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ABSTRACT 

Often it is desirable to incorporate known structure of the 

Jacobian matrix into numerical .algorithms for solving systems of 

LBL-7236 

nonlinear equations by Broyden update methods. Here we develop a 

technique for accomplishing this for a certain highly structured 

system of equations arising as the discrete form of an eigenvalue 

problem for a nonlinear elliptic partial differential equation of 

nuclear reactor analysis. We demonstrate how the technique, which 

is formulated in terms of a pseudo-inverse, can be extended to 

incorporate other, more general, structures. As an example, we 

obtain known minimal update formulas for preserving sparsity and 

symmetry as special cases of the technique. Numerical results are 

given for the nonlinear eigenvalue problem. 
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+ Lawrence Berkeley Laboratory, University of California, 
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1. INTRODUCTION 

In the numerical solution of sparse systems of nonlinear equations 

by quasi-Newton methods it is usually desirable, but often difficult, 

to impose the known structure of the Jacobian matrix on its approximates. 

For example, in its simplest form, the update method introduced by 

Broyden [1] will preserve neither sparsity nor s~etry. A technique 

for preserving sparsity for the update method has been introduced by 

Shubert [2], and several ways to preserve symmetry are discussed by 

Dennis and More [3]. In this paper we develop a technique for preserving 

even more complex structures. 

We begin by examining a system with a special structure arising 

from a nonlinear eigenvalue problem. By utilizing the minimal,update 

aspect of most quasi-Newton methods and employing properties of the 

pseudo-inverse, we show how to impose the desired structure on the 

approximate Jacobians .. Then we show how our technique can be used to 

impose structure in more general nonlinear systems. In its general 

setting the technique includes, as special cases, the minimal update 

methods of [2] and [3]. 



-2-

2. A NONLINEAR EIGENVALUE PROBLEM 

The motivation for our study arose in connection with the following 

nonlinear eigenvalue problem arising in the study of neutron diffusion 

in a nuclear reactor (see [4], chapter 4). 

Let (x,z) be a point in the rectangle R (O~x~L, O~z~H); find 

~(x,z) and the smallest real scalar A such that 

(1) 

Here a. and f3 are functions of x, y, and ~; a., f3 > 0. There 

are appropriate boundary conditions on the boundary of R that need 

not concern us here and a normalization condition that we shall give 

below in discrete form. For the problems under consideration the 

smallest eigenvalue A is simple, real, and positive:. 

By placing a grid on R (xi=(i-l)f1x, i=l, •.. , I; zk=(k-l)tlz, 

k=l, ••. , K) and taking the standard five-point difference approximation 

in (1), we can write the finite difference formulation as 

(2) A~ - ~ ~ + A%~ = 0 , 

which we denote by 

(3) A~ + E(A,~) = 0 

where A is a matrix of order n = I x K and ~ is a vector belonging 

to Rn. We impose the normalization condition that 

(4) T 
s ~ - 1 = 0 

for some appropriate vector s ,belonging to Rn. 

f ' 
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If z represents the vertical direction and x the horizontal 

direction, then for a class of reactors and an appropriate choice of 

~x, a and B depend only on values of ¢ below any given point and 

not on values laterally. To be precise, at (xi,zk) one has 

a· k=a · k (¢ · k' ·¢ • k-1' • · ·' ¢ · 1) 1, 1, 1, 1, 1, 
and a similar expression for 

Furthermore, the dependence is on the sum of the values, i.e., 
k 

a. k=a. k ( L ¢ .. ) and similarly for B. k. 
1, 1, j=l ,1,] 1, 

B. k. 
1, 

We wish to find ¢ and the smallest value of the scalar A such 

that (3) and (4) are satisfied. 

One way to solve this ·nonlinear eigenvalue problem is to use Newton's 

method [5] on the system of equations (3,4). The Jacobian matrix J of 

(3,4) is 

(5) J • [A :T E~ 

If we number the nodes from 1 to n by running through the i,k indices 

in increasi~g order, cycling through k most rapidly, we find that 

E¢· has the block diagonal form 

0 
(6) 

0 
with each Di a matrix of order K. Moreover, each D. has the 

1 

form 

I 
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b (i) 
1 

0 (i) ''b (i) 
a2 2 

(i) (i) b (i) 

(7) D. 
a3 . a3 3 

= 
1 

(i) b(i) 
ak K 

The fact that the elements in each row to the left of the diagonalare 

identical follows from the dependence of a and B on the sum of the 

elements of ~ ·Corresponding to grid points below any given grid point. 

