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ABSTRACT 

The mixed explicit-implicit Galerkin finite element method developed 

previously by the authors is shown to be ideally suited for a wide class 

of problems arising in subsurface hydrology. These problems include 

confined saturated flow, unconfined flaw under free surface conditions 

subject to the Dupuit assumption, flow in aquifers which are partly confined 

and partly unconfined, axisymmetric flow to a well with storage, and flow 

in saturated-unsaturated soils. A single computer program, entitled FLUMP, 

can now handle all of these problems. The mixed explicit-implicit solution 

strategy employed in the program insures a high level of accuracy and 

computation efficiency in most cases. It eliminates many of the diffi­

culties that groundwater hydrologists have been encountering in trying to 

simulate extensive aquifer systems by finite elements. Some of the out­

standing features of this solution strategy include an automatic control 

of time step size, reclassification of nodes from explicit to implicit 

during execution, automatic adjustment of the implicit time weighting 

factor, and the treatment of boundary conditions and source terms as 

arbitrary functions of time of the state of the system. Five examples are 

presented to demonstrate the versatility and power of this new approach. 

A purely physical derivation of the finite element equations which does not 

rely on the Galerkin formalism is also included in one of the appendices. 
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INIRODUCTION 

A large class of problems in subsurface hydrology are governed by 

linear or quasi1inear parabolic partial differential equations of the 

type 

= c ah at (1) 

where h is the dependent variable, K is the second-rank symmetric positive­

definite tensor, q is the source term, and C is a fluid mass capacity 

coefficient. For examp1e,in the case of confined saturated flow, h 

represents the hydraulic head, ! the hydraulic conductivity (or transmis­

sivity), and C the specific storage (or storage coefficient). In the 

case of flow in an unconfined aquifer, h represents the hydraulic head, 

! the transmissivity (i.e., the product of hydraulic conductivity and 

saturated thickness), and C the specific yield. The resulting expression 

is known as the Boussinesq equation. If h is replaced by the volumetric 

water content, 8,! by the diffusion coefficient, D (8), and C is set 

equal to unity, then (1) becomes the well known diffusivity equation for 

unsaturated flow in a homogeneous soil. Richards' equation for saturated-

unsaturated flow is obtained from (1) simply by writing h = ~+Z where 

~ is pressure head and Z is elevation above an arbitrary datum; by allow­

ing K to vary in a prescribed fashion with 8, while at the same time 

treating 8 as a prescribed function of ~; and by setting C = a8/a~. In 

the case of flow in a confined saturated medium, the coefficients K and 

C are prescribed at each point in the medium independently of h, 

and therefore (1) is generally linear in the dependent variable. On 

the other hand, Boussinesq, diffusion and Richards' equations are non-

linear because at least one of the coefficients, K and C, varies with h. 
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When (1) is discretized by the Galerkin finite element method, 

the result is a system of first-order linear or quasilinear differential 

equations of the form [cf. Neuman, 1975] 

(2) 

where ~ is the conductance (or stiffness) matrix, Q is the capacity 

matrix, ~ is the dependent variable vector (e.g., hydraulic head, water 

content), and Q is a vector representing sources or sinks. The term h 

represents time derivatives of h. 

In most finite element schemes (e.g., Javandel and Witherspoon [1968], 

Pinder and Frind [1972]) the capacity matrix Q includes non-zero off-

diagonal terms (i.e., it is nondiagonal), and there is growing evidence 

in the literature suggesting that this may lead to conceptual as well as 

numerical difficulties. For example, a recent analysis by Narasimhan 

[1976] indicates that a nondiagonal Q matrix may upset the maintenance 

of local mass balance in the vicinity of each node, although overall 

balance over the entire finite element grid may still be preserved. 

Fujii [1973] showed that when Q is nondiagonal, the time increment 6t 

in the numerical scheme must not be too large or too small if the maximum 

principle is to be preserved (the maximlim principle states that, in the ab-

sence of internal sources q, the maximum value of h must occur at the 

initial time or at the boundary), When Q is diagonal, the permissible 

value of 6t is larger and there is no lower limit. This may perhaps 

explain why, as our experience indicates (2) sometimes yields physically 

unrealistic values of ~ when there is a sudden and drastic change in Q 

(e.g., the rate of purnpage from certain wells in an aquifer), and why 
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this can be remedied by diagonalizing the D matrix as has been done by· 

Wilson [1968], Emery and Carson [1977], Neuman [1973, 1975], Neuman 

et al. [1976], and others. In fact, Neuman [1973] found by experience 

that in solving the highly nonlinear problem of saturated-unsaturated 

ground water flow with the aid of finite elements, the rate of convergence 

can be improved dramatically by diagonalizing the ~ matrix. Neuman used 

triangular elements, but the same happens when one uses isoparametric 

elements [Segol, 1976, personal communication]. Similar conclusions 

have also been reached by Mercer and Faust [1976] in connection with two­

phase innniscible flow in porous media. 

Neuman and Narasimhan [1977] described an alternative form for (2) 

with a diagonal capacity matrix which, they showed, has many advantages 

over the traditional approach. In this new approach, the differential 

equation (2) is discretized in time by finite differences which enables 

one to treat them either explicitly, or implicitly, or by an optimum 

combination of both schemes. The implicit equations are solved by a 

point iterative technique rather than by a direct method such as 

Gaussian elimination or Cholesky decomposition. This eliminates one of 

the major difficulties that groundwater hydrologists have faced in try­

ing to utilize existing finite element computer programs to simulate 

flow in extensive aquifers. Neuman and Narasimhan [1977] derived local 

stability and convergence criteria for the explicit-implicit scheme, as 

well as convergence criteria for the proposed point iterative technique. 

Their·:~theory assumes that the matrix ~ is diagonally dominant, and it is 

shown that one can always construct a finite element mesh satisfying 

this condition. 
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Narasimhan et al. [1977] have incorporated these new ideas into a 

powerful and versatile computer program entitled FLUMP. They applied it 

to various linear problems and concluded that the mixed explicit approach 

is highly efficient for problems that might otherwise involve matrices 

with large bandwidths (as in the case of extensive aquifers); problems 

in which the boundary conditions or source terms vary often and rapidly 

with time as in the case of variable pumpage rates; and problems charac­

terized by a significant spatial variability of element sizes and mater­

ial properties. They showed that the mixed scheme is capable of yielding 

highly accurate results to such linear problems, and that it often re-

quires a lesser amount of computer time than other explicit or iterative 

implicit methods. Neuman et al. [1976] applied FLUMP to various quasi-

linear problems involving unconfined flow under free surface and saturated-

unsaturated conditions. Their results indicated that the mixed approach 

is especially well suited for quasilinear problems in which the coef­

ficients, the source terms, and the boundary conditions vary with the 

dependent variable. 

