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Abstract 

A classical model for the interaction of molecular systems with infra­

red radiation is presented. It differs from the usual "semiclassical theory 

of radiation and matter" in that the molecular system is treated by classical 

rather than quantum mechanics, and the radiation field is described as 

classical (mechanical) harmonic oscillators rather than as a classical 

field (1. e., via Maxwell's equations). The classical Hamiltonian for the 

composite system--molecules, radiation, and their interaction--is thus that 

of a completely mechanical system, and its classical dynamics is determined 

by computing the classical trajectories of the system. Quantum mechanical 

interference and tunneling effects can be built into the description within 

the framework of classical S-matrix theory. Even within the strictly 

classical limit of the model it is shown that all dynamical effects in 

the interaction of radiation and matter are obtained; in the perturbative 

limit, for example, it is shown that absorption and induced emission, and 

even spontaneous emission, which is often difficult to obtain in other 'classical 

or semiclassical models, appear in a completely straight-forward manner . 



-2-

I. Introduction 

The advent of high power infrared lasers has stimulated the need for 

non-perturbative theoretical methods of describing the interaction between 

infrared radiation and molecular systems. There is interest in the 

response of isolated molecules to high power infrared lasers (e~g., 

"multiphoton" dissociationlof small polyatomic molecules) and also in the 

influence of such radiation 

2 
processes. 

on the dynamics of molecular collision 

The standard "semiclassical theory of radiation and matter,;3 takes the 

radiation as a classical time-dependent electromagnetic field, described 

by Maxwell's equations, and describes the "matter" ~ 1. e., molecules, quantum 

mechanically. The time dependent Schrodinger equation is used to determine 

J 

the influence of the external time-dependent field on the quantum mechanical 

molecular system. 

This approach has several shortcomings, perhaps the most severe being 

that an accurate quantum mechanical description of any molecular system 

other tha~ a diatomic molecule is not generally possible. Classical and 

semiclassical methods are often a good description of molecular dynamics, 

however, so one can expect to overcome this shortcoming by treating the 

molecular system by classical, rather than quantum mechanics. Assuming 

that no electronic transitions are involved, the theoretical model then 

consists of classical trajectories moving on a potential energy surface 

with an external time-dependent force from the classical electromagnetic 

field. 

The above classical approach has already been applied 4.,,5 tbseveral 
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examples of "multiphoton" dissociation by high power infrared lasers, and 

one expects it to be a realistic model of this phenomenon. It is not 

completely satisfactory, however, Apart from being strictly classical' 

and thus missing any quantum effects that might be significant, this 

model also has the drawback that the classical Hamiltonian is time-dependent 

(because of the external time-dependent field) so that the energy or the 

system is not conserved. (This is correct, of course, since the molecule 

gains or looses energy from the external electromagnetic field.) This 

means that energy conservation cannot be used as a check on the accuracy 

of the classical trajectories as it commonly is for ordinary trajectory 

calculations without external fields. 

This paper presents a new theoretical model which also' treats both 

the radiation field and the molecular system classically. Rather than 

treating the radiation as a classical field, Le., via Maxwell's equations, 

however, the equivalence of the radiation field to a set of harmonic 

oscillator~ is invoked, and the harmonic oscillators representing the 

field are treated as classical oscillators, i.e., as following classical 

trajectories. (This, of course, was Planck's model for the radiation 

field by which he explained black body radiation. This "new" model is 

Qthus actually very old!) The Hamiltonian for the complete system--radiation 

field, molecules, and their interaction--is introduced, and it conserves 

the total energy of the complete system, molecules plus radiation field. 