The block diagonal structure of E~ follows. from the lateral 

~-independence. 

For the problem under consideration the functions a and B, 

their derivative with respect to ~, and hence the Jacobian (5) are 

very expensive to compute. For this reason the quasi-Newton methods 

seem a natural alternative for solving (3,4). The di,fficulty in using 

such methods lies in trying to impose the structure (6,7) on E~. 

For a set of n nonlinear equations in n variables 

F(x) = 0, 

where x· belongs to Rn, the traditional Broyden's method in its 

simplest form is given by [1] 

(8) j=O, 1, ••• 

where x
0 

is an initial estimate of the solution, B
0 

is a given 

approximation to the Jacobian F'(x0), and 



with 

(9) 

(10) 
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T 
= B . + (_y~j -----=B="j._w .... j_)_w.._j 

J T w.w. 
J J 

y, = F(x.+l) - F(x.) 
J J J 

For our problem, we proceed with the above method as follows. We 

pick an estimate for E~, which we denote by B0 • In particular 

B0 has the required structure. We then pick initial guesses AO and 

T 
~O such that s ~0=1. For each j=O, 1, 2, .•• we solve I (A + B. ) M . + E~ ~A . A~. + E (A.,~.) - r. 

J J J J J J J 
(11) 

T 
0 s ll~. = 

J 

which solution we de~ote by 

(12) llA. 
J 

and 

(13) ll~. 
J 

-1 
= (A + B.) r. 

J J 

Then 

(14) 

llA. 
J 

We defer discussing the updating of B. until the next section. 
J 

·one condition, h9wever, that Bj+l must satisfy is the secant condition 
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(15) (A + B )ll~ + E~+lA,J' j+l 'l'j A LlA 
r -r 

j j+l 

Let = B. +~B., then (15) implies 
J J 

(16) 

Clearly, if 

will 

B. 
J 

and !lB. possess the desired structure, then so 
]', 

We shall determine how to find !lB. possessing the structure 
J 

defined above, such that (16) is satisfied. 
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3. STRUCTURED UPDATES 

We begin by placing our updating technique in a more general 

setting. In this way, as we shall see in Section 4, the technique 

can be extended to incorporate other kinds of structure in the 

Jacobian. 

First, we establish the following result. 

Lemma. Let the n x m matrix U be of the form 

(17) 

where 

(i) 

is given by 

(18) 

T 
ul 

T 
u2 

u = 

0 
kt n 

is a vector in R and L: 
R-=1 

ut ~ 0 for 1 5 t 5 n, then the 

the m x n matrix 

,.... 
u1 
T 

ulul 

u2 
T 

u2u2 

u-~" = 

0 

0 

kt = m. 

Eseudo-inverse 

0 

-h
~~-

T 
u n 

u -r of u 
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(ii) If uR. = 0 for some values of R., then U t is given by· (18) 

with the columns corresponding to those values of R. replaced by zeros. 

Proof. The result can be obtained from the observation, which can be 

verified directly, that Ut satisfies the four requisite properties 

. t t of the (unique) Moore-Penrose pseudo-inverse -- namely, U U and UU 

are symmetric, UU t U = U , and U t uu t = U t. 

A somewhat more constructive proof can be given, which will point 

more clearly toward later extensions. When uR.~ 0 .for 1 < R. 2 n, 

the n x n diagonal mat~ix 

0 
0 

is of full rank, and we can form 

T 
u u 

n n 

One can verify easily that u* satisfies the requisite properties of 

ut listed in the preceding paragraph, hence u* is equal to ut. 
T More generally, when UU may not be of full rank, we form 

, -

where (UUT)t, the pseudo-inverse of UUT, is the diagonal matrix 
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whose elements are 

= 

0 if u.Q,::; 0 

This u* is Ut, in general. 

We now return to the question of how to preserve structure within 

update methods. The general Broyden update formula (9) is usually 

derived in one of two ways. The first is to require that the secant 

condition 

(20) 

be satisfied (with w. 
J 

and 

condition that 

(21) 

for all z orthogonal to w .• 
J 

given by (10)) together with the 

= B.z 
J 

The second is to require that (20) 

be satisfied together with the minimal update condition 

',:. 

(22) is minimized. 

Here II · IIF denotes the Frobenius norm. 

By using (20) and (22), the updating·technique that preserves the 

structure that we seek can be obtained directly. 

In establishing the' desired result, we first simplify (16) somewhat. 

In particular, from the structure of liB. 
J 

described by (6) and (7), 

it is clear that we can consider the problem for just one diagonal 

block. That is, we wish to find a K x K matrix C such that 
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(23) Cu = v 

and such that 

(24) II Cll F = minimum. 

