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ABSTRACT 

LBL-7194 

The detailed mechanism of alpha decay and its implications about 

the structure of nuclear matter has been a study of much interest over 

the last fifty years. We have examined four major approaches to the 

theoretical calculation of alpha decay widths for light and heavy, even-

and odd-mass nuclei. Application of the microscopic shell model rate 

theory as well as macroscopic models utilizing the coupled channel formalism 

have been studied. 

Use of the R-matrix and S-matrix theories have been applied in order 

to overcome problems involving dependency on the connection radius and 

nuclear potential parameters of the relative and absolute alpha decay 

widths. 

We calculate the alpha decay branching ratios for the 3 and 5 

h d d f h 2l2mp.. h states to t e groun state ecay 0 teo lsomerlC state to t e 

208 spherically symmetric daughter Pb. Improved fit to experiment is 

achieved by considering a smaller connection radius and also by using the 
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coupled channel formalism of the radial Schrodinger equation for the 

I 

two-channel Q, = 18 and Q, = 15 waves in which the coupling is primarily due 

to collective octupole vibrational field. 

Since the coupled channel formalism appears to be useful in under-

standing some features of the alpha decay problem, we extend this calcu-

lation to alpha decay of odd-mass nuclei. We examine the relationship of 

daughter excitation by alpha emission and inelastic alpha scattering on 

daughter nuclei. Again, an exact numerical coupled-channel integration 

treatment is applied to the alpha decay of the odd-mass spheroidal nuclei, 

253E d 255F s an m, + both ground state 7/2 . The only non-central coupling 

of importance between an emitted alpha particle and rotational final s'tates 

in the daughter nucleus involves the intrinsic quadrupole· moment of the 

daughter. Relative intensity show a reasonable fit but these are still 

an underestimation to the decay of the 9/2 states and overestimates the 

intensity to the 11/2 states. 

Because of the dependence of the calculated intensity ratios on the 

nuclear connection radius, and the failure of earlier alpha decay theories 

to reproduce the absolute alpha decay rate widths and, in some cases, 

the relative widths, we have developed a new formalism for alpha decay. 

This formation utilizes the time-dependent perturbation method to develop 

an expression for the alpha decay width based on the unified reaction 

theory or R-matrix theory. The new expression does not depend on the 

radial boundary conditions, but dependence on the nuclear potential well 

depth remains. 

We examine the resonance compound nuclear decay process in terms of 

the energy and partial angular momentum wave dependence of the complex 



v 

scattering matrix elements. It is of interest to examine the S-matrix 

formalism for a few quasi-elastic channels in terms of the detailed 

qualitative properties of the structure of the S-matrix. The role of 

the alpha clustering in the nuclear surface and interior and in terms of 

the alpha (a,a') scattering process is discussed as well as other impli­

cations of the alpha decay process on the pr9perties of nuclear matter. 

It is believed that extensive evolution of the alpha decay mechanism 

will lead to a better understanding of nuclear structure, the nuclear 

potential, and of nuclear forces. 
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I. INTRODUCTION 

Application of the coupled channel formalism is made for the alpha 

decay of even and odd mass (spherical and spheroidal) light and heavy 

nuclei. 

In the second section of this paper, we will examine the alpha 

. . + 212m decay of the hIgh spIn, J = 18 state of Po to the ground state and 

various excited states of the spherically symmetric daughter 208pb as a 

simple barrier penetration problem. We apply the microscopic "shell 

model" rate theory neglecting coupling effects and find that both the 

experimental 1% alpha branch to the 3 , first excited state of 208pb , 

and the 2% alpha branch to the second 5 state "are underestimated for a 

nuclear connection radius of R = 9. Sf. Choosing a connection radius of 

R = 7. Sf results in a satisfactory agreement for the branching to the 

5 state but leaves over an order of magnitude discrepancy for the 

branching to the 3 
1 

state. 

Coupled channeling is introduced to attempt to rectify this 

discrepancy. 2,3 Radial Schrodinger equations for two-channel Q, = 18 and 

Q, = 15 waves coupled to the collective octupole vibrational field are 

inwardly numerically integrated. For R;;; 7.5f the intensity to the 3-

level is still underestimated for the parameters we used. (Detailed 

examination of the role of the connection-matching radius will be 

presented in the fourth section of this paper.) 

Since it is felt that the coupled channel formalism holds great 

promise in comprehending the mechanism of alpha decay we have extended 

this calculation to alpha decay of odd-mass nuclei as well as examined 
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the relationship of daughter excitation by alpha emission and inelastic 
I 

alpha scattering on daughter nuclei. 

We have examined vibrational coupling in the second section of this 

paper and in the third section we will examine the coupled channel 

formalism for odd-mass nuclei with rotational final states of excitation. 

In Section III of this paper, an exact numerical coupled-channel 

integration treatment is applied to the alpha decay of odd-mass spheroidal 

nuclei. The only non-central coupling of importance between an emitted 

alpha particle and rotational final states in the daughter nucleus 

involves the intrinsic quadrupole moment of the daughter. The nuclei 

253E d 25SF . d I .. I h . . . s an mare 1 ea cases to examlne slnce a p a transl tlons to 

the favored bands are well known and angular distribution data from low 

temperature nuclear alignment is available. 4 

Two commonly used approximations were examined in detail: First, 

that near the nuclear surface there is zero projection of orbital angular 

momentum of favored alpha waves along the cylindrical symmetry axis of 

5 the daughter nucleus and second, that the intensity of each alpha-

particle t-wave is proportional to the product of a squared Clebsch-

Gordon coefficient and the calculated spherical barrier penetrability 

6 factor. It is found that neither approximation holds within experimental 

error, and mt f:. 0 alpha wave components must be introduced at the nuclear 

surface to give agreement with experimental intensities for both t = 2 

and t = 4 waves. 

To attempt to rectify the problems of the dependence of the 

calculated intensity ratios on the connection radius, we use the time-

dependent perturbation method (presented in the first part of Section IV). 
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With this method, a new expression for the alpha decay width is intro-

duced. Because of the failure of earlier alpha decay theories to 

reproduce the absolute alpha decay rate widths and, in some cases, the 

relative widths, a new formalism for alpha decay has been developed based 

7 on the unified reaction theory or R-matrix theory. This theory, which 

uses shell model wave functions, and utilizes the time-dependent pertur-

bation method, is independent of the nuclear radius matching parameter 

and the boundary conditions at infinity.S Previous microscopic alpha 

decay theories appear to deal improperly with the problem of the mismatch 

at the nuclear radius of logarithmic derivatives of the alpha wave func­

tions in inner and outer regions. 9 The new proposed theory has the 

advantage over the previous ones in that it makes it possible to 

calculate the absolute value of the decay rate with reasonable accuracy, 

which was not previously possible. Both single-level and coupled-channel 

calculations have been made. 

Although the problem of the discontinuities at the matching radius 

appear to be eliminated by the R-matrix approach, it is found that the 

results of the calculations performed for the 212po and 210po ground state 

decays are sensitive to the well-depth parameter of the alpha-nucleus 

potential. A real part well-depth of about V = -120 MeV gives good 
o 

agreement with the absolute values of experimental decay rates.
10 

In 

Section IV we briefly discuss the time dependent reaction theory and its 

drawbacks. Again the model depends on optical model well-depth parameters. 

In Section II and III, the coupled channel calculations lead to an 

emphasis on the uncertainty in the radius parameter, whereas the R-matrix 

approach, presented in Section IV, emphasizes the uncertainty in the 
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well-depth parameter. A third approach is detailed in Section V, where 

we relate the R-matrix approach to the collision theory, or S-matrix 

approach. With the formalism dependent on the calculation of a 

resonant alph~ decay in terms of the complex scattering matrix elements, 

the extreme sensitivity to Woods-Saxon parameters is reduced, and it 

then becomes possible to calculate absolute decay widths with this method. 

We examine the effects on the resonance width with various strengths of 

the absorbative part of the Woods-Saxon nuclear potential. 

The calculation of resonance cross section alpha decay widths in 

terms of the complex elements of the (a,a) and (a,a') scattering matrix 

is examined. It appears that it is fruitful to explore a model where 

we may be able to determine the alpha-wave particle-wave decay width in 

terms of a resonance process which is calculated in terms of the S-matrix 

for elastic and inelastic scattering. In this model the resolution of 

the problem of the mix-match in the nuclear radius at the inner classical 

turning point appears to be overcome. 

The real and imaginary S-matrix elements in the angular momentum 

or £-plane are calculated for a few quasi-elastic channels (elastic and 

several alpha particle removal channels). 

11 12 The early success of the H.Bethe and G.Gamow alpha cluster models 

13 14 as well as the R. G. Thomas and A.Mang microscopic models are discussed 

in the context of this new approach in which we calculate absolute decay 

widths in terms of the resonance widths of the complex elements of the 

scattering matrix in the £-plane. We examined in detail the role of the 

(a,a') scattering process, the alpha cluster on the nuclear surface 

assumption and the calculation of coupled channel few level alpha decay 



-5-

width. The early models of Gamow, which were quite successful, were 

based on the assumption of the alpha cluster retaining its identity in 

the nuclear box well. The new S-matrix alpha scattering capture and 

emission also implies the alpha cluster model as a viable one. 

Important consequences of the theory are a better understanding of 

the (1) alpha cluster formation, (2) compound nucleus formation, (3) some 

mechanics of alpha decay, (4) possible nuclear transfer mechanisms, 

(5) absorption processes to inelastic channels, and (6) the role of 

the nuclear potential depth V and nuclear radius R in the theory of 
o 0 

alpha decay. 
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II. MICROSCOPIC AND MACROSCOPIC ALPHA DECAY 

RATE THEORY FOR 212mpo 

A. Previous Alpha Decay Models 

14 We start from the shell model rate theory of H. J. Mang and simple 

barrier penetrability calculation. Macroscopic theory in its ordinary 

form of a particle in a potential well yields alpha decay rates roughly 

proportional to a Coulomb barrier penetration factor arising from the 

solution of a separate Schrodinger equation for each alpha group of given 

t-value. Preston early considered15 the effects of the coupling arising 

from the electromagnetic field associated with transitions between various 

states of the daughter nucleus; these considerations led to sets of 

coupled, second-order, linear differential equations in the present case 

where we are considering coupling in the nuclear barrier region. 

The coupling effects have been studied extensively for the rotational 

states of deformed nuclei, where such effects are predominantly due to 

the large collective E2 transition strengths and the small energy 

d · ff b . . 16 1 erences etween varlOUS rotatlonal states. The magnitude of the 

coupling terms for alpha particles outside the range of nucleon forces 

is uniquely related to the reduced electric transition probability (where 

nucleon forces can be neglected) between the states is being considered 

(see Ref. 16, Eq. (6.3). 

The one-body alpha decay theory, even when augmented with the inter-

channel coupling treatment, is inadequate for calculating absolute alpha 

intensities and is even unable to explain the relative intensities of 

17 
alpha decay to the various excited states of the daughter nucleus. 

The "microscopic" or shell-model theoretical approach of Mang has proved 
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remarkably successful in calculating alpha relative intensities in 

spherical nuclei (Bi, Po region) without regard to interchannel coupling18 

and in spheroidal nuclei,19 taking such coupling into account by Froman's 

t · method. 20 I . . f 1 f h rna r1X t 1S necessary to spec1 y a nuc ear sur ace, c aracter-

ized by a radius Ro ' where the alpha wave function of the inner region 

joins that of the outer which we term the connection radius. It is 

fortunate that relative decay rates of the theory do not usually appear 

to be highly sensitive to the exact choice of R .18 It is found in the 
o 

present work that the relative intensity ratios of excited states to 

ground are sensitive to the choice of R. Also we have examined problems 
o 

of connection radius matching in an earlier paper. 3 In Section IV of 

this paper we will consider the possible resolution of the intensity 

ratio dependence on R . 
o 

B. Choice of Optical Model Parameters 

The present case involves the region .of spherical nuclei where the 

shell-model theoretical method without interchannel coupling has diffi-

culty with the relative alpha intensities and where the results appear 

sensitive to the choice of R. This case is the remarkable super-high­
o 

.. f 212p h· h b 1· b· 18 . t sp1n 1somer 0 0, w 1C we now e 1eve to e sp1n ,even par1 y, 

on the basis of recent shell-model calculations.
21 

The experimental 

. d . .. 22 f 212m . d· . 1 alpha decay energ1es an 1ntens1t1es or Po are summar1ze 1n F1g. . 

This alpha emitter is unusual in that the angular momentum values 

in the alpha decay are so high. Suppose we take the following alpha-

nuclear potential, which is the real part of a potential used for optical 

model fits of alpha elastic scattering angular distributions, which we 



-8-

E (MeV) 
11.65 

---r--r-~--,----------- 45 st?c 

(5-) ----~--_ 5.46 
-----------------5.1 

(4+,5-)--------------__ _ 

(6j-======= 5- -
4-

5---------~~~----~ 

3-------_~~~--Y 

o+-~--------- ----_ .. 

Fig. 1. 

20B 
82 Pb l26 

208 
Energy levels of Pb and the alpha decay scheme of 
212mpo eef. ref. 22). Their work favors very deep 
potentials of the order of 200 MeV. Earlier work was 
performed with the more shallow potentials since most 
scattering experiments were interpreted in this 
manner. The McFadden-Satchler 24 work encouraged 
us to proceed with the investigation of the case of 
deeper well depths. 

MUS·90S1 
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will examine further in Section IV. 

= 

1 + exp 

-V o 

r-r 
o 

(1) 

d 

with V = 35.0 MeV, R = 1.17 f, a = 2.17 f, and d = 0.576 f. (We 
o 0 

will examine other choices for these parameters in Sections III and IV.) 

The resulting effective potentials in the radial wave equation for various 

alpha partial waves are plotted in Fig. 2. The alpha decay energy of 

212mpo is 11.65 MeV, and we see that we are confronted with the unusual 

situation of the absence of an inner classical turning point for the 

Ji, = 18 partial wave, because the inner minimum potential energy is more 

than 27 MeV. The same is true of the lower energy groups to the 3 and 

5 excited states. 

The alpha-decay barrier width and hence barrier penetrability, as 

calculated using realistic optical potentials is undefined, that is, 

both the nucleon connection radius, R , and potential well depth, V , 
o 0 

cannot be simultaneously determined. We introduce both the time-dependent 

perturbation method similar to the one used by H. Feshbach, 23 which 

will be presented in Section IV. 

If we used a Woods-Saxon nuclear potential with well depth V 
o 

exceeding 50 MeV, the inner turning points would reappear, but the 

arbitrariness of the problem remains. We attempt to rectify this in 

Section IV. Optical-model a-nalyses for alpha scattering have been unable 

to determine very well the potential in the nuclear interior, because 

alpha particles have such short mean free path in nuclear matter that 

alpha scattering does not sample the nuclear interior but only the 
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Potential energy (including centrifugal term) for various 
alpha partial waves on 208Pb, is given as 

[ 
113 ]-1 2Ze 2 n2 C.Q,+1/2)2 R-rOA -a 

VCR) = -- + - V 1 + exp 
R 211R 2 0 d 

wi th optical model parameters V 0 = 35 MeV, r 0 = 1.17 f, 
a = 2. 17 f, and d = 0.576 f. 
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surface region. This fact lends credence to the alpha particle cluster 

model in which the alpha particle is considered to have a specific 

identity on the nuclear surface. 

It appears from the R-matrix and S-matrix approach (presented in 

Section IV) that there is consistence with the thorough alpha optical­

model analysis of L. McFadden and G. R. Satchler.
24 

C. Alpha Decay Theory Neglecting Channel Coupling 

Let us first apply simple microscopic alpha decay rate theory 

without channel coupling to this case. For the 3 first excited state 

of 208pb , calculations based on the random phase approximation (RPA) have 

31 
been performed by H. V. Gillet, A. M. Green and E. A. Sanderson. The RPA 

method admixes two-particle-two-hole (2p-2h) states into the ground state 

wave function of 208pb , and 3p-3h states into the 3 state function in 

addition to the lp-lh states. Since the ground state core correlations 

. d d' h 212mp f' 21 h 11 h were not Inclu e In teo wave unctIons we s a use, t e use 

of the 208pb wave functions obtained by the usual Tamm-Dancoff shell 

theory which are more consistent with the present calculation. 

Two different shell model wave functions for the 3 state of 208pb 

are considered here. One is calculated by IV. T. Pinkston,26 and another is by 

W. IV. True and W. T. Pinks ton. 
2

7 The former does not reproduce the correct 

energy, but in the latter model True succeeded in getting a nice agreement 

by taking into account twenty 1p-1h configurations. True included the 

4s 1/ 2 , 2g 7/2' and 3d3/ 2 neutron levels in his particle configurations, 

h · h h d 1 . 21 2l2p wIle t ey were neglected in the sell mo e calculatIons on o. 

A h f··, 212mp . l' h b mong t e many con Iguratlons In 0 Invo vlng tea ove neutron 
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orbitals, only the following four configurations can have spin 18: 

[Ci13/2)2Cg7/2)2], [Ci13/2)2Cg9/2g7/2)]' [(i13/2)2(ill/2g7/2)] and 

[(i13/2)2(dS/2g7/2)]. (The proton configuration is written first, then 

the neutron.) Since the amounts of the mixing of those components in 

the isomeric state would be very small, we may use True's 3 state wave 

function as is, without mixing, for our calculations. To facilitate 

comparison with earlier alpha rate calculations of H. D. Zen 14 we list 

the principal components with greater than 1% contribution to parent 

and daughter wave functions in Table 1. 

Adopting the approximation of the small alpha size limit, as in 

Ref. 29, we get the following expression from Ref. 29 for the reduced 

amplitude, Ya , at the radius, R, 

(j -1 -1/2) + (j -1 -1/2) 
C2N .. N .. L (_) 2 2 5 5 == 

JlJ2 J3 J4 J' 
n 

j4+jS+J +J' 
_ 1/2IJ'0)(J J'OOILO) x (_) n n 

n p n W(j3j4J'j;J js)WCjJ'JJ J L) n n n p n 

where C is a constant independent of nuclear structure, R. Ca) is the 
1 

value of the ith particle wave function at the radius R; and [jlJ stands 

stands for 2j 1 + 1; and N.. is 
1J 
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TABLE 1 P t d d ht functl' ons fOr 212mpo and 20Spb (Ref. 22). " . aren an aug er wave 

-0. S10 1 (h9/ 2) ~ (g9/2 i ll/2) 10) 

-0.570 1 (h9/ 2f 7/ 2)S (g9/2 i 11/2)10) 

+0.1041 (h9/ 2); (i 11 / 2)io) + 24 smaller components 

20S 
1 

-1 -1 . 
X3- ( Pb) (Ref. 26) 0 124 f ) + 0 616 f 1 ) = -. 5/2 g9/2 N . 5/2 11/2 N 

+ 1 component « 0.1) 

20S 1 -1 1 -1 ) X3-( Pb)(Ref. 27) = -0.166 f5/2 g9/2)N + 0.431 P3/2 g9/2 N 

1 
-1 1 -1 ) 

-0.120 P1/2 d5/ 2 )N + 0.375 sl/2 f7/2 P 

1 
-1 

+0.135 f5/2 g7/2)N + 9 components « 0.1) 

X5_(20S pb ) (Ref. 27) = -0.solIPl)2 g9/2)N - 0.131If~)2 g9/2)N 

1 
-1 1 -1 

+0.250 P1/2 i 11 / 2 )N + 0.320 sl/2 h9/2)P 

+0. 144 Ip;)2 g9/2)N + 0.225!d;)2 h9/ 2 )P 

+0.171!f~)2 i 11/ 2 )N - 0.lS5!d;)2 f 7/ 2 )P 

! -1 
+0.105 P3/2 g3/2)N + 11 components « 0.1) 
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N .. = -J2 for i # j 
1J (3) 

N .. = 1 for i = j 
1J 

The radial wave functions of J. B10mqvist and s. Wahl born, 30 evaluated 

at a radius R = 9.5 f, are used for numerical calculation. The results of 

these numerical calculations are summarized in Table 2. 

The usual definition of barrier penetrability factor is given as 

[ 2 2 J-1 F~(RO) + G~(RO) , where F and G are the regular and irregular Coulomb 

functions, or their continuations in the presence of a nuclear potential. 

2 2 2 For the cases in this calculation, F~« G~, and F~ are ignored. The first 

order WKB approximation for this penetrability is as follows: 

1 

where 

k~ 
~ exp 
s~ 

[2)1 (V ~ (R)) - QJ 1/2 

11 

2)1 (V ~ - Q) 

11 
( 4) 

We define a "zeroth order" penetrability factor differing in that it drops 

the pre-exponential factor to avoid problems with the singularity in this 

term. The first order WKB approximation at the inner classical turning 

point has a singularity when 2)1(V~(k)) approaches Q in the t;,~ term. The 

barrier penetrability factor in this form is distinguished by the super-

script zero, and is simply the exponential function of argument twice the 

WKB (Wentzel, Kramers, Brillouin) integral from outer turning point, Rt' 

integrated into the radius R. 
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TABLE 2. Shell-model theoretical alpha-reduced transition matrix 
elements and their squares (radius R = 9.5f). 

Decay Mode 

212mpo (18 +) -+ 308pb (0+) 18 +0.556 0.309 

-+ 208pb (3-) 15 -0.2039 0.0416 
(Ref. 26) 

-+ 208pb (3-) 15 -0.0720 0.0052 
(Ref. 27) 17 +0.0326 0.0011 

19 +0.0005 0.0000 

21 -0.0000 0.0000 

-+ 208pb (5-) 13 +0.3284 0.1078 
(Ref. 27) 15 +0.0156 0.0002 

17 -0.0020 0.0000 

19 +0.0001 0.0000 

21 -0.0001 0.0000 

23 intrinsically forbidden 
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= [ JRt 211 (V,q,-Q) ] 
exp -2 n 

R 

(5) 

where V,q, is the sum of Coulomb and nuclear potentials 

= 
r 

(6) 

where VN(r) as defined by Eq. (1), with the same parameters (35 MeV nuclear 

potential) as used for Fig. 2. In Table 3 the penetrability factors are 

given according to Eq. (5) for all possible partial waves to the 0+, 3 

- 208 and 5 states of Pb, evaluated at several values of the lower limit of 

R. Also given are the s-wave penetrabilities for 2l2po ground state decay. 

To give some feeling for effect on the absolute penetrabilities associated 

with the uncertainties in the nucleon potential, we compare the penetra-

bilities in Table 3 with some calculated with the deeper potential of k. 

The parameters for Poggenberg's theoretical calculation, which appears to 

be more realistic upon further calculation, see Section III, Table 4, are 
I 

V 0 = - 74.0 Me V, r 0 == 1. 17 f, a = 1. 6 f, and d 0.565 f for Eq. (1) here. 

For example, comparing for ,q,= 17, Ro = 9.5 f, and Q,q, = 9.291 MeV, the 

P,q, in Table 4 is about 30% smaller. Other comparisons give similar results 

for th.e P,q,'s for the deeper potential. 

2 
By definition of the reduced width, Y,q, the partial decay rate is 

31 CR. G. Thomas ) 

== 

2 
2Y,q,k,q, 

~ ---n (7) 
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TABLE 3. "Zeroth-order-WKB" barrier penetration factors at· various 
radii V 0 = 35 MeV. 

Q (MeV) ex 
,Q, RO (f) 6 7 7.5 8 9.5 

I.oomeA Ve..c.ay 

11.906 18 6.640(-24) 9.725(-22) 7.338(-21) 4.394(-20) 9.293(-18) 

9.291 15 1.984(-25) 1. 245 (-23) 6.310(-23) 2.591(-22) 2.497(-20) 

9.291 17 2.867(-28) 3.623(-26) 2.604(-25) 1.513(-24) 3.240(-22) 

9.291 19 3.148(-31) 7.850(-29) 7.846(-28) 6.284(-27) 2.899(-24) 

9.291 21 2.598(-34) 1.262(-31) 1. 732 (-30) 1.883(-28) 1. 837 (-26) 

8.720 13 3.060(-24) 9.832(-23) 3.533(-22) 1.026(-21) 4.784(-20) 

8.720 15 5.474(-27) 3.609(-25) 1.895(-24) 8.080(-24) 8.655(-22) 

8.720 17 7.612(-30) 1. 006 (-27) 7.425 (-27) 4.446(-26) 1. 041 (-23) 

8.720 19 7.897(-33) 2.048(-30) 2.094(-29) 1. 721 (-28) 8.359(-26) 

8.720 21 6.091 (-36) 3.061(-33) 4.288(-32) 4.770(-31) 4.988(-28) 

8.720 23 < (-38) 3.397 (-36) 6.467(-35) 9.642(-34) 2.091(-30) 

Ghound State.. Ve..c.ay 

8.720 0 * * * * 4.295(-14) 

*Penetrability at inner turning point of 9" 124 f is 2" 706 x 10-
14

. 

---------_ .. _----------



TABLE 4. "Zeroth-order-WKB" barrier penetration factors at inner t.p. of 9.5f, Vo = 74.0 MeV. 

Qa, = 11. 906 MeV Qa, = 9.291 MeV Qa, = 8. 720 MeV Qa, = 8.950 MeV 

RO (f) P£ RO (f) P£ RO(f) P£ RO (f) P£-
i. t.p. i.t.p. i.t.p. i.t.p. 

£=18 8.368 3.209(-19) 

9.5 8.305(-18) 

9,=13 8.712 6.196(-21) 

9.5 4.218(-20) 

£=15 8.573 1. 898 (-21) 8.551 5.978(-23) 

9.5 2.217(-20) 9.5 7.697(-22) 

£=17 8.374 1.100(-22) 8.349 3.168(-25) I 
f-' 
00 

9.5 2.901 (-22) 9.5 9.334(-24) 
I 

£=19 8.087 3.265(-26) 8.053 8.455(-28) 

9.5 2.615(-24) 9.5 7.754(-26) 

£=21 7.5* 2.932(-28) 7.5 6.799(-31) 

9.5 1.668(-26) 9.5 4.534(-28) 

£-23 7.5 5.970(-34) 

9.5 1.912(-30) 

£=0 9.220 2.498(-14) 

9.5 3.596(-14) 

* The inner turning point is <6.0f for the £=21 and £=23 waves. 
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or are proportional to the product of Y~ from Table 1, p~O) at 9.5 f in 

the last column of Table 3, and the wave number, k£. It is readily seen 

that the theory predicts that partial waves of higher £ than the lowest 

value are never more than a few tenths of a percent. If we ignore higher 

partial waves, the theory predicts an alpha intensity ratio as follows 

at R of 9.5 f for the references listed after each calculated result. 

I (18+ ~ 3-) 
== 4.0xlO- 5 (Ref.27), (8a) 

I(18+~ 0+) 
or 

== 3.2x10-4 (Ref. 26), 

to be compared with the experimental ratio of 1.0 x10- 2 or even a factor 

of 100 off. 

In a similar fashion we theoretically get the following 

1(18+ ~ 5-) 

I (18+ ~ 0+) 
== 1.5 x 10-3 (Ref. 27) (8b) 

to be compared with the experimental ratio of 2.,1 x 10-2 which is in better 

agreement, again over a factor of 10 off. 

Before we turn to channel coupling in an attempt to understand 

these very serious discrepancies, let us consider the effect of a smaller 

connection radius, R. Because of the very high £ values involved, there 

is a considerable sensitivity to the value of the connection radius R 

for the predicted intensity ratios. Using the Blomqvist-Wahlborn radial 

functions for R == 7. Sf instead of 9. Sf and the same parameters otherwise 

as for calculations of Table 1, we find only moderate changes in the ratio 

2 + 13 - 2 + 18 + . . y (18 ~ 5 )/y (18 ~ 0 ), spec1f1cally a decrease of 29% for the 

wave function of Ref. 27 and an increase of 15% for that of Ref. 26 in 
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• 2 + 13 - 2 + 18 + going from 9. Sf to 7. Sf and for the ratlo y (18 --. 5 ) /y (18 --. 0 ) 

there is an increase of 16%. 

