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A complex, and apparently stochastic, character frequently can be seen 
to occur in the solutions to simple Hamiltonian problems. Such behavior is 
of interest, and potentially of importance, to designers of particle acceler­
ators — as well as to workers in other fields of physivs and related disci­
plines. Even a slow development of disorder in the moi in of particles in a 
circular accelerator or storage ring could be troublesome, because a practi­
cal design requires the beam particles to remain confined n an orderly manner 
within a narrow beam tube for literally tens of billions of revolutions. The 
material I shall present is primarily the result of computer calculations I 
and others have made to investigate the occurrence of "stocha-ticity," and is 
organized in a manner similar to that adopted for presentation at a 1974 accel­
erator conference. 

As an introductory example, one can consider the longitudinal motion of 
a particle subjected to the radio-frequency electric fields employed to bunch, 
and sometimes accelerate, a beam within a synchrotron type of accelerator. If 
the electric field is regarded as equivalent to a simple travelling wave, having 
the speed of a reference particle in a "coasting beam," the motion is character­
ized by the pair of differential equations. 

Q = -K simrx 

wherein y - fractional departure of energy from the reference value, 
irx = electrical phase angle of field vs.particle, 
Kocapplied voltage, and 
X'ocderivative of revolution period with respect to energy. 
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K and A 1 will be regarded as specified constants. The differential equations 
will be recognized as derivable from a Hamiltonian function 

H = 2~ V y 2 - f cos TTX, (2) 

in which the independent variable (n) is the revolution number and does not 
appear explicitly in the Hamiltonian. Because n does not appear explicitly, 
the Hamiltonian of course is a constant of the motion. One accordingly obtains 
simple phase trajectories (in x,y space) -- of the familiar type character­
istic of a physical (non-linear) pendulum (as was recognized by McMillan in 
connection with discovery of the principle of phase stability ). 

In practice, however, the radio-frequency fields in fact are provided by 
localized cavities, so that the travelling-wave description constitutes an 
idealization and the motion is more appropriately represented by difference 
equations: 

V l = y n • K s 1 m r x n ( 3 a ) 

V l = x n + V V l ' < 3 b > 
with y measuring energy at the entrance to the n cavity. These transfor­

mation equations are readily shown to be area preserving [3(x + , ,y + , ) / 

3 (x ,y ) = 1] - - the motion in fact could be described through use of a 

Hamiltonian function, but one that would contain a periodic 6-function of 

the independent variable as a factor multiplying the term — cos irx. There 

thus is no evident simple constant of the motion,, and the non-linearity of 

the equations precludes application of Floquet theory to this problem. (The 

use of a Hamiltonian formulation nonetheless can be helpful in analytic work, 

but difference equations of course are convenient for computational invest i ­

gations.) 

I t is of interest to take a quick look at some computational results 

obtained through use of a transformation equivalent to (3a,b) but written in 



3 -
terms of working variables Y = y - (K/2) sinitx, X = 
formation assumes the form 

so that the trans-

•Vl = Xn + V [ V ( K / 2 ) s i n i T X n ] ] (3a'> 
Vl = Yn -( K/2)[si"^ n + s1 m r X n + 1 ] J i (3b') 

with the result that the resulting phase diagrams will necessarily have a 
desirable symmetry about both the X- and Y-axes. With K/ir = 0.1 and 
X1 = 0.1 we find what appear to be conventional bucket diagrams with buckets 
separated in Y by 2/A' for successive harmonic modes, although we may wish 
to return to the question of whether the bucket boundaries are as simple and 
definite as appears on Fig. 1. 
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Fig. 1 ~ X, Y phase plot for a coasting beam under the influence of an 
R.F. cavity with K/ff = 0 .1 , A' = 0.1 — as computed by Eqns. 
(3a 1 , b ' ) . X is plotted mod.. 2, 
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We also find evidence of some "sub-harmonic" structure (with higher order 
fixed points) that, if enlarged some 6QX, has the appearance shown in Fig. 2. 

R F Phase Plots K/TT=O. I 
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Fig. 2 - Circa 60-fold vert ical enlargement of central portion of Fig. 1, 
near v = 10.0, showTng sub-harmonic structure. 

