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Abstract 

For deep beds, the effective Sherwood number approaches a 

proportional relationship to the Peclet number as the Peclet number 

tends to zero. A sinusoidal periodically constricted tube model for 

the voids in the bed has been used to predict the constant of propor-

tionality. This constant depends upon the dimensionless ratios of 

three lengths: the average tube radius, the oscillation amplitude, 

and wavelength. 

Work performed under the auspices of the U. S. Department of Energy. 
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In an earlier publication (1) we have presented a formal method 

for calculating the Sherwood number in the low Peclet number regime 

for a mass-transfer limited, packed bed reactor. Emphasis was placed 

on the important distinction at low Peclet numbers between the effective 

Sherwood number, which relates the inlet and outlet concentrations, 

and the film Sherwood number, which is a sink term in the one dimen-

sional model of the bed. A singular perturbation solution for the 

concentration field was used to demonstrate that to first order in 

deep beds, the effective Sherwood number can be written 

sk 
m v 

aV = aV (1) 
o 0 

where and are constants which depend only upon the bed 

structure and are independent of the Peclet number. Equation 1 applies 

for any detailed void volume arrangement of the bed. 

In order to introduce a predictive capability to the formalism 

presented in that work, a microscopic model for the solid-void structure 

of the bed must be introduced. In this note, we present values of a
l 

calculated using the periodically constricted tube (PCT) model of the 

bed. In order to avoid repetition, we shall assume familiarity with 

our earlier publication (1). 

Periodically Constricted Tube Model 

The voids in a bed of nonconsolidated porous media can be 

modeled as an array of periodically constricted tubes. This concept 
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has been developed by Payatakes et al. (4) and the references therein. 

In this work, the bed is modeled as an array of sinusoidal peT 

(figure 1). We have previously exploited this particular geometry 

to calculate the high Peclet number, deep bed Sherwood number (2). 

The first order solution for the concentration variable in the 

reactive section of the bed has b~en shown to be governed by Laplace's 

equation. The concentration variable within the model microscopic 

void volume will thus satisfy Laplace's equation. 

(2) 

The limiting reactant condition on the surface of the solid particles 

immediately specifys one boundary condition 

e(r r ) 
w ° . (3) 

In the well-developed mass-transfer regions of the bed the fractional 

decrease of the reactant concentration and flux per period will be 

independent of position. This supplies the following boundary conditions 

e(r,l) = e(r,O)e-A 

ae(r,l) 
az 

ae(r,O) 
az 

-A 
e 

(4) 

(5) 

where A is an eigenvalue of the solution to equations 2, 3, 4 and 

5. The solution to this problem depends on the geometric parameters 

of the microscopic model and A/r
A 

• 
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Figure 1. The wall of a PCT generated by rw(z) = rA - A cos (2TIz) . 

All lengths are dimensionless with respect to the peridd 
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For a deep bed, the eigenvalue A can be related to the leading 

term of equation 1. The concentration variable at the exit of the 

reactor can be written as 

(6) 

The PCT model yields the following geometrical relationship 

L r A aL 2E: 
I = 2 E ar

Ad 
(7) 

Equations 6 and 7 can be substituted into the defining equation 

of the effective mass-transfer coefficient (eq. 1,1) to yield the 

analog of equation 1. 

(8) 

Thus the leading term a
l 

of equation 1 can be calculated by finding 

the eigenvalue A. 

Method of Solution 

An analytic solution for the eigenvalue problem determined by 

equations 2, 3, 4, and 5 could not be found. An approximate numerical 

scheme was used. The technique is similar to that utilized in earlier 

work (2). Laplace's equation and the boundary conditions are transformed 

into a new coordinate system (n,z) where n = r/r (z) • 
w 

The wall 

boundary condition is then shifted to the coordinate curve n = 1 . 
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A transformed concentration variable C was defined as 

C 
-Az 
8e . (9) 

This transformation was introduced in order to remove the eigenvalue 

from the boundary conditions and transfer it to the differential 

equation. Laplace's equation and its boundary conditions are then 

written as 

C(n,O) 

oC(n,O) 
oz 

C(l,z) 

C(n,l) 

° 
r" 

- ~+ 
r 

w 

° . 

(10) 

(11) 

(12) 

(13) 

Two independent collocation procedures were used to solve equations 

10 thru 13. These two techniques permitted a cross verification of 

the calculated results. 

In the first method, an expansion for C was assumed in the form 

NCP 
C(n,z) L Ak(z)J (Ykn) . 

k=l 0 

Since the are the roots of the Bessel function 

(14) 

J ,this expansion 
o 

identically satisfies the wall boundary condition. Equation 14 is 
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substituted into equation 13, and the residual is made equal to zero 

at NCP n collocation points. This generates a system of ordinary 

differential equations with the following boundary conditions 

~(O) ~(l) (15) 

Ak(O) Ak(l) . (16) 

Along with the normalization 

1 (17) 

this specifies enough information to calculate the unknowns. Equation 13 

was linearized and then solved by iteration on a z finite-difference 

grid using the method of Newman (3) slightly modified to exploit the 

storage space savings made possible by the periodic boundary conditions. 

The second method uses a double series expansion to transform 

the original partial differential equation into a system of algebraic 

equations. 

