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ABSTRACT 

Mt. Hood, a composite andesitic volcano, located near Portland, Oregon, 

is one of scweral large eruptive centers which dominate the Cascade Moun- 

tains of the western United States. As part of a program of geologic, 

geophysical and geochemical studies to examine Mt. Hood's geothermal re- 

source potential, samples of warm-and cold-spring water, water from a 

geothermal test well in Old Maid Flat, fumarolic gases, and rocks were 

collected and analyzed for major chemical constituents and trace elements. 

The only warm-spring area on Mt Hood is Swim Springs, located on the 

south flank. Orifices at Swim were sampled repeatedly with little overall 

change noted in water chemistry between summer and winter. Oxygen and 

hydrogen isotope data and mixing calculations based on analyses of Swim 
Springs and numerous cold springs, indicate that a large component of the 

warm water at Swim is from near-surface runoff. Chemical geothermometry 

suggests that temperatures at depth in the Swim Springs system are within 

the range 1 O 4 - 1 7 O 0 C ;  the temperature of unmixed hot water may exceed 

200OC. Higher-than-background chloride contents and specific conductances 

of cold springs on the south flank of the mountain suggest that there is a 

small component of thermal water in these sources. 

A geothermal model of Mt. Hood is proposed wherein snow- and glacier- 

melt water near the summit comes in close proximity to the hot central 

"neck" of the mountain, manifested by the summit-crater fumaroles. The hot 

water migrates down-slope, mixing with cold water along its path; a small 

portion of the mixed warm water surfaces at Swim Springs. 

We were surprised to detect the platinum-group element, iridium in warm 

and cold spring waters and in a sample of altered andesite. Iridium is 

generally considered to be associated with basic to ultrabasic igneous 

rocks; its association with an andesite volcano is believed to be without 

precedent. 
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I. INTRODUCTION 

Large volcanoes  t o g e t h e r  w i t h  numerous smaller e r u p t i v e  c e n t e r s  a long  

t h e  Cascade Mountains from Nor thern  C a l i f o r n i a  i n t o  B r i t i s h  Columbia ( F i g u r e  

1) are evidence  of a tremendous release of thermal  energy a long  t h i s  zone. 

The g e o l o g i c  h i s t o r y  of t h e  Cascade Range i n d i c a t e s  t h a t  e r u p t i o n s  and 

mountain b u i l d i n g  have t a k e n  p l a c e  over  a l o n g  p e r i o d ,  and c o n t i n u e  i n t o  t h e  

p r e s e n t .  Mount Hood, l o c a t e d  80 km e a s t  of  P o r t l a n d  ( F i g u r e  2 ) ,  h a s  a 

v o l c a n i c  h i s t o r y  s imilar  t o  many of t h e  o t h e r  Cascade volcanoes .  I t  h a s  

h igh- tempera ture  fumaroles  n e a r  i t s  summit and a w a r m  s p r i n g  area on t h e  

s o u t h  f l a n k .  These recognized  thermal  m a n i f e s t a t i o n s  a long  w i t h  t h e  moun- 

t a i n ' s  a c c e s s i b i l i t y  and proximi ty  t o  P o r t l a n d ,  Oregon's main energy con- 

suming r e g i o n ,  make i t  a d e s i r a b l e  l o c a t i o n  f o r  t h e  s t u d y  and development of 

geothermal  energy.  

b 

1 

1 

Over t h e  p a s t  two y e a r s ,  a m u l t i d i s c i p l i n a r y  s t u d y  of t h e  g e o l o g i c ,  

g e o c h e m i c a l  a n d  g e o p h y s i c a l  f e a t u r e s  of  Mount Hood t h a t  r e l a t e  t o  t h e  

l o c a t i o n  of geothermal  energy h a s  been under t h e  d i r e c t i o n  of t h e  Oregon 

Department of Geology and Minera l  I n d u s t r i e s  (DOGAMI) w i t h  funding  from t h e  

U.S. Department of Energy. Ear l ier  s t u d i e s  (Wise, 1968, 1969) d e s c r i b e d  

t h e  g e o l o g i c  and t e c t o n i c  framework of t h e  r e g i o n .  D e t a i l e d  geochemical  

and g e o p h y s i c a l  i n v e s t i g a t i o n s  are b e i n g  conducted i n  t h e  s a m e  area. A 

s e p a r a t e  b u t  r e l a t e d  program of p o t e n t i a l  v o l c a n i c  h a z a r d s  of Mount Hood i s  

b e i n g  conducted c o n c u r r e n t l y  by t h e  U.S. Geologica l  Survey (USGS) under t h e  

d i r e c t i o n  of D.  R. C r a n d e l l .  

P 

1 

D 
T e c h n i c a l  s u p p o r t  of t h e  geochemical  s t u d i e s  of Mount Hood is  s u p p l i e d  

b y  t h e  E a r t h  S c i e n c e s  D i v i s i o n  of  Lawrence  B e r k e l e y  L a b o r a t o r y  (LBL). 

Geophysical  s t u d i e s  c o n s i s t  of g r a v i t y  and aeromagnet ic  s u r v e y s  by Oregon 

S t a t e  U n i v e r s i t y ,  a e r i a l  i n f r a r e d  s u r v e y s  by t h e  USGS, a n d  e l e c t r i c a l  
i 
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measurements by LBL (Goldstein and Mozley, 1978). Sampling and chemical 

analyses of rocks, gases, and ground waters in the area, including the 

fumaroles and the thermal and cold springs, has been a joint project 

between DOGAMI, USGS, and LBL. Suites of rocks typical of the area, both 

fresh and hydrothermally altered, have been analyzed to discern possible' 

changes produced by the alteration. Selected water samples have been 

analyzed for oxygen and hydrogen isotope ratios to help determine the 
pathways water takes from its meteoric origin into and through the moun- 

tain's hydrologic system. 

Analyses of waters from geothermal areas have proven to be very effec- 

tive exploration tools. Truesdell (19751 ,  in a comprehensive review, 

pointed out that several elements gave indications of minimum subsurface 

reservoir temperatures. The ratios between sodium, potassium, and calcium 
(Fournier and Truesdell, 1974) along with the silica content of warm-spring 

water may be definitive. A knowledge of silica contents and temperatures of 

cold and warm spring waters may be used to determine the amount of mixing of 

nonthermal waters and the reservoir temperatures before mixing. 

This report emphasizes the presentation of analytical data obtained 

prior to October 1978. Since sampling and analyses have continued beyond 

that time, interpretative comments in this report are necessarily brief and 

should be considered as preliminary. A more detailed interpretation of the 

data awaits the results of continuing field sampling and laboratory 

analyses. 

A. Geologic Setting 

The regional setting of Mt. Hood is shown in Figure 1. Mt. Hood is a 

composite andesitic stratovolcano rising approximately 2500 meters above 

the surrounding terrain. It is largely Pleistocene in age with the main 

body of the cone constructed prior to the onset of Fraser Glaciation, about 

20,000 years ago (Wise, 1968).  Renewed volcanism took place about 12,000 
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y e a r s  ago w i t h  t h e  e x t r u s i o n  of several domes n e a r  t h e  s u m m i t  ( C r a n d e l l  and 

Rubin,  1977) .  F u r t h e r  e p i s o d e s  of e x t r u s i o n s  n e a r  t h e  summit about  1 ,600 

y e a r s  a g o  p r o d u c e d  a s e r i e s  of  h o t  a v a l a n c h e s  t h a t  c u l m i n a t e d  i n  t h e  

c o l l a p s e  of t h e  s o u t h  r i m  of t h e  crater which t h e n  topped t h e  mountain. 

The c o l l a p s e  of che s o u t h  crater w a l l  r e s u l t e d  i n  a l a r g e  d e b r i s  f a n  t h a t  

c o v e r s  t h e  s o u t h  f l a n k  of t h e  mountain (Wise, 1968) .  The most r e c e n t  major 

e r u p t i o n  took  p l a c e  about  220 y e a r s  ago from t h e  Crater Rock area. A t  t h a t  

t i m e  a series of h o t  ava lanches  cascaded down t h e  east  and w e s t  s i d e s  of 

t h e  mountain,  c a r r y i n g  incandescent  d e b r i s  s e v e r a l  m i l e s  down t h e  v a l l e y s  

( C r a n d e l l  and Rubin, 1977) .  H i s t o r i c a l  e r u p t i o n s  were r e p o r t e d  i n  1859 and 

1865 (Folsom, 1970) .  

Mount Hood i s  l o c a t e d  a long  a l i n e a r  t r e n d  w i t h  most of t h e  o t h e r  Cas- 

c a d e  v o l c a n o e s  of  Oregon a n d  W a s h i n g t o n .  T h a y e r  ( 1 9 3 7 )  a n d  C a l l a g h a n  

(1933) have a s s o c i a t e d  t h e  l i n e a t i o n  w i t h  a f a u l t  zone t h e y  recognized  

a l o n g  t h e  w e s t e r n  edge of t h e  High Cascades.  A l l e n  (1965) b e l i e v e s  t h a t  

t h e  volcanoes  are c o n c e n t r a t e d  i n  a graben  formed by t h e  Hood River-Green 

Ridge f a u l t s  on t h e  east and t h e  unnamed f a u l t s  of Thayer and Cal laghan on 

t h e  w e s t .  The w e s t e r n  f a u l t  h a s  n o t  been recognized  i n  t h e  Mount Hood area 

b u t  r e c e n t  d r i l l i n g  on t h e  w e s t  s i d e  of Mount Hood a t  Old Maid F l a t  shows 

t h e r e  i s  s i g n i f i c a n t  d i sp lacement  of t h e  Columbia R i v e r  Basalt t h a t  may b e  

caused by f a u l t i n g .  

The l o c a l  g e o l o g i c  s e t t i n g  of Mount Hood i s  i l l u s t r a t e d  i n  F i g u r e  3 

(Wise, 1968) .  The predominant s u r f i c i a l  material is  c l a s t i c  d e b r i s ,  of 

a n d e s i t i c  c h a r a c t e r .  A p lug  dome of hornblende  a n d e s i t e ,  Crater Rock, w a s  

e x t r u d e d  about  2,000 y e a r s  ago. The e x t e n s i v e  lava f l o w s  which p r e d a t e d  

t h e  c l a s t i c  d e b r i s  were p r e d o m i n a n t l y  h o r n b l e n d e  a n d e s i t e ,  w h i l e  more 

r e c e n t  e x t r u s i o n s  on t h e  n o r t h  and n o r t h e a s t  f l a n k s  were of o l i v i n e  b a s a l t  

and o l i v i n e  a n d e s i t e .  

5 



GEOLOGY OF THE MT. HOOD AREA, OREGON 
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B. Hydrologic  S e t t i n g *  

M t .  Hood l i e s  a l o n g  t h e  a x i s  of t h e  Cascade Range, and receives most 

of i t s  p r e c i p i t a t i o n  d u r i n g  t h e  f a l l  and w i n t e r  from s torms  t h a t  o r i g i n a t e  

i n  t h e  n o r t h  P a c i f i c  and move southward and eas tward  a c r o s s  t h e  range.  The 

a v e r a g e  a n n u a l  p r e c i p i t a t i o n  i s  about  102 c m  a t  P o r t l a n d  and i n c r e a s e s  t o  

t h e  east, t o  a maximum n e a r  t h e  c res t  of t h e  range.  Records of t h e  Nation- 

a l  Weather S e r v i c e  show t h a t  a t  Government Camp ( F i g u r e  2) t h e  average  i s  

about  230 cm. P r e c i p i t a t i o n  d e c r e a s e s  r a p i d l y  t o  t h e  east and i s  o n l y  25 cm 

w i t h i n  50 k m  of t h e  crest. 

