
LBL-7165 

VERY HIGH ENERGY NUCLEAR COLLISIONS: 

The Asymptotic Hadron Spectrum, A n t i - N u c l e i , 

Hyper-Nuc le i , and Quark Phase* 

Norman K. Glendenning 

2 January 1978 

" «"*,„",,"*"'"> "» «« TO,,,?"" "'•' *W 

Invited Paper 
Hirschegr;, Austria 

16 January 1978 
Workshop on Gross Nuclear Properties of Nuclei and Nuclear Excitations 
*This work was supported by the Division of Nuclear Physics 
Division of the Department of Energy. 

IP 
DISTRIBUTION Of THIS DOCUMENT IS UNLIMITED 



The Hadrons Who Will Never be Known by Name 

This talk could have been given the above more whimsical title. It 
sounds at first like e sad story. But I think I can convince you that the 
multitude, perhaps infinity, of hadrons that are presumed to exist at high 
mass, played a vital role in determining the temperature and composition of 
the universe at the beginning of time, and that they may play a vital role in 
particle physics in deciding between different theories of hadronic structure. 
It is instead a possibly exciting story with a happy ending. 

First let us speak of the hadrons that are known by name. There are 
56 named hadrons representing about 1000 hadronic states with spin, isospin, 
baryonic charge and strangeness quantum numbers measured (Table 1) '. The lightest 
of these are the three pions at m ^ 140 MeV. They become quite densely spaced 
as their mass increases to about 10 m . Thereafter the spectrum becomes sparse. 
Presumably however the cutoff is an experimental one. Figure 2 plots the 
number of hadronic states per pion mass interval. Already at m = 10 m there are 34 
non-strange states per pi on mass interval and the avorage width at this mass is 
r 'v. 100 MeV. Production rates are expected to decrease with m. The experi­
mental problem becomes one of intensity and resolution. 

Theories of hadronic structure, in contrast to the known spectrum, 
imply that it continues indefinitely. The bootstrap hypothesis predicts a 

21 spectrum that increases exponentially.' The hypothesis can be stated simply as 
follows: From among the known particles or resonances select two (or more) 
and combine their quantum numbers. The multipiet so obtained are also parti­
cles or resonances (at something like the sum of the masses). Add these to 
the pool of known particles and continue. The spectrum thereby generated by 
Hamer and Frautschrns also shown in Fig. 2. The implication is astonislhtng. 
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The number of particles and resonances grows so fast that at only 2.5 GeV the 
number expected in a pion mass interval, on the basis of the bootstrap hypothesis, 

4 2 
is ^10 . The number of known particles is $10 at that mass. If new particles 
were discovered at the rate of one a day it would require about a hundred years 
to verify the bootstrap prediction by a direct count, and that at only one mass! 

The quark bag model, in its simplest form, predicts a slower but none 
the less rapid increase in the density of states, proportional to a power of the 
mass. More realistic bag models will yield a more rapidly increasing density 
as a function of mass. 

Is It Interesting? 

We have seen that it is out of the question to determine even the 
general form of the hadronic mass spectrum at even relatively low masses like 
2 to 3 GeV,much less in the high mass region, by a direct count of individual 
particles and resonances. The sheer density of states is not only very large, 

4 but the widths are at least a pion mass, so of the order 10 or more 

states fall within the width of any one. 
Is it important or even interesting to know the density of hadronic 

states in the region where they cannot be individually discovered and given a 
name? I think so. It is both interesting and important. Interesting because 
it is a fundamental property of matter on the smallest scale, and important 
for two reasons that I can think of. It is important in particle physics 
because the density of hadron states at high mass provides an asymptotic 
constraint on theories of hadronic structure. Let me elaborate. The properties 
of the low mass particles that can be individually identified provide important 
clues as to the group structure of the theory. Their Quantum numbers (spin, iso-
spin. strangeness) which are determined by the decay modes and so on, and their 
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masses suggest particular classifications which any theory of hadronic structure 
must account for. But the symmetries are not perfect. This fact leaves a lot 
of room for competing theories. Certainly the quark theory is favored by 
many particle physicists today, but there are a number of quark models. If 
quarks are the fundamental building blocks, there is still no agreement as to 
the nature of the glue that holds them together. And because the symmetries 
are broken, the light particle spectroscopy cannot provide a unique way of 
discriminating between the theories. Vet any theory of hadronic structure, 
when sufficiently developed, can be made to yield a prediction of the asymptotic 
region (i.e., high mass). It is in this sense that the asymptotic behavior 
of the hadronic spectrum may become decisive in particle theory. 

