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Abstract

A classical model for the interaction of molecular systems with infra-
red radiation is presented. It differs from the usual "semiclassical theory
of radiation and matter' in that the molecular system is treated by classical
rather than quantum mechanics, and the radiation field'ié described as
classical (mechanical) harmonic oscillators rather than as a classical
field (i.e., via Maxwell's equations). Tﬁé classical Hamiltonian for the
composite system--molecules, radiation, and their interaction--is thus that
of a completely mecﬁanical system, and its classical dynamics is determined
by computing thé classical tfajectories of thé system. Quantum mechanical
iﬁterference and tunneling effects can be built into the description within
the framewdfk of classical S-matrix theory. Even within the strictly
classical iimit of the model it is shown that all dynémical effects in
the interaction of radiation and matter are obtained; in the perturbative
limit, for example, it is shown that absorption and induced emissibn, and
even spontaneous emission, whigh is often difficult to obtain in other classical

or semiclassical models, appear in a completely straight-forward manner.



1. Introduction

The advent of high power infrared lasers has stimulated the need fof

non-perturbative theoretical methods of describing the interaction between

infrared radiation and molecular systems. There is interest in the

response'of iéolatedvmolecules to high power infrared lasers (e;g;,

"multiphoton" dissociatiog'of small polyatomic_molécules) and also in the

influence of such radiation on the dynamics of molecular collision

2
processes.

The standard "semiclassical theory of radiation and matteréstakes the

radiation as a classical time~dependent electromagnetic field, described

by Maxwell's equations, and describes the "matter", i.e.; molecules, quantum

mechénically. The time dependent Schrodinger equation is used to determine.
the influence of'the external time-dependent field onjthe quantum mechanical
molecular system. |

This approach has several shortcomings, perhaps the most severe béing
that an accurate quantum mechanical description qf any molecular system
‘other than a diatomic molecule is not geﬁerally possible; .Classical and
semiclassical methods>are 6ffen abgood'description of molecular dynamics,
however, so one can expect to overcome this shortcoming by treating the
molecular system by classical, rather thah quantﬁm mechanics.v Assuming
that no electronic transitions are involved, the theoretical model tﬁen
consists of classical trajectories moving on a potgntial energy surface
with an external time-dependent force from the classical electromagnetic
field.

-

The above classical approach has already been applied415 to several

-
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examples of "multiphoton' dissociation by high power infrared lasers, and

‘one expects it to be a realistic model of this phenomenon. It is not

completely satisfactory, however, Apart from being strictly classical
and thus missing any quantum effects that might be significant, this
model also has the drawback that the classical Hamiltonian is time-dependent

(because of the external time-dependent field) so that the energy of the

_system is not conserved. (This is correct, of course, since the molecule

gains’or loosés energy from the external electromagnetic field.) ‘This
means that energy conservation cannot be used as a cheék on the accuracy
of the classical tréjectoriesvas i; commonly is for ordinary.trajectory
célcuiations withoutlexternal fiéids.

This paper presents a new theoretical model which also treats both
the radiafion field and the molecular system élassically, Rather than

treating the radiation as a classical field, i.e., via Maxwell's equations,

~

however, the equivalence of the radiation field to a set of harmonic

. a 6. . ' . . el
oscillators is invoked, and the harmonic oscillators representing the

field are treated as classical oscillators, i.e., as'following classical

trajectories. (This, of course, was Planck's model for the radiation

field by which he explained black body radiation. This 'new'" model is

athﬁs actually very oid!) The Hamiltonian for the complete System—-radiétion

s .

field,vmoleculeé, and their interaction--is introduced, and it conserves
the total energy of the cdmplete system, ﬁolecules plus radiation field.
It is also possible to combine this classical tfeatment of the‘dYnamics'
with thebquantum mechanical principle of superposition via "classicél

. .
S-matrix" theory, and thus build quantum effects into the description.