P r e c i p i t a t i o n  f a l l i n g  above a n  a l t i t u t d e  of about  1,500m on M t .  Hood is  

i n f e r r e d  t o  b e  w i t h i n  a r e c h a r g e  a r ea ,  a n d  g r o u n d  water  t e n d s  t o  move 

downward ( F i g u r e  4 ) .  The t r a n s i t i o n  from r e c h a r g e  t o  d i s c h a r g e  area i s  

m a n i f e s t e d  by a band around t h e  mountain where s p r i n g s  tend  t o  d i s c h a r g e ,  

and below which p e r e n n i a l  streams are common. Above t h e  band, many streams 

are i n t e r m i t t e n t ;  i n  smaller channels  t h e r e  is  runoff  o n l y  d u r i n g  s p r i n g ,  

from m e l t i n g  snow. 

A t  d e p t h s  ranging  t o  a t  l e a s t :  250m i n  t h e  v i c i n i t y  of Timber l ine  Lodge, 

ground water o c c u r s  i n  perched zones between o r  w i t h i n  a n d e s i t e  f lows .  The 

w a r m  water  e m a n a t i n g  a t  Swim S p r i n g s  may h a v e  c i r c u l a t e d  d e e p e r  t h a n  

some of t h e  perched zones,  p robably  o r i g i n a t i n g  a t  e l e v a t i o n s  h i g h e r  t h a n  

Timber l ine  Lodge. The water comes t o  t h e  s u r f a c e  a t  Swim,  where t h e r e  i s  an  

a b r u p t  f l a t t e n i n g  of t h e  topographic  s l o p e  ( F i g u r e  4 ) ;  M t .  Hood a n d e s i t e  

f l o w s  t e n d  t o  d i p  down t h e  mountain,  and some permeable zones may i n t e r s e c t  

t h e  l a n d  s u r f a c e  h e r e .  The Swim area a l s o  l i e s  n e a r  a c o n t a c t  between M t .  

Hood a n d e s i t e  f lows  o r  a n d e s i t e  d e b r i s  and pre-Mt. Hood a n d e s i t e  and b a s a l t s  

(Wise, 1968) ;  t h e s e  o l d e r  r o c k s  are  less permeable and may tend  t o  d i r e c t  

ground water t o  t h e  s u r f a c e .  

* W r i t t e n  i n  c o n s u l t a t i o n  w i t h  James R o b i s o n ,  U.S .  G e o l o g i c a l  S u r v e y ,  
Menlo Park ,  C a l i f o r n i a .  
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D i s t r i b u t i o n  of runoff  of streams d r a i n i n g  M t .  Hood cor responds  t o  

t h a t  of p r e c i p i t a t i o n .  Records of a gauging s t a t i o n  on Salmon River, 7 

m i l e s  s o u t h e a s t  o f  t h e  summit  of M t .  Hood ( e a s t  o f  T r i l l i u m  L a k e  n e a r  

highway U.S. 26) show a n  a v e r a g e  runoff  of about  80  c m  p e r  y e a r  f o r  t h e  

d r a i n a g e  area above t h e  gauge. Sandy River  h a s  a runoff  of 1 7 8  c m  above a 

gauge 30 km w e s t  of t h e  summit, and t h e  West Fork of t h e  Hood River  h a s  a 

r u n o f f  o f  203  c m  a b o v e  a s t a t i o n  2 6  km n o r t h e a s t  of t h e  summit .  The 

g r e a t e s t  runoff  i n  t h e  M t .  Hood area i s  r e f l e c t e d  a t  a s t a t i o n  on B u l l  Run 

River, 29 km nor thwes t  of t h e  summit, where t h e  a v e r a g e  i s  more t h a n  305 cm. 

The component of any d e e p l y - c i r c u l a t i n g  ground water i n  most of t h e  s p r i n g s  

is probably  v e r y  s m a l l  because  t h e  runoff  is  l a r g e .  

11. SAMPLING AND ANALYSES 

? 
Techniques used by LBL t o  s a m p l e  waters and r o c k s  and t o  a n a l y z e  them 

f o r  major and trace e lements  have been d e t a i l e d  i n  papers  by Bowman and 

o t h e r s ,  (1975) ,  Hebert  and Bowman (1975) ,  and Wollenberg (1975) .  I n  t h i s  

s e c t i o n  we s h a l l  b r i e f l y  d e s c r i b e  t h o s e  t e c h n i q u e s  and t h e  t e c h n i q u e s  t o  

d e t e r m i n e  oxygen and hydrogen i s o t o p e  r a t i o s  and c o n s t i t u e n t s  of f u m a r o l i c  

g a s e s .  

1 

A .  Water 

Water samples w e r e  c o l l e c t e d  a t  t h e  l o c a t i o n s  shown i n  F i g u r e  3; loca-  

t i o n s  are r e f e r e n c e d  by l a t i t u d e  and l o n g i t u d e  i n  Table  l. Samples i n c l u -  

ded waters from c o l d  s p r i n g s  and w e l l s ,  t h e  S w i m  W a r m  S p r i n g s  on t h e  s o u t h  

f l a n k  of t h e  mountain ( t h e  d i s t r i b u t i o n  of o r i f i c e s  a t  Swim i s  d e t a i l e d  i n  

F i g u r e  5 ) ,  and t h e  w e l l  d r i l l e d  f o r  geothermal  water on t h e  w e s t e r n  f l a n k  

of  M t .  Hood i n  Old Maid F l a t .  S a m p l e s  were c o l l e c t e d  f o r  l a b o r a t o r y  

rad iometry ,  X-ray f l u o r e s c e n c e ,  n e u t r o n  a c t i v a t i o n ,  and mass-spectrometr ic  

a n a l y s e s .  For a n a l y s e s  of major and trace e l e m e n t s ,  sampling w a s  done by 

i n s e r t i n g  a 114-inch d iameter  tygon t u b e  i n t o  a s p r i n g .  The water was drawn 

P 

b 
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Table  1 

DESCRIPTION AND LOCATION OF WATER SWLLES 

MH- 1 S t i l l  Creek, c r o s s i n g  w i t h  Timber l ine  Road, 0.4 m i .  N. of Highway 
26 j u n c t i o n .  45O18.1'NY 12lo43.8'W. 

MH-2 Spr ing ,  White River outwash; s t reambed s t r o n g l y  i r o n - s t a i n e d .  
45O18 2'N , 12lo40.4'W. 

MH-3 S k i  Bowl, a r t e s i a n  w e l l  head. 45O18.1'NY 12lo46.0'W. 

MH-4 Swim area, " P i p e l i n e  Spring." 45O18.0'NY 12lo44.6'W. 

MH-5 Swim area, "Screen Spring." 45O17.9'NY 12lo44.5'W. 

MH-6 Swim area, east  s i d e  of o l d  swimming pool .  45017.g8N, 12lo44.6'W. 

MH- 7 Swim area, c i s t e r n  box upstream from pool .  45O17.9'NY 
12lo44.6'W. 

MH-8 Spr ing ,  s w i m  area, N l O O m  ups t ream from c i s t e r n  box. 45°18.0'N, 
12lo44.6'W. 

MH-9 Swim area, nor thernmost  s p r i n g  on w e s t  branch creek .  45018.18N, 
12lo44.7'W. 

MH-10 Robin Hood Quarry,  s m a l l  s p r i n g  i n  c e n t r a l  bench. 45020.1'NY 
121O34.1 W. 

MH-11 S p r i n g ,  r o a d c u t  on n o r t h  s i d e  of Highway 35. 45O18.6'N., 
12lo39.6'W. 

MH-12 

MH-13 

MH-14 

MH-15 

MH-16 

MH-17 

MH-18 

MH-19 

MH-20 

Spr ing ,  r o a d c u t / q u a r r y ,  n o r t h  s i d e  of Highway 26, 1/3 m i .  
T r i l l i u m  L. t u r n o f f .  45O17.4'NY 12lo44.0'W. 

NW 

S p r i n g ,  r o a d c u t  on Highway 26, above L a u r e l  H i l l  Quar ry .  
45O18.4'NY 12lo49.6'W. 

S p r i n g ,  M t .  Hood Meadows below Timber l ine  T r a i l .  
12lo40.1'W. 

45O20.3'NY 

Salmon River Canyon Spr ings .  45O19.9'NY 12lo42.2'W. 

S p r i n g ,  White River Canyon. 45O20.1'NY 12lo41.9'W. 

S p r i n g ,  from a n d e s i t e  flow. 45O20.1'NY 12lo42.9'W. 

" P i p e l i n e  Spring." Same l o c a t i o n  as MH-4. 

Swim area, "Screen Spring." Same l o c a t i o n  as MH-5. 

Swim area, "East s i d e  of Pool." Same l o c a t i o n  as MH-6. 

11 



Table  1 (cont inued)  

MH- 2 1 

MH-22 

t 

MH-23 

MH-24 

MH-25 

MH-28 

MH-29 

MH-30 

MH-31 

MH-32 

MH-33A 

MH-33B 

MH-35 

MH-36 

MH- 3 7 

MH-38 

m-39 

MH-40 

I r o n  Spring" n e a r  b r i d g e  over  Clear Creek. 45O23.5'N, 11 

12lo51.5'W. 

S l i g h t l y  a r t e s i a n  w e l l ,  Clear Creek p i c n i c  ground. 45O21.4'N, 
12lo56.2'W. 

Spring area below Timber l ine  Lodge. 45O18.9'N, 12lo42.9'W. 

Spr ing  a t  Camp Windy. 45O24.7'N, 12lo32.8'W. 

C l i n g e r  Spr ings .  45O16.4'N, 12lo45.9'W. 

Spr ing  on Timber l ine  T r a i l ,  5700 f e e t  e l e v a t i o n .  45O20.0'N, 
12lo39.6'W. 

Cold Spr ing .  45O21.7'N, 12lo39.6'W. 

Runoff ,  s m a l l  l a k e  i n  crater area. 45O22.1'N, 12lo41.9'W. 

Spr ing ,  b a s e  of lava f low,  Zigzag Canyon. 45O20.9'1?, 
12lo44.1'W. 

Spr ing ,  b a s e  of M i s s i s s i p p i  Head. 45O21.2'M, 12lo43.6'W. 

Old Maid F l a t ,  NWNG Co., test h o l e ,  a r t e s i a n  f low,  4 days a f t e r  
c e s s a t i o n  of d r i l l i n g .  45O23.4'N, 12lo48.5'W. 

Old Maid F l a t ,  NWNG Co. test h o l e ,  a r t e s i a n  f low,  second sampling,  
several days la ter .  Same l o c a t i o n  as MH-33A. 

Old Maid F l a t ,  NWNG Co., t es t  h o l e ,  a r t e s i a n  f low,  sample a f t e r  
w e l l  had been s h u t - i n  f o r a 1  week. Same l o c a t i o n  as MH-33A. 

Robin Hood Quarry,  same s p r i n g  as i n  MH-10 sample. 

Swim area, east s i d e  of l a r g e  pool .  Same l o c a t i o n  as MH-6. 