I f the cavity voltage is increased eight- fo ld (so K/TT = 0.8), the 

bucket areas are expected to become larger, and we indeed f ind this to be the 

case (Fig. 3 ) , with an accompanying very marked increase of complexity 
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Fig. 3. - Phase plot similar to Fig. 1, but for operation with K/TT = 0.8, 
showing the obvious development of complex structure. 

that is immediately apparent in the phase plot. Of particular interest is the 
evident diffuse character of phase trajectories generated by points launched 
close to the first-order unstable fixed points situated at X = ±1, since the 
bucket boundary in consequence no longer appears clearly defined. 

In the first example (K/ir = 0.1), on the other hand, where the bucket 
width is some two and one-half times smaller in relation to the bucket 
separation, the presence of structure in the separatrix can be revealed com­
putationally only with considerable care. To do this, one can extend from 
the unstable fixed points the eigenvector directions of the transformation 
linearized about these fixed points, and examine whether such curves intersect 
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smoothly. One finds in fact that they do not quite do so, but generate 
loops (of a nature to be illustrated later) that in this instance (K/TT = 0.1) 
have a very small area that amounts to only about 1/(5 x 10 ) of the area 
of the bucket itself. 

Another example of a "time-dependent" non-linear problem in the phase 
plane arose in connection with the development of spiral-sector fixed-field 
accelerators (as have now evolved into very effective cycicVons for physical 
research). The equations for particle motion in these devices again required 
a time-dependent Hamiltonian and were distinctly non-linear. The limitations 
of computer performance at that time (1956) understandably motivated us to 
study the behavior of simple algebraic transformations that at least would 
duplicate approximately the short-term particle motion. Such an area-
preserving transformation is 

x n + 1 - Ax n ± (1 - A 2)y n + (1 - A) [x n ± (1-A)y n] 2 (4a) 

V l - ^ ^ . ^ n * ! 1 - ^ ( 4 b ) 

where the ± signs refer to the forward or inverse transformation, respec­
tively, and A represents the cosine of the phase advance per iteration for 
solutions to the linearized (small-amp1itude) transformations. The constant A 
normally would be taken to have an absolute value less than unity and, to 
avoid a one-third resonance when the quadratic terms are present, one also 
should avoid the value A = -1/2 (for which cos" A = 2ir/3). 

The region of interest to tlw accelerator designer at that time is that 
contained within the roughly triangular area indicated on Fig. 4, sketched for 
A = -5/8 [cos" A = (0.35745)(2ir)], wherein the apparent separatrices through 
the fixed points F 1, F 2 > F 3 are associated with the 2/3 resonance and also illus­
trate the symmetry of the transformation (4a,b) with respect to the x-axis. It 
was only by rather careful computations [aided by Mrs. H. (Barbara) Levine --
see Ref. 12] that I could establish that the trajectories extending from the 
fixed points F,, Fg, F, do not intersect smoothly and hence give rise to (rather 
modest) regions of erratic behavior similar to those seen in phase diagrams for 
the earlier example. Outside th° area F,, F-, F, indicated in Fig. 4, however, 
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Fig. 4 - Apparent separatrices through the third-order unstable f ixed points 
of the transformation (4a,b), with A = -5/8„ 

£=0.12500000 

F1g. 5 - Phase plots, in the surface of section qj = 0, result ing from the equation 
implied by the Hamiltonian function (5) — for increasing values of the 
energy. r A f t e r U a l k e r a n d F o r d # 8 - j 
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the transformation (4a,b) develops gross loops in phase trajectories extending 
from an order-1 fixed point at (1,0), and in this respect exhibits a behavior 
similar to that shown by a transformation of deVogelaere which will be mentioned 
later'. 