The purpose of this paper is to review briefly the theory of the 

mixed explicit-implicit iterative finite element method and to demon­

strate its flexibility and reliability in dealing with a variety of prob-

lems arising in subsurface hydrology. The power of the new method is 

demonstrated by five examples including the build-up of a groundwater 

ridge, infiltration into an unsaturated soil, drainage of a saturated-

unsaturated system, radial flow to a well with well-bore storage, and 

areal flow in an extensive stream-aquifer system. All of these examples 

were computed with the aid of a single computer program, FLUMP. A purely 
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physical derivation of the finite element equations not relying on the 

Galerkin formalism is also presented in Appendix B. 

EXPLICIT - IMPLICIT FORMULATION 

In order to discretize (1) in space we adopt a network of triangular 

elements for plane flow and a network of concentric rings of constant 

triangular cross-section for axisymmetric problems (Fig. 1). Each tri­

angle is further subdivided along its medians into three subdomains of 

equal areas, each of which is associated with the nearest nodal point. 

The collection of all such subdomains associated with any given node n 

(see shaded area in Fig. 1) is referred to as exclusive subregion, R , 
n 

of n. 

In each individual element, e, the dependent variable is described 

approximately by 

h(~, t) :: l: h (t) ~ne (~ 
n n 

(3) 

where h are the values of h at the nodal coordinates, x , and ~ e(x) are n n n-

linear shape functions of the space coordinates defined in Appendix A and 

satisfying ~ e(x ) = 0 ,0 being Kroenecker delta. With this we are n -m nrn nrn 

ready to apply the Galerkin method to (1). However, since this method 

is applicable only at a given instant. of time, the time derivative ah/at 

must be determined independently of the Galerkin orthogonalization pro­

cess, as pointed out earlier by Neuman [1973]. Thus, instead of replacing 

h in the time derivative by (3) as is usually done in the conventional 

finite element approach, one is justified to define the nodal values of 

ah/at as averages over the exclusive subregions, R , associated with . n 
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each node. This leads to a system of first-order linear or quasilinear 

differential equations of the form given in (2), but with a diagonal 

capacity matrix. The individual terms of the matrices ~ and Q are given 

by [Neuman, 1973] 

I 4~ [K b b + K (b c + b c) + Kyy cncm] 
o xxnm xy nm m n 

e 
(4) 

D =0 I Ci
3
/:!'C 

nm nm (5) 
e 

where /:!, is area of triangle, Ci = 1 fOF plane flow and Ci = 2nr for axi­

symmetric flow (r being average radius to the centroid of triangle), b 

and c are geometric coefficients defined in Appendix A, and the summation 

sign applies to all elements adjacent to nodal point n. 

The finite element differential equations (2), with ~ and Q being 

defined as in (4) and (5), can also be derived from purely physical con-

siderations (that is, without using the Galerkin formalism). Such a 

derivation is given in Appendix B [see also Narasimhan, 1976]. It is 

clear from the physical derivations that -Anm represents the rate of 

fluid transfer into Rn , the exclusive subregion of node n, due to a 

unit difference in head between nodes m and n. On the other hand, Dnn 

is the fluid mass capacity [Narasimhan and Witherspoon, 1977] of Rn , 

denoting the ability of ~ to take fluid into storage due to a unit 

change in head. The fact that D is diagonal matrix simply means that nn 

the amount of fluid in Rn is a function only of ~. 

If we replace the time derivatives in (2) by finite differences and 

introduce a weighting factor, 8, we obtain a system of simultaneous linear 

or quasilinear algebraic equations of the form 
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.. Q (6) 

where °2821, l'It. is the tiTre increment, and Ie indicates the number of time 

steps. Defining a new term 

(7) 

and recognizing from (A6) in Appendix A that 

(8) 

we can rewrite (6) as 

n = 1,2, ... ,N (9) 

where N is the total number of nodes and the summation is taken over all 

nodes m in the immediate neighborhood of N. When e = 0, all the values 

of h~+l can be calculated explicitly from the system of equations (9), 

which now corresponds to a forward difference scheme in time. When e = 

1, the result is a fully implicit backward difference scheme, whereas 

8 = 1/2 corresponds to a time-centered or Crank-Nicolson scheme. It is 

important to recognize that conventional finite element schemes with a 

nondiagonal ~ matrix are inherently implicit [Narasimhan and Witherspoon, 
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1976] in that hk+l can never be computed explicitly from the time-dis­n 

crete form of (2). Furthermore our formulation in (9) does not include 

any diagonal terms of the matrix ~, which leads to a considerable saving 

in computer time and storage, especially in dealing with nonlinear prob­

lems where the matrix must be recomputed at each time step. 

STABILITI AND CONVERGENCE 

For the purpose of defining stability and convergence criteria, let 

us assume that A < 0 for all m r n. nm - Since A = - I Anm , this implies 
nn mrn 

that A is diagonally dominant, i.e., 
= 

A = L IA I 
nn mrn nm 

(10) 

Later in the text we will show that one can always construct a finite 

element mesh which satisfies this requirement at all nodes. Neuman 

and Narasimhan [1977] showed that when (10) is satisfied, the finite 

element scheme in (9) is unconditionally stable at node n for all values 

of 8 which are not less than 0.5. When 8 < 0.5, stability is conditioned 

upon the criteria 

1 A < nn - 1 - 28 or (11) 

For example, the explicit version of (9) is stable at any node at which 

the'ratio between capacity and conductance is large enough so that 

6t < D /A for any given 6t. Conversely, the explicit scheme can be - nn nn 
made stable at all nodes by choosing a sufficiently small 6t. 

The stability criterion 6t ~ Dnn/Ann for the explicit scheme has a 
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simple physical interpretation. According to Appendix B, 6t Ann is the 

amount of fluid entering in the exclusive subregion of node n, R , when 
n 

heads at all adjacent nodes, hm' exceed fun by unity. On the other hand, 

D is the capacity of the subregion to absorb fluid when h changes by nn n 
one unit. Thus, the above stability criterion merely states that the 

amount of fluid entering Rn must not exceed the capacity of Rn to absorb 

fluid. A value of 6t ~n excess of what is prescribed by the stability 

criterion would imply that h must change by more than unity, which is 
n 

contrary to the maximum principle (recall tha~ in the explicit scheme, 

the values of hm remain fixed during a time step). Note that the identi­

fication of the stability criterion based on physical considerations 

focuses attention on the invariant nature of stability. 

We mention that (11) includes the term (1-28) in the denominator; 

Fujii [1973J derived a global criterion for the maximum principle 

associated with (9) which includes the term (1-8) in the denominator. 

This implies that our local stability criterion is less restrictive than 

the global criterion of Fujii. 

Neuman and Narasimhan [1977J have also investigated an important 

question: under what conditions does the numerical scheme in (9) con­

verge to the exact solution of (1) as the mesh is made finer and finer 

in space and time? Many conventional finite element formulations are 

known to converge in the mean; however, they seldom guarantee conver-

gence at each point, as is the case with many finite difference schemes. 