I t is also possible. to combine this classical treatment of the dynamics 

with the quantum mechanical principle of superposition via "classical 

7 
S-matrix" theory, and thus build quantum effects into the description. 
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Even at the classical level~ i.e" neglecting effects of the super-

position principle, this model.describes all the dynamical effects in the 

interaction of molecules with radiation: absorption and emission of 

energy by the molecular system, and even ~ontaneous emission of the 

molecular system. That spontaneous emission is obtained at the completely 

classical level is interesting since it is often considered to be an 
j 

inherently quantum mechanical effect. 6,8,9 

The interaction of radiation and matter is a well-worn topic in general, 

and in particular the-re are several other kinds of "semiclassical" approaches 8,9 

that are capable of describing supposedly quantum~like features such as 

spontaneous emission. The "neoclassical" theory of Jaynes
8
is the: approach 

most akin to the present work. The primary difference between the two is 

that the "neoclassical" approach retains a quantum mechanical- description 

of the particles while using a classical treatment of the radiation field. 

Because of this mixed description the analysis is much more cumbersome than 

the present and it is also necessary to introduce various dynamical approxi-

mations into the treatment; this is typically the case when some degrees 

of freedom are described quantum mechanical and others are described 

classical. 
7 

Since the present approach treats both particles and radiation 

field on an equal dynamical footing, i.e., classically, a rather elementary 

calculation is possible without invoking any dyanmical approximations 

(other than the use of classical mechanics). As mentioned above, the 

system can be "quantized" via classical S-matri?C theory if this is .deemed 

desirable or necessary. The primary advantage of the present formulation 

is that non-perturbative calculations are possible, and even quite straight-

forward, since one can numerically compute the classical trajectories of 
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the complete (particles plus field) system, 

Section II develops the general classical/semiclassical model. It 

is shown in Section III how the field variables can, without approximation, 

be eliminated from the equations of motion. The resulting equations of 

motion for the molecular system involve the instantaneous force from the 

unperturbed electromagnetic field and a "memory force" that involves the 

history of the molecular motion. Absorption and emission are discussed in 

some detail in Section IV, and it is seen that the classical expressions 

for the rate of absorption and induced emission, and even spontaneous 

emission, are the precise analogs of the quantum mechanical expressions. 
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II. Theory 

a. Classical Model 

It is useful to begin with the quantum mechanical Hamiltonian for the 

molecular system and a single mode radiation field. Generalization to 

include a~ arbitrary number of modes is straightforward. The interaction 

between the field and the molecular system is described within the 

dipole approximation; again, high order terms in the interaction can be 

included if they are needed. 

where 

. 6,10 
The Hamiltonian operator ~s 

H = H + H d + H. t m ra ~n 

~(x) 

(2.la) 

(2.lb) 

p and- x are the momentum and coordinate operators for the molecular system, 
~ ~ 

and H (p,x) is the Hamiltonian for the isolated molecular system; if p and m ~ ~ 

x are cartesian variables, then it is of the form 

H (p,x) 
m ~ ~ 

(2.2) 

t 
a and a are creation and annihilation operators of the photon field whose 

frequency is wand polarization ~, and V is the volume of the radiation 

+ 
cavity. ~(x) is the dipole moment of the molecular system as a function 
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of the molecular coordinates. 

To make the classical limit more intuitive it is useful to replace 

t " a and a by the operators P and X, 

,.' 
(2.3a) 

(2.3b) 

so that the Hamiltonian becomes 

(2.4) 

P and X are the abstract cartesian momentum and coordinate of the radiation 

field, in terms of which the field is seen to appear as a mechanical 

harmonic oscillator of unit mass. 

The classical limit is now taken. The operators p, x, P, and X 

become classical variables, and H(~,~,P,X) of Eq. (2.4) becomes the classical 
\ 

Hamiltonian function. Hamiltons equations, 

aH 
x = ap = p/m (2.5a) 

_ dH = _ dV .v-4nw2· X d~ (xl 
ax ax v ',dX - -

p (2.5b) • 

(2.5c) 

(2.5d) 
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determine the time evolution of the classical coordinates and momenta. 

This classical dynamical system may be thought of as the original 

molecular system with ~ extra vibrational degree of freedom; the 

potential surface V(x,X) for the composite system is 

vex,X) 

Since ordinary classical trajectory calculations for a triatomic molecule, 

or an A + Be collision process, involve 6 degrees of freedom in its center 

of mass, it is little increase in effort to compute the trajectories with 

one additional vibrational degree of freedom. The total energy of the 

complete system is conserved, of course, since the classical Hamiltonian 

of Eq. '(2.4) is not an explicit function of time. 