Even at the classical level, i.e,, neglecting effects of the super-
position principle, this model describes all the dynamical effects in the
interaction of molecules with radiation: absorption and emission of

energy by the molecular system, and even §pontaneous emission of the

molecular system. That spontaneous emission is obtained at the completeiy
class%cal level is interesting since it is often considered to be an
inﬁerently quantum mechanical effect.6’8’9

The interaction of radiation and matter is a well;worn topic ih general,
and in partiéular there are several other kinds of_”semiclassical" approéches
that are capable of describing supposedly quantum~like features such as
spontaneous emission. The "neoclassical" theory of Jaynessis the.approach
most akin té the preéent work; The primary difference Eetween the tﬁo is__
that the ''neoclassical" approach retains a'quantum mechanical’descripﬁion
of the particles while using a classical treatment of the radiation field;
Because of this mixed describtion the analysis is much more cumbersome than
the present and it is alsovnecessary to intrbduce.various dynamical approxi-
mations into the treatment; this is typically the case when some degrees
of freedém are deséribed quantum mechanical and others are described;
classical.7 ‘Since the.present appréach treats both particles and radiation
field on an equal dynamical footing, i.e., classically, a rather elementary
calculation is possibleiwithout'invoking any dyanmical approximations
(other than the use of qiassical mechanics). As mentioned abbve, the
system can be ''quantized" Via classical S-matrix theory if this is deemed
desirable or necessary. The primary advantage of the present formulation
is that non-perturbative calculations are poésible, and evenvquitevstréight~

forward, since one can numerically compute the classical trajectories of

’8,

iy
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the cdmplete (particles plus field) system,

Section II develops the general classical/semiclassical modél. It
is shown in Section III how the field variables can, without approximatidn,
._ge eliminated from the equations of motion. The resulting equations of
ﬁotion for the mblecﬁlar‘system involve the iné;antaneous force from'the 
unperturbed electromagné;ic field and a "memory forcg" that involves the
history of the molecular ﬁotion. Absorption and emission aré discussed in
some detail in Section IV, and it is seen that the classical expressions

- for the rate of absorption and- induced emission, and even spontaneous

emission, are the precise analogs of the quantum mechanical expressions.



‘-

II. Theory

a. vClassical Model

It is useful to begin with the‘qﬁantum mechanical Hamiltonian for the
molecular system and a single mode radiation field. Generalization to
include an arbitrary number of modes is straightforward. The interaction
beﬁWeen the field and thé molecular system is described within the:
dipole approximation; again, high order terms in the interaction can be
included if fhey are needed. |

' 1
The Hamiltonian operator is6’ 0

H = Hm + Hrad + Hint

t . J2mh
Hm(B’f) + hwa a + 1 v

(ai'—a) nx) - | (2.lav)'

" where

nix) = &) (2.16)

p and x are the momentum and coordinate operators for the molecular system,

~

and Hm(p,x) is the Hamiltonian for the isolated molecular system; if p and

X are cartesian variables, then it is of the form

2

‘ e .
Hm(B”f) =52t _V(}f) . (2.2)

.i.

28 and a are creation and annihilation operators of the photon field whose
frequency is w and polarization £, and V is the volume of the radiation

. .+ - . .
cavity. u(g) is the dipole moment of the molecular system as a function



of the molecular coordinates.

To make the classical limit more intuitive it is useful to replace

a and a~l~ by the operators P and X,

P = 7%-(a + aT) o A ' (2q3a)
X=\/-.—2%i(aaz) _," @)

so that the Hamiltonian becomes

. : 5
1.2 1 2.2 4
H(E,X,P,X) = Hm(g,§) + E-P +5 W X" -\ J) YU(E)X . (2.4)

P and X are thé abstract cartesian momentum and coordinate of the radiatiop
field, in terms of which the field is seen to appear as a mechanical
harmonic oscillator of unit mass.
The classical limit -is now taken. The operators Ps X, ?, and X
become classical variables, and H(g,§,P,X) of Eé.'(2.4) becomes the classical

A

Hamiltonian function. Hamiltons equations,

X op P

s _ _OH _ _ 3V _ - 4T u(x) 9.8

P = o9x - 9x BV (2.$b)
e OH

X _.gf_ P (Z.SC)
. BH . 2 4'"'(1)2 ¢

P=—ﬁ-=-—wx+\/v H(x) ' - (2.5d)

(2.5a)

.
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determine the time evolution of the classical coordinates and momenta.

