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ABSTRACT

The state of stress in the crust of the earth is of great fundamental and practical
significance. No totally satisfactory method for measuring the complete state of stress
has been devised yet. Despite this, many efforts have been made to measure this state of
stress at different locations. From a compilation of many of the results, fifty which
yielded the complete state of stress and in which one of the principal stresses is verti
cal, have been selected for a statistical analysis in an endeavor to define the nature of
the state of stress in the crust. These data have been analyzed as a whole, and divided
into three groups depending upon whether the vertical stress is the maximum, minimum or
intermediate principal stress. Linear regression analyses of the values of half the
maximum stress difference as a function of half the sum of the maximum and minimum prin
cipal stresses have been made. The correlation coefficients for these fits are 0.786 for
the data as a whole and 0.848, 0.790 and 0.383 for each of the groups. Values of the co
efficient of sliding friction between blocks of rock comprising the crust, interpreted
from the slopes of these lines, ranged from 0.625 (for those measurements where the ver
tical stress is the maximum principal stress) through 0.427 (for those cases where the
vertical stress is the minimum principal stress), to 0.220 (for those cases where verti
cal stress is the intermediate principal stress). The 98 percent confidence limits for
these values lie within +19.4 percent - 16.6 percent.

INTRODUCTION

A knowledge of the state of stress in
the crust of the Earth is of great funda
mental and practical significance. Funda
mentally, it is of importance to under
standing earthquake mechanisms and plate
tectonics (see, for example, Wyss, 1970;
Raleigh, 1976, and Richardson et al.,
1976). Practically, it is an important
boundary condition in the design of under
ground excavations (Jaeger and Cook, 1976;
Hoek and Brown, 1977).

No totally satisfactory method for
measuring the complete state of stress in
crustal rocks exists yet. A number of
methods by which the state of stress may
be estimated is in use. These can be di
vided into' two basic techniques; those in
which stress is inferred from deformation
and those in which a component of normal
stress is substituted by a hydraulic

pressure. In the former technique, defor
mation of the rock in different directions
is measured by strain gages or borehole
deformeters. Essentially, the technique
involves measuring the relaxation which
accompanies the release of the stress in
the rock by trepanning. To convert
these measurements of strain or defor
mation to stress, it is necessary to know
the stress-strain relationships for the
rock. Methods using borehole deformation
are described fully by Obert et al. (1962)
and those using strain gages by Leeman
(1964). The use of hydraulic flat jacks
is described by Mayer et al. (1951)
Tincelin (1951) and SwolfS-and Brechtel
(1977). Stress measurement in hydraulic
fracturing has been described by
Scheidegger (1962) and Haimson and
Fairhurst (1967). Jaeger and Cook (1976)
describe methods for determining the
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state of stress underground and Fairhurst
(1968) has reviewed methods for determin
ing stresses at depth.

Despite its importance, the determi
nation of the complete state of stress in
the crust at any significant depth below
surface is a difficult and uncertain op
eration. Many of the determinations of
the state of stress in the crust which
have been made at different locations
throughout the world have been studied by
Hoek and Brown (1977), and are shown in
Figure 1. Each point represents the ratio
of the vertical component of the state of
stress to the average value of the hori
zontal components; they are not necessari
ly either principal stresses or principal
directions. In general, the vertical com
ponent of the state of stress is a result
of the weight of the overlying rock.
Figure 1 shows that the average values of
the horizontal components range from about

a half to more than three times that of the
vertical stress at the same depth. High
values of the horizontal stresses appear to
be a shallow phenomenon possibly associated
with denudation, (Voight 1966).

The upper bound to the average values
of the measured horizontal components of
stress derived by Hoek and Brown can be
expressed as:

°h ° 37.5 - 0.0125z (1 )z

where °h the average value of the
horizontal components of
stress (Mpa);

° the value of the verticalz component, approximately
.025z (MPa) ,

and z the depth below surface
(m) .
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Figure 1. Points showing the ratio between the average measured values of the two
horizontal components of stress to the value of the vertical component
of stress, as a function of depth below surface (from Hoek and Brown, 1977) .
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This equation suggests that the maximum
stress difference which rocks near the
surface can sustain may be about 37.5 MPa,
although the uncertainty introduced by the
use of an average value of the two hori
zontal components of stress gives rise to
an ambiguity which could result in this
value being several times greater. In any
case, a significant question that arises
is: are the values of the horizontal
stresses to the left of this line the re
sult of lower rock strength or lower ap
plied stress? To resolve this question it
is necessary to know the individual values
of the horizontal components of the state
of stress.

Fortunately, Hadley (1977) has made
an extensive compilation of measurements
to determine the state of stress, from
which sufficient data can be gathered to
endeavor to answer this question. For
this purpose, it is necessary that values
for each of the three principal components
of stress be determined, and convenient if
one of the principal stresses is in a

vertical direction. Fifty of the deter
minations of stress compiled by Hadley
meet these criteria and have been used in
this analysis. (Hoek and Brown used 116
measurements drawn from 34 sources. The
data used here are drawn from 16 sources
[see References: Stress Determination];
6 of these sources are the same as those
used by Hoek and Brown.)

