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Abstract 

Using the general expression for t~e ponderomotive Hamiltonian, 

we obtain the quasi-static quasi-neutral. density change caused by the 

ponderomotive force of a cold magnetoplasma wave of arbitrary frequency 

and polarization: 

on(.!) 
4n( T + T.) e l 

This formula agrees with and extends previous results for unmagnetized 

and magnetized plasma. 
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In studying the modulation of a finite-amplitude plasma wave, 

a number of authors have calculated the quasi-static quasi-neutral 

second-order density perturbation produced by the ponderomotive force 

of the modulation. With the representation 

</>(~,t) ::: </>(~) exp (-iwt) + C.c. 

1 for a longitudinal magnetoplasma wave, the result 

1 \7</>(4) 12 
41T( T + T.) e 1 

has been obtained by Morales and Lee2 for lower-hybrid waves, and 

by Shukla3 for electron magnetoplasma waves. The former authors 

(1) 

(2) 

remarked on the identity of formula (2) with the familiar expression 

for Langmuir wave modulation in unmagnetized plasma. 

It is natural to inquire into the universality of formula (2). 

In this paper, we show that it does indeed apply to any longitudinal 

~-plasma wave ( for a single ion species4); 1. e. , the three 

solutions 5 A 

w( e) of £L(w,e) ::: 0, where £L - k • ~(w) • k. 

More importantly, we show that formula (2) can be simply 

generalized to apply to a cold plasma wave of any polarization, i. e., 

to a wave with non-zero \7 x E . 

representation 

6 Here we use a local plane-wave 
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~ 

E(x) exp (ik 0 x - iwt) + c. c., -- -

.,. 

with = (c/w)~ x !. 

The generalization, derived below, is 

on(.!) = 

~ 2 ~ 2 !!( x ) ! - !li( x) ! 
4n(T + T.) 

e 1 

~ 

(3a) 

(3b) 

We note first that it reduces to (2) when B = O. Secondly, for the 

transverse unmagnetized case, where 

formula (4) becomes 

familiar result. 7 

on/n 

Formula (4) can be used for any cold-magnetoplasma wave, 

e. g., lower hybrid in the electromagnetic regiona, fast-magnet~sonic-

whistler9, ... 10 Alfven , ordinary and extraordinary, etc., so long as 

(3b) is a valid approximation. (When it is not, use formula (10) 

below. ) 

Our derivation begins with the standard expressionll for the 

quasi-static density perturbation, of species s, caused by the pondero

motive potential energy ~ (x) of an oscillation center12 and by the 
s -
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self-consistent electric potential ¢(x): 

on ex) s -
o 

ns 

'¥ (x) + e ¢( x ) 
s - s- (5 ) 

For two species (electrons and singly-charged ions), we impOSe quasi

neutrality (on ;:: on., nO = n?) to eliminate ¢, and obtain the re-
e l e l 

lation 

one .Jr.) 
o 

n 
;:: 

'¥ (X.) + ,¥.(x) e l -

T + T. 
e l 

Our expression for '¥ (x) is based on a useful relation13 
s -

(6) 

for the ponderomotive Hamiltonian14 of an oscillation center. In 

the cold-species limit, Eq~ (3) of Ref. (13) reduces to 

n (x) '¥ (x) 
s- s-

(7) 

wi th the representat ion E(,!, t ) -; !C!) exp (-iwt) + c. c., 

where X is the well-known15 cold-species susceptibility. (We note 
~w 

that 0 is proportional to density, so that '¥ is density-indepen-

dent; but the dependence of X on possibly nonuniform magnetic 

field B (x) appears in '¥.) 
-0 -
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Inserting (7) into (6), we have 

on (~) == 

* e i ! (~) . (~w + ~w) • !(~) 

4'IT( T + T.) e 1 

Now we use the field equation 

e i 
(~w + ~) • !(~) 

where ~(.!) ( c/iw) V X!(~), to obtain 

I El(x.) 12 - IBCx.) 12 - (c/w)Im V • E*( x) x Be x) 

4'IT( T + T.) e 1 

~8) 

(9) 

(10 ) 

Finally, for a local plane wave, with !(.!);; i(.!) exp ik 0 ~ 

and (3b), one may drop the complex Poynting term in (10), as higher 

order in kV~n E; the result is then Eq. (4). 

Two points should be kept in mind in applying (4): second

order magnetic perturbations may be of significance16; and the quasi-

tt · t· b· 1·d 17 s a lC assump lon may e lnva 1 • 
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