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THE ATTENUATED RADON TRANSFORM: THEORY AND APPLICATION
IN MEDICINE AND BIOLOGY
Grant Theodore Gullberg

ABSTRACT

A detailed analysis is given of the properties of the attenuated
Radon transform and of how increases in photon attenuation influence
the numerical accuracy and computation efficiency of iterative and
convolution algorithms used to determine its inversion. The practical
applications for this work involve quantitative assessment of the dis-
tribution of injected radiopharmaceuticals and radionuclides in man and
animals for basic physiological and biochemical studies as well as
clinical studies in nuclear medicine. The theorems and numerical
results presented are applicable to other fields in which computed tomo-
graphy is used to reconstruct information about an internal source of
unknown strength using projection data wherein the source strength,
position and intervening attenuation are unknown. This problem is
mathematically and practically quite different from the well known
methods in transmission computed tomography (TCT) where both the source
strength and source position are known and only the attenuation is
unknown.

A mathematical structure is developed using fuﬁctiOﬂ theory and
the theory of linear operators on Hilbert spaces which leans itself

to better understanding the spectral properties of the attenuated
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Radon transform. A generalization of the single angle projection opera-

tor for the attenuated Radon transform gives an N-fold projection opera-
A 2 N

61*Xu961) ®...8L (Q9N9Xu98N) where

s alx,y) is the maximum of the attenuation

tor which maps LZ(QQE) into LZ(Q
Q is a bounded open set in IRZ

factors a(xgysaxsinei+ycoseise) for N angles, Q, 1is the eiwsi?houette

%

of Q, and iusei is the attenuated Radon transform of the characteristic
function y with support Q.

The continuous attenuated Radon transform reduces to a matrix
operator for discrete angular and ]aterai-sampiiﬂg, and the reconstruc-
tion problem reduces to a system of linear equations. For the situa-
tion of variable attenuation coefficient frequently found in nuclear
medicine applications of imaging the heart and chest, the procedure
developed in this thesis involves iterative techniques of performing
the generalized inverse. Simulations indicate that the iterative

2014y (pu=.18 cmgi) cross-sectional

1

algorithms adequately converge for

images of the heart but increasing attenuation above p = .18 cm = for

a 30 cm object decreases the rate of convergence, so that at u = .60 cmsi
the result does not converge within an acceptable error criterion after
30 iterations. Errors which are the result of using TCT to calculate
the attenuation coefficients increase the errors in the emission
reconstruction. The percent root-mean-square uncertainty of computed
tomograms of a distributed source in a 20 cm diameter region with

1 cannot be better than 9.8% even with infinite statistics

p= 15 em
if the attenuation coefficients are determined using an incident trans-

mission beam of 1000 photons per projection ray (4.2 x 106 total photons).
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For constant attenuation coefficient less than .15 cm;!g con-
volution methods can reliably reconstruct a 30 cm object with .5 cm
~ resolution. The convolution method of reconstruction is appealing
because of its computational efficiency and because it requires very
Tittle computer memory. The convolvers are determined 1) by a least-
squares fit of the attenuated back-projection of the convolver to a
desired point response function; 2) by a power series expansion which
gives an analytical expression of the convolution function; 3) by
defining window functions which filter the projections in frequency
space. However, for high attenuation coefficients or for the situation
where there is variable attenuation such és reconstruction of distribu-
tion of isotopes in the heart, iterative techniques developed in this

thesis give the best results.
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SYMBOLS AND DEFINITIONS

Emission computed tomography
Transmission computed tomography
The attenuated Radon transform
Position vector in RZ

The concentration distribution of the radio-
nuclide in counts/Area

The distribution of tqe linear attenuation coef-
ficients in (length)~!

Single-photon projections at lateral sampling &
and angle 8,

The unit directional vector along which projec-
tion are sampled

The unit directional vector along which projec-
tion line integrals are integrated

The inner product between the vectors X and 6.
Dirac delta function
The Radon transform

Transmission and unattenuated emission projection
data at lateral sampling £ and angle 6

The back-projection operator

Fourier transform operator

Inverse Fourier transform

The one-dimensional Fourier transform of p(£&,0)
Frequency space filter |

Window function

A subset in Rx [0,2r)

Real space convolution function
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Estimate of f
The number of transmitted photons in TCT
The number of incident photons in TCT

The photoelectric linear attenuation coefficient
in (length)-1

The coherent 1inear attenuation coefficient in
(length)-1

The Compt?n linear attenuation coefficient in
(Tength)

The pair pro?uct1on linear attenuation coefficient
in (Tength)

Positron projections at lateral sampling £ and

angle ©

The attenuation function for the attenuated Radon
transform

The modified attenuated Radon transform

Modified projections at lateral sampling £ and
angle ©

Orthogonal complement of S

The closure of S

Range space of the attenuated Radon transform
Null space of the attenuated Radon transform

The adgoant opergter of the operator
A :L2 (IR W) Rx [0,27).w)

The generalized inverse of the attenuated Radon
transform

The inner product with respect to the weight
function W in the Hilbert space of concentration
functions defined on Q C R

The inner product with respect to the weight
function w in the Hilbert space of projection
functions defined on € € Rx [0,27)
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LZ(QSW) - The space of square integrable functions with
respect to the weight function W defined on
G R, T.oes I Ip0xoy) |2 Wxoy)dxdy < o
RZ
LZ(ESW) - The space of square integrable functions with

respect to the weight function w_defined on
€ c Rx [0,2n) i.e., [f [o(£,0)]2 w(g,8)dede < =
C

K{x'sy'[xsy) - Kernel of the Fredholm integral of the first
kind for the operator ASAU

I(g,0lg',0") - Kernel of the Fredholm integral of the first
kind for the operatorvAuAﬁ

(wi9¢igxi) - Singular system for the operator A, composed of
eigenfunctions of AyAj and AjA, corresponding to
the eigenvalue X4

Alp,u38,0} - The attenuated Radon transform of p for the
attenuation distribution u calculated at £ and ©
(A p)(&,0) - The attenuated Radon transform of p evaluated
H at £ and ©
Bu - The attenuated back-projection operator
BU - The modified attenuated back-projection operator
(A 6p)(g) - The attenuated Radon transform of p for a fixed
Hs angle 6 evaluated at &, i.e., (Au P (E) =
(Aup)(ése) ’
A o= (A 0, A Dseeosh p) - The N-fold projection operator
HaN u’ei u’62 “’ON which maps the function p into the
N-tuple of single angle projections
L1(R25a) ' - The space of functions such that p € L](iRzga) if
and only if [ |p(x,y)| a(x,y,-xsind+ycos6,0)dxdy < =
IR2
HAUH = sup HAupH - The norm of the operator Ap
loll <1
* ' - 2,2 2
Au 0 - The adjoint of the operator Au e.L (R®) > L°(R)
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Lol (RSa)» LU(R)
Characteristic function for some § Q.B229 i.e.,
x(x,y) = 1 1Ff (x.y) € 9, 0 otherwise

The adjoint of the operator A :L1(R

The attenuated Radon transform of x, i.e.,
X = A, X

i

Multiplication operator, (Mfg)(xgy)
2

fFx,¥)g(x,y)
A subset of R

The 6-silhouette of @, O, = {(X,8)] X € Q)

8

The intersection of the line &+sind-ycose = 0
and the set Q

The projection operator: Ruse = M(ie)mi Auge

. . % =
The adjoint operator: Ruge MXBG

For a fixed 0 and weight function a, the space
of square integrabie functions defined on Q, i.e.,
ff lo(x XsY,=X5in0+ycos0,0)dxdy < o

For a fixed 6 and weight function Xu g the space
of square integrable functions definéd on

G C R, iee.s [f [ole NP %y 6(E)E < =

f2g

- Projection operator which for any p € LZ(Qsa)

maps L2(Q,a) onto the subspace p+N(RU e)

N-tuple of real valued functions defined on R

The adjoint of the operator A :LZ(IRZ) >

oN
L2(R)o. ...® LAR)

~i“gj () h, (g )d& - The inner product for the space
R

LE(R) = LA(R)@....® LY(R)
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A(x,y) = max {a(xlﬁwxsin6i+ycosei56i)}

i=1,N

- The maximum of the attenuation functions for the

angles 81 i=1,..N
Run®™ R o Ry g 00emooRy g o)

- The N-fold projection operator which maps the
function p into the N-tuple of single angle
projections.

* . Ry 2,
RusN - The adjoint of the operator RUQNGL (an)-*LN(xH)
G (£,0) - The 1integral of the attenuation coefficients

H between the central axis and «
a(X,Y:£,0) - The attenuation function for the modified

attenuated Radon transform

*

Au - The adjoint of the operator AU:LZ(RZSW)%»LZ(@gw)
K - Kernel of the Fredholm integral of the first kind
for the operator A*A
MU
1 - Kernel of the Fredholm integral of the first kind
for the operator A A*
(S
Tn - Tchebycheff polynomial of the first kind
Un - Tchebycheff polynomial of the second kind
H - Hermite polynomial
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The convolution function for constant attenuation:
Rectangular pixels in RZ
Characteristic function with support Dij

The attenuated Radon transform of Xij i.e.,
S55 7 A D5 00x)uboy)s €03

The modified attenuated Radon transform of Xij»
i.e., 445 = A{xij(xsy)su(xay); £,0}

The discrete matrix operator for the attenuated
Radon transform

The discrete matrix operator for the modified
attenuated Radon transform

The transpose of the matrix operator A
The generalized inverse of the matrix operator A

The trace of the matrix A equal to the sum of the
diagonal elements.

Matrix of projection samples for the attenuated
Radon transform

Matrix of projection samples for the modified
Radon transform

The Teast-squares function

Mean value function for the random field p

The variance of the random field p at X

The autocorrelation function for the random field p

The autocovariance function for the random field p
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field
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1. INTRODUCTION

The inversion of the attenuated Radon transform has the important
application in single-photon emission computed tomography (ECT) of
quantitating the three-dimensional distribution of gamma emitting
radiopharmaceuticals in the body. ECT is a field of nuclear medicine
which uses radiopharmaceutical distribution data collected using scintil-
Tation detectors at different angles to reconstruct cross-sectional
images of the internal organs of the body. The application of ECT gives
the physician a more accurate way of seéing inside the human body and
permits a noninvasive pfocedure for studying function of biological
processes in health and disease. The instrumentation and strategies
of ECT are divided into two major categories =- 1) single-photon counting
using either multiple detector arrays or scintillation cameras for

99m 131

the detection of radionuclides such as Tc, and I; and 2) coinci-

dence detection of annihilation photons from positron emitting radio-

e 13 750w The reconstruction procedures used

nuclides such as " 'C, “N, and
with single-photon counting techniques invert the attenuated Radon
transform by various methods (Budinger and Gullberg, 1977).

The major impetus for emission computed tomography is to use the
various radiopharmaceuticals to make quantitative measurements of in
vivo biochemical and hemodynamic functions. This is in contrast to
x-vay transmission computed tomography (TCT) which has as its major
emphasis the anatomic description of the cross section of body organs.
The major difference Ties in the fact that ECT seeks to describe the

Tocation and intensity of sources of emitted photons in an attenuating
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medium whereas TCT seeks to determine the density distribution of the
attenuating medium (Fig. 1.1). Not only does the biological objective
of ECT differ from TCT; but single-photon ECT as exemplified by the
attenuated Radon transform differs from both TCT and positron ECT in
the mathematical procedures required to reconstruct the cross-sectional
images. Methods for inverting the attenuated Radon transform present
a mathematical challenge. However, iterative and convolution methods
can be developed which adequately quantitate the distribution of
single-photon radiopharmaceuticals which are useful in depicting non-
invasively the spatial and temporal distribution of biological processes
in healthy and diseased tissue.

Tomography (which comes from the Greek work "tomo" meaning slice)
is the process of imaging a single plane through an object. In the
past tomographic images in diagnostic radiology and nuclear medicine
were produced by employing the principles of Tongitudinal tomography
which utilizes optical devices to obtain an image of a plane parallel
to the face of the detector (Anger, 1973; Anger, 1974). Today the term
computerized tomography usually refers to transaxial tomography which
uses digital computers and mathematical algorithms to give an image
of a plane perpendicular to the face of the detector.

The first clinically useful x-ray TCT machine was invented by G. N,
Hounsfield of EMI, Ltd. in 1970. Since that time x=ray TCT has made a
major impact on diagnostic radiological procedures. Even before the EMI
scanner, the principles'of ECT were worked out by Kuhl and Edwards (1963).

However, the clinical application of ECT has lagged far behind x-ray
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Figure 1.1. The basic physical difference between TCT and ECT is that
both the source and the attenuation functions are unknown

in ECT, whereas only the attenuation function is unknown
in TCT.



TCT primarily due to the attenuation problem which has made it difficult
to quantitate the distribution of radiopharmaceuticals. In the last
10 years, researchers have investigated different ways of reconstructing
radiopharmaceutical distributions by developing new instruments and
algorithms for inverting the attenuated Radon transform. These advances
are reviewed in (Ter-Pogossian, 1977, Phelphs, 1977; Brownell, Correia,
and Zamenhof, 1978; Budinger, Gullberg, and Huesman, 1979).

