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ABSTRACT 

A powder metallurgical approach is utilized to prepare 

grain oriented Laves phase compounds of Tb DYl Fe 2 . The x -x 

magnetostrains observed in the oriented compounds, though con-

taining ~/20% porosity as presently prepared, are far superior 

to those of arc cast and highly dense liquid phase sintered 

materials. Also, it is shown that the alignment achieved is 

strongly dependent on the Tb/Dy ratio. 
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Recently, a powder metallurgical approachl, Z, 3 has 

been used successfully in this laboratory to obtain the brittle 

rare earth-iron Laves compounds in suitable sizes and shapes. 

1-4 Their huge magnetostrictions have been reported elsewhere. 

In this study, it is shown that the magnetostrictive 

properties can be greatly enhanced by. magnetically aligning 

the powder particles prior to solid-state sintering; For this 

study, the pseudobinary system (Tb DYI FeZ) with x close to x -x 

0.3 was selected because of this composition being partic-

ularly well suited for a wide range of device applications. 

Spin orientation diagrams show that this compound, at room 

temperature, has its axis of easy magnetization along the major 

cubic symmetry [111] direction.S A powder metallurgical ap~ 

proach can utilize the direction of easy magnetization by 

alignment of the powder compound in a magnetic field·. 

The compound preparation consisted of arc melting el-

emental rare earth metals and iron, all of 99.9% purity, on a 

water cooled copper hearth under a Zr gettered argon atmosphere. 

After a homogenizing anneal at 1000°C in evacuated quartz cap­

sules, the buttons were crushed and pulverized by ball milling 

under tolUene in a steel planetary mill for ZO minutes. The 

resulting powder (in 35-1S ~m range) was rinsed with acetone 

and vacuum dried. Rubber tubing, 0.6 cm I. D. an d 3.8 em long, was 

manually filled with powder. Retention of magnetic alignment 

of the powder particles was the critical processing step. 
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The objective during the compacting stage was to rnaint3in a 

good degree of alignment in the compound by mechanically inter­

locking the powder particles. For this purpose, after align­

ment of the powder in DC fields up to 20 KOe, the volume ~as 

reduced by evacuating the rubber tube to lock the particles 

in position. The tube was subsequently hydrostatically com­

pressed at 70 Kg/mm 2. Although in the first set of experiments 

X-ray examination showed only a small degree of alignment, 

nevertheless, a definite improvement in magnetostriction was 

observed. A substantially higher degree of alignment was 

achieved when an alternating field of approxi~ately 1000 Oe 

peak-to-peak at frequencies up to 500 Hz was superimposed on 

the DC field. A field of this type produced sufficieni particle 

vibration to facilitate orientation of the loose powder. While 

in the magnetic field, the powder was compacted by hand ap­

plied end compression with a plunger before it was isostatically 

compressed. The cold pressed samples were subsequently wrapped 

in Ta foils and solid state sintered in a dynamic vacuum uf 

3 x' 10- 6 mm Hg in the 9S0-l0S0°C temperature range for durations 

up to 12 h. The samples were evaluated by optical microscopy, 

X-ray diffraction patterns, X-ray pole figures and magnet6stric­

tion measurements. Samples measuring approximately 2 cm 2 hy 

0.3 cm thick were polished through a 1 ~m diamond wheel and, 

after etching, were used to obtain X-ray diffraction patterns 

and pole figures. Plane orientations were determined by the 
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Schulz mcthod6 using a Picker diffractometer with an X-ray 

monochromator. Intensities of (440) reflections were recorded 

lIS w (the angle of reflecting plane with sample surface), and 

¢ the azimuth angle from the longitudinal directions of the 

sample) were changed. A temperature ,compensated circuitry 

with commercially available strain gauges from Micro-Measure-

ments was used to determine the magnetostrains. 

Figure I shows the X-ray diffraction patterns of random 

and magnetically oriented Tb.3DY.7Fe2 compound. In the surface 

perpendicular to the magnetic field, the diffraction intensity 

from (220) planes has decreased while the intensity of (222) 

reflection has increased, to a substantial degree, with respect 

to the intensities of reflections from these planes in an al-

most randomly oriented powdered compound. Magneto-

striction measurements at room temperature show that with 

regard to both magnetostrains and rate of approach to satura-

tion, the aligned material, though containing considerable 

porosity, is much superior to a highly dense (95% theoretical 

density) liquid phase sintered compound which is not aligned 

(Fig. 2). This superiority is possibly due to the effect of 

the preferred grain orientation on reducing the large internal 

strains at grain boundaries associated with highly magnetostric-

tive materials. Also, it is noteworthy that in rare earth-iron 

Laves phase compounds AlII » AIOa due to a structural distor­

tion associated with the [111] easy direction of magnetization! 
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(A lOO and AlII are single crystal magnetostriction constants 

of cubic crystals in direction (100) and (111) respectively.) 

Since for a polycrystalline material with random grain orien-

tation, the saturation magnetostriction can be expressed as 

As = (Z AlOO + 3 Alll)/ 5, 8 magnetic alignment of these com­

pounds orienting the crystallites along the [111] easy axis, 

will enhance their saturation magnetostriction drastically. 

This is also illustrated in Fig. Z, where the saturation mag­

netostriction for the aligned Tb.3DY.7FeZ shows a ZO% increase 

over the highly dense liquid phase sintered material. 

It was also found that the alignment improves as the 

value of x in TbxDYl_xFeZ is increased, as is shown in Fig. 3, 

where the relative intensity of reflections from (ZZZ) and 

(ZZO) planes are plotted against values of (x). This is at-

tributed to the fact that Tb DYI FeZ has a minimal anisotropy x -x 

near x = 0.3. An increase in (x) will increase the anisotropy 

making an improvement in the alignment degree possible, which 

is evident in X-ray diffraction patterns taken from aligned 

sintered TbFe Z materials (Fig. 4a). Figure 4b shows a (440) pole 

figure for an aligned TbFe Z sintered rod with contours of con­

stant intensity around the (440) pole, at the center. Although 

a decrease in (x) toward a Dy richer compound also will increase 

the magnetic anisotropy, it was not considered as beneficial, 

since DyFe z has its easy direction of magnetization along the 

[100] instead of along the [1111 direction, thus not contrih-

uting much to the magnetostriction. 
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FIGURE CAPTIONS 

Fig. 1: X-ray diffraction patterns for an almost randomly 

oriented powder and a magnetically aligned specimen 

of Tb.3DY.7Fe2 compound. 

Fig. 2: Room temperature magnetostriction of an aligned and 

a liquid phase sintered specimen of Tb.3DY.7Fe2 

indicating a saturation magnetostriction for the 

aligned sample approximately 20% greater than that of 

the highly dense liquid phase sintered specimen. 

Fig. 3: Change of X-ray reflection intensity ratios, (220)/ 

(311) and (222)/(311), vs. the concentrations of Tb 

and Dy in magnetically aligned specimens. 

Fig. 4: (a) X-ray diffraction patterns for a magnetically 

oriented TbFe 2 specimen. 

(b) The (440) pole figure for the specimen. 
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