
• /
I,

To be presented at the National
Computing Conference, Anaheim, CA,
June 5 - 8, 1978

p j~ eEl V ED LBL-72S?, ·,1.-./
l.1.\ YJr~~Et'J:CE

BP' '"" .• "MH)~/A10~'(Y

Iv1Nl 1) 19/8

UBYV\RY f·d\\D
DOCUMENTS SECTION

·HOW . TO 'IMPROVE youR PERFORMANCE
,·THROUGH ·.OBFUSCATORY MEASlJREMENT

David F. Stevens

January 1978

Prepared for the U. S. Department of Energy
under Contract W-740S-ENG-48

TWO-WEEK LOAN COpy

This is a Library Circulating Cop~
which may be borrowed for two weeks.
For a personaJ retention copy, call

Tech. Info. Dioision, Ext. 5716

,--------- LEGAL NOTICE -------~

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the Depart
ment of Energy, nor any of their employees, nor any of their con
tractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness or usefulness of any information, appa
ratus, product or process disclosed, or represents that its use would
not infringe privately owned rights.

..

To be presented at
National Computing Conference,
Anaheim, California,
June 5-8, 1978

ABSTRACT

HOW TO IMPROVE YOUR PERFORMANCE

THROUGH OBFUSCATORY MEASUREMENT*

David F. Stevens

Lawrence Berkeley Laboratory
University of California

Berkeley, California

January 1978

A summary of the techniques of obfuscatory measurement

in common use today, with examples showing their use in

the creative measurement of computer performance.

Keywords and phrases

LBL-7250

CPE, CPM, performance measurement, performance management

* This work was done with support from the United States Department of Energy.

Introduction

How to Improve your Performance
through Obfuscatory Measurement

David F. Stevens

Lawrence Berkeley Laboratory
University of California

Berkeley; California

January 1978

LBL-7250

It is best, I bel ieve, to make it clear at the outset that this monograph

has a somewhat obfuscato~y title ... for it is not my intent actually to show

you how to improve your performance (that being a merely technical exercise

devoid of true intellectual challenge), but rather to show you how to claim--

and substantiate--superlative performance, even in the face of extreme user

discontent.

As I have noted elsewhere [1], there are two basic elements of success in

computer center management: the achievement of saturation and the demon

stration of efficiency. That earlier paper was somewhat deficient in that

it concentrated upon the one (achievement of saturation, independently of

the true--users'--workload) and slighted the other; it is hoped that this

effort will somewhat redress the balance.

At this point I should, in all modesty, note that none of the techniques

discussed here are my own creation. My small contribution consists only

in the recognition of these scattered efforts as elements of a significant

whole. I should be quite surprised, in fact, if all who read this treatise

- 2 -

have not already either employed or encountered every measure discussed

herein. What has heretofore been lacking is a true appreciation of the

difference between a system viewed through the rose-colored glasses pro

vided by these measures, and that same system viewed in the cold light of

reality. It is my belief that the craftsman who understands his tools uses

them most effectively; it is my hope that, after having read this paper,

you will have a more complete understanding of obfuscatory measurement:

what it is, what it can do for you, and, perhaps, how to devise your own

obfuscatory measures. To that end, then, I will define what I mean by

"obfuscatory measurement", provide some general rules and principles for

the creation of obfuscatory measures, and give a number of examples to

demonstrate the power of obfuscation and hint at the astonishing variety

of forms it may take.

Obfuscatory Measurement Defined

"Obfuscatory measurement" is measurement which obscures that which it should

i 11 umi nate.