By inspection of Table 3, one sees that the relative values of 

barrier penetrability change very markedly for a similar change of radius 

R. We get the following revised theoretical intensity ratios at R = 7. Sf. 

I(18+~ 3-) 

I(18+~ 0+) 

I(18+~ 5-) 

I(18+~ 0+) 

~ 1. 0 x 10- 4 (Ref. 33) 

~ 1. 3 x 10- 3 (Ref. 32) 

~ 1.9x10-2 (Ref. 33) 

which gives us a factor of 10 in the correct direction. 

or (9a) 

(9b) 

We see that the latter theoretical intensity ratio (decay to 5-) is 

completely in agreement with experiment for R = 7. Sf, but the theoretical 

relative intensity to the 3 state is still one or two orders of magnitude 

too small, depending on which daughter wave functions are used. 

Note also that in the paper of N. Glendenning and K. Harada 21 that 

the microscopic alpha rate calculations gave too large an isomeric decay 

rate relative to ground decay rate, i.e., a discrepancy factor of 45 at 

R = 9. Sf and 18 at R = 9. Of. J. O. Rasmussen has given formulas 16 for 

microscopic theory with R inside the inner turning point; using this 

approach and considering that the effective penetrability factor is 

-14 approximately constant at 2.7 x 10 for ground decay for R < 9.124f 

(see Table 3), perfect agreement with experiment is obtained around 

R = 8f, and at smaller radii the disagreement is of the opposite sense, 
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that is, theory becomes larger than the experimental rates. Here we 

have assumed the ratios of y2 values to be nearly independent of the 

radius. 

The indications are that a joining radius R in the neighborhood 

of R = 7.5 to 8. 5f is more nearly correct with the shell-model nuclear wave 

functions employed. However, even with the R values in this vicinity, 

the underestimate of decay intensity to the 3 state still remains serious. 

28 
Our difficulty is probably consistent with the results of H. D. Zeh, who found 

for several combinations of unmixed shell-model initial and final states, 

that the theoretical fraction of alpha decay to the 3 was too low. Two 

of his three combinations, giving agreement with theory are only minor 

contributors in the configuration-mixed wave functions we used (for protons 

and neutrons respectively), but one, namely I (h9/ 2) ~P (g9/2 i ll/2) ION \8 

I -1 
initial and d3/ 2h9/2>P final would be given large weight in our wave 

functions. Perhaps the main reason that there is a discrepancy has less 

to do with our use of the fewer term 3 level wave functions of Ref. 26 

but relates to the fact that the Id;~2h9/2>P configuration has a larger 

relative amplitude than the 3 level (Ref. 26) wave function (see Table 1). 

It may be possible to use our theory, microscopic or macroscopic 

match to experiment, to help illustrate the proper optical model well 

depth and radius parameters. 

We propose here to explore the possibility that interchannel coupling 

208 due to the collective electric octupole transition in Pb affects signif-

icantly the theoretical decay rate to the 3 state. We consider at first 
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only the two channels Q, = 18 and Q, = 15. The wave function is of form 

'I'M 

u18 (r) 
M 0 u1S (r) 

L (15 3 m M - m 1 18 M)Y7s X 3 M - m = Y18(w)XO + 
r r 

IiI 
(10) 

M. 
where X ~ 

J 
is the daughter nuclear wave function and ym 

Q, is the spherical 

harmonic of the alpha angular position. Upon substitution into the 

Schrodinger equation and integration over all variables except r we get 

the following coupled radial equations to be solved for the case where 

r ~ 12f or the alpha particle is outside the range of nuclear forces 

2 d U18 -1211 [2Ze
2 

_ Q ] + 
l8 X,l9 ! --- U18 dr 2 t/ r 18 2 r 

(lla) 

2 
d u lS -1211 [2Ze 2 - Q ] lSx16 ! dr

2 2 
u lS 2 r 15 r 

Cllb) 

where UQ, is r times the radial function of the Q,th partial wave, 11 is the 

reduced mass, QQ, is the alpha decay energy. The E3 reduced transition 

probability, B(E3) is calculated 32 to be 4.8x10 4 e 2 f 6 from the experi-

-11 
mentally measured half life of 3 x 10 sec for the 3 state. The electro-

magnetic coupling constant, K
03

' is given (Ref. 16, Eq. 6.3) in general 

for distances r> RO as 

= 

x 

I I _ I 
(_) f 

( 12) 
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Following, in our Eq. (32) for nuclear coupling, we later discuss 

the choice of sign associated with the reduced electric transition. 

probability between the computed final states [B(EA)]1 / 2, where 

(~~IOOIAO) is the Clebsch Gordon coefficient and W(~If~II~; IA) is the 

Racah coefficient. We choose the method 33 of inward numerical integration 

with boundary conditions at large distance restricted by the experimental 

relative intensities. We will discuss this point more extensively when 

. 253 255 we turn to the odd-mass coupled channel calculatlon for Es and Fm. 

Extensive examination indicates that none of the usual analytical approx-

imations to solution of these equations seems suitable, since the diagonal 

energy differences become large on either side of the crossover distance. 

The complete set of four linearly independent solutions is computed by 

the four boundary conditions at 40.0f given in Table 5. The quantities 

GL and FL denote the standard irregular and regular Coloumb functions, 

2 2 respecti ve ly, with the arguments nand p defined as p = kr and n = 2Ze ]lIn k 
!.,; 

for reduced mass, ]l and wave number k = (2]lQ~) 2/n appropriate to the 

decay energy, Q~ in each case.
16 

The general solution may be expressed 

as a linear combination of these basis solutions. The general solution 

for the uncoupled equations can be written as u~(n,p) = G~(n,p) + iF~(n,p). 

The desired solutions for the alpha decay problem behave asymptot-

ically like outgoing Coulomb waves, although there may be additional 

phase shifts 018 and 015 arising from the channel coupling. We can 

express this behavior for large radii in the following linear combinations. 

(13a) 

(13b) 



u18 

dU 18 
dr 

u lS 
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TABLE 5. Boundary conditions for the coupled equations. 

Set I Set II 

G18 F1S 

dG 18 dF 18 k -- k --
18 dp 18 dp 

0 0 

o o 

Set III 

0 

0 

GIS 

dG 1S 
k -­

IS dp 

Set IV 

0 

0 

F1S 

dF 1S 
k -­

IS dp 
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The solutions are to be joined at the nuclear surface with quasi-

stationary state solutions, in which the real components vastly dominate 

over the imaginary components, and A and B are normalization constants 

which we will evaluate. 

Let us denote the components of the basis set of solutions as u~~) , 
(I) (II) (II) 

u15 ' u18 ' u lS ,etc., for the four boundary conditions. Then the 

above conditions at the nuclear surface are essentially expressed on 

additional constants by the equations for both i values setting the 

imaginary components to zero, 

= + cos 

+ B[sin ° u(UI) (R ) + cos ° u(IV) (R ) ] = 0 
15 i 0 15 i 0 (14) 

The other two equations necessary tq solve for the four real quantities 

A, B, 018' and 015 may be either supplied near the nuclear surface by a 

microscopic nuclear model, or in the approach we use a large-distance 

boundary condition phenomenologically fixed by experimental alpha decay 

rates. 

-1 
Let A18 and AlS be the partial decay constants (sec ) for the two 

alpha groups. Then we equate the constants to the probability flux through 

a sphere at large R. 

* 4rr 11 dU 18 
A18 = u18 

-
~ ]l i (lSa) 

AlS 
* 4rr n dU 15 = u lS 

-
]l i dr 

(ISb) 

* * where u18 is the complex conjugate of u
18 

and u
lS 

is the complex conjugate 

of U lS . Substituting from Eqs. (13a) and (13b) into Eqs. (lSa) and (lSb) 
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and using the asymptotic forms for the Coulomb functions we obtain 

11k 
11.

18 
41TA 2 _J§.. 2 

(16a) = = 41TA vIS 
11 

11. 15 
41TB2 

nk lS 2 
(16b) = = 41TB vIS 

11 

where vIS and vIS are the velocities of the respective alpha groups at 

infini ty (r = 00). From the experimental values of A I S and v I s we calculate 

in the asymptotic region the following values of A and B. 

(17a) 

(17b) 

E. Alpha Rate Theory Incl~di~ll_Electromagnetic and Nuclear Force Coupling 

If we wish to continue the alpha wave functions into the region of 

the nuclear force field, we must make more specific assumptions about 

models, which will involve including the nuclear coupling terms. For the 

electric 2A-pole coupling terms, we can assume that there are source 

currents on a sphere in the nuclear surface region. Then the coupling 

potential, with radial dependence of r-A- 1 outside the nuclear surface 

A region joins continuously at the sphere to an r dependence inside this 

region. 

The most fundamental form of' the nuclear potential for the alpha 

particle involves summing over various nucleon-nucleon coordinates in a 

microscopic model, but a simpler approximate procedure that may be adequate 

for collective "shape vibrational" states would be to describe the alpha 

nuclear potential in terms of collective shape coordinates. Consider in 
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208 the case of Pb and an alpha particle a shape-dependent nuclear 

surface potential 

with an expansion of the form 

= 
-v o 

[

r - R(8,</> ,ct3)] 
1 + exp d 

= RO[l + I ct3 Y; (8,</»J 
V V V 

(18) 

(19) 

. - 208 We consider the first-excited 3 state of· Pb as the first octupo1e 

shape oscillation excitation and have earlier derived 34 the coupled radial 

212 equations for alpha decay for the ground state of Po. An alpha cluster 

is assumed to form somewhere in the nuclear interior but octupo1e coupling 

does not occur until the alpha cluster reaches the matching radius. At 

R the alpha cluster exchanges angular momentum and energy with the daughter 

nucleus. (The angular momentum exchanged, as stated before, can be even 

'IT - + -
or odd, as 9, = 0, 3 , 4 , 5 , where 'IT is the parity of the phonon state 

or mode of oscillations.) Nuclear coupling is assumed to occur in a 

narrow region around R. 

The time average of the octupo1e permanent deformation is zero, as 

(ct3v > = 0, where ct
3v 

is the collective coordinate since there is no prolate 

b 1 d f . . 208 Pb· .. d b 1 .. Z or 0 ate, permanent e ormatIon In sInce It IS ou y magIc In 

and N. 208 
Lead, Pb, has no rotational bands) but several excited 

states seem to have collective character as shape oscillations about an 

equilibrium sphere. 

We can consider the node as ripples moving around on the surface, 

or, looking along a radial direction, we can imagine an undulating or 
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oscillating surface. 
2 

There is a net effect of (a
3V 

) f 0, where the 

coupling occurs in this "deformed" coupling region. (Of course, we have 

+ a similar picture for 9, = 4, the 4 level where there are four nodes.) 

In any case, it is pictured that the alpha leaves the parent at the 

point of the connection radius R and at this point the parent nucleus 

becomes the daughter; that is to say, that the barrier "belongs" to the 

daughter. The coupling of angular momentum or "sharing" occurs between 

the alpha particle and the daughter, 208pb . This is essentially the 

picture presented earlier in Ref. 40 (see Fig. 3). 

The macroscopic coupled equations in Ref. 34 are modified for 

the case of the high-spin isomer calculations of this paper. T. Tamura 

has also given 2 very comprehensive and general formulations of the problem. 

Aside from differences in notation our formulas are identical to the 

appropriate special cases of his. Therefore, we proceed from the deriva-

tions in T. Tamura's work. 

To include the nuclear potential coupling in our Eqs. (lla,b) it is 

only necessary to add to the electromagnetic coupling term (12) the 

nuclear coupling term given by Tamura's Eq. (27), although we must multiply 

his coupling matrix element by i9,-9,' = (-)(9,-9,')/2 since the ordinary 

spherical harmonics Y~ are used here and he uses i9,y~. 

9,-9,' 
-2-

(-) (9,'IIV 19,"'1') = J coup1 J 

9,-9,' 

(_)-2- L: v~t) (r) <rIIQr)/II')A(9,jI,9,'jI' ,AJ) 
t,A. 

(20) 

In the present special case of Eqs. (11a, b), the alpha spin s is zero, 

the multipolarity A. = 3 .• 9, = j = 18, 9,' = j' = 15, the total angular momentum 

J = 18, the final nuclear spin states are I = 0, I' = 3, and the tensorial 
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Fig. 3. The mechanism by which the channel mixing or coupling 
between the recoil-excited states and the grou':lI:clo ~,t.ate, 

is represented by the change in momentum and energy of 
the emitted alpha particle through the exchange of a 
phonon, or a quasi-particle of integral spin, between it 
and the recoil nucleus "flipping" the 208Pb nucleus 
between the 0+ and 3- states. That is, the emitted 
alpha can induce, through phonon exchange, a change in the 
daughter's spatial distribution from that of a sphere to 
that of a three-nodal deformation of higher energy and 

- 2 angular momentum, sometimes termed a pear-shaped A 
for A = 3 octupole collective deformation. 
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rank t = 1 is considered. 

Therefore, from Tamura'sEq. (29.2), assuming the ,Q,,Q,' therein is a 

"''''' typographical error for,Q,,Q, from these equations, 

k 
A(18 18 0, 15 15 3; 3 18 0) = i ( 31 )2 (18 15 00130) 

4'IT • 7 
(21) 

The Racah coefficient in Tamura'S equation for the present case has a 

zero as one argument, and it is replaced above by the equivalent algebraic 

factor. 

35 
In Bohr's model of irrotational vibrations of a uniformly charged 

spherical nucleus, the reduced electric matrix elements are given in terms 

of surface phonon oscillator constants. From this relationship we can 

express the reduced matrix element as follows: 

(21 + 1) B (E3; I -)- I') ( 4'IT )2 
3ZeR3 

e 

where R is the radius of the equivalent uniformly charged sphere of e 

(22) 

around ~7.5f. This equation differes from that of Tamura's3 footnote 18a 

only by the squared factor. 

His v~l)(r) factor is given in his Eq. (13.1); in the present case 

the nuclear potential is purely real and becomes just the first term of 

his Eq. (13.1). Thus it is taken that v~l)(r) as just RO times the first 

radial derivation of the real Woods-Saxon potential designated V ; the nuc 

coupling term is very nearly a Gaussian peaking on the nuclear surface, 

36 which can be compared to H. J. Mang and J. O. Rasmussen. 

Finally, combining the above expressions we get the nuclear coupling 

term to add to the electromagnetic coupling term of our Eq. (12): 
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= 
dV )2 

-R nuc (4n y[B(E3; 
Odr 3ZeR3 

1/2 
0-+3)J 1/ 2 (~) (18 15 00130) 4no7 

e 
(23) 

where we insert a factor y to allow for possible deviations .from the 

completely vibrational model. 

It should be understood that the relationship between B(EA) and the 

electric coupling matrix element in (12) is exact in the long-wave-length 

limit. (If the distances over which the alpha-nuclear coupling is 

effective are not small compared to the wave length of the photon of 

energy equal to the nuclear transition energy, then a more complicated 

expression based on a retarded potential would be necessary. For the 

present case, the reduced wave length ~ of a 2.615 MeV photon is 75f and 

integrations were carried only from 40f inward.) However, the relationship 

of Eq. (23) is model-dependent, depending on the assumption that the 3 

. . f 208pb . 1" f 1 f' d f exc1tat1on 0 1S an octupo e osc1llat10n 0 a nuc ear lU1 0 

constant proton-to-neutron ratio. The factor y might be less than unity 

if the microscopic description gave a predominant share of excitation to 

protons, and, conversely, the factor y could be greater than unity if the 

3 .. d' 1 . . 37 exc1tat1on was pre om1nant y neutron-exc1tat10n. 

We note that the signs of the nuclear and electromagnetic coupling 

terms are everywhere opposite to one another. This result accords with 

the qualitative argument that an excursion of the nuclear surface toward 

the alpha near the nucleus produces a lowered nuclear potential energy and 

a more repulsive electrostatic potential energy. 

There is a subtle point to be noted regarding the proper sign of the 

square root of B(E3) in Eqs. (12) and (23). In Section II.B of this paper 

the microscopic wave functions used for the 3 state of 208pb are given. 
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The choice of overall sign of these wave functions is completely arbitrary. 

However, once the choice is made the sign of the electric octupole matrix 

element is fixed, determining the sign of the coupling term of Eq. (23); 

also the choice fixes the sign of the reduced alpha width to the 3 state. 

With the arbitrary choice of phases for the parent 18+ and daughter 3 

wave function,as listed in Section II.B, the YaL values have the signs 

shown in Table 1 and we must take the plus sign for the electric octupole 

matrix element [B(E3)]1/2 in Eqs. (12) and (23). Thus, the final theoret-

ical results of a coupled-equation calculation with the microscopic 

boundary condition are, as they must be, independent of choice of phase 

of the shell model wave functions. 

F. . 212m Numerical Solutions of Coupled Equatlons for the Po Decay 

Presented here are the results of inward numerical integrations of 

the two coupled radial equations [(lla) and (lIb)], where the coupling 

matrix element K03 is the sum of electromagnetic [Eq. (12)] and nuclear 

[Eq. (23)] terms. Three cases are considered. The nuclear potential of 

Eqs. (18) was used with Vo = 35.0 MeV, d= 0.576 f, and RO = 9.10f. A 

model-dependence factor Y of 2.7 was used in order to see the effect of 

very strong surface coupling. A second calculation was made with Y = 1, 

and a third with Vo = 74.0 MeV, d= 0.565 f, and RO= 8.53 f and Y= 2.7 as 

above. The electric coupling term has radial dependence r-4 outside of 

R =7.5 f and r3 inside [cf. Tamura's Eq. (13.1)]. e 

The boundary conditions of Table 5 were used. and the resulting 

amplitudes near the nuclear surface for the four linearly independent 

basis solutions are given in Tables 6, 7, and 8. In the absence of 



TABLE 6. Basis sets of wave amplitudes for the 2-channel case. 

y = 2.7, Vo = 35.0 MeV 

B. C.* ~ Radius 6.1 f 7.1 8.1 9.1 10.1 

I 18 -5.6182xI011 -5.5269x l0 10 -7.0778x109 -6.8428xl08 -6.7685xl0 7 

II 18 3.6619Xl011 3.6024xI01O 4.6134xl09 4.4617xl08 4.4133x10 7 

III 18 1.2860xlO13 1.2634x1012 1.5828x1011 1.1994xl01O 
4.5038xl08 

IV 18 -1.7562xl0 1O -1.7254xl09 -2.1616x108 -1.6374x107 -6.1319xl06 

2.7410xlO 11 3.9089xl0 1O 5.9410xl09 4.6448xl08 1.6724xI07 I 

I 15 tN 
tN 
I 

II 15 -1.7865xl011 -2.5477x10 1O -3.8719xl09 -3.0255 xl08 -1. 0844xl07 

III 15 -6.4028xl012 -9.1594xI0 11 -1. 4368xI011 -1. S061x101O -1. 6346x109 

IV 15 8.7445xI09 1.2509x109 1.9624x108 2.0577xI07 2.2346x106 

*Por Boundary Conditions (see Table 5). 
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TABLE 7. Basis sets of wave amplitudes for the 2-channel case. 

Y = 1. 0; V = 0 35.0 MeV 

B. C. Q, 6.1 7.1 8.1 9.1 10.1 

I 18 -2.259 (11) -2.300 (10) -3.622 (9) -5.415 (8) -6.611 (7) 

II 18 1.473 (11) 1.500 (10) 2.362 (9) 3.533 (8) 4.315 (7) 

III 18 3.173 ( 12) 3.195 (11) 4.500(10) 4.027 (9) 1.553 (8) 

IV 18 -4.330 (9) -4.360 (8) -6.139 (7) -5.485 (6) -2.098 (5) 

I 15 6.466 (10) 9.708 (9) 1.700 (9) 1.572 (8) 5.847 (6) 

II 15 -4.212 (10) -6.325 (9) -1.107 (9) -1.021 (8) -3.746 (6) 

III 15 -1.905 (12) -2.953 (11) -6.321(10) -1.143(10) -1. 594 (9) 

IV 15 2.602 (9) 4.034 (8) 8.636 (7) 1.563 (7) 2.179 (6) 
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TABLE 8. Basis sets of wave amplitudes for the 2-channel case. 

y = 2.7; V = 
0 

74.0 MeV 

B. C. ~ 6.1 7.1 8.1 9.1 10.1 

I 18 -8.2561(10) -5.7765 (10) -1.0881(10) -7.2861(8) -6.8738(7) 

II 18 5.3812(10) 3.7650(10) 7.0916(9) 4.7507(8) 4.4857(7) 

III 18 1.9023(12) 1.3343(12) 2.5390(11) 1. 2849 (10) 3.6252(8) 

IV 18 -2.5980(9) -1. 8222 (9) -3.4677(8) -1. 7541(7) -4.9300(5) 

I 15 2.9143(10) 4.7744(10) 1. 0307 (10) 5.1116(8) 1.3568(7) 

II 15 -1. 8995 (10) -3.1118(10) -6.7180(9) -3.3297(8) -8.7831(6) 

III 15 -6.7788(11) -1.1043(12) -2.3540(11) -1.6049(10) -1. 6605 (9) 

IV 15 9.2580 (8) 1.5028(9) 3.2149(8) 2.1925 (7) 2.2701 (6) 
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coupling, solutions II and IV based on the regular solutions should be 

extremely small, and indeed could not be calculated by inward integration, 

since rounding errors would grow exponentially in the barrier region. 

However, with coupling present the variations of magnitude of all wave 

amplitudes is not so great, and the significance of the final results 

should not be seriously altered by rounding errors. The program was 

checked by running calculations with coupling turned off and demanding 

that solutions based on the regular F~ Coulomb function boundary conditions 

be much less than those based on irregular G~. 

212m Using the experimental decay rates of Po to ground and 3 state 

and Eqs. (17a), (17b), and (14), phase shifts due to coupling were solved. 

There are two acceptable sets: 018 = 33°10' with 015 ~ 0 and (\8 = 213°10' 

with 015 ~ O. The phase shifts are essentially the same for the calculation 

with different VO' for the phase shifts are mainly determined by coupling 

strength and potential energies in the vicinity of the outer classical 

turning point. 

With these phases we calculate the real parts of the acceptable 

solutions by the appropriate linear combination of basis solutions as 

follows: 

Re(u~) = A[u~I) cos 018 - u~II) sin 018 J + B[ui
III

) cos 015 - u2
V

) sin 015 J 

(24) 

The amplitudes are normalized by the absolute decay rates such that when 

squared and multiplied by ~r in f one gets the absolute probability of 

finding the alpha between spherical surfaces at rand r + ~r. The square 

of the amplitude multiplied by RO/4TI is the dimensionless quantity called 
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"surface probability" and tabulated at 9.3£ for even-even ground state 

transitions in Table 8 of 1. Perlman and J. o. Rasmussen. 37 

To display the effects of coupling on the wave amplitudes we have 

plotted the ratios u18/u15 in Figs. 4 and 5 at various radial distances. 

The three coupled solutions are shown along with the ratio for no coupling, 

and in the lower part of the graph we show the ratios given by the micro­

scopic shell-model calculation (Table 1). One sees that even with coupling, 

the microscopic theory gives too low u l5 amplitude at the larger radii, 

but it appears that a choice of a small RO value reduces the discrepancy 

markedly. The most favorable situation occurs for the cases of the deepest 

potential (74 MeV) and the strongest surface coupling (y = 2.7). There is, 

surprisingly, not much difference at radii less than 8f between the amplitude 

ratios of the 018 = 33° and 018 = 213° solutions for the deep potential and 

strong coupling. 

One is restrained from inward extrapolation of the Y2 ratios in Figs. 

4 and 5 to get apparent complete agreement at R ~ 6f, for several reasons: 

1) Inside the exponential tail region of the nucleon wave functions the Y2 

values will greatly fluctuate and microscopic alpha theory has not been 

formulated for R in this region. 2) From Tables 9, 10 and 11 it is 

evident that the solutions imply alpha probabilities in excess of unity 

for the volume outside 6f, and the solutions at such small radius must 

therefore have no physical significance. 

Tables 9, 10 and 11 give the values of the real parts of the 2 = 18 

and 2= 15 coupled alpha waves at various radial distances for the two-phase 

choices satisfying experimental intensities and for the three different 

choices of nuclear potential parameters. Upon further examination it 

appears that the choice of parameters in Table 11 is the most realistic. 
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TABLE 9. Real part of alpha wave amplitudes near the nucleus for 
Vo = 35.0 MeV and y = 2.7. 

°18 33°10' °18 = 213° 10' 

°15 = 0° °15 = 0° 

R Re (u18) Re (u15) Ratio Re {u18) Re (u15) Ratio 

6.1 f 1.49 (0) -1.18 (0) -1. 26 4.43 (0) -1. 77 (0) -2.51 

7.1 f 1.35(-1) -1.08(-1) -1. 25 4.25(-1) -3.14(-1) -1.35 

8.1 f 1.79(-2) -1.43(-2) -1. 24 5.50(-2) 4.87(-2) -1.13 

9.1 f 9.60(-4) -2.24(-3) -0.429 4.56(-3) -4.68(-3) -0.97 

10.1 f -7.89(-5) -3.32(-4) -0.238 2.82(-4) , -4.20(-4) -0.67 
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TABLE 10. Real part of alpha wave amplitudes near the nucleus 
for Vo == -35.0 MeV and y == 1. o. 

0°
1 

018 == 213°10 I 18 == 33 10 
015 ~ 0° 015 ~ 0° 

R Re (uI8 ) Re (u I5) Ratio Re (u18) Re (u15) Ratio 

6.1 f 1.35(-1) -2.67(-1) -0.51 1. 29 (0) -6.07(-1) -2.12 

7.1 f 1.30(-2) -4.25(-2) -0.306 1.34(-1) -9.35(-2) -1.43 

8.1 f 8.2 (-4) -1.00(-2) +0.082 1.98(-2) -1.90(-2) -1.04 

9.1 f -2.09 (-4) -2.22(-3) +0.094 2.07(-3) -2.94(-3) -0.70 

10.1 f -1. 43 ( -4) -3.51(-4) +0.404 2.12(-4) -5.19(-4) -0.408 

------------
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TABLE 11. Vo -74.0 MeV and y = 2.7. 

018 = 33°10' ° 0' 18 = 213 10 
015 ~ 0° 015 ~ 0° 

R Re (u18) Re (u15) Ratio Re (u18) Re (u15) Ratio 

6.1 2.18(-1) -8.00(-2) -2.72 6.54(-1) -2.32(-1) -2.82 

7.1 1.68(-1) -1.28(-1) -1.31 4.44(-1) -3.80 (-1) -1.17 

8.1 2.99 (-2) -2.69(-2) -1.11 8.71(-2) -8.11(-2) -1.07 

9.1 8.40(-4) -2.35(-3) -0.36 4.68(-3) -5.05(-3) -0.93 

10.1 -9.65(-5) -3.69(-4) 0.26 1.56(-4) -4.19(-4) -0.37 

11.1 -1. 93 (-5) -4.91(-5) 0.34 1.06(-5) -5.02(-5) -0.21 

12.1 -2.91(-6) -7.26(-6) 0.46 1.21(-6) -7.28(-6) -0.17 

13.1 -4.88(-7) -1.24(-6) 0.39 1.92(-7) -1.24(-6) -0.16 

14.1 -9.36(-8) - 2.40 ( - 7) 0.39 3.64(-8) -2.40 (-7) -0.14 

15.1 -2.08(-8) -5.27(-8) 0.39 8.18(-9) -5.27(-8) -0.16 

16.1 -5.21(-9) -1.86(-8) 0.28 2.29 ( -9) -1.86(-8) -0.12 
~: , 
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G. 212m Discussion of the Results for the Po Alpha Decay 

By no means can we claim a satisfactory explanation of the large 

(1 00) h d f 212m h f' . d f 20Spb • ?a alp a ecay group rom Po to t e lrst exclte state 0 . 

It may well be that the lack of octupole core polarization in the initial 

wave function is a major cause of the remaining discrepancy. It does, 

however, seem clear that the connection radius RO of microscopic alpha 

decay theory should be chosen significantly smaller than the values hitherto 

used (S - 10 f). If a smaller RO is chosen then the strong alpha-channel 

coupling involving major collective shape oscillational modes must be 

taken into account, for our numerical calculations here show substantial 

effects from coupling to the octupole mode. Not only is the ratio of 

amplitudes to ground and excited states affected,but also the absolute 

decay rates will be affected. Since we have not resolved the alpha 

branching ratio problem, we shall not try to use our numerical solutions 

for quantitative absolute decay rate calculations. Suffice it to note 

qualitatively that there are substantial effects of channel coupling on 

theoretical absolute rates. Note in Tables 9, 10 and 11 that the total 

alpha probabilities (iu1Si2+ iU1S i2) at small radii are usually about an 

order of magnitude larger for the 213 0 cases than for the 33 0 cases. This 

result means that the effective barrier penetrability in the 213 0 cases is 

an order of magnitude smaller than for the 33 0 cases. The effect of the 

surface coupling potential is to raise the effective barrier for both 

partial waves in the 213 0 cases and to lower the barrier for 33 0 cases. 