Similar questions concerning the character of phase trajectories and the 
possible erratic or stochastic behavior of canonical mappings can arise in 
problems with more than one degree of freedom. As an example, HGnon and Hiles 

o and subsequently Walker and Ford studied a model of an astronomical system, for 
which the Hamiltonian function was taken to be 

H = J ( P l
2 + P 2

2 + q,2 + q 2
2) + q/q 2 - 1 q 2

3. ( 5 ) 

The cubic terms appearing here as coupling terms become increasingly significant 
for increasingly large values of H ~ which is itself a constant of the motion. 
With the coupling terms present, however, and in the absence of any simple con­
stant of the motion other than H, a given phase trajectory might be expected to 
wander (ergodically) over virtually all of a three-dimensional surface specified 
by H = Constant (and that will be a closed surface for values of H below the 
dissociation energy). If, on the other hand, some additional integral of the 
motion were in fact also acting,, the phase points of a given trajectory then would 
be constrained to lie on a two-dimensional surface, and graphs of the intersection 
of such surfaces with some selected plane or other surface (a "surface-of-section") 
would lead to simple curves in this plane rather than to a scattering of points. 
Computations of this nature indicated that for sufficiently small values of 
energy (e_.£., H <: 1/12) only curves that to computer accuracy were smooth (and 
relatively simple) were formed by intersection with the plane q, = 0 (and p, > 0). 
Examples in which the energy of the particles was successively raised, however, re­
sulted in the development of ragged island structures or of apparent stochastic 
behavior over 'increasingly large portions of this surface-of-section (Fig. 5). 



XBL 744-684 
Fig. 6 - Phase diagram for the transformation (6a, b), with f(y) given by Eqn. (7a) 

The scattered points result from computations initiated with x Q = y n'= 0 25 but must remain within the separatrix defined by the function $ [Eqn (7b)l' k = 0,1. 

Such behavior appears concordant with the "KAM" (Kolmogorov-Arnol'd-Moser) 
theory (see Ref. 58, 59-& 60 of our Ref. 2c), which suggests that many of the in­
variant cirves or surfaces present in the absence of the perturbation will 
Persist, with only minor distortion, in the presence of a sufficiently small 
perturbation (see, however, Note 9). It is of interest, of course, to determine 
or to estimate the circumstances (e.fl., perturbation strength) at which the 
KAM theory becomes inapplicable and extended regions of erratic (or stochastic) 
behavior develop. As we suggested by our first examples, and has been expounded 
more extensively by Zaslavskij and Chirikov, 2 c' 1 0one means for obtaining such 
estimates may be by determining the ratio of resonance width [5ai=(dto/dI) 61] to 
the distance (Au) to the nearest neighboring resonance. 

Additional tests (to be mentioned below) may be required to determine 
the degree of disorder associated with the movement of phase points in such 
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stochastic regions. We may first note, however, that the existence of nested 
closed invariant curves in a plane — as suggested by the KAM theorem for a 
problem in one degree of freedom — prevents phase points from moving outward 
or inward to regions of substantially different "amplitude" (in the absence of 
noise). With more than one degree of freedom, however, stochastic layers may 
intersect, to form an intricate system of channels along which a phase poir.t 
can slow!} diffuse and result in instability. The possibility of such "Arnol'd 
diffusion" has been demonstrated by Arnol'd [Ref. 35 of our Ref. 2c; stated 
simply the example considered by Arnol'd is comprised of a physical pendulum 
and a simple-harmonic oscillator, with a time-dependent coupling (that also 
depends on the phases, or angle variables, of these oscillations)]. 

It should be pointed out that some non-linear transformations -- say for 
a system with one degree of freedom — will not lead to the disappearance of 
some or all of the invariant phase curves at substantial amplitudes. Thus for 
transformations of the form 

Vl = V yn+l = " xn + f ( j'n }- ( 6 a' b ) 

McMillan has shown that if f(y) can be written as $(y) + $" (y) (where * 
denotes the function inverse to $), then the curves y = $(x) and x = *(y) 
will constitute invariant curves. Such curves will pass through the first-
order fixed point(s) situated at the intersections(s) of y = (l/2)f(x) with 
the principal diagonal. An enclosed area can thereby be formed from which 
phase points cannot escape even if the behavior in portions of the interior 
becomes highly stochastic. This is illustrated by an example (Fig. 6) in which 

f(y) =|(3y-l) - j pry + Vy 2 + k 2 (7a) 
and rs ?' 

