LBL-7291 o
Uc-32 C- >
TID-4500-R66

A HIGH ORDER FINITE ELEMENT METHOD FOR THE
~ CALCULATION OF CAPILLARY SURFACES

' prert'A4 Brown_ ,

December 1977 |

Prepared for the U. S. Department of Energy
under Contract W-7405-ENG-48

[ TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 6782 j

o

162.-Td1

,’&ﬂ



LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the Depart-
ment of Energy, nor any of their employees, nor any of their con-
tractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness or usefulness of any information, appa-
ratus, product or process disclosed, or represents that its use would
not infringe privately owned rights.




A HIGH ORDER FINITE ELEMENT METHOD
FOR THE CALCULATION OF CAPILLARY SURFACES

Robert A. Brown
- Department of Chemical Engineering and Materials Science

University of Minnesota
Minneapolis, MN 55455%

December 1977

*Work performed under the auspices of the Department of Energy while the author
was visiting at Lawrence Berkeley Laboratory.






[s)

ABSTRACT

A reduced quadratic finite element method on quadrilaterals is developed
for discretizing the capillary equation in regular and irregular domains.
Newton's method is used to solve the resulting set of nonlinear equations for
the capillary surface. Numerical experiments are conducted for square and
elliptical capillaries in order to compare this high order method to a bilinear
finite element-Newton scheme and a finite difference - dynamic alternating
direction implicit (DADI) technique. The reduced quadratic finite element
method is shown to be the most efficient in these tests due to the relatively

coarse element grids that can be used for accurate approximations.






INTRODUCTION

A numerical algorithm for the solution of a nonlinear elliptic partial
differential equation can be characterized in terms of the discretization used
to approximate the solution and the iteration technique used to solve the
resulting nonlinear equation set. Finite difference methods are traditionally
used for discretizatiqn. Finite element technigues are gaining popularity.
Methods for solving nonlinear equations such as Newton's method, secant method,
and successive approximations yield linear equation sets at each iteration and
can be further classified by the technique, either direct or iterative, that is
used to solve these systems.

We report here on a finite element - Newton method employing direct matrix
techniques for the numerical solution of the Young-Laplace equation, the non-
linear elliptic partial differential eguation governing the shape of a capillary
surface. The method differs from earlier finite element approximations to
this problem (1,2) in that_here a high order accurate reduced quadratic basis
function is used instead of the more easily formulated linear approximation.
Three variants of Newton's method were tested for solution of the nonlinear
finite element equations: (I) the standard Newton's procedure where the
Jacobian matrix J is formulated at each iteration, (II) simplified Newton's
iteration in which J 1is formed only initially, and (III) a hybrid method that
combines the desirable features of both (I) and (II). Direct symmetric
factorization was used to solve the linear equation sets in all three methods.

Since few analytical convergence estimates for the capillary problem are
known empirical estimates must be inferred from computational experiments. We
compare the reduced quadratic finite element approximation to a similar finite
element formulation using bilinear basis functions and also to a finite

difference approximation using the newly developed dynamic alternating direction



implicit method. The problems used as the basis of this comparison are the
calculations of zero gravity capillary surfaces in square and elliptical cross-
section capillaries. 1In the first geometry, the domain is regular and an

analytical solution is known. No solution is known for the elliptical domain.
PROBLEM STATEMENT

The position of the interface between two static liquids inside a wvertical,
cylindrical capillary of arbitrary cross-section & is given by the Young-
Laplace equation, the nonlinear elliptic partial differential equation which
relates the interface's location and mean curvature. For an interface repre-
sented in rectangular cartesian coordinates 2z = z(x,y) the dimensionless
equation is

k-2zi=~-27
X 2 3

~V__*N = =V__» =X = Bz (x y) + A [11]
IT ~ T / ' !
1+ 22 + 22
X y
where N is the unit vector field everywhere normal to the interface and
5 . . 9 . _ ‘ 2
VII = 5;-} + 5;* . The constants B and A are the Bond number (ApgL /o) and

the dimensionless reference curvature (2HOL/0), respectively, where Ap 1is the
density difference between the two liquids, g the gravitational constant, ©
the interfacial tension, H  ~the reference mean curvature (evaluated at zero
elevation) and L a reference length.