ANALYSIS OF DATA

The initial step in the analysis is
an attempt to validate these uata, first
by comparing them with those collected by
Hoek and Brown, and second by comparing
the measured values of the vertical compo
nent of stress with those calculated from
the weight of the overburden.

To compare these data with those of
Hoek and Brown, they have been plotted in
Figure 2 using the same coordinates as
those of Figure 1. With the exception of
the very high values of the average hor
izontal stress near surface, Figure 1
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Figure 2. Points showing the ratio between the averaged measured values of the two
horizontal components of stress to the value of the vertical component of
stress as a function of depth below surface, for the data used in this
paper. The data are divided into three groups corresponding to stress
conditions associated with normal, thrust and strike-slip faulting.



and 2 appear to be similar. Close in
spection of these data reveals that they
can be divided into three groups, depend
ing upon the value of the vertical stress
compared with the values of the other two
principal stresses. Three types of fault
ing are discussed by Anderson (1951) ac
cording to the relative magnitudes of the
principal stresses; (i) normal faulting
occurs where the vertical stress is the
maximum principal stress; (ii) thrust
faulting occurs where the vertical stress
is the minimum principal stress, and (iii)
strike-slip faulting occurs where the ver
tical stress is the intermediate principal
stress. These three groups are identified
in Figure 2, from which it can be seen
that norQal faulting stress conditions
are those with relatively low average val
ues of the horizontal stresses, thrust
faulting stress conditions are those with
relatively high average values of the hor
izontal stresses, and strike-slip faulting
stress conditions are those with interme
diate average values of the horizontal
stresses, as would be expected. Accord
ingly the data have been analyzed in terms

4

of these three groups, and as a whole.

As a check on the range and quality
of the data, values of the vertical stress
have been plotted as a function of depth
below surface, as is shown in Figures 3
through 6. Using points which represent
measured values of the vertical stress
only, linear least squares regression lines
have been fitted to these data. Three
features of these fits can be used to gauge
the quality of the data; (i) the correla
tion coefficient; (ii) the slope (which
should accord with the stress gradient
caused by the weight of the overburden),
and (iii) the intercept at zero depth
(which should have a value of zero in the
absence of geological or topographic anom
alies). With the exception of the group of
data for strike-slip stress conditions, all
the data meet these criteria well. The
group representing strike-slip stress con
ditions comprises only 8 measured values of
which two (points 14 and 15) appear to be
anomalous, but the remaining 6 values meet
these criteria well.

56

51 42"

52

50 COMBINEO OATA
lB

CORRELATION COEffiCIENT = -. B71
16

NORMAl fAULTING CONDITIONS"11
THRUST fAULTING CONDITIONSx

11.
0 STRIKE-SLIP fAULTING CONDITIONS

10
CALCULATED fROM OYERBUROEN

18

J6
~

< J1
~

>::
Jl

JO ,,45

18

16 2Gx
11

11 48

10 ,,49

18 47

16
.. 35

11

11

10
,,50

16 x
15 0

44 2.

100 JOO 100 500 600 700 800 900 1000 1100 1100 IJOO 1100 1500 1600 1700 1800 1900 1000

DEPTH lM)

XBL 7B7 -9B11

Figures 3, 4, 5,
and 6.

Figure 3.

Values of the vertical component of stress plotted as a function
of the depth below surface for all the data used in this paper
combined and for each of the three groups representing different
stress conditions. Linear, least-squares regression lines have
been fitted to each set of data to assess its quality.



The principal analysis of the data
involved plotting half the maximum stress
difference against half the sum of the
minimum and maximum principal stresses for
all points combined, and for each group of
stress conditions, Figures 7 through 10.
This approach implicitly neglects any ef
fect of the intermediate principal stress,
as does Anderson's discussion of faulting
and the Mohr Coulomb theories of shear
failure (Jaeger and Cook, 1976). Linear
least squares regression lines have been
fitted to these data, together with 98
percent confidence limits.

5

Again with the exception of the group
for strike-slip stress conditions; the
values of the correlation coefficients
(0.786; 0.848; 0.790; 0.383) show a sig
nificant linear correlation between the
stress difference and the normal stress.
A linear relationship between shear stress
(stress difference) and normal stress.is
common in many physical problems and IS
one of the key properties of rocks
(Jaeger and Cook, 1976). It is common-
ly interpreted as a coefficient of frIC
tion, although the slopes derived from
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the form in which these quantltles are plotted
in Figures 7 through 10 do not yield a value for
the coefficient of friction direct. These slopes,
m, are related to the coefficient of sliding
f~iction, ~, and the angle of friction, <p, by

_ -1
<p Sln m;

(2)
~ tan <1>,

as derived by Jaeger and Cook (1976).