The methods of three-dimensional reconstruction are not unique
to transmission and emission computed tomography but are used in many
other disciplines. These disciplines include radioastronomy (Bracewell
and Riddle, 1967; Weiler and Seielstad, 1972), electron microscopy
(KTug and Crowther, 1972), nondestructive testing, holographic
interferometry (Sweeney and Vest, 1973), and zeumatography (Lauterbur,
19735 Singer, 1978). Much of the current activity is directed toward
digital reconstruction because of its flexibility. However analog
methods using optical and acoustic devices are also applied to the
reconstruction problem. There are mathematical similarities among
reconstruction problems in these varied disciplines. However emission
computed tomography especially single-photon imaging offers some of the
most difficult mathematics of all the disciplines due to the attenuation
problem. The attenuation problem also occurs in zeugmatography which
reconstructs the strength of magnetic resonance signals using the
techniques of nuclear magnetic resonance (NMR).

To illustrate the cdncepts of single-photon emission computed

tomography, consider the example of a physician who is trying to detect



small lesions in a patient's Tiver. The patient is injected with a
radiopharmaceutical such as gngC sulfur colloid which Tocalizes by
phagocytosis in the Kupffer cells of the Tiver and other cells of the
reticuloendothelial system which involves organs such as the Tiver,
spleen, lymph nodes and bone marrow. In the liver the 99mTc sulfur
colloid is phagocytized only by healthy Kupffer cells (Sheppard, et al.,
1951; Dobson and Jones, 1952; Root, et al., 1954) and cancer invasion
results in a failure of the diseased area to concentrate the colloidial
particles.

A gamma scintillation camera (Anger, 1966a; Anger, 1966b; Anger,
1972) s used to detect those photons emitted by the radionuclide
gngCQ The scintillation camera consists of a crystal which converts
the high energy gamma photons into light, and photomultiplier tubes
which convert the Tight scintillation into an electronic signal. By
electronic circuitry these electrical signals are used to display an
image on an oscilloscope or are converted from analog to digital signals
and stored in a computer for display as a digital image.

The images show an intensity directly proportional to the con-
centration of the radiopharmaceutical. Therefore a neoplastic Tesion
in the Tiver would show up on the images as a Tow intensity region
surrounded by higher intensity from the normally functioning tissue.
Since the image from the scintillation camera represents the projection
of the Tiver, oVeriying and underlying tissues, and other organs such
as the spleen; small lesions will be obliterated by the projection of

these surrounding tissues onto the image plane.



In order to visualize the liver better, it is necessary to obtain
images at different angles in which the internal organs appear in dif-
ferent relationships to one another. If the information from a cross-
section of body through the Tiver is projected onto a plane perpendicular
to an axis of rotation (Fig. 1.2) a single one-dimensional line is
recorded on the gamma camera image. Taking this line for each angle
and digitally processing the data, the desired two-dimensional cross
section is reconstructed. To obtain a full three-dimensional picture
the various cross-sections can be stacked. This procedure of three-
dimensional reconstruction separates the overlying and underlying tissue
and allows the physician to quantitate the spatial distribution of the
sulfur colloid sequestered by the liver. The lesions such as the one
shown in Fig. 1.2 can be detected with better quantitation, better
resolution and greater contrast than is possible with any of the
projected images.

The reconstruction of the cross-sectional image is complicated
by the attenuation of the emitting photons. The scintillation detector
can only detect those unattenuated photons projected along rays inter-
secting the camera face. The degree with which these photons are
attenuated will depend upon the energy of the emitted photons and the
density of the tissue interposed between the emitting source and the
detector. For example, of the 140 keV photons emitted from gngc
radionuclides, 78% will be absorbed in passing through 10 cm of tissue.

Therefore only 22% of the photons emitted will actually be recorded.



Figure 1.2.

Section view A-A

XBL7812-12398

ITlustration of a transverse section through the liver

and spleen as one would view it looking from the feet
toward the head. The anterior and left lateral views

show the projected image of the Tesion shown in the
transverse section.



This presents a difficult problem for quantitating the actual distri-
bution in any cross-sectional image.

If mathematical algorithms appropriate for TCT are applied to
projection data obtained from a scintillation camera using a homogeneous

99mTc9 the results of the

distribution of a radionuclide such as

reconstruction will show a concentration which appears to be less in

the center than at the edges (column of images shown on the left in

Fig. 1.3). However by knowing the attenuation distribution, the effects

of attenuation can be corrected, givingva true guantitative measure

of the radionuclide concentration as can be seen from the column of

images on the right in Fig. 1.3. The definition of the attenuated Radon

transform for this study depends upon a knowledge of the distribution of

attenuation coefficients. It is therefore the inversion of this trans-

form which properly quantitates the radiopharmaceutical concentration.
The attenuated Radon transform mathematically describes the

relationship between the number of photons emitted from radionuclide

distributed in a transverse section of the body and the number of

photons projected onto a scintillation detector. If we let o(x,y)

denote the concentration of the radiopharmaceutical in counts/area at

the point X = (x,y), then the attenuated Radon transform is the

mapping AU:Q - where the projection py(gae) at the angle 06 and

Tateral sampling £ is given by

DY(EJB) = fp(ﬁ) ex}vé—' j U(Q’)6(5“&'59))d§<'§6(£“<§99>)d§9
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where 9 = (-sin®, cosd) and Q% = (cosB, sin®). In the case that u=0
everywhere the attenuated Radon transform reduces to the Radon transform
defined by Radon (1917). Therefore the attenuated Radon transform is
a generalization of the classical Radon transform. To define the
attenuated Radon transform, the distribution of attenuation coefficients
u in units of (‘leaqg'th)m:i for the cross section is required. In some
situations this distribution can be assumed to be constant but for
precise measurements requires the use of TCT.

To compensate for the attenuation effects the distribution of the
attenuation coefficients must be determined by TCT using an external
transmission source with the same energy as the emitted photon of the

radiopharmaceutical (140 keV for 99

Mre in the example above). The inten-
sity of the transmitted beam is measured at different angles. These data
are compared to the incident beam intensity and the result gives a meas-
ure of the attenuation of the photons for the tissue between the source
and the detector. The distribution of attenuation coefficients is re-
constructed for the same cross sections as those for the radiopharmaceuti-
cal cross-sectional images. With the a priori information about the dis-
tribution of the attenuating medium, ECT can describe the location and
intensity of the source of emitted photons by inverting the attenuated
Radon transform.

This thesis presents an analysis of the attenuated Radon transform
and the implication of its properties relative to reconstruction
algorithms used to invert the attenuated Radon transform. The work

presented differs from previous work in the literature (Hsieh and Wee,

1976; Chang, 1978; Tretiak and Metz, 1979; Bellini et.al., 1979 a, b;



~11-

Natterer, 1978) in that the attenuated Radon transform is defined for
arbitrary distributions of attenuation coefficients. Included is an
iterative reconstruction algorithm which uses a transmission reconstruc-
tion to correct for attenuation and is able to reliabily reconstruct
projection data of an internal radiopharmaceutical source which has
been attenuated by any arbitrary attenuation distribution. For this
algorithm, the propagation of errors is simulated for various trans-
mission and emission statistics and is evaluated based on the spectral
properties of the attenuated Radon transform. In the case of constant
attenuation methods are given for obtaining convolvers and frequency
space filters which accurately reconstruct projection data attenuated
by a constant attenuation coefficient. The accuracy and efficiency

of the reconstruction algorithms are shown to be a function of the
attenuation coefficient. In most cases this functional relationship
s such that as the attenuation coefficient increases then the recon-
struction errors increase.

Following this introduction chapter 2 presents the concepts of emis-
sion computed tomography which includes a discussion about the theory of
computed tomography, the aspects of transmission computed tomography,
and the principles of emission computed tomography - in particular an
explanation describing the differences between single-photon and positron
emission computed tomography. Included is a discussion about the theory
of exponential absorption of radiation which assumes a linear attenuation
coefficient that depends on the atomic number of the absorbing material

and the energy of the emitted photon. This is the premise upon which all
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the mathematical theory is built for both ECT and TCT. The chapter con-
cludes with a discussion of the history of the advances in single-
photon ECT both in instrumentation and mathematical algorithm develop-
ment.

Chapter 3 develops the properties of the attenuated Radon transform
and of a modified transform which is independent of detector geometry.
The theory of Tinear operators operating on Hilbert spaces, the
definition of a generalized inverse, and the singular value decom-
position of compact operators are described in order to develop a
mathematical structure for the analysis of the mathematical properties
of the attenuated Radon transform. Throughout it is assumed that the
attenuation distribution is known a priori which enables one to define
Tinear operators for both constant and variable attenuation coefficients.
The chapter concludes with a discussion of the special properties that
the modified attenuated Radon has in the case of constant attenuation
coefficient. 1In particular these properties include inversion rela-
tionships.

Chapter 4 describes iterative methods for inversion of the attenuated
Radon transform for arbitrary attenuation distributions. The discussion
begins with a description of the basis functions which are characteristic
functions with support over rectangular regions that approximate the pic-
ture function for the cross-sectional image. The attenuated Radon trans-
form of these basis functions leads to a discrete matrix representation
of the attenuated Radon transform for discrete angular and tateral sam-

pling. At the present the size of the matrix is too large for a practical
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evaluation of its inverse by a digital computer and thus iterative
methods must be utilized. The spectral properties of these operators
are considered. Then the statistical aspects of emission computed tomo-
graphy are analyzed by reconstructing simulated projection data for
various transmission and emission statistics. The reconstruction of
attenuated data is complicated by not only statistical fluctuations
in the emission data but also statistical fluctuations in the trans-
mission data which amplify the errors in the emission reconstruction.
Chapter 5 investigates convolution algorithms which are
applicable for inverting the attenuated Radon transform in the case
of constant attenuation coefficient. The investigation into convolution
methods is motivated by the computational speed of the algorithm. A
method is described whereby optimum convolvers can be evaluated by
fitting the attenuated back-projection of the convolver to a desired
point spread function by either least-squares or series expansion
methods. The reconstructed cross-sectional image is expected to closely
represent the convolution of the true image with this point spread
function. Filters used in TCT are shown to be applicable for ECT in
the case of constant attenuation by modifying a window function. The
chapter concludes with an investigation of the statistical aspects of
the convolution algorithm for various attenuation coefficients represent-
ative of actual coefficients of radionuclides used in single-photon

ECT.
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2. EMISSION COMPUTED TOMOGRAPHY IN NUCLEAR MEDICINE

2.1 Introduction

Nuclear medicine is a discipline involved in measuring biological
change as well as the anatomical distribution of these physiological
and biochemical changes using injected radiopharmaceuticals (Wagner,
1968, 1978). Over 50 years ago Hevesy used radionuclides to trace
biological function in animals and man (Hevesy, 1962). With the
development of the Anger camera (Anger, 1966a, 1966b) brain scanning,
kidney scans, liver scans, etc. have become routine clinical diagnostic

procedures. The development of positron emitters by Tobias, Lawrence
and colleagues (1945) for physiological studies and the development
of the Anger positron camera in 1963 (Anger, 1973, 1974) gave a method
for depth discrimination of biological changes in organs and body
tissue. The recent development of positron and single-photon emission
computed tomographic systems give even better spatial and contrast
resolution for depth discrimination which is able to quantitate any
where in the body the biological changes in healthy and diseased tissue
(Phelphs, 1977).

The attenuated Radon transform embodies the concepts of single-
photon emission computed tomography (ECT) of which transmission computed
tomography (TCT) s an important enity. The attenuated Radon transform

is the mapping Au:p > pY of the cross-sectional radiocactivity concen-

tration p into the projections p given by
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where Q% = (-sin®, cosd) and Q% = (cos@, sind). This transform is a
mathematical description which quantitates the physical process of mea-
suring photons projected onto a detector perpendicular to the cross
section and parallel to the axis of rotation. The measured photons are
those photons which have been emitted from a radionuclide source located
within the body and which have not been attenuated by body tissue
between the source and detector.

In order to define the attenuated Radon transform given by Eq. (1.1)
for a particular medium, the distribution of attenuation coefficients u
in the exponential factor must be known. The exponential factor assumes
that the diminution in counts is based on an exponential Taw of radiation
absorption. 1In both ECT and TCT the measured quantities are number of
photons. The total number of photons measured are not equal to the total
number of photons emftted by the source due to the attenuation of photons
by body material. In TCT this absorption of radiation is used to measure
the differences in attenuation density of body tissues: whereas in ECT
the absorption eliminates from the projections the useful information
about the internal source intensity. Thus the attenuated Radon transform
includes an exponential factor which represents a measure of the prob-
ability that each source photon will reach the detector unattenuated.

The evaluation of the attenuation coefficient distribution u
requires the use of TCT and a thorough understanding of its concepts.
The mathematical equations and algorithms used in single-photon
computed tomography are an extension of the basic concepts of computed

tomography used in TCT. Therefore in the following sections we review
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the mathematical concepts of computed tomography, the principles of TCT
and then describe emission computed tomography including the difference

between single photon and positron emission computed tomography.

2.2 The Theory of Computed Tomography

Computed tomography is the process of reconstructing transverse
sections of photon attenuation coefficients in transmission computed
tomography or concentration of radioactivity in emission computed
tomography from projections measured from external detectors. The
application of computed tomography to nuclear medicine is not unique
but is applied to many other fields such as radiology, radioastronomy,
electron microscopy, zeumatography and others. For a review of the
principles of computed tomography and its applications see (Gordon and
Herman, 1974; and Brooks and DiChiro, 1976).

2.2.1 Projections

For the purpose of this introductory discussion f(x,y) will denote
the distribution of either emitter concentration or attenuation coef-
ficients for the transverse section. The function f(x,y) cannot be
measured directly but is measured by external detectors. These external
measurements are called projections and they are parameterized with an
angle © and a lateral sampling £. As shown in Fig. 2.1 the projections
p(£,8) in conventional TCT or positron ECT are line integrals of f(x,y)

given by

p(&,6) fJ{Ebf(xsy) S(&+ xsind - ycose) dxdy (2.1)
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Figure 2.1.