Neuman and Narasimhan [1977J were able to demonstrate that, in the 

linear case, the explicit~implicit scheme in (9) converges to the exact 

solution of (1) at each node at which stability and certain local 
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symmetry conditions are satisfied. 

POINT ITERATIVE MElliOD 

The particular iterative scheme adopted in this work is known as 

the point acceleration method and was.developed originally by Evans 

et al. [1954]. As will be seen below, it differs from the more familiar 

point successive over-relaxation technique [Gambolati, 1975]; the latter 

can be viewed as an extension of the Gauss-Seidel method, whereas the 

former is more closely related to the point Jacobi method. The acceler-

ation method is readily amenable to an analysis of pointwise convergence 

and is therefore well suited for the mixed explicit-implicit scheme 

proposed in this work. This by no means implies that one would not be 

able to achieve an equally fast, perhaps even faster, rate of conver-

gence with other iterative techniques, such as the point successive 

over-relaxation method. 

The system of equations (9) can be rewritten as 

[(hk _ hk) 
n m 
~ 

+ e (~hn - ~hm)] + Qn ~t/Dnn 
~ 

Explicit 
part 

Impl i cit 
part 

n = 1, 2, . •. N (12) 

where 6h = hk+l - hk and it is seen that the implicit part vanishes n n n 

where e = O. The acceleration method consists of introducing the 

following substitutions into (12): 

·+1 ~hn (left side) + ~h~ 

~hn (right side) + (1 + g) ~h~+l 

~hm (r; ght side) -~ ~h~ 
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where j is number is iterations and g is acceleration factor. Solving 

for ~hj+1, the acceleration algorithm takes the form 
n 

~hj+ 1 = _m_f_n _______ m_~_n ___________ _ 

n 1 - e ( 1 +g) "'" 
i..J Anm 
mfn 

(13) 

The same algorithm can also be written in terms of the residuals E as 

e ~A nm (g E:
j 

+ E:~) 
j+ 1 n 

= m n (14) E: n 1 - e(l + g) I Anm 

j+l = ~hj+l j . mfn 
where E - ~h . n n n 

The reader may easily recognize the fact that when g is set equal 

to zero, (13) and (14) reduce to the point Jacobi algorithm. As a matter 

of contrast, when the relaxation factor in the point successive over-

relaxation algorithm is set equal to unity, it reduces to the Gauss-

Seidel algorithm. 

Neuman and Narasimhan (1977) showed that, for linear problems, the 

acceleration method converges at any node at which ~ is locally diagon­

ally dominant (we mentioned earlier that it is always possible to con-

struct a mesh which satisfies this requirement), provided that g ~ O. 

For optimum results, g should not exceed 1 and should usually be less 

than 0.5. Experience indicates that near-zero values of g may cause 

difficulties and the optimum value tends to be in the vicinity of 0.2. 
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The optimum value of g appears to be more stable (i.e., to have a 

narrower range of values) than the optimum value of the relaxation 

factor w in the point successive over-relaxation method. 

LOCAL DIAGONAL DOMINANCE 

The purpose of this section is to show that one can always con­

struct a finite element ~~twork of triangles. so as to guarantee that ~ 

will be diagonally dominant. To do so for isotropic domains, we will 

follow an approach suggested earlier by Gambolati (1973). However, we 

will follow a simpler and more practical line of reasoning for aniso-

tropic domains. 

Consider a triangular element in a plane described by the coordin­

ate system x, y as shown in Fig. 2. Then it is easy to show that 

b, = - a , sin y c, = a, cos y 
b2 = a2 sin (y-BJ ) c2 = - a cos (y- 13 3) (15) 

2 
b3 = a3 sin (Y+(32) c3 = - a cos (y+132) 3 

where b and c are geometric coefficients defined in Appendix A and all 

other terms are defined in Fig. 2. If ~e is the contribution of this 

triangle to the global matrix ~ then Eqs. (4) and (15) imply that, in 

the isotropic .domain, 

a 2 , - a,a2 cos 13 3 - a,a3 cos 132 
Ae _ K 

a,a2 cos 133 
2 

(16) -~ a2 a2a3 cos 13, 

- a,a3 cos (32 a2a3 cos 13, a3 
2 
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where ~ is area of triangle and K is the scalar equivalent of~. From 

Appendix A we know that 

(17) 

indicating that ~e is diagonally dominant if and only if all the off­

diagonal terms in (16) are negative. This means that none of the angles 

S may exceed 90°, and therefore a sufficient (though not always neces­

sary) condition for the global matrix ~ network consists entirely of 

right and/or acute angled triangles. The same, of course, holds for 

~. 

Next, consider an anisotropic domain with principal hydraulic con-

ductivities Kl and K2 oriented parallel to the x and y coordinates, 

respectively. Then, according to (4), 

e 1 
A = 4A (Klb b + K2c c ) nm t.:1 nm nm (18) 

we can now define a new set of coordinates x' = X/(Kl /K2)1/2 and y' = 

y, so that in the transformed domain of x' and y' ,Eq. (1) will 

take the form 

(19) 

In other words, the original anisotropic domain in the x, y plane has 

been transformed into an equivalent isotropic domain with conductivity 

(Kl K2)1/2 in the x', y' plane merely by expanding or contracting one 

of the coordinate axes. If b' and c' are the equivalents of b and c 
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in the transfonned domain, then it is easy to verify that Eq. (18) can 

also be written as 

(b' b' + c' c') n m n m 
(20) 

Let a, S, y in Fig. 2 transfonn into a', S', y' in the x' y' plane. 

Then it is innnediately obvious from (15), (16), and (19) that 

a'a'cos 8' - 1 2 3 

-a1a3cos 82 -a'a'cos 8' 
231 

-a'a'cos 8' 1 3 2 

-a'a'cos 8' 
2 3 1 

(a3)2 

Thus, following the same line of reasoning as before, it is evident 

that the global matrix ~ is locally diagonally dominant whenever the 

local network in the transformed domain consists entirely of right 

and/or acute angled triangles. Again, so is ~ . 

It is easy to show that the same holds true when the principal 

(21) 

conductivities Kl and K2 are not parallel to the x and y coordinates. 

For this purpose, it is sufficient to recognize that the solutions of 

(1) and (9) at any given point in space are independent of the choice 

of coordinates. Thus ~ must remain invariant under a rotation of coor­

dinates and therefore, if it is diagonally dominant in a set of coor­

dinates which is parallel to Kl and K2, it must also remain diagonally 

dominant in another set of coordinates oriented at an angle to the 

first one. One can therefore transfonn any anisotropic domain into an 

equivalent isotropic domain merely by expanding or contracting it 

1/2 parallel to Kl by the amount (Kl /K2) . If all the triangles in the 

transformed domain are constructed without obtuse angles, ~ will be 
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diagonally dominant. 