Swim area, "Screen Spring." Same l o c a t i o n  as MH-5. 

Swim area, " P i p e l i n e  Spring." Same l o c a t i o n  as MH-4. 

Old Maid F l a t ,  NWNG Co., test h o l e ,  a r t e s i a n  f low f o r ~ 3 6  hours  
fo l lowing  MH-35 sampling. Same l o c a t i o n  as MH-33A. 
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through a 0.45 micron f i l t e r ,  u s i n g  a hand-operated vacuum pump; t h e  appara- 

t u s  i s  shown i n  F i g u r e  6 .  Most o f t e n ,  t h e  water w a s  i n t r o d u c e d  t o  t h e  

f i l t e r  d i r e c t l y  from t h e  s p r i n g ,  b u t  o c c a s i o n a l l y  c o n d i t i o n s  r e q u i r e d  t h a t  

samples b e  o b t a i n e d  i n  b o t t l e s  and t h e n  f i l t e r e d  by pumping from t h e  b o t t l e  

i n  t h e  f i e l d  o r  l a b o r a t o r y .  G e n e r a l l y ,  500-ml "Nalgene" b o t t l e s  w e r e  used 

t o  c o l l e c t  and s t o r e  t h e  samples.  A t  t h e  sampling s i t e  t h e  pH of t h e  water 

was measured us ing  a c o l o r  compar i tor  set and s p e c i f i c  conductance measured 

by a p o r t a b l e  e l e c t r o n i c  u n i t .  C h l o r i d e  c o n t e n t s  w e r e  e s t i m a t e d  o n - s i t e  by 

immersing "Quantabl' s t r i p s  i n  s p r i n g  o r  w e l l  waters. 

I n  t h e  l a b o r a t o r y  t h e  water samples were evapora ted  i n  t h e  o r i g i n a l  

c o l l e c t i n g  b o t t l e s  a t  80°C,  a n d  a l i q u o t s  of  e a c h  were t a k e n  f o r  b o t h  

n e u t r o n  a c t i v a t i o n  a n a l y s i s  and X-ray f l u o r e s c e n c e  a n a l y s i s .  I n  g e n e r a l ,  

t h e  X-ray f l u o r e s c e n c e  measurements de te rmined  t h e  major  e lement  abundances,  

w h i l e  n e u t r o n  a c t i v a t i o n  w a s  used f o r  t h e  trace and minor e lements .  Some 

e lements  w e r e  determined by b o t h  methods so  t h a t  cross-checks could  b e  

made. 

For n e u t r o n  a c t i v a t i o n ,  e v a p o r a t e s  from water samples were made i n t o  

p e l l e t s  and i r r a d i a t e d ,  a l o n g  w i t h  a composi te  s t a n d a r d  p e l l e t ,  i n  t h e  

" R I G A  Research Reac tor  a t  t h e  U n i v e r s i t y  of C a l i f o r n i a ,  Berkeley.  Nearly 

a l l  e lements  i n  t h e  samples  have t h e i r  c o u n t e r p a r t s  i n  t h e  s t a n d a r d ,  and 

t h e  abundances are  determined by comparing t h e  gamma r a y s  e m i t t e d  from t h e  

unknowns w i t h  t h e  gamma-ray s p e c t r a  of  t h e  s t a n d a r d s .  T h i s  method i s  

c a p a b l e  of q u a n t i t a t i v e l y  a n a l y z i n g  n e a r l y  50 e lements  i n  a sample.  

The X-ray f l u o r e s c e n c e  t e c h n i q u e  used i n  t h i s  s t u d y  w a s  developed by 

Heber t  and Street  (1974) .  I n  t h i s  method t h e  e v a p o r a t e s  were mixed w i t h  

LiB02 and f u s e d  i n t o  g l a s s  d i s c s .  The major e l e m e n t a l  abundances w e r e  

determined by comparing t h e s e  samples ( i n d i r e c t l y )  w i t h  USGS s t a n d a r d  rock  

DTS, s p i k e d  w i t h  MgO, N a C 1 ,  Cas04 and K2CO3. 
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F i g u r e  6 .  The f i l t e r i n g  a p p a r a t u s  and hand pump used t o  c o l l e c t  samples 
i n  t h i s  stu6.y. 
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The p r e c i s i o n  of t h e  n e u t r o n  a c t i v a t i o n  method depends mainly on t h e  

s ta t i s t ics  of gamma-ray count ing  of t h e  a c t i v a t e d  samples;  f o r  most ele- 

ments ana lyzed  p r e c i s i o n s  were of t h e  o r d e r  of a few p e r c e n t  of t h e  abun- 

dance.  P r e c i s i o n s  and a c c u r a c i e s  of X-ray f l u o r e s c e n c e  d e t e r m i n a t i o n s  of 

major e lements  were a l s o  a few p e r c e n t  of e lement  abundances.  

Samples f o r  l a b o r a t o r y  d e t e r m i n a t i o n  of 222Rn were u s u a l l y  c o l l e c t e d  

by f i l l i n g  "Nalgene" b o t t l e s  w i t h  t h e  s p r i n g  water d i r e c t l y  from t h e  pools .  

T h i s  minimized radon l o s s  which might occur  i f  t h e  water were drawn through 

t h e  f i l t e r  s y s t e m .  B o t t l e s  were i m m e d i a t e l y  s e a l e d ,  l i d s  t a p e d ,  a n d  

samples  t r a n s p o r t e d  t o  t h e  l a b o r a t o r y  f o r  gamma-ray pulse-he ight  a n a l y s e s .  

The t i m e  of sampling w a s  no ted  t o  account  f o r  t h e  r a d i o a c t i v e  decay of 

222Rn (3.8-day h a l f - l i f e )  between sampling and gamma count ing .  With a 

r e a s o n a b l y  s h o r t  i n t e r v a l  between sampling and c o u n t i n g ,  t h e  s e n s i t i v i t y  of 

t h i s  method i s  of t h e  o r d e r  of a few t e n s  of pCi p e r  l i t e r  of 222Rn. 

Samples f o r  oxygen and hydrogen i s o t o p e  d e t e r m i n a t i o n s  were o b t a i n e d  

by f i l l i n g  50 m l  g l a s s  b o t t l e s  d i r e c t l y  w i t h  s p r i n g  water. The b o t t l e s  were 

t i g h t l y  capped,  t a p e d ,  and s e n t  v i a  t h e  U.S. Geologica l  Survey, Menlo Park  

o f f i c e ,  t o  t h e  a n a l y t i c a l  l a b o r a t o r i e s  a t  Sac lay ,  France ,  where oxygen-161 

oxygen-18  r a t i o s  and  d e u t e r i u m l h y d r o g e n  r a t i o s  were m e a s u r e d  by mass 

s p e c t r o m e t r y .  

B. Rocks 

Rock t y p e s  s a m p l e d  i n c l u d e d  a l t e r e d  a n d  r e l a t i v e l y  f r e s h  a n d e s i t e  

and b a s a l t  from t h e  f l a n k s  of M t .  Hood, a f e l s i c  d i k e  i n  t h e  Hood River 

V a l l e y ,  a n d  g r a n o d i o r i t e  a n d  d i o r i t e  f r o m  t h e  L a u r e l  H i l l  i n t r u s i v e .  

L o c a t i o n s  are shown i n  F i g u r e  3 ,  and l i s t e d  i n  Table  2. Samples, each  of 

t h e  o r d e r  of a k i logram,  f u r n i s h e d  a d e q u a t e  material f o r  g a m a  s p e c t r o m e t r i c  

d e t e r m i n a t i o n  o f  u r a n i u m  a n d  t h o r i u m .  A t  several  l o c a t i o n s  gamma-ray 

c o u n t i n g  rates were measured w i t h  a p o r t a b l e  sodium-iodide c r y s t a l .  
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Table  2 

DESCRIPTION OF ROCKS AND LOCATION OF SAMPLES 

Mount Hood Rocks: 

1. F e l s i c  d i k e ,  Robin Hood Quarry 

2. Basalt, Robin Hood Quarry 

3. A l t e r e d  M t .  Hood a n d e s i t e  b r e c c i a  

4 .  F e l s i t e  d i k e ,  c h l o r i t i z e d ,  w i t h  s u l f i d e  m i n e r a l s  

5. ( p r e ? )  M t .  Hood a n d e s i t e  

6 .  P l a t y  M t .  Hood a n d e s i t e  

L a u r e l  Hill Quarry 1 7. G r a n o d i o r i t e  ( ? ) ,  L a u r e l  H i l l  i n t r u s i v e  

8 .  D i o r i t e  ( ? ) ,  L a u r e l  H i l l  i n t r u s i v e  

9. A l t e r e d  d i o r i t e  ( ? ) ,  L a u r e l  H i l l  i n t r u s i v e  

10.  P l i o c e n e  hornblende  a n d e s i t e ,  Sandy R ive r  

11. A l t e r e d  a n d e s i t e ,  Sandy River  

1 2 .  Mic roporphyr i t i c  o l i v i n e  a n d e s i t e ,  Cloud Cap 

13.  P l i o c e n e  hornblende  a n d e s i t e ,  Hood River  Canyon ( P o l a l l i e  Campground) 
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Neutron activation and X-ray fluorescence techniques for analysis of 

rock samples have been described, respectively, by Perlman and Asaro (1969) 

b and Hebert and Street (1974). Crushed rock samples were pulverized and 

powders pelletized for reactor irradiation, and fused with lithium borate 

into glass discs for X-ray fluorescence. With these techniques 25 to 30 

elements were determined with precisions of less than 5%; a number were 

b determined to better than 1%. 

C. Gases 

Q Gas samples were obtained from fumaroles in the summit crater area 

of Mt. Hood. Three fumaroles were sampled, one of which was most likely a 

fumarole sampled previously by Ayres and Creswell (1951). The samples 

were collected by inserting the end of an Q1.5m-long stainless-steel tube 

Q into the fumaroles and allowing the gas to pass into evacuated 300 ml glass 

bottles containing %LOO ml of 4N NaOH solution. The filled bottles were 

transported to the laboratory of Dr. A. H. Truesdell, U.S. Geological 

Survey, Menlo Park, California, where they were analyzed by wet chemical 

1 methods for C02 and H2S and by gas chromatography for other constituents. 

Sampling and analytical procedures have been described in detail by Trues- 

dell and Nehring (1978). 

111. RESULTS 

Analytical data on water, rock, and gas samples are presented and 

preliminary interpretations discussed. 

1 

A. Water Analyses 

1. Major and Trace Elements 

For the purposes of this discussion, results of analyses of element 

contents of water are divided into two groups: those from the Swim Warm 
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S p r i n g s  and t h o s e  from t h e  predominant ly  cold-water s o u r c e s  e l sewhere  i n  

t h e  M t .  Hood reg ion .  Three a n a l y t i c a l  l a b o r a t o r i e s  are r e p r e s e n t e d  i n  t h i s  

s t u d y :  t h e  Lawrence Berkeley Labora tory ,  t h e  C e n t r a l  Labora tory  of t h e  U.S. 