As mentioned earlier in Section II.B, Glendenning and Harada 

212m . calculated theoretical alpha decay ratios between the Po lsomer and 

the ground state, finding the theoretical relative rate for the isomer 
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too fast by a factor of about 45 for RO = 9.5 f or about 18 for RO ~ 9.0 f. 

We noted in Section II.B that their apparent discrepancy factor may 

reverse for RO < 8 f. A careful recalculation of the decay rate ratio 

of isomer and ground state might provide the basis to decide between the 

213 0 case and the 33 0 case. The ground state decay rate is also affected 

by channel coupling but less so than the isomer. 

The alpha decay theory applied to high-spin isomers, such as 212mpo 
:\' 

and 211mp 
0, is deserving of further study for the light it may sh~d on 

~-. ' 

fundamentals of the theory. We have argued above for joining bound and 

open-channel solutions at smaller radii than previous practice; however, 

such will aggravate the problem of the usual mismatch at RO of logarithmic 

derivatives of the alpha amplitude in inner and outer regions. There is 

clearly a need to reformulate alpha theory along the lines of Feshbach's 
23 

"unified theory of nuclear reactions," where the arbitrary division of 

space into inner and outer regions need not be made. 

We are encouraged enough by the results of the coupled channel 

method for even mass nuclei to extend our use of it to the alpha decay of 

odd mass nuclei. In the next section, we present calculations for the 

. 253 255. 
coupled channel alpha decay theory for odd madd nuclel Es and Fm. 
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III. ODD-MASS COUPLED-Cr~NNEL ALP~ DECAY THEORY 

A. Alpha Decay of Spheroidal Nuclei 253Es and 255 Fm 

When a spheroidal nucleus undergoes alpha decay, the noncentral 

electromagnetic field permits exchange of energy between internal nuclear 

excitation and the external alpha particle. The noncentral couplings of 

greatest importance involve collectively enhanced rotational E2 transitions 

in deformed nuclei. Starting with boundary conditions set at the spheroidal 

nuclear surface, the formal problem involves propagation of the alpha 

particle wave function outward through the anisotropic barrier to some 

distance where coupling effects are negligible. 

Although other researchers have performed the numerical integration 

of coupled channel equations for the alpha decay of even-even spheroidal 

nuclei (see Section II of this paper) there has been little analogous work 

on the alpha decay of odd-mass nuclei. In the latter case, an alpha 

particle wave of a given orbital angular momentum ~ may branch to more 

than one energy level of the daughter nucleus. Thus for the favored alpha 

233 38 . decay of U, R. R. Chasman and J. O. Rasmussen consIdered the decay of the 

s wave to the 5/2 level and the branching of the d wave to the 5/2, 7/2 and 

229 9/2 levels of Th. Channel coupling effects are most significant for the 

case of a relatively weak wave, such as the highly hindered g wave, coupled 

to a strong wave such as the s wave. Therefore, we have extended the work 

of Chasman and Rasmussen by considering the branching of the s, d, and g 

. 253 255 waves In the favored alpha decays of both Es and Fm. Favored alpha 

decays are those decays in which the quantum numbers of the odd nucleon 

are the same for both the parent and daughter. 
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The nuclei 253Es and 255Fm , both having spin 7/2, are ideal cases 

for applying an exact numerical treatment because alpha transitions to the 

. 39-42 
favored bands of the daughters have been well studled, and angular 

distribution data from low temperature nuclear alignment experiments are 

available. 4 
If we include the branching of the ~ = 0, 2, and 4 part~al 

waves, then nine coupled second-order differential equations must be solved 

for favored decays to the five lowest levels (7/2, 9/2, 11/2, 13/2, 15/2) 

of the daughter rotational band. The ~ = 6 contributions have been taken 

into account in an approximate way7 (see Fig. 6a for the partial alpha 

253. . . 255 43 decay scheme for Es and Flg. 6b for the partlal decay scheme.for Fm). 

The results of the numerical integration test two commonly used 

assumptions. The first is that near the nuclear surface the favored alpha 

waves have zero projection of orbital angular momentum along the cylindrical 

symmetry 3-axis of the daughter nucleus. Subj ect to thi~ m~ = 0 constraint, 

we wish to determine if the coupled channel treatment can reproduce both 

the angular distribution data and the experimental relative intensities to 

the spin 7/2, 9/2, 11/2, 13/2, and 15/2 states of the daughter. The 

second assumption to be tested is that the relative intensities of a 

given ~-wave are given by the square of a Clebsch-Gordan coefficient 

times the calculated spherical barrier penetrability for the alpha group 

(formula of Bohr, Froman and Mottelson (BFM)).6 Experimental data show 

deviations from the BFM expression for favored decay. It is of great 

interest to determine whether a careful coupled channel treatment of the 

barrier penetration explains the deviations while retaining the first 

assumption above. 
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Fig. 6a. Partial alpha decay scheme for 253Es adapted from refs. 40 

and 41. The intensities to each daughter level and the 
permitted alpha particle angular momentum values are shown. 
The £ values in parenthesis are not included in the coupled 
channel calculation since their contribution is very small. 
In ref. 1 the £ partial waves are included in an approximate 
manner. 
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Fig. 6b. Partial decay scheme for 2SSFm as adapted from ref. 42. 
The favored alpha decays populate a rotational band built 
on the 7/2[613] state. The intensities to each given level 
of the daughter and the alpha particle angular momentum 
values are shown. 
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B. Mathematical Formalism for the Alpha Decay of 253Es and 255 Fm 

The formalism for alpha decay in the presence of a non-central field 

is given by I. Perlman and J. O. Rasmussen .37 A multipole expansion is made 

for the Coulombic potential energy outside the nuclear surface. The zero-

order term is the central Coulombic term. 

The E2 interaction contributes the first important coupling term. 

For nuclei with large hexadecapole deformations, E4 coupling may also be 

. 44 45 249 251 lmportant; , however, both Bk and Cf have small hexadecapole 

deformation. The coupled differential equations can be written in the 

d · . b 1,43 ra lal separation varla Ie as 

= 2: 2 

Kr n r' n' ur ' J(,' dN dN 
. d' . r' .R,' 

d, (25) 

which is a generalized form of Eqs. (lla) and (lIb) of Ref. 43 where rd 

and J(, are the total angular momentum of the daughter and of the alpha 

particle in a given decay channel, M is the reduced mass, Z is the 

charge of the daughter nucleus, Qr is the effective Q value for the alpha 
d 

particle with electron screening and daughter recoil energy corrections, 

and the are the matrix elements of the quadrupole coupling 

operator which is proportional to the product of the intrinsic nuclear 

3 quadrupole moment Q
o 

of the daughter times P
2

(cos8) divided by r , where 

r is the radial separation variable. For 249Bk the value for Qo was 

253 46 
taken to be the same as that for the parent, Es; namely, 13.1 b. 

251 255 . 
For Cf and Fm we used approxlmately the same value, namely, 13.0 b. 

Explicit expressions for the quadrupole coupling matrix element 
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were given for alpha decay in Ref. 4 and Ref. 6 and for optical model 

scattering applications and decay, see Refs. 2 and 3. 

As before, the general solutions of the uncoupled differential 

equations can be written as uR,(n,p) = GR,(n,p) +iFR,(n,p) where GR, and FR, 
47 

are the irregular and regular Coulomb functions respectively. Solutions 

of the coupled differential equations approach the Coulomb functions 

asymptotically at large radius. 

In general, the phase of an oscillating coupled-channel solution in 

the far region will differ from the phase of the corresponding Coulomb 

function. This phase difference is referred to as the quadrupole phase 

shift, ~I R.' Although phase shifts do not affect intensity calculations, 
d 

they do affect angular distributions through the interference terms between 

alpha wave components of differing R. going to the same final state I d · 

For notational convenience we sometimes use the single index j or k in 

place of the pair (Id,R.), where j = 1 through 9 denote respectively, 

(Id'R.) = (7/2, 0), (7/2,2), (7/2,4), (9/2,2), (9/2,4), (11/2,2), 

(11/2, 4), (13/2, 4) and (15/2, 4). 

Here we have a set of nine second-order coupled differential equations 

which can be transformed into a set of eighteen first-order coupled differ-

ential equations having eighteen linearly independent solutions or, 

equivalently, nine complex solutions. Because the physically meaningful 

solutions decrease exponentially going outward through the barrier, it is 

not possible to obtain stable solutions by outward numerical integration. 

Instead we use Coulomb functions as starting conditions at 150 f, a 

radius sufficiently large that the coupling forces are small, and integrate 

. d d . d' d . I . 212mp I h d lnwar as we lscusse ln etal ln our 0 a p a ecay case. The 
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solutions of interest then increase in the direction of integration and 

remain stable. For the kth linearly independent set of solutions, we 

initialize the kth function and its derivative with the value of the 

complex Coulomb function corresponding to that channel and the remaining 

channels are initialized to zero. We label the resulting linearly inde-

pendent set of complex solutions as ujk(r) = gjk(r) + ifjk(r), represent­

ing the jth channel of the kth linearly independent solution.48 

Any general solution of the coupled differential equations may be 

expressed as a linear combination of the solutions just described; that 

is, the general solution for the jth channel may be written as 

'l!. (r) 
J 

(26) 

where the coefficients ck = ak + ibk are complex numbers. Because an alpha 

particle is assumed to exist in a quasi-stationary state prior to emission, 

the imaginary part of each wave function 'l!. must essentially vanish near 
J 

the nuclear surface. Using nuclear model constraints, which will be 

discussed in the next Section I II. C, values for the real parts of the wave 

functions at the nuclear surface can be obtained. Then the set of nine 

complex simultaneous equations, 'l!j(r), can be solved for the coefficients ck . 

The system of simultaneous equations is conveniently represented in 

the matrix equation 

u C = 'l! (27) 

where the matrix elements u jk of the 9x9 complex matrix U are the amplitudes 

of the linearly independent solutions on or near the nuclear surface. The 

elements of the column vector ,£ are the unknown complex coefficients ck ' 
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and the elements of the column vector! are the purely real nuclear model 

surface amplitudes. The problem is solved by inverting the U matrix 

(28) 

The intensity of a given partial wave is the product of the square of the 

wave function amplitude and the velocity which goes as Q~/2. From the ck 

values thereby obtained, and in view of the starting conditions of the 

pure Coulomb functions, the relative alpha partial wave intensities ~k 

are 

~k = = (29) 

where Qa is the alpha decay energy in that channel. The quadrupole phase 

shifts <l>k are 

= = (30) 

The most general way to present the results of the numerical inte­

gration is as the complex matrix ~-1 (the inverse of the complex 9x9 

matrix Q). The matrix elements of U are the amplitudes of the linearly 

independent solutions on a spherical surface near the nucleus. These 

matrices reduce to unit matrices for vanishing nuclear quadrupole moment. 

Operation with U- 1 on a vector representing boundary conditions on a sphere 

near the nuclear surface will yield partial wave amplitudes and quadrupole 

phase shifts at large distances. If boundary conditions are fixed on the 

spheroidal nuclear surface, then a Froman matrix can be used to transform 

them to boundary conditions on a sphere at 10 f. The real and imaginary 

components of the 9x9 matrix Q-1 have been given in Refs. 12 and 13. 
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C. Numerical Results for the Odd-Mass Coupled Channel Cases 

49 
In the similar work of J " O. Rasmussen and E. R. Hansen on even-even 

242Cm favored alpha decay, the boundary conditions for the real part of 

the solutions could be imposed by demanding agreement with experimental 

1 . .... . h . 1 l' 238p re at1ve trans1t1on lntensltles to t e rotatlona leve s 1n u. 

Because of partial-wave branching in odd-mass nuclei, however, the 

relative intensity data are inadequate. In our present formulation, 

there are nine real solutions, so after normalization eight boundary 

conditio~s must be specified. The experimental data provide only four 

relative alpha intensities going to the five daughter levels, and there 

are no direct experimental measurements of the partial wave amplitudes 

or relative phases contributing to each alpha transition. The low-

temperature angular distribution data provide two experimental numbers, 

the coefficients of the P2(cose) and P4(cose) terms in the angular 

distribution function, but they do not uniquely determine relative 

43 
partial wave amplitudes and phases. 

1. Deviation ~rom BFM spheric~l.barrier penetrability 

Because there are insufficient experimental data to completely fix 

the boundary conditions, nuclear model constraints are used as well. We 

use the fundamental assumption underlying the "leading order intensity 

relationships" of the strong coupling mode1 2 , 50 that near the nuclear 

surface the projection of any partial wave's angular momentum along the 

cylindrically-symmetric 3-axis of the daughter nucleus, mR,' has a value 

of Kd ± Kp' where Kd and Kp are the proj ections of the daughter and parent 

total nuclear angular momentum on the 3-axis. For (Kd+ Kp) > R, only one 

value of mR, is allowed; for favored alpha decay mR, = 0 and Kd = Kp = K. 
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The condition of only m.R, = 0 components on a sphere of radius RO near the 

nucleus provides six boundary conditions, tying together the components 

of a given .R,-wave in proportion to Clebsch-Gordan coefficients. A. Bohr, 

6 P.D.Froman, and B.R.Mottelson and F. Asaro, S.G.Thompson, F.S.Stephens, 
40 

and I. Perlman have, in some applications, constrained the relative s, 

d and g wave intensities to the average of nearest neighbor even-even 

nuc lei, but such a cons traint is not as fundamental as the m.R, = 0 constraint. 

The remaining two boundary conditions are left as free parameters which 

we denoted as 0. 2 ' the ratio of total d wave to s wave amplitude at R
O

' 

and 0. 4 ' the ratio of total g wave to s wave amplitude at RO. Therefore, 

the nine elements of the column vector wave function of Eq. (28) at RO 

are given as follows: 

= (31) 

Here we use the trivial normalization condition, 0.
0 

= 1. The real part 

of the wave function decreases exponentially going outward through the 

barrier region and oscillates in the far region. 

Having chosen these boundary conditions, the numerical integration 

of the coupled differential equations permits us to test two assumptions 

of the strong coupling model as usually applied. The first is that near 

the nuclear surface only m.R, = 0 alpha partial waves occur. Subject to 

this m.R, = 0 constraint, we wish to determine if the coupled channel treat­

ment can reproduce both the experimental relative intensities to the five 

lowest rotational levels of the daughter nucleus and the angular distri-

bution data. This mR, = 0 condition is equivalent to Bohr and Mottelson' s 

"leading-order intensity relations." The second assumption is the usual 
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approximate treatment of anisotropic barrier penetrability, in which the 

relative intensity of an ~-wave to a given level is calculated as a 

Clebsch-Gordan coefficient squared times a spherical barrier penetrability 

6 factor for the alpha group. This approximation, originally due to BFM, 

is exact either when m~ = 0 or in the limits of infinite moment-of-inertia 

or for vanishing nuclear quadrupole moment, Q = O. 
o 

It is interesting to compare the BFM predictions with intensity 

data for favored decay in several odd-mass deformed nuclei. In Fig. 7 we 

have plotted the ratios of hindrance factors of second to first excited 

states. The hindrance factors are from the compilation of Y. A. Ellis and 

51 
M. R. Schmorak. If these alpha groups were purely ~ = 2, the ratio WOUld, 

by the BFM intensity relations, equal the indicated ratio of squared 

Clebsch-Gordan coefficients. Actually the ratio points are lower limits 

for the desired ~ = 2 intensity ratio, since the small correction for ~ = 4 

components would raise them. 

2. peformation parameter specifications of boundary conditions 

wi th an~~i thout _ tI:_~~:= 0 surface constraint 

L . d f 253E d 255 F h d . . f h et us now cons~ er or ,s an m t e eterm~nat~on 0 t e 

two free parameters a
2 

and a q • The value for a
2 

is largely determined 

+ by the requirement that the alpha intensity to the 9/2 daughter level 

be reproduced, because this level receives the largest d-wave component 

In general there are two values for a 2 , one positive and one negative, 

that give satisfactory agreement with experiment. The sign of the aniso-

253 255 tropy in the alpha particle angular distributions for both Es and Fm 

requires that the sand d waves be in phase, that is, that they interfere 

constructively near the nuclear poles. Therefore only positive values 
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Fig. 7. Ratio of the hindrance factor of the second excited level 
to that of the first excited level in the favored alpha 
decay band of odd-mass nuc1ei. 51 
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for a 2 are acceptable. 

In like manner the alpha intensity to the 13/2+ level largely 

determines the value for a't' The phase of the g wave is less well 

determined by the angular distribution data, but the 253Es angular 

distribution data and alpha decay systematics suggest that the g wave 

is out of phase. Therefore only negative values for a are acceptable. 't 

From microscopic theory using Nilsson functions the values of both 

19 52 
a

2 
and a't can be estimated. J. K. Poggenburg , calculated partial wave 

amplitudes on a Nilsson coordinate surface to be 1.035, 0.309, and -0.376 

respectively for the 9,::: 0, 2 and 4 waves of 253Es and 1.008,0.361, and 

O 787 f' , 255 F -.J or m. Applying a Froman matrix of argument B::: 1.36, which 

is approximately correct* for the transformation from the Nilsson surface 

to a sphere near the nuclear radius, we obtain a:a:a ::: 1:0.81 
o 2 't -0.10 

for 253Es and 1: 0.85 : -0.09 255 for Fm. 

-1 Using the U matrix and Eqs. (29) and (31) for the relative 

intensities, we applied a least-squares fitting procedure, allowing the 

surface amplitude ratios of d to s waves (a
2

) and g to s waves (a't) 

to vary. 

The values of a
2 

and a
4 

were obtained by minimizing the weighted 

root-mean-square logarithmic differences between the theoretical and 

*In the work of Poggenburg,19 it was determined that a Froman matrix 
argument of B == 0.9 was optimum for propagating the Legendre expanded 
wave function on a Nilsson stretched coordinate surface out to a 
spherical surface ou~~ide the barrier. In coupled channel work of 
Rasmussen and Hansen on 242 Cm it was determined that the Froman 
argument of B == -0.455 was appropriate for propagation from a sphere 
near the nucleus but just beyond the range of nuclear potential out to 
a sphere at large distance. Since Froman arguments are additive, we 
thus take the argument for propagation across the nuclear surface to 
be the difference 0.9-(-0.455) ~ 1.36. We approximated the Froman 
matrix by interpolation from Froman's tables. 53 
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experimental intensities. The weighting reflected the uncertainties in 

the experimental intensities. The best fits to the experimental intensi-

ties are obtained with a
O
:a

2
:a

4 
= 1.0: 0.8580: -0.0977 253 for Es and 

a :a:a = 1: 0.7918: -0.1794 for 255 Fm . The agreement of these amplitude a 2 4 

ratios with those above calculated from microscopic theory is reasonable. 

These fits are plotted in the left-hand bars of Figs. 8a and 8b. 

The right-hand bars refer to calculations with the m.Q, ::;: 0 constraint 

removed, and they will be discussed in Section III.C. The nuclear 

orientation results do not explicitly enter the least-squares fitting, 

but because of them only the region of positive a
2 

was searched. 

The logarithmic histogram display is chosen to show the predicted 

.Q,-mix within various alpha groups, but one should not be misled by the 

apparent large .Q, = 4 crosshatched area which results from using a logarithmic 

and not a linear scale. 

The partial wave intensities, Coulomb phase shifts .• and quadrupole 

phase shifts corresponding to the least-squares solutions are summarized 

in Tables 12 and 13 for 253Es and 255 Fm , respectively. The pure Coulomb 

phase shifts are given by47 

= arg f(.Q, + 1 + in) (32) 

253 We shall discuss primarily the Es results; however, the general comments 

255 are applicable also to the Fm results. 

Examination of the best fits to the intensities for both 253Es and 

255Fm reveals a systematic discrepancy. The experimental intensity ratio 

between the second and first excited states in the rotational band of the 

daughter is significantly larger than predicted for both nuclei. These 
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253 Favored band alpha branching calculations for Es compared 
with experiment (arrows). The left-hand bars represent coupled­
channel, logarithmic least-squares fits with the constraint 
mQ, = O. The right-hand bars are fits with an additional 
parameter, the tilt angle e, varied (see text). 
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The same as in Fig. Sa, except it is the favored band 
alpha branching calculation for 255Fm. 
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Fig. ab. The same as in Fig. 8a, except it is the favored band 
alpha branching calculation for 255Fm. 
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TABLE 12. 253Es partial wave intensities, quadrupole phase shifts, and 
Coulomb phase shifts obtained by nUmerical integration 

15/2+ 

(ao = 1, a
2 

= 0.8580, a lt = -0.0977). 

Partial 
J/, wave 

o 

2 

4 
sum 

2 

4 
sum 

2 

4 
sum 

4 

4 

intensity 

81.7983 

8.9034 

0.1355 
90.8372 

5.2180 

0.3383 
5.5564 

0.7788 

0.2723 
1. 0511 

0.0848 

0.0085 

Experimental 
intensity with 

i-wave 
subtracted (%) 

89.8 

6.6 

0.845 

0.0810 

0.011 

Quadrupole 
phase shift 

(radians) 

-0.021 

-0.130 

0.127 

-0.159 

0.138 

-0.193 

0.151 

0.167 

0.184 

Coulomb 
phase shift 

(radians) 

50.803 

53.81 

56.659 

54.047 

56.891 

54.338 

57.183 

57.537 

57.963 

---_._-_._---------------
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TABLE 13 255F . 1 . .. d 1 h h' f . m partla wave lntensltles, qua rupo e p ase s 1 ts 

o 

2 

4 
sum 

2 

4 
sum 

4 
sum 

13/2+ 4 

15/2+ 4 

and Coulomb phase shifts obtained by numerical integration 
(C/,o = 1, c/'2=0.79l8, C/,lj.=-0.1794). 

Partial 
wave 

intensity 

86.1522 

7.5837 

0.2035 
93.9393 

3.9054 

0.4433 
~34487 

0.5004 

0.3013 
0.8017 

0.0787 

0.0066 

Experimental 
intensi ty with 

i-wave 
subtracted (%) 

93.4 

5.05 

0.62 

0.097 

0.008 

Quadrupole 
phase shift 

(radians) 

-0.007 

-0.136 

0.110 

-0.179 

0.122 

-0.226 

0.134 

0.146 

0.158 

Coulomb 
phase shift 

(radians) 

49.495 

52.505 

55.343 

52.807 

55.646 

53.180 

56.021 

56.471 

56.994 
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states are populated primarily by d waves, and no combination of initial 

JI, = 0, 2, 4 ratios reproduces the experimental intensity ratio if the 

mJl, = 0 constraint in the nuclear frame is maintained. This same systematic 

deviation from BFM theory has been noted for favored bands of many alpha 

emitters as was shown in Fig. 6, but it is only now clear that the coupled 

channel treatment does not remove the discrepancy. As a result, we 

conclude that some d-wave component with mJl, f. 0 must be included near 

the nucleus. 

Table 14 compares the JI, = 4 branching prediction of our coupled-

6 19 channel theory with the BFM formula as applied by K. Poggenburg and 

by F. Asaro, S. G. Thompson, F. S. Stephens and 1. Perlman40 where they 

used a square-well model to calculate alpha penetrabilities, while 

Poggenburg used an optical model nuclear potential. It can be seen that 

our coupled channel results are very close to the earlier BFM approxima-

tion, thus confirming the theoretical validity of approximating alpha 

branching at infinity by the product of the barrier penetrability times 

the square of the appropriate Clebsch-Gordan coefficient. However, there 

is a regime of higher JI, = 4 wave hindrance where the channel coupling 

results in deviations from the BFM branching approximation. In Fig. 9, 

JI, = 4 branching ratios are plotted as a function of <Xlf with <X2 = 0.89. 

The values at <Xlf = -0.101 are given in Table 12. In the vicinity of 

<Xlf = 0.2 the hindrance factors are highest, and' the deviations from the 

BFM branching approximation are substantial. But channel coupling does 

not affect the accuracy of the simple Clebsch-Gordan branching expressions 

for JI, = 4 unti I higher JI, = 4 hindrance factors are encountered than those 

. 253
E 

255
F ln s or m. 
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TABLE 14. Comparison among theories o! calculated branching ratios 
for the Q, = 4 groups from 25 Es. 

Id BFM-sharp BFM-sloping 
barrier barrier Coupled-channel 

(F. Asaro et al) 
40 

(K. Poggenburg) 19 (this work) 
-----

7/2 (1) (1) (1) 

9/2 2.57 2.486 2.499 

11/2 2.10 1.994 2.010 

13/2 0.65 0.632 0.626 

15/2 0.065 0.063 0.063 
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253 1':5 f.-IvOred dCCflY 

0 0 ,;: 1.0, o~= 0.89 

I (9/2) / I (7/2) 

I (11/2) / 1(7/2) 

I (13/2)/1(7/2) 

I ( 15/2) / I (7/2) 

1 
0.02 _ .. ___ L_. __ J_, ___ L ___ .L ______ L ___ ~ .. ~ I 

-0.3 --0.2 --0.1 0 0.1 0.2 0.3 0.4 

°4 
XBL743-2690 

Fig. 9. Logarithm of the calculated ratios of 9, = 4 partial 
waves as a function of a q , with a 2 fixed at 0.89. 
The coupled channel calculations are for 253Es with 
m9, = 0 constraint. The BFM ratios (Clebsch-Gordan 
coefficients squared) are shown'at left. 
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3. Checks on the accuracy of the coupled channel 

computer calculations 

Several numerical tests on the computer programs were performed. 

The regular and irregular Coulomb functions were integrated inward from 

150 f to 10 f with coupling turned off, i.e., with QO=O. The irregular 

solutions agreed with pure Coulomb functions to within a few tenths of a 

percent. The uncoupled regular solutions, which should be exponentially 

decreasing going into the barrier, were not stable inside the barrier, 

5 
but they were smaller than the irregular solutions by a factor of 10, 

which is more than sufficiently accurate for this problem. The radial 

integration interval was varied by an order of magnitude to insure that 

accuracy was not limited by choice of mesh size. 

In order to check the completeness and accuracy of the quadrupole 

coupling matrix elements, the rotational energy and the centrifugal energy 

of each group were set equal to zero. The regular Coulomb function FO(n,p) 

with nand p appropriate for the Id = 7/2 channel was integrated inward 

from 150 f with QO = 13.1 b. The d and g waves were found to branch in 

the ratio of Clebsch-Gordan coefficients as they should. 

A relative penetrability can be approximated by the ratio of the 

uncoupled regular function at 10 f to the uncoupled regular function at 

150 f squared. Each squared ratio was divided by the corresponding 

19 penetrability given by K. Poggenburg, who used a Froman matrix to 

calculate penetrabilities. The resulting quotients should be, and were, 

approximately equal. 
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D. Inclusion of m,Q, f. 0 Favored Alpha Decay Components 

We have shown that a careful coupled-channel barrier treatment does 

not correct the BFM formula deviations visible in Fig. 6, under the 

constraint that the surface alpha wave function contains only m,Q, = 0 

components. The systematic deviation of hindrance factor ratios from 

Clebsch-Gordan coefficient ratios must be explained in terms of m,Q, f. 0 

admixtures. 

Gamma vibrational phonon (,Q, = 2, m,Q, = 2) admixtures into actinide 

element nuclear wave functions have been calculated by Soloviev and 

54 55 co-workers, ' but these admixtures seem too small to change the d-wave 

branching to the degree required to fit intensity patterns and nuclear 

orientation data. 

There are insufficient data to completely determine all m,Q, f. 0 

amplitudes. In general, four experimental intensity ratios are known, 

and when m,Q, = 0, two adjustable parameters c/'2 and c/'q are derived by a 

least-square fit. Then there are only two remaining degrees of freedom. 

If we introduce m,Q, f. 0 amplitudes in a formulation that has two or more 

adjustable parameters, the problem becomes completely determined or over-

determined,·and a least-squares fitting procedure cannot be used to derive 

parameter values. We have therefore attempted to introduce m,Q, f. 0 ampli­

tudes in a formulation with only one new adjustable parameter. 