The interface meets the walls of the capillary at a given contact angle
Sc. In terms of Qs' the outward directed unit normal to the solid wall, the
contact angle condition is

N -

n = cos 6 (2]
~ ~s c

on the wall, 3&3.



When the effects of gravity can be neglected (B=0), eg. [1] describes a
surface of constant mean curvature A. The calculations reported here are
restricted to this case. Using a simple force balance (constructed by inte-
grating eq. [l] over the capillary's cross-section) the mean curvature of the
interface, the contact angle, and the geometry of the capillary can be related

as

cos Gc (3]

>
Il
> [

where L 1is the perimeter of the capillary and A its cross-sectional area.
Equation [3] is a necessary condition for the existence of an equilibrium
capillary surface. In the absence of a gravitational field the solutions to
egs. [1-2] are invariant to translation in the z-coordinate; therefore, to
uniquely specify the capillary surface one point on its surface must be fixed
in space. TFor the capillaries shown in Figure 1 the surface height at the
origin (0,0) was set to zero.

The two geometries considered here are the square and elliptical
capillaries (see Figure 1). For both configurations the existence of surfaces
of constant mean curvature everywhere satisfving eq. [2] is possible only in a
range of contact angles 90°> GC > ecrit' Concus and Finn (3) have developed
bounds for GC . which are tabulated for the square and elliptical cross-

rit

section capillaries in (4).
GALERKIN FINITE ELEMENT METHOD

The capillary problem eqs. [1-2] was discretized using the Galerkin finite
element method. The domain was divided into quadrilateral sub-domains or
elements on which a set of low order polynomial basis or trial functions was
defined. The solution to egs. [1-2] was approximated as a sum of these basis
functions multiplied by unknown coefficients whichwere determined by setting

the Galerkin weighted residuals to zero.
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Figure 1b. Computational domain for elliptical capillary. Ratio

of minor to major semi-axes is b/a. Contact angle
and symmetry boundaries are shown.



Both Lagrangian bilinear and reduced quadratic elements (5) were studied.
As in (6), the basis functions, @i(g,n), were defined on the unit square E
(see Figure 2) in terms of transformed coordinates (£,n). The four Lagrangian
bilinear basis functions on E

i i i
= a + b £ +

CD(E) (B) (E) € 1 =1,36,8 [4]

n+d

ot
“(E) (E)

are determined in terms of the element's four vertices by

i .. .
(I)(E) (Ejlnj) - Gij llj - 1731678 L] [5]

The reduced quadratic basis functions are defined at the four mid-side nodes as

well as the vertices. These eight basis functions are of the form

i i i i i io2. 4 2. i 2 2
YE® T qm TP@mtt @ T imntemt tim" Y9t ””‘(E)E
' (6]
with the coefficients defined by
(E;my) = 8, i = 1,...,8. (7]

(E) 1j
The basis functions on an element (e) (see Figure 2) in the domain are

related to the basis functions on the unit square (E) by

. . i 1,3,6,8 bilinear functions
oy (0¥) = € (EGGY) S n(x,y)) in (e)
© i=1,...,8 reduced biquadratic
functions

[8]

i

q)(e)

=0 outside (e)

where the mapping from (E) to (e) is given by the transformation

i
X = ali . CP(E) (E,n)Xi
in (E)
(9]
y= 1 o (&my.
a1l i B *
in (E)

and (xi,yi) are the nodal coordinates on (e). The solution of egs. [1-2] is
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approximated within each element of XD as

z(x,y) = b aiQ% )(x,y) in(e) [10]
all i
in(E)

where the coefficients {ui} are determined by forcing the Galerkin weighted

residuals of eg. [1] to zero, i.e.,

(¢i<e) {vug+3z+x} =0 i=1,....7%. [11]

The total number of basis functions in the domain ié fZ?. Integrating eq. [11]
by parts and applying the divergence theorem gives
1 i i
+ Ny da+ ¢ O ‘N ds = i=1,...,7%, [12
f { (e )(Bz ) - (e) N} a % (e)¥s ~»ds c 1 e 112
bty