*(x) = x - 1 + yx c + \C . (7b) 
Such a situation also can develop when f(y) is a stepwise linear function 
of y with discontinuities of slope, as has been noted by Drs. Judd and 
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McMillian [see, for example, Figs. 13 and 14 (pp. 27-28) of Ref. 12]. If 
f(y) is of the form 

f(y) = -(By2 + Dy)/(Ay2 + By + C), (8) 
moreover, the entire phase plane will be covered by a family of simple in-
variant curves -- see, for example, the cases f(y) = 2ky/(l+y ), with the 
invariants x 2y 2 + x 2 + y 2 - 2kxy = Constant, and f(y) = 2ky/(l-y2), with the 
InwrlrtMi.'. /?y S-fi'Wty Constant, illustrated by Figs. 7-8. 

It is of interest to -xamine the mechanism whereby irregular behavior can 
develop in the neighborhood of unstable fixed points, taking as an illustration 
an example suggested by Professor deVogelaere that [when generalized and re­
written in variables leading to the form (6a,b) advocated by McMillan] employs 

f(y) - 2[Ty + (1 - T)y 2]. (9) 

-i 1 1 1 1 r 

XBL 744-680 

Fig. 7 - Invariant curves for the transformation (6a, b) with f(y) = 2ky/(l+y ) ai 
k = 2/3. [Figs. 7 - 1 1 after McMillan.H] 
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XBL 744-681 
F ig . 8 - Invar iant curves fo r the same transformation as in F ig . 7, but w i ih 

XRI. 744-682 
Fig. 9 - Invariant curves f o r the transformation (6a, b) wi th f ( y ) = 2 k y / ( l - y 2 ) 



Fig. 10 - Plot of the extensions of the eigenvector directions from the unstable 
fixed point at (1,1). for the deVogelaere transformation expressed in 
McMillan's variables [Eqns. (6a, b) and (9), with T = 0]. The areas 
of the loops marked L are all equal, by virtue of the area-preserving 
character of the transformation and the inherent symmetry about the 
principal diagonal. 

First-order fixed points appear at (0,0) and at (1,1). For T = 0, this 
transformation, when linearized about the unstable fixed point at (1,1), can 
be represented by the matrix , » , with eigenvalues and eigenvector slopes 

X = 2 ± /3, dy/dx = \. 

A line segment extending downward from the fixed point (1,1) with the slope 
2 + /3, if subjected to repeated applications of the transformation, generates 
the loops shown in Fig. 10; similarly a line segment of slope 2 - / 3 , if 
extended by the inverse transformation, generates the mirror-image curve 
(mirrored about the principal diagonal). Points such as A, B, C ... progress 
toward the fixed point in smaller and smaller steps and, since the transformation 
is area-preserving, the associated loops clearly must become increasingly 
elongated as they become increasingly narrow from repeated applications of the 
forward transformation. The evolution of such loops clearly will become quite 
intricate (Fig. 11), but the loops apparently need not permeate the entire 
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"interior". Portions of an inward loop can, in fact, enter, on a later 
iteration, into the interior of an outward-lying loop, as indicated on Fig. 11. 
A wealth of island structure, of course, can develop tnroughout the area of 
such phase diagrams. 

X — 
XBL 744-679 

Fig. 11 - A partial extension of the curves shown on Fig. 10. 
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In some instances a family of unstable f ixed points for which the 

eigenvalues are negative may arise ( in place of a stable family, for which X 

is purely imaginary), and the appearance of phase trajectories can thereby 

be drast ical ly affected. Phase trajectories in the neighborhood of two such 

eighth-order ("tune" = 2,'ri) f ixed points are shown on Fig. 12 for the trans­

formation of deVogelaere vtritten to exhibit symmetry about the x-axis 

Vl = *n + T x n + f1 " J K 2 <10a> 

V l = " x n + T V l + O-TJVl 2- ( 1 0 b ) 

with T = -1/3. In any case i t is clear, however, that the development of a 

loop system such as that shown on Fig. 11, can readily give r ise to an apparent 

stochastic motion of phase points in portions of the phase diagram - - most par­

t i cu la r l y near an unstable fixed point. 