It was proposed that a one-parameter constraint be used for intro-

duction of m,Q, f. 0 components from consideration that the mass of the alpha 

56 
particle is not negligible compared to that of the daughter nucleus. 

While the alpha particle is within the nucleus (as a cluster), it is part 

of the system of spheroidal symmetry with symmetric top inertial properties. 
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When the alpha particle leaves the surface suddenly, the principal axes 

of the core will be suddenly shifted by a tilt angle 8. We represent 

the nuclear core inertial system classically by mass distributed along 

the body-fixed symmetry z' axis (see Fig. 10), or a diatomic molecule 

model such that the moment-of-inertia has the experimental value ~. and 

tr- 1 
= ma R2/J. We then consider the removal of alpha particle mass at 

the nuclear radius at a particular angle ~ in the body fixed y-z plane. 

(Equivalently we may add alpha particle mass at -~.) The new principal 

inertial axes are rotated from the old by angle 8, given by 

sin 28 1/f! sin 2 (~ - 8) (33) 

Since in the mass A~250 region ff- 1 
= m

a
R2/J f'::i 0.11, which is « 1, 

we can make a small 8 expansion approximation of the above tilt equation 

to give 

8 f'::i l/g{sin 2~(1 + II! cos 2~)-1} (34) 

We assume that the appropriate average alpha emission angle ~, in 

the nuclear frame, should refer to the alpha wave outside the barrier. 

Thus, as an approximation we may estimate (~) directly from hindrance 

factors of even-even neighbors. For nuclei with the maximum Q, = 4 hindrance 

factors (A ~ 244) we believe ( ~) to have the value of the first zero of 

P 4 (cos~), or ~ ~ 30° . The trend in hindrance factors is such that (~) is 

a monotonically increasing function of mass number throughout the actinide 

region, and at the highest masses for which alpha fine structure has been 

measured, the rising Q, = 2 hindrance factor has not yet gone through a 

maximum. Hence (~) < 55°, the zero of P2(cos~). If we take for (~) an 

approximate value for 253Es , and 255Fm of ~f'::i45°, we can solve Eq. (34) 
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Fig. 10. Vectoral diagram of nuclear spin vectors and projections. 
The external orientation direction is Z and the nuclear 
symmetry axis is Z', I is the nuclear spin with projec­
tion K on the axis of symmetry. The resultant from the 
last odd nucleon or total of odd nucleons is denoted 

-+ ->- -+ 
as R and is the vectoral addition of I and J and the 
projection of j on the nuclear symmetry axis Z'; and M 
is the projection of I on the external direction, Z. 
For favored alpha Ki = Kf and for the ground state 
rotational band I = R = K and the ground state for even-even 
nuclei is zero, I = 0, so that Jrr = 0+. 
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to get tan 28 ~ 0.11 or e ~ 0.05. Thus, we would take the favored 

alpha wave amplitude of m.R, = 0 at the surface and rotate the coordinate 

system, generating m.R,:f 0 components in the new frame (see Ref. 1 for 

further details). 

With our numerical solutions of the coupled-channel equations we 

have made a weighted least-squares determination of the best values of 

a 2 , a
4

, and e to fit the experimental intensities. The original two­

parameter least-squares fits, i. e., with the constraint e = 0 for m.R, = 0, 

were presented in Section D, and Figs. 7 and 8 also show the fits with e 

unconstrained. 

253 The optimum a
2

, a
4

, and e values for Es are 0.891, -0.117, and 

0.0306 radians, respyctively. The corresponding values for 255Fm are 

0.828, -0.250, and 0.0633. Our one additional parameter e can be seen 

from Figs. 7 and 8 to have improved the 11/2 : 9/2 branching ratio (.R, = 2) , 

and the least-squares e values are in satisfactory agreement with the 

estimate of tilt of principal axes during alpha decay. The 15/2 : 13/2 

branching ratio (.R, = 4) is not in very good agreement with theory, but 

the weak .R, = 4 groups may be affected by our truncation of the coupled-

channel equations to exclude .R, ~ 6. (See Section III.F for an analysis 

of the effect of the .R, = 6 wave on the results of our coupled channel 

calculation. ) 

E. Additional Discussion of the Relaxation of the m.R, = 0 Condition· 

We have formulated a derivation in terms of a model of .R, = 2 favored 

alpha hindrance factor ratios from the leading-order Clebsch-Gordan 

intensity relations, due to a recoil term in the core rotational inertial 
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system. The effect is to introduce m.Q, # 0 components into the favored 

alpha wave function at the nuclear surface. Although ~e solved the nine 

coupled channel equations only for parent spin 7/2, we can reasonably 

infer a similar behavior for the several 1. = 5/2 cases plotted in Fig. 6. 
1 

As the mass number increases the mean alpha emission angle (~) in the 

nuclear frame shifts from small values toward 45 or 50 0 for the mass, 

A~250 region, the deviations should monotonically increase, as they do 

for the spin 5/2 cases. 

With the coupled channel equations we have calculated the quadrupole 

phase shifts, which affect the interference terms in angular distribution 

experiments involving favored alpha decay. It would be interesting to 

have experimental a-y angular correlation studies to test our predicted 

angular momentum mixtures and phase shifts for decay to excited rotational 

band members. The low-temperature nuclear orientation experiments could 

not resolve individual alpha groups and were thus mainly sensitive to the 

composition of the alpha group or to the band head. In the next section 

we discuss the effect of not including the .Q, = 6 partial wave components 

in the coupled channel calculations. 

F. The Effect of Exclusion of the .Q, = 6 Partial Waves from the 

Coupled Channel Calculation 

In order to limit the number of coupled differential equations to 

be solved, the .Q, = 6 and higher angular momentum waves were excluded from 

our analysis. The hindrance factor for the .Q, = 6 wave of the nearest 

neighbor Cf isotope is approximately 1000, whereas the hindrance factor 
51 

for the .Q, = 4 wave is approxima te ly 30. Therefore, the .Q, = 6 wave cannot 
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noticeably affect the Q, = 4 branching. Because the Q, = 6 wave was excluded 

from the theoretical analysis, an approximate i-wave component was 

subtracted from the experimental intensities before making the comparison 

with theory. This was done as follows: I. Ahmad41 has measured the alpha 

+ + 253 intensities to the 17/2 and 19/2 levels of Es (see Table 15). These 

levels are populated by Q, = 6 and higher angular momentum waves only, and 

we assumed that the higher Q, waves are much weaker than the i-wave. The 

+ 
Q, = 6 penetrability factor for alpha decay to the 17/2 level, which was 

obtained by extrapolating Poggenburg's penetrabilities,19 was multiplied 

by the appropriate squared Clebsch-Gordan coefficient in order to obtain 

a relative theoretical intensity which was normalized to Ahmad's experi-

mental intensity. The process was then reversed to obtain the i-wave 

component to the lower spin states of the favored rotational band. The 

results are given in Table 15. 

255 + For Fm alpha decay the experimental intensity to the 17/2 level 

is unknown; therefore, we assumed that Poggenburg's calculations correctly 

predict the relative i-wave component. We believe this approximation 

is permissible because the correction is, in any case, small, and the 

correction has a significant effect only on the 13/2+ and 15/2+ intensities, 

which already have small weighting factors in the fitting routine. While 

it is true that any error in this extrapolation from Poggenburg will to 

some degree be reflected in our fit of a , our major fitting difficulty 
4 

is in reproducing the ratio between the 9/2+ and 11/2+ intensities, 

which is not strongly affected by either a 4 or the correction. Our 

corrections to the 255Fm experimental intensities are also given in 

Table 15. 
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TABLE 15. Correction factors for the i partial wave. 

253Es 
255 pm 

Experimental 5/,=6 Experimental 5/,=6 
Id1T intensi ty41 component intensity41 component 

(%) (%) (%) (%) 

7/2+ 90.0 0.0002 93.4 0.0003 

9/2+ 6.6 0.0014 5.05 0.0022 

11/2+ 0.85 0.0037 0.62 0.0040 

13/2+ 0.085 0.0039 0.110 0.0129 

15/2+ 0.013 0.0018 0.013 0.0049 

17/2+ 0.0004 (0.0004) 

19/2+ 0.00012 
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The reliability of our i-wave correction for 255 Fm decay is indicated 

by applying the same method to 253Es . The subtracted components would 

+ then be 0.0001, 0.0016, 0.0031, 0.0060 and 0.0033 for the 7/2 through 

+ 15/2 levels. The differences between these values and the ones given 

in Table 15 suggest that the i-wave, like the d wave, may be more skewed 

toward the lower levels of the rotational band than the BFM branching 

relation predicts. 

G. Discussion of O?d-Mas~_ Co~ed Alpha Decay Th~ory 

We have performed a coupled channel calculation for the odd-mass 

nuclei 253Es and 255 Fm which both have 7/2+ ground states. We have found 

a more improved fit to the experimental values than the BFM or K. Poggenburg 

results. Using the m,Q, ::: 0 assumption and not excluding the ,Q, == 6 partial 

+ 
wave contributions, we find that there is an underestimation of the 9/2 

+ 
level ln which the largest contributor is from the ,Q,::: 2 wave and the 11/2 

level is overestimated, in which the largest contributions occur from the 

,Q, '" 4 wave, compared to the ,Q, == 4 contribution to other levels. 

Our analysis is improved by including the ,Q,::: 6 partial waves in an 

approximate manner and also including a term,depending on relaxing the 

m,Q, ::: 0 condition. The systematic deviation of the hindrance factor ratios 

determined from the Clebsch-Gordan coefficient ratios are explained in 

terms of the admixtures of the m,Q,:f 0 terms. We consider the effects of the 

alpha particle components which effect the spheroidal symmetry. The 

principal axis is shifted as the alpha particle is emitted. Improved 

fits are derived from the inclusion of gamma vibrational admixtures ,Q,::: 2, 

m,Q, == 2 (see Section III.C for further discussion). 
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Our analysis of both the even mass and odd mass alpha decay theory 

has demonstrated the sensitive dependence of this formalism on the Woods-

Saxon parameters and also the inexact nature of the BFM and mQ, = 0 

assumption. The uncertainty of the matching radius and optical model 

parameters prohibits us from calculating absolute decay rates; see 

Section II. We examine some new approaches to alpha decay theory which 

we hope will yield model independence of the nuclear matching parameter 

and the well depth of the optical model parameter. 

In the next section, we utilize the time dependent reaction theory 

7 23 of H. Feshbach' to calculate alpha decay rates in terms of the R-matrix 

of real optical model potential in the absence of channel coupling. In 

Section V we calculate the alpha decay rate in terms of resonant decay 

width in the R- and S-matrix theory including channel coupling with a 

complex nuclear potential. The attempt of S-matrix resonant theory 

approach is to be able to calculate absolute decay rate which is indepen-

dent of the nuclear optical model parameters. 
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IV. UNIFIED REACTION THEORY OF ALPHA 

DECAY FOR 212po AND 210po 

A. Application of the R-Matrix Theory to the Alpha Decay Problem 

In this section we examine in detail methods of avoiding the 

inherent problems of matching radius dependence of the coupled channel 

alpha decay theory presented in Sections II and III. 

The alpha decay problem has been an illusive one. Many approaches 

11 12 have been taken, since the H. A. Bethe and G. Gamow models of an 

alpha cluster which is trapped in a nuclear potential well. Microscopic 

shell model calculations gave great impetus to the alpha decay problem. 

13 31 
This type theory was developed by R. G. Thomas ' and A. M. Lane and 

8 18 57 F. G. Thomas and H. Mang, , and it has been quite successful but 

there are cases where it has failed to correctly predict the alpha decay, 

relative as well as absolute, rates; but a major failing of these 

alpha decay theories has been their inability to calculate absolute alpha 

decay widths~ 

A new theory of alpha decay is presented in this section, in which 

the nuclear radius parameter is not used explicitly. A similar expression 

for the decay width, as in the unified reaction theory of H. Feshbach, 

58 
A. K. Kerman and R. H. Lemmer, is derived based on the time-dependent 

perturbation method and it overcomes the inadequacies of previous alpha 

decay theories. It is pointed out that the new decay formula makes it 

possible to calculate even the absolute value of the decay rate. In this 

theory, the alpha decay process is interpreted as the transition due to 

the perturbation which is caused by the difference between four times the 
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nucleon-nucleus and alpha-nucleus potentials. The method of numerical 

calculation is illustrated for the case of a simple alpha decay. 

Many alpha decay rate calculations, based on the nuclear shell 

model, have been performed and they reproduce the experimental fine 

structures of decay rates fairly well, as far as the relative intensities 

14 16 are concerned.' Therefore, the basic formula used in the decay rate 

calculations, which is the well known expression for the resonance level 

width in R-matrix theory, seems to be useful. 

The applicability of the one-level formula in R-matrix theory to 

31 the alpha decay problem was shown by R. G. Thomas, and he suggested the 

possibility of using shell model microscopic calculations of the alpha 

decay rate. H. Mang18 ,31 was the first to perform practical microscopic 

calculations for the alpha decay rates. He derived the basic formula by 

59 
generalizing Casimir's time-dependent alpha decay theory, and then 

used it in his calculations. If the boundary condition that assures the 

continuity of the internal and the external alpha particle wave functions 

is introduced into Mang's formula, it becomes identical with Thomas' 

formula. 

However, there are two shortcomings in these microscopic calcula-

tions based on the one-level formula. First, we must introduce the nuclear 

radius, which divides the space .sharply into internal and external regions. 

The barrier penetrability, relevant to alpha decay, is very sensitive to 

the radius parameter. For that reason many theoretical calculations 

have been performed only for the determination of relative intensities, 

but not for the calculation of absolute decay rates. Second, the shell 

model wave function used for the parent nucleus does not satisfy the 
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boundary condition, which we normally impose upon a compound state in 

R-matrix theory. Fortunately, the energies of the emitted alpha particle 

are much lower than the height of the Coulomb barrier and these energies 

lie in a narrow range of between 5 and 10 MeV, so that the error due to 

this defect would be nearly constant. Strictly speaking, however, this 

defect certainly brings some errors even into the theoretical predictions 

of the absolute intensities. 

In the next two sections of this paper CIV.B and IV.C) the effects 

of channel coupling were studied for coupling between the vibrational 

states in spherical daughter and the rotational states of a spheroidal 

daughter nuclei. It was found that the channel coupling affects the 

alpha particle barrier penetrability significantly.3 For the decay with 

channel coupling, however, it is not desirable to calculate the decay 

o 0 11 b d h M 18,31 f 0 h rate mlcroscoplca y ase on t e usual ang ormula, Slnce t e 

coupling potential localizes at the nuclear surface and the defect of 

the introduction of the nuclear radius becomes a serious problemo 

10 212mp Recently we studied the alpha decay of 0, taking into account 

the effects of collective octupole coupling, and found that the conven-

tional microscopic theory does not explain the large alpha decay group 

to the flOrst exclOted state of 208pb . A 0 f dO major cause 0 lscrepancy may 

be attributed to the lack of octupole core polarization in the wave 

o 212m 
functlon for PO o However, it is also the case that the conventional 

theory is not satisfactory in describing this isomeric state decay. 

Because the very high angular momentum of the emitted alpha particle 

makes the predicted intensity ratio very sensitive to the choice of the 
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the radius parameter .. 

The purpose of this section is to derive a new decay formula in which 

the radius parameter and the boundary condition are not used at all. In 

order to make clear the comparison of the new formula with the old one, 

57 
we shall proceed along Mang's formulation as far as possible, but giving 

up the approximations he used. In the new decay formula we can take int.o 

account the channel coupling, in a manner that is not artificial, but we 

will not take up this subject here in order ·to simplify our discussions. 

B. Lane and Thomas One-Level R-Matrix Formula 

The new theory of alpha decay, in which we calculate the decay rate 

for the resonance level width in R-matrix theory, is compared to the 

one-level formula. R. G. Thomas demonstrated the applicability of the 

31 one-level formula in R-matrix to the alpha decay problem. If the boundary 

conditions, which assures the continuity of the internal and external alpha 

18 31 . particle wave functions is introduced into H. J. Mang's '. formula, hlS 

formula becomes identical with Thomas's formula. We will give more details 

of Mang's theory in the next Section, IV.C. We need not specify the 

nuclear-radius parameter explicitly which divides the space sharply into 

internal and external regions. Theoretical calculations have been, in the 

past, performed only for the relative intensities, and not for absolute 

decay rates because the barrier penetrability is very sensitive to the 

radius parameter. We have traded the arbitrariness in R for an arbitrari­o 

ness in the real part of the well depth parameter Vo which we will explore 

in more detail in this section. 

A. M. Lane and R. G. Thomas have presented an extensive and detailed 
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discourse on R-matrix theory. The analytical form of the R-matrix and 

the interpretation of the properties, as the reduced width amplitudes in 

the Breit-Wigner energy resonances expression, is given in Ref. 8. The 

reduced width is defined as the alpha decay width divided by the barrier 

penetration factor. 

The R-matrix in general is calculated in terms of the logarithmic 

derivatives, of the form, 

(35) 

where u is the outgoing and where L depends on the channel radius c c 

Pc = (r n2 /2u )1/2 and u ' = (du /dr). The radial wavefunctions can be c c c c 

expressed in terms of the regular and irregular Coulomb wave functions, 

u = G +iF (note that usually the definition of channel includes angular c c c 

momentum, ,Q,). 

The diagonal form of the S-matrix can be expressed in terms of a 

phase shift as U = e-2i~ for pure elastic scattering [where for pure 

Coulomb phase shifts ~ = tan - 1 (F/G)]. The S-matrix, or scattering matrix, 

is given by 

S = U- l VU (36) 

where U is a unitary symmetric matrix, and 

v 1 + 2iPl/2 (1 _ RL) -1 Rp1/2 (37) 

where R is the symmetrical R-matrix, L is the logarithmic derivative and 

2 2 P is the barrier penetration matrix, or P = p/ (F + G ) at nuclear radius, 

Ro and p = kr for wave number k and radius r of the alpha particle in the 
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asymptotic region. These expressions hold for each partial wave ~ and we 

have omitted the channel subscripts. 29 Equation (37) shows the form 

relationship of the R-matrix and S-matrix function. We can write the 

expression for alpha decay constant A~ in terms of the reduced width of 

31 Thomas, Y ~ as 

= (38) 

(we have included the partial wave subscript, ~). The recent paper by 

H. M. A. Radi, A. A. Shihab-Eldin, and J. O. Rasmussen present a brief and 

very useful review of the alpha decay problem with a discussion of the 

decay process for doubly odd nuc1ei.
59 

The R-matrix can be separated into two parts in the one-level R-matrix, 

, 
R = Ro + R , or 

R' = (39) 

where the R' part is similar to Wigner's resonance form and RO comes from 

contributors not included in the A sum singularities which occur at E ~ EA. 

The usual form of the R-matrix still depends upon the potential parameters 

and this is why we plan to turn to the S-matrix approach8 which we presented 

in Section V of this paper. The scattering formalism is discussed in 

Section V.E. 

In Eq. (39), which is the one-pole approximation for the R-matrix 

in terms of the reduced width YA' EA is the resonance energy. The YA are 

related to the real parts of the radial wave function 2. 1/2 as Y - (11 /2].lr c) uA· A -

We have associated poles in the S-matrix (see Section V.A.2). The pole 
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terms in Eq. (39) can be used to construct the resonance decay cross 

section. Distant pole terms are considered to give rise to a background 

contribution (see Section V.I.). 

Causality and unitary are handled naturally and efficiently in the 

R- and S-matrix formations. In our Ref. 3 we base our calculations on the 

60 
generalization of the Casimir time-dependent alpha decay theory and 

introduce a new radial partial wave defined such that the R-matrix and 

decay width no longer depend on the channel radius and therefore we are 

able to attempt to calculate absolute decay widths. 

C. Derivation of the Decay Width Formula 

1. Mang microscopic shell-model time-dependent alpha 

decay rate theory 

18 
H. Mang developed a theory to take into account the influence of 

nuclear structure on alpha decay. The theory was successful enough in 

explaining the fine structure of alpha decay in the Po region, it led 

to further exploration of this type of model. The relative intensities 

of transitions which lead to various states (ground and excited) in the 

daughter nucleus and the coefficients of alpha-gamma angular correlations 

were obtained with reasonable agreement with experimental values. 

In Ref. 57, H. Mang derives the expression for the decay constant 

which is then applied to discuss the ground-state transitions of even-mass 

and odd-mass alpha emitters in the region of 208pb . The nuclear wave 

functions are approximated by shell model wave functions and reasonable 

. 18 57 agreement is obtained with experlmental data.' In an earlier version 

of Ref. 57 (see Ref. 61), derivations of the formulas for deformed nuclei 
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are also given. The present derivation of the alpha decay width is similar 

toH. Mang's of Refs. 57 and 61. 

2. Time-dependent Schrodinger equation: Decomposition of the 

Hamiltonian, parent, daughter wave, and alpha wave functions 

(in the asymptotic condition) 

We start from the time-dependent Schrodinger equation for a system 

of A nucleons (Z protons and N neutrons) 

HljJ(l ... A, t) := in ap(l ... A, t) 
at ( 40) 

The time-dependent wave function of the parent nucleus ~JM(l ... A,t) is 

expanded in the following form 

~JM(l ... A,t) := aCt) <PJM (l ... A) + ? f dE: bi (E:,t)ejM (41) 
1 

i where <PJM is the bound state wave function and eJM is the channel wave 

function; see Eq. (62) which defines the parameter b .. 
1 

i The channel wave function eJM is given by 

:= (42) 

where A is the antisymmetrization operator and the superscript i stands 

for the set of quantum numbers (ja~). The wave functions Xa and P~(E:,R) 

Y~(R) describe the internal and center-of-mass motion of the alpha particle 

respectively, and <I>~-m is the daughter nucleus wave function. The square 
Ja 

bracket is used to denote the angular momentum addition, and for Clebsch-

Gordon coefficient, C(~jJ;m M-m) , 

= 
\ m ~ M-m ~ 
L C(~jJ;m M-m) Y~(R) <l>j (xN) 
m 

(43) 
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Introducing this expression for ~ into the Schrodinger equation (40) 

we get a system of coupled integro-differential equations for amplitudes 

aCt) and b. (E,t). But this system of equations decouples and becomes 
1 

rather simple if one more approximation is introduced. We shall discuss 

some of these approximations, but first, we introduce the Hamiltonian for 

our problem. 

The Hamiltonian H is decomposed into four parts, 

H 
112 2 

+ VaN ( 44a) = HN + H -- v+ 
a 2]1 R 

4 A 
for VaN = :E :E vik (44b) 

i=l k=5 

where HN and Ha are the internal Hamiltonians of the daughter nucleus and 

of the alpha particle, respectively and the alpha nucleon potential can be 

written in terms of a two-body potential, vik . The wave functions ~jcr 

and Xa satisfy the following eigenvalue equations; 

HN ~. Jcr 
E(jcrH· 

J 

H X = E(a)X a a a 

(45) 

The alpha particle wave function f~(E,R) is defined as the solution of 

the equation 

( 46) 

and is normalized as follows: 

(47) 
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The one body potential U (R) for the alpha particle should be a 

determined so as to be consistent with Eq. (55) which appears later. 

One obtains an integro-differential equation of the type from Eq. (55): 

(48) 

-+-+ 
Unfortunately, the evaluation of nonlocal potential K(R,R') in terms 

of V N' <p"0 and X , being possible in principle, cannot ~e carried out a J a 

in practice because of the large number of nucleons involved and the vast 

number of exchange terms resulting in different integral types contributing 
-+ -+, -+ -+, 

to K(R,R ). The effects of the nonlocal term K(R,R ) is usually approxi-

mated by using a local velocity-dependent potential, such as for Ua(R) 

in Eq. (46). In practical calculations, we use the real part of alpha-

nucleus optical potential for U (R) as a first approximation, which is a 

determined phenomenologically by the analyses of alpha scattering experi-

ments. However, it should be noted that the effects of the dissociation 

and the distortion of the alpha particle are not contained in Ua(R); 

therefore U (R) is given by the first term of the optical potential, a 

(X [Y n <p" ] I V N I X [Y n <p" ]), and the exchange terms. a N JO a a N JO 

Because of the normalization condition of Eq. (47), we must solve 

Eq. (46) with the following conditions. Let us define the new radial 

wave function, uR,(R) by 

fJR,(R) = (49) 

where kR, is the wave number of the alpha particle in the asymptotic region 

for large Ro' Then the boundary condition is expressed as uR, (R) = 0 at 
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R == 0 and the asymptotic form is given by 

(50) 

The incoming and outgoing waves, ul-) and ul+) obey the well known 

expression 

= 

where F and G are the regular and irregular Coulomb functions. The scatter-

ing amplitude nt is related with phase shift 0t as 

= (52) 

and is determined by smoothly joining the interior wave function at the 

matching radius to its asymptotic form of the wave function. If we join 

the interior wave function to the outgoing wave only, the energy £L becomes 

complex (discrete) and the integration in Eq. (47) gives an infinite value. 

The solution for the amplitudes aCt) and b.(£,t), defined in Eq. (41), 
1 

will be given in Eqs. (61), (62) and (68). Using those expressions we 

can prove that the total wave function ~JM(l ... A,t) has only outgoing 

waves at the resonance energy, so long as the decay width is small. 

D. Real Bound State Wave Functions 

Before proceeding further, let us discuss the bound state wave 
60 57 

function <I>JM' H. Casimir and H. J. Mang gave in their papers that the 

orthogonality condition 

(53) 

is necessary to get unique solutions for the coefficients aCt) and b.(£,t). 
1 
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It is possible to prove that the orthogonality condition, Eq. (53), is 

satisfied for time, t going to infinity, i. e., for the "asymptotic wave 
62 . 

packet states," but not for all values of t. It would be natural to 

assume that ~JM is given by the usual shell model calculation, 

= o (54) 

where Hshell is the shell-model Hamiltonian. Since the wave functions 

i 
~JM and e JM are eigenfunctions of different Hami ltonians, they are not 

expected to be orthogonal to each other [see Eq. (42) and (43)]. As we 

shall see in Eqs. (81) and (82), the final expression for the alpha width 

i is given in the form of the transition matrix element between ~JM and eJM . 

As in the case of rearrangement collisions, the lack of orthogonality of 

~JM and e~M brings some arbitrariness into the expression of the alpha 

width. 63 But we avoid this arbitrariness by defining the perturbation 

which causes the alpha transition to vanish as R becomes infinite. 

i 
Since ~JM and e JM are not eigenfunctions of H .• let us denote the 

expectation values of H with re~pect to these eigenfunctions as Eo and E 

as 

and 

= E o (55) 

(56) 

We note that the nondiagonal matrix elements between open channel wave 

functions vanish because the channel coupling is neglected in this section 

(IV) (see Sections II and III, in which channel coupling is included). 

for i f j (57) 
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Inserting Eq. (41) into Eq. (40), we get 

" f abo . 
'k aa if. .¥- \' d 1 e~ 
111 at '!' + 111 fEat 

1 

(58) 

i 
(Note that the subscript JM of <I>JM and e JM is dropped from the following 

equations.) The following two equations are derived directly from Eq. (58), 

'.i< aa 
111 -at = (59a) 

(59b) 

i Since <I> and e , the bound state and channel wave function, respectively, 

have very little overlap in the alpha decay problem, (<I>le i ) and (<I>IHle
i ) 

will be very small quantities. 

For the two groups of nucleons, as a daughter nucleus and an alpha 

particle [see Eq. (45) and (46)], we have ~.~ and X as the internal wave 
Jv a 

functions of the daughter and nucleus, respectively. 

If ~. ~., , and X X , a.re bound state solutions, then the following 
JC5 J C5 a a 

holds 

(60) 

for R>Ro with Ro the matching radius. The meaning of this relation is 

always that when the alpha particle and the daughter nucleus are well 

separated in space the interaction between them is described by 

potential. Furthermore, VCR) approaches the Coulomb potential 

a si~ple 

2(Z-2)e2 

R 

rapidlY. For most purposes, therefore, it will be sufficient to use 
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instead of VCR) and R :::::l 8.5 f from scattering data on most o 

natural alpha emitters (the charge Z is the parent nuclear charge). 