In a composite material consisting of several segments witll differ-

ent degrees and orientations of anisotropy, each segment must be trans-

formed separately parallel to its own principal direction of conductivity. 

Here, in addition to ensuring that all the triangles in the transformed 

domain are free of obtuse angles, one must also make sure that corre-

sponding nodal points at both sides of a material interface will coin­

cide with each other when the meshes are transformed back into the 

original plane. This is usually not a very difficult task, as has been 

demonstrated by an example in Narasiml1an et al. [1977J. 

MIXED EXPLICIT IMPLICIT SOLUTION STRATEGY 

The local nature of the stability criteria for (9), together with 

the use of a point iterative technique, suggest the interesting possi­

bility of solving the finite element equations explicitly at some nodes 

and implicitly at some other nodes during a single time step. If ~t 

satisfies the stability condition (11) for some node n, then (9) can be 

solved explicitly for ~h at that node. At nodes which do not satisfy n 

the stability criterion, ~n is determined iteratively by using the al-

gorithms in (13) and (14). A final correction is then made to the ~h n 

values calculated explicitly, when required, to conserve mass. We 

refer to this approach as a mixed explicit-implicit solution strategy. 

The mixed strategy is very useful in dealing with meshes charac­

terized by a significant spatial variability of element sizes and 

material properties. For example, if the region of interest consists 

of two materials having different conductivities and capacities, it 



: ) ;J '.) ) 

17 

may be possible to solve explicitly in one material and implicitly in 

the other. The mixed approach is also useful when there is a sudden 

temporal change in boundary conditions. In this case it is often 

desirable to use small ~t va1~~s for a short period of time until the 

system reaches a certain level of equilibrium, otherwise there may be 

a loss of accuracy. The attractive possibility of using an explicit 

solution procedure during this period may lead to significant savings 

in computer time. 

The idea of combining explicit and implicit calculations in a 

single time step was previously used in conjunction with an integrated 

finite difference scheme by Edwards [1972J. The procedure has been in-

corporated by Edwards into a powerful computer program, called TRUMP, 

which can handle multidimensional steady state and transient temperature 

distributions in complex, non-uniform, and isotropic systems, taking 

into account conduction, convection, and radiation. The program has 

also been applied by Edwards [1969J to darcian fluid flow in porous 

media. The conduction aspects of TRUMP are based on a set of alge­

braic equations which have the same general form as (9). This made it 

possible for us to develop a computer program which combines the ad­

vantages of the finite element method (such as the ability to treat 

anisotropic regions with complex geometry) with the remarkable logic 

and facilities of TRUMP. The new program is called FLUMP, as a mnemonic 

for Finite element and trUMP. 

In addition to the mixed explicit-implicit solution strategy, 

the user of FL~W has the option of using a fully explicit forward 

difference scheme (6 = 0), a time-centered Crank Nicolson scheme 
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(8 = 0.5), or a fully implicit backward difference scheme (8 = 1.0), 

throughout any part of the solution process. However, in practice 

these options are seldom used because FLUMP has the facility to adjust 

the weight factor 8 automatically during execution in a manner that 

ensures a high level of accuracy at each time step. This, as well as 

other special features of FLUMP, are described briefly below. 

ITERATIVE APPROACH 

The iterative approach is based on (13) and (14). During a given 

time step, ~t, the algorithm is applied only to a selected number of 

nodes (called implicit nodes) which cannot be treated explicitly without 

endangering stability. For the first iteration (j = 0), the initial guesses 
. o' . 

used are ~hQ = h ~t and & = h ~t, whereh . and·· hare estiIIk1.ted time deriva-n n m m n m . 

tives (a method for obtaining these derivatives is described later in 

the text). The values of ~hl are then calculated using (13), and the n 
1 1: first set of residuals is determined from the relation E = ~h - 11 ~t. 
n n n 

The next set of residuals, £2, is calculated with (14) and ~h2 is found 
n n 

. 1 . . 1 
from the relation ~hJ+ = ~hJ + EJ+. This procedure is continued until 

n n 

convergence is achieved or until 80 iterations have been completed. In 

this latter case, the calculations are repeated with half the original 

value of ~t. This may continue until ~t reaches a minimum specified 

value, in which case execution terminates with a diagnostic message. 

Two convergence criteria must be satisfied simultaneously before 

terminating the iterations. The first criterion is 

(22) 
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where ~hd is the desired maximum change in h at any node during a es 

time step (as will be seen later, ~t is adjusted during execution to 

maintain the maximum change in h near the value of ~hdes -" and less than 

2~des). The second criterion is based on the net correction to 

fluid content 

and the fluid capacity 

of all implicit nodes (the summation is taken over all implicit nodes). 

The iterative procedure is stopped when (22) is satisfied together 

with (23) below, 

~Hj < 10-5 D h 
net net ~ des (23) 

i.e., the net error in fluid content is less than 10-5 of the amount of 

fluid required to change h at each implicit node by the amount 6hd . es 

Experiments by Edwards [1972] on a large number of sample problems using 

TRUMP indicate that the net cumulative error in the average value of h 

tends to be no more than 0.01 6hd after several hundred time steps; es 

the cumulative error at individual nodes does not usually exceed 0.1 

~hd -" and is much less if some values of h are fixed at the boundary es 

of the system. 

After having completed the iterative procedure for all implicit 

nodes, one must now correct the values of h at all explicit nodes 

connected to implicit nodes, according to (see (12)) 



~h explicit corrected 
n 
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= ~h expl icit + 8 2: Anm(~hm - ~h ) 
n m,n n 

(24) 

where the summation is taken only over implicit nodes. This correction 

is necessary for a correct material balance. Since internal fluxes 

between adjacent subregions are calculated simultaneously with the h 

values, these fluxes must also be corrected in a similar manner. 

AUTOMATIC CONTROL OF TIME STEP SIZE 

The size of ~t is controlled automatically by several factors such 

as the lower and upper limits specified by the user (~tl and ~th' h' ow Ig 
respectively), the desired maximum change in h at any node during a 

time step (~hdes)' the smallest time step allowed at any explicit node 

by the stability criterion (~tstab)' the average number of iterations 

required for convergence, and the desired interval between printed 

outputs. 

The first time step is always 10-12 and is used primarily for 

checking the input data, establishing time derivatives, and determining 

~tstab (the latter is recalculated whenever the conductance or capacitance 

matrices change). The maximum allowed time step, ~t ,is then set max 

equal to 2/3 of ~tstab or ~~igh' whichever is smallest (the use of 

2/3 of ~tstab instead of ~tstab greatly increases the accuracy in 

coarse meshes). The minimum allowed time step, ~t . , is set equal mIn 

to ~tlow or 10-10 , whichever is greater. If ~tlow is equal to or 

greater than ~t ,the value of ~t. is reduced to slightly less than max mIn 

~tmax so as to prevent the input value from causing instabilities. 

