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The application of Glimm's method to the equations of gas 

dynamics is considered. In particular, its advantages are dis-

cussed for situations in which chemical reactions occur in the 

gas. 





Computational Aspects of Glimm's Method 

by . 

Alexandre Joel Chorin 

1. Introduction a'nd general considerations •. 

In [9] Glimm introduced an approximate method for con

structing solutions of systems of nonlinear hyperbolic con

servation laws. This construction is the basis for his 

beautiful existence theorem in the large (with restrictions 
on the type of systems allowed and on the size and variation 

of the data). Some interesting generalizations of Glimm's 

proof have become available (see e.g. [7], [8], [11, [13]). 

Since 1965 there have been a number of attempts to use 

Glimm's construction as an computational tool, but they have 

not been brought to completion (or to publication), because 

it is quite clear that in most problems Glimm's construction 
is less accur'ate and more expensive than alte'rnative methods. 

It has, however, turn~d out in the last few years that there 
are problems in which Glimm's construction is in fact very 

useful as a practical tool. These problems involve flow 

with multiple phases and/or chemical reactions, and the 

reasons for the usefulness of Glimm's method will become 

apparent in the course of the discussion. It.a1so turns out 

that the method is being used under conditions where the 

assumptions in the a'vailable proofs are not satisfied, and a 

host of interesting open questions are in need of answers. 

We begin by describing the method briefly. Consider 

the hyperbolic system of equations 

~(x,O) given, (1) 

where v is the solution vector, and subscripts denote dif-
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ferentiation. The time t is divided into 

length k. Let h be a spatial increment. 
to be evaluated at the points (ih,nk) and 

intervals of 
The solution is 

« ; + l)h ( l)k) . ° 1 2 ~ I ' n + I ' ~ = ,+, + , .•. , n = l,2,~ •• • 
Let _ui approximate ~(ih,nk)~ a~d ~~:i~~ approximate 
v«i + ~)h,(n + ~)k). The algorithm is defined if 

u~:i~~ can be found when ~~, u~+l are known. Consider 
the following Riemann,problem: 

vt = (f(v» t > 0, _00 < x < + 00, - x 

for x> 0, 

v(x,O) = 
for x < 0. 

Let ~(x,t) denote the solution of this problem. 

be a value of a variable 
k 

1 1 . 
6, - 2 ~ 6 < 2' Let Pi 

point (eih'I)' and let 

= w(P.) k w = w(e.h'I) - ~ - ~ 

Let e. 
~ 

be the 

be the value of the solution w of the Riemann problem at 

P .. 
~ 

We set 

n+l/2 -
~i+1/2 = w. 

In other words, at each time step, the solution is fir~t 
approximated by a piecewise constant function; it is then 

advanced in time exactly, and new values on the mesh are 

obtained by sampling. 
It is clear that the applicability of the met~od depends 

on one's ability to find appropriate allowable solutions of 

the Riemann problem. The systems under consideration in 

practice are simplified versions of very complex systems; 
the omitted equations or terms survive in the form of alge

braic constraints on the allowable waves. These constraints 

define what is allowable. It is one of the major attractions 

of Glimm's method that it allows one to impose the appropri

ate constraints with elegant ease. 

2 



The rate of convergence of the method (i.e. the error 

as a function of k and h) depends on how judiciously the 

a ' s are chosen. Th~ S'i must tend to e~uipartition 'on 

[-1/2, 1/2]. V'arious strategies for choosing the a's are 

described in [2]; they lead to a me'thoq which is almost of 

first o~der accuracy. It is clear that the met~od canno~ 

be more accurate than first order, since', d~pending on the 

choice of a, a value of the solution may become attached 

to either one of two neighboring points. A more important 

quantity is the resolution of the method, i.e. its ability 

to conserve information above waves and their interactions 

without smoothing.· It is shown in [2] that the ~ethod has 

high resolution under conditions where its n~tural competi

tors are fitting methods, i.e. methods which treat discon-' 

tinuities as if they were internal boundaries. 

2. Glimm's method in gas dynamics. 

I intend to explain in some detail how Glimm's method is 

used in the analysis of reacting gas flow in one dimension. 

As a first step, we'discuss the flow of chemically inert 

polytropic gas. The equations of motion are 

(pv) = 0 
2x 

(pv + p) = 0 
x· 

«e + p)v)" = 0 

(2a) 

(2b) 

(2c) 

where p is the density of the gas, v is its velocity, 

p is the pressure and e is the energy per unit volume; we 

have 

e = (2d) 

where e, the internal energy per unit mass, is given by 

e = _I_I? 
y-l p 

(2e) 

where y > 1 is a constant. Glimm's method rests on the 

solution of the Riemann problem for these equations. Its 

convergence has been studied in [12] under the assumption 
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that the data have small variation. 