G e o l o g i c a l  Survey, Denver, and t h e  State  of Oregon's D i v i s i o n  of Environ- 

mental  Q u a l i t y .  

a. S w i m  Warm Spr ings  

R e s u l t s  of chemical  a n a l y s e s  from s u c c e s s i v e  samplings of Swim Warm 

S p r i n g s  are p r e s e n t e d  i n  T a b l e s  3a and 3b. L o c a t i o n s  of i n d i v i d u a l  o r i f i c e s  

are shown on t h e  map, F i g u r e  5 .  Spr ing  tempera tures  and t h e  abundance of 

major  and trace e lements  g e n e r a l l y  f o l l o w  a geographic  d i s t r i b u t i o n ,  w i t h  

t h e  southernmost  s p r i n g ,  "East s i d e  of pool , "  be ing  w a r m e s t  and having  t h e  

h i g h e s t  chemical  c o n t e n t s .  Element abundances and t e m p e r a t u r e s  are pro- 

g r e s s i v e l y  lower i n  t h e  "Screen" and " P i p e l i n e "  s p r i n g s  , which are respec-  

t i v e l y  up-slope from t h e  "East s i d e  of pool"  s p r i n g .  The up-slope d e c r e a s e  

of tempera ture  and element  c o n t e n t  i s  r e p e a t e d  i n  t h e  sample sequence MH6 

through MH9, from o r i f i c e s  a l o n g  t h e  s m a l l  stream e n t e r i n g  t h e  pool  from 

t h e  nor thwes t .  The s u c c e s s i v e  d e c r e a s e s  of tempera ture  and element  c o n t e n t  

s u g g e s t  t h a t  t h e  water  a t  "Eas t  s i d e  o f  p o o l "  i s  t h e  l e a s t  d i l u t e d  by 

mixing w i t h  n e a r - s u r f a c e  c o l d  waters. T h i s  s u g g e s t i o n  i s  suppor ted  by d a t a  

shown i n  F i g u r e  7 ,  where major- and t race-element  c o n t e n t s  are p l o t t e d  

a g a i n s t  sodium.  I n  most  cases  t h e r e  i s  a l i n e a r  r e l a t i o n s h i p  b e t w e e n  

e l e m e n t  a b u n d a n c e s  , w i t h  t h e  w a r m e r  s p r i n g s  h a v i n g  h i g h e r  c o n t e n t s .  

Leas t - squre  l i n e a r  r e g r e s s i o n  c o e f f i c i e n t s  exceed 0.96 f o r  Na v e r s u s  Rb, 

C s ,  C1, B r  and K. The s t r o n g  l i n e a r  c o r r e l a t i o n s  i n d i c a t e  a p p r e c i a b l e  

mixing between w a r m  and n e a r - s u r f a c e  c o l d  waters. The geochemical  mixing 

model, d i s c u s s e d  more f u l l y  i n  s e c t i o n  III-e, i n d i c a t e s  t h a t  over  90% of 

t h e  water emanating a t  Swim i s  n e a r - s u r f a c e  c o l d  water. 
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Table 3a 

e 

e 

* 

e 

' 0  

e 

* 

a 

e 

l 

SWIM WARM SPRINGS 
I 

~~ 

S p r i n g  

Sample 
Date 
PH 
Temp. O C  

Sp.  Cond 

B 
N a  

S i 0 2  
S 
c1 
K 
Ca 

Mg 

Mn 
Fe 
Ba 
Mo 
Rb 
cs 
co 
Sb 
C r  
Zn 

C e  
Sm 
Eu 
U 
Ir 
A s  
B r  
W 
sc 
H f  
Th 

Ag 

( p i  co c u r  i e  s / a )  222Rll 

~~ 

"PIPELINE I '  

MH-4 MH-18 MH-39 
6/2/77 8/22/77 2/22/78 
7.5 7.5 7.5, 7.5 
22 21.8 21.6 

820 

2.0 
92 
34 
75 
54 

110 

50 
7.5 

<4 
70 
15 
4 
17 
0.25 

<O.  03 
<O. 05 
<0.7 

4.06 
~0.6 
0.057 

<o .  011 
0.87 

<O. 0013 
<8 

200 
Q 
0.02 
4.10 
4 . 0 2  

< I O  

172 

1 
84 
36 
70 
54 

110 
6 

52 

<o .7 
35 
26 
<2 
15 
0.26 
4.03 
<O. 04 
<o .3 
1.5 

<O .05 

0.03 
4.004 
0.8 

<o. 0001 
<2 

134 
<1 
4.01 
4.05 
<o. 02 

- 

0.5 
92 
38 
75 
58 
102 
7 

53 

3 
(50 
2 1  
3 
17 
0.25 

<O. 06 
<o .5 

C0.2 

<O .06 
<O. 005 
1.1 

<o. 0010 
<5 

180 
<2 
0.022 
0. 006 
4. 005 

- 

2 

s u c c e s s i v e  s a m p i  i n g  s 

~ 

Y 

MH- 5 
6/2/77 
7.5 
25 

, 1000 
I 

1.0  
95 
36 
75 
62 
120 
8 

55 

<5 
27 
27 
3 
18 
0.31 
<0.06 
<O .03 
<0.7 

<0.06 
<0.6 
50.047 
<O. 013 
1.2 
- <O .0015 
<8 

2 20 
d . 5  
0.02 
0.12 
0.02 

4 0  

3 
1 0 1  
30 
91 
65 

125 
7 

62 

vg /k  

<4 
50 
28) 
<1.6 
19 
0.32 

<O .03 
<O .03 
<o:. 5 

<O .14 

0.06 
<O. 006 
0.8 

2 

- 

i 

! 105 

I 78 
i 72 

135 
8 
60 

1 0.5 

i 43 

<3 
<12 
22 
<5 
20 
0.33 

<o. 02 
<1 
3 

<o .1 

<0.06 
<O. 005 
1.2 

- 

<o . O O O l  4. 0014 
<3 <5 

180 220 
<l <2 
0.018 <o .009 
Q.03 8.03 
<o .02 < O .  015 

S i n g l e  Sampl ing  

"E. SIDE OF POOL" 

MH- 6 MH-20 USGS MH-37 
6/2/77 8/22/77 8/22/77" 2/22/78 
7.5 7.1 7.3 7.3 
26 24.1 26.5 26.2 

1300 1160 
* (Rob i son)  

3.0 
120 
40 
80 
63 
140 

60 
9.2 

<7 
47 
37 
4 

23 
0.38 

<O. 06 
<O. 03 
<o .7 

<lo  
<1 

0.105 
KO. 014 
1.4 

10.0012 
<8 

270 
54 
0.03 
4l.9 
< O .  05 

156 

2 
114 
40 
71 
68 
140 

58 
7.2 

0.15 
120 
51 
92 

~ 8 0  
170 
12 
64 

<5 50 
<50 220 
24 
<4 
23 
0.34 

< O .  03 
<O.  05 
<o .1 
4 

<o .2 
<o .9 - 
0.139 

<O. 006 
1.6 

<o. 0001 
<3 6 
280 
<7 
0.01 
9.07 

< O  .04 

0.5 
126 
50 
88 
74 
154 

9 
64 

<3 
<25 
27) 
<7 
23 
0.4 

'<O .1 
<5 
3 

<o .1 

<O. 06 
<O. 006 
1.3 
0.007 

- 

<5 
240 
<2 
0 015 
cO.03 
<0.10 

1 6 1  

MH- 7 MH-8 m- 9 
6/2/77 6/2/77 6/2/77 
7.5 7.4 7.5 
20 21 19 

1 
86 
30 
70 
52 
95 

42 
7.2 

<6 
18 
17 
4 

1 6  
0.25 
<0.02 
<o .03 
<0.5 

<0.1 
<0.7 
0.09 

<o ,012 
0.45 
50. 0013 
<8 
180 
<1 
0.014 
<0.6 
<o. 012 

< l o  

2 
62 
20 
80 

80 

41 

48 

6.4 

<7 
14 
2 1  
5 
14 
0.20 

<o .02 
< O  .06 
<O .5 
<5 
<0.06 
~0.6 
0.075 

<O .015 
0.6 

so. 0012 
<5 
148 
<2 
0.012 
<0.06 
<o. 012 

186 

0.2 
36 
13 
60 
26 
25 

19 
3.6 

< 1. 
14 ) 
11 
2 
7 
0.10 

<o .02 
<o. 02 
<0.4 
<5 
<O .03 
C0.3 
0.03 

<O .005 
0.2 

< O .  0003 
<3 
48 
<1 

0.010 
<o.  010 
<o .010 

20 



Table 3b 

SWIM WARM SPRINGS 

(Analyses i n  mil l igrams pe r  l i t e r ,  by 
S ta te  of Oregon, Department of Environmental Qual i ty)  

E .  S ide  E .  s i d e  w. s i d e  o f  stream 
50" of  c i s t e r n  Location" P i p e l i n e  Screen of Pool  of  Pool 

Date 12/2/76 12/2/76 8/13/76 12/2/76 11/4/75 
PH 
T (C") 20 25 26.1 25.6 

7 . 3  7.3 8 . 1  7.5 7.4 
-- 

Conductance 871 1190 1265 1300 
Alkal i n i  t y  116 157 74 179 
( t o t a l  as 

Hardness 253 31 0 357.0 357 
( a s  CaC03) 

CaC03) 

907 
1 2 1  

258.2 

B 
N a  

S i 0 2  

c1 
K 
C a  

Mg 

so4 

0.28 
79 .O 
29 .O 
55.4 

149.0 
103 .O 

6.0 
42.0 

0.40 0.32 
114.0 98.0 

44 .O 28.0 
71.6 65.5 

193.0 227.0 
139.0 160.0 

10.0 10.2 
57.0 27.0 

0.32 0.34 
136.0 79 .O 

48.0 40.0 
72.3 52.1 

205 .O 181.1 
161 .0  90.0 

1 1 . 7  9.2 
60.0 46.0 

Mn <0.05 
Fe 0.05 
( t o t a l  i r o n )  
A s  <O. 005 
F 0.15 

( so lub le  or tho .  ) 
A 1  <o .01 
Nitrogen 0.06 

Nitrogen <o. 02 

PO4 0.09 

("3) 

( n i t r i t e )  

( n i t r a t e )  
Nitrogen 0.04 

L i  0.08 
HCO3 141 

<O .05 
<O .05 

10.005 
0.23 
0.08 

<0.02 
0.09 

<o. 02 

0.04 

0.12 
191 

< O .  05 
0 . 2  

<O.  005 
0.27 
0.10 

<o. 02 
<o. 01  

<o. 02 

<o. 02 

0.12 
90 

4 . 0 5  
<O .05 

<O .005 
0.23 
0.09 

<0.02 
0.05 

<o .02 

0.03 

0.13 
218 

0.10 
< O .  05 

0.04 
0.20 
0.12 

<o .01 
0.03 

<o .01 
0 .01  

0.09 
148 

* Refer t o  map, Figure 5. 
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Figure 7a. Major- and trace-element contents of water 
from Swim Warm Springs, plotted against 
sodium. 
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from Swim Warm Springs, plotted against 
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The v a r i a t i o n  w i t h  t i m e  of element c o n t e n t s  of t h r e e  o r i f i c e s  a t  Swim i s  

i l l u s t r a t e d  i n  F i g u r e  8. S i g n i f i c a n t  w i n t e r  i n c r e a s e s  were observed i n  Mg 

and S a t  a l l  t h r e e  o r i f i c e s ,  w h i l e  C 1 ,  C l / B ,  Ca and C s  were g r e a t e r  i n  t h e  

w i n t e r  a t  two of t h e  o r i f i c e s ,  and Si02 ,  Na, Rb, and U were g r e a t e r  a t  

one ( b u t  n o t  n e c e s s a r i l y  t h e  same) o r i f i c e .  There were s i g n i f i c a n t  w i n t e r  

d e c r e a s e s  i n  B a t  a l l  t h r e e  o r i f i c e s ,  and i n  C 1 ,  Bay U and B r  a t  one o r  

a n o t h e r  o r i f i c e .  It w a s  expec ted  t h a t  w i n t e r  samplings would y i e l d  h i g h e r  

c o n t e n t s  because t h e  s u r f a c e  runoff  would b e  diminished.  However, t h i s  w a s  

n o t  s u b s t a n t i a t e d  because of t h e  i n c r e a s e  of some e lements  and d e c r e a s e  of 

o t h e r s  i n  t h e  w i n t e r ,  w i t h  r e s p e c t  t o  t h e  summer  samplings.  

