and substituting 

the result in Eq. (3.10) we obtain a solution for ui s ' 

9 

(3.10) 

(3.11) 

(3.12) 

-k y k y 
u. (y,n) = (C. - D. + D.k y)e n - (A. + B. + B.k y)e n 

IS 1 lIn 1 1 1 n 

Employing Eqs. (3.13) and (3.8) we obtain a solution for P. , 
le 

P. (y,n) 
Ie 

k y -k y 
2n. (B.k e n + D.k en) 

1 1 n 1 n 

(3.13) 

(3.14) 

In order to obtain the solutions vi' ui' and Pi from the solution 

of the transforms v. , u. , and P. , we use the inversion formulae, bearing 
Ie IS Ie 

in mind that v. and P'
l 

are cosine transforms and that the zeroth terw 
Ie e 

must be treated separately; thus 

v· 
1 

00 

. .:1: v. (y 0) + 1 ~ v. (y, n) cos k x 
a Ie' a L le n 

n=l 

(3.15) 
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00 

u· ~L u. (y,n) sin k x (3.16) 
1 IS n 

n:::1 

and 

00 

1 ZL; P. (y,n) k x (3.17) P. ::: - P. (y 0) + - cos 
I a IC' a IC n 

n=l 

To evaluate v. (y,O) we employ the equation of continuity as well 
IC 

as the boundary condition on vi' for instance, 

dV' 1 

ay 

du. 
1 

~ 

1 
a 

dv. (y,O) 
lc . 

dy 

00 

00 

+ ~L 
n=l 

dv. (y,n) 
lc 

---'---- COS k x 
dy n 

~L k u. (y,n) COS k x 
n IS n 

n=l 

By adding the last two equations, we obtain 

a 

dV. dU. 
I 1 ay + ~ = 

1 
dv. (y, 0) 

lc 

dy 
3 Loo 

[dVic(y,n) ] + - d + k u· cos a y' n Is 
n=l 

k x . 
n 

(3.18) 

The left-hand side of Eq. (3.18) is the continuity equation and it is 

equal to zero. The bracketed quantity on the right-hand side is, by 

Eq. (3.10) equal to zero. Therefore, 

or 

v. (y, 0) 
IC 

1 
a 

K. 
1 

dv. (y,O) 
Ic 

dy 

i 

o 

1 or 2 and K a constant . 

To evaluate the constants K., we must consider the two regions. At the 
1 

bottom where y = -h, the boundary condition is Vz = 0; the transform of 



0 II ,~} "j q J , > 

I ., r f'·-.,. i"~ d 

11 

v2 (-h,x) ::: 0, gives v 2c (-h,n) ::: ° for any n; hence, 

° (3,19) 

In the upper region there are two c~ses corresponding to the third 

boundary condition. Case (a), where vI (O,x) ::: 0, gives by the same 

argument as above 

vIc (y,O) ° 
In case (b), where the derivative dVl/dY is given, vlc(y,O) is still a 

constant K
l

, but not necessarily zero. As pointed out in Section 1, we 

choose the free surface to be rigid, i.e., vI (O,x) ::: 0. 

To evaluate P. (y,O) we employ the original differential equation 
IC 

in vi; this gives 

k v. 
n IC 

I 
n. 

1 

1 
an· 

1 

dP. (y,O) 
. I c 

dy 

The bracketed quantity, in view of Eq. (3.9), is equal to zero; therefore 

p. (y,O) = H. 
IC 1 

i = I or 2 and H is a constant . 

To evaluate the constant.s H., both regions must again be considered. 
1 

The boundary condition at the top gives PI (O,x) 0; hence, 

° (3.21) 

At the bottom there are no ~ prior~ boundary conditions on P; 

however, it is logical to assume that in the absence of any perturbation 

and viscosity the pressure at the bottom should reduce to the hydrostatic 

head. Therefore, 
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Since P2(-h,x) must be the hydrostatic head, then 

= 

where hI and h2 are the thicknesses of the two layers, respectively, 

and h = h + h . therefore, 
1 2 ' 

(3.22) 

Using Eqs. (3.19) through (3.22) in Eqs. (3.15), (3.16), and (3.17), 

and rewriting the solutions in their domain of applicability, we obtain 

V 
2 

<Xl 

~L: 
n=l 

<Xl -k y 
2 ~ sin k x { (C - Dl + Dl k y) e n 
a L- n In n n n 

n=l 

k Y 
(AI + Bl + Bl k y) en} , n n n n . 