Given a right state Sr(Pr,Pr,vr,er ) and a left state 
St(.pt,pt,vt,e t ), the solution of the Riemann problem con
sists of, from right to left: The right state S , ,a right 

r 
wave which either a shock or a rarefaction, a middle-right , 
state S*r' a slip line across which p and v (but not 
necessarily P or e) are continuous, a middle left state 

S*t' a left wave which is either a shock or a rarefaction, 

and the left state St •. Let PAr (resp. PAt) -be the pres

~ure in S*r (resp. S*I)· If PAr < Pr the right wave 
is a rarefaction, and if p~ is knowri, S* can be deter-nr r 
mined from S p the constancy of the appropriate Rie-r' *r' 
mann invariant, ~nd the isentropic equation of state. If 

P > p the right wave is a shock. The well-known fact *r r 
that a shock is supersonic with respect to gas in front of it 

and subsonic with respect to the gas behind it is in fact the 

condition which ensures that S*r behind a shock can be 

uniquely determined if Sr and PAr are known. This can 

be readily seen by drawing and counting the characteristics 

entering t~e shock, see e.g. [6]. Similar considerations 

apply to the determination of SAt 

given. The condition PAr = PAt 
of equations equals the number of 

when PAt and SI are 
ensures that the number 

unknowns. The resulting 

system of equations has a unique real solution, and can be 

solved e.g. by Godunov's iteratiori ([10], ~ee also [14], 
[1], [2]). 

, 
Boundary conditions in a mixed 'initial value boundary 

value problem are readily imposed once it is noticed that 

~he __ ~lip_line separates the fluid initially to its right 

from the fluid initially to its left. One then d~signs 

Riemann problems at the walls in which the slip li~e has the 

appropriate velocity (see e.g. [3]). These considerations 

completely define Glimm's method for a one dimensional inert 

gas. 

3. Glimm's method and the Riemann solution for noncon

ducting rapidly reacting gas. 

We now consider the flow of a gas in which chemical 

reactions are t~king place very rapidly and the heat con-
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duction and viscosity are zero. The equations of motion are 

Pt + (pv)x = a 

(pV)t + (pv2+·p)x = a 

(3a) 

(3b) 

e t + «e + p)v)x = a 

1 2 

.( 3c) 

as in (2), but now 

e = PE + 2Pv 

E = E. + q 
l. 

where E. is the interval energy per unit mass, 
l. 

(3d) 

(3e) . 

E. = __ 1 __ E for unburned gas, (3f) 
l. Yo-l p 

1 .E. for burned gas, (3g) 
Ei = yl-l P 

and q is the energy of formation which can be released 

through chemical reaction, q = qo for unburned gas, 

q = ql for burned gas. If the chemical reaction is exo

thermic (i.e. gives out heat) and Y1 = YO' then 

~ = ql - qo < o. We shall assume that Yl = YO = Y to 
reduce the amount of writing. 

The chemical reaction is assumed to occur very fast, 

and the reaction zone is idealized a s a discontinuity. 

The jump condition across a discontinuity can be readily 

derived (see e.g. [6]), and some manipUlation leads to the 

following identities: 

- M 

and 

= Pl(vl-U) = PO(vO-U), 

PO-Pl 
(4b) 
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where T = IIp, the index 0 refers to unburned gas, the 

index 1 refers to burned gas, ~2 = ~~i, and U is the 

velocity of the discontinuity. Equation (4c) describes the 

locus of states (Tl,Pl) which can" be connected to (TO'PO) 
by an infinitely thin reaction zone ~ith energy rele~se h. 

(See Fig. 1). The curve H = 0 is called the Hugoniot 

curve. The lines through (TO'PO) tangent to H = 0 are 
called the Rayleigh lines and the points of tangency Sl 

and S2 are called~the Chapman-Jotiguet (CJ) points. 

One portion of the Hugoniot curve is omitted because it 

would yield complex values of M (equation (4b»-clearly an 

impossibility. The upper branch of the curve is called the 

detonation branch; the part above .Sl the strong detonation 

branch, the part below Sl the weak detonation branch. The 

lower part of the curve is the deflagration (or flame) 

branch. The gas burns if the temperature T = pIp reaches 

a value above a critical temperature ("ignition temperature") 

Tc' This burning is irreversible and occurs at most once 

for each fluid particle. 