The time dependence of the field variables is simpler if P and X are 

replaced by the action-angle variables
ll 

Nand Q: 

x = ,J2hN sinQ 
w 

P = ,J2't:tt1.w cosQ 

(2.6a) 

(2'.6b) 

In terms of these variables the classical Hamiltonian of Eq. (2.4) becomes 

H(p,x,N,Q) (2.7) 

Since the unperturbed time-dependence of Nand Q is 

N(t) constant 

Q(t) = wt + constant 
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their time dependence in the coupled system is expected to be simple also. 

b. Semiclassical Model 

It is also clear how one can incorporate quantum effects into the 

7 
picture within the framework of "classical S-matrix" theory. Suppose, 

for example, the molecular system is a collinear A + BC collision process. 

There are two molecular degrees of freedom, translation and vibration, 

characterized by variables (P,R) and (n,q), respectively; nand q are the 

action-angle variables for the B-C vibrational motion. The complete 

system thus has a translational, or scattering degree of freedom and two 

vibrational degrees of freedom, B-C motion with action-angle variables 

(n,q), and the field with action-angle variables (N,Q). n has the 

interpretation of the vibrational quantum number for the diatomic molecule, 

and N is th,e number of photons in the field. For a total energy E the 

scattering parameters of interest are the S-matrix elements, 

(2.8) 

which are the probability amplitudes for the nlNI -+ n2N2 transition. 

This S-matrix element describes a collision in which the vibrational 

state of BC changes from n
l 

to n2 with the absorption (or emission) of 

(N2-N
I

) photons from the field. 

The S-matrix elements of Eq. (2.8) are determined semiclassically 

by the classical S-matrix formalism. 7 One requires classical trajectories 

of the system for which nand N are initially the in~egers n
l 

and N
I

, while 

the initial values of the conjugate angle variables" ql and QI' must be 

chosen so that nand N are the integers n'2 and N2 at the end of the 
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traj ectory. The expression for the classical S-matrix is of standard 

form and need not be given here, other than ,to note that the phase cP 

of the S-matrix element is given by 

• • • [R(t)P(t) + q(t)n(t) + Q(t)N(t)] (2.9) 

This semiclassical picture also shows unambiguously how the strictly 

classical version of the calculations should be carried out. Following 

12 
the usual ,"quasi;..classical" Monte Carlo procedure, , the initial action 

variables nl and Nl are taken to be integers, and the conjugate angle 

variables are chosen by Monte Carlo, 

where' ~l and ~2 are random numbers between 0 and 1. The classical 

trajectory is computed, and the final values of nand N, not necessarily 

integral, are assigned to the appropriate n2- '·and N2- quantum number 

"boxes". The number of trajectorie's assigned to a particular (n2 ,N2) 

box, divided by the total number of trajectories run, is the classical 

transition probability P N N. If one is uninterested in how many 
n2 2,nl 1 

photons are absorbed or emitted and only in what happens to the molecular 

system, then one simply ignores the final value of N and assigns the final 

value of n to n2-boxes. Averaging over the initial phase of the classical 

field, Ql' thus corresponds to summing over all the number of photons 
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that are absorbed or emitted. Definite photon processes-~i.e" a one­

photon process, or a two~photon process, etc.,~-on the otherhand, 

correspond to specific values of the initial phase. 

.. 



:-.:' 

-11':' 

III. Elimination of Field Variables 

Eq. (2.5c) and (2.5d) can be combined to eliminate P, giving the 

following equation for X(t): 

•• 2 Jnw2
' 

X(t) + w X(t) = -v-. 1-1 (x(t» (3.1) 

This is a linear inhomogeneous equation for X(t) which is easily solved} 

X(t) - XO(t) +J4;W
2

' 1 dt' 

1 

sin[w(t-t')] 
w 1-1 (x (t ' » (3.2) 

where XO(t) is the "unperturbed" solution, Le., the solution to the' 

homogeneous equation: 