(3.24) 

(3.25) 

<Xl k y -k y 

~ L cos knx {(A2n + B
2n

k
n
y)e n + (C 2n + D2nkny)e n }, 

n=l 

(3.26) 

k Y 
(A

2n 
+ B

2n 
+ B

2n
k

n
y)e n } 

(3.27) 
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4 ()() 
112 L -- cos 
a , { 

k y -k y 

knx B2nkne n + D2nkne n } - P
2
gy+ (PI - P)gh

l 
• 

n=l 
(3.28) 

The above equations for u. and v. have the same form as those derived 
1 1 

in the Rqmberg theory (Ramberg, 1968a; Berner, 1972) using stream function 

for incompressible viscous fluid. However, in the Ramberg theory only 

the dominant mode is retained. 

Next we us~ boundary conditions to find relations between the 

constants of integration. At the top, y = 0 and u = v = O· hence 1 I ' . , 

for any n 

p.nd 

v 
I 

therefore, 

Aln 

BIn 

In the lower 

o gives 

and 

o gives 

therefore, 

= 0 gives 

0 gives Aln + Cln 

-C In 

2Cln - DIn 

medium at y -h, u2 = v 2 

k h 
n 

(C
2 

-D2 -D2 kh)e n n n n 

k h 
(C2n - D2nknh)e n 

o 

o 

(3.29) 

0; hence, for any n 

-k h 
n 

(A2 + B2 - B2 k h)e n n n n 

-k h 
n o 

2k h 
A (2C kh - C - 2D2nk2h2)e n 

2n 2n 2n 

2k h 
n 

(3.30) 

o 
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The relations contained in Eqs. (3.29) and (3.30) reduce the eight 

sets of unknowns appearing in Eqs. (3.23) through (3.28) to four sets, 

and upon substitution we have, 

U 
1 

V 
2 

U 
2 

= 

+ 

2
00 

{ ky - L sin k x C
l 

(-2k ye n - 2 sinh k y) + Dl (2 sinh k y 
ann n n n n 

n=l . 

+ 2knY cosh knY) } , 

0.32) 

4n 00 k y 
-a

1 
"cos k x {C1 2k en - Dl 2k sinh k y} - p gy 
~ n nn nn n 1 
n=l 

0.33) 

200 kh[ k (h+y) ] - L cos k x {C
2 

e n 2k (h+y)e n - 2 sinh k (h+y) 
a n=l 2 n n n 

~h [ 2 kn (h + y) ] } D
2n 

e 2k
n
h(h + y)e + 2k

n
Y sinh k

n 
(h + y) (3.34 ) 

2 00 - L sin 
a n=l 

k (h + y) ] 
k (h + y) - 2k (h + y) e n 

n n 

0.35) 

4n2 00 {k h k (h + y) k h [ L cos k x C
2 

e n 2k e n - D
2n

e n 2k
n 

sinh k (h + y) 
a n=l n n n n 

(3.36) 
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The apove equations satisfy the set of differential equations 

(3.1) and the boundary conditions 1), 2), and 3); however, since they 

contain four sets of an infinite number of unknowns, the boundary condition 

at the interface will furnish four independent relations between these 

s~ts of unknowns. 

Let us reexamine the boundary condition at the interface. The 

kinematic condition valid for a moving interface, F(x,y,t) = 0, is that 

the velocity of a particle in the interface must be tangential to the 

interface; or, equivalently, that the normal component of the fluid 

velocity is equal to the normal velocity of the surface itself; otherwise, 

we should have finite flow of fluid across it. This condition is 

expressed by dF/dt = 0, while these conditions are still valid. 