These considerations led us to give the form of W(1 ... A,t) in Eq. (41) 

(see Ref. 57). If we denote coefficients a and b. as 
1 

a = aCt) exp(-i E~t) (61) 

(62) 

again aa/at and as./at are very small quantities for the alpha decay 
1 

problem for the asymptotic consideration considered above. 

Therefore, we may use the following approximations in Eqs. (59) and 

(60) : 

f 
abo . 

in I dE _1 (<I> I 81
) :::::l E 

. at 0 
1 

Then, Eqs. (59) and (60) become 

',l:. aa 
III at 

as· 
• x.. 1 
III -

at 

= 

= 

(63) 

(64) 

(65) 

(66) 

These equations are the same as Eqs. (3a),(3b) in Ref. 59; therefore, we 

can write solutions as 

a = exp{ -i (fl - if /2) tin} (67) 
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exp{ -i (6 - if 12) tin} - exp{ -i (E - E ) tin} 
_______________ 0 __ <e i IH - E I <I> > 

o 
6 - if 12 - (E - E ) 

o 

. 2 

l: pf I <<I>IH - Eole1>1 
dE: 

i 6 - (E - E ) 
0 

2rr l: I < <I> I H - Eo Ie i > 12 
i E = E +6 

0 

where the energy difference 6 is defined in Eq. (69) in terms of the 

(68) 

(69) 

(70) 

principal value P and is small. The problem of determining the decay 

constant is now reduced to the calculation of the matrix element 

<<I> IH-E lei> at E = E , since the energy shift 6 is very small and can 
o 0 

be neglected in the alpha decay problem. 

E. Alpha Decay W~dth Form~la 

Let us decompose <I> into two parts by using the following projection 

operators 

<I> = P<I> + Q<I> (71) 

where 

(72) 

Q = 1-P (73) 

It is to be noticed that 

(74) 

(75) 
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where Y~(R) is the conventional reduced alpha amplitude. Let us define 

H as follows. 
o 

(76) 

H = H + V N - U (R) o a a 
(77) 

where U (R) is the one body alpha-nucleus potential defined in Eq. (46); a 

in other words, (Q4> I Ua CR) lei} = o. Then, the matrix element (¢IH-E lei) 
o 

using 

H lei} = E I ei } 
0 

Let us rewrite the expression for the 

f = 27T L f. 
i 

1 

where the partial width f. is given by 
1 

r. = 
1 

decay width as 

fi = 2n l<oiVaNiSi) - t <Y~(R)iUai"'~(R)I:=E 

(78) 

(79) 

(80) 

(81) 

(82) 

o 

In Eq. (82) the partial width f. is given by the transition matrix 
1 

element between the bound shell model wave function and the channel wave 

function and the perturbation which causes the alpha transition is given 

by V N - U. The partial width is expressed in terms of the bound state ¢, a a 

channel·wave function e, and alpha particle wave function ~~. 
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F. Four Nuclear States in the Real Bound-State Wave Function 

In Eq. (82) we have expressed the partial decay width r. in terms 
1 

of ~ (bound state wave functions). We can discuss models of ~ in terms 

of the comparison of states. The state of the four nucleons included in 

~ has the following five possible components: 

1) separated four nucleons , 

2) 2-particle cluster + separated two nucleons 

3) 2-particle cluster + 2-particle cluster , 

4) 3-particle cluster + one nucleon (but does not 

have a cluster component) , 

5) 4-cluster or the reduced alpha width Yl(R) . 

Since VaN is the sum of two-body forces, we may express the general 

character of the new formula. Eq. (82), the alpha barrier width, as 

a: (formation probability of 3-particle cluster) 

x 1< (3-partic1e cluster + one nucleon) 1 VaN 1 a cluster) 12 (83) 

but in the ordinary formula, r a: (formation probability of a cluster) a 

(see Fig. 11 as a schematic illustration). 

We usually define'the reduced width by dividing the decay width by 

the barrier penetrability calculated at some radius. However, the reduced 

width, calculated by the ordinary formula, depends only on the configura-

tions of four nucleons inside the nucleus, and does not depend on the 

energy of the decaying alpha particle. Furthermore, in the ordinary 

formula the angular momentum dependence of the reduced width appears 

only through the geometrical factors. These are due to the neglect of 

the boundary condition required in R-matrix theory. On the contrary, our 
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P 8-­
F 
H 

Fig. 11. 

208 Pb 

XBL 783- 2446 

A schematic representation of the capture of 
a neutron (dark circle) in the 208pb al~ha decay 
daughter nuclear potential well from a He (alpha) 
particle, leaving a 3He proton cluster (protons 
are denoted by cross-hatched circles). The 
captured neutron excites a particle-hole state in 
the 208 pb nucleus. (The particle, neutron is 
termed P, the Fermi level F, and hole state as H.) 
Higher order exchange terms may also be considered, 
such as two-particle and two-hole states. 
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reduced width depends dynamically on the energy and the angular momentum 

of the decaying alpha particle, through ~i(€,R) in the transition matrix 

element. 

The new formula, Eq. (82), for the decay width has a great advantage 

since it does not depend on the radius parameter and the boundary condition. 

So, in principle we shall be able to calculate even the absolute value 

of the decay width by this formula. On the other hand, Eq. (82) requires 

us to do fairly difficult numerical calculations. D. H. Wilkinson64 

raised the question concerning the structure of the nuclear surface, 

especially on the formation of alpha cluster at the surface. In the next 

section the method of calculation is illustrated for two cases of simple 

alpha decay. 

G. Practical Treatment of the Unified Alpha Decay Theory for 
2l2po to 208pb and 2l0po to 206pb 

L . d h 212p d 210p d 1 h d et us conSl er teo an 0 groun state a p a ecays. 

There are two kinds of the matrix elements in Eq. (82). The calculation 

of the second term is straightforward, since y (R) is just the reduced 
o 

amplitude, which is calculated with the ordinary formula. In order to 

calculate the first matrix element. we expand the parent nucleus wave 

function in terms of the daughter nucleus wave functions, {¢n}' 

CPo =: L (84) 
mn 

for the index m which specify the state of four nucleons and index n 

which specify the daughter nucleus and for expansion coefficients a mn 
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To get some feeling for the practical calculation using Eq. (82), 

I . d h 212p ( d ) d 208pb ( d ) et us conSl er teo groun state ecay to groun state as 

the simplest case without channel coupling. Using the approximation of 

Eq. (49), we get from Eq. (82), 

r = 2'IT I<<p Iv Nix [yO <I> J"" (R) > - <y (R) IU Iml (R) >1
2 

o a a 0 0 10 0 a Yo (85) 

where ¢ and ~ are shell model wave functions for the ground states of o 0 

212po and 208pb , respectively.3,21 There are two kinds of matrix elements 

in the absolute value square bracket. We shall discuss each term of Eq. 

(85) separately. 

To calculate the second term in Eq. (85), we may use the real part 

of the alpha-nucleus optical potential, U~pt, for < X [yO <1>] 1 V NIX [yO <I> ] > , 
1 ao a aoo 

where y (R) is the reduced amplitude which is easily calculated with 
o 

ordinary formula. The radial behavior of y (R), u~Pt, and ~ (R) are 
010 

given schematically in Fig. 12. 

To calculate the first term in Eq. (85), we expand the parent nucleus 

wave function <Po in terms of the daughter nuclear wave functions {<I>n}' 

as mentioned before in Eq. (84), to obtain Eq. (83). We may use the 

A 
approximation in which < <I> 1 E v. k I <I> > is replaced by 

o k=5 1 0 

of the i:th nucleon-nucleus optical potential u~pt and 
1 

the real part 
A 

<<I> IL: v· k 1<1> >, 
n k=5 1 0 



-96-

lJ ?pt 
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---~R 
/ 

XBL 183 - 2447 

Fig. 12. A schematic representation of the radial behavior 

of y (R), U~Pt(R), and seeR) are plotted. 
1 

-;". -.. -
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wi th n # 0 neglected because the latter are generally much smaller than 

the former. Then, the first term becomes 

4 
(<I> I V N I X [yO <p ] ~ (R) > o ex ex 0 0 1'0 

=·(La ljJ (123 mo .m 4) I:E u. I X yO <p (R» 
i=l 1 ex 0 0 m 

(86) 

Hereafter, we shall consider only the (ljJ (1 2 3 4) I u11 X yO ifJ (R) > term; 
m ex 0 0 

we drop the opt superscript from U?pt and denote as U.. The states of 
1 1 

particles 2, 3 and 4 should be the same in the initial and the final 

states of this matrix element, since U
1 

depends only on the coordinate 

of particle 1. Taking this fact into account, we divide the calculation 

of (ljJm(l 2 3 4) IU11xex Y~ <po(R) > into the following three steps. 

The internal wave function of the alpha particle· is assumed to be 

a: exp( - ~4 L r~.) S (12) S (34) = 
1J 00 00 

= (
2S 3) 3/4 [S (3 4 )] _ exp -- - n2 + - p2 + ~2 S (12) S (34) 
TI3 2 2 3 00 00 

(87) 

where the coordinates are defined by H. Mang 
14 

-+ -+ -+ -+ 1 -+ -+ 
~ = r -r R2 = "2 (r

3
+r

4
) 

3 4 

-+ -+ -+ -+ 1-+ -+-+ 
P = r 2 - R2 R3 = 3" (r 2 + r 3 + r 4) (88) 

-+ -+ 1 -+ -+ -+ -+ 
n = r

1 
-R R = "4 (r + r + r + r ) , 

3 1 2 3 4 

and S is the spin singlet function for each nucleon pair. The value of· 
00 

. -2 
the parameter S used in the present study is S = 0.217 f ,and we have 

the normalization constant 

N = = (89) 
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The notations $a(l), $b(2), $c(3), and $a(4) are used for each nucleon 

in $ (1 2 3 4), respectively. 
m 

First, transforming the neutron pair wave function in $ (1 2 3 4) 
m 

+ + 
into the wave functions of ~ and R2, we have 

(90) 

+ 
Only the ~2=0 term has a non-zero overlap with Xa(~)' and the integration 

+ 
with respect to ~ leads to 

(91) 

+ + 
Second, transforming $b(2) <PN ~ (R2) into the wave functions of p 

2 2 
'* and R3, we have 

+ + 
= T n n [<Pn n (p) <PN n (R3)] , (92) 

n3 N 3N3N 3 3N 3 3 N 3 J 

+ 
Only the ~3=0 term has a non-zero overlap with Xa(p) , and the integration 

with respect to P results in 

(93) 

+ + 
Third, expanding Xa(n)<Pa(R) in terms of the bound state wave functions 

+ 
<PN ~ (R 3)' we have 

3 3 
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(94) 

Therefore the final expression for the matrix element becomes 

(t/J (1 2 3 4) I ull X yO ¢J (R) } mao 0 

where C is some geometrical factor. Similarly, we can calculate the matrix 

element of u~pt, for i=2,3,4. 

To get some feeling for the practical calculation with the new 

formula, we performed the numerical calculations using the point-size 

approximation for the internal wave function of the alpha particle. The 

expression for the alpha width becomes simple in this case, and is written 

as 

r a = 
1

1 A A -3/2 ,Q,p+,Q,nJ 2 2 2 12 
2TI 2" jp jn Na (4TI) (-) [2(Up + Un) - Ua] Rp Rn ¢)a r dr 

(96) 

where Rp and Rn are the wave functions of the bound states of the proton 

and neutron, respective ly, and f stands for V 2j + 1. Under the same 

approximation, the ordinary formula gives 

(97) 

37 where P is the penetrability defined by R. G. Thomas and R is the o 0 

nuclear radius. It should be noted that the same geometrical factors 
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appear in both formulas. 

P f · . f 212p d 210p d ure con 19uratlons or 0 an 0 were assume . The nuc1eon-

nucleus potentials Up and Un are assumed to be of a Woods-Saxon type 

and their parameters are taken from Ref. 29. For the nucleon wave functions 

Rand R , the eigenfunctions calculated from those potentials are used. p n 

Eigenfunctions of a Woods-Saxon potential for single particle levels 

d 208pb ' . . R f 30 aroun 1S glven 1n e. . The assumed configurations and the 

potential parameters are listed in Tables 16 and 17. 

TABLE 16 Th f " " f 212p 210p d 206p . e con 19uratlons or 0, 0 an 0 

Element Protons Neutrons 

212po 2 
(hg/ 2) 0 

2 
(g9/2)0 

210po 2 
(h9/ 2) 0 

206pb (P 1/2) 
-2 

TABLE 17. Parameters of nucleon-nucleus potentials 
(taken from Ref. 36) . 

----"----_._-----_. 
Vp V r a A r n 0 c 

(MeV) (MeV) (f) (f) (f) 

58 44 1. 27 0.67 32 1.27 

It is well known that considerable ambiguities exist in the value 

of the parameter for the alpha-nucleus optical potentials. Several 

potentials, which give the same phase shifts, will also give the same 
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24 
calculated scattering cross section. L. McFadden and G. R. Satchler, 

65 
and also W. J. Thompson, G. E. Crawford, and R. H. Davis have made detailed 

analyses of the scattering of alpha particles and studied these ambiguities. 

From Table 3 in Ref. 30 we constructed four sets: the potentials #3, #2, and 

#1, for the Bi target element, and #3 for the Au target, and used these to 

calculate our Ua(r). Since the imaginary parts are not needed for our present 

purpose, only the real parameter values of the four sets are listed in Table 18. 

TABLE 18. Parameters of alpha-nucleus potentials (taken 
from Ref. 24). 

Set Va ro a r l c 
(MeV) (f) (f) (f) 

(A) 177.3 1.342 0.569 1.3 0.144 

(B) 124.7 1.380 0.566 1.3 0.142 

(C) 58.8 1.454 0.560 1.3 0.142 

CD) 168.7 1. 378 0.517 1.3 0.137 

The alpha wave functions ~ (r), distorted by these U (r), are 
a a 

66 calculated using the computer code WAFFLE. In Figs. 13a and 13b we 

plotted r~a(r)/~ for 212po and 210po , respectively, where Po is the 

-2G penetrability, e It is seen that the numbers of the half wave-length 

in the nuclear well are 13, 11 and 5 for the set (A), (B) and (C), 

respectively. Set (D) produces the same number of nodes as set (A), 

but the positions of the nodes are shifted slightly. Various potentials 

and the products of the four nucleon wave functions are plotted in Fig. 14. 

2 2 
Numerical integrations of JU(r) Rp(r) Rn(r) <pa (r)r 2 dr are made with 

the integration mesh of 0.1 f. In Table 19 we present the calculated 

212 210 results for Po and Po decays. 
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·I~~~:' -f 
i . t. P 

r(f) 

XBL783-2444 

The alpha particle wave functions ~ (r) for 212po decay 
are illustrated for the potentials ~A), (B), (C), and 
(D). For convenience the quantities r~a(r)/~ are 
plotted, in which Po is the penetrability. The 
notation i.t.p means the inner classical turning point. 
The unit of the ordinate scale is f-1/2 MeV- 1/ 2• 
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Fig. 13b. The alpha particle wave function for 2l0po decay 
are plotted. The others are the same as in Fig. 12. 
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Fig. 14. Various potentials and the products of the four 
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TABLE 19. 
. 212 210 Absolute decaywldths for Po and Po.alpha decays. 

I. 212po 'With Ea = 8.81 MeV 

Present 
Experi- Ordi-

(A) (B) (C) (D) ment * nary 

P 0.39 x10-13 0.39 x10-13 0.30x20- 13 0.43x10- 13 
0 

ra (MeV) 1.4.x 10-16 3.3x10-15 4.8x10- 15 1.0 x 10- 18 1.5x lO- 15 ~10-22 

110 -7 real. /rexp. -1 -3 O.92x10 2.2 3.2 O.68x10 

II. 210po 'With E == a 5.33 MeV 

- Present 

(A) (B) 
Experi- Ordi-

(C) (D) ment nary* 

P 0.66x 10- 26 0.65x lO-26 0.45x10- 26 0.78x10-26 
0 

ra 3.5 x 10-32 6.5 x 10- 27 2.3 x 10-26 3.8 x 10-30 3:8X lO- 29 ~10-36 

real. /rexp. 0.92x10 
-3 1.7 x 102 6.2 x 102 0.10 ~10-7 

* Ro = 10 f is used in the ordinary formula. 
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From Table 19, it is seen that none of the potentials examined give 

completely satisfactory results for the absolute decay width and the best 

fit parameters for 212po is for case (B) and for 210po case (D) gives the 

best fit for r(cal.)/r(exp.). 

Unfortunately, none of the potentials examined here give completely 

satisfactory results. In order to find useful parameters for U (r), we CI.. 

have to make a more systematic paramet.er search, taking configuration 

mixing into account. However, it. should be noted that all four potential 

sets give the same penetrability and X2 -values but they give different 

values for the alpha width. The results indicate that this kind of 

calculation is helpful is removing the ambiguities of the alpha-nucleus 

potential parameters. 

The calculated magnitudes of the three overlap integrals 

f 222 
U (r) R (r) R (r)¢! (r) r dr p,n"CI.. p n CI.. 

are not proportioned to their well 

depths, V p,n,CI.. This suggests that the inner region, where the potential 

is flat, gives little contribution to the overlap integral due to the rapid 

oscillation of ~CI..(r), and the main contribution comes from the surface 

region. The densit.y of four nucleons R2 R2 
P n 

at the nuclear surface is 

enhanced by configuration mixing, so that the mixing provides us with 

larger values for the decay widths. In this respect, the potentials (A) 

and (D) are expected to be superior to (B) and (C). 

Absorption effects in the nucleon interior may mandate the use of 

an absorptive part of the nucleon potential. Inclusion of such a term 

would give an attenuation wave function in the nuclear interior (see Figs. 

12 and 13). It has been suggested by S. D. Kadmenskii, V. E. Kalachi ts, 

66 
and A. A. Martynov that the alpha wave functions inche nuclear interior 
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region should attenuate to zero at the nuclear origin and that the use 

of this boundary condition constraint will yield better fits to absolute 

decay rates and give us less dependence on the nuclear well depth parameter 

(see Table 18). Although we have eliminated the ambiguities connected 

with the choice of the effective cut-off radius, R ) of the nuclear force, o 

we still have dependence on other nuclear potential parameters, particu-

larly the well depth felt by the alpha particle in the nucleon potential, 

H. Concluding Remarks on the Application of the Unified Reaction 
. 212 210 Alpha Decay Theory ApplIed to Po and Po Alpha Decay 

By making use of the time-dependent perturbation method, we have 

been able to get a new expression for the alpha decay width. The new 

formula is presented in a form which is independent of the nuclear radius 

parameter and the boundary condition. Previous microscopic alpha decay 

theories inevitably neglect the problem of the mismatch at the nuclear 

radius, of logarithmic derivatives of the alpha wave functions in the 

inner and outer regions. The new theory has. an advantage over the 

previous ones, in this respect, and makes it possible to calculate the 

alpha decay rates in a more rigorous way.67 

Our formula [Eq. (82)] has the same form as the general expression 

for the level width which is given by Feshbach in his unified theory of 

I 
. 23 

nuc ear reactIons. His theory has been applied often to the interpre-

tation of the nuclear reaction in which the incident particle is a nucleon,58 

but it has not ever been applied to the reaction induced by a composite 

particle. Furthermore, there is a remarkable difference between the alpha 
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decay and the nuclear reaction with respect to the excitation energy of 

the compound (parent) nucleus. The compound state <P in nuclear reaction s 

is generally very complicated and it is difficult to know to what extent 

<Ps contains the so-called doorway state, which can be depicted as the 

two particle-one hole configuration for the nucleon-induced reaction. 

On the contrary, the corresponding state, <PJM in alpha decay, is the 

ground state or the low-lying excited state of a parent nucleus, and is 

known in the sense of the current nuclear shell model. Unfortunately, at 

present there are considerable ambiguities in the parameter values of the 

potential. Equation (82) contains the one-body alpha-nucleus potential 

67 
in it. M. Rogenberg and L. Wilets give a discussion about the magnitude 

of the alpha potential which may be useful for application to this present 

problem. Further parametric sources may yield improved results and reduce 

the ambiguities in the calculation of the alpha width. 

Although we have eliminated the dependence of the alpha decay width 

on the nuclear cut-off radius, R . we still have ambiguities with the 
o· 

nucleon well depth. We have more properly isolated the oscillating 

interior solutions to the exterior exponential solutions at the nucleon 

radius, R. We have considered only the real part of the nucleon potential 
o 

and have excluded channel coupling. 

To more properly apply boundary conditions in the nucleon interior 

for the attenuation of the alpha wave functions, we will include channel 

coupling and introduce the complex absorptive part of the Woods-Saxon 

potentia]. The coupling of a particular alpha wave to other channels by 

the absorptive part of the optical model potential will cause damping of 

the interior solutions, so that as r approaches zero, ~Q,(r) also goes to 
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66 
zero. The inclusion of channel coupling in a complex potential may 

free us from the alpha decay width dependence on the well depth parameter. 

In the next section, we examine in detail a resonance S-matrix 

coupled channel model in a complex nucleon potential, in which we calculate 

the alpha decay resonance width from the energy position of resonance loops 

in the complex S-matrix plane "Argand" diagrams. 
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V. ELASTIC AND INELASTIC COUPLED CHANNEL ALPHA 

SCATTERING THEORY AND RESONANCE DECAY WIDTH 

A. Introduction to Reaction Theory and Compound Nuclear Formation 

1. Historical background 

11 In 1937, H. A. Bethe presented a quantitative description of 

nuclear reactions in terms of the compound nucleus mechanism suggested 

earlier by N. Bohr. 68 The time-dependent perturbation theory of V. H. 

Weisskopf and E. P. Wigner,69 applied to atomic systems for resonance 

absorption model with subsequent emission of optical radiation, was 

d d . b . d P W' 70 d G B . 71 a opte to nuclear reactlons y G. Brelt an E. . 19ner an . relt. 

In this model, the nuclear reaction proceeds via an isolated, long-lived 

intermediate resonance states and gives excellent fits to observed cross 

sections. This intermediate state proceeds through a compound nucleus. 

The strong nuclear force leads to a sharing of the available energy by 

all the nucleons and the long life is due to the small probability of 

the energy being concentrated in a mode that corresponds to disintegration 

by an "open" or energetically allowed channel. 

The P. L. Kapur and R. E. Peierls 72 model is formulated in terms of 

a complete set of "formal" states of all particles defined in a volume of 

nuclear size with fixed boundary conditions on the nuclear surface. This 

model is readily adaptable to the compound nuclear description which is 

done by identifying the complete set of formal states with the states of 

the compound nucleus. These boundary conditions are energy-dependent 

and complex and the boundary conditions of Kapur and Peierls can be made 

explicit by use of the Wigner energy-independent boundary conditions. 

The Kapur and Peierls energy dependence is equivalent to the presence of 
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the level shift factor which occurs explicitly in the Wigner formulation. 

In expanding on the work of Kapur and Peierls, E. P. Wigner and 

L. Eisenbud 73 introduced the concept of the R-matrix in 1947, in which 

the physical parameters of the theory are interpreted in terms of their 

physical significance. The reaction theory can account for both compound 

nuclear formation and "direct reaction" models, in which direct scattering 

occurs without changing the internal structure of the two groups of 

nucleons. 

Reaction theories divide configuration space into two regions: 

the internal region in which the nucleons interact strongly and form a 

nearly stable configuration identified as the compound nucleus state; 

the external region of channels corresponding to various ways in which 

the compound nucleus can disintegrate. In the external region channel 

coupling is non-nuclear but can be Coulombic or centrifugal. The dividing 

surface between the internal and external region is taken to be the 

various channel radii, r , which is roughly equal to what is usually 
c 

identified with the nuclear radius, R. A complete set of wave functions 
o 

for the internal region are obtained as solutions to the Schrodinger 

equation and homogeneous boundary conditions at the channel radii. 

Model dependence comes into the picture in the internal region when 

the wave function,derived from the expansion in a complete set and the 

form of the nucleon potential, utilized and in the external region by 

the use of the wave functions for the description of the disintegrating 

7 system in each channel. The external region of configuration space 

contains the regions wherein the nucleons are grouped into two well 

separated stable clusters so that we consider the wave functions in 

the asymptotic region" 
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To more accurately describe the interaction between two complex 

nuclei, the potential would, most likely, be a function of more than the 

separation of their centers. Parametrization of the changes of shape or 

internal parameters should be included. For the present simple assump-

tions, we eliminate most of the coupled equations except those describing 

the elastic and a few inelastic channels. This leads to the effective 

potential in the remaining equations. 

2. The R-matrix theory and decay process 

In the R-matrix theory, we can define a set of states of all nucleons 

in which we can calculate the cross section. To calculate the cross 

section in terms of these state parameters, intermediate quantities are 

calculatyd, in terms of which the R-matrix is expressed. One of these 

quantities is the U-matrix or collision matrix. Other such intermediate 

parameters are the logarithmic derivative on the nuclear surface and the 

angular distribution of fragments. In the R-matrix theory the term 

"strong absorption model" is identified with those models in which the 

chance of collision without compound nucleus formation is very small, 

such as for high-energy scattering. We have found that compound nucleus 

formation does not occur at relativistic energies involving alpha and 

12C . . I . I' h d d' I' h I 74 pro] ectl es at varlOUS 19 t an me lum- 19 t target e ements. 

The present model is applicable to lower energies due to compound nucleus 

formation; also higher energies require the inclusion of a large number 

of partial wave channels beyond the calculational abilities of modern 

computers. 

The collision matrix UeE) is defined as the amplitude of the outgoing 

waves of a pair of nuclei or groupings of nuclei, bombarded against each 
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other with energy E, resulting from unit flux of bombardment. It follows 

that the cross section 0 is proportional to Iv12. The quantity V is a 

particularly useful quantity because of its ability to express the two 

very general physical principles: the conservation of probability flux 

(unitarity), and time-reversability (Pioncare'" invariance), which impose 

restrictions on the reaction theory. The collision matrix V must be 

unitary and symmetric. The matrices R and V are nondiagonal and the 

R-matrix depends on E, rc (approximately the nucleon radius) as well as 

the boundary conditions. Although the general form of R is unknown, its 

energy dependence, given by E. P. Wigne~ and L. Eisenbud, is of a simple 

one-pole form [see Eq. (39) in Section IV.B]. 

R(E) = I 
" 

E -E 

" 
(98) 

The label" runs over a complete set of states, the YA's are called 

"reduced width amplitudes," and the Y,,'s and E" depend on the nuclear 

radius and boundary conditions. The E" are the energy eigenvalues of the 

states '" and are the energies of the physically observed quasi-bound 

"resonance" states with singularities occurring at E = E,,' In applying 

the R-matrix theory to a reaction proceeding through a resonance level, 

only one term in the sum over" is kept and this leads to the well known 

"one level" cross section formula formulated by Breit and Wigner. 

A third major principle obeyed by the R and V matrices is that of 

causality which states that two nuclei cannot be scattered before they 

interact. Causality leads to the analyticity form of the R-and V-matrix. 

The V-matrix should be independent of the nuclei radius.
62 
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We define the channel radius of a pair of nucleon clusters, r , as c 

the minimum radial distance of separation of the pair at which neither 

one experiences any polarizing or strong interaction force from the other. 
:k 1 

In the most simple prescription, r c = Ro (AI + A~) where Ro is independent 

The interior region is defined as that region where. R < r • c 

G. Breit 75 defined the concept of channel for each split A = (A1 ,A2) as 

separate from the others by a region of zero probability, so that a given 

pair of nuclei in their channels cannot change directly into another pair 

or channel configuration. Such a change must take place indirectly through 

the interior region. 

Again, we can define a derivative quantity in terms of the radial 

wave functions, u(rc)' as LA = (rdu>'/uAdr)r=r' which is defined on 
c 

the nuclei surface [see Eq. (35) in Section VJ. One of the boundary 

conditions is that the logarithmic derivatives, LA is real, fixed and 

independent of the states A. We can relate the Green's function to the 

reciprocal of the logarithmic derivative u(r) = G(r,r ) (r d u/dr) c c r=rc 

where we have the resonant form 

(99a) 

The Green's function relates to the value of the wave function in the 

internal region to its derivative on the surface. The R-matrix function 

is defined as 

2 :k 
= (n /2 lJr ) 2. 