The domain's boundary o&) can be divided into two parts: 1) the portion of the

boundary ag%OLID on which the contact angle boundary condition (gs'§==cosoc)
holds and 2) the boundary aﬁLgYM on which a symmetry condition (?S'N = Q) is

specified. See Figure 1. Making these substitutions in the residual eqgs. [12]

incorporates the boundary conditions as

R (0) = (Bz+A) - Vo© N} da + cosO o> ds =0 i=1,...,N. [13]
- ( ) (e) ~ c (e)
SOLID
It is not completely fortuitous that the boundary conditions blend easily
into the Galerkin residuals. These boundary conditions are the matural con-
ditions for eq. [1]; eq. [13] is the same result as obtained from a variational
or energy minimization formulation of the capillary problem (see (5)).
Using the definition of N given in eq. [1], eq. [13] becomes
i i ®(e)x Zx * Q(e) z i
Rl(a)==J{®te)(Bz+K)+ b4 y} da + cosec % ds=0 [14]
- 2 2
- + + 4
kD) 1 Z zy 3




which, once the solution expansion eq. [10] is introduced, is recognized as a
nonlinear equation set for {ui}. The integrals in eg. [14] were approximated

using nine point Gaussian integration.

SOLUTION OF FINITE ELEMENT EQUATIONS

The three methods tested for solving the nonlinear equation set [14] were full

Newton, simplified Newton, and hybrid Newton iterations. The full Newton's method
k+1
"

(FNM) calculates the new (k+1)st iterate for the unknowns {a; from
the kth iterate as
9(k+l) _ 9L(k) _ g—l(a(k)) g(g(k)) _ g(k) _ §(k) [15]

where the Jacobian matrix (Jij = BRi/Baj) is the local gradient of the residuals
with respect to the unknown coefficients. This iteration is continued until

the correction vector §(k) satisfies

k)
i=ll??}.(.,‘7?!6i( [ <E. | el

At each iteration eq. [15] requires the formulation and solution of the linear

equation system

) (0 _ k) (17]

s - g

Ry

with

L T (% * (@ z +0) _ z )

- j i
7. (%) = f{ Yo (o) x (e)yq)(e)y_ (e)xzx+q>(e)yzy) (e)x x (e)y 'y
= /é + 22 + 22 Jﬂ + 22 + z2
X v X v

[18]
o = g(k) da -

i .7
+ B(I)(e)d)(e)}

The matrix J is symmetric, sparse, and banded. The bandwidth depends on
the numbering scheme used for the nodes. Equation [17] was solved by factoring
J into L D %T (L is lower triangular and D is diagonal) using the profile

matrix storage technique as implemented in (6). The resulting triangular



equation systems were easily -solved.

The simple Newton's method (SNM) requires only the formulation and
factorization of the Jacobian matrix associated with the initial approximation
{a(o)}. Successive iterates are calculated using this initial gradient
approximation

o ) _ (k) 1, (o) (k)

o - 3@ Ry (191

~r ~

Simple Newton's method requires at each iteration only the calculation of the

(k)

residual vector R(a ) and the solution of the triangular systems

(k)

L (g ) [20]

L

Sherman (7) has imbedded SNM into a family of Newton-Richardson procedures
where iterative solutions to the linear systems of equations generated by eq.
[15] at each kth iteration are constructed at the expense of formulating

k o .
g(a( )). For the finite difference solution of the minimal surface equation, a

problem of similar complexity to the one considered here, Sherman (7) found SNM
the most efficient of the Newton-Richardson family. For mildly nonlinear
minimal surfaces SNM was also more efficient than the full Newton's procedure.

The accuracy of the gradient approximation of the full Newton's method
leads to accelerated convergence, at the expense of more computation, compared
to the simple Newton's procedure where the gradient approximation is not updated.
A hybrid Newton's method (HNM) was tested which after an initial full
Newton iteration uses SNM iterations as long as the convergence factor

g (L) i §(k+l”[2/” §(k)H2 is smaller than a specified level f£_, taken as

. . . +
1/2 throughout this work. If during execution f(k b

increases above fo, a
new approximation to the Jacobian matrix is calculated, factored, and the

iterations are continued.



Form g(g

Form R(a

TABLE 1.