XBL787-3371

Parallel-beam geometry for data collected at the
projection angle 6. The projection data p(£,6)
represent line integrals for the lines

E+xsin@-ycosd = 0, where £ is the projected distance
measured from the center of rotation along a flat
detector.
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where § denotes the Dirac delta function. These projections satisfy
the relationship p(&,0) = p(-&, 6+ 7).

The concept of projections are not restricted to two or three
dimensions but can be extended to n-dimensional Fuclidean spaces where
projections are integrals over (n-1)-dimensional hyperplanes (Gel'fand,
Graev, and Vilenkin, 1966). For our purpose we will only be concerned
with the two-dimensional case.

2.2.2 Radons's Inversion Formula

The Radon transform is the mapping ® which takes the function f
into the function p defined by Eq. (2.1). The inverse of this integral
operator is due to Radon (1917) who gave an inversion formula which we

will write as

f(r,0) =~ 5

21

dg
e - (2.2)

A derivation of Eq. (292) is given by Deans (1977). One sees from

Eq. (2.2) that the reconstruction of f(x,y) at the point (x,y) depends

on all possible line integrals of f(x,y) and not just the line integrals

which pass through the point (x,y). In the three-dimensional case and

in general the n-dimensional case of odd dimension the inversion formula

is more local and depends only on the integrals of f over hyperplanes

which pass through X and over hyperplanes infinitesimally close to

these (Gel'fand, Graev, and Vilenkin, 1966). A discussion of the Radon

transform and its inverse is also given by Ludwig (1966) and Deans (1978).
Note that the integral over & in Eq. (2.2) is a convolution of the

partial derivative of the projections p(£,0) with respect to ¢ and the
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function 1/&, evaluated at the point rsin(¢-0). If we let qg(£,0)

denote this convolution, i.e.

q(2.8) =~ [ap(£,0)/2E] * (1/8) (2.3)

27
then we can rewrite Eq. (2.2) as

il
f(x,y) = &EQ q(rsin(¢-6), 0) do. (2.4)
0
Some practical considerations such as singularities, numerical stability,
and computional speed do not make Eq. (2.4) a good method for reconstruc-
ting f(x,y). However there are other algorithms which overcome the

difficulties presented by Eq. (2.4).

2.2.3 Back-Projection

The operation in Eq. (2.4) maps the function g into the function
f. This is called the back-projection operation which is symbolized
as f(x,y) = B®B{g(£,0)}. The early reconstruction methods of Kuhl (1963
and 1968) and others used this operation to obtain an estimate of the
internal structure by back-projecting the measured projections p(&,0)
instead of the modified projections q given above. This process gives an
estimate of the density at a point equal to the summation of the pro-
jection values of all line integrals that pass through the point. The
result gives a blurred image which one can show is equal to the true

2 -1/2.

density convolved with (x =+y2) :

b(x.y) = Bp(£.0)} = Flxy) * T‘f—)m o (2.5)

(x"+y
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2.2.4 Back-Projection of Filtered Projection Algorithm

Taking the Fourier transform of the convolution in Eq. (2.3) allows

us to rewrite Eq. (2.2) as

F(x,y) = IR| B(R,0) e 2R sTn(9-0) oo (2.6)

2

where ??TZBp(gge)/aaj =i 21 R p(R,0) and ?Ei[?/g] = -im sgn R (see
p. 130 and p. 183 Bracewell, 1965). The application of this equation
to real data can only operate on data samples of finite length. With

this motivation, we can replace |R| with

F(R) = |R] w(R) (2.

™~
~
e

and obtain an estimate of f:

j E(R) P(R,0) e é™ RrSTN(9-0) gpgg . (2.8)
o

The window function w can be selected based on spatial and contrast
resolution requirements.

The back-projection of the filtered projection algorithm digitally
implements Eq. (2.8) by performing the following sequence of operations:
Fourier transform the projection data; multiply the complex values of the
Fourier transform by a filter function; inverse Fourier transform these
modified frequencies; and back-project the modified projection data

(Huesman et al., 1977). These algorithm operations are symbolized as:

TG M AN (2.9)
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This method of reconstructing f is appealing since it lends itself
to easily changing the noise propagation vs. resolution properties of
the window function. One can improve resolution by changing the shape of
the windew function, but the noise amplification will increase.
Alternatively, one can suppress noise; however this noise suppression
will come at the cost of resolution.

2.2.5 Convolution Algorithm

Due to the convolution theorem Eq. (2.8) is equivalent to con-

volving the projections p with a convolution function in real space:

[ c{rsin(¢-0)-&) p(&,0) d&do . (2.10)

The convolution algorithm first convolves the projection data with a
convolver and then back-projects the modified projection data. These

algorithm operations are symbolized by the equation
F=®ic*p}. (2.11)

The convolution functions which are commonly used in reconstruction
tomography were developed by Bracewell and Riddle (1967), Ramachandran
and Lakshminarayanan (1971), and Shepp and Logan (1974). The convolu-
tion algorithm is now used in most commercial x-ray scanners and positron
emission tomographic systems because of its computational efficiency
and because it requires very little computer memory.

2.2.6 Filter of the Back-Projection Algorithm

The filter of the back-projection algorithm reconstructs f by
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deconvolving the true image f from the back-projected image b given by
Eq. (2.5) (Bates and Peters, 1971). The algorithm performs the following
sequence of operations: back-project the projection data; Fourier
transform the two-dimensional back-projection image; multiply the two-
dimensionally distributed Fourier coefficients by a filter function; and
perform the two-dimensional inverse Fourier transform (Huesman et al.,

1977). These algorithm operations are symbolized by the equation
~ "“1 ',\, .
f =9, CFBMN (2.12)

where T is the filter function given in Eq. (2.7). The derivation of

the algorithm is based on the convolution theorem and the fact that

AL ??;T(Rm1) (see definition of Hankel transform and tables, pp 244-250,
Bracewell, 1965).

2.2.7 Iterative Algorithms

The algorithms previously discussed gave analytical expressions for
the density function in terms of integral equations which assumed a
continuous angular and lateral sampling of projections. The digital
implemantation of these algorithms use either the fast Fourier transform
or a finite convolution algorithm and numerically calculate the integrals
. over angle using the trapezoidal method. For finite projection samples

another approach is to represent Eq. (2.1) as a system of linear equations
Ff =P (2.13)

where F is the matrix projection operator, f is a vector of unknown
densities, and P is a vector of projection samples. The solution to

Eq. (2.13) is
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f=F0p (2.14)

where FO is the generalized inverse of F (Ben-Israel and Greville, 1974).
For most reconstruction problems F has dimensions greater than 4096x4096
for which it is impractical to solve the generalized inverse by a

digital computer. Therefore iterative methods such as ART (Gordon,
Bender, and Herman, 1970) and gradient or conjugate gradient techniques

(Huesman et al., 1977) are used to solve Eq. (2.13).

2.3 TransmissiOﬂvComputed Tomography

Transmission computed tomography (TCT) computes the spatial distri-
bution of the linear attenuation coefficients from data obtained by
passing an externally generated source of photons through the subject.
X-ray TCT instruments such as the EMI scanner use an external x-ray
tube which rotates around the patient (Fig. 2.2). The transmission data
in single-photon ECT is obtained with an external gamma-ray emitting
point source with the same energy as the internal emitting radionuclide.
The newer single-photon ECT machines such as the Humongotron (Keyes
et al., 1977) have the gamma-ray point source mounted to the rotating
gantry. The Donner Ring positron ECT device (Derenzo et al., 1977)
uses a ring of positron emitters distributed around the patient as the
transmission source.

The photons that pass through the body arebmeasured by an opposing

detector. The intensity 1(£,0) of the transmitted beam is equal to

1(£,0) = Io(gse) exp[i{ﬁbu(xsy) S§{(E+x sine -y cosd) dxdy] (2.15)
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Figure 2.2. Transmission computed tomography. The source
radiation such as x-rays pass through the subject
along rays satisfying &+xsin6-ycose = 0.
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where u(x,y) is the distribution of attenuation coefficients and IO
is the incident beam intensity. The function u{x,y) S(&+xsin6-ycoso)
is interpreted as a line of density u(x,y) on the ray defined by the
equation £+xsind-ycose = 0 (Fig. 2.2). The projection p(£,6) of
attenuation coefficients is related to the incident beam intensity Io

and the transmitted beam intensity I by the relation

p(£,0) = aiog[l(zge)/lo(égﬁ)j :@EQﬁau(x,y)&(£+xs1"ne=ycose)dxdy° (2.16)

The transverse section representing the distribution of photon linear
attenuation coefficients is reconstructed from the projections p(&,0)
using one of the algorithms described in the previous sections.

2.3.1 The Exponential Absorption of Radiation

When x-rays or gamma rays pass through an absorbing medium such
as body tissue, interactions occur between the photon and an electron
by four distinct mechanisms known as the photoelectric process, the
Compton process, coherent scattering, and pair production (Johns and
Cunningham, 1974). The rate of change per distance of the total |
number of unscattered photons as a consequence of these four mechanisms

is represented mathematically as

a‘zz “UI (217)
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where ¢ is the linear dimension of the path being traversed by the
photons, I is the total number of unscattered photons at ¢, and p is
the Tinear attenuation coefficient. In essence Eq. (2.17) states that
the infintesimal change in the number of unscattered photons as it
passes through the absorption medium is negatively proportional to

the number of unscattered photons reaching that point {or distance or
depth). The negative sign implies that the number of photons I(z)
decreases as the Tineaf path length increases.

The solution of the differential equation given by Eq. (2.17) is
I(z) = Ioe"“("f‘@o) (2.18)

where 10 is the number of photons at ¢ = Co The dimension of the
attenuation coefficient p is inverse distance. As photons pass through
body tissue the linear attenuation coefficient will vary due to the
variation in the composition of the biological material, i.e. Tungs,

bone, blood, etc. This changes Eq. (2.18) to

(2.19)

It is this variation which is measured by TCT.

2.3.2 The Linear Attenuation Coefficient

The Tinear attenuation coefficient u can be converted to either

the mass, electronic or atomic attenuation coefficients by dividing u

by the mass density p(gm/cmS)s electron density Pe (e1ectrons/cm3)s

or atomic density pa(atoms/cmS) of the material to give units of cmz/gm9
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cmz/e1ectron5 or cmz/atom5 respectively. The values for these
coefficients often expressed in barns (1 barn = 10“24cm2) can be found
in tables (see Hubbell and Berger, 1966; Johns and Cunningham, 1974).
Since these coefficients are in units of cmz/gm or cmz/e1ectron or
cmz/atom5 they are often called cross sections.

From a geometric point of view the terms cross section can be
thought of as the cross-sectional area of atoms or electrons seen by
a photon as it passes through the tissue. This is truly an over
simplification because for different types of interactions the cross-
sectional area varies. One might say that for different interactions
the atoms or electrons have differing cross-sectional force fields.

It is more accurate to think of the cross section as a measure of the
probability the photon will interact with the material. For example it
can be shown from Eq. (2.17) that if a flux of N photons/cmz/sec
interacts with a target of tissue containing Pa e?ectrons/cm3 then the
number of interactions per target (i.e. number of interactions per cm3)
in time t is Npet x (electronic cross section).

The linear attenuation coefficient is obtained from the mass,
electronic, or atomic cross section by multiplying by the density in
gm/cmgs e1ectr0ns/cm33 or atoms/cm3 as appropriate. Thus the linear
attenuation coefficient has units of inverse distance and is a measure
of the fraction of photons removed from the beam per length of absorber.
However it does not tell how photon energy is absorbed. Instead the
linear attenuation coefficient is the sum of the photoelectric (1),

coherent (o_ ), Compton (o), and pair production (m) attenuation

coh
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coefficients all in units of inverse Tength. Each one of these
coefficients is a measure of a physical process by which photons can

set electrons in motion.

2.3.2.1 The Photoelectric Absorption Process

The photoelectric process involves a photon colliding with an atom
and ejecting an electron either from the K, L, M, or N shells of the
atom and absorbing the total photon energy. The probability of
ejecting an electron is maximum if the photon has Jjust enough energy
to overcome the binding energy of the electron and knock it from its
shell. The photoelectric absorption in tissue is most important at
Tow energy representing the most probable mechanism for photon loss

for energies less than 50 keV.

2.3.2.2 Coherent Scattering

Coherent scattering involves unbound electrons or virtually
unbound electrons such as those in the outer shell of the atom which
have binding energies of only a few electron volts. If we consider
a photon as an electromagnetic wave, then as this wave comes near
an electron it sets the electron vibrating which causes it to radiate
energy at the same frequency as the incident wave. This process is
called coherent scattering. The scatfered photon has the same energy

and same wave Tength as the dincident photon.
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2.3.2.3 Compton Scattering

In contrast to coherent scattering, Compton scattering is a process
where the incoming photon gives up some of its energy to the electron
in accordance with the conservation of energy and momentum. Even
though Compton and coherent scattering do not absorb the photon totally,
these processes are considered in the total linear attenuation coeffi-
cient. Any well collimated detector will not see many of these scat-
tered photons and if detected the detector electronics will usually
reject the photon because it has lost enough energy to no longer be
within the selected energy window.

The Compton process depends on the number of electrons per gram
and thus with the exception of hydrogen (which has twice the electrons
per gram then any other material) the absorption per gram by the Compton
process is nearly the same for all materials. The Compton cross section
decreases with an increase in energy. The overall fraction of the
energy scattered is large for low energy photons and is small for
high energy photons. For photon energies from 100 keV to 10 MeV, Compton
scattering is much more important in soft tissue than either coherent,
photoelectric or pair production.