C 

R = G(r,r) 
c c 

= (99b) 

uA(r
C

) is the reduced width amplitude, so that R 
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is equal to the reciprocal of fIr " times the logarithmic derivative of 
c 

u at r, R = u(r )/r (du/dr) '. c c r=r 
. 76 c 

A. M. Sapersteln examines the radius-free reaction theory. The 

Wigner R-matrix formalism leads to energy-independent parameters as 

opposed to the Kapur-Peierls formalism in which the transition matrix 

has energy-dependent resonance parameters. The R-matrix is expressed as 

a sum of resonance terms and the transformation between the R-matrix and 

the transition matrix is given in detail in Ref. 76. See also Section 

V.J.l for the relationship of the R-matrix and S-matrix poles. 

3. Weidenmuller S-matrix theory and the relationship 

of the R-matrix and S-matrix to decaying states 

... 77 d' . fh . H. A. Weldenmuller presents a etalled discusslon 0 t e analytlc 

properties of the S-matrix in the multi-channel coupled Schrodinger 

equation formulation. Resonance phenomena in the reaction cross section 

is related to the structure of the S-matrix near a resonance pole in the 

complex energy and momentum plane. It is demonstrated that both the 

scattering wave functions and the elements of the S-matrix are dominated 

by the "wave function" for the decaying state in the vicinity of such a 

pole. The elements of the S-matrix are functions on a Riemann surface, 

the properties of which Weidenmuller presents in detail. 

The explicit expression for the S-matrix is presented in terms of 

a specific form of Green I s theorem integral. on the topological surface 

defined as the nuclear surface. The S- and R-matrix can be related via 

the logarithmic derivative on the nuclear surface. The theory is applied 

to two-channel elastic and inelastic scattering. The physical interpre-

tation of the Breit-Wigner resonance formula is discussed in the framework 
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of Weidenmuller's formulation o This model would allow us to examine in 

detail the relationship of resonance decay to the S-matrix pole position 

in the complex plane and the detailed structure of the Riemannian manifoldo 

We examined the S-matrix for the two-channel case as an initial 

approximate solution o The results were encouraging enough for us to 

proceed further with the S-matrix resonance model calculationo 

4. Feshbach reaction theory and the R- and S-matrix calculation 

of alpha decay rates 

In this "classic" unified theory of nuclear reactions, H. Feshbach7 

presents a reaction theory in which poles in the scattering matrix are 

identified with resonance states in nuclear reactions. A new derivation 

of the Breit-Wigner formula is given in which the concept of channel 

radius is not utilized and the model is extended to cases of overlapping 

resonances. The energies for levels of the compound nucleus (which are 

complex in the Kapur and Peierls72 formalism), the overlap integrals 

between the compound nuclear wave functions (in the internal region), and 

the wave functions in the external region corresponding to a specific exit 

channel can be used to calculate the amplitudes for various reactions. 

The reaction widths are proportional to the square of the overlap integrals. 

We can calculate the overlap of the compound nuclear states with the wave 

functions for a particular disintegration mode. The complex scattering 

amplitude of the "complex potential model" can be obtained from the 

diagonal entrance channel components of the transition matrix. H. Feshbach 

identified the real and imaginary parts of the scattering amplitudes which 

satisfies a dispersion-type relation with poles which identified with 

resonances in nuclear reactions. 

The R- or S-matrix can be formulated in terms of the incident and 

decaying states, relating this overlap with the decay width and decay time. 
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Resonant decay cross sections are associated with the pole strength 

function derived from the ratio of the reduced width to the energy level 

spacing.
13 

With the generalized one-level collision matrix of Wigner 

and Eisenbud,73 one can associate the decay width(in which the resonance 

energy is associated with a pole in the transition matrix)!l The 

transition matrix can easily be expressed in terms of the scattering 

matrix. A comparison between the single level approximation of the 

R-matrix and S-matrix theory is derived from many channel scattering. 

The single level approximation for the R-matrix is approximatey valid at 

energy E, if and only if there exists a pole of the S-matrix in the 

vicinity of E. With increasing width of the resonances, the disagreement 

between the single level approximation given by the R-matrix theory and 

a single pole approximation for the S-matrix increases. This is because 

the resonance parameters of the R-matrix theory are implicitly energy-· 

dependent (in the Kapur and Peierls model) while those of the S-matrix 

are not. The approximate R-matrix must preserve the unitarity of the 

S-matrix. 

Agreement between the absolute resonance width calculated from the 

R-matrix and S-matrix is optimum for narrow resonances. In Ref. 78 the 

criterion of the comparison of the R- and S-matrix calculation of the 

resonance width is given, including the discussion of the choice of the 

boundary conditions. 

Although the application of resonance theory to alpha decay is not 

new, some of the previous attempts have overlooked the important effects 

31 
of the boundary conditions on the decay rate. The decay rate can be 

related to the resonance width of a metastable state by the "golden rule" of 

r = niT (100) 
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which we used also in Section IV. 

The possibility of relating the absolute decay width of resonance 

decay of a compound nuclear state to the poles in the complex elements 

of the scattering matrix is of interest in illucidating a reasonable model 

of nuclear internal states. In a picture utilizing this method of 

calculating the decay width, it may allow us to calculate reasonably 

accurate absolute widths, which are not extremely sensitive to the nuclear 

optical model parameters. 

Our formalism of the nuclear reaction theory for alpha decay will 

be similar to the treatment of Lane and Thomas,8 and we will utilize their 

notation. In this formalism of alpha decay, where the alpha decay rate 

or decay width for alpha decay can be identified with a scattering event, 

one identifies a resonance width with a pole in the S-matrix. When the 

real and imaginary parts of the energy-dependent S-matrix elements are 

plotted and these are identified with a loop which appears in the unit 

phase circle, the residue of the pole of this loop can be identified with 

the energy of the compound nuclear resonance state. 

B. Formulation of the Solution of Coupled Equations for 

Scattering from an Even Nucleus 

1. Detailed formalism of the coupled channels 

First we divide the states into the natural and unnatural parity 

states. The natural parity states are defined as those with parity, 

J 
TI = (-) . Let there be n+l total states to be considered, including the 

ground state. We assign to each five quantum numbers, E , A , P , J . TI , 
S S S s· s 

where s= 1, ... n, and P is a convenient label which for vibrational states 

could be the phonon number. 
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The initial nuclear state is P1=0, J 1 =0 nuclear spin, and 1T1=+1 

parity. Consider an incident wave of orbital angular momentum ~; since 

J 1 = 0, the channel spin is Q,. The target nucleus can be di recUy coupled 

only to natural parity states.; the channels to which the incident channel 

can be coupled directly are those for which 

(101) 

where s spans over all the natural parity states. 

To solve for each ~ lying in some specified range ~1 < ~ < ~2 we 

start from the coupled radial Schrodinger wave equations with radial wave 

function solutions 

(L _ Q,(Q, + 1) + k 2 ) uQ, (r) 
d 

2 2 0 ~o 
r r 

= 

(102a) 

(l02b) 

There are then a set of N coupled equations for Q,", ~'" and so forth, 

where Q,' = I Q, - J I to (Q, + J) in steps ~f two. as do the sums. Thus for 

each Q" there are J+2 coupled equations. The Coulomb part of the inter-

action of the form VQ,'J,Q,"J in the external region is given by the form 

= (103) 

where ]J is the reduced mass, ]J = Ma,Mi (Ma, + MN) = 4MN(4 + MN), where Ma, 

is the mass of the alpha particle and MN is the mass of the daughter 

nucleus. (This formalism can be made general only for the division of 



-120-

the nucleons as (A1,A2).) In this problem we assume one of the clusters 

to be an alpha particle. 

The wave number of the alpha cluster is given as ka = (2~Ea/n2) and 

the relative velocity is given as va = n ka/~. The Coulomb parameter is 

2 
then given as n = 2Ze /nv for the alpha-daugher interaction and the c a 

Coulomb phase shift is given as crt = argr(l + t + inc). The dimensionless 

radial parameter corresponding to the dimensionless Coulomb parameter n 
c 

is given as Pa = kar, The center of mass energy is then Ecm = ~Elab/~a 

~Elab/4. The real part of the interaction potential used in our calculation 

can be written as the sum of three terms: VRe (r) = V t (r) + V c (r) + VN(r) , 

or the centrifugal barrier penetration energy V t (r) = t(t + 1)n2 /2~r2, the 

Coulomb potential, Vc(r) , and the nucleon Woods-Saxon potential. 

The Coulomb potential for the alpha-nucleon system, separated by r 

for an electrostatically sharp boundary at R on a uniform charge sphere, 
o 

is given by 
2Ze 2 

for r >R r 0 

V (r) = (104) c 
2 2 

(3 - (L) ] 2Ze for r <R 
Ro Ro 0 

where R is defined as the nuclear radius. It is assumed that the nuclear o 

and Coulomb radii are approximately equal. 

The nuclear potential of the Woods-Saxon form is given by 

Vo 
= [l+exp (r-Ro)/a] 

(lOSa) 

where R = rA l / 3 and R 
o 

= r (2 + A 1/3
), and where A is the scattering target 

o 

for an alpha particle. 

In Fig. 1, we show a representative example of a plot of potential 

208 VRe(r) for the alpha- Pb nuclear system. 
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We introduce a complex part to the nucleon potential, of the form 

iW/{exp[(r - Ro)/aJ} such that the nuclear potential, in general, is given 

by VN(r) = VRe (r) + VIm(r) or 

= 
Vo 

+ l+e(r) 
iW 

for e(r) = exp[(r-Ro)/a] and e(r) = exp[ (r - if )/a]. 
o 

(lOSb) 

The imaginary part 

of the nuclear potential is introduced to account for absorption into 

other channels. The total potential experienced by the interacting pair 

of nuclei (in this paper, one is an alpha particle) is VCr), which is 

complex because of the imaginary part of the nuclear potential. 

A major assumption of the model is that the effective interaction 

potential for a few quasi-elastic channels (elastic and several inelastic) 

will describe our system of two complicated nuclei. It is assumed that the 

real part of the potential 3 is represented by a figure of the typ~ shown 

in Fig. 1 for a local potential, for V = VN+Vc+V~, The modification 

potential by coupling to other channels is described by the introduction 

of a complex part of this potential. It may be that the potential is 

so strongly nonlocal and complicated in form for the region of overlap 

of the nuclear cluster that no simple parametrization such as presented 

here is adequate, but we feel that it is extremely useful to examine the 

use and limitations of this model. 

For positive energy channels, the radial wave functions ~~'J can , 
be most parametrically identified with the representation in which we 

have incoming (o.~ (r)) and outgoing (.J~(r)) which are known functions which 

can be expressed in general terms of J-type Bessel functions and the 

so-called collision matrix, U~ (see Section V.A.2). 
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JI, JI, 
The boundary conditions for r = 0 are that uJl, 'J and uJl, approach 

zero. For the asymptotic region, r approaches infinity. 

(l06a) 

for JI,' = I JI,-J I to J/,+J (l06b) 

Here ~JI, and tlJI, are known functions. 8 The constants U are unknown and are 

62 
quantities to be determined. 

We will examine these boundary conditions on our N coupled equations 

in more detail, but first we shall examine the representation of the radial 

JI, JI, 
wave functions, uJl,'J and uJl,o' In the next section we shall formulate the 

form of radial wave functions and the asymptotic conditions on uJl,' 

2. As~ptotic condi!ions of the radial wave fu~ctions 

The radial wave function ~JI, can be expressed as a linear combination 

as uJl, ~ UJI,~ -\lJI, in the asymptotic region. We can unite the outgoing 

wave as ~JI, = GJI, + iF JI, and the incoming wave as VJI, = GJI, - iF JI,' We use the 

linearly independent Coulomb solutions which are regular (FJI,) and irregular 

(GJI,) at the origin. The Wronskian of this pair is 

= 1 

79 which holds for all p = kr. We can unite FJI, = pjJl,(p) and GJI, = 

JI, 1: 8 
(-) (np/2) 2 jJl,-!z(p), for p = kr for the Bessel function jJl,' In the 

asymptotic region and JI, = 0, F JI, ~ sinp and GJI, ~ cosp. 

We can write uJl, in terms of FJI, and GJI,' Then uJl, ~ UJI,<9J1, -.JJI, = 

UJI, (GJI, + iF JI,) - (GJI, - iF JI,)' Collecting real and imaginary terms, then 

(107) 
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ut = Gt (UJ/, - 1) + iF J/, (UJ/, + 1) which asymptotically goes to UJ/, ~ cosPJ/, (UJ/, - 1) 

+ i sinpJ/,(UJ/, + 1). 

In Table 20 we demonstrate the asymptotic condition for u ~ U@-V 

for the computer program SCATER2, July scatter which we use to calculate 

our complex coupled-channel differential equations which we discuss in 

. 80 
more detail in later subsections of this sectlon. (Note that the coupling 

term is turned on in Table 20.) 

TABLE 20. A check on the asymptotic condition of the 
magnitude of the u~-\I term, giving comparison 
to those calculated by July SCATER2. 

U~-~ u(SCATER) 
R Re 1m Re 1m 

10.35 -3.8862x10 1 3.2410x10 1 -2.5530x10-6 1.9959xIO-4 

19.95 -1. 8474xIO- 2 3.0443 -1.3055XlO- 2 3.0426 

29.95 1. 1244xIO-2 -2.9319xIO- 1 L 0309x10- 2 -2.9104xIO- 1 

39.95 9.4782x10-4 1.6129 8.0748x10-4 1.6136 

51. 95 6.3798x10- 4 1. 7343 6.3798x10- 4 1. 7343 

As can be seen in Table 20, the radius R becomes larger, then u approaches 

the value of U@--~ for both the real and imaginary parts of uO -t:.i' and u 

(SCATER2) . We use R. = 0.05, mln 
R = 50., max 

J/, (min) = 60 
1 ' 

U1 = (0.9916, 

7.0219 x 10- 3), where the first term in the bracket is the real part of 

the scattering matrix and the second term is the imaginary part of the 

scattering matrix. In Section V.E we discuss the boundary conditions in 

further detail. 
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3. Enumeration of the parity states for the coupled equations 

In order to satisfy the boundary condition at infinity (or large 

but finite r) it is necessary to obtain J+2 linearly-independent solutions 

by defining different boundary conditions. 

Returning to our coupled Schrodinger equations Eqs. (102a) and 

(102b) , let the index s span, s = 1, ... m. For each J s there are, for 

R,;;;'J J + 1 channels R,',J to which the incident channel is coupled. s' s s 

We can enumerate these; let k=l correspond to the incident channel R"Jo ' 

For the other natural parity levels, we have the representation in Table 21. 

In each case in Table 21, the parity of the final channel is 

R,' 
(-) 'IT 

S 

R, 
(-) 

That is, they are parity conserving channels. 

TABLE 21. Enumeration of natural parity states. 

Channel 
number 

k 

1 

2 

3 

m 
N :: 1+2: CJs+l) 

m 
s=2 

Nuclear 
state 

s 

1 

2 

3 

m 

Nuclear 
spin 

J s 

J = 0 1 
J 2 

Orbital angular 
momentum 

R,+J 
m 

(108) 
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For the unnatural parity states, we again require that the channel 

parity be the same as the incident channel parity (-)~ 

= 

In this case, we have 

, 

, 
(-)~ 'IT 

S 
= 

~ = I~-J 1+1, I~-J 1+3 ... ~+J -1 s s s 

and there are J s such channels. See Table 22 for the enumeration of 

unnatural parity states. 

TABLE 22. Enumeration of unnatural parity states. 
---_. 

(109) 

(110) 

Channel Nuclear Nuclear Orbital angular 
number state spin momentum 

k s J s ~, 

------~----- ----------~. 

N + 1 
m 

Nm + 2 

N + J 1 m m+ 

N+J 1+1 m m+. 

N +J l+ J 2 m m+ m+ 

n 
N = Nm + E J s 

s=m+1 

m+1 

m+2 

n 

J 

J 

m+1 

m+2 

J 
n 

Al together there are N such states, 

N = N + N m n 
for 

m 
Nm = 1 + E (J s + 1) 

s=l 
'and 

1~-Jm+11 + 1 

1~-Jm+11 + 3 

~+J m+1 - 1 

1 ~ - Jm+2 1 + 1 

~+J 2-1 m+ 

~ + J - 1 n 

n 

Nn = L 
s=m+l 

J s 

(111) 
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coupled channels (for channels of the same parity and same channel spin). 

The first N are directly coupled amongst themselves. More precisely, m 

the incident channel is coupled directly to, and only to, the remaining 

members of the first Nm channels, and indirectly coupled to the other Nn 

channels. 

We will now write our set of coupled differential equations in a 

more convenient form for calculational purposes. We will write the total 

interaction potential as a function, o~'J(r), which, in general, is 

complex. Let 

+ VCr) + iW(r) + V (r) + c 
.Ii- 2 

V9,' ,J;9,' ,J(r) - kJ 

(112) 

in terms of the diagonal elements of the coupling potential, V9, f J;9,fJ and 

9, 
where the quantities V, W, Vc and V9,'J,9,'J are all given as function of r. 

For 9,' channel states, k~ is the energy which depends on the nuclear state 

(designated by a given value of s in Tables 21 and 22. We discuss the 

detailed form of the coupling potential in Section V.O. 

For each 9,' value in the range 9,~ < 9, < 9,~ (for 9,1 

max9,) , we want to solve the set of N coupled equations, 

9, + J s n 

d
2 9, 9, 9, L L 9, 9, 

u9,o (r) == 09,0 (r) u9,o(r) + V9, .9," J (r) U9,IIJ (r) 
dr 2 .' o. 's s 

9,"=I9,-J s l 
s=l 

(113) 

9, 9, 
Vn'J .n"J u9,"J 

N S·.N S' s' 
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where.Q,' = I.Q,-J 1 to (.Q,+J) insteps of two, s runss=1,n and s s 
n 

N = 1 + L: (Js + 1), see Table 23. By use of the notational charges given 
s=1 

in Table 23, we can write out our set of differential equations, represented 

in Eq. (113) above 

i -- u 
dr 2 I 

d
2 

-- u 
dr2 2 

for each .Q, as 

= 

= 

N 

DIU I +L V l;k 
u 

k 
k=2 

D u L: V2 ' k Uk + 
2 2 

ktz 
, 

N-1 

DNUN + L VN;k Uk 
k=l 

(114) 

.Q, 
the terms of the form, V.Q,'J . .Q,"J in Eq. (113), or VN,'k in Eq. (114) are 

s' s 
the coupling potential functions. 

TABLE 23. Relationship of angular momentum and nuclear indices. 

k = 1 ~ .Q, J=O s = 0 

k=2 ~. .Q,' = I.Q, - J 1 1 J1 
s = 1 

k=3 ~ .Q,' = 1.Q,- J 1 1+ 2 J
1 

s = 1 

k = J 1 + 1 ~ .Q,' = .Q, + J
1 

J
1 

s = 1 

k = J
1 

+ 2 -- .Q,' = I.Q, - J 2 1 J 2 s = 2 

k=N ....-- .Q,' = .Q,+J J s=n 
n n 
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For convenience we introduce indices k and p for k = 1, N, where 

N:: J+2 and p = 2,N; then 

k 1 -+ 5i, 
(115) 

k = 2 -+ IJI,-JI,J 

In this form, we can calculate the integration routine in terms of a set 

of differential equations. In Section V.E we set up these N second-order 

equations as 2N first order equations. For convenience we introduce new 

indices p and k in order to write out the form we use for solution in 

Section E. We define a channel in terms of the index, p. The coupled 

equations are, for each value of the entrance channel 
Nmax 

u" (r) = Dl (r) u
1 
(r) + (2f.\/n2) L VI, k (r) uk (r) 1 

(116a) 

k=2 
N 

u"(r) = D (r)u (r) + (2f.\/n2) I: V k (r) Uk (r) p p p 
kip 

p, 
(116b) 

for p = 2, ... N and where the total complex reaction potential function is 

D , and the coupling potential function is V k. 
P p, 

The total potential function has the form 

D (r) = 
p 

JI, I (p) [5i, I (p) + 1 ] 
r2 

_ k 2 
+ 2f.\ (V(r) + iW(r) + V (r)) 

p n2 c 

(117) 

Here 5i,1(p) designates the value of 5i,1 corresponding to the p,th channel, 

• 2 
called the channel lndex and kp is its energy which depends on the number 

state and which is the same for all p corresponding to the same nuclear 

state (elastic) for a given value of s in Tables 21 and 22. 

In this notation for our channel indices, our differential equations 

have the form 
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N 

2: VIp up 
p=l 

£' (£' + 1) 2) 
2 + k J Uk 

r 

for k = 2, ... N. We introduce the column vector of dimension N 

u =c) 

(118a) 

(118b) 

(119) 

In Section V.E we discuss the boundary condition in terms of the radial 

wave functions for small radius, 

°pl 
£ r 

°p2 
£' r 

A 

u (r) = (120) P 
°p3 

£' r 

for p = 1,N, where we choose radius as small, we generate N linearly-

independent solutions. In the next section (V.D) we discuss the coupling 

potential in detail. 

D. The Coupling Potential 

In this section we present a detailed discussion of the form of 

the coupling term in the complex differential equations given in Eqs. 

(102a) and (102b). The coupling term accounts for the exchange of angular 
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momentum and spin between the various exit channels. All of the radial 

wave functions, U,(l,IJ' and most of the coupling potential terms, V~IJI ,(I,"J I ' , 

are complex. The diagonal terms of V~IJI ,(I,IJI are complex while the , 
off-diagonal terms are real. The off-diagonal terms express the exchange 

of ,(I, and J. The diagonal terms correspond to "elastic" processes and 

the non-diagonal terms correspond to "inelastic processes." All potential 

terms are functions of the radial separation, r. 

1. Symmetry relations of the potential coupling term 

,(I, 
We can express the symmetry condition of V,(I,IJI ,(I,"J" and , 

as 
p 

::: I: 
(121) 

where L1 ::: IJ' - J" 1 and p J I + J" + 2]1, where 11 depends on J I and J" 

,(I, 
implicitly in the sum. The terms II. are real constants which depend on 

p 

the nucleon structure and therefore depend on the nuclear model under 

consideration (see also Eq. (27)). 

2. The coupling potentials V k 
p, 

Let us consider a particular p and k which correspond to 

p - pi, J I, 'IT I, .Q, I and k == P", J", 'IT", and ,(1,". Then we have 

v k(r) p, 
::: 

(122) 

where the integration is taken over all the nuclear coordinates, designated 

by ~, and over the direction ~ == e,¢ of ;, the radial coordinate. The 
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nucleon wave functions are ~p'J'rr'. We can then expand V(r,~) in 

multi poles , 

[see Eq. (128)J. 

where 

VCr, ~) 

Then we can unite V k from Eq. (122) above as p, 

~ 
V k(r) p, == I CL~(p,k) (p'J'rr' liT II P"J"rr") 

L L 

(123) 

(124) 

C~(P,k) _ C~(~'J' ;~"J") == (_),Q,'-~+J" WC,Q,'J',Q,"J";,Q,L)X(,Q,'lIyLII,Q,") 

(125) 

where W C,Q,' J' ,Q,"J"; ~L) are Racah coefficients and Y L are the reduced matrix 

elements. The form of the transition matrix and its reduced matrix 

elements depends on the specific nuclear model. We choose to look at the 

vibrational harmonic oscillator model for the coupling potential. 

3. Coupling Potential in the Vibrational Model 

In the vibrational model we can describe the nuclear surface as 

(see Section V.F also) 

(126) 

We can expand about the spherical shape for the interaction as 

VCr - Ro) - Ro (av) La Y + R~ (a
2

v) 
ax x == r-R All All 2 al X==r-R 

o 0 

V(r-R) == 

(127) 
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The transition matrix can be expressed in terms of the expansion about a 

spherical surface shape, 

a2~ L ~ (n + 1) (2A' + 1) 

Clr AA' 4~ 

We can define the reduced matrix element in two parts, 

and 

_ (P'J'~'IIL~(2A+ 1)(2A' + 1) (A A' 

AA' 4~ 0 0 

The we can express the coupling potential as 

Q, 
V k (r) p, 

:::: L 
L 2 

aVer) BL 
ar p,k 

+-

(128) 

(129) 

(130) 

where we express the matrices in terms of the indices p,k. The quantities 

CL(p,k), BL and EL k can be considered at known constants which can be 
p ,k p, 

used as input to our coupled channel code. 

conditions and the EL relates to energy. p,k 

equations in terms of these constants as 

" u (r) 
1 

:::: D (r) u (r) + 2)1 R 
lIn 2 0 

+ 

and, in general, for any p, 

The B L defines the boundary 
p,k 

We can then unite the coupled 

( 131) 
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u" (r) 2]1 aVer) N JI, 
= D (r) u (r) + R I c:B p k uk(r) p p p 2 0 ar 11 k ' 

2 N R iV(r) E9, 2}.1 0 I uk(r) (132) + 
112 2 ar2 k 

p,k 

for p = 2, ... N and where 

CBp,k = (133) 

recall that ]1 is the reduced mass. 

In the next section, we will discuss the form of the input 

parameters to the coupled differential equations in the program SCATER2. 

In the following section we present a more detailed discussion of the 

80 deformation parameters and other parameters that are input to the code. 

E. Numerical Integration of th~ Coupled Diff~rential~ations 

and Small and Large Radius Boundary Conditions 

In this section we formulate the SCATER2 program numerical calcu-

lation of the scattering matrix and discuss the use of the boundary 

conditions applied. As stated before, SCATER2 was written in order to 

solve the coupled complex differential equations for coupling between 

the excited states of the target nucleus. 

In principle, the integration proceeds from the nuclear origin. 

However, to avoid problems with singularities we integrate from small r o ' 

usually taken to be r. = 0.01 f. mIn 

To avoid possible problems with overflow in the numerical calcula-

tion at larger radii, we do not assign an arbitrary boundary condition 

but fit the boundary conditions of the asymptotic form of the wave functions 
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to the corresponding Bessel functions. We discussed this form in terms 

of the expression of the outgoing wave, in terms of the regular and 

irregular Coulomb wave functions. Introducing a vector notation for a 

given solution of the N equations, we set the boundary condition 

A _ 

u (r) = 
p 

where we define K2 as 
n 

- .Q,+1 
0pl (K

1
r) / (2.Q, + 1) ! ! 

o ,,(K
2
r),Q,'(2)+1 / (2.Q,'(2)+1)!! 

p .. 

(134) 

(135) 

where jl is the reduced mass and R is the Coulomb radius and the double 
c 

factorial refers to the inclusion of odd terms only. 

For each .Q,' (N), only one term in Eq. (134) is non-vanishing and 

r is a radius such that 

(K 1 r).Q,+ 1 

------ "" 
(n + 1) ! ! 

By solving the set of coupled equations N times, with initial conditions 

given above with p = 1, ... N, we get N sets of linearly-independent solutions 

~p(r) = p = I,N (136) 
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for a linear combination which can be chosen to satisfy the bqundary 

condition at R = R max' 

LaG (R) = 
P P P 

U1 ~1 - ~1 

VP1/P2 U2 <92 - J 2 

• / P /p UN /t'lN - tJN " 1 N ~ 

(137) 

where the outgoing wave in terms of the regular and irregular Coulomb 

functions is q = [G.Q,'(k)(Kk,R) + iF.Q,'(k) (Kk,R)]. TheEq. (136) and their 

first derivatives comprise the 2N inhomogeneous linear equations in the N 

coefficients, a and the N dimensional collision matrix elements, U. 

a
1
u
ll 

+ a 2u12 
+ .. . .. + aN u lN U1 (Qt + 0 .... = -~ 1 

a 1u 21 + a2u22 
+ ..... + aN u 2N + 0 - u2<9-2 .,. .. = 0 

a 1 uNl 
+ a

2 uN2 + ... + aN lINN + 0 -U ON = 0 N 

, I 

U1 ~~ + 0 -1:/' a 1 ull + a2 u12 + .. . +~ ulN - ..... = 1 

+ •••. to = o 

(138) 

I 
where u denotes du/dr. 