This classical dynamical system may be thought of as the original

molecular system with one extra vibrational degree of freedom; the

L'potential surface V(x,X) for the composite syétém is

VG0 = V@ + 3ol A\ yaox

Since ordinary classical trajectory calculations for a triatomic molecule,

. or an A f BC collision process, involve 6 degreeé of freedom in its center
of mass, it is little increase in effort to cémpute the frajectories with
oﬂe additional vibrational'degree of freedom. The total energy of the
" complete s?stgm is consefvéd, of course, since the classical Hamiltonian
of Eq,‘(2.4)>is not an-explicit_function of time.

The time dependence of the field variablgs is simpier if P and X are

replaced by the action-angle Variabies11 N and Q:

X =V—2—ZE sinQ ; (2.6a)

P = /28w cosQ . - » (2.6b)

In terms of these variables the classical Hamiltonian of Eq. (2.4) becomes

H(p,x,N,Q) = Hm(p,x) + th«\lgﬂ%Qg u(x) sinQ . (2.7)

Since the unperturbed time-dependence of N and Q is

- N(t) constant

[

Q(t) -

wt + constant s



their time dependence in the coupled system is expected to be simple also.

b. Semiclassical Model

It is also clear how one can incorporate quéntum effects into the
‘picture within the framewofk of '"classical S—matrix" theory.7 Suppose,
for example, the moleculéf system is a céllinear A + BC collision process{
There are two molecular degfees_df freedom, translation and vibratiop,
Characterized by variables (P,R) and (n,q), respectively; n and q‘are the.
action-angle Qariables for the B-C vibrational motibn. The complete
system thus has a tr;nslational, or_scattering degree of freedoﬁ and two
vibrational degrées of freedom, B-C motion with action-angle variables
(n,q), and the field with action-angle variables‘(N?Q). n -has fhe
interpretation of fhe vibrational quantum number for the diatomic molecule,
and N is the number of photons in the field. ‘For.a fotal énergy E the
séattering parameters of interest are the S-matrix elements, |
SnZNZ',nlNl (E) > : | (2 'v8)
which are the probability amplitudes for the niN1'+ n2N2 transition.

This S-matrix element describes a collisidn in which the vibrational
state of BC changeé from ny to n, with the absorption (or emiésion) of
(NZ—Nl) photons fromthe field.

The S-matrix elements of Eq. (2.8) are determined semiplassicallyv
by the classical S-matrix formalism.7 One requires classical trajectofies
of the system for which n and N are initially the in?egers ny and Nl’ while
the initial Qalues of the conjugate angle variablés,\ql and Ql’ must be

chosen so that n and N are the integers né and N2 at the end of the



trajectory. The expression for the classical S-matrix is of standard

form and need not be given here, other than to note that the phase ¢

of the S-matrix element is given by

t

¢ = ‘—f dt  [R()P(t) + q(t)n(t) + Q(IN(E)] . (2.9)

5

' This semiclassical picture also shows pﬁémbiguousl& how the strictly
classical version of thebcalculations should be carriéd out. Following
the usual_"quasikclassical".Mopte Carlo procedure,l? the initial actién

 variab1es ny and Nl are téken to pe integers, and the conjugéte angle

variables are chosen by Monte Carlo,

q = anl

where’&l and 62 are random numbers between 0 and 1. The classical

trajectory is computed, and the final values of n and N, not necessarily

integral, are assigned to the appropriate nz—hand Ni-quantum number
"boxes". The number of trajectories assigned to a particular (né,Nz)
box, divided by the total number of trajectories run, is the classical

transition probability P . If one is uninterested in how many

nyNy,n, Ny

photons are absorbed or emitted and only in what happens to the molecular
system, then one simply ignores the final value of N and assigﬁs the final
value of n to n.-boxes.. Averaging over the initial phase of the classical

2

field, Ql’ thus corresponds to summing over .all the number of photons
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that are absorbed or emitted, Definite photon proceéses—vi,e., a one-
photon process, or a two-photon process, etc.,<-on the otherhand,

correspond to specific values of the initial phase.
P pecific va phas



e’

where (N
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III. Elimination of Field Variables

Eq. (2.5c) and (2.5d) can be combined to eliminate P, giving the

following equation for X(t):

e 2 zmwz | .
X(t) + wX(t) = v u(§(t)) . : (3.1)

This is a linear inhomogeneous equation for X(t) which is eésily solved,

- ANR o | |

X(£) = %o(e) + R vidt‘ sinfolestD] ey , (.2
: . e - ~ -

. t | | |

" where Xo(t) is the "unperturbed" solution, i.e., the solution to the

homogeneous' equation:

2N1h’ ’ - .
Xo(t)= ” sin[w(t—tl)+Ql] , - (3.3)

) are the values of the action-angle variables at the initial

1°%
time tl. | |
Eq. (3.2) for X(t) can now be combined with Eq. (2.5a) and (2.5b)

to obtain a closed‘set of equations for the molecular variables (p,x):

x(t) = p/m ; | | _ (3.4a)
mhwN
. - _ V(%) \/é 1 ou(x) . _
E(t) = 3§ + v _35 s1n[w(tvtl) + Qll_
e aucy) J;.dt' sinlo(t=tD] | ery) (3.4b)
vV 35 « w ~

1
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The three terms in Eq. (3.4b) may be interpreted, respectively, as the .
instantaneous intramolecular force, the instantaneous force due to the -
unperturbed radiation field, and a "memory" force that depends on the
trajeétory_at all previous times, This elimination of thé field variables
X(t) and P(t) from the equations of motion for the molecular variables

is analogous to the way a similar elimination oécufs in quantum
electrodynamics.lB‘ It is also the same trick usedvby Zwanzig,l4'and
amplified by Adelman and Doll,15 to eliminate the degrees of freedom of
the harmonic subsﬁrate in describing collisions éf a gas atom with a

solid surface. |

It should be noted that the equations -of motion Eq. (3.4) for the.

molecular variables do involve the initial values of the field.variables,
(Nl,Ql). In éarrying out a élassical Monte Cario‘calculation, for |
example, it is thus still necessary to choose‘an initialvinteger value
for Nl and to choos‘e'Q1 randomly in the interval (0,2m).

From X(t) as given by Eq. (3.2) it is possible to determine the final

value of the photon quantum number N from the expression

' S 2,1 2 2.
h@N(tZ) =3 X(tz) + 7 W X(t-z) . (3.5)
A rather straight-forward calculation gives N2 = N(té) as ' ‘ "
87Th(x) Nl t2 ) N -
Nzhw = Nlhw4*/———R7——— ./:vdt U(f(t)) cos[w(t—tl) + Q1] _ .
. 1 : ‘
2ﬂw2 t2 -iwt ' ?
+ =5 f dt e p(x(t)) . - (3.6)
tl : . )

where the molecular trajectory x(t) is determined by Eq. (3.4).
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» { .
IV, Absorption and Emission in the Perturbative Limit

Although ;he classical/semiclassical médel.described'in Sections II
and III is expected to be of most use for high power radiation fields
when a non-perturbative treatment is ﬁecessary, it is interesting in
making confact with othervapproaches té see how this model describes
ébsorption, induced emission, and spontanéous emission of radiation in
the perturbative limit. Since spontaneous emission is often thought of as
an intrinsically quantum mechanicalgphenomenon, it is particularly
interesting t0~seeihere that it comes about in a completely straight—forWard
way in a totally classical theory. | .

Consider specifically the change in the energy of the molecular

system during the time interval (tl’té):

t

AE_ =f dt 3¢ Hm(g,g)
t
1
L 4 2
_=ft dt 3r b5 + V)]
1
t
X P . . S .
=f it = p +—§1x] . - (4.1)
m ~ ~ :
. tl ~ )

with the equations of motion. of the molecular variables‘[Ed. (2.5a) and

(2.5b)] this becomes
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and integration by parts gives

t
2 2 . '
-AEm = —f dt v ‘u(}f(t)) X(t) . o (4.2)
t .
1

From Eq. (3.2) one finds

X(t) = JZNlhw cos[w(t—tl)'+ Qi]

me‘

v ]dt' u(x(t")) cosfw(t-t')] | . (4.3)
t T v v

aﬁd substituting this into Ed. (4.2) gives : ‘
' /8ﬂﬁw3Nl t)
_ AEm =-\\—v Ldg u(i{(t)) cos[w(t—tl) + Ql]
. 1 :

2 & ' ‘
e [ fdt' M) u(x(E") coslw(t-t)] . (4.4)
£ t; ~ T ' '