Function

®)y, r®)

(k))

Factor J

Solve eq.

[20]

_ Total Time

10.

. Execution times for full Newton
and simplified Newton iterations

Time/Iteration

(CPU sec)

Full Newton

.248

. 396

.042

.686

Simple Newton

.104

.042

.146

TABLE 2. Results of comparison of full, simple and hybrid
Newton's methods for contact angles of 80, 40,

and 20°

.

Number of Iterations

Iteration 0

Method e M
HNM 80 1
FNM 80 3
SNM 40 1
FNM 40 5
HNM 40 3
SNM 20 1
FNM 20 7
HNM 20 4

SNM
2
0

21

12

41

|3

1x10~
1x10
110~
110
1x10~
5%10
1x10

1x10~

Total Execution
Time (sec)

1.36
2.28
3.99

3.64

3.83
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The three.iteratibn scheﬁes, full Newton's method, SNM, and HNM, were com-
pared for solving the nonlinear equation set [14] generated for the shape of a
interface in an elliptical capillary (a/b = .6) with contact angles of 20, 40,
and 80°. A grid of eight reduced quadratic elements in each direction (see
Figurg 3) was used for the calculations given in Table 2. The calculations were
performed using the FTN4 compiler (OPT = 2) on the CDC 7600 computer at Lawrence
Berkeley Laboratory. Timing estimates reported here are in central processor
seconds. The execution times for iterations of SNM and FNM are summarized in
Table 1. The factor of five increase in execution time of FNM over SNM can be
attributed to the expense of factoring the Jacobian matrix.

The results of the comparison of the three Newton methods are tabulated in
Table 2. For Gc = 80° where the interface is nearly flat, HNM reduces to SNM.
Here the initially calculated Jacobian matrix is a good approximation for later
iterations and SNM iterations converge quickly enough that the hybrid scheme
need not update J. The SNM iteration is also more efficient than FNM as pre-
dicted by Sherman.

For contact angles of 40° and 20°, the initial Jacobian matrix is no longer
a good approximation for later iterations; SNM converges very slowly (see
Figure 3) and is inefficient when compared to either FNM or HNM. The hybrid
scheme is the most efficient of the three procedures. The reason for HNM's
success is clearly seen in Figure 3 where the maximum change in the Newton's
correction vector per iteration is plotted. The hybrid scheme follows SNM

. k+1
as long as the convergence rate is acceptable (f( )

< fo). When the con-~
vergence rate becomes slow (k = 6 in Figure 3) the Jacobian matrix is recomputed

and the SNM iteration is diverted down a faster converging path.
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COMPUTATIONAL EXPERIMENTS

Finite element programs solving the capillary equation in the square and
elliptical geometries were developed for comparison of the bilinear and reduced
quadrétic elements and comparison with the finite difference - dynamic alternating
direction implicit method (DADI) developed by Doss (6). All programs were coded
in FORTRAN IV. This report includes results run on both the CDC 7600 computer
of Lawrence Berkeley Laboratory and the CDC Cyber 74 at the University of
Minnesota with the FTN4 (OPT = 2) compiler used at both installations. No
attempt has been made to compare results from the two machines.

The results that follow are divided into two parts: 1) comparisons for the
square capillary tube where an exact solution is known, and 2) results for the
irregular elliptical domain. All calculations were performed using a flat

o)

interface as the initial guess (a( = 0) for the capillary surface.

Square Capillary

Equations [1~2] were solved on a domain consisting of one quadrant of the
total cross-section of the square capillary (see Figure 1). 1In this geometry,
a simple, closed form solution exists: for 45° < GC < 90° the capillary surface
is given as a piece of sphere of radius 1/)A. For contact angles below 45° no
solution exists for Egs. [1-2].

The accuracy and efficiency of the bilinear and reduced quadratic basis
functions for the solution of Egs. [1-2] on the square were compared using the
element grids summarized in Table 3 where 97 is the total number of basis
functions in the domain and h is the element size. The hybrid Newton's
method (HNM) discussed above was used to solve the nonlinear residual equations.
The iterations were continued until the largest change in the correction vector

k)

§( was less than lO_5 (see Eq. [161).
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TABLE 3. Meshes used in the comparison of bilinear
and reduced quadratic finite elements.