2.3.2.4 Pair Production

The process of pair production involves photons with energies
greater than 1.02 Mev. When a photon with this energy comes near the
nucleus of the atom it may become a positron and an electron pair.
The positron and electron have the same mass of 511 keV. Thus by the

conservation of energy and momentum, photon energies of less than
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1.02 Mev cannot experience pair production.

2.3.2.5 The Total Linear Attenuation Coefficient in Bone and Tissue

The total 1inear attenuation coefficient u is the sum of the
photoelectric (1), coherent (dcoh)g Compton (o), and pair production

(m) attenuation coefficients:

w=T+ Teoh + 04+ T, (2.20)

At Tow Z materials found in biological tissues and at energies emitted
by radioactive tracers, coherent scattering fs negligible and is not
considered. Also most radiopharmaceuticals used in single-photon ECT
have radioactive nuclei which release photons of energies less than
1.02 MeV therefore for these energies the pair production cross section
is zero. Thus the primary processes experienced by ECT are Compton

scattering and photoelectric absorption which reduces Eq. (2.20) to
u=T+0. (2.21)

Fig. 2.3 gives a plot of the photoelectric and Compton attenuation
coefficients for water as a function of energy. For energies less than
27 keV, photoelectric is the primary absorption process and Compton

is for energies greater than 27 keV.

Figure 2.4 compares the plot of the cross section (cmz/gm) and
Tinear attenuation coefficient for bone with that of water (= soft
tissue). For energies where photoelectric is‘the primary process
(<27 keV), bone will absorb almost 5 times as much energy gram for gram
as soft tissue. This means that at these energies the atomic number

of the material is the determining factor for photon attenuation. At
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Figure 2.3. Photoelectric (t) and Compton (o) linear attenuation
' coefficients (cm1) for water as a function of energy.
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Figure 2.4. MMass attenuation coefficient u/p (cmz/gm) and linear
attenuation coefficient p (cm~!) for bone and water.
The density of water = 1.00 gm/cm3 and the density of
bone = 1.83 gm/cm3.



~33-

energies from 200 keV to 2 Mev Compton absorption is the primary process
suggesting that electron density is the determining factor. Since most
materials except for H2 have nearly the same number of electrons per
gram, bone and soft tissue will absorb the same amount of energy gram
for gram for these higher energy photons.

2.4 Emission Computed Tomography

Emission computed tomography uses two basic types of radionuclides;

M. 13 82

those which are positron emitters such as N, 1503

99m

C,
73116

Rb and those

which are gamma emitters such as Tc and Some radionuclides

can be both positron and gamma emitters whereby each radionuclide has

a certain probability of either distintegrating by emitting a positron
or a gamma ray. A comparison of positron and single-photon ECT is given
in (Budinger, Derenzo, et al., 1977).

The decay process for a positron emitter involves radionuclides
which are neutron deficient relative to the number of protrons. In such
cases a protron is converted to a neutron with the loss of a positive
charge with the same mass as an electron. This positive charge called a
positron and also referred to as an antielectron is ejected from the
nucleus and within millimeters annihilates with an electron producing two
photons each having an energy of 511 keV and traveling away from each
other at an angle of 180°.

The decay processes which lead to the re?eése of single photons are
isomeric transition, electron capture, and beta emission. Isomeric
transition occurs when the atomic nucleus falls to a state of lower

energy. For some nuclei this occurs rapidly with a very short half-1ife,

whereas others such as 99mTc remain in a metastable state with a half-1ife
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of 6 hours before falling to a state of lower energy with the release
of a photon. In the electron capture process the nucleus makes use of
the deeply penetrating orbital s electrons of the K shel] of the atom
and converts the electron and protron into a neutron. Energy in the
form of characteristic x-rays are released when electrons cascade down
from outer atomic shells to fill the gap left by the converted electron
from the K shell. 1In most cases, after electron capture the nuclides
are in an excited state and decay to a more stable state with the
release of a photon. The third decay process occurs when a neutron in
the nucleus is converted to a protron and this conversion process
releases an electron. The emitted electron is known as a B particle.
As 1in the case of electron capture the nucleus is usually in an excited
state and decays to a stable state with the release of a photon,

2.4.1 Positron Emission Computed Tomography

Detection schemes as shown in Fig. 2.5 use the two photons obtained
from the annihilation of an electron and a positron so that events are
recorded if two opposing detectors detect both photons in coincidence,
T.e. within a certain time interval (=~ 10“8 sec). The probability that
both photons will not be attenuated by the tissue interposed between

the annihilation and the detector is

4 D»
0
Probability of both = exp{ f u(;,gse)dc}xexp{mf u(z.£,0)dc}
photons escaping D
1 Co
Dy
. exp{f u(z.2,0)dz) (2.22)

Dy
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Figure 2.5. Positron emission computed tomography. At the
rotation angle 9 and lateral sampling £, the detectors
Dy and Dy will detect those annihilations whose photons
travel apart along the line E+xsinf-ycos@ =0.
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where u is the distribution of attenuation coefficients. This is the
same probability for every possible positron annihilation that may

occur along the ray path imaged by the two detectors D1 and D2 at the
same rotation angle 6 and lateral sampling distance £. The projection

pyy(gae) of these annihilations along this ray path is
(i 0) = expl[- ﬁgjg S(E+xsind - ycose) dxdy]

Jfagp X,y) S(& + xsing - ycose)dxdy (2.23)

where p(x,y) is the concentration of positron emitter. Therefore, each
projection value is the line integral of the positron concentration
distribution multiplied by an exponential attenuation factor determined
from the 1ine integral of attenuation coefficients over the total ray
path. These data are easily modified for attenuation effects giving

the corrected projection data

p(.6) = expLf fulx,y) 6(g+xsine - ycose) dxdylp, (£,6)
jgﬁa S(&€ + xsin® - ycosd)dxdy . (2.24)

2.4.2 Single-Photon Emission Computed Tomography

The attenuation compensation needed for single-photon emission
computed tomography is not a simple multiplicative correction of the
observed projection data as in the case of positron emission tomography
(Eq. 2.24). The atomic decay processes which produce gamma radiation
do not allow the advantage of coincidence detection to easily compensate

for attenuation. Instead the physics requires one to model the detection
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of single photons with a more difficult mathematical equation.

A scintillation detector illustrated in Fig. 2.6 is used to measure
the photons released by radioactive nuclei. The projections for a
particular transverse section represent photons which have been released
by radioactive nuclei that lie in the transverse section perpendicular
to the detector. The photons measured are only those photons which are
released within a solid angle subtended by the detector and which
are not attenuated by one of the processes discussed previously. Each
nucleus which lies along the line &+xsin®-ycos6 = 0 has a different
probability of being detected dependent on the body material inter-
posed between the nucleus and the detector.

For single photon emitters, the probability of detecting an event
is not independent of position of the emitting radionuclide along the
ray path as it is for positron emitters. Instead the probability that

the photon will reach the detector is

D
Probability of photon = exp-és Jf p(gse)dc§ (2.25)
escaping c
0

where %o is the position where the radionuclide decays, D is the

detector coordinate, and u is the distribution of attenuation coeffi-

cients which is a function of tissue density and photon energy. The

probability therefore depends on the tissue distfﬁbuted between the

radionuclide and the detector, and on the energy of the emitted photon.
The projection by(gﬁe) (Fig. 2.6) for single-photon emission

tomography is given by Eq. (1.1). Expanding the dot products
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Figure 2.6.

Detector —=

XBL7812-12396

Single-photon emission computed tomography. At the
rotation angle 6 and lateral sampling £, the detector
will see those photons which travel along the line
E+xsinb-ycos6 = 0 and are not attenuated by body tissue.
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in the delta function gives an equivalent expression

b, (£,8) zgfp(xsy)a(xgygise) §(g+xsnd - ycoso)dxdy (2.26)

where
detector

a(x,y,£,6) = expl- @}*d;* u(x',y')s(g+x'sine - y'cosp)dx'dy'] .
Xy

A single-photon projection is the summation of isotope concentration

at the points (x,y) modified by an exponential e where z is the line
integral of attenuation coefficients from the point (x,y) to the
detector. The single-photon emission reconstruction problem is more
difficult than either transmission or positron emission tomography.

The influence of the term a(x,y,&,8) depends on the distribution of
attenuation coefficients, which unfortunately has such large values

for all energies used in nuclear medicine that the reconstructed images
are seriously affected using the computed tomography algorithms discussed
in Section 2.2 without compensating for attenuation.

2.4.2.1 Examples of Reconstructing Single-Photon Data Without
Compensating for Attenuation

Straightforward mathematical methods used to reconstruct x-ray
transmission and positron emission modified projection data yield poor
quality images in single-photon ECT because of the attenuation of the
gamma radiation in the tissue. This can be seen from Fig. 2.7, where a
phantom disc of 23 cm diameter and constant attenuation is used to
illustrate the effect of reconstructing transverse sections without

compensating for attenuation. The data were generated from computer
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simulations for gamma rays of a few MeV (u =0.05) and compared to those
for gamma rays of 511 keV (u ~ 0.10) and 140 keV (u ~ 0.15). The images
in the lower row show the serious artifact that results for the usual
isotopes used in nuclear medicine if attenuation is not taken into

account. For example, with an attenuation coefficient of 0.15 cm’;I for

a gngc source in the center of a brain, only 18 out of 100 photons are
detected compared to 86 out of 100 photons detected from 1 cm beneath
the scalp. Thus for a truly quantitative reconstruction of gamma
emitter concentration, compensation for attenuation must be employed.

As a numerical example, we can calculate the projections py(gge)
for a disc (transverse section through a sphere) containing a homo-

geneous emitter concentration p and a constant attenuation coefficient

u. The functions p(x,y), and u(x,y) of Eq. (2.26) are defined by the

equations
C, XZ . y2 < "’02
p{x,y) = é (2.27)
0, otherwise
", XZ " y2 < POZ
p(xsy) = é (2.28)
0, otherwise

Substituting these expressions into Eq. (2.26) we see that the
problem is reduced to determining the attenuation factor e—u% where £
is the distance between the point (x,y) and the boundary of the disc

(Fig. 2.8). Thus, for =0, the weight function a(x,y,&,0 = 0) becomes

7

seen from Fig. 2.8. Also, for a disc, the attenuated Radon transform

expl-u2(x,y,£,0)] where 2(x,y,&,0) is just -x + as can be
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For a circular disc with constant attenuation and
constant emitter concentration, the attenuation
factor a(x,y,£,0) reduces to e=H% where % is the
length of the line segment between the point (x,y)
and the edge of the circular disc.



=43

is independent of 0 because of circular symmetry. Thus Eq. (2.26)

reduces to
pY(E) (2.29)
Integration of Eq. (2.29) gives
.C ¢C f ol 22
pY(E) o7 expl-2u (2.30)

This 1is the case for constant attenuation coefficient u. To compare
this to the case where there is no significant attenuation (u > 0)

the projections are simply

p,(£) = (2.31)
These two functions, Egs. (2.30) and (2.31), are shown for pu = 0.15 cm$1
and r_ = 20 cm. in Fig. 2.9.
For no attenuation the reconstruction is given by Radon's
inversion formula:
ore) = E%Z. J ) Sl STRls oI (2.32)
0

where p(r,¢) is the true distribution in polar coordinates and p(&,6)
is the projection function. For circular symmetry, this reduces to

the inverse of the Abel transform:
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DISC OF UNIFORM ACTIVITY:
C =30 EVENTS —

Attenuation %
(p= 0.15 cm™) \

| ]

|
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XBL 7534799

The projection value for a disc with attenuation u=0.15
and emitter concentration C = 30 results in a diminution
at the center by a factor of 3.16.
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dg
: (2.33)
22172

The operation of Eq. (2.33) on the projection function in Eq. (2.31)
gives C for points in the domain of p, as expected. However, for

attenuated projection data, Eq. (2.30), Abel's inversion formula gives

2n+l
T 5 é u2n2 (r 27" - %w 1 2.02) 2 ésrgra
L n=0 ((n!) L(2n+1)1]
p(r) = (2.34)
éog otherwise

Equation (2.34) is plotted in Fig. 2.10 for various attenuation
coefficients showing the reconstructed profiles of a 23 cm disc when
attenuation is ignored.

2.4.2.2 Development of Instrumentation for Single-Photon ECT

Single-photon ECT was pioneered by Kuhl and Edwards who began to
develop the principles of emission computed tomography as early as the
late 1950's, with the eventual development of the MARK I scanner (Kuhl
and Edwards, 1963). The MARK I uses a single detector which moves back
and forth in a linear fashion at each projection angle. The concept
of this type of rectilinear scanner is shown schematically in Fig. 2.11A.
Kuhl first used analog reconstruction methods which gave a back pro-
jection showing a blurred tomogram. Subsequently the system was
modified with the introduction of a computer applied correction which

enabled it to yield quantitative data.
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Concentration

o 23cm

XBL785=3190

Figure 2.10. The profiles of a 23 cm disc reconstructed using Radon's

inversion formula from data attenuated for various attenua-
tion coefficients.
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In 1964 the MARK II was developed which used two opposing detectors
to scan simultaneously and thus increase sensitivity (Kuhl and Edwards,
1964). Kuhl's early work primarily emphasized the sectional scanning
of the brain (Kuhl et al., 1966 a,b). With the development of the MARK
IIT scanner he was able to further improve sensitivity by using four
detectors which rectilinearly and simultaneously scanned the brain
(Kuhl and Edwards, 1970).