The p r e s e n c e  of t h e  platinum-group e lement ,  i r i d i u m  (0.007 p g / L > ,  i n  

t h e  w i n t e r  s a m p l e  f r o m  "Eas t  s i d e  o f  p o o l "  i s  o f  i n t e r e s t ,  e s p e c i a l l y  

because  i t  w a s  n o t  d e t e c t e d  i n  t h e  summer samples from t h a t  o r i f i c e .  There 

w e r e  no o t h e r  d i f f e rences  of  t h i s  o rde r  i n  trace element  abundances between 

summer and w i n t e r  samplings.  I r i d i u m  w a s  a l s o  d e t e c t e d ,  i n  lower concent ra -  

t i o n s ,  i n  two cold-water s o u r c e s :  t h e  i r o n - r i c h  s p r i n g  i n  White River  

V a l l e y  (MH 2 ) ,  and t h e  o u t f l o w  of t h e  small l a k e  i n  t h e  s u m m i t  crater (MH 

3 0 ) .  S i l v e r  i s  p r e s e n t  a l o n g  w i t h  i r i d i u m  i n  t h e s e  and o t h e r  s p r i n g s ,  and 

i n  t h e  summit crater l a k e .  A s e a r c h  of geochemical  l i t e r a t u r e  reveals t h a t  

t h i s  i s  t h e  f i r s t  e v i d e n c e  of a platinum-group element b e i n g  d e t e c t e d  i n  

geothermal  o r  s u r f a c e  f r e s h  waters. 

b. Cold S p r i n g s  and Wells 

R e s u l t s  of  s p e c i f i c  conductance and c h l o r i d e  c o n t e n t s ,  measured i n  

t h e  f i e l d ,  are shown on F i g u r e  9. S p r i n g s  and s u r f a c e  waters sampled i n  t h e  

d r a i n a g e s  of S t i l l  Creek, Salmon River, White River  and t h e  s p r i n g  a t  M t .  

Hood Meadows have g r e a t e r  abundance of C1 , and h i g h e r  s p e c i f i c  conductance 

t h a n  s p r i n g s  sampled t o  d a t e  on t h e  n o r t h  f l a n k  of M t .  Hood. Waters from 

22 c o l d  s o u r c e s ,  20 of them s p r i n g s ,  were ana lyzed  f o r  major and trace 

e lements ;  r e s u l t s  of a n a l y s e s ,  pH, and tempera ture  measurements are l i s t e d  

i n  Table  4 .  With a few e x c e p t i o n s ,  t h e  c o l d  s p r i n g s  i s s u e  from a n d e s i t e ;  
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F i g u r e  8. Element c o n t e n t  v a r i a t i o n s  w i t h  t i m e  a t  t h e  
t h r e e  o r i f i c e s  a t  Swim Warm Spr ings .  
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'I 