Since the ~ functions are periodic, they can be expanded in a 

Fourier series 

NFC 
L (akm cos 2rr(m - l)z + bkm sin 2rrmz) . 

m=l 

The periodicity conditions are then identically satisfied. The 

(18) 

unknown Fourier coefficients are determined by collocating the residual 

of a linearized equation 13 on a grid of NCP n points and 2NFC z 
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points. These collocation equations and the normalization condition 

specify a determinate system. 

In both techniques the n collocation points were chosen to be 

evenly spaced in n2 in the open interval (0,1) The z points 

used in the double collocation method were chosen to be evenly spaced 

in the semi-open interval [0,1) . The collocation/finite difference 

method was computationaly advantageous for the larger values of the 

parameters reported here. 

Results and Discussion 

As seen from equation 8, the important quantity for calculating 

the Sherwood number is Ar
A

. Figure 2 presents the calculated values 

of Ar
A 

in a sinusoidal PCT normalized by the value of ArA (= 2.40482) 

for a straight wall cylinder. 

Figure 3 presents results for the leading term of the Stanton 

number (ShB/PeB) in a mass-transfer controlled, deep-bed packed 

reactor modeled as an array of sinusoidal PCT. As the sinusoidal tube 

The Stanton number amplitude approaches zero for all values of r A 

approaches 1.202, the value for a straight wall tube. 

S~rensen and Stewart (5) have calculated the asymptotic Stanton 

number for a bed of uniform sized spheres in simple cubic packing. 

In the terminology of this work, that number is found to be 1.233. 

As was found in the high Peclet number, asymptotic Sherwood number cal-

culations and the friction factor calculations (2), a value of r A - 0.5 

and A/r
A 

- 0.3 to 0.4 for a sinusoidal peT reproduce satisfactorily 

S~rensen and Stewart's results. 

As has been emphasized, the above solution only generates the 

leading term of the deep-bed Stanton number. It is necessary to ask 
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XBL 7711-6485 
Figure 2. The first eigenvalue of Laplace's equation in a sinusoidal peT. 
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Figure 3. Calculated values of the Stanton number for a mass-transfer controlled 

packed bed reactor in the low Peclet number region. 
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under what conditions can the second term of equation 1 be neglected. 

In order to calculate a
Z 

' the concentration variable in the entrance 

region of the bed must be calculated. This is an order of magnitude 

more difficult problem and is not attempted here. S~rensen and Stewart, 

however, have solved this problem for simple cubic packing of uniform 

spheres. We can use their results to estimate the effect of neglecting 

the second term in the expansion. Table 1 shows that for most bed 

depths with a Peclet number greater than 0.001, the error is acceptable. 

The error is seemingly further diminished in scale when a log-log plot 

of Sh
B 

vs Pe
B 

is examined. 

The Stanton numbers presented above are for a non-diluted reactive 

bed. The reactive section of the bed must not contain an excess 

of inert particles. It should be emphasized that only under these 

conditions does Laplace's equation describe the concentration variable 

in the reactive section of the bed. For two beds with identical E 

and aL values and with the same feed flowrate and concentration, 

one may argue, qualitatively, that the effective mass-transfer 

coefficient in the non-diluted bed must be greater than that in the 

diluted bed. Care must be taken in extrapolating low Peclet number 

mass-transfer coefficient experiments in diluted beds to non-diluted beds. 
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Table 1 

S~rensen and Stewart's results for the deep-bed, low Pec1et 
number Stanton number of a simple cubic packed lattice 

of uniform size spheres 

sk 
m 

v 

v 
aD 

o 
aL-+ 10 50 100 co 

1 1.165 1.219 1.226 1.233* 

0.1 1.275 1.241 1. 237 1.233* 

0.01 1. 384 1.263 1.248 1.233* 

0.001 1.490 1.284 1. 259 1. 233* 

*The low Pec1et number, deep bed asymptote 

x 100 

v aL -+ 10 50 100 
aD 

0 
---~---

! 
1 -5.5 -1.1 -0.6 

0.1 3.4 0.6 0.3 

0.01 12.2 2.4 1.2 

0.001 20.8 4.1 2.1 
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Notation 

-1 
specific interfacial area, cm 

Fourier expansion coefficients 

k kth . f· . 14 un nown -- expanslon unctlon, equatlon 

dimensionless wall oscillation amplitude, Ad/~ 

. I 3 reactant concentratlon, m cm 

transformation variable, equation 9 

free stream diffusion coefficient, cm
2
/s 

Bessel function of order zero 

effective mass-transfer coefficient, crnls 

length of PCT period, cm 

length of reactive bed, cm 

bed Peclet number v/aD 
o 

dimensionless radial coordinate in a PCT, rd/~ 

dimensionless average PCT radius, rAd/~ 

dimensionless wall radius, 

E:km bed Sherwood number, --­aD 
o 

bed Stanton number ShB/PeB, 
E:k 

rn 
v 

superficial bed velocity, cm/s 

dimensionless axial coordinate in a PCT, zd/~ 

constants of equation 1 

th 
k-- root of Bessel function J 

o 

bed porosity 
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8 inner region expansion concentration variable 
cE ---

cFPeB 
'j' 

n r/r (z) 
w 

8
1 

the outer limit of e 
0 

A eigenvalue of equations 10, 11, 12, 13 

Subscripts 

F feed condition at inlet of reactor 

d dimensional quantity 
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