(3.3) 

where (Nl,Ql) are the values of the action-angle variables at the initial 

time t
l

• 

Eq. (3.2) for X(t) can now be combined with Eq. (2.5a) and (2.5b) 

to obtain a closed set of equations for the molecular variables (p,x): 

sin[w(t-t')] 1-I(x(t'» 
w 

(3.4a) 

(3.4b) 
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The three terms in Eq. (3.4b) may be interpreted, respectively, as the 

instantaneous intramolecular force, the instantaneous force due to the 

unperturbed radiation field, and a "memory" force that depends on the 

trajectory at all previous times. This elimination of the field variables 

X(t) and pet) from the equations of motion for the molecular variables 

is analogous to the way a similar elimination occurs in quantum 

electrodynamics. 13 It is also the same trick used by Zwanzig,14 and 

amplified by Adelman and Doll,15 to eliminate the degrees of freedom of 

the harmonic substrate in describing collisions of a gas atom with a 

solid surface. 

It should be noted that the equations of motion Eq. (3.4) for the. 

molecular variables do involve the initial values of the field variables, 

(Nl,Ql)' In carrying out a classical Monte Carlo calculation, for 

example, it is thus still necessary to choose an initial integer value 

for NI and to choose Q
I 

randomly in the interval (O,2TI). 

From X(t) as given by Eq. (3.2) it is possible to determine the final 

value of the photon quantum number N from the expression 

(3.5) 

A rather straight-forward calculation gives N2 - N(t2) as 

2 
-iwt 

e ll(x(t» (3.6) 

where the molecular trajectory x(t) is determined by Eq. (3.4). 
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IV. Absorption and Emission in the Perturbative Limit 

Although the classical/semiclassical model described in Sections II 

and III is expected to be of most use for high power radiation fields 

when a non-perturbativetreatment is necessary. it is interesting in 

making contact with other approaches to see how this model describes 

absorption, induced emission, and spontaneous emission of radiation in 

the perturbative limit. Since spontaneous emission is often thought of as 

an intrinsically quantum mechanical phenomenon, it is particularly 

interesting to see here that it comes about in a completely straight-forward 

way in a totally classical th~ory. 

Consider specifically the change in the energy of the molecular 

system during the time interval (t
l

, t 2)': 

t2 

llE =[ dt ~ H (p,x) 
m t dt m - -

1 

2 
[£ + V(x)] 

2m 

p. aV· 
[-"'- p + -' x] 
m - ax- (4.1) 

with the equations of motion of the molecular variables [Eq. (2.5a) and 

(2.5b)] this becomes 



and integration by parts gives 

i'lE = 
m 

From Eq. (3.2) one finds 
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-Ql·d' + V.--v:- t 
t1 . 

X(t) 

J.l(x(t'» cos[w(f-t')] 

and substituting this into Eq. (4.2) gives 

i'lE= 
m 

2 _ 4rrw 
V 

J.l(x(t» J.l(x(t'» cos[w(t-t')] 

(4.2) 

(4.3) 

. (4.4) 

In the second term of the RHS of Eq. (4.4) the integrand is symmetric with 

respect to exchange of t and t', so that 

(4.5) 
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so that the second term can be written as 

~(x(t» ~(x(t'» cos(wt-wt') -

-iwt 
e (4.6) 

With Eq. (4.6) the expression for the change in energy of the molecular 

system thus becomes 

fiE 
m ~

. 

= _ 871hw N1 
,V . 

2 
21TW 

-·-V-

2 

-iwt I e ~(~(t» (4.7) 

One notes that the same expression is obtained by considering the energy 

change in the radiation field, hW(N2-Nl ) = hwflN; i.e., from Eqs. (3.6) 

and (4.7) one sees that 

hwflN = - fiE m 

nil! energy gained or lost by the molecular system thus shows up in the 

energy of the radiation field. 