Basis
Mesh Function Elements 2? h
L8 bilinear 8x8 81 .125
L16 bilinear 16x16 289 .0625
L32 bilinear 32x32 1089 .03125
08 reduced quad. 8x8 225 .125
Q16 reduced quad. 16%16 833 .0625

The capillary surface's location, the exact solution and percent relative
error at the points (0,1) and (1,1) are given in Table 4 for contact angles of
80, SO,Iand 45°. Also shown are the approximate contact angles calculated from
the finite element solution and eq. [2]. At SC = 80°, both bilinear and
reduced quadratic basis functions give accurate approximations to the capillary
surface location and contact angle. In most of these cases the solution error
is of the same order as the convergence criterion (10*5).

For the lower contact angles the capillary surface becomes more curved and
the bilinear basis functions cannot effectively interpolate the surface when
grids such as 1.8 and even L16 are used. On the other hand, the reduced quadratic
basis functions on a coarse grid (Q8) give solutions and contact angles that are
more accurate than even the 32%X32 bilinear approximation (L32). The high
accuracy of the reduced quadratic approximation for a small nurmber of elements
results in a high computational efficiency for the high order element.

Figure 4 shows the strong dependence of the error in the finite element
approximation at (1,1) on the contact angle. This is not totally unexpected.

As the contact angle is decreased, the height of the capillary surface and its

slopes at (1,1) become very large thus causing a large error in a discretized
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Figure 4.

Convergence rates of bilinear (—-+—) and reduced
quadratic (-—) finite element approproximations for the

height of a meniscus in a square capillary.
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approximation. The convergence proof of Mittleman (7) for the finite element
solution of eq. [1-2] using linear basis functioﬁs in a capillary with a smooth
boundary shows that an integrated measure of the error will not be as sensitive
to contact angle.

The reduced quadratic finite element code was compared to the finite
difference discretization of Concus (8) with the resulting set of nonlinear
equations solved by the dynamic alternating direct implicit method of Doss (6).
Uniform 20X20 (DADI20) and 40x40 (DADI40) finite difference grids from (9) were
used in the results presented in Table 5‘, Again, as in the previous comparison
of bilinear and reduced quadratic elements, the higher oxrder finite element
method is more efficient because of the relatively coarse grid needed for high
accuracy.

The convergence rates of finite difference, bilinear, and reduced
quadratic finite element methods are plotted versus h, the grid or element
size, on Figure.S. The finite difference and bilinear finite element approxi-
mations exhibit similar rates of convergence; this is expected since both
techniques reduce to Ey(h2) approximations for linear problems (see (8) and

(3)).

Elliptical Capillary

The reduced quadratic finite element method was formulated for the
capillary problem on a quadrant of a capillary with elliptical cross-section
(see Figure 1lb). To construct a quadrilateral element mesh on tﬁis domain
egs. [1-2] were cast in terms of cylindrical polar coordinates =z = z(xr,0).
In this representation the domain becomes an irregular quadrilateral as shown
in Pigure 6 for b/a = 0.6. Note that the isoparametric mapping, eg. [9],

gives a reduced quadratic interpolation for the boundary of the capillary.
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Figure 5.
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Cohvergence rates of bilinear (—+—), reduced quadratic (—)
finite element, and finite difference (---) approximations for

the height of a meniscus in a square capillary.
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degrees are shown with com-~
putation times on LBL CDC 7600 given in parenthesis. : )
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Figure 6. Cross-section of elliptical capillary in cylindrical polar
The ratio of minor to major semi-axes is .6.

coordinates.
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The dependence of the surface's height on contact angle was studied and
compared to the bilinear finite element calculations of Albright (4). The cal-
culated heights at the intersections of the major and minor axes with the capil-
lary wall are shown in Figure 7 for both a 16x16 reduced quadratic and Albright's
21x11 mesh. The relatively coarse mesh of the bilinear finite element formu-
lation was necessary because of slow convergence of the block successive over
relaxation-Newton's method used in (4) to solve the system of nonlinear
equations. Note‘that for small contact angles, where the surface's slopes are
large, the higher order method gives higher and probably more accurate valﬁes
of the meniscus height than does the bilinear approximation.