Besides Kuhl other researchers have developed rectilinear scanners
for single-photon ECT. These include Todd-Pokropek and Keeling (see
Todd-Pokropek, 1971; Keeling, 1971), Myers and co-workers (1972),
Bowley and co-workers (1973), and Tanaka and co-workers (1974).

The sensitivity was improved in the rectilinear scanners with the
addition of multiple detectors as in the design of Genna and co-workers
(1976) who used multiple detectors in a curved array. An illustration
of a rectilinear scanner with multiple detectors is shown in Fig. 2.11B.
The MARK IIT system was also improved upon by Kuhl and co-workers (1976)
with the development of the MARK IV system which is a four sided
arrangement of 32 independent detectors which rotates continuously
as a unit (Fig. 2.11C). A similar multiple detector arrangement is
being developed by Union Carbide.

Studies done at Donner Lab with single-photon ECT began by rotating
patients in front of an Anger camera as shown in Fig. 2.12 (Budinger
and Gullberg, 1974). The cross-sectional images of radiopharmaceutical
distributions were reconstructed using an iterative method due to

Goitein (1971). Compensation for photon attenuation was accompTished
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TRANSMISSION SCAN

Point source lle="""__ __

EMISSION SCAN

XBL789- 3568

Figure 2.12. Single-photon ECT was done at Donner by rotating the
patient in front of an Anger camera. The transmission
scan used a 10-20 mCi point source of gamma emitter
placed approximately 3.5 m from the camera. For the
emission scan the radiopharmaceutical was injected into
the patient.
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by using the attenuation factors that were evaluated from the distribu-
tion of attenuation coefficients reconstructed from a transmission
study. The advantage of the Anger camera over the rectilinear scanners
of Kuh1 and other researchers is that projection data for multiple
sections can be collected at one time.

A system more appropriate for patient studies is shown in Fig. 2.11D
where an area detector such as the Anger camera is rotated around the
patient using a cantilever structure. Such a system called the
Humongotron, was developed by Keyes and co-workers (1977) for imaging
the whole body. Similar but smaller systems for imaging the brain were
developed by Searle (Jaszczak et al., 1977) and by Selo (Societa
Electronica Lobarda) in Milan, Italy. These systems have the advantage
of collecting projection data for multiple transverse sections simul-
taneously without patient movement. However the devices must rotate
to obtain angular sampling. This requires more time for total data
collection than multiple detector systems positioned around the patient.
Therefore these rotating Anger camera systems are not suited for
dynamic biological studies such as measuring coronary blood flow.
Searle is improving the angular sampling by producing a new system
which will consist of two directly opposing large field of view
scintillation cameras and will be designed for whole body studies
(Phelps, 1977).
2.4.2.3 Development of Algorithms for Single-Photon ECT

The early scanners of Kuhl used basically the back-projection or

simple superposition to reconstruct the cross-sectional image (Kuhl



and Edwards, 1968). This method of reconstruction was later improved
upon by using an orthogonal tangent correction method (Kuhl et al.,
1973). The MARK’IV system (Kuhl et al., 1976) reconstructs the trans-
verse section image as it rotates using an iterative technique similar
to ART (Gordon et al., 1970). At the end of the study a single cor-
rection for attenuation and detector response is appiied based on the
assumption that the results of scanning the head can be related directly
to the results of scanning a cylinder of radioactive water,

The attenuated Radon transform for variable attenuation coefficients
was first described in (Budinger and Gullberg, 1977). Various methods
for inverting the attenuated Radon transform have been researched and
discussed in the literature; these include iterative Teast-squares
methods, which use TCT to . determine the attenuation coefficients
(Budinger and Gullberg, 1974), iterative convolution methods (Walters,
Simon, etal., 1976), attenuation compensation methods which preprocess
the projection data (Kay and Keys, 1975; and Budinger and Gullberg,
1977), correction of each reconstructed pixel value by a mean
attenuation factor determined by using the sum of atteﬂuation along
all rays through the pixel divided by the number of rays (Chang, 1978),
and a special iterative method applied in Fourier space to compensate
for both attenuation and the spacially variant point spread function
of the imaging system (Hsieh and Wee, 1976).

Direct inversion relationships have been developed for the case’

when the attenuation distribution is constant. Bellini and co-workers
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(1979 a,b) have developed an inversion formula which involves modifying
the Fourier transform of the projection data in such a way that the
modification represents the Fourier transform of unattenuated data.
Tretiak and co-workers (1978, 1979) have developed a back-projection of
filtered projection method which gives a reconstructed image that is
equal to the true image convolved with a desired pdint spread function.
This point spread function determines the spatial resolution and noise
amplification of the filter applied to the projection data. Natterer
(1978) has developed an inversion formuia which is accurate up to O(ua)o
This formula is derived by applying Cauchy's theorem to a Fourier
projection theorem derived for a constant attenuation coefficient.

The remainer of this thesis will investigate the properties of the
attenuated Radon transform and its relationship to efficient and
reliable reconstruction algorithms. We will concentrate on iterative
methods and an extension of the back-projection of filtered projection
algorithm as is appropriate for an attenuating medium with a constant

attenuation coefficient.
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3. PROPERTIES FOR ATTENUATED RADON TRANSFORMS

3.1 Introduction

In this chapter we will develop the properties of two basic types
of attenuated transforms. The attenuated Radon transform (Auzp~%py)

is that given by Egq. (1.1) -

p. (£,0) :jo(% exp | - g u(R') (g-<x",00)dx' | 6(&-(X,00)d% , (1.1)

(%05 = (%65

where p is the concentration of the emitter and py(gge) are the projec-
tions. The projections py(g,e) can be modified in such a way that we
can define a new transform (Auip*>p) which is independent of detector

geometry -

py(%;s@) =

When the attenuation coefficignt is constant, explicit inverse equations
can be developed for this modified transform.

These two transforms -- the attenuated Radon transform and the
modified attenuated Radon transform -- assume that the attenuation
distribution u is known a priori. A transform which does not assume
a priori knowledge about the attenuation distribution is given by
A:{p,u) ~ pY which maps the ordered pair of functions (p,u) - p and u
are allowed to vary - into the projection function pY defined by

Eq. (1.7). This transform is not Tinear due to the exponential
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attenuation factor in the integral equation. Methods for inverting
this nonlinear transform have been investigated by us but with very
little success. Presently Censor and co-workers (1979) are pursuing
this using algebraic reconstruction techniques. This thesis will con-
cern itself only with the case where the attenuation distribution u
is assumed to be known or has been determined by an experiment. For
this case we have denoted the attenuated Radon transform as Au and
the modified attenuated Radon transform as_Aue

The work presented in this chapter differs from previous work in the
Titerature (Tretiak and Metz, 1979; Bellini et al., 1979 a,b: Natterer,
1978) in that the attenuated Radon transform is defined for arbitrary
distributions of attenuation coefficients. This chapter deals first
with the attenuated Radon transform for arbitrary attenuation distri-
bution, then shows how one can obtain from this operator the modified
attenuated Radon transform. After the properties of the modified
transform are discussed it is then shown how the modified attenuated
Radon transform in the case of constant attenuation coefficient
reduces to the attenuation transform discussed by Tretiak and Delaney
(1978), Natterer (1978), Tretiak and Metz (1979), Bellini and co-workers
(1979%a and b). The results presented for the case of constant attenua-
tion represent contributions from these authors along with some new
results derived from the general theory of the modified attenuated

Radon transform as it applies to the case of constant attenuation.
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3. PROPERTIES FOR ATTENUATED RADON TRANSFORMS

3.1 Introduction

In this chapter we will develop the properties of two basic types
of attenuated transforms. The attenuated Radon transform (Au:p=%py)

is that given by Eg. (1.1) -

P (6:0) = [ol

where p is the concentration of the emitter and py(gse) are the projec-
tions. The projections py(gge) can be modified in such a way that we

can define a new transform (Au:ps*p) which is independent of detector

geometry -

0< (R*,55) <<%,

When the attenuaﬁion coefficient is constant, explicit inverse equatfons
can be developed for this modified transform.

These two transforms -- the attenuated Radon transform and the
modified attenuated Radon transform -- assume that the attenuation
distribution p is known a priori. A transform which does not assume
a priori knowledge about the attenuation distribution is given by
A:(p,u) ~ pY which maps the ordered pair of functions (p,u) - p and u
are allowed to vary - into the projection function pY defined by

Eq. (1.1). This transform is not linear due to the exponential
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attenuation factor in the integral equation. Methods for inverting
this nonlinear transform have been investigated by us but with very
little success. Presently Censor and co-workers (1979) are pursuing
this using algebraic reconstruction techniques. This thesis will con-
cern itself only with the case where the attenuation distribution u

is assumed to be known or has been determined by an experiment. For
this case we have denoted the attenuated Radon transform as Au and

the modified attenuated Radon transform as_AU,

The work presented in this chapter differs from previous work in the
Titerature (Tretiak and Metz, 1979; Bellini et al., 1979 a,b; Natterer,
1978) 1in that the attenuated Radon transform is defined for arbitrary
distributions of attenuation coefficients. This chapter deals first
with the attenuated Radon transform for arbitrary attenuation distri-
bution, then shows how one can obtain from this operator the modified
attenuated Radon transform. After the properties of the modified
transform are discussed it is then shown how the modified attenuated
Radon transform in the case of constant attenuation coefficient
reduces to the attenuation transform discussed by Tretiak and Delaney
(1978), Natterer (1978), Tretiak and Metz (1979), Bellini and co-workers
(1979a and b),' The results presented for the case of constant attenua-
tion represent contributions from these authors along with some new
results derived from the general theory of the modified attenuated

Radon transform as it applies to the case of constant attenuation.
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3.2 The Attenuated Radon Transform Operating on a Hilbert Space

Hilbert space theory (Halmos, 1951) contains the mathematical
structure which enables us to describe geometrical concepts such as
orthogonality. The objects of greatest interest in connection with
Hilbert spaces are the linear transformations of which the attenuated
Radon transform is one example. Hilbert spaces have a natural
correspondence with their dual space (the space of all linear functionals
defined on the Hilbert space) so that the Hilbert space and its dual
can be considered as equivalent (Simmons, 1963, Chapter 10). This
structure leads to the concept of the adjoint of the operator from which
the generalized inverse of the attenuated Radon transform can be
described and formulated as the generalized inverse of the self-adjoint
operator equal to thg composition of the attenuatéd Radon transform
and its adjoint (Kammerer and Nashed, 1972).

For a Hilbert space X and a submanifold S, S"L denotes the
orthogonal complement of S and S is the closure of S. As illustrated
in Fig. 3.1, the Tinear operator Au maps the Hilbert space X of con-
centration functions p into the Hilbert space Y of projection functions
pyg where the range and the null space of the linear operator AU is
denoted as R(Au) and N(Au)’ respectively. In reconstruction tomography,
the null space of Au has been given the term "the space of invisible
functions" (Hamaker and Solmon, 1978).

The adjoint operator of Aus denoted by A:, maps the Hilbert space
Y into X and is defined such that (p, AZ p) = [Au 0,p] where (+,¢)

and [+,°] are the inner products in the Hilbert space X and Y,



Figure 3.1.
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The attenuated Radon transform maps the Hilbert space
X into the Hilbert space Y with range and null space
denoted as R(A,) and N(A,), respectively. The adjoint
transform A¥ maps the H?%bert space Y into the Hilbert
space X witﬁ range and null space denoted as R(A*) and
N(A:)g respectively. H
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respectively. One particular Hilbert space which we will consider is

the Hilbert space LZ(Q9W) which represents the space of real valued

functions p defined on the set O C RZ (p:~+R) which are square

integrable with respect to the weight function W(i.e. [f lp(x,y)}z X
W(x,y) dxdy < «). The attenuated Radon transform maps this Hilbert
space into the Hilbert space LZ(Esw) of functions p defined on the

set € € Rx [0,2n) (p:C ~ R) which are square integrable with respect
to the weight function w(i.e. [/ }p(é,e)lz w(&,0) d&do < »), If
"2,

Q= RZ then we will denote X as L“(R",W

2

The inner product for

L7(Q,W) is defined to be (pgp'>Q W [T o(x,y) o' (x,y) W(x,y)dxdy and
> Q

“the inner product for LZ(@,W) is defined to be [psg]E . [ p(£,0) x
’ ¢
9(£,0) w(£,6)dede.

In our discussion, we will only consider Hilbert spaces for which
the attenuated Radon transform is a bounded linear operator. If

AU:X -+ Y is a bounded linear operator, then N(Au) and N(AZ) (Fig. 3.1)
are closed subspaces of X and Y, respectively. Therefore, we can
write X = N(A) + N(A )" and Y = N(AL) + N(AY" (Theorem D, p. 251,
Simmons, 1963). The following relations are also valid (see Yosida,

1974 Kammerer and Nashed, 1972):

R(AD = N(A;)j
R(A’;)l = N(AE)
R(Au)i = N(Au)
R(Az) = N(A )
R(A) = R(A A%)
R(AE) = R(A%A )
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For finite-dimensional Hilbert spaces the range of a bounded operator
and its adjoint are closed and are related to each other by a function
which is one-to-one and onto. The attenuated Radon transform operating
on a finite-dimensional Hilbert space will be discussed in Chapter 4.
In this chapter properties will be developed for the attenuated Radon
transform and the modified attenuated Radon transform for function

spaces which are infinite-dimensional Hilbert spaces.

3.3 The Reconstruction Problem

An approach for solving the reconstruction problem in single-photon
ECT involves evaluating the generalized inverse of the attenuated Radon
transform. We will develope the generalized inverse in a manner similar
to that given by Kammerer and Nashed (1972). Then we will show that
in certain cases the attenuated Radon transform and its generalized
inverse can be decomposed and represented as a sum of eigenfunctions.