The asymptotic region is important also in cosmology. The thermal 
history of the universe can be guessed with considerable confidence back to the 
time of helium synthesis at temperatures of about 1 MeV. For much earlier times 
when the energy density was extermely high, the composition of the universe 
must have beer very different in kind, not merely in density and temperature, 
from what we see today. That there were no nuclei is clear, but that there 
were no nucleons is likely. What there was was in fact determined by the 
spectrum of hadrons and leptons that could energetically exist at the energy 
densities prevalent. At even earlier times, at extreme particle and energy 
density, the hadrons may have been dissolved into a quark soup which only 
later condensed into hadrons. 

I am sure that I have convinced you by now of two things. The general 
form of the hadronic spectrum is a most interesting thing to know, and it 
cannot be discovered by looking for the individual particles of which is is 
composed. 

* in 1 MeV - 1 0 , u °K. 
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How Then Can it be Discovered? 

Perhaps by creating as large a piece of matter as possible at high 
energy density and studying its properties. This is the only way I can think 
of. I am sure that you appreciate for example, that the specific heat of material 
objects depends upon their compositions. The composition of matter at high 
energy density depends in turn upon the number, type, and masses of hadrcns 
that can energetically exist at that density—both those that are known, and 
those that are unknown, and never will be known by name! 

The only means we have of producing matter at very high energy density 
is in collisions, byno means an ideal situation for performing calorimetric 
measurements. Yet it is our only hope. 

So we have in n*nd collisions between large nuclei at high energy. 
Two questions come immediately to mind. 1) What is the dynamical description 
of the reaction? and 2) At what energy can different assumptions about the 
hadronic spectrum be expected to yield observable difference in the outcome 
of the collision? 

For the dynamics I can envision two extremes. Either the collision 
of two nuclei at high energy 1) develops as a sequence of independent col­
lisions, or 2) it attains thermal equilibrium and then decays. 

If the first is true then for the purpose at hand, at least, there is no 
point in studying nuclear collisions rather than nucleon-nucleon collisions. 

But I think it highly unlikely that the first is true. More likely 
the truth lies between the extremes. 

A moment's reflection makes clear that a complete dynamical descrip­
tion of a collision between nuclei at very high energy involves something like 
the full complexity of a relativistic quantum field theory. Of course if all 
the ingredients of such a theory were at hand, the question raised by this 



5-

paper would be moot. Since however the ultimate theory of particle structure 
is unlikely to emerge in the near future, it seems reasonable to attempt a model 
description of the dynamics of a nuclear collision. 

Before attempting to explore too elaborate a model it seems prudent 
to me to assess whether it is worth doing so. For example, it might turn out 
that the energy at which sensitivity to the hadronic spectrum is achieved is so 
high as to be out of sight; that by no stretch of the imagination would it ever 
be possible to produce the required energy in the laboratory. 

Therefore, Y. Karant and I have assumed thermal equilibrium as a model 
of high energy collisions for the purpose of accessing the prospedts of learning 
from nuclear collisions the form of the hadronic spectrum and the possibility 
of distinguishing between various theories of hadronic structure. If the 
results of such a study give an optimistic prognosis, we will feel encouraged 
to try harder in our treatment of the dynamics. 

The attainment of a state of thermal equilibrium in a nuclear collision 
may seem strange at first. But at the energies in question a very large phase 
space is opened up by particle production. The high velocity (near c) of the 
pions and their strong interaction with nucleons provides a fast mechanism 
for thermalization in addition of course to the hadron-hadron collisions. 
Indeed computer studies suggest that thermalization can occur already after 
3 or 4 collisions. ' Chemical equilibrium among the various species IT, N N* A... 
takes longer but may still be fast compared to the disassembly time of the compos/-
ite. The extended size of the fniiti.aT nuclear composite for geometrical reasons/ 
alone, slows the disassembly of the interior. ' 

There is a very extensive and beautiful literature on the thermodynamic 
?) I 

theory of hadronic structure. ; Also for nuclear collisions, at lower energy 
than we have in mind, a thermodynamic model has been introduced. »°»'' Inspired 
by the analogy to hadron thermodynamics, the hot composite system was .' 



Table I. The families of light mass multiplets, their average masses in HeV, and their baryon and 
strangeness quantum numbers (B, S). Total multiplicity including the unlisted multiplets is 
indicated in the bottom row for each family. 