The existence of a f irm separatrix, or of an extensive fami'iy of invariant 

curves cenerally, can be extremely ser.sitive to the exact form of the transforma­

t ion. A case of some physical interest arises in computational studies relating 

to the Toda Latt ice. This one-dimen?ional l a t t i ce consists of particles 

interacting through exponential pair potentials and can propagate certain non­

linear wave forms ("solitons") without change of shape. One computational i n ­

vestigation of s tab i l i t y for a three-part icle la t t i ce (with periodic boundary 

conditions) has commenced with a Hamiltonian function 

H = ^ + p 2 2 + 0 + e -<Q r Q 3 > + e "<W +e~^]- <") 

By a canonical transformation of variables, in recognition of the invariance of 
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this system to translation -- so that I. = P. + P„ + P, constitutes a constant 
of the motion ~ the Hamilton!an (11) becomes expressible as a function of 
two pair of conjugate variables in the form 

K - | ( P l

2

 + P 2 V i [ e ( 2 V 2 ^ V - H ^ V 2 ^ l V 4 t >2], 02) 

which is identical to the Hfinon-Heiles Hamiltonian function (5) through terms 
of third order. It is of interest to examine whether in the present case con­
stants of the motion other than H act to restrict the motion. Computationally it 
was found — again using the surface-of-section q, = 0(p, > 0) -- that in this 
case simple invariant curves apparently continue to exist in the q 7Pp, plane, 
even for very large values of H. Stimulated by this result, He"nonl7 has directed 
attention to an additional integral of the motion that is valid in this case; 
the constants of the motion for the three-particle lattice then can be written 

18 in a form that we may express as 

H = Constant (13a) 
Pl + Prj + P 3 = C o n s t a n t > a n d ( 1 3 t >) 
P 1 P 2 P 3 " V ^ 3 " ^ " P 2 e " ( Q r Q 3 ' - P 3e"( Q2" Ql'= Constant. (13c) 

Evidently further analytic worl'. in fact has now established that the 
n-particle Toda lattice with periodic boundary conditions (or with fixed ends) 
is a "completely integrable" system. 

It is of some interest to seek means for anticipating whether stochastic 
behavior will occur in various portions of a phase diagram and to examine the 
character of such stochastic behavior as does occur; What we here have loosely 
termed stochastic behavior can be catalogued with respect to a hierarchy of properties 
(ergodicity, mixing, • • • ) , indicative of increasing disorder, that are fundamentally 

2a t significant for statistical mechanics. ! Of particular interest to the 
accelerator designer, of course, is the determination of a threshold beyond 
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OAO 0.70 

l-'iy. 12 - Phase trajectories tor the transformation (10a,b) with T = -1/8, in 
the neighborhood of two fixed points for which the eigenvalue is negativ 
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which stochastic behavior will set in and may act to carry a phase point to 
unacceptably large amplitudes. As noted earlier, stochastic behavior 
appears to be associated with overlapping resonances, " and tiris concept 

2c 19 has served as the basis for some analytic estimates of stochasticity limits. 
20 It has been noted by Ren6 deVogelaere and confirmed in subsequent computations 

that for a particular class of fixed-point families -- say those with rotation 
of the form m/(4ro+l) -- there is a closely linear relationship between the 
order of the resonance (4m+l) and £n|l - I Trace| through many decades ("Trace" 
denoting the trace of the tangential-mapping or differential matrix associated 
with the 4m+l iterations required to map a given fixed point onto itself). Such 
regularities, and others relating to the apparent size of the stable areas about 
high-order fixed points (e.g_., as estimated from the intersection angle of 
eigenvector";), have been considered useful indicators of the change in character 