(4.8) 

Eq. (4.7) is the exact classical expression; now the perturbative limit 
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is, taken. -~ The natural perturbation parameter is V , and one needs to 

-1 
evaluate ~E to second order in it (i.e., to order V ) and also to average 

m 

over the initial phase of the field Ql. Since the first term in Eq.(4.7) 

-~ has a factor V ,it is necessary to calculate the molecuiar traj.ectory 

-!.: 
x(t) through first order in V 2 From the equation of motion for x(t), 

Eq. (3.4), one sees that to first order in V-~ x(t) is given by 

(4.9) 

th where the equations of motion for the zero- order term ~O(t) and first 

order correction ~x(t) are 

/ 

= 0 (4.l0a) 

sin[w(t-tl ) + Ql] (4.l0b) . 

~O(t) is thus the field-free molecular trajectory. The initial conditions 

for ~O(t) and ~~(t) are 

Through order V-I ~E of Eq. (4.7) is thus given by 
m 

( 
\ 

(4.11a) 

(4.11b) 
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dll(~O(t» 
----::----- 0 flx(t) cos[W(t-tl ) + Ql] 

d~O 

2 t2 

2rrw 'f - --V t dt 
1 

It is shown in the Appendix that the solution of Eq. (4.10b) for 

flx(t) is 

where ~O(t) = ~O(t;~l'£l) is the field-free molecular trajectory as a 

function of its initial conditions. Using this result for flx(t) in 

Eq. (4.12) and averaging over Q1 gives 

flE = 
m 

2 It .4TIhw Nl 
- ---- dt V . 

tl 

2 
2'ITw ---

V 

[ dll(~O(t». dll(~O(t'» 

dEl d~l 

-iwt I e ll(~O(t» 

2 

. (4.12) 

(4.13) 

(4.14) 
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Eq, (4.5) can also be applied to the first term on the RHS of Eq. (4.14) 

and the result written equivalently as 

L1E 
m 

-iwt 
e 

2 
-iwt , 

e )l(~O(t»· (4.15) 

The first term i~ Eq. (4~15) is the induced term (Le., absorption and 

induced emission) since it is proportional to the number of photons in the 

field. The second term, which is present even if N1 = 0, describes 

spontaneous emission; note that it is negative, i.e., as a result of 

spontaneous emission the molecular system looses energy. 

The rate that the molecular energy changes can be found from Eq.(4.l5) 

by setting t1 = - T/2, t2 = + T/2, dividing by T, and taking the limit 

T -7 By making use of the spectral density theorem, 
16 

00 

T T 

¥[t. dt f(t)Jlf~ dt g(t)] 

00 

Q.im -iwt iwt I!t e e = 
T-700 

-2 2 

where C(t) is the following time correlation function 

C (t) Q.im 
T-700 

T 

1:. (2 d t' f ( t ') g (t' + t) 
T Jr 

2 

L e. , 

-iwt 
C(t) e , (4.16a) 

(4.l6b) 

., 
v 
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where 

• 

. 
~E 

m 

C (t) = r 

c: (t) = 
l. 

.Hm 
T~ 

R-im 
T~ 
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(4.17) 

T 
2 

1:. f dt' ~(~O(t'» ~(~O(t'+t» 
T T 

(4.l8a) 

-2 

T 

1:. J, dt' h 
a~(~o (t'» a~(~o(t'+t) 

T T a~1 a~1 
(4.18b) 

-2 

~ Since ~E , C , and C. are real quantities, Eq. (4.17) can be simplified to 
m r l. 

. 
~E = 

m 

2 
21TW ---

V 

sin(wt) C. (t) 
l. 

cos(wt) C (t) . r (4.19) 

Eq. (4.19), with the correlation functions defined by Eq. (4.18), is the final 

classical expression for the rate the molecular system gains (or looses) 

energy from the field. 
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One now wishes to compare this classical result to the appropriate 

quantum mechanical expression. For a single mode radiation field of 

1'\ 
frequency wand polarization £ the rate of transitions from molecular 

state n
l 

to n2 is given in first order perturbation theory byl? 

where 

2 47T W =--
V 

+ (N
l 

+ 1) 0(£ -£ +hw)] n2 ni 

-+- 1'\ 
].l = ]..l0£ 

(4.20) 