Family H K N A S E a 
(B, S) (0,0) (0,1) (1,0) (1,-1) (1,-1) (1,-2) (1,-3) 

TT(138) K(495) N(940) 1116 1193 1318 1672 
n(549) K*(892) N*(1430) 1405 1385 1533 
p(773) K*(1421) N*{1520) 1519 1670 

"a. 
•r-

u>(783) N*(1515) 1670 1745 
3 
£ n'(958) A(1232) 1690 1773 

Total 
Multiplici ty 103 18 248 38 108 12 4 = 531 
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referred to as a nuclear fireball. The model has been refined ' and applied ' 
to data on pion, proton, and composite particle spectra at various energies 
between 200 KeV per nucleon to 2 GeV per nucleon laboratory kinetic energy. The 
overall agreement with such a wide range of data is quite impressive. 

Thermodynamics of Hadronic Matter 

In this section we discuss the thermodynamics of the nuclear fireball 
in terms of an ideal realtivistic gas. It may seem strange that a strongly 
interacting hadron system is described in such a way. However, Hagedorn ' 

has argued convincingly, on the basis of statistical mechanical techniques 
12) 131 

introudced by Beth and Uhlenbeck ' and Belenkij ' that the hadronic spectrum 
is the manifestation of the interactions; that by introducing the complete 
spectrum one has accounted for their interactions completely. 

The partition function and momentum distribution for an ideal rela-
tivistic gas of Fermions or Bosons of mass m and statistical weight 

2 ) g = (2J+1)(2I+1) occupying a volume V at temperature T are. ' (Units are 
h = c = k3oltzman = '>• 

Z(V.T) = ^ / l I ^ K 2 ( T > • <B> ( 1> 
2* ? 

f(p,T)d3
P = 2 ^ f dP , {[) {?) 

ZT, exp(f /p2-Hif)±l 8 

from which the various thermodynamic quantities can be calculated. We want 

to describe a gas of Baryons and Mesons distributed in mass according to some 
unknown functions f (m). (a labels the families of particles, ordinary and 



strange baryons and mesons, some of which are shown in Table I). There are two 
important quantum numbers that have to be conserved, the net baryon number and 
stnangeness. This is achieved as usual in thermodynamics, by introducing chemical 
potentials. If we specialize to symmetric collisions between Z = N nuclei then 
the conservation of baryon number and strangeness implies conservation of electric 

DJ.C 

charge, since on the average <Q> = s^- • We therefore make this specialization. 
The average number and energy for the family of particles labelled a 

dmp a( m)m 2 2 - ^ f - K2 ( T » e x P ( - T » 
1 

dmpa(m)m3 £ A ± 2
n" 

N . VJ_. J dmp (m)m' 2 , ^ h ~ <o (^ exp ( ^ ) (3) 
2ir s? i 

m a 1 

E - n_ '" - - ' T , n + 1 

a " 2n2 ¥ 7 ^ + nm K 2 l T ' exp(-^) (4) 

Here u is the chemical potential, m is the threshold, i.e., lowest mass 
particle in the family a, and K is a Kelvin function. 

The baryonic charge of the system is clearly 

= V N B (5) 
Zj a a 

B 
a 

the sum being extended over the seven families of particles indicated in 
Table I (a = n, K, N, ...) The number of antiparticles of type a and their 
energy are given by the above two equations (3) and (4) with u •* -u. We 

As a family label, n does not designate only the pions, but all the ordinary 
mesons, IT, p, r», etc. 
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indicate by a bar, the antiparticle quantity, e.g., N. lhen the net baryon 

charge is 

A = B - F. (6) 

This quantity is conserved, and equal to the initial number of nucleons in 

the collision. The net strangeness is also conserved and is zero. 

0 = S - S" (7) 
where 

S = Y N S (8) 
a 

(The sign of the strangeness is opposite for particle and antiparticle.) 
The two conditions (6) and (7) expressing baryon and strangeness 

conservation clearly coiole all thermodynamic quantities T, \i . The reactions 
possible between the various particles dictate certain relations among the 
chemical potentials with the result that there are only two independent 
potentials, that for the nucleon and that for the kaon. The scheme we use 
to solve for the energy and particle populations as a function of temperature 
is basically the following. Choose a temperature T and find the values of 
the two chemical potentials that satisfy equations (6) and (7). When these 
are found then the populations and energies can be found from (3) and (4) 
and the total energy is of course 

• I Ea <9> E = 
a 

The initial condition of the fireball is a little more complicated to 
solve. We consider symmetric collisions in the center of mass frame between 



nuclei of atomic number A/2. Each nucleus is Lorentz contracted by the factor 
My = m/E. If the volume per nucleon in the rest frame of each nucleus is 
v Q = 4ir (1.2) , then in the CM. frame it is v Q/Y. We assume that the colli­
sion is perfectly inelastic; that each nucleus is stopped by the other. Then 
the largest possible volume, in which all nucleons are contained, just after 
the nuclei have stopped each other is the contracted ve^me occupied originally 

141 by one. ' So the initial baryon density of the fireball is 

"initial ^ i ^ ' 1 ( 1 ° ' 

and the volume per baryon is the reciprocal. Hence the volume V multiplying 
all quantities (3), (4), etc. is a function of the as yet to be determined 
energy. How this problem is solved can be found in Appendix B. 