If one wants the actual solution with the appropriate asymptotic 

boundary conditions, it can now be obtained by using the initial condition 
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a1r.ll,+ 1 / (2 JI, + 1) ! ! 

a l(2)+1/ (2.11,' (2) + I)!! 
2 

u(r) = (139) 

Then we can impose the boundary condition in the asymptotic region for 

large r, by the use of 

I a u (r) = 
p p p lim R +00 

u (r) _ 
00 

q (r) - V'JI, (r) 

Sl-JI,,(r) - vt.ll,,(r) 

-~, (r) 

(140) 

These equations and their first derivatives give 2N equations in the N 

coefficient a and the N elements U. The entire procedure above is p p 

repeated for each JI, in the range .11,1 ~ .II, ~ .11,2 and thus we obtain a rectang-

ular array of the elements U~ as the calculational output of the 

calculation. 

F. Deformation Parameters i~~~Vibrational Coupled Channel 

Scattering Model 

The complex coupling potential form that we consider for the alpha 

scattering and subsequent alpha decay of light nuclei is taken to be as 

formulated for the vibrational model. In this section we give a detailed 
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description of the vibrational model. We can calculate nuclear spectro-

scopic information from alpha particle scattering data. Using the model 

developed by N. Austern and J. S. Blair Sl for diffraction of arbitrary 

:th . 
multipole excitation allows the amplitude for the ~ outgoing particle 

82 wave to be complex. We consider the strong absorption model for our 

alpha particle projectile where most of the absorption takes place on the 

nuclear surface. 
. 81 

N. Austern and J. S. Blair present a theoretical model of the 

inelastic scattering amplitudes which is formulated in terms of derivatives 

of elastic scattering phase shifts. The role of the dependency on the 

optical model parameter is minimized. The relationship between the Blair 

model and the Fraunhofer diffraction model is, for elastic scattering for 

a black sphere,where the scattering amplitude is expressed in terms of 

J-type Bessel functions. The applicability of the model is 

best for strongly absorbed medium-energy projectiles such as alpha 

particles which excite collective states of the nuclear surface. The 

strong absorption condition simplifies the Green's functions that enter 

the calculation for higher order processes (not presently considered). 

The scattering amplitude, in the adiabatic approximation, is calculated 

in terms of the transition probability which is dependent upon the angular 

momentum derivative of the scattering phase shift coefficients. Then, 

of course, the differential cross section is calculated in terms of the 

absolute value of the amplitude squared. The elastic scattering amplitude 

has the form 

00 

f(8) = f (8) + -~ '" ~ 2ia~ (2~ 1) (1 ) ( 8) c 2k l:o + x - n~ p~ cos (141) 
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where fc(8) is the Coulomb amplitude, a~ is the Coulomb phase shift for 

the ~:th partial wave amplitude, [a~ = argr(~ +.~ + 2n), where n = 2Ze 2 /nv, 

the Coulomb parameter]. The p~(cos8) are the usual Legendre polynomials 

of order ~ and k is the relative projectile target wave number. The 

Legendre polynomials for ~ = 0, 1, 2 are: 

PO(cos8) = 1 

PI(cos8) = cos8 

P2(cos8) = 

(142) 

The derivatives of the scattering phase shift dn~/2~ can be identified 

with the elements of the S-matrix. 

In the case for the bombardment of spin-zero particles on the 

zero spin (ground state) of the target, we can extract the single and 

double excitation amplitudes from the coupled channel calculation of 

83 
J. Wills. If we consider the part of the wave function that belong 

to an excited state of the target, having spin I and projectile MI , then 

the scattering amplitude for excitation of this state is the asymptotic 

amplitude of that part of the wave function, 

(143) 

-MI 
where a~ are the Coulomb phase shifts and Y~I (8,0) are the usual spherical 

harmonics. The quantities in brackets are the Clebsch-Gordan coefficients. 

The coefficients S~'I are the S-matrix elements for excitation of the 

nuclear excited state with spin I, with initial projectile angular 

momentum ~ and final angular momentum ~' . In our example we consider 
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24 the excitation of the excited states of Mg, through bombardment of alpha 

particles. The nucleus is treated as permanently deformed. For the first 

excited state, 1=2, the extended optical model potential which describes 

the projectile nucleus interaction is that which is appropriate for the 

rotational quadrupole excitation, 

U(R,r) = u(r - Ro [1 (144) 

where 8 is the polar scattering angle in the center-of-mass system, and 

. 81 
¢ = O. N. Austern and J. S. Blalr calculate the S-matrix elements for 

24 the case of Mg. Using optical model parameters with a larger absorption 

term, W ~ 50 MeV, for E
lab 

= 42 MeV and with V ~ 90· MeV, plots are made for 

R, R, 
Re SR,'2 and 1m SR,'2 vs. I" = (R,+R,')/2. We make similar such plots and 

compare results. 

G. Coupling Matrix in Rotational Nuclei 

The energy level structure of even mass spheroidal nuclei can be 

associated with contributions from collective vibrations of the nuclear 

surface as well as rotational degrees of freedom. These oscillations 

preserve the system's axial symmetry (as stated in Section iI.E) and are 

described by the well known Sand y "permiate" quadrupole rotator degrees 

of freedom. 

The shape of the nuclear surface in the body-fixed coordinate 

t l'S' by53 sys em glven 

RC 8 ,</» = = R + oR 
o 

(145) 
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The angles of the spherical harmonics are in the frame of the body-fixed 

axis. The independent o',AV can be written in terms of the deformation 

constants SA where A is an integer. 

0',2 0 = 13 2 cos 13 1 , 

0',2 2 = 0',2_2 = 1/Y2 13 2 sin 13 1 , 

0',6 0 - 136 , 

a = 0 , 1110 (146) 
6,1l 

0',4 0 = 134 cos 13 3 , 

0',4 2 = 0',4,_2 = 1/V2 134 sin 13 3 
cos 135 , 

0',4 4 = 0',4,_4 = 1/'-'2 134 sin 13 3 sill 135 , 

so that 132 and 134 are the deformation parameters, 13 1 corresponds to y and 

B3 and 13
5 

are azimuthal asymmetry parameters in the A = 4 deformations. 

Expanding in a Taylor series about the spherical shape 

VCr - R) = 
(-oR) s 
-s-j- (147) 

We can unite (oR)s in terms of spherical harmonics referred to as space 

fixed systems in terms of the deformation functions)9~v. For the first 

term we have 

oR (148) R = 
o 

Or, in general, for any power of s, as 
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L 
(149) 

LK 

where O~:~ is expressed in terms of an expansIon of »~K and YLM coupled 

by three j-symbols for L = 0,2,4,6,8, and for K even and -L .;;;; K .;;;; L, and 

from symmetry considerations 0L,K = 0L,_K. If we confine our attention 

to the K=O and K=2 bands then we need only these terms in the expansion 

V (r-R) 
coup VCr - R ) + L YLM o LM [ 

(-R) s 

.@.~K sL _o_ 
s! 

o (s) 
L,K 

the term in brackets, FL,K(r) is called the radial form factor, 

00 

=2: 
s=l 

s! 
o (s) 

L,K 

for L=0,2,4,6,8, etc. and K';;;;L and K';;;;2. Then Eq. (150) becomes 

aS~ ] 
3r 

(150) 

(lS3a) 

We can then calculate the coupling matrix elements from the non-spherical 

concentration having the general form 

v 5/,J. 5/," i' , = 

= I C (5/, I J';5/,"J") L (J'K'IJ}-L J"K")p(r) 
L L K MK L,K 

(lS3b) 

where CZ(5/,'J' ;5/,"J II) are the Clebsch-Gordan coefficients. The values of 

s, K, and J run as in Table 24(a), and Land K as in Table 24(b). 
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TABLE 24. The relationship of indices s, K, J, and L, K. 

(a) (b) 
Input indices for Relationship of 
coupling potential indices Land K 

s K J L 0 2 4 6 8 

1 0 0 K 0 -2 -4 -6 -8 

2 0 2 0 -2 -4 -6 

3 2 2 2 0 -2 -4 

4 2 3 2 0 -2 

4 2 0 

4 2 

6 4 

6 

8 

The differential cross sections involving populations of rotational 

bands of even-even deformed nuclei, up to and including A = 6, are fitted 

with combinations of the SA deformation parameters. In this analysis it 

it assumed that the nucleus is a perfect rotor (i.e. stretching and volume 

84 changes are neglected) . The spin and parity of the rotationally deformed 

. TI + + + + 
nuclei are glven as J = 0 , 2 , 4 , and 6. Some of the deformation 

parameters SA are represented schematically in Fig. 15. 

If the deformation parameter S2 is small it can be related to the 

intrinsic quadrupole moment, Q , by 
o 

3 
(Z - 2) R~ S2 (154) = 

f h f d 1 h d · . b' 20 or t e un orme nuc ear c arge lstrl utlons. 

The deformation parameter used for our 24Mg calculation are given 

in Table 25. 
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XBL 783- 2447 

Fig. 15. Schematic relationship of the deformation parameters SA 
for A even and for the rotational excitation of the 
ground state rotational band. 
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TABLE 25. Deformation parameters used in the 
24 . 

Mg 
calculation, SA' 

S(1) S(2) S(3) S (4) S(5) S(6) 

0.29 0.35 1.571 0.12 0 0 

H. The Nuclear Potential Parameters 

F 24Mg · 1 l' h f f th or our case 1n our present ca cu at1on, t e orm 0 e 

complex nuclear potential is the same as in Eg. (105), 

:: 
1/3 -v /exp [l+(r-RA )/a] 

o 0 

and (155) 

:: [ - - 1/3 -] -w / exp 1 + (r - r A ) / a o 

for a total potential V :: VRe(r) + VIm(r). 

In Table 26 we present the parameters used and compare these to 

. . 1 b h h' h' . 24,85 Slm1 ar parameters roug t to t 1S researc er s attent1on. 

(a) 

(b) 

TABLE 26. Complex Woods-Saxon potential parameters: 
(a) the parameters used in our calculation; 
(b) parameters from Ref. 80. 

Real nuclear potential Imaginary nuclear potential 

Parameter Value Parameter Value 

~ 
V -100. MeV 

0 

r 1.38 f 
0 

a 0.69 f 
c 

1. 30 f r 

W -1. 0 or 0 MeV· 

r 1. 40 f 
o 

a 0.58 f 

0 

~ 
V -107.9 MeV 

0 

r 1.26 f 
0 

a 0.76 f 

r C 1. 28 f 
0 

W 18.88 MeV 

r 1. 78 f 
o 

a 0.49 f 
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Further investigation of the effect on the position and width of 

resonance states will be made by varying the potential parameters and by 

use of the new potential parameter of Ref. 80. The present potential 

parameters are sufficient to demonstrate the existence and nature of the 

scattering-matrix resonance curves. 

Note that in Ref. 85 the imaginary part of the potential used is 

w = 18.88 MeV, which is comparable to W = 18 MeV, used to fit the differ-

ential diffraction scattering cross section vs. angle. 

I. Scattering Cross Sections and the Properties of the S-Matrix 

The power of the S-matrix formalism comes in the analysis of the 

behavior of the S-matrix elements in the complex' plane. The structure 

of the S-matrix gives. us information about the detailed mechanism of 

compound nuclear formation resonance decay processes. The scattering and 

capture of nuclear projectiles can probe the nuclear interior. Problems 

arise because different competing processes occur in the nuclear interior. 

The detailed structure of the behavior of the properties of the S-matrix 

may illuminate the detailed mechanism of alpha decay and yield information 

about the properties of the nuclear force in the interior region; a goal 

f I h · . .. . 86 o nuc ear p YS1CS Slnce ltS lnceptlon. 

The Yukawa force considered the interaction of nucleon pairs
87 

but 

also of significance may be the formation and interaction of clusters. 

12 The carbon, 6C nucleus has been modeled in terms of the cluster of three 

h . 4 I 88 alp a partlcles, 2He c usters. 
24 

The structure of the 12Mg target can 

also be considered in terms of six alpha particle clusters or in terms 

of two carbon clusters. The question of interest is to what extent does 
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a nuclear cluster retain its identity on the nuclear surface or in the 

nuclear interior. This is certainly a relevant consideration to the early 

12 model of G. Gamow. Cluster-cluster interaction would modify the apparent 

nuclear force and, in the case of alpha clusters, would effect spin terms 

in the nuclear force, since they are spinless as compared to the nucleons 

which are Fermions. These properties would effect the renormalization in 

terms of the Pauli principle requirement for renormalization of the nucleon 

wave functions. It is of interest then to examine the extent to which 

alpha clustering occurs. For example, the reactions involving alpha 

transfer, such as 160 (a,8Be)12C are utilized to measure the extent of 

h I 
.. . 89 

alp a c usterIng In nucleI. It is of interest here to see whether the 

compound nuclear state appears to be a reasonable model. We have utilized 

this model in developing the S- and R-matrix approaches. Let us consider 

the calculation of the elastic resonance reaction and total cross sections 

for a spinless target including Coulomb interactions. 

We can calculate the resonance cross section from the expression 

for the amplitude , AS, for each s as a function of the angle e where dO's 

is the general inelastic differential cross section 

= tL: 
mm'M' 

where the amplitude is given by 

s 
A 'M,(e) m,m , = i a 1 a ,aM,o C(e) s, m,m 

+Vn LVU,+l 
PI ~. ,] 

n' 1 • , m-M' -m' 

(156) 

x 
j' 

C M' m- , 

J s j 

M' , m 
x, 0 J 

C M' - , m- -m, m', m-M' y ~, (e ,0) 

(157) 
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Here m and m' take two values each, -!z and!z, and -J ~ M ~ J. The 
s s. 

quantities u~, o'J are the scattering matrices; the Coulomb phase shifts 
J s 

are given as a~+ai' and the CIS are the Clebsch-Gordan coefficients for 

the spins and spin projections. The value of ¢ is taken as zero. The sum 

on E corresponds to the portion of the range of k that corresponds 
~'j , 

to the current value of s. The sum on I corresponds to the sum on ~ as 
~j 

before for j = R,-!z and j = R,+!z, and max j '. = max J s + ~2 +!z and therefore 

m 
max R,' = max j' +!z, and max m index on Y~, is max J s + 1 and for all m 

such that 0 ~ m ~ max~. The spherical harmonics are of the form 

m m im8 
Y~(8) = PR,(cos8)e 

We can also unite the polarization in terms of the amplitude and 

the cross section as 

P (8) 
s = l!z 2: (-) !z-m' 

m,m',M' 
lAs 'M' 12 J/da (8) m,m s (158) 

Using the coupled channel SCATER2 code of N. K. Glendenning, we fit the 

t o f h 1 h to 1 on the 24Mg t t scat erlng 0 tea p a par lC es arge . The value of the 

physical parameters and numerical data used in the fit to the different 

cross sections are given in Table 27. These parameters can be compared 

24 
to those of L. McFadden and G.R.Shatchler who have performed an optical 

model analysis for the scattering of 24.7 MeV alpha particles off of a 

number of target nuclei. The target nuclei 24Mg and 28Ni have been studied 

in some detail. The fit to the differential cross section dO/daR vs. 

angle in the center of mass system, e is best for V ~ 100 MeV for c.m. 

light target nuclei, and V ~ 150 to 200 MeV for heavier target nuclei which 

is consistent for our 24Mg case, where the ratio da/daR is the elastic 

differentiated cross section over the Rutherford differential cross section 

in their plots. 
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TABLE 27. The parameters used in the fit of the cross section 
are given for the 24Mg target and the alpha particle 
projectile. 

Elements Radius and Deformation Nuclear potential 
~ value 

Elab = 50 MeV R. =0.05 mln f 8(1) =0.290 V = -100.0 MeV 

MT = 23.985 R = 19 f 8(2) = 0.350 a = 0.690 MeV 
target mass max 

H = 0.01 8(3) = 1.571 Ro = 1.380 MeV Z = 12 T . step size target atomlC no. 8(4) = 0.120 W -18.0 MeV 
~1 (min) = 0 

= 

Mp = 4.0026 
~2 (max) = 50 8(5) = 0 - 0.580 MeV a = projectile mass 

-
Z - 2 projec- e = 1 angular 8(6) = 0 R = 1. 40 MeV 
p - interval 0 

tlle atomic no. 

We have plotted the S-matrix elements in three forms. The first is in 

terms of a quantity proportional to the transmission coefficient, or 

~ = 11 - U~ 12, which is related to the total elastic or coherent cross 

section for each partial wave in the semiclassical picture 

Get = 
total 

'IT~2 I (2~+1)11-U~12 
~ 

(159) 

where ~ = Jz 'lTk, and k is the wave number. The second quantity is 

proportional to the reaction cross section, 1 - IU~12; the reaction cross 

section is given by 

(J = 
react. 'IT?\. 

2 I (n + 1) (1 - I U ~ I 2) 
~ 

(160) 

1
2 * and using the fact that the square of the modulus 11 - U~ = (1 - U~) (1 - U~) 

for the complex number U~, we can express the total cross section as 

(J = (Je o + (J = 'IT",2 I 2(2~ + 1) (1 - ReU o ) 
total x, react. ~ x, 

(161) 
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The dimensionless ratio of the differential cross 
section for alpha scattering from the 24Mg, 
do/dQCmb/sr) to the Rutherford differential cross 
section doR/dQ is plotted vs. the center-of-mass 
scattering angle Bc •m in degrees. The spins and 
parities of the rotational spectra are also given. 
The experimental data points are fit with 
Glendenning coupled channel code. 
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where ReUi is the real part of the complex term Ui . The quantities 

11-UiI2, l-luiI2, and l-ReUi are of :interest in analyzing the 

scattering process. Also of interest is 1- ImUi . In Figs. 17 through 

26, we plot various forms of the real and complex part of the scattering 

matrix vs. the laboratory energy and angular momentum. We plot 1 - ReU
i 

and 1 - ImUi in Figs. 18 and 20 to 24, noting the main peak and "echo" 

peaks in Figs. 20, 21, 22. In Fig. 19b we plot 1 - lUi 12 

which gives a measure of the absorption into other channels. And in 

Fig. 19a we plot 11 - uil2 which is the measure of the elastic 

scattering process. We plot 1 - I ReUi 12 and 11 - ReUi 12 for simplicity 

in these two cases. We plot representative cases for W = 1 MeV and W = 0 

as well as various values of i and laboratory energy. 

J. Structure of the S-Matrix and Resonance Decay Theory 

1. Resonance Loops in the Complex S-Matrix Elements 

We examine some of the qualitative properties of resonance alpha 

particle scattering. The structure of the complex S-matrix elements are 

examined for the dependence on energy and momentum. The resonance loops 

give information about the resonance capture and elastic and a few 

inelastic decay channels as well as compound nuclear formation. The 

reason we chose to apply this formalism to the 24Mg case, rather than 

heavier targets such as 208pb , considered in Section II, is because we 

can achieve convergence rapidly in the coupled channel multipartial wave 

analysis. 

We plot "Argand" diagrams for the real and imaginary matrix elements 

of the scattering matrix. We plot the dependence in the complex plane on 

both the laboratory energy and angular momentum. 

TIle parameters used in our calculation using the SCATER2 code are 
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All plots in Fig. 17 have 9.=0. 

0 
(l) 

n 
0 

oW 
-V 

0 
N 

CiP 
d 
I 

o 
«) 

o 
(l) . 

0 
N 

0 

... 
'" • ~ 
'" ... 
..J 
ID 
>< 

-""0 ........ 

....... 
.0 ........ 



<r. ~ 

~ 

, 
~ ~ 

Fig. 18. 

-153-

0 
lD 

::>"" 
E 

04 
- 'It ~ 

lIJ 

0 
N 

g ro tD d N 0
0 

d ci d ,.... 
0 ....., It) 

d 

0 
CO 

0 
It) 

4 
~ 

W 

0 
<r 

0 
N 

- J I , 
0 0 CO It) 

9 CO ID 0 "'- d d 
d d 

(a) The quanti ties 1 - ReU.R, and 1 -I ReU,Q, I are plotted vs. Elab · 
(b) The quantl tles 1 - ImU.R, and 1 - ImUR, I are plotted vs. El b' 
In both (a) and (b), W = -1.0 MeV. Comparison of real and a 
imaginary matrix elements vs. laboratory energy can be made. 
The quantity (1 - ReU.R,) is proportional to the total cross 
section (see Eq. (161)). In (c) and Cd) similar plots to 
(a) and (b) are made for W = O. All plots in Fig. 18 have 

.R, = O. 

0 -... . .., .. 
0-
.J .. 
x 

0 
It) 

0 
.Il 
0 

<r -
W 

0 
N 

.......... 
0 "0 

0 ....... 

0 
It) 

n 
0 0 

'It -
W 

0 
N 

........ 
0 .0 

0 ........ 



0 co 
~ d 

Fig. 19. 

-154-

0 

~ co 

0 
ID 

A 

~ 
W 

0 
<r 

0 
N 

...... 
3 :3 

0 U 
N C) N 0 cj cj 

........ 

0 0 co 0;) 

0 0 
(l) ID 

.0 

0 ~ 
<1W 

0 
N 0 

.-.... 
I,{) 0 0 0 <1, N 0 q co \t, ci 0 ci ........ 0 

ci 0 0 

a( Tn "!H ) 3(1n ilH)-1 

(a) The quantity (1-ReU9,)2 vs. Elab is plotted. 
(b) The quantity 1 - (ReU9,)2 vs. Elab is plotted. 
The quantity 11-u9,12 is the transmission coefficient 
which is proportional to the elastic cross section 
(see Eq, (159)). The quantity (1-IU9,12) is propor­
tional to the reaction cross section (see Eq. (160)). 
We compare (a) and (b) to (c) where 1 - ReU9, and 
1- 1 ReU.Q, 1 are plotted vs. Elab . (Note that Fig. 19c 
is the same as Fig. l8a.) 

... 
co 
": ... 
co ... 
..J 
m 
)( 

...... 

.0 
........ 



0) 

0' 

-155-

0 

N 

...-.. 
0 U) <to N -0 0 ci 

'n wI 

o 

0 

(X) 

(\/ 

0 
(\/ 0 
d 

o 

(X) 

U> 

-"----'----''---'--'--'---'---'''0-''--:'-:--'-...... 0 .Cl 
0_. co U> o;;r. 0 ........ 

CS CS 0 

tOOlH - 1 

Fig. 20. Plots of forms of the real and imaginary parts of the 
scattering matrix are plotted vs. t and compared. 
Both forms of ReUt or ImUt and 1 - ReUt and 1 - ImUt are 
examined. All plots are at laboratory energy Elab = 
10 MeV and W = -1.0 MeV. 

., 
01 .... 
I 

ot ., .. 
..J 
CD 
>< 

...-.. 
'"0 ........ 



-156-

o o 

Fig. 21. Forms of the real part of the scattering matrix elements 
are plott~d vs. 1. (a) and (b) have Elah = 10 MeV and 
(c) and (d)'have Elab = 14 MeV, so that the effect of 
different energies can be seen. All have W = -1.0 MeV. 
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Fig. 22. (a) The real and (b) the imaginary part of the 
scattering matrix elements are plotted vs. the 
angular momentum, ~, at Elab = 30 MeV and 
W = -1.0 MeV. These plots can be compared to 
Fig. 20(a) and (c), respectively, at Elab = 10 
MeV and W = -1.0 MeV to see the effect of energy. 
Comparison can also be made to Fig. 23(a) and (c) 
at Elab = 70 MeV and W = -1.0 MeV. Fewer 
oscillations for the matrix elements vs. ~ 

occur for larger Elab " 
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Fig. 23. We compare forms of the real matrix elements of the 
scattering matrix, (a) and (b), with the imaginary 
part (c) and (d), plotted vs. ~ for large laboratory 
energy, Elab = 70 MeV. Comparison of Fig. 23 with 
Fig. 20 (for Elab = 10 MeV). In all cases W = -1.0 MeV. 
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Fig. 26. The sum of the real and imaginary parts of the 
scattering matrix are plotted vs. Elab . Also the 
sum of the absolute values of the real and imaginary 
parts of the scattering matrix are plotted vs. Elab 
and compared to the direct sum. Both curves are 
for W = -1. 0 MeV and t = o. 



-163-

given in Table 28. The target and projectile properties are listed as 

11 th d f t ' t and the 24Mg 1 1 we as e e orma lon parame ers energy eve s. See also 

Tables 24, 25, 26 and 27 (pages 142, 144 twice, and 148, respectively) .. 

In our first analysis we plot ImUt vs. ReUt for various Elab 

values for 7.5 MeV < Elab < 70 MeV in the energy plane for each t value. 

The first set of plots (Figs. 27a to 27k) are made for the imaginary part 

of the Woods-Saxon potential, W = -1.0 MeV and the second set (Figs. 28a 

to 28i) for W = O. The third set of figures (Figs. 29a to 2ge) are for ImUt 

vs. ReUt for various t values from 0 < t < 10 in the t plane, for one for 

each energy in the range for Elab from 8 MeV to 50 MeV. From the plots 

of ImUt vs. ReU
t 

in the energy plane for various energies in MeV, and for 

the W = -1.0 MeV imaginary part of the potential, and various t values from 

small to larger Elab (but, in general, for smaller Elab) the direction is 

predominantly clockwise in the "Argand" diagram, which is the hard sphere 

background which is shrunk from the unit circle due to channel coupling. 

Let us now examine Figs. 27a to 27k. 

A resonance is present for counterclockwise rotation of. the Argand 

plot for pole in the lower half energy plane. For t = 0 (Fig. 27a) between 

Elab of 7.5 MeV and 70 MeV, the complex elements of Ut loop twice around 

the origin in a clockwise direction for the hard sphere background. For 

t =1 (Fig. 27b), the initial lower values of Elab from 7.5 MeV to 12.5 MeV 

start in a counterclockwise direction, indicative of a resonance state, 

but for 12.5 MeV to 70 MeV, the complex elements Ut loop in the clockwise 

direction again, once around from the background. For t = 2, from 7.5 to 

70 MeV, it loops clockwise, indicating no predominate resonance is present, 

and for t = 3, for 7.5 to 17 MeV, the loop is in the counterc lockwise 

direction, again indicating the presence of a resonance, and 17 to 70 MeV, 



TABLE 28. The parameters used in the couRled channel calculation for the scattering of alpha 
particles off of the target, 2 Mg. 

Elements 

MT = 23.985 
target mass 

Z = 12 
T 0 

target atomIC 
number 

Radius and 
values 

mIn I R 0 = 0.05 f 

R I max 
= 15 f 

I H = 0.1 
step size 

~ = 4.0026 I 
P oj ectile mass 9, = 0 

1 (min) 

Z = 2 I 9,2 (max) = 10 Pool proJectl e 
atomic number 

Deformation 
parameter 

S(1) = 0.290 

S(2) = 0.350 

S(3) = 1.571 

S(4)=0.120 

S(5) = 0 

S (6) = 0 

24 Mg energy 
States levels Eta J KS 

1 0 2.229 0 0 

2 1.368 2.402 2 0 

3 4.120 2.922 4 0 

4 4.230 2.951 2 2 

5 6.000 3.251 3 2 

6 5.220 3.564 4 2 

K 

0.271 

1.180 

0.970 

0.961 

0.872 
I 
f-' 

0.795 (J\ 
.j::. 
I 



-165-

Fig. 27. The real and imaginary parts of the scattering matrix 
elements -are plotted as ImU£ vs. ReU£ in the energy plane. 
Each labeled point denotes a laboratory energy in MeV 
from 7.5 MeV to 70 MeV. Consecutive values of angular 
momentum £ are represented. 

(a) £ = 0 
(b) £ = 1 
(c) £ = 2 
(d) £ = 3 
(e) £=4 
(f) £ = 5 
(g) £ = 6 
(h) £ = 7 
(i) £ = 8 
(j) £=9 
(k) £ = 10 

All cases have the imaginary parts of the Woods-Saxon 
potential, W ="-1.0 MeV. The predominant "motion" 
from small to larger energy for small £ is in the 
clockwise direction. Counterclockwise motion becomes 
more predominant for larger £ values. 
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Fig. 28. The real and imaginary parts of the scattering matrix 
elements are plotted in the energy plane from 8 MeV 
to 50 MeV laboratory energy. Consecutive values of 
angular momentum ~ are represented. 

(a) ~ = 0 
(b) ~ = 1 
(c) ~ = 2 
(d) ~ = 3 
(e) 5/,=4 
(f) 5/, = 5 
(g) 5/, = 6 
(h) 5/, = 9 
(i) 5/,= 10 

All cases have W = O. Comparison between the same 
5/, values of Fig. 27 and 28 can be made and give 
the effect of the inclusion of the imaginary part 
of the complex potential, W. Resonance loops are 
tighter as W gets larger but the trends are similar. 
(Because of this similarity 5/, = 7 and 5/,:: 8 plots 
are omitted for W = 0.) 
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The real and imaginary parts of the scattering matrix 
elements are plotted in the angular momentum plane. 
Each labeled point denotes a value of ~. Increasing 
values of the laboratory energy are given. 