To be quite precise, ~ measurement which gives a false impression is

obfuscatory; we are here concerned, however, only with those which allow DP

~1anagement to paint a brighter picture than that seen by the users, for it

is only those which contribute to their--the DP Managers--success. Although

you may be unfamiliar with the term, you will discover that you are familiar

with many of the measures ... for many (if not, indeed, most) of the perfor

mance measures in common use today are obfuscatory. Succinctly stated,

obfuscatory measures

- 3 -

• measure the wrong things

• measure the right things wrongly

• measure something else (i.e. other than that which they

purport to measure)

• measure nothing at all (or at least no meaningful thing)

Furthermore, since systems, like people, respond to measures by which they

are evaluated, these measures contribute to success (as defined in [lJ), by

rewarding pessimal performance, thus increasing saturation.

General Rules, Principles, and Techniques

1. Select your measures with care.

Not all measures are appropriate to all situations. You should neither

attack the fly with the cannon, nor the elephant with the feather-duster.

Tailor your measures to the tractability of your users and the gullibil

ity of your upper management ... and always have a couple in reserve, just

in case

2. When in doubt, seek the advice of your mainframe vendor.

Remember, your vendor cannot sell you additional equipment until your

upper management is convinced of the saturation and effective utiliza

tion of your existing configuration. Furthermore, your vendor has a

wealth of experience in dealing with upper managements just like yours

Obfuscation is the very essence of the salesperson's art; as you seek

legal advice from a lawyer, you should seek obfuscatory advice from your

vendor.

- 4 -

3. The easier a measure is to obtain, the more likely it is to be obfusca

tory.

This is one of the few cases known to modern science where Murphy·s Law

operates in favor of the practitioner. (There is no great mystery here,

however: it is often the generosity of the vendor which made the measure

easy to obtain.)

Two specific kinds of easy measure are worthy of individual mention:

means and percentages. As we shall see in the discussion of Availability,

suitable definition of the base can turn any measurement into a praise

worthy percentage. As for the mean, while it frequently lacks meaning,

it often exhibits meanness. Even though a number of articles in the

recent literature (notably a pair by Gary Carlson [2] and one by Jain

[3J) have emphasized the obfuscatory nature of lIindiscriminate ll use of

statistical concepts, the mean is so beloved by the average person that

its utility is expected to continue relatively undiminished. One can

still, for instance, report a favorable mean in preference to a realistic

median in most circumstances. It is also often fruitful to ignore the

distribution. More details on this technique may be found in [4].

, 4. Overextend analogies.

Concepts which are meaningful in other fields can sometimes be trans

ferred into the computer performance arena, where they are invalid,

without loss of prestige. It helps, of course, if the concept is so

familiar that it is accepted without question in its new context. t1fBI

is such a measure.

- 5 -

5. Creative Definition.

This is an indispensable element of the obfuscator's arsenal ... for the

most misleading percentage you can devise won't help you unless you can

convince someone that it measures something. If yours is an elementary

situation, actual definition is not important: a catchy name is all

that is required ... (Remember "CPU efficiency"? was there anything

efficient about it? A modern example is "depth of multiprogramming".)

If you find yourself in deeper waters, some measure of definition must

be supplied ... but it is best if it is either ambiguous or incompletely

specified. ("Availability" as "percentage of time available" is, as we

shall see, an excellent example of this technique.)

Obfuscation in Practice: Some Specific Examples at Work

Some of these measures, most particularly Availability and MTBI, have been

discussed extensively elsewhere ([1], [4]); inasmuch as they are among the

most widely employed obfuscatory measures, however, they are included here-

briefly--for completeness. We will look at four general classes of measures,

giving at least two examples of each. This should provide an ample founda

tion upon which you can construct the obfuscatol~y program most suited to

your specific situation. (The contents of this section are summarized in

Exhibit 1 for quick reference, together with a listing of comparable honest

measures--which are offered in the belief that it is as desirable to know

your enemy as to know your friends.)

Class

Availabil ity

and

Re 1 iabi 1 ity

Throughput

Turnaround

Genera 1
Producti vity

- 6 -

Honest Measures

True availability to th~
users.

Mean and median service
interval.

Work delivered (in user
units) .