We shall want to look at expansions of the system from its initial 
contracted state under conditions of constant energy or constant entropy. 
Therefore to complete this section we mention that the entropy is defined by 

(11) 

where the chemical potentials are given in Appendix A. The pressure can be 
calculated from 

m a 

a 
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Three Examples of Hadronic Spectra 

The object of the rest of the paper is to show how and at what energies 
the thermodynamic nuclear fireball would differ under the three different 
assumptions for the hadronic spectrum discussed below. For brevity we shall 
sometimes refer to the results for different spectra as being different 
worlds. The ultimate object, toward which this paper is a modest start is 
to discover which is most like our world. 

a) The Known Hadrons: As one extreme case we might suppose that all 
of the hadrons have already been discovered. They are listed with their 
properties in the Particle Data Tables 'and their density is plotted in Fig. 1 
with the exception of recent discoveries. There are 56 different multiplets 
known with a total particle multiplicity of 531. Together with the antiparticles 
these comprise the 1000 or so known hadronic states mentioned earlier. We 
include them all by using the average mass and width for each multiplet. For 
our purpose, they fall into the seven families shown in Table I. 

b) Bootstrap Spectrum: There are several mathematical formulations of 
2) the bootstrap hypothesis but the thermodynamic theory of Hagedorn is most 

useful to us because it yields an asymptotic form for the bootstrap hadron 
spectrum. The bootstrap spectrum lies at the opposite extreme for the "known" 
spectrum since it rises exponentially and without bound. We shall test the 
consequences of a bootstrap theory by using the Hagedorn form of the spectrum 
for the non-strange mesons and baryons in the region m > 12 m . Below this 
mass we use the discrete known particles for these two families and alj^ known 
strange particles. We normalize the Hagedorn spectrum to agree with the 
average density of states in five pion mass intervals around 10 m . Thus 
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pBootstrap ( m ) = 

1.12 e m / T 0 ; . 
-Wpion mass (m/T, 0' 

m > 12 m 

discrete non-strange particles m < 12 m 
(13) 

+ all strange particles 
T n = 0.958 HI m = 140 MeV 

7T 

We assume that there is an equal number of ordinary mesons and baryons in the 
continuous region. We might, but do not yet' include continua for the families 
of strange particles because there is generally an insufficient number to 
estimate the normalization of the continua. 

c) Rigid Quark Bag: As an intermediate case, and so as to bring out 
where the sensitivity is achieved undei less extreme alternatives than the 
first two, we consider a naive rigid quark bag. A meson is considered to be 
composed of 2 quarks, and a baryon of three. The walls are considered rigid 

15) and no new quark pairs are created within a hadron. F.autschi ' finds that 
2 5 the density of such objects rises as m and m respectively. Normalizing 

at m * 10 m to the same value as the Hagedorn spectrum at that mass, we have 
for the continuous spectra for ordinary mesons (IT) and baryons (N) 

^Bag 

f p (m) = 0.154 (m/m ) /pion mass 

PN(m) = 1.36 x 10" 4 (m/m ) b /p io 

1 discrete non-strange particles 

+ a l l strange particles 

m > 12 m 

m < 1 2 m 

(14) 
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The Temperature 

The first crude indication of differences between hadronic matter 
constructed from the three assumed spectra is registered in the initial 
temperature they would be heated to for the same energy content. Since we 
assume a perfectly inelastic collision, the CM. collision energy per nucleon 
including rest energy is the total fireball energy per nucleon. These tempera­
tures are shown in Fig. 2. For matter composed of a hadronic spectrum limited 
to the known particles, the temperature is by far highest at energies greater 
than several GeV. Because energy goes into making additional particles in the 
quark bag spectrum that were not present in the known spectrum, the temperature 
is lower at. any corresponding energy. For the exponentially rising spectrum, 
as first discovered and emphasized by Hagedorn, the temperature is limited to a 
maximum value corresponding to the constant T n in the spectrum eq. (13). 