The default value for ~t is taken to be ~t /100. loW max 
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During the subsequent calculations the size of ~t is gradually ad­

justed to obtain a maximum change in h close to ~hd and not exceeding . es 

2~hdes' to maintain the maximum change in any tabulated material prop-

erty in nonlinear problems near 1% or less and not exceeding 2%, and to 

prevent the number of iterations from averaging more than 40, the maxi-

mum allowed being 80. The technique for doing this has been designed 

by Edwards [1972] to cause a rapid decrease in ~t when the above limits 

are exceeded, with a more gradual increase in ~t when changes are rela-

tively slow. For this purpose, let 0 be either the largest percentage 

change property, or 1/40 of the number of iterations required for con-

vergence, whichever is larger. We then calculate the ratio 

R = ~d /max (maxl~h I, 0 ~hd ) es n n es (25) 

and if R < 0.5 and ~t ~ 1.01 ~t min, the entire computation for the re­

cent time step is repeated with a modified value of ~t. If all the nodes 

in the mesh are set to be implicit, R is reduced by a factor of 100 for 

the first time step to start the calculation out smoothly. If R ~ 1.0, 

the new time step is calculated according to 

whereas if R > 1, the formula is 

~tnew = 0.5 (1 + R) ~told 

In both cases the adjustments are subject to the constraints ~t. < mIn -

~t < ~t and 0.5 ~t ld < ~t < 2.0 ~t Id' new - max 0 - new - 0 

(26) 

(27) 
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An additional adjustment in the size of ~t may be required in order to 

meet a desired interval between printed outputs. 

RECLASSIFICATION OF NODES FROM EXPLICIT TO IMPLICIT 

If the recent time step was equal to ~t and less than ~th· h' max Ig 

the stability limits of all explicit nodes are tested. All explicit 

nodes with stability limits equal to or less than 1.8 ~tmax are then 

reclassified as implicit nodes. Since ~tmax = (2/3) ~tstab' the re­

classification affects all explicit nodes having stability limits from 

1.0 to 1.2 times ~tstab. This range was chosen empirically by 

Edwards [1972] in an effort to minimize the required computation time 

for a large group of test problems using TRUMP. 

The rate at which the nodes are reclassified from explicit to im­

plicit depends on the input·parameter ~d ; the larger this parameter, es 

the faster the increase in the size of ~t, and therefore the stability 

limits of most nodes are reached earlier. 

ESTIMATION OF TIME DERIVATIVES 

The initial guess of h for the iterative procedure requires a pre­

liminary estimate of the time derivatives, h. In nonlinear problems, 

the time derivatives are also used to estimate the average values of 

h to be used in evaluating h-dependent parameters. Rather than saving 

hn values from several preceding time steps, which could be used to 

calculate more accurate time derivatives, a simpler method is used 

which requires less memory space and machine time and is sufficiently 

accurate for most problems. 

The time derivatives for any time step tk+l - tk are estimated 
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from the maxinrum rates of change in h occurring during the two preceding 

time steps, ~tk = tk - t k-l and ~~-l = t k-l - tk-Z" For this purpose 

let us define the two ratios 

max 
n 

k k-l ~ hn - hn_' . max 
~t n 

k 

hk- 1 _ hk- 2 
n n 

~tk-l 

(Z9) 

where O.S ~ Rt ~ Z.O because, as will be recalled, ~t is not allowed 

to vary from one time step to another by mbre than a factor of Z. If 

Rk < 1.0, the maxinrum rate of change in h is decreasing with time, and 

the estimate is based on the assumption that all h values are approach­

ing equilibrium exponentially according to the formula h (t) = h (o)e-at " 

Since e-a = [h(t)/h(o)]l/t, it follows that 

Rest = R Rt (30) 
k+l k 

est where Rk+l ~ 1 is the estimated value of Rk+l" If Rk > 1, the maximum 

rate of change in h is increasing, and the estimate is based on the 

assumption that all h values vary quadratically according to the formula 

h (t) = h (0) + h (0) t + atZ. Since h (t)/h (0) - 1 '" 2at;h (0), it 

follows that 

Rest = 1 + (1 - Rk -1) R
t k+l (31) 

where 1 ~ R~!i ~ 3 due to the limits imposed on Rt" Equation (31) 

gives a more conservative estimate of the maximum rate of change in h 

than (30) does. The estimated time deri1Tative at each node is calculated 

as the product of the actual derivative during the previous time step 
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(32) 

Numerical experiments with TRUMP led Edwards [1972] to conclude that it 

is advisable to keep R~!i = 1.0 during the first two time steps (a) at 

the beginning of each problem, (b) after repeating a time step with a 

modified ~t, and (c) after a node has been reclassified from explicit to 

implicit. Edwards further concluded that the time derivatives should be 

set equal to zero or a very small number during the initial time step 

-12 
(~t = 10 ) as well as when they change sign. It was also found that 

more accurate results can be obtained for implicit nodes having stability 

limits smaller than ~tk by estimating their time derivatives during the 

first two time steps according to 

h = (hk - hk-l)/~t (1 - ~ A ) 
n n n k nlm run 

(33) 

where the values of Anm correspond to the time step just completed, ~tk. 

Estimation of Implicit Weight Factor 

In most implicit procedures, it is customary to employ either a time­

centered scheme with e = 0.5, or a backward difference scheme with e = 

1.0. In FLUMP, e is allowed to be zero for explicit nodes or to vary be­

tween 0.57 and 1.0 for implicit nodes. Experience indicates that small 

oscillations caused by rapid changes in boundary conditions or variable 

parameters tend to persist when e is close to 0.5. The lower limit of 

0.57 was chosen empirically by Edwards [1972] to eliminate persistent 

oscillations and to optimize the stability and accuracy of a large 
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number of test problems using TRUMP. 

The average value of h at any node during a time step is calculated 

in the program as h = hk + e (hk+l - ~ hk). Let us assume that h approaches n n n n 
equilibrium exponentially. Then for small time steps and for time steps 

during which the slope of h remains nearly constant, the correct average 

value is obtained with e = 0.5. On the other hand, for large time steps 

near equilibrium, the correct average value is obtained with e = 1.0. 

Thus, e should be in the vicinity of 0.57 during the period when rapid 

changes in h take place and should gradually shift toward 1.0 as equili-

brium is approached, otherwise there may be a loss of accuracy. One way 

to accomplish this is by using the empirical formula 

est / est e = max[0.57, max(l.O, Rk+l ) (1.0 + Rk+l )] (34) 

Experiments conducted by Edwards [1972] on a large number of problems 

using TRUMP have shown that approach to equilibrium is usually too rapid 

when a forward difference or time-centered scheme is used, and much more 

accurate results can be obtained with a variable e. His experiments also 

showed that e should be set equal to 1.0 during the initial time step 

(~t = 10-12) as well as during any time step following a rejected time 

step. This enables nodes with small stability limits to reach equilibrium 

with their neighbors when there is a rapid change in a boundary condition 

or a variable parameter without overshoot which may lead to damped oscil-

lations. 