In the second term of the RHS of Eq. (4.4) the integrand is symmetric with

respect to exchange of t and t', so that

1

£y X t, & -
f de ]dt' = 5 f dt f de’ . (4.5)
t 5 5 Y |



s

so that the second term can be written as

‘ t t
-Zﬂwz 2 2
- Im fdtfdt" Hx(E)) u(x(t") cos(ut-ut")
, t; t;
t 2
‘ 2. 2
= - 2727‘*’ fdt e Lx()) . (4.6)
‘ t ~ v

With Eq. (4.6) the expression for the change in energy of the moleculaf

system thus becomes

- AE = -\ —v— ]; de u(x(t)) cos{m(t—tl) +ql

Zﬂwz 2 -iwt v ' ‘
L '[dt eI i (x(e)) . ' 4.7)
ty - _

One notes that the same expression is obtained by considering the energy
change in the radiation field, hw(NZ_Nl) = hwAN; i.e., from Eqs. (376)

and (4.7) one sees that_
hwAN = - AEm . o (4.8)
“The energy galned or lost by the molecular sYstem thus showé up in the

energy of the radiation field.

Eq. (4.7) is the exact classical expression; now the perturbative limit
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-
is.taken. The natural perturbation parameter is V 2, and one needs to

‘ .. . -1
evaluate AEm to second order in it (i.e., to order V 7) and also to average

over the initial phase of the field Ql. Since the first term in Eq. (4.7)

-1 . i . .
has a factor V f, it is necessary to calculate the molecular trajectory

1
-3

x(t) through first order in V “. From the equation of motion for x(t),

Eq. (3.4), one sees that to first order in V_Li x(t) is given by

x(e) = xy(8) + Mx(e) + 0T, (4.9)

where the equations of motion for the zerth order term x,.(t) and first

"order correction Ax(t) are

oavV(x,) _ _
mij (t) + -———ax; =0 | o (4.10a)
dZ 32V(X0) | 3ﬂthl au(xo(t)) '
[m p 7 + 5 ].Af(t) = vv Sx sin[w(t-ti) + Ql]‘(4.10b)
t 3§0 ) - » - 20 | v ‘

x.(t) is thus the field-free molecular trajectory. The initial conditions

for x.(t) and Ax(t) are

Xo(t) =% %O(tl) =p/m (4.11a)

(4.11b)

]
o

BAx(ty) bx(ty) =

Through order vl AE_ of Eq. (4.7) is thus given by
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[N 2 | -
AE_ = —“——137——— Q/: dt u(§0(t}) cos[w(t-t;) + Q1]

s

~0

Braw’N,  £2 duxy(6) |
- ——T— Ldt T A}f(t) cos[w(t-tl) + Q1]
l B .

ot :
f dt e—iwt u(ico(t)) . - (4.12)
t .

It is shown in the Appendix that ‘the solution of Eq. (4.10b) for

ij(t) is

| BThaN, axo(c) s () 4\t | ' |
= il - - . : 1 1 . 1_
bx(e) A\f V ™ " ™ /t'dt H(xy(t") sinfw(t'-t)) + Q] ,

1
(4.13)
where xo(t) = xo(t;xl,pl) is the field-free molecular trajectory as a
function of its initial conditions. Using this result for Ax(t) in
Eq. (4.12) and averéging over Ql gives
2t t
4Th™N, ou(x, (t))  u(x,(t'))
ARy \ 20 %0
AE = - ———— dt dt ° —
m \' ¢ A apl Bxl
1 "1 T ~
du(x,(t))  w(x,(t")) : .
- ~0 . =0 ] sin(wt'-wt)
ox) oy -
Zﬂwz 2 —iw\t : '
- lfdt % (o (0)) (4.14)
t

1
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Eq. (4.5) can also be applied to the first term on the RHS of Eq. (4.14)

and the result written equivalently as

2 t, t .
4rhw”N 2 . du(x,(t)) 2 coe Ou(x,(E))
pe == L[ fae it TR0 [T ter TR0
n v i _ apl e .axl
1 N 1 -
’ - ) t . .
20 2 2 ,
- A f de e ¢t ]J(xo(t))l . | - (4.15)
-V tl S . : o

The first term in Eq. (4.15) is the induced term (i.e.,, absorption and
induced emission) since it is proportional to the number of photons in the
"field. The second term, which is present even if-Nl = 0, describes

spontaneous emission; note that it is negative, i.e., as a result of

spontaneous emission the molecular system looses energy.
The rate that the molecular energy changes can be found from Eq. (4.15)
by setting t, = - T/2, t,