While Tfi appears to be nearly the pion mas?, its value is not deter­
mined within the theory cf Hagedorn. Instead it is deduced from a comparison 
with data. While the data often used are p, measurements, we chose to fit 

3) the Frautschi bootstrap iteration on the known particles. 
The limiting temperature of matter, if composed of hadrons obeying the 

bootstrap condition (more precisely the exponential rise) is a truly remarkable 
property which has no analogies in other physical systems that I know of. 
(The boiling point of water is sometimes mentioned. This is a false analogue. 
The temperature of matter is limited even though the energy input is increased 
indefinitely! The limit to water temperature is reached because the energy 
is carried off by the steam. tt is by comparison a trivi a 1 limit and totally 

different in origin.) 
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The mathematical nature of the limit can be seen by referring to 
eq. (4). For large masses, m » T,the Kelvin functions decay exponentially 
like 

K(x)« i e -
Inserting the Hagedorn spectrum we find 

M 
Thus as long as T < T Q the integral converges; the energy is finite. But 
for T > T n the integral diverges. It would require infinite energy to raise 
the temperature to T Q or beyond! 

Composition of the Initial Fireball 

Neither the temperature nor composition of the initial fireball are 
observables because any conceivable experiment must look at the products of 
the collision after the fireball has disassembled. Nonetheless it is interesting 
to look at the calculated populations because they are the starting point of the 
subsequent expansion or decay of the fireball. They also give us a glimpse of 
what the composition of the universe might have looked like at the beginning 
of time for very high energy and particle density. Because of the time scales 
involved we do not have to consider photons and leptons in equilibrium with the 
hadrons, so this in an important difference from the cosmological problem. 

A very immediate impression of how the tnree worlds differ is given by 
Fig. 3 which shows the degree to which the ordinary (non-strange) baryon number 
is depleted. Initially all of the baryonic charge resides in non-stranqe 
baryons (the original neutrons and protons). As the energy is increased, the 
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strange particles begin to be populated. The difference between unity and the 
* 

plotted curves is this strange baryon population. Since however there was 
initially no net strangeness, this is exactly counter balanced by kaon popula­
tions (the strange mesons). We see that in all cases, there is a sudden rise 
in the strange particle populations which however is quenched quickly in the 
bootstrap world but rises to almost 25% in the case of the "known" world. At 
about 5 GeV almost 25% of the baryonic charge is converted to strange particles 
and to corresponding kaons! 

Because there are so many discrete particles, not to mention the 
continua, we make the following arbitrary groupings to display more detailed 
information. Each family of particles is broken up into light particles com­
prising the lightest five (when there are that many) and heavy particles 
comprising all the rest, including continuum particles in the case of the quark 
bag and bootstrap worlds. We sum the populations in each group and plot only 
the summed populations. Thus the ordinary (non-strange) mesons are represented 
by two curves, for light and heavy mesons. There are no heavy kaons, but there 
are anti-kaons so there are curves for both. The ordinary baryons are repre­
sented by four curves, light and heavy baryons and anti-baryons. And so on. 

Figures 4-9 show truly remarkable differences of the three fireballs 
depending on which is the underlying hadronic spectrum. For both the known 
spectrum and the quark bag, the heavy baryon and anti-baryon populations 
eventually dominate with heavy mesons the next most populous group. In the 
case of the quark bag this happens at rather low energy (on a particle creation 
scale). The heavy mesons follow. The composition at one GeV is of course 

* 
This is a loose statement since the strangeness quantum numbers are not 
limited to the value unity. The succeeding statement for kaons is exact. 
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all nucleon, but the light baryon ana anti-baryons become less populated than 
the heavy ones in the bag model at energy above 10 GeV. The Hagedorn or boot­
strap world is remarkably different. The light meson population rises to 10% 

and then falls. The heavy baryon population rises sharply and above 3 GeV the 
fireball is composed of more heavy baryons than light ones. By 10 GeV about 
60% of the baryons are heavy and only 40% are light. 

There is another remarkable difference. In the "known" and "bag" worlds, 
all particle-anti-particle populations approach each other at high energy (with 
anti-particles slightly less numerous). In the bootstrap world, the anti-
particles have microscopic populations. It is a world dominated at high energy 
and density by heavy baryons. This is an inevitable consequence of the expo­
nential rise in the bootstrap density. At high temperature the system wants 
to produce heavy particles. Since however baryon conservation is forced, 
the energy is committed to making heavy baryons to the exclusion of mesons. 