The net rate of change of the molecular energy for the initial state n
l 

is thus· 

- (Nl+l) 0(£ -£. +hw)] 
n

2 
n

l 

Since the delta function can be represented as 

1 100 ±iwt ien t/h -iEnl t/h 
0(£ -£ ±hw) = 27Th dt e e 2 e 

n2 nl _00 

(4.21) 

(4.22) 
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Eq. (4.21) can be" written as 

2 
21TW Nl 'f -iwt 

= V [J~dt e CQ(t) 

2 21TW ---
V 

_00 

00 r iwt 
.loodt e CQ(t) 

where CQ(t) is the quantum mechanical dipole correlation function:
18 

where H is the molecular Hamiltonian operator. Since the real and 
m 

(4.23) 

(4.24) 

18 imaginary parts of CQ(t) are even and odd functions of t, respectively, 

Eq. (4.23) becomes 

2 
• 41TW Nl 

AE - +(---'-
LI n

l 
- J V 

-" 2 
21TW "---

V 

00 

JCdt [cos(wt) Re CQ(t) - sin(wt) 1m CQ(t)] 

or 
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2rrw ---

V 
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This is the final quantum mechanical expression. 

Comparing the classical [Eq. (4.19)] and quantum [Eq. (4.25)J 

expressions, one sees that in terms of their respective correlation 

functions the expressions are identical if one (1) identifies the 

classical dipole correlation function of Eq. (4.l8a) with the real 

part of the quantum mechanical dipole correlation function 

(2) identifies the correlation function C.(t) of Eq. (4.l8b) as the 
l. 

imaginary part of the quantum mechanical dipole correlation function, 

(4.25) 

(4.26a) 

(4.26b) 

and (3) replaces the photon quantum number Nl in the classical expression, 

1 
Eq. (4.19), by (N

l 
+2)' 

18 Eq. (4.26a) is an obvious and well-known correspondence, but 

Eq. (4.26b) is not. The latter provides a general way of using classical 

mechanics to determine an approximation to the imaginary part of the 

quantum mechanical dipole correlation function. (Note that C.(t) is 
l. 

proportional to h, so that it vanishes in the completely classical limit 

h = 0; i. e., in this limit absorption and induced emission exactly cancel 
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If one averages C.(t) in Eq. (4.l8b) over a Boltzmann 
l. 

distribution of initial conditions, then one can show that it can be 

written as 

C. (t) = 
l. 

Ii d 
- 2kT dt (4.27) 

where C and C. are the Boltzmann averages ofC and C.; this is a known 
r l. r l. 

relation. 18 

It is also interesting to see that the proper identification requires 

one to add "~" to the photon quantum number Nl in the classical expression, 

Eq. (4.19). Since the present classical model treats the field as a 

classical mechanical.harmonic oscillator, it is perhaps not surprising to 

see the quantum number for the field, Nl , appear with the familiar "~" 

added to it. 

Finally, a simple example which illustrates the above formulae is 

the case that the molecular system is a single harmonic oscillator of 

frequency wOo If ~(x) = x, it is easy to show from Eq. (4.24) that the 

quantum mechanical dipole correlation function is 

Ii 
= 2IDWO 

(nl~)1i i Ii 
= ---'~- cos (wot) + --- sin(wot) 

IDWO 2mwO 

so that 
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h 
1m CQ(t) = -- sin(wot) 

2mwO 

Classically, the field-free molecular trajectory xO(t) is 

From Eq. (4.18) one then easily finds that 

C (t) 
r 

(4.28a) 

(4.28b) 

(4.29) 

(4.30a) 

(4.30b) . 

where n
l 

is the vibrational quantum number corresponding to the initial 

conditions (xl,Pl)'· 

n + ~ 1 

Comparing Eqs. (4.28) and (4.30), one sees that this classical theory gives 

the correct result for both the real and imaginary parts of the quantum 

mechanical dipole correlation function. 
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v . Concluding Remarks 

The classical/semiclassical model that has been presented here differs 

from the standard semiclassical theory of radiation and matter in two 

essential ways: the molecular system is treated by classical, rather 

than quantum mechanics, and the radiation field is described as classical 

(mechanical) harmonic oscillators rather than as a classical field. The 

degrees of freedom of the molecular system and the degrees of freedom 

of the radiation field thus appear on an equal footing. The classical 

dynamics of the system corresponds to the coordinates and momenta of the 

molecule and of the field evolving in time according to Hamilton's 

equations, i.e., following classical trajectories. Quantum effects 

(i.e., interference and tunneling) can be built into the model via 

classical S-matrix theory. It is thus possible to describe complete 

state-selected processes, i.e., specific quantum transitions of the 

mo~ecular system that correspond toa specific number of photons being 

absorbed or emitted. 