Processing time vs.
system wait time,
by category.

Concurrency: the number
of CP and channel
activities occurring
simultaneously.

Existence (or not) of
saturation.

Capacity relative to
workload.

Functions delivered;
quality of code.

EXHIBIT 1

Sample Obfuscatory Measures
{and what they actually measure)

Availability (% uptime)

r1TBI (mean scheduled time to
crash)

Utilization (resource occupancy)

Efficiency (utilization)

Interactive response time

Turnaround time
(as long as you stick to
means, they measure nothing
meaningful)

Overlap (existence of overlap)

Depth of multiprogramming
(number of active initiators)

Saturation (work, productive or
not, as % of "capacity")

Lines of code (prolixity)

- 7 -

1. Measures of Availability and Reliability

a) Availability

Usually expressed as a percentage, "availability" is taken by the

uninitiated to indicate the amount of time the system is usable,

whereas in fact it indicates the amount of scheduled time the

system is available to the computer center. By reducing the base

to scheduled time a significant increase in percentage is obtained.

It is further increased by including many periods of time when it

is not, in fact, fully usable: start-up times, time spent re-running

lost or interrupted jobs, and time devoted to the "run-down" before

a scheduled interruption. Exhibit 2 illustrates the cumulative

effect of all these adjustments. It shows a week in the life of a

one-shift operation, with one period of preventive maintenance (PM),

a daily system development shot (SO), two unscheduled peri~ds of

down-time (15 minutes on Tuesday and an hour on Friday); start-up

requires half an hour, and II run-down II starts a half-hour before

system development time and an hour before the end of the shift.

Naive and obfuscatory measures stand in rather sharp contrast.

b) MTBI (Mean Time Between Interruptions)

MTBF (the mean time between failures) is so well accepted as a

reliability measure in engineering contexts that practically no-one

questions its OP analog, MTBI. That the causes of failure in the

two fields are largely unrelated is largely ignored: failures in

mechanical systems are caused by wear and fatigue (to which soft

ware is impervious); failures in computing systems are caused by

unexpected input (to which mechanical systems are rarely exposed)

.M

T

w

1ft.

F

9 10 u. lZ i 2. '5 '" 5'
I i

- ~. ~
oFF

~ .~~ .~
ON

.~
JON

~
011)

~-ON

P.M. = PREVENT\VE MAINTENANCE

S.D. = SYSTEM DEVE.LOPMENT

~

.~. ~ OFF

~ ~
OFF

~ ~~t

~=DOWN
~ :: I NPUT NOT AVA'LASLE

EXHiBIT a

'D.P. M6MT. USER
(AvA\\./StKED) 1(~"An.frOT~L)

6/6 5.5/S

,

G.75/7 3.75/8
i
I
i

7/7 4.5/8

7/7 4.'5/6
co

6/7 .3/8

3Z;(S/34 19.Z5/40

96"0 48%

- 9 -

and trivial overflows (which, if they cause damage at all, cause

trivial damage: will an overflow on the meter crash a taxi?). The

user-oriented measure which most closely corresponds to MTBI is the

mean (or median) service interval. To see how they compare, we

return to the sample week of Exhibit 2. The mean service interval,

even giving full credit for the run-down periods, is 2.23 hours

(26.75/12), and the median is 2.5. The conservative way to calculate

MTBI is to divide "hours available" by "number of interruptions plus

1": 32.75/3 = 10.9 hours more than three times as long as the

longest service interval.

2. Measures of Throughput

a) Utilization

When the obfuscator is asked for measures of throughput she has

ample industry precedent for responding with measures of utilization.