Expansion of the Fireball 

So far we have considered the fireball in its initial configuration 
just after being formed. This stage is of course hardly observable. It is 
the expansion of the fireball that carries many, maybe most of the particles 
to the counting apparatus. Of course some particles may be radiated from the 
fireball as it expands. We assume, as in cosmology, that the expansion occurs 
through a series of equilibrium states. At some point during the expansion, 
when the density falls below a critical value, thermal contact between the 
particles is broken. This is called the freezeout ' (freezein might be a 
better word). Relative populations do not change thereafter except by decay 
of isolated particles. Thus we envision the disassembly of the fireball as 
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taking place in two stages. 

Presumably the freezeout density would not be less than one part ic le 

per pion wavelength 

PA = (|ir 1.4 3 ) " 1 = 0.085 "m" 3 

Presunably it would be less than the nuclear density 

P N = (|JT 1.2 3)" 1 = 0.17 Fm" 3 

i.e., 
P N * P F > P A 

We shall plot our results for the thermal expansion stage as a function of 1/p 
where the density is measured in units of the nuclear density. On such a scale, 
the freezeout presumably occurs between 1 and 2. (p is the total hadron density.) 

Of course the temperature falls monoton'ically during the expansion to the 
freezeout point. Therefore the temperature characterizing particles that 
remain in thermal contact until the freezeout is the lowest temperature the 
fireball possessed. In t.'.'is connection it is worth remarking that the claim in 
the literature ' that the ultimate temperature has been measured in hadron-
hadron collisions is possibly unwarranted. Unfortunately no one possesses a 
thermometer that he can insert into the initially formed fireball, but instead 

* An alternative which we will explore at some point was suggested by Swaitecki: 
that the disassembly takes place by way of radiation from the surface with 
the interior remaining at its original density until it becomes surface. 
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he must wait until the fireball expands and its constituents arrive at the 
counters. It. is possible, even probably, that some particles will be radiated 
from the surface of the fireball during the thermal expansion stage. They do 
carry pre-freezeout information. However to interpret data one clearly needs 
a precise dynamical description with which to unfold the pre-freezeout and 
freezeout particles. 

We can envision two extreme equilibrium expansions. One is isoergic 
which is an expansion with maximum increase in entropy, and the other is an 
isoentropic expansion. The isoentropic expansion suffers a loss in energy 
which we interpret as being carried out of the thermal region by particle 
radiation prior to freezeout. 

The fall in temperature during an isoergic expansion at 20 GeV is 
shown in Fig. 10. For the "known1' and rigid bag worlds it drops precipitously 
while for the bootstrap world it remains nearly constant until a late stage.. 
At somewhat less than normal nuclear density, it begins to fall at the more 
rapid rate of the other worlds. This merely corresponds to the fact 
that at low enough temperature all worlds look the same. This figure sug­
gests that temperature measurements near freezeout cannot distinguish between 
various hadronic spectra, as remarked earlier. The possible measurement of a 
temperature of T = 119 MeV in hadron-hadron collisions at 28 GeV reported in the 
literature would correspond, on our figure,to a freezeout a little to the 
right of the frame where all worlds have fallen to virtually the same temperature. 

The way in which the ordinary baryon charge is depleted during the 
expansion at 20 GeV is shown in Fig. 11. The bootstrap world is again 
remarkably different from the others, but although there was an initial large 
difference between the bag and "known" world (Fig. 3) it rapidly diminishes. 
At this point it is worth emphasizing that our quark bag model is a highly 
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simplistic one and almost certainly vastly underestimates the growth rate of 
the spectrum. We have included it in our discussion as an intermediate model 
and will replace it as soon as a more realistic asymptotic quark bag spectrum 
is derived. 

The populations of the various groups during the expansion at 20 GeV 
are shown in Figs. 12-17. The composition of the bootstrap fireball is 
remarkably different from the others during the early stage. However if thermal 
contact were sustained for ajl time it is clear that all worlds must appear 
the same at low enough temperature and density. Indeed they would just return 
to the original neutron proton composition. The breaking of thermal contact 
interrupts this return however. As stated earlier, we expect freezeout to 
occur between 1 < — < 2. It is in precisely this range however that all 
light particle populations have already become quite similar in the three 
worlds. The heavy particle populations the N,fT and the heavy strange baryons 
are however still quite different. 

It has now become clear that vf thermal contact between all constituents 
is sustained during an expansion to a freezeout density equal to the nuclear 
density or less, the problem of distinguishing the three worlds is severe, and 
rests on exotic products alone. On the other hand it seems most likely that 
some of the constituents of the fireball will escape prior to the freezeout. 