The matrix C corresponds to one block of llB., 
J 

u replaces one 

segment of the vector ll~j' and v replaces the corresponding segment 

of v. in (16). In addition C is required to have the structure 
J 

given by 

a 0 
3 

(25) ,, c = 

aK aK . aK ~ . bK 
.. 

Let the elements of u and v be denoted by 

(26) (l-!1' 
T 

(vl' 
T u = l-12' ... , l-!K) v = \)2' ... , VK) 

and define st to be 

81 = 0 t-1 

st = (t - 1)·-1/2 ~ lli 2 < t < K 

Then the update techniqu~ is contained in the following result. 

Theorem. · The K x K matrix· C of the form (25) satisfying (23) and 

(24) is given by 

1 < t < K 

(27a) 

2 < t < K 
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0 for some values of ~. then 

(27b) b = 0 
~ a~ 0 

for those values; when (23) and (25) are not consistent, (23) will be 

satisfied in the least-squares sense. 

Proof. Using (25) and (26), we obtain that (23) is equivalent to the 

set of equations 

~ 

).11 

).12 ).11 

(28) 

0 
-

We denote (28) as 

(29) 

Let D be the diagonal matrix 

2 
).13 I ).1. 

1. 
i=l 

Uc v . 

0 

K-1 
).lK L t.ti 

i=l 

D = diag(l, IT, 1, ,!2, 1, /3, ... , 1, IK-1, 1) . 

bl 

b2 

a2 

b3 

a3 

Then if.we scale c with D we find that 11Dcll 2 , the Euclidean norm 

of n~, satisfies 

vl 

v2 

v3 

VK 
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With this scaling (29) becomes 

(30) v ' 

where 

c = De . 

The properties of the pseudo-inverse are such that the least squares 

solution of (30) 

(31) 

'minimizes II cll 2 = II DcU
2

; (31) is equivalent to 

c = 

The matrix UD-l is of the form given in the Lemma, and (27a,b) 

follow. If the structure '(25) is not consistent with the values of 

u and v in the secant condition (23)--that is, if vt # 0 and 

ut = St = 0 for some t--then the properties of the pseudo-inverse are 

such that the solution for C will minimize llv-Ucll 2 = llv-Cull 2 • 

For our application we have been interested primarily in the case 

for which (25) represents the actual form of the Jacobian, so that 

(23) is satisfied; but such a restriction is not necessary for the 

method. 

It is interesting to note that if the structure of C is unspecified, 

then the set of equations (23) cari be rewritten as an equivalent set 

similar to (28), except that each diagonal block is simply T 
u • 

using the Lemma and setting C = Bj+l - Bj one then obtains the 

standard Broyden update formula (9). 

By 
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In the next section, we examine how other structural forms of the 

Jacobian can be preserved within the context of the update methods. 

In this connection we give here a more general result analogous to 

Theorem 1, which also follows directly .from the minimal least-squares 

property of the pseudo-inverse. As before, we consider condition (23) 

but permit C to be any real n x m matrix, with u and v given 

vectors in 
m 

R · and n . 1 R , respect1ve y. A structure S(C) is imposed 

on C, which when combined with (23) yields the equation 

(32) Uc = w 

where c is a vector whose components are the unknown elements of C. 

We assume that a diagonal scaling matrix D exists so that 11Dcll 2 = IICIIF' 

and we write the minimal least squares solution to the correspondingly 

scaled form of (32) as 

(33) c = 

There follows immediately 

Theorem 2. The matrix C having structure S(C) and satisfying (23) 

and (24), with C, u, v as above, is given by (33). If S(C) and 

(23) are not consistent, or if otherwise (32) has no solution, then 

(32) will be satisfied in the least squares sense. 

For many update methods, such as those considered in this and the 

following sections, m = n, S(C) restricts certain elements of C 

to be equal to other elements of C or to zero, w = v, and Uc = Cu. 
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4. OTHER STRUCTURES 

Often an important requirement of an approximate Jacobian of a 

nonlinear system is that known elements be incorporated into it. For 

example, in the solution of 

assume that 

f (x) · = 0· 
i 

i=l, 2, .•. , n 

afi 
3~ is given for k £ Ii 

with I. a subset of the integers 1, 2, ••• , n. One wishes to require 
l. 

that the approximation B. to the Jacobian satisfy (8), (22), and the 
J 

condition that 

(B.). k is specified fork£ I., for each i. 
J l., l. 