Even within the completely classical version of the model it is 

seen that all the dynamical- features of the interaction of radiation 

with mB:tter appear. Spontaneous emission, for example, which is often 

difficult to describe within other classical or semiclassical models, 

is seen to appear in the model in a completely straightforward manner. 

One would in general expect this model to be most reliable when 

the quantum numbers of the molecular system and of the field are large. 

Since the intramolecular potential surface is a smooth function, however, 

and the field a harmonic oscillator linearly coupled to the molecular 

I ' 
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system, it is not surprising that the model can also be accurat~ even for 

small quantum numbers. In Section IV it was thus shown that absorption 

and emission, which are single photon processes in first order perturbation 

theory, are described correctly. For weak fields, as well as for high 

power lasers, one therefore expects this model to be a useful description 

of the interaction of molecular systems with infrared radiation fields. 

One expects it to be particularly useful when non-perturbative treatments 

are necessary. 



t. 
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AppendiX 

The purpose of this appendix is to show that the solution of 

Eq. (4.l0b), with the initial conditions of Eq. (4.11b), is given 

by Eq. (4.13). For simplicity, vector notation is not used here, 

but the multidimensional version of the calculation is essentially 

identical to that given here. 

Since Eq. (4.10b) is a linear second-order inhomogeneous equation, 

its general solution can be expressed in terms of any two linearly 

independent solutions of the homogeneous equation. Thus let f(t) and 

g(t) be two such solutions: 

2 
+ d V(X

02
(t»] { } :~~~ = dXO 

o (A.l) 

Then the most general solution of Eq. (4.10b) is 

fuc(t) g(t)]I(t') 

(A.2) 

where c
1 

and c2 are arbitrary constants (to be'determined by the boundary 

conditions), W is the Wronskian 

W f(t) g(t) f(t) g(t) (A.3) 

:/: function of t 

and I(t) is the inhomogeneity, the RHS of Eq. (4.10b). The initial 

conditions, Eq. (4.11b), require that 
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o ·(A.4) 

so that 

L'lX(t) 1 t I· t (mW)- [f(t) I dt' g(t')I(t') - get) dt' f(t')I(t')] . (A.S) 

tl • tl 

The two solutions f(t) and get) can be obtained as follows. The 

field-free trajectory xO(t;xl,P
I

) satisfies the classical equation of 

motion 

d
2 

m--. 2 
dt 

= o 

Differentiating this equation with respect to the initial condition 

Xl gives 

and similarly differentiating with respect to PI: 

dxO(t;xl,PI ) 

dX
I 

dxO(t;xl,PI ) 

dP
I

· 

Since Eq. (A.7) is the homogeneous equation, one can choose 

f (t) 

get) 

dxO(t;xl,PI ) 

dPI 

dxO(t;xl,PI ) 

dX
I 

= 0 , 

= 0 , 

(A.6) 

(A.7a) 

(A.7b) 

(A.8a) 

(A.8b) 
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Since for short times one has 

(A.9) 

and thus for short times 

(A. lOa) 

g(t) ~ 1 (A. lOb) 

the Wronskian, which can be evaluated at t
l

, is 

= 11m (A. 11) 

With Eqs. (A.8), (A.ll), and putting in the specific form 

let) from Eq. (4.l0b), the solution in Eq. (A.5) becomes 

axO(t) It 
- dt' aX

l tl 

= 
,/""wNl' [axo(t) a ax (t) a JEt o - d t' 11 (x (t'» 

v apl aXl - aXl OPl 0 
1 

sin[w(t'-t l ) + Ql]' 

(A.l2) 
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