As mentioned earlier, the computer program also provides an option 

to fix the value of e at 0.5, or 1.0 for the entire period of computation, 

corresponding to explicit forward difference, time-centered, or backward 
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difference schemes, respectively. However, this tends to reduce accuracy 

and increase computer time and is therefore not advisable. The purpose 

of including these options is to allow the calculational results and 

machine time to be compared with other methods using a fixed value ofe. 

ADDITIONAL· FEATIJRES OF FLUMP 

The printed output of FLUMP provides information on the nodal values 
'. 

of h, ~h, and estimated value of h at discrete time intervals specified 

by the user. Additional information includes the amount of fluid con-

tained in the exclusive sub domain of each node, change in the amount of 

fluid in each subdomain during ~t as well as from the start of the prob-

lem, total fluid content in the system, flux across the boundary of the 

system, and the net flux into or out of the exclusive subdomain of each 

node. This makes it possible to maintain a continuous check on material 

balance in the subdomain of each node as well as in the system as a 

whole. 

The program also includes a built-in safety feature to warn the 

user about nodes at which the matrix ~ is not diagonally dominant. If the 

degree of deviation from local diagonal dominance is significant, there 

is a risk that the solution may be locally unstable (if the node is 

explicit) and inaccurate, and that convergence will be relatively slow. 

The problem can always be remedied by locally redesigning the finite 

element mesh according to the guidelines given earlier in the text. Since 

the numbering of nodes and elements is completely arbitrary (as opposed 

to direct methods such as Gaussian elimination or Cholesky decomposition 

in which numbering has an effect on the band width), local modifications 
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of the mesh can be easily introduced merely by changing a few cards in 

the data deck. 

APPLICATION TO SUBSURFACE HYDROLOGY PROBLEMS 

The nature of our 'solution process makes it ideally suited for 

problems encountered under confined, unconfined, and saturated-unsatur-

ated subsurface flow conditions. In the program, such problems are 

treated simply by specifying selected values of nodal conductivities, 

capacities, and sources or sinks as tabulated functions either of time 

or of the dependent variable, h. The boundary conditions can also be 

controlled in a similar manner by tabulating them as functions of time 

or h. For saturated-unsaturated flow problems one has the option of tabu­

lating the variables not as a function of total hydraulic head, h, but 

as a function of pressure head, ~ = h - z, where Z is elevation. These 

features of FLUMP are demonstrated below by five examples involving 

various degrees of complexity and nonlinearity. 

BUILDUP OF A GROlJNI:WATER RIDGE UNDER FREE SURFACE CONDITIONS 

Our first example concerns the growth of a groundwater ridge 

under free surface conditions and the influence of uniform recharge from 

an infinite strip. This problem has been studied experimentally by 

Marino [1967] with the aid of a vertical viscous analogue (Hele-Shaw) 

model, and has been treated analytically by Hantush [1967]. Figure 3 

is a schematic diagram of the hydraulic conditions at the bottom and 

on both sides. It represents a fictitious porous medium having a 

hydraulic conductivity K = 0.42 em/sec and a specific yield Sy = 1.00. 

Initially, the water table in the model was at an elevation of 11.25 cm. 
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At time t = 0, a uniform recharge rate of 0.056 em/sec was inducted over 

a segment of the model extending from x = 0 to x = 23.8 em, and this situ­

ation was maintained for a prolonged period. This caused the water 

table to rise at the rate indicated by the solid curves in Fig. 3. 

If one assumes that flow underneath the water table is essentially 

horizontal and that the recharging water reaches the water table instan­

taneously at t = 0, the flow in the model is governed by the one-dimen-

sional Boussinesq equation 

a ( ah) ax T(h) ax - q s ah yan (35) 

Here h is the height of the water table above the bottom of the model, q 

is the specific rate of recharge, and T(h) = Kh is the transmissivity. 

An analytical solution for a linearized version of this problem has been 

published by Hantush [1967] and some of his results are shown by triangles 

in Fig. 3. 

To solve (35) with FLUMP we used a finite element mesh of quadri-

laterals as shown in Fig. 4. In the program each quadrilateral is auto­

matically divided into two triangles as indicated by the dashed line in 

Fig. 4. The numerical results for t = 60, 300, and 540 are shown by circles 

.in Fig. 3, and it is seen that they compare favorably with Hantush's 

analytical solution. The theoretical results also show a good fit with 

Marino's experimental data at early time. At later values of time, the 

fit is good at distances exceeding 50 cm from the crest of the ridge but 

is somewhat less satisfactory near the crest. This may be due to the 

development of significant vertical hydraulic gradients under the recharg-

ing area; such gradients are not taken into account in the Boussinesq 
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equation .. 

INFILTRATION INTO AN UNSA1URATED SOIL COLUMN 

The second example deals with the early absorption stage of infil­

tration into a vertical unsaturated soil column. Initially the volumetric 

water content in the soil is 6 = 0.2376. At time t = 0, the top of the 

column is brought to a state of saturation at 6sat = 0.4950, and this 

situation is maintained indefinitely. If one is interested only in the 

early absorption stage of the resulting infiltration process when gravity 

is not important (or if the soil column is horizontal), then the flow in 

the soil is governed by the diffusion equation 

a~ (D(e) ~~ = 
ae 
at (36) 

Here z is depth below the soil surface and D(e) is hydraulic diffusivity. 

The highly nonlinear relationship between D and e is given in Table 

1. Figure 5 shows the finite element mesh employed in solving this prob­

lem with FLm~. The resulting water content profile at t = 106 sec is 

shown in Fig. 6. The numerical results are seen to be in excellent agree-

ment with an analytical solution derived for this problem by Philip [1969], 

and with numerical results obtained by Van der Ploeg and Benecke [1974] 

with the aid of CSMP. 