Utilization measures are advantageous because they reward ineffec

tive programming (which is much easier to obtain than the other

kind). Your path here is not quite as free as it used to be, what

with the introduction of distinguishable "system" and "problem"

states for CPU utilization ... but it remains the case (thanks to

your friendly mainframe vendor) that much of what is called "problem

state" is actually system overhead. And it seems extremely unlikely

that anyone is going to come up with a meter which distinguishes

between IIsystem li and "problem" channel activity states!

b) Efficiency

This is actually a vestige of the past, but one which has validity

- 10 -

in some contexts, and adds a certain panache to your reports. It

may be freely used in place of lIutilization ll (the two are identical

in meaning), but I would advise against using them both to refer to

the same quantity: such a juxtaposition might inspire tiresome

questions. IICPU utilization ll and IIchannel efficiencyll, on the other

hand, provide a nice appearance of breadth.

3. Measures of Turnaround

a) (Interactive) Response Time

This has superseded IIturnaround time" as the most commonly quoted

measure of turnaround, but the principles of use are the same. It

is most important here to remember that the mean can be manipulated

by stacking the extremes. To be specific, you can achieve essen-

tially any response time you wish by requiring a suitable number of

trivial interchanges--with zero response time--to take place during

any interactive session (see Exhibit 3).

Another fact to be borne in mind is that, in some situations, response

which is too quick creates tension, which causes errors ... and errors

lead to wasted work, thus bringing saturation (and hence success)

ever closer. (A better strategy, however~ is to strive for consis-

tently unexpected response time, whether it be quicker or slower than
I

anticipated but this is somewhat off the subject of this paper.)

b) Turnaround Time

Since the good turriaround times are the small ones, this is a situa

tion where the median, surprisingly enough, favors the obfuscator.

Nevertheless, I recommend sticking with the mean. For not only is

- 11 -

HOURS

~
LU
to
~
:J
Z

MEAN SERVICE. . INTERVAL J b Mo\'\l~

6 -

o 4---~I----~I---r-I---r-,--~I,---~I----~I---r-'--~I'---'I--

20 -

15 -

10 -

5 -

°

F M A M J J A SON

EXHIBIT 30..

'DISTRIBUTION OF SERvICE INTERV~1-5-WEEK OF APRIL!

94
I
I
I
I

Q

1 I

(40 HOU~S, 20 INTERVALS; M5t =2~O HOU~S)

01
I I ,11 I

LENGTH 1 2. ~ 4 5 6 7 S HOURS

'20 -

15 - 0
I
I

EXHiBIT 3\'.

DISTRIBUTION OF SERV\(.E INTERVALS-WEE\< OF 6E.PT.2.

(168 HOURS,40 INTERVAI-SiMSI =4.2 HOURS)

Ci: :

~ 10 -~ : 0
I:
:J
Z 5 -

I
I
I
I
I

: ~+
I I
I I

Ii: 01

LENGTH 2. 4 6 S 10 12 14- 16 16 62 64- Hf6.
o ~~1~+1~1--~1~\~1'-~1~1--~1~1--~1~1~\--r-1~1~1~~1~.'1-y/~~-1~~1~I~r-,~

EXHH311 3c.

-12 -

the median a dangerous precedent to set, the mean is, as we have

seen above, quite a tractable index. As in the case of response

time the enterprising manager can cause enough small jobs to be sub

mitted to achi eve \'/hatever mean turnaround time is deemed necessary.

4. Measures of General Productivity

a) Overlap; Depth of t1ultiprogramming

These two measures are grouped together not because they are thought

to be equivalent (they are not), but because they address the same

problem: a vague understanding on the part of upper management that

some multiplicity of processing is desirable. They make a good

combination, not only because they obfuscate in different ways, but

also because the two together give no more accurate a picture than

either one singly.

Overlap is in fact somewhat less obfuscatory than depth of multi

programming, for it measures the percentage of time that some amount

of simultaneity is experienced; it does not, however, consider the

level of simultaneity. (Thus two simultaneous processes are every

bit as good as seven.) It may be this very touch of honesty,

paradoxically, which makes overlap so useful as an obfuscatory

measure.