3.3.1 The Generalized Inverse

Reconstructing attenuated data for a known attenuation distribution

u requires solving the linear operator equation
A (p) =p (3.1)

where AM:X + Y is the attenuated Radon transform given by Eq. (1.1),

p is the distribution of isotope concentration, and pY is the projection.
The concentration p € X is called the best approximate solution of

Eq. (3.1), if inf {lIA - € Xt = IlA (p) - . This i

q. (3.1), if inf {ll u(9) pyH]p b=l (o) p, s
equivalent to minimizing llp - pYH over all p € R(Au)° The minimum p

is characterized as illustrated in Fig. 3.2 by the condition pY - D,



-59..

XBL791=3067

Figure 3.2. The minimum of llp - pyll over all p € R(A ) is the

)
projection of p, onto R(A) .

denoted as P.
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v p e R(Au)i) which we know

from the properties Tisted in Section 3.2 is equivalent to py‘~§ € N(AZ)Q

is orthogonal to the space R(Au) (i.e. p

* N * ”~ N
This implies that AUAU<Q) = Au(p ). Therefore 5 € X is a best approxi-
mate solution of Eq. (3.1) if and only if it is a solution of the

equation
* *
A AL = A (p) . (3.2)

The Tinear manifold R(AU) may not be closed in Y. Therefore the
orthogonal projection of pY onto RZAuibmay not be 1in R(Au) and Eq. (3.1)

and (3.2) do not have a solution. However if we only consider those

projection functions which are in R(Au) + R(Au)"L
L. Y.), the solution to Eq. (3.1) is determined by

evaluating the generalized inverse Aﬁ of the attenuated Radon transform

G
Apo AU

such that for p € D(Ag)s

(If R(Au) is closed
then R(AU) + R(A“)

is the mapping whose domain is given by D(Ag) = R(Au) + R(Au)=L

G _ - § N : _ = ay :
AP = 05 €S ={ B X|infll A (o)-pll = I A ()-pll , peX}

and Ilpfl < ol for all e S, # p,- Therefore for each p € R(Au) +
R(AU)L = D(AS)S Aﬁ(p) is a unique solution. The set S of all best

approximate solutions of Eq. (3.1) for a fixed pY € D(AS) is given by

G * _ G
Au(py) + N(AUAM) AU pY + N(AU) . (3.3)

Equation (3.3) shows that the null space of the operator AU is a

measure of nonuniqueness.
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The generalized inverse is an operator which is applicable to both
finite and infinite dimensional Hilbert spaces. Before the wide spread
usage of the generalized inverse in matrix theory (see Ben-Israel and
Greville, 1974; and Boullion and 0dell, 1971) it was developed to
determine the solution to integral and differential equations (Reid,
1968).

3.3.2 Singular Value Decomposition of Compact Operators

From Eq. (3.2) we see that the generalized inverse of Au is
closely related to the generalized inverse of the self adjoint operator
A*A . In fact

Mol

_ .G _a¥y 26 *
oo = 1 py = (IS AR,

In the discussion to follow we will show that the knowledge of the
* *
eigenfunctions of AUAU and AuAu lead to a singular value decomposition
of A .and AGO
M u

If R(A“) is closed then by the closed range theorem (p.205,
Yosida, 1974), R(Ai) is also closed andvR(AZ) = N(Ap)“L

® k3
this case the operator AUAU restricted to the space R(Au) = N(Au)i is

*
= R(AUAM)° In

a one-to-one and onto mapping of N(AU)l onto itself. For the attenuated
*®
Radon transform Au, the operator AUAUZQ -+ B is given by the Fredholm

integral equation of the first kind:

B(x'y') = f folxay) K(x',y' [x.y) dxdy , (3.4)

where K is the kernel of the transformation. For the Radon transform
(i.e. u=0) and weight functions W(x,y) = w(£,6) = 1 this kernel is the

well known function
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K(x",y'|[x,y) = (3.5)

hx - %'
where X = (x,y) and %' = (x',y') and for which the result in Eq. (3.4)
is a convolution.

If R(Au) is closed we also know by the closed range theorem that
R(A ) = N(AT)

M H
to minimizing Hpmpyﬂ over all p € R(Au)S then when R(Au) is closed the

%
= R(AUAU)’ Since the solution to Eq. (3.1) is equivalent

solution to Eq. (3.1) is equivalent to minimizing HA“AS p - pyH over
*

all p e R(AuAu)° This gives a different formulation of the reconstruc-

tion problem, namely the solution to the linear operator equation

k4
AUAU p = pY (3.6)

where the reconstructed isotope concentration function 5 is given by
A */\ ~ . ° . o
p = A p such that p is the best approximate solution to Eq. (3.6).
*
The operator AMAU restricted to the space R(AU) is a one-to-one and

* 1
onto mapping of N(Au) onto itself. For the attenuated Radon transform
*
Aps the operator AuAu°p +~ g is given by

9(,0) = [p(e,0') 1(£,08]E',0') dg'de’ (3.7)

where 1 is the kernel of the transformation. For the Radon transform,

R:L2(R%) > L2(R x [0,21)) this kernel is

I(£,6]8',6') = — (3.8)

|sin(e-6") |
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From the discussion above we see that the operators AZAU and AMA:
can be represented as integral equations with kernels K and I respec-
tively. Operators such as these for which [ lK(?’si)}Z dX'dX < o
are called Hilbert-Schmidt operators (p.1009, Dunford and Schwartz,
1963) and K is called an L2 kernel. These are compact operators
(p.277, Yosida, 1974) which share special properties which are not
true in general for Tinear operators. From the Hilbert-Schmidt theorem
(p. 68, Petrovskii, 1957) we know that if K and I are symmetric kernels
then 8 in Eq. (3.4) and g in Eq. (3.7) can be expanded in an absolutely
and uniformly convergent series of eigenfunctions of the operators A A
and A A » respectively. (See also Tricomi, 1965 and Lovitt, 1950.)

For reaT functions K and I these eigenfunctions are necessarily real.

If we examine the kernel given for the Radon transform in Eq. (3.5),
we see that this is not square integrable (i.e. [[ 1/1%-%'IZ dRdX' < «)

2

and thus not an L™ kernel. In order to use the Hilbert-Schmidt theory

2

of singular value decomposition applicable to symmetric L® kernels, we

need to introduce weight functions W(x,y) and w(&,8) # 1 for the Hilbert
spaces LZ(Q,W) and LZ(@SW)Q Then we can consider kernels for the
operator A*A which are square integrable in the sense

ff K(X[%") | w(&) W(X') dxdX' < «, The notion of a symmetric kernel
15 replaced with that of a Hermitian kernel. Using the notation of
Ko to mean the same as AzAu operating on p, the kernel K is called
Hermitian if K (A{ ') = K(X'|X) where the adjoint kernel is defined

such that (Kp,p"?
2

ol " (pSK*p'>Qaw. In the case of the Radon tran;fogm
if we take L°(R 2( XY

W) and L°(C,w) with weight functions W(x,y) =
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2
and w(£,0) = e> (Eggermont, 1975; Miller, 1978), this will give a

Hermitian L2 kernel for A:AU:

K(x".y " [xy) B eXpé SN IE I % (3.9)
(i.e. [f lK(Q'IQ)]Z W(X) W(X')dXdX' < ). For the Radon transform
other weight functions have been used by Marr (1974) and Davison and
Grunbaum (1979).

With the modification that incorpofates weight functions in the
definition of inner products, we can apply the Hilbert-Schmidt theory
presented by Smithies (Chapter 7 and 8, 1958) to determine a singular
value decomposition of the attenuated Radon transform. This means
that if the Hermitian operators A:AU and AUAz have L2 kernels then
-both have the same set of eigenvalues denoted by Aie We will denote
¢i(x9y) to be the eigenfunctions of the operator A:Au corresponding
to the eigenvalue A; and denote wi(i,ﬁ) to be the eigenfunction of
the operator Aqu corresponding to the same eigenvalue Aiu The system
(¢ia ¢i; Ai) is called a singular system for the kernel K corresponding
to ASAH and (wig wi; Ai) is a singular system for the kernel I cor-
responding to AuAi (Smithies, 1958). The eigenfunctions ¢i are
orthogonal relative to the weight function W(x,y) (i.e. [[ ¢4 (x5y)
¢506y) Wix,y) dxdy = JF
relative to the weight function w(&,8). The kernel given in Eq. (3.4)

) and the eigenfunctions h; are orthogonal

can be represented as
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oo

K(x'ﬁy']xgy Z i sy ) d)i(xsy) W(X9Y) (310)

(see Theorem 8.6.5, p.158, Smithies, 1958), and the operator A:Au

operating on the function p(x,y) is given by
(A A, o) Z A J Jo0oy) 0, Gy Wi y)dxdy o (x',y ') .

Likewise the kernel given in Eq. (3.7) is given by

[e ]

1{g,0]8',6") = 21 A (£,0) wo(g',0") w(E',6') , (3.11)
i=

*®
and the operator AUAH operating on the function p(£,0) is given by

(AuAi p)(£,6) = § S plenet)ug(e0t) wie',6t)detde! v, (£,0).
(3.12)

In the case of the Radon transform the kernel given in Eq. (3.9)

can be represented as in Eq. (3.10) with

172 In| 2_2
0 (xy) = (-1 ETT}%—T] (x i) 1" LM By Pye Y
m({n| +K)!

[n]

where LK are the Laguerre polynomials and the indices K and n are
determined from the single index 4. The eigenfunctions v, corresponding
to the kernel I given in Eq. (3.11) are given by

2|n|+4K . . 2
b,(£.0) = [2 i(n #1011 2 MO () e



(b~

where Hm(g) is the Hermite polynomial of degree m and the indices K
and n are determined from the single index 4. (See Magnus, Oberhettinger,
and Soni, 1966).

If the eigenvalues Ai and eigenfunctions b and wi are known then

the attenuated Radon transform can be decomposed as

(Ap)(E.0) = T W78 [ o) a3 (o) Wxyddxay w (£00) (3.13)

where (¢i9qﬁg Aii/z) is a singular system for the attenuated Radon
transform (see Theorem 8.3.2, p. 145, Smithies, 1958). From this
singular value decomposition of Au’ we can write the generalized inverse

as

(A p.)(x.y) = Z 5[ p(e0) vy (58 u(z0)dedo oy (x). (3.10)

In the sections that follow, we will give expressions for the kernel
functions K and I. However, explicit expressions for the eigenfunctions

¢; and b, are not developed.

3.4 The Attenuated Radon Transform

The definition of the attenuated Radon transform given by Eq. (1.1)

can be rewritten using the rotated coordinates (see Fig. 2.6):

= ~£ sinb + ¢ cosH

>
1

(3.15)
£ cosO + ¢ sind .

<
i

This gives

py(zge) =}{ p(~&sind +zcoso, £cosd+zsing) alz,£,6)de (3.16)
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where

a(z,£,0) = expg} u(-£sing +z'coso, gcoseﬁac'sine)dc'j . (3.17)

The upper limit is chosen to be at infinity fqr mathematical convenience.
This allows for general distributions of both concentration and
attenuation coefficients; and in practical situations, it does not
matter if the detector is placed at infinity since the distribution of
isotope concentration and atfenuati@n coefficients is zero outside a
compact subset of RZ,

The attenuated Radon transform Au defined by Eq. (3.16) maps real
valued functions p with domain Q g;]RZ(p:Q + R) into real valued
functions pY with domain € € Rx [0,27) (py:@~» R).

The following are equivalent definitions for the attenuated Radon

transform A -
AT Py

1. pY(Seﬁ) zj{}rp(xgy) a(X,y,£,0) S(&+xsin6 - ycoso)dxdy

where

a(x.y,£.0) = exp| u(-Esing +£'cos6, £cosd+¢'sing)dz'|

L xcos8+ysing 4
(3.16a)

2. py(ise) = Qﬁﬁ gp{rse-+ﬂ¢2f+cos (g/v)} expgz }{ U{396°%ﬂ/2=%cosw1(g/g)}
r

r=|

oy

+ p{r,0+m/2 - cos“1(€/r)}
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u{t,0 4+ m/2 - cos™ ! (g/1)} —tdt ﬁ rdr (3.16b)
(2.2 22
' 1 { Cy
3. p(E8+120") exp§~ u(ep+c'e )dgé dc (3.16¢)

where © = (-s5in6, cos6) and Q% = (cos6, sind). As illustrated in
Fig. 3.3, the integration of p in Eq. (3.16b) along the Tine
E+xsin6-ycos6 = 0 in polar coordinates from r=g to « must include two
portions of p for the projection, namely the concentration at
(w§6=%ﬂ/2=+cos$1(g/r)) and at (P56‘+W/2-COS“1(€/T))° The infinitesimal
Tine length dz used in the definition in Eq. (3.16) is related to dr
by dg = r(rzwgz)s]/z dr. The vectors § and Q% are both unit directional
vectors.

Using the definition in Eq. (3.16) we prove the following result
for attenuated projections when both the concentration distribution

and attenuation distribution are shifted relative to a fixed coordinate

system.