DRAINAGE FRCM A SA1URATED UNSA1URATED SYSTEM 

The third example is devoted to two-dimensional flow in a vertical 

plane where part of the porous medium is saturated and part is unsatur-

ated. Vauclin [1975] and Vauclin et al. [1975] described a sophisticated 
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Table 1. D - e relationship for adsorption problem. 

e D, cm2/sec 

0~2376 0 

0.2440 1.59 x 10-4 

0.2569 2.13 x 10-4 

0.2698 2.82 x 10-4 

0.2826 3.29 x 10-4 

0.2955 3.73 x 10-4 

0.3084 4.51 x 10 -4 

0.3213 6.31 x 10-4 

0.3341 7.91 x 10-4 

0.3470 7.96 x 10-4 

0.3599 7.20 x 10-4 

0.3727 6.69 x 10-4 

0.3856 6.66 x 10-4 

0.3985 6.80 x 10-4 

0.4113 7.43 x 10-4 

0.4242 8.55 x 10-4 

0.4371 9.99 x 10-4 

0.4500 1.31 x 10-3 

0.4628 1.98 x 10-3 

0.4757 3.34 x 10-3 

0.4886 1.046 x 10-2 
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and highly accurate drainage experiment in a sand box shown schematically 

in Fig. 7. Initially, the water table in the box was at an elevation 

of 143 ern. At time t = 0, the water level in one of the reservoirs 

attached to the sand box was lowered to an elevation of 80 cm, and this 

situation was maintained indefinitely. The resulting hydraulic gradient 

caused the water table to drop gradually at the rate indicated by the 

solid curves in Fig. 7. During the drainage process the sand remained 

saturated below the water table; the region above the water table had 

varying degrees of saturation. 

Under this condition, flow in the model can be described by the 

Richard's equation 

~ (K(8) ~).' + ~ (K(8) a1/1) = C(8) ~1/1t . ax ax az dZ 0 

(37) 

Here x and z are horizontal and vertical coordinates, respectively; 1/1 is 

pressure head defined as 1/1 = h - Z where h is total hydraulic head; 

K is hydraulic conductivity; and C is specific moisture capacity defined 

as C = d8/d1/1. The highly nonlinear relationships between 1/1,8,K, and C 

are given in Table 2. 

Figure 9 shows the finite element network used in simulating the 

experiment with FLUMP. As seen in Fig. 7, the numerical results for the 

position of the water table are in excellent agreement with the corre-

sponding experimental data. Figure 8 compares the cumulative depletion 

fram storage as obtained by direct measurement, as computed with FLUMP, 

and as obtained by an alternating direction implicit finite difference 

approach by Vauclin et al. [1975]; here again, the numerical results 

are in fairly good agreement with each other as well as with the 

experimental data. 
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Table 2. Relationship between 1/J, e, K, and C for drainage problem. 

1/J 
em e e, l/em K, em/sec 

-100 0.018 

-90 7 x 10-4 

-80 0.032 1. 94 x 10-7 

-75 1.3 x 10-3 

-70 0.045 

-65 2.0 x 10-3 

..,60 0.065 6.94 x 10-6 

-55 3.1 x 10-3 

-50 0.096 1. 94 x 10-5 

-45 4.6 x 10-3 

-40 0.142 6.94 x 10-5 

-30 5.9 x 10-3 8.33 x 10-4 

-25 1. 73 x 10-3 

-20 0.261 3.72 x 10-3 

-17.5 4.2 x 10-3 

-15 0.282 

-12.5 2.5 x 10-3 

-10 0.294 1.02 x 10-2 

-7.5 1.0 x 10-3 

-5 0.299 

-4 1.12 x 10-2 

-2.5 1.6 x 10-4 

0 0.300 1.0 x 10-5 1.12 x 10-2 
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CONFINED AXISYMMETRIC FLOW TO A WELL WIlli WELL-BORE STORAGE 

In groundwater hydrology, wells are often treated as line sources 

having negligible radii. However, when the aqljiferotransmissivity is 

small, the water stored in a well may have a considerable effect on 

discharge and on the hydraulic head in the aquifer [Papadopulos and 

Cooper, 1967; Narasimhan, 1968; Kipp, 1973; Neuman, 1975]. The problem 

of simulating well-bore storage under saturated-unsaturated conditions, 

by finite elements was previously discussed by Neuman [1975] and Neuman 

et al. [1974]. In the present paper, we consider an alternative approach 

based on the explicit-implicit formulation in (9). 

Consider a partially penetrating well together with a superimposed 

finite element network as shown in Fig. 10. The well has a radius rw 

and discharges at a rate Qw which may vary with time in a prescribed 

fashion. If the aquifer is confined, the head h in the well is the 
w 

same at all the nodal points n = 1, 2, ... ,6, neglecting the storage 

capacity of the porous medium near the well in comparison to that of 

the well itself, we obtain 

(1 - e) L ~A (h
k 

- hk) + Q I nm w m w n n 

(38) 

where Dw' the capacity of the well, is equal to TI~w2; the first summation 

is taken over all nodes n = 1,2, ... ,6 along the well-bore. The aquifer has 

a transmissivity of 9.29 x 10'-3m2/sec , and a storage coefficient of 10- 3. 

The \fell is located at the center of an impermeable circular bOlmdary 

having a radius of 400 m. It discharges at a constant rate of 1.42 x 

10-3m3/sec . To solve this problem with the mixed explicit-implicit 

scheme, the flow region was discretized into 130 nodes and 100 elements. 
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The radial spacing of the nodes increased logarithmically from the 

center. 

Figure 11 shows a comparison between the numerical results and' 

two analytical solutions, one developed by Papadopulos and Cooper [1967] 

for drawdown in a large diameter well, and the other developed by MUskat 

[1966] for an impermeable circular boundary. Their solution is included 

for reference purposes. It is seen that the numerical results compare 

favorably with the analytical solution of Papadopulos and Cooper. The 

agreement with MUskat's solution is slightly less favorable, possibly 

because the analytical solution disregards well storage. 

Recently, Jargon [1976] pointed out that well-bore storage may 

also affect the drawdowns at observation wells located at a distance 

from the pumping well. Figure 12 shows the variation of drawdown with 

time at a distance of r = 12.5 m from the center of the pumping well. 

EXTENSIVE STREAM-AQUIFER SYSTEM 

As mentioned earlier, our new approach eliminates many of the diffi­

culties previously encountered in trying to simulate extensive aquifer 

systems by finite elements. To illustrate the capabilities of FLUMP 

in treating such systems, we have considered a hypothetical basin as 

shown in Fig. 13. The basin is 20 km in length, 10 km in width, and it 

consists of an unconfined aquifer in contact with a stream and its 

tributary. The aquifer material consists of four different sedimentary 

units having distinct permeabilities. The thickness of the sediments 

varies in a step-like fashion from 20 m near the margins to 100 m below 

the streams. The transmissivity is assumed to vary linearly with the 
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saturated thickness 1 as shown in Fig. 14. Water levels in the streams 

are taken to be constant with time,decreasing monotonically at a slow 

rate in the downstream direction. The hydraulic contact between the 

aquifer and the streams is such that water can flow either from the 

streams into the aquifer, or vice versa, depending on the difference 

in head between the aquifer and the stream, as shown in Fig. 15. The 

aquifer is tapped by 21 wells which are indicated by circles in Fig. 13. 

The system was discretized into 806 elements with 770 nodal points 

as illustrated in Fig. 16. The first phase of the simulation consisted 

of determining the steady state distribution of hydraulic heads in the 

aquifer prior to pumpage, due to constant head along the streams and along 

segments of the aquifer boundary. The resulting piezometric surface is 

depicted in Fig. 17. It can be seen that under steady state conditions, 

water flows from the stream into the aquifer east of the 106 m contour, 

whereas the reverse is true in the downstream portion of the basin west 

of this contour. 