In addition, we assume a no-slip condition at the interface to insure 

continuity of velocities and stresses; therefore, at y = y , where y 
1 1 

is the ordinate of the interface, 

anq 

V 
1 

= U 
2 

V 
2 

} 

where S = Sex) is the angle between the tangent to the interface and 

the horizon tal. 

0.37) 

(3.38) 

Equations (3.37) and (3.38) furnish two relations each between the 

four sets of unknowns, and by imposing these conditions on the solutions, 
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Eqs. (3.31) through (3.36), we obtain all the necessary relations. 

For u 1 = u 2 at y = Yl' we have 

00 { k Y 
~ sin k x C

l 
[-2k yen 1 - 2 sinh k Y ] 

L.i n n nl nl 
n=l 

+ Dl [2 sinh k y + 2k y cosh k y ] n n 1 nl nl 

k h k (h +Y1) 
+ C2ne n [2 sinh k

n
(h+Y1) + 2k

n
(h+Yl)e n ] 

k h 
- D2 e n [2k y cosh k (h + Y ) + 2 sinh k (h + Y ) 

n nl n 1 n 1 

k (h +y ) 
+ 2k h(k h + k y + l)e n 1 ] ~ 

n n n J o (3.39) 

For VI = v 2 at y = Yl' we have 

00 t knYl 
~ cos k x C

l 
[2k y e - 2 sinh k y ] - Dl 2k y sinh k y 

.L.J n n n1 nl nnl n1 
n=l 

o 

(3.40) 

The application of the boundary condition expressed by Eq. (3.38) 

yields two more relations: 
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(3.41) 
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0.42) 

Equations (3.39) through (3.42) provide four relations in four 

sets of unknowns in terms of infinite sums. If we were by some scheme 

able to solve for these constants, i.e., Cln , C2n , DIn' and D2n , 

n = 1,2,3, ... 00, then we immediately could determine all the velocities 

and hence the motion of the interface. The process of finding these 

unknowns is not simple, except in the trivial case for which y = h , 
1 1 
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then all the constants are zero, and there is no motion. 

The fact that we have four infinite sets of unknowns brings to 

~ind the idea of completeness, as in the case of determining the unknown 

constants in the Fourier series expansion of functions; this method will 

not be adequate, because some of the integrals generated will be quite 

unmanageable, especially when the initial perturbation is sinusoidal. 

To illustrate, suppose 

= 

then a typical integral would be 

00 

L 
n=l 

• TIx 
Yo Sl.n a 

It is unlikely that a closed-form answer for this integral could be found, 

though an answer in terms of Bessel functions cannot be ruled out. A 

disadvantage of this method is that it could not be applied more than 

once, as it would not give the analytical expression for the new interface 

to allow continuation of the process. 

The other method for solving these unknowns is the generation of 

as many equations as there are unknowns. However, an infinite number of 

equations has to be ruled out. Hence, the following approximation procedure 

is used. Since, as was shown above, a knowledge of the constants of 

integration is sufficient for the determination of the velocity field, 

the following numerical procedure is proposed, by which these constants 

may be evaluated: 
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1) Since a perturbation at the interface is necessary to 

initiate the instability, we assume at time t = t an 
o 

initial perturbation of the form y = -hI - b cos TIx/a. 

2) The infinite sums appearing in Eqs. (3.39) through (3.42) 

are truncated to N terms. This will introduce an error in 

the boundary conditions at the interface, but not in the 

solutions of the differential equations. All of the errors 

introduced are of the form 

= Q
2 

(x) + e (x) (4.1) 

where Q represents either velocities or stresses, and e is 

the error. This error can be made as small as desired by 

increasing N. 

3) The truncation of the infinite sums to N terms reduces the 

number of unknowns to 4N. We could choose N points along 

the interface, then the truncated forms of Eqs. (3.39) 

through (3.42) would generate 4N equations which would 

satisfy the boundary conditions at the N points. Subsequently 

these equations could be solved for the 4N unknowns. This 

method was tried, and it yielded excellent results at the 

selected points of the interface, i.e., it preserved the 

continuity of velocities and stresses as required by the 

boundary conditions. However, when velocities were calculated 

at random points along the interface, unacceptable results 

were obtained. The reason for this is that the truncated 

equations had been forced to be satisfied at N points along 

the interface, but no control whatever had been exercised 



0 u .j ~ ') J ~ -} 
c.~ /j ') , '-'I~ l,< . (.~ 

21 

over the functions in the intervals between the N points. 