THEOREM 3.1. The attenuated Radon transform of o(x+a, y+b) with

respect to the attenuation coefficient distribution u{x+a, y+b) is
Alp(x+a, y+b), u(x+a, y+b)s £,8} = Alp(x,y), n(x.y);: £',0) (3.18)

where £' = £ - asin® + bcoso.
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€+ xsinf -ycosf=0

XBL791=3071

Figure 3.3. The unit directional vector 6 Ties along the £ axis and

Ties along the ¢ axis. The polar coordinate r of a
vector X in the xy-plane and the coordinate ¢ in the
ge-plane satisfy dz = r(r2-£2)-1/2 dr. The angle between
the vector x and the £ axis is equal to cos-1(&/r)

°
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COMMENT: The notation A{p,u; £,6} denotes the transformed function
which is the attenuated Radon transform of o with respect to the
attenuation distribution u. This function is evaluated at & and 0.

PROOF. The attenuated Radon transform of p(x+a, y+b) for the
attenuation distribution u(x+a, y+b) is

Alo(x+a, y+b), ul(x+ta, y+b); £,8} = p(-Esind+rcos6+a, £cosO+rsine+b)

x exp| dz . (3.19)

u(-Esino+z' cose+a, Ecosd+y’sing+h)ds! |

Let £ = £ - asino + bcose, then we can rewrite Eq. (3.19) as

A{p(x+a, y+b), u(x+a, y+b); £,0} =

p{eg'sin6+(§+acose+bsin6)cosegg‘cose+(c+acqse+bsiﬂe)sine}

X exp{ p(»g‘sine+(c‘+acose+bsin6)cose,a‘cose+(c'+acose+bsin6)sin6}dg'§d§9

Making the further change of variables

[
i

z +acos 0+ b sind

=¢' +acos 8 +b sind

gives
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Alp(x+a, y+b), u(x+a, y+b); &,6} o(-£'sind+ucosd, &'cosh+using)

u(mg'sin6+u'cosegg‘cose+u'sine)du’§ du. |l

This result will become useful in Chapter 4 when we digitize the
reconstruction domain and consider transforms of characteristic
functions over square pixels. If we know the transform at the origin
we can invoke the shift property given in Theorem 3.1 and evaluate
the attenuated Radon transform of characteristic functions over any
region in Rzu

The result in Theorem 3.1 requires that the distribution of
attenuation coefficients p translate in the same manner as the emitter
concentration p. If we consider the situation where u is held fixed
then we get a different result. ’

THEQOREM 3.2. The attenuated Radon transform AU of p(x+a, y+b)

is given by
Ao(x+a, y+b), u(x.y)s €,6} = Alp(x,y), u(x-a, y-b); &',6}  (3.20)
where &' = £ - asin® + bcoso,

PROOF. The attenuated Radon transform AU of p(x+a, y+b) is given

by

A{p(x+a, y+b), ulx,y)s £,0} = 55 o(-Esin6+rcosd+a, £cos6+rsing+b)

X expé p(-gsin6+r'coso, gcose+c'sine)dc“% dc . (3.21)
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Let &' = £ - asind +bcoso, then we can rewrite Eq. (3.21) as

A{p(xta, y+b), u(x,y); £,0} =

=) 0

p{-g'sin6+(z+acoso+bsing)cose, &'cose+(z+acoso+bsing)sing}

u{-&'sino+(z'+acos6+bsing)coso-a,

g‘cose+(§'+acos@+bsin6)sin6=b}dg‘j dz
Making the further change of variables

U =¢ +acos 8 +bsino

u' ="' +acos o+bsino

gives

Alp(x+a, y+b), u(x,y); &,6} = j o(=E'sind+ucos, £'coso+using)

A

u(-g'sino+u’ cosé-a, £'cose+u'sing-b)dy’ ?duo I

From Theorem 3.2 one can see how the projection data will change when
the concentration is shifted within a fixed attenuator. This has

practical application for in vivo dynamic studies.

3.4.1 Adjoint and Back-Projection Operators

The reconstruction problem involves determining the generalized

inverse of the attenuated Radon transform Aﬁ:Y > Xf As discussed 1in
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Section 3.3, one can describe this inverse transform in terms of the
%*
adjoint transform Au which maps the Hilbert space Y into the Hilbert
space X. To develop the adjoint transform let us consider the mapping
2 2(

2 . _ *
AU,L (R™,W) > L(C,w). Using [Au psg]@,w = (p, AU g>ﬁR25w

p(xay) o' (X,y) W(x,y)dxdy

and

jp(ge) o(£,6) w(asemgde}

. e

as the definition of the adjoint, the following sequence of equations

X w(«xsin6+ycose,e)de§ dxdy

k4
shows that the adjoint Au of the attenuated Radon transform is given by

LT

g(-xsind+ycos6,0) a(x,y,-xsind+ycoso,o)

(3.22)
x w(-xsinB+ycos0,0)de
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where
a(x,y,-xsind+ycoss,n) =

expgn Jﬁf u(XSiHZGEyCOSGSin6+§'COSGSmXSinecosefycgsz

| XCOSO+ysing

0+z'sing)dz’
(3.23)

By the property of functionals on Hilbert spaces (Taylor, 1966), we

*
know that Au g is unique. Another way of writing Eq. (3.22) is

L o0
* _ 1 .
(A 9 (xay) = sy | g 9(£,6) a(x,y,£,0) w(£,6)8(g+xsine-ycose)dede.
(3.24)

The adjoint transform Az is an inverse mapping in the sense that it
maps the Hilbert space of projection functions LZ(@SW) into the Hilbert
space of concentration functions LZ(RZSW)O

Another operator which operates on LZ(@sw) is the back-projection

operator Bu defined by

g(-xsinb+ycose,0)/a(x,y,~xsinb+ycos6,0)do. (3.25)

This operator differs from the adjoint transform (Egs. (3.22) and
(3.23)) in that the weighting functions W and w do not appear and the
attenuation factor is equal to the reciprocal of the attenuation factor
given in Eq. (3.23). Both the adjoint transform AZ and the back-
projection operator Bu can be considered as "back-projection” operators

since they both correspond to back-projecting the projection values
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for all projection rays passing through the same point (x,y) weighted

by the appropriate weighting functions and attenuation factors.

3.4.2 The Composite of the Projection and Back-Projection Operators

*
As discussed in Section 3.3, the operator AUAU restricted to the
k4
space R(Au) = N(AU)=L is a one-to-one and onto mapping of N(AU)~L onto
itself if R(AU) is closed. For the attenuated Radon transform Aus

*
the operator AUAUZQ + B can be written as

(x',y") = f folxsy) K(x',y" [x.y)dxdy (3.4)

where the kernel K is given by the following theorem.
THEOREM 3.3. For the attenuated Radon transform AU:LZ(IRZSW)—%
LZ(@gw) defined by Eq. (3.16) and the adjoint operator Ai defined by’
Eq. (3.22) and w(g,0) independent of 6 and satisfying w(g) = w(-£),
the operator A:Auzp + B maps p into B where B is given by Eq. (3.4)

with the kernel K given by

o _K(x'Ly ' [x,y) xy ' -yx'
K(x'>y" [x5y) WOy W(nm*n > (3.26)

where

o0

K(x',y' [xy) = “&j&‘“ gexp é‘;{ u(b+z'e,ctz! f)de! 1{ u(b+c'esc+c'f)daé
d d’

u(b—c'eSCuc'f)dc‘Hg

(3.27)
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and

g = 2x=x") 4 yly-y') (X

- = ulxex ) (3.28)
15X-%"1] I x=-x"1l
o - XL ) | LR .29
T x=x*'l A x=x"
b = Ly ) yxtoxy) (3.30)
1%-%012
c = (X~x'1(§y'5yX') (3.31)
I x=-x"l :
o = (ﬁaf‘) (3.32)
I x=xl
£ = (f“f') 9 (3.33)
I x=xl

PROOF. Using Eqs. (3.16a) and (3.24) we see that AZAU (p) can

be written as

p(x.y) K(x',y'|x,y)dxdy

where

K{x',y'|x,y) = 5 5 a(x,y,€,0) a(x',y',£,0)

x w(E) 5(£%xsineayc056) S(&+x'sind-y'cosn)dede (3.34)
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K(x">y' [x.y) =
Y4 _
= QT§}§7' ; a(x,ygmxsine+ycosese)'a(x‘sy'saxsin@+ycosege)
0
x W(-xsin+ycose) S(G(XEX‘)éine%(yay')cose)de . , (3.35)

To evaluate Eq. (3.35) we use the relationship (Papoulis, 1968, p.38)

2m s(eaei)

2
s{g(0)}de = [ 2o - de
kCoeme s % g

1

where 0, are the zeros of g(e),

g(8) = =(x-x") sin6 + (y-y') cose.

The function g{6) has two zeros 61 and 62 which satisfy the following

relationships
sin 6, = Pt AN cos 0, = f“fl (3.36)
I x=x"ll I x=x"ll
sin 0, = :élfim)- cos 0, = WEX:X‘) (3.37)
I x=x"1l Fx=x"ll

The derivative of g with respect to 6 is given by
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Q%%ﬁl} = «(x-x')cos0 - (y-y')sine

Evaluating this at 61 and 62 gives

| 450 S % - R

# |

@m—@1 962
Therefore Eq. (3.35) can be rewritten as
2m

K(x',y'|x,y) = a(X,ys=xsino+ycos0,0) a(x',y',-xsind+ycoss,s)

[5(6“67) + 6(6562)3
w(-xsind+ycoso) — de . (3.38)
Ix = x'll

X

Integrating Eq. (3.38) with respect to 6 gives

t

K(x',y' [x,y) = [a(xgygmxsinei+ycose1gei)a(x‘gy'snxsine1+ycosej,ei)
X w(ﬁx31ﬂ67+yccsei) + a(xaysaxs1ﬂ@2+ycosezsez)

s oy =1
x a(x'ey'3*xsin62%yc0362962) w(ﬂxsin62+ycosez)] u%iéfgﬁ”

Substituting the expressions for sin@Ts cos@ig sinezs coso,, into the
definition of the attenuation function given in Eq. (3.23) and using
the assumption w(&) = w(-g) gives the expression for K(x',y'|x,y) in
Eq. (3.26) and Q(x‘9y°lx9y) in Eg. (3.27). |

We see from Fig. 354 that the function K is twice the inverse of
the distance between the two points X and X' times the sum of attenua-

tion factors which represent the attenuation between the respective
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Figure 3.4.

XBL791=-3070

The integrals in the first exponential of Egq. (3.27)

are the line integrals of the attenuation distribution

u along the top Tine from the points %(87) and X'(67),
respectively, The integrals in the second exponential

of Eq. (3.27) are the Vine integrals of y along the

bottom Tine from the points %(62) and X'(62), respectively.
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points X and X' and the detectors as viewed from angles 180° apart.
The function K is also symmetric in the sense that K(X'|x) = R(X|X').

We know from the discussion about Hilbert-Schmidt operators in
Section 3.3 that if the weight functions W and w are choosen so that
K is square integrable (i.e. [[ K(X'|X) W(RX') W(X) dRd%X' < «) then
eigenfunctions exist for the attenuated Radon transform.

For the composite of the Radon transform and the back-projection
operator [Eq. (2.4)], the kernel K is given in Eq. (3.5) for which
the result in Eq. (3.4) is a convo?utidn, It follows from the next
theorem that the kernel function for the composite of the attenuated
Radon transform and the back-projection operator given in Eq. (3.25)
allows us to write Eq. (3.4) as a convolution only if the attenuation
distribution is constant.

THEOREM 3.4. For the back-projection operator Bu defined by
Eq. (3.25), the operator BUAUEQ -+ B maps p into B where B is given by
Eq. (3.4) with the kernel given by
d

AZA coshé §
x=-x"l B!

Kx'sy'[xy) = u(b+z'e, c+c‘f)dc§ (3.39)
where d, d', b, ¢, e, f are given by Egs. (3.28)-(3.33).
PROOF. Proceeding as in Theorem 3.3, the kernel can be evaluated

giving
K{x',y'[x,y) = [a(xsyssxsine1+yc0367961)/a(x'gy',mxsin61+ycose]561)

~1

+ a(x9y3~xsin62+ycosez962)/a(x',y'smxsin92+ycssez,62)] X=X (3.40)
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Substituting the expressions for sine]5 €os6y, Siﬂ@zg coso, into the

definition of the attenuation functions given in Eq. (3.23) gives

K(x"sy ' [x,y) =
o d o

exp § f u(btz'e,c+g' f)dg' + f u(b+z'e,ctg' f)dz! +§u(b+c‘esc+c'f>d?;'§
d d' d
-d*

u(b-z'e,c-g'f)dg' + fu(b»c’esm'f)d«:'é )

+ expé»egaydb—c'esc—c'f)dC'“
~d '

o S g

(3.47)

The integral in the argument of the first exponential function
representing the function 1/a has been written as the sum of two
integrals as has the integral in the argument of the second exponential
function representing the function a. We see then that the expression
for the kernel function can be simplified giving the result in

Eq. (3.39). |l

3.4.3 The Composite of the Back-Projection and Projection Operators

%
As described in Section 3.3 the operator AUAU restricted to the
* *
space R(Au) = I\!(!l\“)‘L is a one-to-one and onto mapping of N(AU)=L onto
itself if the R(Au) is closed. For the attenuated Radon transform

k3
Aps the operator AuAu:p + ¢ is given by the integral equation

o(5,0) = [[ n(e',00) 18,0080 )ag do: (3.7)
where the kernel I is given by the following theorem.
THEOREM 3.5. For the attenuated Radon transform AU:LZ(]RZBN)u*

L2(a,w) defined by Eq. (3.16) and the adjoint operator A: defined by
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%
Eq. (3.22), the operator AUAU:p + g maps p into g where g is given by
Eq. (3.7) with the kernel I given by