The second phase was to investigate what happens if all the 21 wells 

are turned on simultaneously, each pumping at a rate of 5451 m3/day 

ClOOO gpm), while head along the streams and the boundaries remains 

the same as before. Figure 18 shows the distribution of hydraulic 

heads in the aquifer after one year of pumping. It is seen that steep 

cones of drawdown have developed around all major pumping centers. 

In the left central part of the basin, the mutual interference of wells 

has caused a regional decline in water levels over a significant portion 

of the basin. Moreover, the pumping wells have captured much of the 

flow which was originally directed into the streams, so that in the 
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downstream part of the basin in the streams are now recharging the 

aquifer. 

The problem treated in this example is nonlinear due to the de­

pendence of transmissivities and source terms along the streams on the 

hydraulic head in the aquifer. For this reason, we found it necessary 

to restrict the size of each time step to approximately one day. This 

time step was less than the stability limit of all but 32 nodes in the 

mesh, so that most of the nodes were treated explicitly during the 

entire calculation. Each time step required an average of 1.45 seconds 

of computer time on the CDC 7600. We also ran the same problem with 

the .Crank-Nicolson scheme in which all the nodes are treated implicitly. 

Here the results were similar to those of the mixed explicit-implicit 

scheme. However, each time step required on the average 2.89 seconds, 

i.e., twice as much computer time as the mixed scheme. 
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APPENDIX A 

Consider the matrix ~ as defined in (4) for plane flow (i.e., a = 1). 

A typical term contributed by a single triangle such as that shown in 

Fig. 2 has the form 

Ae = -'- [K. b b + K (b c + b c ) + KyyCnCm] (AI) nm 4~ xx n m xy n m m n 

where 
b, = Y2 - Y"3 C = , x3 - x2 

b2 = Y3 - y, C = x 2 - x3 (A2) 

b3 = y, - Y2 C = 3 x2 - x, 

If Kl and K2 are the two principal conductivities, and a is the angle 

between Kl and x coordinate, then it can be shown that 

K K 2 K' 2 xx = ,cos a + 2s1n a 

K K · 2 K 2 yy = ,sln a + 2COS a (A3) 

Kxy = (K, - K2)sin a cos a 

Substituting (A3) into (AI) and rearranging, we obtain 

+ K2(b sina - c cosa) (b sina - c cosa)] n n m m. (A4) 

indicating that Ae > 0, i.e., the diagonal terms of Ae and ~ are always nn -

nonnegative. 

Furthermore, recognizing that bl + b2 + b3 = ° and cl + c2 + c3 = 0, 

we find that (A4) can also be written for n = m = 1 as 

(AS) 
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Thus, in general we have 

and 

where the summation is taken over all nodes other than n. 

The linear shape functions ~e(x) in Eq. (3) are given by n-

where b n and cn are as in (A2) and 

a, = x2Y3 - x3Y2 

a2 = x3y, - x'Y3 

a3 = x'Y2 - x2Y, 

Note that 

a~e bn a~e en n n = - = 
ax 211 ay 211 

(A6) 

(A7) 

(A8) 

(A9) 
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APPENDIX B 

To derive the finite element equations (2) on the basis of purely 

physical considerations (i.e., without the Galerkin formalism), let us 

confine our attention to the exclusive subregion, R , associated with 
n 

a given node n (Fig. 19). According to (3), h inside the particular 

triangle (n12) is given by the linear interpolation formula 

Since the functions ~e(~ are linear in the coordinates, !, (Bl) implies 

that the gradient of h, Vh, is constant inside the triangle. Furthermore, 

~ is assumed to be constant in each element, and therefore the flux ~ = 

- ~ Vh must be uniform inside the triangle. Thus, the sum of the flow 

rates across the line segments AG and BG must be equal to the flow rate 

across AB. In other words, the flow rate qn12 into Rn , contributed by 

the triangle (n12), is given by 

(B2) 

where ~12 is a unit normal pointing out of the triangle as shown in Fig. 

20. 

Now ~e (x) is by definition unity at node n and zero at nodes 1 n -

and 2. Therefore, the derivative of ~~ (!) parallel to the vector ~12 

is - l/L where L is the distance between node n and the line segment 

joining nodes 1 and 2. The gradient of ~e (~ is therefore given by n 

(B3) 
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Solving (B3) for ~12 and substituting into (B2) we obtain 

(B4) 

However, AB L is equal to the area of the triangle, ~, and from (Bl) we 

see that Vh = hn V~~ + hI V~~ + h2 v~~. Therefore (B4) can be rewritten 

as 

CBS) 

Similar expressions can be developed for ~23' ~34' ~45' and ~5l' The 

sum of all of these terms gives the net flow rate into Rn , ~, according 

to 

L ee where A = ~ K v~ • v~ run = n m 
e 

I A h run m m 

and m takes on the values n, 1, 2, ... , 5. 

(B6) 

(B7) 

Substituting (A9) into (B7) leads immediately to the final expression 

for Arun as given in (4) for a = 1. According to CA6) , qn can also be 

rewritten as 

(BS) 

This indicates that - A represents the new flow rate into R due to run n 
unit difference in head between nodes m and n. The same result was 

derived by Narasimhan (1975) by evaluating the Galerkin spatial integral 

over the triangular element e. 

The fluid capacitance of the segment NAGB of Rn is equal to C~/3 

where C is the capacitance of a unit area. Therefore, the total capacitance 
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of Rn, Dnn , is given by 

Dnn = .E 4- C (B9) 
e 

which corresponds to the diagonal terms of (5) when a = 1. Therefore, 

a complete expression of inarteria1 balance for R can be written as 
n 

dh 
D n - q + Q nnM - n n (BIO) 

where ~ is the net rate at which fluid is generated inside Rn by internal 

sources when (B6). is substituted into (BIO), we finally obtain 

L dhn 
A h+Dnn'It=Q m run m Ul. n 

which is the nth equation in the set of finite element equations 2. 

A similar derivation applies to the axisymmetric case where arlo 

(Bll) 
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Fig. 2. Trian9ul~r element in a fixed coordinate system x.y. 
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Figure 5. Finite element mesh for adsorption problem. 
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Fig. 13. Hypothetical groundwater basin: distribution of materials. 
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HYPOTHETICAL GROUNDWATER BASIN 

Dependance of Transmissibility on Hydraulic 
Conductivity and Hydraul ic Head. 
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Fig. 14. Hypothetical groundwater basin: dependence of transmissibility 
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HYPOTHETICAL GROUNDWATER BASIN 

Relation between River Stage, Water Table, 
and Infiltration from River. 
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Fig. 16. Hypothetical groundwater basin: finite element mesh used. 
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