In order to both satisfy the boundary conditions at the 

N points and to control the behavior of the truncated functions 

in-between points, we use the following procedure: The 

homogeneous equations (3.39) and (3.40) are fitted at N points 

and thereby generate 2N equations in 4N unknowns. Thus a 

matrix relation between the constants is established. Thi~ 

matrix relation is then used in the truncated form of Eqs. 

(3.41) and (3.42) to reduce the number of unknowns to 2N. 

Next, M points (M > 2N) along the interface are used to fit 

the resulting equations, in the least-square sense, in order 

to determine the 2N unknoHl1s. The mathematical details of 

this procedure are given in Appendix B. 

4) Once the unknown constants are determined, the velocity 

fields are knoHn (including velocities at the interface), 

and points on the interface may be advanced according to 

the explicit relation, 

Yn+l = 

x + u 6t 
n n 

v + v 6t 
"n n 

Hhere 6t is a time increment, or by the implicit relation 

that accounts for changes in velocity, 

v 
.' n+l 

(4.2) 

(4.3) 
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Hence anew interface is established, and we will be at Step 1). 

The whole process may be repeated until we have advanced the 

interface the total time desired. In the present investigation 

a Fourier fit to the discrete points along the interface was 

carried out to approximate a new functional relation for the 

interface. 

The above method is referred to as a boundary method in the literature. 

A boundary method refers to the numerical procedures whereby the differ-

ential equations are satisfied but not the boundary condition, or vice versa. 

5. NUMERICAL RESULTS FOR SMALL PERTURBATIONS 

In the present investigation, the solution to the linear problem 

of small perturbation was used to test the validity of the method. The 

linear theory predicts that an infinitesimal sinusoidal displacement, 

y = y cos x, with an initial amplitude y , grows as 
o 0 

(5.1) 

To test that this method does indeed yield comparable results for a small 

perturbation, a case where the amplitude of the initial disturbance was 

0.01 h was simulated, and the growth of the amplitude was calculated. 
1 

Table I shows that y does indeed grow exponentially at both trough and 
o 

crest, in perfect agreement with the linear theory. The small differences 

between the p' s fO.r trough and crest are a measure of the deviation of 

the result from the linear theory. When the viscosity ratio was much 

larger than the ratio used in preparing Table I, the agreement was almost 
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exact. The graph in Fig. 3 depicts the linear case for a viscosity 

ratio n1/nZ = 100; it clearly shows the identical growth of the amplitude 

on both sides of the stagnation point. 

A further check on the method is as follows: It is obvious that 

for small perturbation the interface will deviate little from the initially 

assumed sinusoidal shape; hence, the Fourier coefficients of the higher 

frequencies in the interface must be small with respect to the first 

coefficient. This indeed was verified numerically. 

6. NUMERICAL RESULTS FOR LARGE PERTURBATIONS 

For large perturbations there are no known solutions with which to 

compare. Therefore we can only demonstrate the physical consistency of 

the solutions. 

The graphs in Figs. 4 and 5 depict the development of an initial 

large perturbation of the form 

y -h - b cos 7TX 
1 a 

The system has the following physical properties: 

a 2.0xl0 5 cm, the length of the model 

h 1.0 x 105 cm, 
1 

the thickness of the model 

h 2.0xl0 5 cm, the total thickness of the model 

n1 
10

19 
poise, the viscosity of the top layer 

n2 
= 10 17 poise, the viscosity of the bottom layer 

PI 2.2 gm/ cm 3 
, the density of the top layer 

2.0 gm/cm 3 the density of the bottom layer P
2 

, 

b 1.0 X 10'+ cm, the amplitude of the initial perturbation 
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Since the material was incompressible, conservation of volume was 

expected for the results to be acceptable. A comparison was made of the 

volume of the crest with the volume of the trough. The error in the 

volume balance was always less than 1.0%. 