T » o, By making use of the spectral density theOrem,l,6 i.e.,

= + T/2, dividing by T, and taking the limit

T T

%im %
T->c0

2

where C(t) is the following time correlation function

T
) ,
C(t) = Lim T S dt' £(t') g(t' + t) R . - (4.16b)
Torco I | _ _

0|

2 R - o o |
j' dt e 0t f(c)]U de et g(t)] = fdt eI C(e) , (4.16a) .
T _ T o0

N
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one obtains

AE_ = %im (——Tﬂ)
m T-—)oo
. 2
4N o
_ 1 ~iwt
= - — Im ﬁt e ¢, (£ ,
. O
.2 I : :
2T - ~iwt .
- .[it e (1), (4.17)
" where
. T
, .2 | @
C_(t) = %im —fdt' H(xA(E")) plxa(t'+t)) ; (4.18a)
r T ~0 ~0
T T i
p)
: T o ; .
: 1 au(x, (t')) Bu(§0(t'+t) :
Ci(t) = fim 7 dt' h 5 . . . (4.18b)
Too0 T P10 %1

~ Since Aém, Cr’ and Ci are real quantities, Eq. (4.17) can be simplified to

] 4ﬂw2Nl 0o, _
AEm = v Ldt 31n(wt) Ci(t)
Zﬂwz / '
- o j:it cos(wt) C_(8) . (4.19)

Eq. (4.19), with the correlation functions defined by Eq. (4.18), is the final
classical expression for the rate the molecular system gains (or looses)

energy from the field.
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One now wishes to compare this classical result to the appropriate
quantum mechanical expression. For a single modezradiation'field of
: N _ v
frequency w and polarization € the rate of transitions from molecular

. . . . : 17
state n, .to n, is given in first order perturbation theory by .

1
4Tl'2w l I I 2 : ‘
T = <n, |u|n,>|7 [N, 8(e -e: ~hw)
n,tny v 2 1 1 n, n; ,
+ (Nl + 1) 6(€n fen_+hw)]-; R . (4.20)
where )
) + ~
H = Urg

The net rate of change of the molecular energy for the initial state ny

is thus

. S 2 ' '
4mlun 2 - ‘
s b DI LS LR EREATICRERER
n, . :

- (Nlﬂ) S (enz-enimw)] . (4.21)

Since the delta function can be réprésented as

| is t/h -ie. t/h
e | it oy ny
a(enz gnlihw) o L‘ e , ,  (4.22)
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Eq. (4.21) can be written as

. anZN - o '
S G ~-iwt '_ iwt
A_Enl-. =7 [ Zdt e | CQ(t,) -Ldt e CQ(t)]
Zﬂ‘z 7 iwt
w i
-7 !dt e CQ(t) . (4.23)

where CQ(t) is the quantum mechanical dipole correlation f.unction:18

ie, t/h ~ieg € /h

] _ : ny ‘ 2
g = T e | <nyuln >
2
. iHmt /h —iHmt /h
= <nl|u|n2><n2|e . H e |n1>
n
T2
iH t/h  -iH t/h :
= <nl|u e ™ U e n |n1> R (4.24)

where Hm is the molecular Hamiltonian operator. Since the real and

imaginary parts of C.(t) are even and odd functionsl8 of t, respectively,

Q
"Eq. (4.23) becomes
. 4ﬂw2Nl '
AE = et jdt sin(wt) Im C . (t)
n, v Jo . Q
T l2ww r - :
L Jﬁét [cos (wt) Re Co(t) = sin(ut) m Cy(t)]

or
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Aﬁnl = 42? (N1 + %) ;mdt sin(wt) Im CQ(t)
212 . | '
- \(;) 7dt [cos(wt) Re CQ-(t) : . , (4.25)

This is the final quantum mechanical expression.

~ Comparing the classical [Eg. (4;19)} and quantum [Eq. (4.25)]
expressions, one sees that in terms of théir respective correlation
fﬁnctions the expressions are identical if one (1) identifies_the
classical dipole correlation function of Eq. (4.18a) with ﬁhe real

part of the quantum mechanical dipole correlation function

(t) s S : (4.2§a)

Cr(t) “ Re CQ

(2) identifies the correlation function Ci(t) of Eq. (4.18b) as the

imaginary part of the quantum mechanical dipole correlation function,

¢, (£) « Im Cy(t) . - ’v(4_.26b)

and (3) replaces the photon Quantum number‘Nl in the classical exbression,
Bq. (4.19), by (N, + D).