(a) E 7.5 MeV 
(b) E

lab 
= 10 MeV lab 

(c) Elab ::: 14 MeV 
(d) Elab = 30 MeV 
(e) Elab = 70 MeV 

For larger laboratory energy the "motion" from small 
to large ~ values is clockwise. Resonance loops 
appear; for example, a resonance loop appears at 
~ = 8 for Elab ::: 70 MeV. 
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it loops once around the origin in clockwise direction. For ~ = 4, from 

7.5 to 14 MeV, the Argand diagram moves counterclockwise, indicating a 

resonance; from 14 to 70 MeV it is clockwise around the origin almost once. 

For ~ = 5 (Fig. 27f) from 7.5 to about 22.5 MeV, the resonance plot proceeds 

counterclockwise but not encircling the origin, again indicating a 

resonance state, and at 25 MeV to 70 MeV, it loops one-half circle around 

origin in clockwise direction. In Fig. 27f we have a very clear-cut 

example of a resonance where there is no interference from higher energy 

resonance states. For this case, one-half the full energy width interval 

for full width at half maximum is given for about r = 12.5 MeV, giving a 

-24 time delay of T = 2.66 x 10 sec. In Fig. 27i, for ~ == 8, we have a 

number of resonances (at least three); the first occurs from approximately 

7.5 MeV to 14 MeV, a second occurs around 16 to 30 MeV, and a third from 

30 to 45 MeV. For ~ = 10, the Argand plot from 7.5 to 20 MeV, the curve 

proceeds counterclockwise for a first resonance, and from 20 to 30 MeV, 

clockwise; and 30 to 40 MeV, counterclockwise for a second resonance, and 

40 to 70 MeV, clockwise. Singularities occur at 20, 30 and 40 MeV. For 

W = 0 (Fig. 28i), ~ == 10, there exists a maj or resonance and all matter is 

counterclockwise for 8 MeV < Elab < 50 MeV. 

In the strong absorption optical model the nuclear surface acts as 

though it has a reflective index and by changing the amount of absorption, 

W, the complex part of the potential is like changin g the index of 

refraction. 

The reason we proceed from a smaller complex part of the Woods-Saxon 

potential is in order not to "wash out" the resonance loops for which we 

h
. 90 are searc lng. Since alpha particles are strongly absorbed, complex 
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parts of the potential should be larger, perhaps of the order of magnitude 

of 10 to 20 MeV. 

K.W.McVoy calculates the energy-dependent resonance loops for 

compound nuclear states of the complex S-matrix elements for scattering· 

91-93 of neutrons or medium-mass targets. The loops exhibit similar forms 

to ours, although no Coulomb part of the potential is included and nuclear 

projectile spin is included. The loops move further in from the unit 

circle as the absorptive part of the nucleon potential is increased (in 

the range W = 0 to W = 7 MeV). The resonance loops become tighter for 

91 smaller A targets. 

The poles in the energy dependence of the Breit-Wigner approximation 

for entrance-channel partial width fQ, for elastic scattering is given by 

SeE) = e 2i¢(E) [1 - ifQ, ] 
E-E +H/2 

o 

(162) 

94 where ¢(E) is the "background phase" of distant poles. If the resonances 

are narrow and isolated, ¢(E) will be nearly constant across the energy 

region. This will be an approximation in the case of broad resonances. 
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If ~(E) is approximately constant over the energy range, the complex 

numbers SeE) travel counterclockwise around a closed 71resonance eircle" 

of radius p = re/r where r is the total width. Since, in practice ~(E) 

is not entirely constant, it tends to move SeE) in a clockwise direction 

and the resonance circle usually never closes. These "background phases" 

show up in the S-trajectory provided p = re/r, which is the fractional 

coupling of the resonance to the entrance channel, is near unity. 

However, if W(r) is increased until p«l, so that the resonance is 

decoupled from the entrance channel, its resonance circle will shrink 

into insignificance and the corresponding peak will vanish from the cross 

section. At the resonance energy, S is most sensitive to absorption by 

other channels, where the particle is trapped longest in the well. 

For nearly elastic scattering, the S-trajectory is compared to a 

main resonance circle at low energy which is followed by "echo" circles 

due to ~(E) at higher energy because there are resonances plus bound 

states in the partial waves. 

The off-resonance behavior of S will be effected less by a large W 

which absorbs the resonance away, and the "echo" maximum will remain as 

a distinctive feature even in the non-elastic case. The non-elastic 

part of the cross section obtains its maximum when p = 0.5. 

In the plots of ImU.Q, vs. ReU.Q, in the energy plane, large values of 

the partial wave, .Q,~9 and .Q,~ 10, and in the limit of small E
lab 

~ 7.5 MeV, 

then ReU.Q, (E) is about unity and ImU.Q, (E) approaches zero, for both W:= -1 MeV 

and zero. In the plots of ImU.Q, vs. ReU.Q, in the energy plane, for .Q,=O 

and W = -1.0 MeV, then ImU.Q, and ReU.Q, approach zero as the energy approaches 
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zero. For.R, = 1 and 3 and low energy, the plot begins in the fourth 

quadrant, and for .R, = 2, 4 and low energy, the plot begins in the first 

quadrant. For.R, > 5, ReU.R, approaches unity and ImU.R, approaches zero. 

For the plot of ImU.R, vs. ReU.R,' in the .R, plane for small laboratory 

energy, for .R, = 10, then ReU.R, (E) approaches one and ImU.R, (E) approaches 

zero, but above the resonance at about Elab = 15 MeV, then .R, = 10 moves 

toward the center for ImU.R, (E) < land ReU.R,(E) < 1. At Elab = 30 MeV 

.R, = 10, ImU.R, ~ 1.5 and ReU.R, ~ 0.2 on the unit circle. For the resonance 

pole in the upper half .R, plane, the presence of resonance is indicated by 

clockwise motion and background by counterclockwise motion. Many resonances 

are present as indicated by the predominately clockwise motion in Figs. 

29a to 2ge. In the momentum or .R, plane for W = 0, the pole appears in 

the upper half plane and bound states occurs on the positive imaginary 

axis. We have S-waves only for W = o. 

The positions of the poles and zeros in the complex energy plane can 

give us information about the resonance process. We can define a phase 

shift in terms of a phase angle to a pole or zero in the E plane from a 

point on the real axis. The S-matrix is proportional to a ratio of the 

2io form (i;* - E)/(~ - E), which can be expressed as e and ~* is the complex 

conjugate of E. Here we consider the case where W = 0 so that the zeros 

from the numerator in the upper energy plane are in the same relative 

position as the poles in the lower half energy plane. As we move along 

the real energy axis and approach a pole-zero pair for our resonance, the 

phase increases rapidly and then more slowly away from resonances. 

For the Argand plots of the S-matrix elements for energy dependence, 

we can define a rate of movement along the curve or differential length 
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along the curve as a curve interval per energy interval or differential 

energy curve element. Near a resonance, the phase shift 0 increases and 

the differential curve element will increase. This occurs as the energy 

approaches and makes a transition through each resonance. This can 

readily be observed in Fig. 27h, for example. The curve moves very 

rapidly from 7.5 MeV to 19 MeV, particularly around 16 to 19 MeV. Then 

from 19 to 20 MeV it moves more slowly; from 25 to 70 MeV, away from the 

major resonance, it moves much more slowly. There is a second resonance, 

20 MeV to 30 MeV, and then from 50 to 70 MeV, the now clockwise resonance 

motion resumes. Further detailed determinations would have to be 

performed to obtain a more detailed look at the third resonance occurring 

ln the energy interval from 30 to 50 MeV. 

The delay time of the compound resonance state is associated with 

the rate of change of the phase per energy interval. The further from 

the real axis in the lower half energy plane the pole is, the broader 

the resonances. Alpha decay resonances are narrow and the poles are near 

the real axis. The phase increases more rapidly near these poles giving 

a longer decay time for the smaller widths of the narrow resonances. 

If we increase the depth of the real part of the Woods-Saxon, the 

pole in complex energy plane as well as the depth is increased; then the 

pole moves in the E plane up along negative imaginary energy axis, for 

WfO. States that were formerly unbound then become bound. If the pole 

occurs above threshold, it represents a resonance; if it occurs below 

threshold, it represents a bound state. The resonances ,associated with 

the compound nuclear state are narrow (see Fig. 30). If no other inelastic 

channels were open then the pole would be on the imaginary axis. 
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2. Critical partial wave conditions 

A classical scattering quantity, the impact parameter for each 

~ 
partial wave is defined as bi = ilk for momentum k = (~MEa) 2 and the 

geometrical cross section is give~ by ai = TIb~. Projectile trajectories 

wi th i > i remain "outside" the nucleus while those with i < i are inside c c 

the nucleus. For smaller i the trajectory enters the nucleus. We define 

ic as the critical angular momentum for a given center of mass energy, 

for which the effective potential is just surmounted. 

For example, if we are examining the threshold for resonance capture 

24 of an alpha on the surface of Mg, then for El b = 15 MeV, E ~ 13 MeV, a c.m. 

and referring to the potential plot in Fig. 2 we see that i ~O. The form 

of this plot for a medium-heavy nucleus 208pb would be similar for 24Mg 

but the point of inflection would be effected or occur at a slightly 

different energy. The inflection point in the potential for the 24Mg 

optical model parameters is at i = 30 and the critical angular momentum 
c 

E = 45 MeV, or Elab = 52.5 MeV. c.m. 

In the spherical approximation, we have the potyntial energy from the 

form given in the Fig. 2 caption. We can tailor-expand the nuclear part 

of the potential to eliminate the exponential and use the inflection 

point aV/ar = 0 condition and solve for i , the critical momentum. In 
c 

our calculation we set i. = 0 and i = 10 in SCATER2 and we examine mln max 

dependence of the complex S-matrix elements on different values of i. 
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As in the N. Austern and J. S. Blair model,8l in order to simplify the 

radial integrals which occur in the first-order processes, the angular 

momentum transfers are taken to be much smaller than the angular momentum 

that are important for the part.ial wave expansion, especially for other 

than tightly bound states. 

For large real parts of the nuclear optical potential, for t < t , 
c 

the projectile trajectory plunges deep into the nuclear interior. 81 

Although effects of the inclusion of the imaginary part of the Woods-

Saxon potential are evident, they are minimal when the long path length 

in the nuclear potential (due to the deep well) causes strong attenuation 

from the elastic flux. We use a well depth of -100 MeV (as indicated 

as realistic in arguments in Sections II and IV), which will mean that 

the dependence of the position and size of the S-matrix resonance loops 

will not be highly sensitive to W, the imaginary part of the potential. 

91 Dependence on W is examined by K.W.McVoy as well as in this 

section. We can see that there is an effect in going from W = 0 to W = -1.0 

MeV, but the general form of the plots are similar for both plots of the 

complex S-matrix elements in the energy and angular momentum dependence. 
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o 
R (f) 

8 

XBL783-2442 

Fig. 31. The above shovvs a schematic of the t value partial wave 
zones from which partial waves can be scattered. The outside 
circle marks the half-value of the nuclear parameters. 
Trajectories in the potential are also represented from 
various partial waves. The grazing trajectory is given 
by partial wave t ; the radius in Fermis, f. 
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3. Decay time and resonance loops in the S-matrix 

We have been examining the structure of the S-matrix for the 24Mg 

target, spin zero. We used the unified nuclear reaction theory to calcu-

late the S-matrix pole in the vicinity of a sharp resonance. This 

resonance is identified with a metastable state of the compound nucleus. 

The decay time formalism can be used to calculate the lifetime and branching 

95,96 
ratios to the ground state. 

In analogy to the work in high-energy physics for the scattering of 

nucleons off of nucleons, the residue of the pole gives the decay as 

reaction width. We can identify the partial decay width for alpha decay 

a resonance loop in the complex S-matrix for approximately elastic 

scattering. The S-matrix plots have a similar trend for both W = -1. 0 MeV 

and W = 0, which may indicate that the resonance loops and curve shape in 

plot are due primarily to channel coupling or absorption into higher or 

other i wave channels. Absorption represented by the complex part of 

the potential also effects the resonance. Further investigation would 

involve changing the value of Wand also examining the S-matrix structure 

without coupling. 

For the transition amplitude connecting the initial bound state and 

1 f · 1 . . h 97 
tle lna contlnuum state, F. T. Smlt has demonstrated that the lifetime 

of a metastable state is related to the scattering delay time which can 

be calculated from the scattering matrix. The widths of a metastable 

state are compared with the displacement of the pole of the scattering 

matrix from the real axis in the energy plane. This definition of the 

lifetime or resonance width depends on the use of th~ Breit-Wigner 

formula for the scattering matrix. 
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We examine the behavior of the complex matrix elements of the 

scattering matrix, calculated from the coupled channel resonant decay 

theory for small imaginary parts of the nuclear potential, because in 

the formation of the nuclear state, the alpha cluster is absorbed but is 

assumed to maintain its identity. If the imaginary term of the complex 

potential is large, the alpha particle may be rapidly absorbed at the 

nuclear surface and lose its four nucleon-cl lIster identity and these 

nucleons would "disperse" into the nuclear interior. 

If the decay rate is very rapid, then the reaction is more likely 

to occur as a direct reaction and the compound nuclear state would not form. 

To best fit our model of compound nuclear state formation, the decay time 

should be for a medium or slow rate of decay. 

In Section V.A.3, in Eq. (10), if the decay time ~t decreases, then 

the decay width ~r becomes larger. If lV, the complex part of the potential 

becomes larger, then the decay width reflects the increase in absorption 

and ~r becomes smaller and the decay time longer. The existence of 

narrow resonances shows directly that long-lined compound systems, formed 

by the target nucleus and the incident nucleon. exists. We can estimate 

the decay width as 

for nuclear penetrability, 

== 

which gives us p~ ~ 10- 33 With fue resonance occurring at Elab 

we estimate the residue of the pole to give y~ ~ 1028 so that A 

(163) 

(164) 

"'" 15 MeV, 

10
23 

l/see. 
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The decay half-life of the ground state is given by 

(165) 

(for 11 = 1), then tl ~ 10- 23 sec. We look at the manner in which this 
"2 

relates to compound nuclear formation. 

4. A check on the compound nuclear model 

Recall that the definition of the R-matrix function is given in 

terms of the radial wave functions 

R = (166) 

where m is the mass of the projectile alpha, r is the channel radius, a c 

uA are the radial wave function, YA are the reduced withds in a "single 

particle" potential, where 

= 
k 

(n 2 / 2mr ) 2 U"I (r ) 
c /I. C 

(167) 

The energy EA is the strong resonance energy with a width fA. We can 

write the elastic cross section at a strong resonance, 

= nX2(2.Q,2+1) 
(E - E~) + ~f2 

(168) 

for r = 2Y~P and E~ = EA - Y~S, where the energy EA is shifted by a 

quantity which depends on the real part of the logarithmic derivatives 

of the outside wave functions and 

r = (169) 

where the quantity P is related to the imaginary part of the logarithmic 
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derivative. The real and imaginary parts of the logarithmic derivative 

can be written as 

£9v 
:: S9v + iP9v (170) 

for 

£9v == (rO~/~)r==r (171) 
c 

and 

£* == (rJ9v/ti9v) r==r 9v (172) 
c 

in terms of the outgoing ~9v and incoming ~9v waves. The quantity S9v is 

called the shift and P9v is called the penetration factor which is 

proportional to the fraction of incident particles on a sphere of radius 

15 r==r which penetrates the sphere. c 

Returning to the expression for the elastic cross section in terms 

of the scattering matrix, 

== TIA2 I (29v+1)11-U9v12 
9, 

Equating the above equation with Eq. (168), we get 

I (29v+1)11- U9v 1
2 

9v 
== 

2 r 
I 2 

(E - E
A

) + ~ r 

(173) 

(174) 

We can solve this quadratic equation for r. Let us consider the case 

for 9v:: 0; then we have 

1 1
2 [I 2 J 2 1 - U 0 (E - EA) + 0.5 r = r (175) 

for resonance energy Blab:: 14 MeV and Vo :: -100 MeV, and W = -1.0 MeV 

and E :: 25 MeV, and from Fig. 17, we have ReU9v :: 0.32. Then in terms of 
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the real part of the scattering matrix we have 

= (176) 

where we have r ~ 0.82 MeV. 

Compound nuclear reactions will proceed more slowly than direct 

reactions because of the time involved in compound nuclear formation 

and resonant channel decay. If we consider the typical "nuclear period", 

the average time taken for a bound nucleon to cross the nucleus and 

considering E = 25 MeV to be a typical kinetic energy, then T = 1/3 A
1
/ 3 

-22 x 10 sec. The corresponding width is about r = 13/A1/ 3 MeV. For our 

24Mg case this gives us T = 9.6xIO- 23 sec and r - 4.51 MeV. The 

imaginary part of the nuclear potential is usually taken to be W ~ 1 to 

10 MeV. The lifetime of the incident channel is the same order or less 

than the typical nuclear period, as we see from our calculation, Eq. (176). 

The existence of narrow resonance shows directly that long-lived 

compound systems formed by the target nucleus and incident nucleus exist. 

It should be noted that alpha decay involves strong interactions 

which proceed rapidly as opposed to weak interactions which proceed 

more slowly, of the order of magnitude T~10-9 sec. Alpha processes 

212 -7 are hindered (see Section III) and the Po alpha decay of tl = 3 x 10 
"2 

sec is the shortest alpha decay rate. In the region of the s-d shell 

(in the next section) alpha emission is often associated with other 

de-excitation processes, such as alpha emission occurring subsequently 

to beta decay as a delayed process. 
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We can analyze the observed energy resonance as single-particle 

alpha resonances; tha't is, as resonances involving the alpha particle 

which is already formed and has an identity in the nuclear interior. 

We determined the theoretical time for an alpha to escape, in terms 

of its traversed time once around the nuclear interior as T = 9.6 X10- 23 

sec. The time calculated in terms of the single-particle resonances 

gives T = 2.66 x 10-24 sec, implying that the alpha particle escapes 

before it traverses once around the nucleus. The reason actual alpha 

decay rates are much larger is because alpha formation involves a many­

body problem and one must include the probability of formation, calculated 

in terms of a many-nucleon system, in terms of the frequency of nucleon 

collision as well as the barrier penetration probability after an iden­

tifiable alpha cluster has formed. The actual decay width is expressed 

as the product of reduced width (related to the formation time of the 

alpha particle) and the barrier penetration factor (which can be expressed 

as an exponential attenuation of an integral in the WKB approximation 

which depends on the barrier height and thickness). The reduced width 

relates to the spin orientation of the nuclear particles and the Pauli 

exclusion principle and is therefore expressable in terms of Clebsch­

Gordon coefficients. 

In looking at the one-level expression for decay rates, we have 

assumed that all resonances are isolated. This is not always the case. 

If we call the full width at half maximum, r (associated with the lifetime 

of the resonance and the Poincare resonance), and ° (associated with the 

natural period decay time), then we have two conditions. First, if 

r < 0, then we have isolated resonances; and if r « 0, these resonances 
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are very well separated. Second, if r > D, then the resonances are not 

well isolated and may overlap. Third, if r ~ D, there may be some 

overlapping of resonances. 24 In our example calculation for Mg, W = -1.0 

MeV and Jl- = S (Fig. 27f), we found r = 12.S MeV and from before (page 188) 

D =4.S1 MeV, which would imply that our resonances are not completely 

separated so that background effects can occur. In our example case, 

the resonances appear quite isolated but there are other cases, W = -1.0 

MeV, Jl- = 6 (Fig. 27h) where overlapping resonances are apparent with at 

least two major resonances appearing. 

S. General discussion of the alpha decay of nuclei 

in the first half of the s-d shell 

Alpha emission occurs predominantly in elements heavier than lead 

but there are lighter alpha emitters. The predominant de-excitation 

process for light nuclei is y and B decay, and in some cases, proton 

emission. In some light nuclei, alpha decay will result as a secondary 

process after another de-excitation process. Alpha particle resonance 

states occur, particularly in the deformed region between the Z (proton) 

and N (neutron) magic numbers of 8 and 20. Alpha decay occurs because 

the helium ion (four nucleons in the 1s1/ 2 shell with zero angular 

momentum) is an unusually stable entity. In the deformed region from Z, 

N of 10 to 14, alpha resonances occur where Z and N = 14 is about the 

f h ' d f d ' M d 'k ' 160 center 0 t 1S e orme reg10n. ost mo els 1nvo e an lnert case 

with extra nucleon8 excitation. The spectra of the nuclei in Fig. 32 

d · I the 0+ 2+ 4+ t t' I t lSP ay ", etc. ro a lona spec ra. There are also levels 

such as the 3+ (S.24 MeV) and 3 (7.62 MeV) in 24Mg , which may be 

explained as a particle-hole excitation, 
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EneriY levels of even-even nuclei in the 2s1d shell 
for 00, 20Ne , 24Mg , and 28Si are displayed. Alpha 
resonances for 24Ne and 24Mg are also given. Ref. 98 
gi ves spectra for A = 18 to 20 and Ref. 99 gives 
spectra for A = 21 to 44. We also utilized information 
from Ref. 100. The alpha decay from the 24Mg to 20Ne 
branch and 28Si to 24Mg branch are both about 0.01%. 
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CONCLUSION 

We have examined a number of aspects of the alpha decay problem. 

Calculations have been made in terms of single-particle shell-model wave 

functions and collective rotational and vibrational states. Some aspects 

of the alpha decay theory which we have explored are 

1) the relative alpha decay rate dependence on the optical 

model well depth and on the boundary condition matching 

radius, 

2) the alpha cluster formation probability and properties of the 

barrier penetration, 

3) effects of the relative alpha decay rate by electrostatic 

and nuclear channel coupling of vibrational and rotational 

excitations 

4) alpha decay of even-even and odd-even isotopes is light, 

heavy Cllld tr;1/1S11r;JIl ium 0 I clllellls, 

5) assumptions about the projection of the orbital angular 

momentum for Ki = Kf or mJl, = 0 on the nucleon surface, 

6) some possible properties of intermediate "doorway" channel 

states, 

7) compound and single particle resonance states. 

Throughout the relatively long history of alpha theory and experiment 

spanning well over 50 years, this problem has been subjected to a number 

of types of analysis, each one found to be wanting, incomplete or inade-

quate. At present no comprehensive or complete model of alpha decay exists. 

This situation is certainly not due to a lack of diligence on the 

researcher's part, but on the difficulty of the problem. In order to 
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explore the various aspects of this complex problem, we have developed 

some graphic techniques in the form of Argand diagrams of the complex 

elements of the scattering matrix and through this type of analysis, it 

is hoped that we can better understand the complicated competing mechanisms 

that make up the alpha decay processes. 

We shall now briefly review some of the nuclear systems which we 

have examined in detail, suggesting some areas for further investigation 

of this fascinating, unfolding mystery of nuclear matter in dynamic action. 

We have made use of the coupled channel formalism for the alpha decay 

of even- and odd-mass medium-heavy and heavy nuclei to calculate the 

relative width of decay. We examined the effect of electromagnetic and 

212m 212 nuclear coupling on the alpha decay of Q, = 18, Po and Po ground 

state decay to the vibrational states of 208pb and also the 210pb decay 

to 206pb . The excitation of the collective states of the spherically 

t · 208pb · h . dId I h· . h 11 symme rlC ln t e macroscoplC mo e an a so t e mlcroscoplC s e 

model wave functions for the alpha decay to 208pb and 206pb daughters were 

also considered. Our emphasis has been on the calculations involving 

ground-ground state decay without coupling due to phonon-phonon interactions. 

We could extend the model to include inward integration starting with a 

finite amplitude in the excited channels, which we did not do for purposes 

of the present calculation. This may augment the fit for larger nuclear 

radii for the 212mpo to 208pb decay. 

Alpha decay in spheroidal nuclei have been examined for the odd-mass 

parent nuclei, 253Es and 25S pm , to the 7/2+ ground state and rotational 

excited state rotational bounds. Properties on the nuclear surface and 

coupling to vibrational and rotational excitation on channel coupling has 
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been examined in detail because of the relative success we had with the 

model for even-even alpha decay. Although channel coupling improved the 

fit to the relative intensities to the ground and excited states of the 

daughter, an exact fit has not been obtained as we have discussed in detail 

in the text. It may prove useful to extend our coupled channel exploration 

to incorporate other coupled channel mechanisms thatn the coupling terms 

we used for the purpose of the present calculation. 

We also examined the nuclear reaction or R-matrix unified theory 

which utilized the time-dependent method. It was hoped that we can ca1cu-

late absolute alpha decay widths which are not being dependent on the 

nuclear radius. The new theory has the advantage that it is possible to 

. 212 210 calculate a reasonable flt to the Po and Po alpha absolute alpha 

widths but they are still dependent on the well-depth parameter. For the 

present calculation, we did not include channel coupling effects which can 

be included in the future. Also the optical lllodel parameters utilized for 

the purpose of the present calculation did not contain a finite imaginary 

part of the potential, i.e., we used W =0 only. 

In recent years a major assumption about the mechanism of alpha 

decay process is that the most influential region of the nucleus on the 

alpha decay rate is due to effects occurring at the nuclear surface. It 

is assumed that the alpha particle is most likely to form on the surface 

and that the barrier penetration occurs, localized to the nuclear surface 

region, and has a significant effect on the alpha decay rate. The imaginary 

part of the Woods-Saxon potential in the DWBA approximation weights the 

surface region the most heavily. Also, channel coupling usually is designed 

to emphasize surface effects. In our R-matrix approach, we calculate the 
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absolute decay rate as a volume integral over the entire nucleus so that 

inclusion lof WfO and coupling terms would certainly modify our boundary 

conditions and perhaps the final results. It may possibly be that a more 

realistic theory should emphasize surface effects but we feel that 

processes in the nuclear interior should not be neglected. These boundary 

conditions would attenuate the alpha wave faCr) in the nuclear interior. 

Further work utilizing the R-matrix formalism could be extended to 

coupling conditions which include octupole-octupole two-phonon surface 

vibrations. The RPA approximation would be reasonable since vibrational 

levels have greater spacing than the rotational levels. Since our present 

R-matrix calculation yields such promising results, certainly future work 

by this or other researchers is warranted. 

We also exmained in detail, the qualitative structure of the 

S-matrix for the Ca,a') scattering on the 24Mg , 0+ ground state nuclei 

with a view towards developing techniques to help elucidate certain aspects 

of the alpha decay mechanism. Channel coupling to the various predominantly 

rotational levels of the daughter has been included. The qualitative 

features of the complex S-matrix elements in the energy and momentum planes 

may yield information about nuclear surface and interior clustering 

phenomena. 

We have developed a method to graphically represent and analyze the 

alpha decay process in terms of the scattering of alpha particles in 

elastic and a few inelastic channels and compound nuclear resonance decay. 

It is hoped that these high-powered techniques from high-energy nuclear 

scattering will give us a more comprehensive understanding of the alpha' 

decay process and of nuclear structure, and allow us to calculate absolute 
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decay width reasonably independent of the nuclear optical model parameters. 

We have discussed in detail the graphic interpretation of the 

information displayed in the Argand diagrams. From the behavior of the 

complex part of the S-matrix elements, we can gain a better understanding 

of the relationship of single-particle and compound nuclear resonance 

states. The use of the graphics of the Argand diagram plots can assist 

greatly in the interpretation and development of a better understanding 

of the alpha decay process. We can explore further the contributions to 

the lifetime of alpha resonance states from the time to form an alpha 

cluster and the time necessary for barrier penetration of the alpha cluster. 

We can further explore how resonances overlap and if there are other mech­

anisms involved in alpha decay than 

1) cluster formation probability, 

2) nuclear and electrostatic 'channel coupling, 

3) barrier penetration probabilities, 

4) compound nuclear resonances states, and 

5) intermediate nucleon transfer reactions. 

How each of these processes contributes to the branching ratios and decay 

probabilities will certainly further our understanding of the alpha decay 

process as well as our understanding of the mystery and complexity of 

the nuclear interior. 
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