The graphs in Fig. 4 show the stages of development of the interface. 

Each curve is obtained after advancing the interface five time-steps. 

The velocity field is that of the system after the first five time-steps. 

The velocity in the x direction along the interface was always negative, 

but the velocity field was indeed that which was expected of an incompres

sible fluid. 

Figure 5 shows the initial interface, the new interface, and the 

velocity field after twenty time-steps. The graphs clearly show the 

conservation of volume, and that as the perturbation grows the velocities 

get larger; this, of course, is in agreement with the physical situation. 

Large perturbation imply large forces, which imply large acceleration, 

which imply large velocities. If the velocity field graphs of Figs. 4 and 

5 were superimposed on each other, then the instantaneous stagnation point 

would be observed to move to the left. 

To further make the results of the method plausible, a case where 

PI < P
2 

was tried. The results are shown in Fig. 6. It clearly shows 

that the perturbation dies out. 

The calculated velocities of the system were of the order of 

one centimeter/year. Hence, we may establish ~ posteriori argument 

for neglecting for~es arising from quadratic terms in velocities compared 

to viscous forces. 
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respectively. The ratios in the last equation are indeed small, and the 

neglect of the total derivatives of velocities in the Navier-Stokes 

equation is justified. 

7. CONCLUSIONS 

In this paper we used finite sine and cosine transforms to obtain 

a solution for the Navier-Stokes equation for the case of a Taylor 

instability in two viscous incompressible fluids horizontally stratified. 

Nonlinear terms that appear in the boundary conditions were retained. 

The inclusion of these nonlinear terms allows the application of large 

perturbation and becomes more important as the perturbation grows and 

develops steeper flanks (Dane~, 1964). 

We apply this method for the evolution of salt-domes by considering 

two strata of finite thickness, rigid base, and upper surface of over-

burden with no slip at the interface. We believe such conditions are most 

amenable to laboratory examination (Ramberg, 1968a). We find that our 

results are physically consistent. We also find that the initial rise 

of the salt-dome is fast, in agreement with results obtained by Berner ~t 

a1, 1972. The velocity field at different times are calculated. Using 
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these velocity fields, particle paths may be calculated, and hence shear 

stresses may be found (Ramberg, 1975; Dixon, 1975). Other geological 

and geophysical phenomena, such as the evolution of granitic and 'gneissic 

domes, anticline cases, and magma intrusions (Gibb, 1976) are amenable 

to solution using the method reported here. 
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APPENDIX A 

CONTINUITY CONDITIONS AT THE INTERFACE 

The condition of no slip implies that there can be no relative 

velocity between two different particles at the same point of the inter-

face; this condition may be expressed as 

= 
(A.1) 

= 

The continuity of stresses follows from the fundamental definition 

of action-reaction. If we assume a thin element of matter containing the 

interface, and attach a coordinate system ~,n to the interface, then the 

continuity of stresses may be expressed as 

(2) o 
n 

(1) 0(2) 
°n~ n~ 

(A.2) 

Equation (A.2) may be transformed to an x,y coordinate by using equilibrium 

conditions on a free-body diagram, as seen in Fig. 8. From the law of 

equilibrium, i. e., L:F = 0, we have on an element of area dq 

= 2 • 2 o cos Sds + 0 Sln Sds y x 
o sin S cos Sds - 0 sin S cos Sds xy yx 

and 

2 o cos S sin Sds - 0 sin S cos Sds + 0 cos 
Y x xy 

(A.3) 

. 2 
Sds - 0 sm Sds xy 

(A.4) 

Equations (A.3) and (A.4) hold for either medium, hence, by using Eqs. 