. Eq. (4.26a) is an obvious and well-knoWn18 correspondence, but
Eq. (4.26b) is not. The latter provideé a general waf of_using classical
mechanics to determine an aﬁproximation to the imaginary part éf the
quantum mechanical dipole correlation function. (Note that Ci(t) is
proportional to ﬁ, so that it vanishes in the completely classical limit

'

h = 0; i.e., in this limit absorption and induced emission exactly cancel
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each other.) If one averages Ci(t) in Eq; (4.18b) over a Boltzmann

distribution of initial conditions, then one can show that it can be

written as

= d = 2 '
Ci(t) = - 2%T dt Cr(t) +_0(h ) s (4'27),

where Er and Ei are the Boltzmann avgrageS'of'Cr and Ci; this is a knéwn‘
relatioﬁ.18

It is also interesting to see that the proper identification requires
one to‘add "5'" to the photon quantum number Nl in the classical expression,

Eq. (4.19). Since the present classical model treats the field as a

classical mechanical harmonic oscillator, it is perhaps not surprising to

see the quantuﬁ number for tﬁe,field; Nl, appear with the familiar %" ' !
added to it.
Finally, a simple example which illustrates the above formulae is’
the case that the molecular system is a singlé harmonic oscillator of
frequency do. If u(x) = x, it is easy to show from Eq. (4.24) that the
quantum mechaﬁical dipole correi#tion function is

1(n2-n1)w0t

Z [<n2|x|nl.>l

c.(t) =
Q( ) 4
2
_n iwot —iwot
(n, +5)h ih '
= _EBE—_ .cos(wot) + 5565 81n(w0t) .

so that
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(nl+%)h | ‘
Re CQ(t) = mwo cos(wot) ' (4.28a)
T k( ) = h 3in (0 | | | 4,28
m CQ t) = 2mw0 s n(wot) - | (4.28b)

Classically, the field-free molecular trajectory xo(t) is

x,(£) = x, cos[w,(t-t )] +m—£)1— sinfwy (c=t)] . (4.29)

From Eq. (4.18) one then easily finds that

(o $5)h g
Cr(t) = - mmo cog(wot) | | (4.30a)
C(0) =g sl L (4.300)

0

where ny is the vibrational quantum number corresponding to the initial

conditions (xl,pl),-'

n

o ,
Y,
1 + L (2m + % mwo Xy ) (hwo)

Comparing Eqs. (4.28) and (4.30), one sees that this classical theory gives
the correct result for both the real and imaginary parts of the quantum

mechanical dipole correlation function.



()

equations, i.e., following classical trajectories. Quantum effects

~25~

V. Concluding Remarks

The classical/semiclassical model that has been presented here differs
from the standard semiclassical theory of radiation and matter in two
essential ways: the molécular system is treated by classical, father
than quantum ﬁechanics, aﬁd the fadiation field is described as classical
(mechénical) harmonic oséillatofs rather than:as a classical field. The
degrees of freédomvof the molecular éystgm and the dggrees of freedom
of the radiétioﬁ field thus appear on an equal footing. The classical
dynamics of the system éorresponds to the coofdinates and mbmenta of the

molecule and of the field evolving in time according to Hamilton's

(i.e., interference and Eunneling) can be built into the model via
claséical S-matrix theory. It is thus possibie to describe complete
state-selected proceséés, i.e., specific quantum transitions of the
molecular'System that corréspond to a specific number of photons being
absorbed or emitted. |

Even within the completely classical version of the model it is

seen that all the dynamical- features of the interaction of radiation

with matter appear. ' Spontaneous emission, for example, which is often

‘difficult to describe within other classical or semiclassical models,

is seen to appeaf in the model in a éompletély'straightforward manner.
One would in genefal/expect'this model to be mosf reliable when

the quantum numbers of the molecular system and of the fiéld'are large.