6

Using equations (2) the coefficients
of sliding friction for each group and
for the combined data are found to lie in
the range 0.220 to 0.625, as shown in
Table 1. Laboratory determinations of
the coefficients of friction for rocks
have been found to lie in the range 0.4
through 0.95 (Jaeger and Cook, 1976).

TABLE 1

Values of the coefficient of sliding friction as determined from a least squares analy
sis of the data shown in Figures 7 through 10.

Coefficient of Correlation 98 Percent Confidence Limits
Stress Condition Friction from Coefficient Upper Lower

Regression Line (Percent) (Percent)

Combined Data '0.522 0.786 0.577 (+10.5) 0.471 (-9.6)
Normal Faulting 0.625 0.848 0.746 (+19.6) 0.521 (-16.6)
Thrust Faulting 0.427 0.790 0.476 (+11.4) 0.381 (-10.9)
Strike-slip Faulting 0.220 0.383 0.235 (+6.9) 0.202 (-8.0)
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CONCLUSION

Hoek and Brown (1977) have studied a
large number of measurements of the state
of stress in the crust of the earth, by
comparing the ratio of the average value of
the horizontal stresses to that of the
vertical stress with depth below surface.
They show that relatively high values of
the horizontal stresses tend to be a shal
low phenomenon and that these values are
bounded by a curve which can be inter
preted as implying that the maximum dif
ference between the average value of the
horizontal stresses and that of the verti
cal stress in crustal rocks is at least
37.5 MPa, decreasing slightly with depth.

Hadley (1977) has endeavored to make
a complete compilation of determinations

of stress which have been made. Of these,
fifty provided values for all three prin
cipal components of the virgin state of
stress in the crust, or values for three
components close to the principal compo
nents. These data, when studied in the
same way as those collected by Hoek and
Brown, show a similar relationship between
the average values of the horizontal
stresses and that of the vertical stress.
However, three types of stress conditions,
defined by the relative magnitude of the
vertical stress, could be identified.
These are: normal faulting stress condi
tions, where the vertical stress is the
maximum principal stress; thrust faulting
stress conditions, where the vertical
stress is the minimum principal stress;
and strike-slip faUlting stress condi
tions, where the vertical stress is the
intermediate principal stress.



Average values of the horizontal
stresses less than those given by the
bounding curve derived by Hoek and Brown
may have two origins. First, the stresses
applied to the crust may be less than
those given by this bound or, second,
they may represent the maximum stresses
which the crust can withstand that is
they may represent the strength of the'
crust. It is well known that the strength
of rock depends to an important degree
on the normal stress to which it is sub
jected. Accordingly, the data in Figure 2
have been analyzed in terms of half the
maximum difference between the stresses
and half the sum of the maximum and mini
mum normal stresses. The results of this
analysis show (with the exception of the
group for strike-slip stress conditions) a
significant linear relationship between
these two quantities as is illustrated in
Figures 7 through 10, and given in Table 1,
together with the numerical values of the
equivalent co-efficients of sliding
friction.

8

The value of the coefficient of slid
ing friction for the combined data is

0.522 (+ 10.5 percent - 9.6 percent) but
that for each group appears to differ
significantly from this. For the normal
faulting stress condition it is 0.625
(+19.6 percent - 16.6 percent) and for the
thrust faulting condition it is 0.427
(+11.4 percent - 10.9 percent). For the
strike-slip faulting stress condition, the
correlation coefficient does not indicate
a significant linear relationship between
these quantities because of the small val
ue of the slope, which is equivalent to a
value for the coefficient of friction of
only 0.220 (+6.9 percent - 8.0 percent).

Ordinarily the strength of rock in
cludes not only a frictional term which is
dependent upon the normal stress, but a
shear strength or uniaxial compressive
strength. This would appear as a positive
intercept on the ordinate in Figures 7
through 10. The value of this intercept
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Figures 7, 8, 9,
and 10.

Plots of half the maximum stress difference against half the sum of
the maximum and minimum principal stresses for all the data com
bined and for each of the three groups of data representing dif
ferent stress conditions. Linear, least-squares regression lines
have been fitted to these data, together with lines showing 98
percent confidence limits.
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is close to zero and only for the group of
thrust faulting stress conditions do the
98 percent confidence limits not include
zero. Therefore, no conclusion is drawn
with respect to the shear strength or
uniaxial compressive strength of the crust
from these data.

The analysis made above demonstrates
that the data in each of the three groups
can be used to determine, with a high de
gree of confidence and of correlation
(except for the strike-slip condition), a
distinctiye value for the coefficient of
sliding friction for each of the three
stress conditions.

In view of this, it appears that the
state of stress in the crust of the earth
to depths of about a kilometer below sur
face may be determined largely by the

9

d /

frictional resistance to sliding between
surfaces of constituent blocks. The values
of the corresponding coefficients of slid
ing friction appear to differ significantly
for stress conditions corresponding to
different types of faulting. This may be
an inherent physical property of the sur
faces or it may reflect also the effect of
their orientation with respect to the di
rections of the principal stresses.
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