Isentropic Expansion of the Fireball 

As remarked earlier, in the isentropic expansion, energy is lost to that 
part of the fireball that remains in thermal contact. I interpret the ioss to 
be balanced by radiation of particles from the surface during the course of 
the expansion. This radiation produces the pressure against which the 
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particles remaining in the fireball work during the expansion. 
Figure 18 shows the energy remaining in the fireball for an isentropic 

expansion starting from an energy of 20 GeV. What this picture inmediately 
suggests is that the pre-freezeout radiation is much more copious for the 
"known" and bag worlds than for the bootstrap world. The energy is trapped 
in massive baryons till a later stage in the expansion. Otherwise the quali­
tative difference between the worlds discussed in connection with the isoergic 

* expansion appear in this expansion also. 

Pre-Freezeout Radiation 

I have already remarked that it is likely that some particles will 
escape from the fireball during the course of the expansion. They carry informa­
tion on the conditions of the fireball prior to freezeout, which information is 
characteristically lost in the equilibrium expansion to freezeout. Therefore, 
this component of the products of the collision is of vital importance. We 
notice that the early history in the expansion of the bootstrap fireball is 
very different from that of the other worlds. The early bootstrap world is 
composed almost entirely of heavy baryons. The other worlds have high popula­
tions of both ordinary and strange mesons (II and K families). Pre-freezeout 
radiation will be profoundly different. This serves to motivate a dynamical 
theory of the expansion stage. 

* 
In connection with the bootstrap and bag worlds, keep in mind that we have 

not yet included a continuous distribution for the strange particles. 
That would raise the populations of all heavy strange particles. 



-?1-

Anti-Nuclei, Hyper-Nuclei, and Quark Phase 

We come now to a most remarkable difference between nuclear collisions 
and hadron-hadron collisions. To the extent that thermodynamics applies to 
each, then all I have said until now applies to nuclear fireballs as to hadron 
fireballs. 

A reexamination of the populations reveals that the anti-baryons and 
also strange baryons have significant populations. As an example, for the 
bootstrap world during the expansion phase at densities below nuclear density, 
(1 on the ordinate) the population of the light Z family is M).2 per baryon 
(Fig. 12). That means that for a collision involving a hundred nucleons, 
20 E's appear at the freezeout! There are even more light anti-baryons present, 
about 27. Thus although we have not yet calculated composite particle popula­
tions, we can anticipate significant production of light anti-nuclei and hyper-
nuclei and possibly even strange nuclei; i.e., nuclei composed entirely of 
strange baryons. This appears to be a fascinating possibility. I presume 
little is known of the binding properties of such objects, except of course 
anti-nuclei, which would have to be the same as ordinary nuclei. 

Moreover, we note that pre-freezeout radiation of these as with single 
particles would be quite different in the worlds examined. 

A quark phase can also be discussed. If the whole system remains in 
thermal contact until the density has fallen to a freezeout density below which 
interactions cease, then a quark phase would be hidden. (Unless of course 
quarks can exist as free particles in which case some of them may not find a 
partner to recombine with before freezeout.) The total energy, since it is 
still shared by the whole system, insures that when the quarks recondense into 
the hadron phase, the composition will evolve with density to the freezeout in 
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exactly the same way as if the quark phase had never existed. However, if 
some particles do escape from the equilibrated region before freezeout, which 
does seem plausible, then the numbers and types of escaping particles would 
depend upon whether, during part of the expansion stage, the matter was in a 
quark phase. During the quark phase there would be no radiation (assuming no 
asymptotically free quarks), or if there were ? mixture of the two phases, say 
quark matter in the interior surrounded by a hadron halo, the radiation would 
likely be different than if only the hadron phase existed throughout. Assuming 
that quarks cannot exist as asymptotically free particles, I conclude that 
detection of a quark phase may be possible, but its detection would depend 
upon an accurate description of the disassembly stage of the fireball. 

Summary 

My impression is that I have raised many more questions than I have 
answered. But that has made the writing of this paper all the more interesting 
to me, as I hope its presentation has been to yoj. We did answer the one 

4) 
question posed at the outset '. We can anticipate a high degree of sensi­
tivity to the asymptotic form of the hadronic mass spectrum at energies from 
about 5 GeV in the center of mass,with sensitivity increasing at higher energy. 
These are high energies but they can be attained in conceivable accelerators 
and possibly already at CERN. One of the remarkable products of nuclear 
collisions will be emission of light exotic nuclei which can be used as an 
important signal as to the nature of the underlying hadron spectrum, provided 
that the dynamics of the disassembly is well understood. Indeed it ought to 
be emphasized that the dynamics of high energy nuclear collisions is 
undoubtedly more complicated than thermodynamics. But I can see no reason to 
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expect that a complete dynamical description .vould exhibit much less sensitivity 
of the outcome of a nuclear collision to the underlying hadronic spectrum, than 
our simple model suggests. Clearly the problems that have to be overcome are 
many and serious but the goal is well worth an enormous effort. 
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Appendix A: Chemical Potentials 