(A.2) and the fact that 0 
xy 

o , we have 
yx 
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0(1) + 0(1) (O~) - O~)) cos 2S - 20(1) sin 2S 
x y xy 

(A.5) 

q(2) + 0(2) ( (2) (2)) 20(2) sin 2S x y - .0 x - 0 y cos 2S - xy 

sin 2S + 20(1) cos 2S 
xy ( 0(2) _ 0(2))sin 2S + 20(2) cos 2S 

y x xy 

CA.6) 

By means of relations between stresses, pressure, and angular 

deformation, we have for an incompressible material, 

n, (aa:' + aaV;) - n, Ca; + aa:) (A. 7) 

and 

(lv Z (luI 

2n z (lx - nI oy (A.8) 

Thepe are the boundary conditions used in Section 3 equations (3.38). 
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Equations (3.39) through (3.42) are all of the same form and may 

be written as follows: 

2N 2N 

E A f L B g2 n (B.l) 
n l,n n 

n=l n=l 
, 

2N 2N 

L A gl n = :E B g2 n (B.2) 
n=l n , n=l n , 

2N 2N 

L: A h + 1: B h = Fl (B.3) n l,n n 2,n 
n=l n=l 

2N 2N 
LAP + n l,n E 

n=l 
B P n 2,n 

·(B.4) 
n=l 

Equations (B.l) and (B.2) were fitted at N number of XIS, and a 

matrix relation between the A's and the B's was established, i.e., 

(B.5) 

Equation (B.5) was then substituted in Eqs. (B,3) and (B.4) to 

obtain 

2N 2N 2N 
L L Ctkn B n hI k + L: B h 
k=l n=l ' n=l n 2,n 

or 
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2N 2N 
L B n L: a kn hI, k + h 2,n Fl 
n=1 k=1 

and 
2N 2N 

L B L: akn PI,k + P2 F2 n ,n 
n=1 k=1 

Let 

2N 

h3 n L a hI k + h , 
k=l 

kn , 2~n 

and 

2N 
P E a

kn PI k + P 
3,n 

k=1 
, 2,n 

then 
2N 

L: B h FI (B.6) n 3,n 
n=1 

2N 
~ Bn P L 3,n 
n=l 

== (B.7) 

The least square method was used on Eqs. (B.6) and (B.7) in the 

following way: 

We let 

2N 

L: 
n==1 

2N 

L: 
n=1 

B h3 ,n(x) - Fl (x) n 

B P3 ,n(x) - F2 (x) n 

e (x) 
1 

e (x) 
2 

(B.8) 

(B.9) 

where e and e are the errors at each of M points along the interface. . 1 2 

The sum of the squares of the errors were minimized with respect to the 
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Bls to obtain 

2N (M ) B Lh h +P P n~l n JI,=l 3,n 3,JI, 3,n 3,,Q, 

(B.lO) 
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TABLE I. Growth of trough and crest. 

Trough Crest 

t y (t)/A pnM p t y (t)/A pnM p 
0 0 

M 1.3055 0.266 0.266 M 1. 2992 0.262 0.262 

2M 1.7093 0.536 0.268 2M 1. 6899 0.524 0.262 

3ilt 2.2440 0.808 0.269 3M 2.1990 0.788 0.263 

4ilt 2.9532 1.082 0.271 4ilt 2.8604 1.051 0.263 

5ilt 3.8966 1.360 0.272 5ilt 3.7168 1.312 0.262 

6ilt 5.1560 1.640 0.273 6ilt 4.8205 1.569 0.261 
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FIGURE CAPTIONS 

Fig. 1. Geometry of two viscous layers on a rigid base. 

Fig. 2. Initial perturbation and boundary conditions. 

Fig. 3. The development of the interface for an initial small perturbation, 

Curve (1) represents the initial interface; curves (2), (3), and 

(4) represent the shapes of the interfaces at 30,000, 120,000 

and 180,000 years respectively. 

Fig. 4. The development of the interface for an initial larger perturbation. 

Curve (1) represents the initial interface; curves (2), (3), and 

(4) represent the shapes of the interface at 60,000, 120,000 

apd 168,000 years respectively. The vectors represent the 

velocity field at 30,000 years. 

Fig. 5. The velocity and the interface for the initial perturbation of 

Fig. 4 after 120,000 years. 

Fig. 6. Stable case where material of low density is on top of material 

of high density. Curve (1) represents the initial interface; 

curves (2) and (3) represent the interface at 60,000 and 120,000 

years respectively. 

Fig. 7. Geometry of interface for large perturbation. 

Fig. 8. Free-body diagram of stress components. 
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