T a b l e  4a 

W W W w 

B 
Na 
Mg 
s i o 2  
S 
c1 
K 
Ca 

Mn 
Fe 
Ba 
Mo 
Rb 
cs 
co 
Sb 
Cr 
Zn 

Ce 
Sm 
Eu 

U 
Ir 

A s  
B r  
W 
sc 
Hf  
Th 

Ag 

Sample MH-1 MH- 2 

Temp. O C  4 . 5  3.5 

Date 6 / 1 / 7 7  6 / 1 / 7 7  
PH 6.9 %6.2 

3 
3 

<0.5 
- 
- 
1 

<0.7 
3 

0.7 

0.7 
0.37 
2.2 
0.05 
0.02 

<O. 03 
<0.2 
20 
<o. 02 
<O .04 

0.003 
<o .001 

0.023 
<0.00005 

<0.2 
2 

<O .05 
0.031 

<0.03 . 
< O .  003 

30 

0.5 
2.2 
<1 
- 
- 
1 
1 
2 

27 
2400 

4 
0.2 
0.7 
0.02 
0.36 
0.01 

<0.2 
<5 

0 . 5  
0.17 
0.012 
0.0019 

0.012 
0.00031 

<4 
1 

0.023 
0.01 
0.008 

- 

MH- 3 
6 / 2 / 7 7  

8.5 
7 

0.2 
16 

4 
- 
- 
2 
2 

17 

2 
22 

2.3 
3 
1.2 
0.02 

<0.01 
0.11 
4.1 

<O .03 
120 

< 0 . 2  
- 

<o .002 

0.077 
<o .00010 

1.4 
3 
<0.2 
< O .  003 
<0.03 
< O .  005 

MH-10 MH-11 
6 / 3 / 7 7  6 / 4 / 7 7  

'L7.5 ~ 6 . 7  
7 3 

0.5 
6 
5 
- 
- 

<0.2 
<0.2 
50 

C0.2 

<2  
1 3  

2 
0.66 
0.05 
2.4 

~ 0 . 3  
<1 
<o .02 
<O .03 

0.02 
<O .004 

0.08 
<o. 0002 

12 
<4 
<0.6 
0,020 

<o.  019 
so .  008 

0 . 3  
1 . 2  
1 
- 
- 

<o .1 
<0.4 
<o. 01 

<0.1 
10 

5.6 
50.06 
1 
0.01 

<0.02 
<o .01 
<o .1 
<1 

0.005 
0.02 
0.0018 
0.0004 

0.005 
<o . O O O l  

<0 .2  
<2  
<O .07 

0.0027 
0.004 

S O .  0015 

MH-12 MH-13 
6 / 4 / 7 7  6 / 4 / 7 7  
~ 6 . 9  6.5 

5 10 

0.2 
7 
2 

30 
3 
5 
1 
0.11 

1 . 5  
110 

3 
0 .02  
4 
0.10 
0.05 

<o .01 
0.55 
8 
2.4 
0 . 1  
0.012 
0.003 

0.05 
s o  .0002 

<1 
6 

<0.3 
0.030 

<o .009 
50.009 

0.5 
2 

<O .6 
- 
- 

< 0 . 2  
<0.4 

0.15 

4 
155 
1 

<o .1 
0.3  
0.02 

<0.02 
0.02 
0.33 
3 
0.1 
0 .1  
0.009 
0.002 

0.008 
<o .00001 

<0.1 
7 

<o .1 
0.05 

<O .004 
0.012 



T a b l e  4b 

Sample  MH-14 
Date 6/5/77 
PH 7.5 
Temp. O C  8 

MH-15 
7/29/77 
6.8 
4 

MH-16 MH-17 
7 129177 7/29/77 
6.5 6.5 
10 9 

MH-21 
8/2/77 
6.4 
4.5 

MH-22 
812 f 77 
8.5 
10  

MH-23 
8/3/77 
6.4 
1 

MH-24 
8/3/77 

6.5 
3 

B 
Na 
Mg 

0.5 
6.5 
6 
42 

0.5 
0.8 
<0.3 
24 

1 0.5 
0.6  1.4 
<0.4 <0.3 
13 21 

0.5 
3 
2 

27 
- 
1.5 
<0.5 
4 

3 
125 
20 
54 

0.5 
3 
1 
29 

0.5 
1.2 

<0,3  
23 Si02 

S 
c1 
K 
Ca 

6 
3.5 
19 

0.2 
0.3 
0.5 

0.3 0.8 
0.3 0.6 
0.4 2 

25 
1 6  
51  

1.3 
0.5 
4 

0.5 
0.8 
1.4 

Mn 
Fe 
Ba 
Mo 

Rb 
cs 
co 
Sb 
Cr 
Zn 
Ag 
Ce 
Sm 
Eu 

U 
Ir 
As 
Br 
W 

sc 
H f  
Th 

1 . 6  
90 
7 

<o .1 
5 
0.09 
0.04 
0.01 
4.4 
1 

a -  ” .07 
0.18 
0.009 

<o .001 

0.23 
<o. 0001 

<0.5 
6 

<0.1 

0.025 
0.02 
0.009 

0.7 
38 
2.3 

<0.1 

0.9 
10.008 
0.02 
0.01 
0.23 
0.8 

- <o .02 
0.12 
0 t 009 

<o. 002 
0.012 

<o. 0001 
<0.01 

<o .01 
1 

0.021 
0.008 
0.026 

3 2 
180 100 

2.7 1.3 
<0.05 <O .04 
0.5 1.8 
0.009 0.014 
0.08 0.06 

<o .009 <o. 02 
0.45 0.23 
2.5 0.8 
~ 0 . 6  <o. 01  
0.36 0.15 
0.02 0.01 

<O. 004 < O ,  004 

<0.02 <0.02 
<o . O O O l  <o. 0001 

<0.1 < O . l  
1 2 

<o. 02 <0.02 
0.06 0.03 
0.021 0.01 
0.03 0.03 

144 
5800 

<3 
0.13 

<7 
210 

10 
5.5 

0.5 
14 
<0.5 
50.1 

2 
0.06 

<o. 01  
0.02 

<0.1 
<l 
<0.04 

- 
0.002 

<o. 001 

0.02 
<o.  0001 

<0.2 
3 

<O .03 

<O .003 
<o .001 
<o. 001 

2 
20 
<1 
<O. 04 
1.3 
0.01 
0.03 

<o. 01 
0.2 
1 

<0 .1  
- 
0.008 

<O .004 

<o .01 
<o.  0001 

1.3 
<O .04 
0.11 
0.04 
0.7 
3 

<O. 06 

0,02 
<O.  004 

<0.01 
<o.  0001 

<0.2 
6 

<O .05 

0.05 
<0.02 
<o.  01 

- 

8 
0.06 
0.05 
0.05 
<0.3 

4.6 
<0.05 

0.01 
<o. 002 
0.04 

<o .0001 

<0.2 
34 
<O .4 

<o .01 
<O. 005 
<o. 01  

- 

- 
3 

<O. 03 
0.01 
0.007 
0.02 



P Y v W W U W W 

T a b l e  4c 

MT. HOOD WATER SAMPLES 

Old Maid F l a t  W e l l  

MH-29 

8/25/77 
7.4 
6 

i?H-30 MH-31 

2130177 9/7/77 
%4.7 6.5 

2 10 

MH-32 

9/7/77 
6.5 
4 

MH-25 

8/3/77 
6.5 
9.5 

MH-2 8 
8/24/77 

MH-36 

2/22/78 
7.8 

Ir 

MH-33B "-35 MH-40 

12/19/77 2/21/78 2/22/78 
so 10 10 
9 6 11 

S a m p l e  

D a t e  
PH 
Temp. " C  

I 

9 

B 
Na 
Mg 

0.5 
5 
3 
47 

0.5 
1.3 
4 . 5  
16 

0.3 
3.8 

<2 
61 

0.1 1 
2.7 2 
2.5 <1 
14 28 

1 
0.6 
<0.5 
24 

0.5 
4 
2 
10 
15 
2 
0.1 
43 

10  
130 
<1 
40 
23 
135 
<1 
72 

7 
136 
<1 
34 
23 
124 
10.2 
11 

7 
132 
<1 
31 
25 
123 
<0.2 
11 

Si02 
S 
c1 
K 
Ca 

1 
<0.3 
11 

<1 
<0.2 
2.7 

<1 
2 
8.6 

<0.1 1 

17 3 
1 0.9 

1.7 
< 0 . 2  
1 

N 
W 

Mn 
Fe 
Ba 
MO 

Rb 
cs 
co 
Sb 
C r  
Zn 

Ce  
Sm 
Eu 

U 
Ir 

A s  
B r  
W 

sc 
H f  
Th 
T a  
Yb 

Ag 

35 
155 
<3 
< O .  05 
2 
<0.02 
0.14 
0.11 
0.2 
1 

<O .05 
0.095 
0.013 
- 

<o. 01 
<o .0001 

8 
64 
3.5 
0.15 

0.7 
0.02 
0.10 
<0.01 
0.87 
3.5 

0.048 
0.005 

<o.  002 
< O .  005 
<o.  0001 

- 

2.5 
30 

119 
1200 
<10 
0.4 

<0.6 
<0.03 
3.3 
0.06 
1.2 

0.79 
2.4 
0.37 
0.08 

0.063 
0.0004 

2400 

2 
103 
<1 
0.3 
1.1 
0.02 
0.06 
0.06 
0.23 

0.06 
0.2 
0.016 
0.006 

0.01 
<o .OOOl 

13 

<0.1 
25 
<1 
0.2 

10 
120 

2.3 
4 

1.5 
0.4 

140 
200 
7 
<0.7 

1 .o 
0.06 
0.08 
0.07 
0.5 
4 
<0.2 

<8 
21 < 

<4 
35 

1.3 
0.07 

< O .  03 
0.05 
<0.5 
2 

50 .1  

<7 
:10 
<2 
37 

1.3 
0.15 

.-. 
L 

0.17 

4.2 
0.03 
0.035 
0.01 
0.04 
5 
- 

<O .04 
0.0036 
<O.OOS4 

0.027 
<o .0001 

0.5 
<o .01 
0.02 
0.03 
0.20 
0.8 
0.10 

<O .04 
0.0026 

< O .  004 

<O .004 
<o .OOOl 

1 
<0.2 
7 
<0.2 

<o. 01 
<0.4 
<0.4 
<0.07 

<0.03 
<O .003 

0.05 
<o.  0002 
4 
9 
<0.5 

0.053 
<0.05 
<O ,007 

0.03 
- 

0.15 
L O .  0008 

<2 
115 
C0.4 

0.06 

< O .  04 
<0.003 

0.12 
<O .0004 

<15 
300 
12 

0.013 
<0.02 
<O .015 

<O .04 
<O .004 

0.14 
<o . O O l O  

<10 
280 
13 

0.011 
<O .015 
<O .009 

5 
20.1 

0.013 
< O .  003 
<o.  002 

1.5 
<o.s 
0.011 

< O .  005 
<O .004 

4.8 
<0 .1  

0.013 
<O. 008 
< O .  005 

<S 2.5 
0.8 0.15 

0 .11  0.026 

1 
< O .  06 

0.007 

0.03 0.013 
0.02 
0.15 

<o .001 <0.03 



their element abundances are lower than those of the Swim Warm Springs. 

Exceptions are the iron-manganese-rich spring, MH 2, emanating from glacial 

debris in the White River Valley, the Ca-Mg-rich water of the spring from 

basalt in the Robin Hood Quarry (MH 101 ,  and Fe-Mn-rich water from the 

outflow of a small pond in the strongly altered fumarolic area of the summit 

crater. In both the Fe-Mn waters of the summit crater and White River 

Valley spring there were identifiable contents of iridium, though in lower 

abundance than in the winter sample from "East side of pool" at Swim. (Fe 

and Mn were both below detection limits in the sample from Swim). Water 

from a cold well in the Government Camp area (MH 3) is similar in character, 

except for its high Zn content, to cold "andesite" waters. However, a cold 

well near Brightwood (MH 221, most likely producing from the Rhododendron 

Formation, has water low in Fe and Mn and relatively high in Na and M g ,  in 

contrast to a nearby cold spring (MH 21). 

c. Old Maid Flat Geothermal Test Hole 

Water samples were obtained from the artesian-flowing geothermal test 

hole in Old Maid Flat in December 1977 and February 1978. It is expected 

that the water was flowing from a depth of 450m; total depth at that time 

was 550m. Since that time the hole has been deepened to 1200m. The 

initial sample, taken only a few days followng cessation of  drilling, 

contained unusually high contents of Si02, Mn, Fe, Ba, and other consti- 

tuents, indicating that the sample was contaminated by drilling fluid. A 

sample taken 16 days later (MH 33b) contained considerably lower amounts of 

these constituents but somewhat greater amounts of Si02, C1, Ca, Fe, and 

Ba than samples obtained two months later (MH 35 and MH 4 0 ) .  It is possible 
that water from the Old Maid Flat well was still slightly contaminated by 

drilling fluid . 
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d. Comparison of Water Chemistries 

b 

d 

To facilitate comparison between the chemistries of the various water 

sources , major- and trace-element contents were plotted generally in order 
of increasing abundance in Figures 10, 11, 12, and 13.  The patterns on 

these figures afford qualitative assessment of significant differences or 

similarities between water types. Mean values and standard deviations of 

element contents of cold waters emanating from springs in andesite and of 

waters from Swim Warm Springs are plotted on Figures 10 and 11. In Figure 

10, which compares major elements, there is a "high" in sulfur and sodium in 
the warm spring water, in contrast to the cold "andesite" water where Si02 

is relatively prominent. In the comparison of mean values of trace-element 

contents in both water types (Figure ll), uranium is prominent with respect 

to its neighbors, Sm and Cs at Swim Warm Springs. Barium stands out among 

the trace elements in the cold-spring waters. 

Plots of major-element contents in waters from the geothermal test 

well in Old Maid Flat (MH 4 0 )  and the cold spring in Robin Hood Quarry (MH 

10) comprise Figure 12. Similar diagrams of trace-element contents in these 

two sources are shown in Figure 13. The major-element pattern of the Old 

Maid Flat well water has a Na-S ''high," similar to but considerably more 

accentuated than, that of the Swim Warm Spring waters (Figure 10). The 

trace-element pattern of Old Maid Flat well water has a sharp "high" of Mo 
with respect to its neighbors on the plot, Cs and Rb; Br is also accen- 

tuated. The major element pattern of cold water emanating from basalt in 

Robin Hood Quarry accentuates S and Cay in contrast to the cold "andesite" 

waters where Si02 predominates. The trace element pattern of the Robin 

Hood Quarry water has prominences of Mo and Ba; Ba is also relatively 
prominent in the cold "andesite" water. Barium and calcium contents are 

relatively high in a sample of basalt from Robin Hood Quarry (MHR-2, Table 

2) , and a sample of felsic dike rock from the quarry (MHR-1) also has a 
relatively high Ba content. 
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Hood Quarry and of water from the geothermal 
test well in Old Maid Flat. 
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e. Estimates of Subsurface Temperature 

Major-element analyses were used to calculate the water temperature 

at depth within the Swim Warm Springs system. The calculations were based 

on chemical geothermometers afforded by the Si02 content of water and the 

ratio of Na to K, corrected for Ca (Fournier and Truesdell, 1973). The 

temperature of water at depth was also estimated by the ratio of oxygen 

isotopes in sulfate in the water (McKenzie and Truesdell, 1976), measured by 

N. Nehring and A. H. Truesdell at the U.S. Geological Survey, Menlo Park, 

California. 

The temperature of hot water, unmixed with nearer-surface cold water, 

and the proportion of mixed cold water in Swim Warm Springs, were estimated 

by applying the mixing model of Fournier and Truesdell (1974). In this 

model simultaneous equations are employed, incorporating as factors the 
temperature of warm spring water, the Si02 content of the warm spring 

water, the temperature of the near-surface cold water, and the silica 

content of cold spring water. 

The estimates of subsurface water temperature at Swim Warm Springs 

are summarized in Table 5 .  The temperatures estimated by the Na-K-Ca 

geothermometer and by the mixing model may be less reliable than those 

estimated by the silica and oxygen-isotope geothermometers, because surface 

flow at Swim is low. The Na-K-Ca and mixing-model temperatures should not 

be discounted, however, because the mixing model indicates the large propor- 

tion of near-surface cold water intuitively expected at Swim. Therefore, 

the agreement between the silica and oxygen-isotope temperatures indicate 

that the temperature at depth is, at least, within the range of 100-125°C, 

the temperature may be 1500 to over 2OOOC. 

The samples from the Old Maid Flat hole may contain some vestiges 

of drilling fluid. However, if we assume equilibrium conditions then the 
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Table 5 

Summary of Estimated Subsurface Temperature 
at Swim Warm Springs 

Geothermometers 

S i 0 2  100-1 2 5 O C 

Na-K-Ca ( B  = 1/31 152-154°C 

6180 - SO4 108-l10°C 

(a) Silica Mixing Model 

Temperature of unmixed 
hot water 

Fraction of cold water 

19 2 -240 O C (b) 

0.92 

a) Fournier and Truesdell, 1974. 
b) Questionable because it is a low-flowing system. 
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silica and alkali-element ratio geothermometers give consistent tempera- 

tures of 80-90°C. The temperature measured at 450m was 33OC; a measure- 

ment of bottom-hole temperature, following completion of the hole, was 

81%. 

f. Oxygen and Hydrogen Isotope Ratios 

A plot of isotope ratios of hydrogen and oxygen in cold and warm spring 

The ratios are expressed in delta values, given waters comprises Figure 14. 
in mils ( O / o o ) ,  and defined as: 

6 in O/oo 
(sample) 

X 1000 (Hoefs, 19731, 

R(standard) 

where R represents the isotope ratios of deuterium to hydrogen and l80/ 

160; the standard is "mean ocean water" (Craig, 1961). The points for 

warm and cold springs fall close to the line for meteoric waters, indicating 

that the warm waters are much diluted by near-surface runoff. The warm 

water points would be shifted to the right of the meteoric water line if a 

substantial component of the spring water had been in contact with rock at 

depth. However, the grouping of the warm water points at more negative 

values indicates that the source of the warm spring water is generally 

higher on the mountain than the sources of most of the cold springs sampled. 

Exceptions are the cold springs at Mt. Hood Meadows (MH 4 )  and a spring in 

Robin Hood Quarry (MH l o ) ,  which fall in the same range as the warm waters. 
The grouping of the points indicates that the cold waters have shorter 

pathways between their sources and the springs, while a component of the 

warm water may circulate deeply enough in the mountain to come in proximity 

to a hot central conduit system. 
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B. Rock Analyses  

A l i m i t e d  number of samples  of t h e  igneous r o c k  types  i n  t h e  M t .  Hood 

r e g i o n  were c o l l e c t e d  and ana lyzed .  A more d e t a i l e d  i n v e s t i g a t i o n  of t h e  

p e t r o l o g y ,  minera logy ,  and geochemis t ry  of M t .  Hood's e x t r u s i v e  r o c k s  i s  

p r e s e n t l y  b e i n g  c o n d u c t e d  b y  C r a i g  W h i t e  of t h e  U n i v e r s i t y  of Oregon.  