Depth of multiprogramming, on the other hand, is pure obfuscation:

it counts initiators instead of processes. In many shops, large

values of depth of multiprogramming survive as tribute to the memory

salesperson's art, while all the jobs lie quiescent awaiting the

pleasure of the Resource Manager or some other such system magus.

- 13 -

b) Saturation

The obfuscatory nature of "satur~tion" lies in the fact that satura

tion is not a measure but a binary condition: the change in the

quality of a service which moves from an unsaturated condition to a

saturated one is an abrupt discontinuity: service effectively stops

and the input queue becomes infinite. References to "80% of satur

ation" thus really mean "80% of capacity", and are doubly obfuscatory

because saturation can be largely independent of capacity. We can

best illustrate this by means of an example: Consider a long,

narrow footbridge with a capacity of 2000 pounds. Thirty-nine small

boys, each weighing less than 50 pounds, would not exhaust its capacity

but wpuld surely saturate it (they wouldn't all fit at once) for quite

a while. A single man leading an elephant, on the other hand, would

not saturate the bridge but would exceed its capacity (see Exhibit 4).

A useful related obfusbation is the measurement of throughput as a

percentage of capacity, for many people ignore the basic fact that

"capacity" changes with workload and environment. They consider

"capacity" a configuration constant, despite the fact that they know

full well that any reasonable multiprogramming system has a smaller

capacity when restricted to highly compute-bound jobs than when fed

a mixture of compute- and I/O-bound work. This blind spot can be

exploited in other ways; it is much less well known, for example,

that any multiprogramming system strongly dominated by priority con

siderations has a smaller capacity than a system free to assign

requested resources (such as the CPU) in an optimal fashion [5J .. A

word to the wise, one hopes, is sufficient

- 14 -

SATuRAiED

EXHIBIT 4

- 15 -

c) Lines of Code

L'Envoi

This measure, being directed at human productivity, might be con

sidered by some to be somewhat outside the scope of this paper, but

programmer performance ~ an element of computer center performance

and lines-of-code is superbly obfuscatory. More importantly, lines

of-code is perhaps the best embodiment of one of the great philosoph

ical rocks upon which Obufscatory Measurement is founded:

It is nearly always possible to substitute

numbers for judgement.

A timid person might hesitate to use 1ines-of-code on the grounds

that it is patently absurd (is the Beer Bottle Song ["One hundred

bottles of beer on the wal1 "] better than a Shakesphere sonnet?

a limerick than a haiku? this paper than the Gettysburgh Address?),

inasmuch as it ignores quality. Such a person severely underesti

mates the power of numbers to convince and confuse in a word,

to obfuscate.

It must, alas, be admitted that an occasional obfuscator is taken to task

for an excess of creative zeal. Should that unhappy fate befall you I can

offer no defense better than that provided by Pooh Bah, who under suchlike

circumstances [6], claimed that his obfuscation was "merely corroborative

detail, intended to add artistic verisimilitude to an otherwise bald and

unconvincing narrative".

- 16 -

References

1. Stevens, D. F., The Computer Managers Guide, DATAMATION, June 1976.

2. Carlson, G., The Use of Statistics in Performance Measurement Parts I

and II, EDP Performance Review, August and September, 1977.

3. Jain, A. K., Statistical Approaches in Computer Performance Evaluation

Studies, Tutorial at CPEUG 13, November, 1977.

4. Stevens, D. F., Obfuscatory Management, SIGMETRICS/CMG VIII Proceedings,

November, 1977.

5. Stevens, D. F., On overcoming high-priority paralysis in multiprogramming

systems, CACM, August, 1968.

6. Gilbert, W. S., Mikado, Act II, March, 1885.

i

.J

,

This report was done with support from the Department of Energy.
Any conclusions or opinions expressed in this report represent solely
those of the author(s) and not necessarily those of The Regents of the
University of California, the Lawrence Berkeley Laboratory or the
Department of Energy.