21 10 22 of a mapping ac certain amplitudes. ' ' 
A computational procedure of considerable interest for recognizing stochasticity 

is that in which one follows the evolution of the distance between two initially 
very close points in phase space. In practice it can prove desirable to reduce 
the separation from time to time by a recorded factor whenever the separation 
becomes excessive during the computations, or, perhaps preferably, to evaluate 
the growth of an infinitesimal vector through use of the cumulative tangetial-
mapping matrix. A high degree of stochasticity can be ascribed to the behavior 
of the transformation if there are such vectors whose length generally grows 
beyond the first iteration by a factor greater than unity (while others may 
similarly contract). (Ref. 2a, p. 55; for examples, see Ref. 23.) An analogous 
procedure -- that can be more attractive, although possibly of a less direct basic 
significance — is an investigation of the growth of the eigenvalue(s) of the 
cumulative tangential mapping. Such eigenvalues can change sign repeatedly 
during the course of many interations, and hence will be seen to decrease from 
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time to time, but an exponentially increasing trend in eigenvalue magnitude 
is likely to be associated with a similar type of increase for the lengths 
of the vectors mentioned previously. The nature of eigenvalue growth has 
been illustrated by Froeschle' for the transformation 

xn+l = *n c o s a " ( yn" xn 2' s i r' a * 1 4 a ) 

'n+1 = x sin a + (y - x ) cos a (14b) 

The general characteristics of this transformation, expressed in variables 
such that the transformation has the symmetry of McMillan's form, is seen 
on Fig. 13. On an expanded scale (X10), we see (Fig. 14) the sudden onset 
of erratic behavior as the starting values for the transformation are successively 
increased (in steps Ax = 0.0025, for y = 0 ) , and on a scale expanded by 
a further factor 100/6 we see (Fig. 15) the presence of a great deal of additional 
structure within a portion of this "stochastic" region. Associated with the tran­
sition to the stochastic region there appears to be a marked change in the manner 
of growth of ii = log(X | (linear, vs. n, in the stochastic case -- indicative 
of an exponential trend for |X |) or of the "Cesaro 

1 " 1 
mean" u = — £ - ti (constancy in the stochastic case, monotonically decreasing n n „_i *" In m=l 
otherwise — Fig. 16). Such methods indeed may prove useful in investigating 
computationally the possible development of stochastic motion in storage-ring 
devices. Extended computations of this nature can present challenging problems 

27 with respect to computer accuracy. 
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XBB 744-2448 

Fig. 13 - Apparently smooth phase curves and a scattering of points resulting 
from iteration of the transformation (14a,b), with cos a = 0.22 and 
coordinates X,Y appropriate to expressing the transformation in the 
form (6a,b).25 p i v e islands of stability (containing stable fixed 
points of order 5) are seen surrounding the area associated with 
the order-! fixed point at the origin. The outermost smooth curve, 
shown as bounding this inner area, resulted from the starting values 
x 0 = 0.5350, y 0 = 0 (Froschle" notation), and the scattered points result from x 0 = 0.5375, y 0 = 0. Scale (as indicated by the coordin­
ate axes): -1.0 to 1.0 
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XBB 744-2446 

Fig. 14 - Enlarged portion (10X) of Fig. 13, showing seven smooth phase 
trajectories result ing from start ing values x 0 = 0.5200, 0.5225, 
. . . 0.5350 {and y 0 = 0) and a scattering of points resulting from 
x 0 = 0.5375, y 0 = 0. Note the occurrence of open areas within the 
region covered by the scattered points — for example the area 
surrounding an (unplotted) stable fixed point of order 65 at 
X = 0.476, Y = 0.521 
Scale: 0.38 to 0.58 



- 2.? -

XBB 744-2447 
Fig. 15 - Detailed multiple-island structure in the immediate neighborhood 

of an order-65 stable fixed point (shown here just below the center 
of the diagram) of which mention has been made in the caption to 
Fig. 14. 
Scales: 0.470 to 0.482 for X, 0.516 to 0.528 for Y. 
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10" 

0.22 
0.5375 

Matrix elements 
become inoccurale 

.Continued downward 
Jhrough 10 iterations 

10" 
Number of iteration's 

X I L 7 4 4 - 2 I S 4 

Fig. 16 - Plots of the "sliding mean", v n (tlote 26), vs.. n, obtained from computations begun (i) with initial conditions leading to the last 
smooth curve of Fig. 14 (x 0 = 0.5350) and (ii) with initial conditions leading to the scattered points on that Figure (x 0 = 0.5357), of which only the results for the latter case indicate a general exponen­
tial upward trend of | A j . 
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