R e s u l t s  of major and t race-e lement  a n a l y s e s  of 1 3  rock samples ,  t o g e t h e r  

w i t h  b r i e f  sample d e s c r i p t i o n s ,  are l i s t e d  i n  Tab le  6. Seven of t h e  samples  

are a n d e s i t e ,  two (MHR 3 and 11) are of a p p r e c i a b l y  a l t e r e d  rock .  The 

maj or-element c o n t e n t s  of t h e  samples  of r e l a t i v e l y  u n a l t e r e d  a n d e s i t e  are  

f a i r l y  u n i f o r m ,  w i t h  s i l i c a  c o n t e n t s  in t h e  r a n g e  58-63%, A1203  17.4-  

17.7%, C a O  5.4-6.4%, Na20 3.7-4-3%, and K 2 0  1.0-1.5%. There  do  n o t  appear  

t o  b e  s i g n i f i c a n t  d i f f e r e n c e s  between c h e m i s t r i e s  of samples  of P l i o c e n e  

andesite from t h e  west and eas t  f lanks of M t .  Hood (MHR 1 0  and 13), and t h e  

a n d e s i t e  of t h e  more r e c e n t  f l o w s  on t h e  s o u t h  f l a n k  of t h e  m o u n t a i n  

(MHR 5 and 6 ) .  Th i s  i s  suppor t ed  by t h e  s m a l l  s t a n d a r d - d e v i a t i o n s  of mean 

v a l u e s  of r a r e - e a r t h - e l e m e n t  (REE) r a t i o s  (REE c o n t e n t s  i n  sample /REE 

c o n t e n t s  i n  s t a n d a r d  c h r o n d r i t e )  of t h e  u n a l t e r e d  a n d e s i t e  ( F i g u r e  15 ) .  The 

r e l a t i v e l y  h i g h e r  Fe and Mg c o n t e n t s  of t h e  a n d e s i t e  from Cloud Cap (MHR 1 2 )  

are i n  keeping  w i t h  t h e  p r e s e n c e  of o l i v i n e  i n  t h a t  r o c k ,  i n  comparison w i t h  

o t h e r  a n d e s i t e  samples  where ho rnb lende  i s  t h e  p r i n c i p a l  maf i c  mine ra l .  The 

a l t e r e d  b r e c c i a t e d  a n d e s i t e  sample (MHR 3) from t h e  s o u t h  f l a n k  of M t .  Hood 

i s  somewhat  l o w e r  i n  MgO, b u t  h i g h e r  i n  K 2 0  t h a n  t h e  f r e s h e r  s a m p l e s ,  

w h i l e  t h e  s t r o n g l y  a l t e r e d  a n d e s i t e  (MHR 11) from t h e  w e s t  f l a n k  of t h e  

mountain has  c o n s i d e r a b l y  g r e a t e r  MgO and much less K 2 0  t han  a sample of 

nea rby ,  r e l a t i v e l y  u n a l t e r e d  a n d e s i t e  (MHR 10) .  Both f r e s h  and a l t e r e d  

a n d e s i t e  samples  f rom t h e  MHR 10  and 11 l o c a l i t i e s  have i d e n t i f i a b l e  i r i d i u m  

c o n t e n t s ,  i n  c o n t r a s t  t o  o t h e r  rock  samples  where t h e  abundance of t h a t  

e lement  w a s  w e l l  below d e t e c t a b i l i t y  l i m i t s .  It is s u r p r i s i n g  t o  f i n d  Ir i n  

a n d e s i t i c  rocks ;  i t  is more normal ly  a s s o c i a t e d  w i t h  u l t r a m a f i c  rocks :  

p e r  i d o  t i te  , pyr oxen i  t e, and s e rpen  t i n  i t e. 
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Table 6b 

m. nooD ROCK SAMPLES 

Trace Elements 

SAMPLE 

Rb 

C S  

Ba 

Hf 

Cr 

co 

Ni 

sc 

Th 

Ta 

La 

Ce 

Nd 

Sm 

Eu 

Tb 

DY 

c- 
N 

Yb 

Lu 

U* 

1 - 

120 

2 

600 

5 . 4  

2 

3 

< l o  
2 . 3  

1 5  

1 . 3  

25 

56 

1 5  

2.6 

0.66 

0 . 4 1  

2.5 

1 . 7  

0 .22  

4 . 5  

2 - 

190 

5 

640 

5 . 0  

40 

37 

130 

37.7 

4 . 5  

0 .84  

23  

52 

27 

6 . 3  

2.2 

1 . 0  

7 . 9  

3 . 7  

0 .54  

1 . 3  

3 - 

40 

1 

300 

7 . 1  

7 

7.6 

<20 

1 0 . 5  

6 .6  

1.1 

25 

58 

26 

4 . 8  

1 . 5  

0 . 7 1  

4 . 9  

2.7 

0 . 3 5  

1 . 4  

4 - 

65 

<1 

460 

6 . 2  

4 

5 . 8  

<10 

9 .6  

6 . 2  

1 . 0  

24 

5 3  

26 

5.2 

1 .3  

0 .76  

4 .9  

2.6 

0.32 

1 . 9  

5 - 

20 

<1 

350 

4.2 

40 

1 9  

30 

1 3 . 9  

3.7 

0 .57  

1 9  

45 

1 5  

3.6 

1 . 4  

0 . 4 9  

3.2 

1 . 6  

0 .19  

1 . 2  

(PPd 

6 - 

20 

<1 

300 

4 . 1  

55 

1 9  

30 

13.3 

2.4 

0.54 

1 5  

33 

1 7  

3 .2  
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The relatively high barium contents of the samples of felsic dike 
rock and basalt (MHR 1 and 2, respectively) from the Robin Hood Quarry, are 

reflected in the water sample from that locality (MH 10, Table 4a). The 

basalt has higher rare-earth-element ratios than those of the andesite or of 

the intrusive rocks. Comparison of major- and trace-element contents of the 

Robin Hood Quarry basalt with contents of Columbia River Basalt flows (Asaro 

and others, 1978) indicates strong similarities. An example is shown in 

Table 7, where sample NHR 2 is compared with basalt of the Roza flow of 

central Washington. 

Major- and trace-element contents of the two samples of relatively 

unaltered intrusive rocks, diorite-granodiorite, from the Laurel Hill pluton 

(MHR 7 and 8), are similar to contents of the unaltered andesite samples. 
This is illustrated by the similarity between REE patterns of the andesite 
and intrusive rocks (Figure 15). A sample of altered intrusive rock from 

locality MHR 9 in the Laurel Hill pluton has markedly lower Na20, MgO and 

CaO, but higher Si02 than the unaltered samples. The similarity between 

the chemistries of the intrusive rocks and the andesites suggests that the 

intrusives may represent the roots of the Pliocene extrusive centers on the 

western flank of Mt. Hood. However, our sampling of andesites to date has 

not been extensive enough to support or deny the conclusions of Wise (1969) 
regarding the origin and character of the andesites of Mt. Hood. 

C. Gas Analyses 

Results of analyses of gases .collected from two sites on Mt. Hood, 

Steel Cliffs and Crater Rock in the Summit Crater area, are listed in Table 

8. These may be compared with analyses by Ayres and Creswell (1951) of gas 

samples collected in 1935 and 1951 from fumaroles near the Steel Cliffs. 

The bar graphs, Figure 16, permit this comparison and show that carbon 

dioxide predominates (88-97%) in the group of gases other than water vapor, 

with H2S comprising 1 to 11% of this group. The Ayres and Creswell sample 
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Table  7 

E 

Major- and Trace-Element Contents  of t h e  
Robin Hood Quarry and Roza Flow b a s a l t s  

S i 0 2  

*l2'3 

FeO 

Robin Hood Quarry Roza f low 
( X I  

50.3 50.3 

1 3 . 1  13 .6  

12 .9  1 4 . 3  

C a O  

N a  0 
2 

K2° 

T i 0 2  

sc 

Eu 

co 

Ba 

C r  

4.0 

7 . 1  

2.2 

4.4 

8 . 2  

2.7 

5 

1 . 2  1 . 2  

2.5 2.6 

37.7 

2.2 

36.6 

641 

40.3 

39.0 

2.67 

41.0 

498 

40.5 
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Table 8 

Fumarolic Gas Analyses* 

Temperature 

moles C02 

moles H S 2 

3 moles NH 

moles H 0 
2 

Gases other than H20 (mole % )  

c02 
H S  2 
He 

2 H 

Ar 

O2 

N2 

"3 

CH4** 

Steel Cliffs 

88- 9 l0C 

0.1830 

3. 8368x1f3 

1.8862~10-~ 

1.1215 

96.85 

2.03 

1. 8x1~-4 

0.11 

4. 6x1f3 

0 

0.87 

1. o ~ ~ o - ~  
1.00 

Crater Rock 

90"c 
0.3056 

2.9228~10-~ 

1.72~10-~ 

0 

98.43 

0.94 

4.3x10-~ 

0.32 

2. o ~ ~ o - ~  
2. 2x1~-3 

0.25 

1. ~ x I O - ~  

0.55 

* Collected July 1977; analyzed by N. Nehring and A.H. Truesdell, 
U.S. Geological Survey, Menlo Park, California. 

** Besides methane, chromatograms indicate the presence of ethene, 
ethane, propene, propane, 2-methy1-propanel 1-butene, n-butane, and 
n-pentane. 
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Goses other than water vapor 
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0. I 
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f 
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F i g u r e  1 6 .  Bar g r a p h s ,  showing abundances of c o n s t i t u e n t s  
( o t h e r  t h a n  water vapor)  of f u m a r o l i c  g a s e s ,  

E f t .  Hood. 
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of  1 9 5 1  d i f f e r s  f r o m  t h e  1 9 3 5  s a m p l e  i n  i t s  r e l a t i v e  c o n t e n t s  o f  C02, 

H2S, and o t h e r  c o n s t i t u e n t s .  The d i f f e r e n c e  between t h e  1951 s a m p l e  and 

ou r  1977 sample is  of t h e  same o r d e r .  The 1977 S t e e l  C l i f f s  and Crater Rock 

samples  have similar bar-graph p a t t e r n s ,  w i t h  t h e i r  H2S c o n t e n t s  subs t an -  

t i a l l y  h i g h e r  t han  H2, N 2 ,  and "3, which are i n  t u r n  a t  l ea s t  two 

o r d e r s  of magni tude h i g h e r  t han  argon.  

A second set of g a s  samples  w a s  c o l l e c t e d  from fumaroles  i n  t h e  Summit 

Crater area i n  October  1978. It is expec ted  t h a t  s u f f i c i e n t  water vapor  w a s  

c o l l e c t e d  a t  t h a t  t i m e  t o  p e r m i t  a n a l y s e s  o f  s t a b l e  i s o t o p e  c o n t e n t s ,  

p r o v i d i n g  comparison w i t h  i s o t o p e  r a t i o s  i n  spr ing-water  samples .  