The chemical potentials,as is usual in thermodynamics,must obey certain 
relations that are dictated by the possible reactions. For example 

2p + 2p + TT implies u = 0 
and pn •+ pA 

pn + nA 
pp •* pA 

,++ 
PP •+ PA 
nn •+ pA~ 

imply that 

V> = V V = V V+ = % " V V = 2 y n " vp 

We will ignore the proton, neutron mass difference so that u = u = u„. 
n p D 

Then 
U A = y B 

and in general all multiplets belonging to the same family have the same 
chemical potential. 

There are also relationships between the chemical potentials of dif­
ferent families. The reactions 

NN * NK/i 
NN -* NKX 
NTT + AK 
NN •* NEKK 
NN + NflKKK 
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imply 

"B = UK + MA = MK + vi. " u h + U I = UH + 2 M k = UQ + 3 u K 

Call \i„ = y,.; then a solution to the equations i s : 

u H = u B - 2 y s 

yfl = U B " 3 M S 

Now all the chemical potentials are expressed in terms of the two, y„ and u-. 

Appendix B: Contracted Initial Fireball 

As indicated in eq.{10) the initial volume, which multiplies all 
quantities, depends on the as yet undetermined energy because of the Lorentz 
contraction. To solve the initial fireball equations, write eqs. (3), (4), (10) as 

N = V n (p,T) E = V a (u,T) (El) 
a a a a 
E = V S(u,T) 8 = E £ a 

where u stands for u,., u„, the two independent chemical potentials. Since, eq. (10) 
mv„ 

V = Av = A ^ (82) 

we f ind from (Bl) and (B2) 
' v Q m fi\l/2 

(B3) 
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So the equation for baryon conservation, eq. (6), becomes 
/ m v n \l/2 

The equations that define the initial contracted fireball are (7) anr 
which are to be solved for u„ and u<- for chosen T. 
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Figure Captions 

Fig. 1. The density of different hadrons, p, in unit interval is plotted as a 
function of the mass in units of the pion mass. The experimentally known 
particles and resonances with their multiplicities are shown in f-* shadt 

31 areas. The dotted histogram is a bootstrap iteratioi ' on the known 
spectrum and the solid curve is a Hagedorn type spectrum, fitted to the 
bootstrap. 

Fig. 2. For the three "worlds" considered, the temperature of hot hadronic 
matter assumed to be produced in a symmetric nuclear collision is plotted 
as a function of the C M . total energy per nucleon of the colliding nuclei 
for a volume corresponding to the initial Lorentz contracted fireball. 

Fig. 3. The number of ordinary baryons is depleted owing to creation of strange 
baryons. The difference between unity and the curve corresponds to the 
baryon change resident in strange particles, and is also equal to the 
strange meson (K.) population, because the net strangeness is zero. 

Figs. 4-6. Corresponding to the three "worlds" investigated, the populations 
of the light and heavy members of the family of ordinary mesons (tl), 
strange-baryons (K) and ordinary barons (N), are plotted as a function of 
energy. Light, refers to the first five multiplets (if that many) of each 
family, and are denoted by <. Heavy, refers to all others, including the 
continuum where applicable, and are denoted by >. Anti-particles, except 
for the bootstrap, approach the particle populations at high energy. 
Refer to Table I for some of the members of the families. 

Figs. 7-9. The populations of the strange baryons as a function of energy for 
the three "worlds". Notation similar to above. 
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Fig. 10. The temperature of the fireball as it expands with constant energy 
equal to 20 GeV. The ordinate is the reciprocal of the total hadron 
density in units of the density of normal nuclei (0.17 Fm ). On this 
scale, 2 corresponds to a density such that each hadron has a share of 
the volume corresponding to a sphere with radius equal to the pion 
Compton wavelength 1.4 Fm. 

Fig. 11. Similar to Fig. 3 for the expansion at 20 GeV. 
Fig. 12-17. F c the expansion at 20 GeV the populations for the three "worlds". 
Fig. 18. The energy of the fireball decreases during an isentropic expansion. 

The energy lost to the thermal region is assumed to be carried off by 
particle radiation. No strange particles were included in this particular 
calculation. 
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