The reduced quadratic finite element approximation was also compared to the
finite difference-DADI scheme of Doss (11} for 41x41 (DADI4l) and 101x101
(DADI101) grids. In the results shown in Table 6 the finite difference calcu-
lations consistently predicted capillary heights greater than those found by
the high order finite element method. 1In the finite difference formulation the
irregular domain has been replaced by a polygonal approximation: the corners
introduced into the computational domain cause the calculated capillary heights
to be greater than those for the true capillary. The quadratic boundary
approximation used by the finite element technique all but eliminates this

source of error.



HEIGHT OF CAPILLARY SURFACE AT MINOR SEMI-AXES, z(b,0)
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Dependence of capillary surface height on contact anglé
for elliptical cross-section capillary (b/a = 0.6).
Heights of the surface at the intersection of the major
and minor semi-axes and the wall are shown for 16x16
quadratic element mesh (—) and Albright's 21x11 linear
element mesh.
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TABLE 6. Comparison of reduced quadratic finite element and
finite difference - DADI methods for capillary
problem in an elliptical domain. Contact angles of
60, 20 and 10 are listed.

c Execution
(°) z(a,o0) z(b,T/2) Time (sec)¥*

DADI32 60 0.27564 0.16057 1.07
DADIG4 60 0.27533 0.16056 4.65 {
08 60 0.27525 0.16052 0.58
016 " 60 0.27524 0.16055 2.69
DADI32 20 0.77727 0.40944 2.31
DADIG4 20 0.77423 0.40857 11.97
08 20 0.77308 0.40761 0.94
016 20 0.77287 0.40814 4.94
DADI32 10 0.98491 0.48653 3.80
DADI64 10 0.98285 0.48330 19.00 .
08 10 0.97690 0.47638 1.02
Q16 10 0.98221 0.48011 5.47

*Times taken on the CDC 7600, Lawrence Berkeley Laboratory

Although no exact solution is known for an interface in an elliptical cross-
section capillary, the respective accuracy of the two methods can be inferred
through the effects of mesh refinement. Table 6 gives results for contact
angles of 60, 20, and 10 degrees. For GC = 60° both discretizations give
accurate solutions with relatively coarse grids (DADI32 and Q8), with their
solutions invariant to grid refinements (DADI64 and Q16). The results for 20 and
10 degrees show the evolution of both approximations with mesh refinement. The
fine grids Q16 and DADI64 give similar solutions. The reduced quadratic finite
element solutions, as in the square domain, require much less computation time
than the very refinedAfinite difference approximation. Also the convergence of
the FEM-Newton method is not as sensitive to contact angle as the DADI method:
the ratios of execution times of the 20 to the 10 degree cases are 1.1l:1 and

1.6:1 respectively.



24.
DISCUSSION

The reduced quadratic finite element-Newton's technicque developed here for
solving the nonlinear, elliptic Young-Laplace equation has been shown more
efficient than a finite element-Newton scheme using bilinear basis functions
and a finite difference method using a very efficient nonlinear iteration
scheme (DADI). The efficiency of the high order finite element method results
from the relatively coarse grids with which highly accurate solutions can be
obtained. These small grids lead to small linear equation sets ( gk? less than
1000) in‘the Newton's linearization and make the direct factorization technique
employed here acceptable.

The loss of existence of the interfacé below a gritical contact angle is an
additional computational difficulty of capillary problems; optimally, any numerical
simulation of these problems should mimic this behavior. As reported in (4), the
bilinear finite element - BSOR method finds solutions to the discretized system

of equations for angles well below GC Similar results were obtained with

rit®
the finite difference ~ DADI technique (9). The high order finite element-Newton

scheme failed to converge for contact angles much below GC For example:

rit’
in the square capillary (ecrit = 45°), solutions to the discretized problem were
found only down to 44°. Since it is doubtful that the equation set fails to
have a solution below this contact angle, the best explanation for such behavior
is that the equation set becomes too ill-conditioned for the Newton's method to
converge. The apparent loss of existence of the approximate solution is then

tied to changes in the domain of convergence of the nonlinear iteration tech-

nique. More work is needed to fully understand this behavior.
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