Since the intramoleculér potential surface is a smqoth function, however,

and the field a harmonic oscillator linearly coupled to the molecular
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system, it is not surprising that the model can also be accurate even for
small Quantum numbers. In Section IV it was thus shown that absorption

and emission, which are single photon pfocesses in first order pe;turbation
theory, are déscribed'COrrectly. For weak fields, as well as for high
power lééers, one'therefore expects this model to be a usefql description'
of the interaction of molecular syétems with infrared radiation fields.
One.expecté it to be.partiéularly useful when non—perturbativevtreatments

are necessary.

£

an

wd

2
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Aggendix

The purpose of this appendix is to show tﬁat thé solution of
Eq. (4.10b), wiﬁh the initial conditions of Eq. (4.llb);-is given
by Eq. (4.13). For simplicity, vector notatioﬁ is not used here,
"but the multidimensional version of the calculétion is essentially
identical to that given here.

Since Eq. (4.10b) is a linear second-order inhomogeneoué equation,
its general solution can be expressed in terms of any two linearly
indépendent solutions of the homogeneous equation. Thus let f(t) and

g(t) be two such solutions:

L2 TV(x, (b)) o S -
[m 2, AV ] {f(t)} e i)

dt? onz g(t)

Then the most general solution of Eq. (4.10b) is

Ax(t) = c f(t) + c,g(t) + (mW)"lj' de' [£(t) g(t') - £(t') g(t)]I(t")
t .
! | (A.2)

where ¢y and ¢, are arbitrary constants (to be determined by the boundary

conditions), W is the Wronskian
W= E(r) g(e) - £(8) g(t) S €0 )
# function of t ,

and I(t) is the inhomogeneity, the RHS of Eq. (4.10b). The initial

conditions, Eq. (4.11b), require that
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ey = Cy = 0 , ' | (A.4)
so that s
‘ -1 ot St “
Ax(t) = (@)™t [£(t) fdt' g(tI') - g(t) fdt' £(ENIE")] . (A.5)
1 o1
The two solutions f(t) and g(t) can be obtainedAas_follows. The
field—free trajectory xo(t;xi,pl) satisfies the classical equation of
motion |
2 Ak, (5%, 5p,))
m 415- xo(t;xl,pl) + 0 e 11 =0 . (A.6)
dt . 0 : .
Differentiating this equatidn with respect to the initial condition
X, gives ' ‘ .: -
2
m N + 5 Ny =0, (A.7a)
dt . 1 9x : 1 '
0
and similarly differentiating with respect to pl:
- 2 . » ’
d2 ax(t’xl’pl) d V(XO(t’xl’pl)) axo(t’xl’pl) ~
ST 3 + 7 5 -=0, (A.7b)
de” Py 3%, Py j
Since Eq. (A.7) is the homogéneous equation, one can choose %
ox,(tsx.,p.)
£(e) = — 11 (A.8a)
P
1
Ox~(t3x.,p,)
0 :
g(t) = ———+-1 . (A.8b)

1
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Since for short times one

xo(t

"and thus for short times

the Wronskian, which can

With Eqs. (A.8), (A.

vI(t) from Eq. (4.10b), th
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has

‘ } e,

;xl,pl).= X, + = (t—tl) , (A,9).
f(t) = (t—tl)/m o . (A.10a)
g(t) =1, (A.10b)

Bé evaluated at tl, is

= E(t))a(t) -vf(tl)é<t1)

=1i/m . . o (aa

11), and putting in the specific form
e solution in Eq. (A.5) becomes

~

(t) t ey (t) A, (t")

o 8'rrth1 BXO
Ax(t) = v = Py

P 0 *1

dt’ -~ g stalu(e-e) + Q]

1

9% (t) £ Bu(x (£)) xy(t") :
- ~[dtv 3 sinfw(t'-t)) + Ql)}
l .
8ﬂthl on(t) _ 3U(X0(t'))
v { apl fdt T sin[w(t —tl) + Ql]
L ,
9x.(t) ¢ au(x. (t"))
o't). 0
- dt' —2 i —t.) +
B 4 tv B, s n[.w(t t;) Qll}

t) 5 'on(t) 5 *

) 8ﬂthl on(
\Y

Bpl

ox,  0x op

t
| At u(x, . (t")) sin[w(t'-t.) + Q.],
i N D

(A.12)



where xo(t) = xo(t;x

1°P1
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). This is the desired result.

»
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