Consider a right state Sr(Pr,Pr,vr,er ) in which t·he 

gas is not burned, i.e. q = qo' and consider the states 

S to which it can be connected by a shock, a rarefaction, 

or a reaction zone. If T = 'pIp in S is such that no 

burning occurs, then we are back in the situation of the 

preceding section, and a knowledge of the pressure p in 

S will determine S. Suppose T in S is such that 

burning does occur. If p in S is given and is above the 

pressure in the Chapman-Jouguet state Sl' one can show 

that the geometry of the characteristics is such that. p in 

Sand Sr will determine S, as would have been the case 

with a shock. However, if p in' S is below p in S1 

the situation is more complex. Weak detonations more more. 

rapidly then the sound speed behind them (see (6]) and the 

state behind them is undetermined. Fortunately, one can 

show that weak detonations do not occur if the energy 

release is due to a chemical reaction in which the proportion 

of fuel burned remains between 0 and 100\. What can 

occUr is a CJ detonation. The velocity of CJ detonation 

Sl equals the speed of sound behind it, and it can thus be 
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followed by a rarefaction. Sl is entirely determined by 
S r' and if p in S is given, it determines S by con-
necting it to Sl by a rarefaction ([6] , [2]). 

One can further show that in the absence of heat con

duction the only deflagration which can occur is one across 

which p is constant and there is no mass flow -- i.e., such 

a deflagration is indistinguishable from a slip line (see 

e.g. [2]). Thus, the Riemann problem for equations (3) can 

be reduced to the Riemann problem for an inert gas, as long 
as one allows the right and left waves to be not only rare

factions or shocks, but also strong detonations or CJ de

tonations followed by ~arefactions. A shock is the special 

case of a strong ·detonation with 6 = 0, and a CJ detona

tion followed by a rarefaction is merely a rarefaction con

nected to a state Sl entirely determined by either Sr on 

the right or SR, on the left. Godunov's algebraic iteration 

procedure for solving the Riemann problem easily generalizes 

to the reacting case ([2]). 

It is interesting to note that the elimination of parts 

of the ~ugoniot curve by physical constraints, which makes 

the Riemann problem determinate, has a strong qualitative 

resemblance to the procedures used to define an appropriate 

Riemann solution for problems of the form ut .+ f, where . x 
f is a non-convex function of u (see e.g. [7]), or to 

gas flow problems where the gas has a nonconvex equation of 

state ([16]). 

Furthermore, the discussion just given should put in 

evidence some of the practical advantages of Glimm's method. 

Consider a problem whose solution consists of a CJ deton

ation followed by a rarefaction moving down a tube. The 

velocity and pressure profiles in such a wave are not mono

tonic, and may contain a very sharp spike at the detonation. 

Such a wave is very difficult to describe by a finite dif

ference method, but will be described nearly perfectly by 

Glimm's method. 

4. Reacting gas flow with heat conduction and finite rate 

chemistry. 

We now consider how the method just described can be 

generalized to the case of flow with realistic chemistry and 
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finite heat conduction. Finite heat conduction is important 

since one of the main mechanisms of flame (deflagration) 

propagation is the conduction of heat which ignites new 

fluid (the other major mechanism is the diffusion of chemical 

species which can be treated by simil~r methods but which 

. we shall not consider here)'. The full equations which des

cribe the flow are enormously complex (see e.g. [17]) and 

must be simplified before they can be used or else the cal

culation becomes prohibitively expensive and the results 

impossible to interpret. An appropriate simplified model is: 

Pt + (pv)x ~ 0 (Sa) 

( ) + (pv2 + p) = 0 (Sb) pv t x 

«Sa,b) are identical to (3a,b», 

1 2 
e =. pe:. + '2pv , 

e:. = Y~l ~ + Zq, 0 ~ Z ~ 1, 

ds = G(T,~) 
dt 

(Sc) 

(Sd) 

eSe) 

(5g) 

where A is the heat conduction, q is the total available 

chemical energy, Z is the fraction of energy still not 

released, and equation (4f) and (Sg) express the fact that 

Z is a function of the progress of a chemical reaction 

which is described by a suitable ~inetic scheme. A simple 

model of (Sf), (Sg) is the set of equations 

dZ 
dt = -KZ, y = constant, 

where K = 0 if T = pIp <.; TO' K = KO = constant > 0 if 

T > TO KO is the reaction rate and TO is the ignition 

temperature. ,If A is not very small and KO is not very 
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large, the added equations can be handled by a standard 
fractional step procedure and taken outside the Riemann 

problem. However, if A is very small and KO is large 

one has to find a suitable approximate Riemann solution 

which takes their effects into a6co~nt. 

The remarkable fact is that this can be done; it can be 

done most economically by making the following approxima

tions: in the case of a detonation of finite structure, the 
state behind the detonation is the CJ state~ In a case 

of a deflagration, there is no change of pressure across the 

deflagration. These approximations are in fact, in very good 
agreement with'experimental fact and with the relevant 

theory, and allow one to use the construction of the pre

ceding section almost without change. For details, see e.g. 

[4], [15]. As a result, Glimm's method is capable of hand

ling flows which contain hydrodynamic effects and chemical 

effects of widely different time scales. ' 

For another type of application of Glimm's method, see 
[5]. 
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