I V .  O R I G I N  OF W A R M  WATER AT SWIM SPRINGS 

It i s  a p p r o p r i a t e  h e r e  t o  s p e c u l a t e  b r i e f l y  on t h e  s o u r c e  o f  t h e  

w a r m  water and t h e  pathway i t  t a k e s  t o  r e a c h  Swim Spr ings .  The most l i k e l y  

e x p l a n a t i o n  f o r  t h e  occur rence  of w a r m  water a t  Swim is  t h a t  t h e  water has  

been  h e a t e d  h i g h e r  on t h e  mountain,  h a s  mig ra t ed  downslope, mixing w i t h  c o l d  

water, and comes t o  t h e  s u r f a c e  a t  Swim. Snow- and g l a c i e r - m e l t  water n e a r  

t h e  summit  may come i n  c l o s e  p r o x i m i t y  t o  t h e  h o t  c e n t r a l  n e c k  of t h e  

mounta in ,  man i fe s t ed  by t h e  steam zone of t h e  summit-crater fumaroles .  Some 

of t h i s  h e a t e d  water probably  p e r c o l a t e s  downslope i n  t h e  a n d e s i t i c  mud-and 

ash- f lows ,  mixing w i t h  c o l d  w a t e r  a l o n g  i ts  p a t h  ( F i g u r e  1 7 ) .  

The oxygen-hydrogen i s o t o p e  d a t a  ( F i g u r e  12)  p rov ide  ev idence  f o r  

t h e  h i g h - e l e v a t i o n  o r i g i n  of t h e  Swim water. Meteo r i c  water d e p o s i t e d  a t  

h i g h e r  e l e v a t i o n s  h a s  a l a r g e r  component of l i g h t e r  i s o t o p e s  than  does  water 

a t  lower e l e v a t i o n s .  Th i s  i n d i c a t e s  t h a t  a s i g n i f i c a n t  p r o p o r t i o n  of t h e  

w a r m  water o r i g i n a t e d  a t  h i g h e r  e l e v a t i o n s  than  t h e  co ld  s p r i n g  water. 

F i e l d  measurements and a n a l y s e s  of c o l d  s p r i n g s  a l s o  sugges t  t h a t  

t h e r e  is  a s m a l l  t he rma l  component i n  some of t h e  co ld - sp r ing  water on t h e  

s o u t h  f l a n k  of M t .  Hood. S u r f a c e  and s p r i n g  waters i n  t h e  M t .  Hood r e g i o n  
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Figure  1 7 .  North-south g e o l o g i c  c r o s s  s e c t i o n  of M t .  Hood ( a f t e r  Wise, 1968) 
showing, s c h e m a t i c a l l y ,  t h e  hypo thes i zed  c i r c u l a t i o n  pa ths  of h o t  
water (dark a r rows)  hea ted  n e a r  t h e  v o l c a n o ' s  c e n t r a l  neck,  mixed 
w a r m  water ( l i g h t e r  a r r o w s ) ,  and co ld  w a t e r  (un-shaded a r rows) .  
The w a r m  water  emanating a t  S w i m  Spr ings  i s  s t r o n g l y  mixed, and 
c o l d  water i n  s p r i n g s  on t h e  s o u t h  f l a n k  of t h e  mountain may con- 
t a i n  a small component of t h e  deeper-f lowing h o t  w a t e r .  Myb = 
Yakima Basa l t :  Mr = Rhododendron Formation;  P l v  = Lower P l i o c e n e  
b a s a l t  and a n d e s i t e ;  Qha = ?It .  Hood a n d e s i t e  f lows .  
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g e n e r a l l y  c o n t a i n  a few pprn of t o t a l  d i s s o l v e d  s o l i d s ,  1 t o  3 pprn c h l o r i d e ,  

and have s p e c i f i c  conductances  of 30 t o  70 pmohs/cm. I n  c o n t r a s t ,  as i s  

i l l u s r a t e d  i n  F i g u r e  9 ,  s e v e r a l  of t h e  c o l d  s p r i n g s  on t h e  s o u t h  f l a n k ,  

below t h e  6000 f t  e l e v a t i o n ,  have c h l o r i d e  c o n t e n t s  and/or  s p e c i f i c  conduc- 

t a n c e s  w e l l  i n  excess  of t h e s e  v a l u e s .  For comparison,  u n d i l u t e d  geothermal  

waters may c o n t a i n  s e v e r a l  hundred t o  s e v e r a l  thousand ppm c h l o r i d e  and have 

s p e c i f i c  conductances  i n  t h e  range  from s e v e r a l  hundred t o  s e v e r a l  thousand 

umohs/cm; a t  Swim, t h e  v a l u e s  are ~ 9 0 0  pprn t o t a l  d i s s o l v e d  s o l i d s ,  %150 ppm 

c h l o r i d e ,  and 1300 pmohs/cm s p e c i f i c  conductance.  

Another p o s s i b l e  e x p l a n a t i o n  f o r  t h e  p re sence  of warm water a t  Swim 

S p r i n g s  i s  deep c i r c u l a t i o n  a long  a f a u l t  zone. An east-west o r i e n t e d  f a u l t  

zone i n  t h e  v i c i n i t y  of Swim h a s  been sugges t ed  from a n a l y s e s  of ea r thquake  

epicentral data (R. Couch, personal communication, 1977). However, to date, 

o t h e r  g e o l o g i c a l  and g e o p h y s i c a l  i n v e s t i g a t i o n s  have n o t  confirmed t h e  f a u l t  

zone. I f  a f a u l t  zone were p r e s e n t  and i t  con ta ined  permeable  zones ,  t h e s e  

c o u l d  s e r v e  as c o n d u i t s  f o r  deep c i r c u l a t i o n  of m e t e o r i c  water. It is more 

l i k e l y  t h a t  i f  a f a u l t  zone i s  p r e s e n t ,  i t  would s e r v e  as an impermeable 

b a r r i e r  t o  w a r m  water moving down-slope, caus ing  some impoundment and t h e  

emanat ion  a t  Swim Spr ings .  That  t h e  h i g h e s t  t empera tu re  o r i f i c e  a t  Swim i s  

l o w e s t  i n  e l e v a t i o n  ( F i g u r e  5 )  c o u l d  b e  a t t r i b u t e d  t o  n e a r l y  v e r t i c a l  

c i r c u l a t i o n  a s s o c i a t e d  w i t h  a f a u l t  zone. More p l a u s i b l e ,  however, i s  t h e  

e x p l a n a t i o n  t h a t  t h e  water emanat ing a t  t h e  lower o r i f i c e  is  w a r m  water 

moving down-slope from a deeper  h o r i z o n  i n  t h e  a n d e s i t e ,  and t h e r e f o r e  less 

mixed w i t h  c o l d  water than  t h e  water i n  t h e  h i g h e r  o r i f i c e s .  N e i t h e r  t h e  

f au l t - zone  no r  t h e  down-slope moving w a r m  water mechanisms f o r  Swim Spr ings  

are m u t u a l l y  e x c l u s i v e ;  bo th  could  be  o p e r a t i n g .  

V. CONCLUSIONS 

Though t h i s  i s  n o t  a f i n a l  r e p o r t ,  s u f f i c i e n t  d a t a  have been o b t a i n e d  

t o  p rov ide  some p r e l i m i n a r y  c o n c l u s i o n s  on t h e  geochemical  s e t t i n g  of M t .  

Hood. F i rmer  c o n c l u s i o n s  on t h e  u s e f u l n e s s  of t h e  geochemis t ry  i n  eva lu-  

a t i n g  t h e  geothermal  r e s o u r c e  p o t e n t i a l  await r e s u l t s  of a n a l y s e s  p r e s e n t l y  

underway. 
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The warm water at Swim Springs on the south flank of Mt. Hood has 
a large component (~90%) of nearer-surface cold water. The flux of 
cold-water runoff nearly masks the surface indications of deeper-circu- 
lating hot water. The upper-slope orifices at Swim are the most diluted, 
those downslope are successively less diluted. The oxygen-hydrogen 
isotope data indicate that cold-spring waters have short pathways 
between their sources and the springs, while a component of the warm- 
spring water has its origin considerably higher on the mountain. 

Chemical geothermometers and mixing-model calculations indicate that 
temperatures at depth in the Swim Springs system are within the range 
1O4-17O0C. The silica mixing model gives a range of 192-240°C for 
unmixed hot water. 

The chloride contents and specific conductances of the water sources 
indicate that most of the cold spring waters are derived almost directly 
from snow melt. Relatively high chloride contents and specific conduc- 
tances in some springs on the south flank of Mt. Hood indicate that 
these waters may circulate deeper or may mix with geothermal waters. 

Water in the geothermal test hole in Old Maid Flat, in a sample most 
likely from the Rhododendron Formation, has a different chemical char- 
acter from the water at Swim. Geothermometry is consistent with a 
temperature gradient of 60°C/km as measured in the Old Maid Flat 
well. 

The Platinum-group element, iridium, is present in identifiable abun- 
dances at one orifice at Swim Warm Springs, a cold spring, and in the 
small lake in the summit crater area. Iridium also occurs in altered 
andesite at one location on the western flank of Mt. Hood. The asso- 
ciation of Ir with an andesitic volcano is surprising; it is generally 
considered to be associated with basic to ultrabasic igneous rocks. 

The similarity between major- and trace-element contents of Pliocene 
andesite on the west flank of the mountain and intermediate intrusive 
rocks of the Laurel Hill pluton in that area supports Wise's (1969) 
contention that the pluton represents the root zone of a center of 
extrusion of the andesite. 

The basalt exposed in the Robin Hood Quarry in the Hood River Valley 
has major- and trace-element contents very similar to those of the Roza 
flow of central Washington. This supports the idea that the basalt on 
the east side of the valley is Columbia River Basalt, on the upward- 
thrown side of a north-south trending normal fault. 
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VI. CONTINUING ACTIVITIES 

Activities underway include analyses of gas samples collected in October 

1978 in the summit fumarolic area. In the sampling of 1977 we were not able 

to collect sufficient water vapor to permit determination of isotope ratios. 

The volume of water vapor collected in 1978 is sufficient for these analy- 

ses. This will afford comparison with the isotope ratios of cold- and 

warm-spring water reported here. 

Water analyses still to be completed at the time of publication include 

a sample collected in October 1978 from the geothermal test hole drilled 

near Timberline Lodge and a set of samples collected at that time from the 

three orifices sampled periodically at Swim Springs. Deepening of the 

geothermal test hole in Old Maid Flat in the summer of 1978 may permit us to 
obtain a fluid sample from a deeper aquifer (most likely within the Columbia 
River Basalt) than the Rhododendron Formation sampled in 1977. 

Samples of altered and unaltered andesite from the fumarolic area in 

the summit crater were collected in October 1978. These are being analyzed 

for major and trace elements and will indicate if iridium and silver are 

present in the strongly altered ground, coinciding with the presence of 

these elements in the runoff water from the small lake. 

It is recommended that one or more geothermal test holes be drilled 

in the Swim Warm Springs area. These holes should be deep enough to obtain 

temperature measurements and fluid samples from below the zone of near- 

surface and shallow cold-water runoff, to permit major-, trace-element, and 

isotope analyses of relatively unmixed hot water. The holes should be 

located on the up hill gradient from the Swim system to test whether the 

water emanating from Swim is leakage from volcanic units higher on Mt. Hood, 

or whether it is from deeper circulation within a fault zone. 
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site; Qha = Mt. Hood andesite flows. 
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