Schubert [2] has solved this problem using an approach different 

from ours. We show how the same result can be obtained with the 

technique presented in section 3. Let Then in 

our context, at each iterative step we wish to determine C subject 

to the conditions (23), (24) and 

(C)i,k = 0 for k £ Ii • 

Let iii and ci denote the (n-r.)-dimensional vectors formed 
l. 

from u and the i-th T of c in (23) by deleting the row ci ri 

elements of 'u (or c'olumns of C) corresponding to the index set Ii. 



Then (23) is equivalent to 

0 
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0 
_T 
u 

n 
c 

n 

v 

Using the Lemma, one can determine the pseudo-inverse of the matrix 

on the left and find that 

.if ii.;. 0 
1 

(or c.= 0 
1 

if 

v.u. 
1 1 

ci = -T-- -u.u. 
1 1 

u. = 0), where v. 
1 1 

of the vector v. Here, no scaling is necessary. 

is the ith component 

In principle, synunetry can be treated in <;1 similar way. However, 

the structure of the matrix U does not lend itself to an application 

of the Lemma for obtaining the pseudo-inverse in this case. Even so 

we·can show that an explicit update formula is obtainable by the 

procedure described above. Consider (23) and (24) with the condition 

that C be symmetric. If n is the order of the matrix C, then the 

problem of determining C becomes the problem of determining the least 

squares solution of 



111 112 ll 0 0 ••• 0 n 

lll 0 ll2 J.l3 •• • ll n 

ll2 0 
0 ].ll 0 ]..12 

(34) 

with the notation of (26). 

Write (34) as 

(-35) 
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0 0 
11n-l 11n 

0 11n-l J.ln 

c 
1,1 

c 1,2 

c 
~-
c2,2 

c 2,3 

c 
2,n 

.. 
c n-l,n-1 

c ' n-l,n 

c 
n,n 

\)1 

\)2 

= 

\) 
n 

We scale c so that the Euclidean norm of the resulting vector has the 

same value as the Frobenius norm of C by choosing the scaling matrix 

D = diag(l, 12, 12, ... , 12, 1, 12, ... , 12, ... , 1, /2, 1). --------n-1 --------n-2 

Equation (35) i's equivalent to 

(36) v ' 

with 

-c = De. 
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Note that (UD -l) (UD -l) T is of full rank· (for the non-trivial case 

u 1 0) and that (UD -l) t = (UD -l) T [ (UD-l)(UD-l) T ]-l. Thus 

(37) c = 

is the desired least-squares solution of (36). 

It is straightforward to establish that 

where I is the n x n identity matrix. Using the Sherman-Morrison 

formula, we obtain 

where 

i= T 
u u 

1 T - -uu 
d4 

Finally, using (37) and the definition of C, we obtain 

c 
T T 

vu + uv 
d2 

T T v uuu 
d4 

This result is the Powell symmetric Broyden update (see [3]). 
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5. NUMERICAL RESULTS 

Some numerical experiments were performed for the nonlinear eigenvalue 

problem of Section 2 by the. method described there, using the updating 

technique of Section 3 and Theorem 1. For these experiments it was more 

convenient to update the approximations to d(l/S)/d~ and d(a/S)/d~ 

separately than to update a single approximation to dE/d~. The results 

for a typical example are given below. 

The values of I and K are 8 and 16, respectively. Initially ~· is 

set to a constant satisfying the normalization condition (4). Next, a and 

B are computed from ~' and A is set to an initial value A0• As an initial 

approximation to the Jacobian we take the "linear part" of E~ in (5), 

obtained by neglecting the ~ dependence in a and a. 
In the table below are tabulated the values of A and the maximum 

absolute difference in ~ obtained at each iteration for AO = 0.90. The 

converged eigenvector ~ has all' its components positive, as would be 

predicted on physical grounds. 

. 

j 

0 

1 

2 

3 

4 

5 

6 

1.35(+0) 

5.16(-1) 

7.95(-2) 

9.69(-3) 

8.91(-5) 

1. 94 (-6) 

A. 
J 

0.90 

0.9407976 

0.9517847 

0.9501302 

0.9501903 

' . 0. 9501893 

0.9501893 

By comparison, Newton's method, with d(l/S)/d~ and d(a/S)/d~ 

. obtained by differencing, r·equired fo~r iterations for A to be accurate· 
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to seven digits and for ll<t>. - cf>. 111 < 3.0(-4); substantially more 
J J- 00 

computer time per iteration was required than 'for the update method because 

of the numerous additional evaluations of a and S. 
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