C ooy L T(e.00e',0") w(e',0')
1(g,8]g".0") (g‘cosemgcose‘ g's*in@-£sin6‘>
sin(6-0") * sin{e-0")

where

E(ggeli'ge‘) = exp |- J{ u(-£sin6+z cosh, £cose+z sind)dz
sin(6~-0°

%o
~ Bgﬁu(—g‘sin6'+c'cosﬁ’9 g'cos@’+c'sin6')dgi§ (3.42)
%o
and
Ty = gcot(6'-0) - &£'csc(o'-6) (3.43)
Cy = Ecsc(6'-0) - £'cot(s'-6) . (3.44)
PROOF. Using Egs. (3.16a) and (3.24) we see that AUAS (p) can be
written as
2
o) = [ [ nene) 10le 0t a0
O = 00
where

1(g,0]',0") =}fa(xaygase)a(xsygase)6(E+><S‘in9mycose)

=00 = (O

8(&'+xsind'-ycoso*) W%%%%T” w(& ,0').
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Integrating with respect to x gives

a(x*(y) S‘ysgse) a(X*(y)sysgl se’) 5(<§+X*(y)sin6ycose) dy
[sine’ | WOx*(y),y)

* w(g', 0')

where x*(y) = i£§§§§$§%~o Integrating with respect to y gives

1(55915'96') = a(x*(y*)sy*sgae) a(x%’(\y*)my*ag'se,) W(gl5@‘)
[sin(0-0") ] W(x*(y*),y*)

where
%(uk) = & €0SH - Ecosh’
x*(y*) sin(o-6")
and
% - &'sind - Esing’
y sin{e-6")
This gives
a{x*(y*),y*,£,0) = u{-£sind+rcoso, gcose+gsine)dc§
with
Ly = £ cot(6'-0) - &' csc(o0'-0) ,
and

a(x*(y*),y*,g',0') =
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with

g, = & csc(6'-8) - &' cot(6'-6). |

Figure 3.5 shows that the coordinates (gozzmdgg) and (cé =d', &)
are the coordinates of the intersection of the Tines E+Xx51n0-ycos=0
and £'xsing'-ycos6'=0 in the g&- and ¢'&'-coordinate system, respective-
ly. The line integrals in Eq. (3.42) represent integrals of the attenua-
tion distribution u along the two lines frqm the point of intersection.

3.4.4 The Single Angle Projection Operator

In Eq. (3.16), we see that the attenuated Radon transform maps a
function p:Rzm%IR with domain RZ and range R into the function
Aup352><[092ﬂ) » R whose domain is the direct product of the real
numbers with [0,2n). By fixing the angle 0, we can define a single

angle projection operator denoted by Au 5 such that (Au ep)(g):f(ﬁ\up)(zge)

2

is a single projection at the angle .
In emission computed tomography, one tries to find the function

p from a finite number of these single projections, A 0, A Os

Uﬁe} Uaez

..o A ps which are called scintigrams. Even though in practice

Us0

N

each AU g P is known only at a finite number of discrete points, we
>

will assume that each projection (AU 5 p)(&) is known for all £. The
single angle projection operator AU g can be generalized to N angles

(A 0, A

by defining the N-fold operator Au NeP = A 0s

p;‘;‘
usN Use] uaez

ces A o) which maps the function p into the N-tuple of single

U, 6
N ,
angle projections. The N-fold projection operator will be discussed

in the next section.
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£+ xsinB-ycos g’

Domain of »

¥BL791-3069

Figure 3.5. The first integral in the exponential argument of Eq. (3.42)
is the line integral of the attenuation distribution u
along the line &E+xsind-ycos® = 0 from the point of
intersection with the Tine £'+xsing'-ycoso' = 0. The
second integral is the integral of u along the line
g'+xcos0'-ycos6' = 0 from the same point of intersection.
The distances d and d' satisfy d = £cot(6-0')-£'csc{6-6")
and d' = gcsc(0-0')-E'cot(6-6"), and the coordinates
Lo and g satisfy L, = -d and g = -d', respectively.
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First we investigate some of the properties of the single angle

projection operator AU These results parallel similar results

o°
developed by Marr (1979) for the Radon transform. In the following

theorems we will use the attenuation function

a{X,yY,=xs1n0+ycos6,0) =

exp p(xsinzemycosesine+c'coses - xsinecose+ycos£6+c‘siﬁ@)dz'

XCcos0+ysing
Y (3.23)

as a weight function for the Hilbert space Li(Rzga)e Functions

pE LT(Rzga) satisfy

j{ga lo(xsy) | a(x,y,-xsin6+ycos6,0)dxdy < o .
R2

The weight function a(x,y,-xsin6+ycos6,8) represents the integral of
the attenuation coefficients from the point (x,y) to « for the

p

projection angle 6. The inner product for the Hilbert space L1(R49a)

is given by ( f,g) , = If 5 f(x,y) g{xsy) a(x,y,-xsin6+ycoso,0)dxdy.
R",a R

THEOREM 3.6. For any 0, Au 0 is a bounded tinear map from

LY(R%,a) into L'(R) with 1A, g = 1.

0 .
PROOF. Using the definition of (Au 0 p) (&) given by Eq. (3.16),

we have

fia, oroe - f

Lﬁfp(~gsine+ccoses Ecos0+zsing) alc,£,0)dg|dg

Siﬁlgl p(-Esinb+rcosd, £cosdtrsing) a(z,&,0)|dgde -
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Using Fubinis theorem, we have for p € L‘(Rzga)

Jfl " o) ( £)|dg <:§@§7p X,¥) a(Xsy,-xsin0+ycoso,0) |dxdy < « .

Therefore Au P € LT(EU, Rewriting we can express this as

1A, goll <ol
This implies that
1A ol
A Gl = sup PO
Hs INESEE

If we let p(x,y) = 8(x) &(y) [a(xgygwxsine+ycosase)351 we see that

HAuseH = 1. |

In the next theorem we consider Ause operating on the Hilbert
space LZ(IRZ)w If the attenuation function a(x,y,-xsind+ycosd.0 &
LZ(RZ) for any 9 then AUEG will map functions in LZ(RZ) into functicns
in the Hilbert space L°(R).

THEOREM 3.7. For any 6, A _ is a bounded Tinear map from L2(R%)

My 0
into L5(R) if A, ol = Lff Ia(xgyguxsine+ycosese)f2 dxdy]'/? < o,

PROOF. Using the definition of (AU 5 p) (&) given by Eq. (2.16)

and Schwartz's inequality, we have

| (A o ep (g)| = legp(sgsin6+ccoses gcoso+rsing) a(g,£,60)dg|

1/2
< (ﬁglp(wgsin6+§COSG, gcose+gsiﬂe)|2d;) / (jja(csggejizdg)1/zo
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Using Fubinis theorem, we have for p € LZ(RZ)

1/2 1/2

(f1tn, 4020 1? de)

<<§§lp(xgy)lz dxdy)
. 2. \/?
x (ﬁeﬁja(xsyssxs1n®fycosese)] dxdy) <o,

if ”Au J = (ff [a(xsygsxsin6+ycoses6)[2 dxdy)1/2 < o, Therefore
2
Auge o€ L°(R). Il

In Theorem 3.7 the norm of the projection operator Au 9 is a

measure of the detectability of photons - detectability meaning that
they are not attenuated by Compton scatter or photoelectric absorption.
The density of the attenuating material and the energy of the emitted
photon from the radionuclide are two physical factors which directly
influence the norm of Auge° The higher the energy then the greater is
HAus Il , whereas the denser the body tissue then thé smaller is HAuaeHQ
This has important application when considering, for a particular
attenuating material, the required number of photons that must be
collected in order to insure a desired contrast resolution. 1In ECT
imaging, this means that the larger the norm of Auge the shorter is the
time required for collecting data and/or the lower is the required
injected dose. This is desirable for patient studies.

Next we want to investigate the adjoint transforms of Au 5 for

*
the functional spaces LZ(RZ) and LT(Rzga)a The operator Au o Maps
%
the function h defined on R 1into the function Au 5 h given by
*
(A o h)(x,y) = h{-xsine+ycosd) a(x,y,-xsind+ycoso,o) (3.45)

U, 0
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where a(x,y,-xsinf+ycos0,0) is given by Eq. (3.23). The operator Be

maps the function h defined on R into the function Be h given by
(B6 h)(x,y) = h(-xsin8+ycoso) . (3.46)

The function Be h is a ridge function (Logan and Shepp, 1975) which is
constant along lines that are parallel to Q% (Fig. 3.3). The function

¥ .
Au 5 h is an exponential ridge function which varies exponentially

along lines that are parallel to Q%a

The inner product for the Hilbert spaces L1(§2) and LZ(R) is

given by [psanqz [ p(&) q(g)ds. Using the definitions of the
R

2

corresponding inner products for the Hilbert spaces Lj(R ,a) and

LZ(RZ)g the following two theorems show that the operator Ai o Given
by Eg. (3.45) is the adjoint of Au o LZ(IRZ) > LZ(BQ) and the
operator Be given by Eq. (3.46) is the adjoint of Au e:L1(R23a)v+ L1{?)g
THEOREM 3.8. For any function p € LZ(IRZ) and any function
he 2 CooA hy o =T[A _p,h
(R)s Ps 1, 0 RZ "”[Useps jp»
PROOF. Using the definition of the inner product for LZ(RBE we

can write

*

*
Coaty o g = [ [ o) (A o ) Goy)axdy

=d§}{p(x3y)h(axsine+ycose)a(xaysmxsin6+ycoseae)dxdy

for the function h € LZ(

R). This can be rewritten as
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<¢>9A§ N iﬁ{p(xsy) h(€) a(x,y,£,6) §(&+sine-ycose)dedxdy

- [, oona

]

EAus@ pghjﬂze Il

THEOREM 3.9. For any function p € L(?zsa) and any function

heLl(R), CpaBgh) = A

RZ,a T pshlp -

PROOF. The proof follows simi?ar-stebs as given in Theorem 3.8. |

In the next results we need to define the following functions:

DEFINITION. The function x € L?(Rzga) will denote the characteris-
tic function for some subset Q of RZ (i.e. x = 1 for points in the
subset Q and 0 otherwise.) and Xpse = Ause X. The operator Mf will

denote the multiplication operator such that (Mf ) (x.y) = f{xy) g(x.y).

THEOREM 3.10. I y € L°(R%a) and h € L2(R) then

(A M B.)h = M. h . (3.47)

PROOF. By the definition of By in Eq. (3.46), we have (Be h)(x,y) =
h(-xsino+ycos6). Applying the operator MX to this gives y{x,y) x
h(-xsin6+ycos6). Therefore the expression on the left of Eg. (3.47) is

given by

(Au 0 MX Beh)(g) =Q§J{x(xsy)h(»xsin9+ycose)a(x,y9558)6(g+xsinemyccse)dxdy
RZ

X(xy)n(E")a(x,y,8,0)8( & +xs1n0-ycos0)§(E+xsind-ycoso)de" dxdy.
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Z( 2

R",a) and he LZ(

Since y € L R) we can change the order of integration.
Doing this plus using the transformation of coordinates (Eq. 3.15)

we have

(A, o By 1) = [hie) [x(z.0) alz.e.0)de o(e-e)ag:

< (e 5, 46 sle-e)de’ = h(e) 3 (&)

DEFINITION. The o-silhouette of @ is the set {, = {(X,8) |X € q}.

The intersection of the Tine &+xsin6-ycosd = 0 and the set Q is Q. o°
Ge
1
{

maps LT(Qsa) onto L gﬁe}i

1(§

We next show that the operator AU 5

maps L1(Q9a) onto L with

e)

THEOREM 3.11. The operator Au 0

IIAU96H = 1.
PROOF. To show that Au 0 is an into mapping follows similar
stops given in Theorem 3.6. To show that it is an onto mapping,

take a function h € L1(ﬁ and let

6)

h{-xsind+ycoso)
X, e(wxsine+ycese)

p(xsy) = x(x5y) (3.48)

Using Egs. (3.16) and (3.17) -

¥(2,£,0) % a(z,£,6) dc

Mo

(A, ¢ 0)(E) =

0

%008 e =)

U6

]
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To show that p in Eq. (3.48) is in Li(ﬂsa) we have, using Schwartz's

inequality and applying Fubini's theorem,

jﬁp(x,y)] a(X,y,~xsin6+ycoso,8)dxdy
£
- h{-xsin6+ycose)
ii;%dhy)x (-xsind+ycosh)
U0
(f ne) | .
jﬁx(csi) m a(z,£,0)dedg
Q

= j{h(a)ldaa
QG

a(X,y,-xs1n0+ycos6,0) dxdy

Since h € Lj(ﬁe) then p € L1(Q,a). To show that the norm of AU’e is
equal to 1 follows immediately from similar steps to those given in
Theorem 3.6. |

Next we want to define a new single angle projection operator
for the attenuated Radon transform. It will be shown that this
operator has an important application in defining an ART algorithm

for reconstructing attenuated projection data.

DEFINITION. For a set @ g_Egz with characteristic function y,

the operators Ru 5 and R: g are defined as follows
i) R =M~ 7 A ‘ (3.49)
"Us6 (Xpse) s 0
*
ii) R =M B (3.50)

s 0 X 0
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where B is defined by Eq. (3.46).
THEOREM 3.12. For any 0 and any bounded open set Q C RZ the

following are true

. 2 2o~
(1) RUse maps L°(Q,a) onto L (Qe’ XU39>°

¥
(i1) The composite operator Ru 0 RU g = 1 is an identity on

2~ A

(969 X,uge) °
*
(i1ii) The composite operator Ru 5 RU 0 is an idempotent operator

, * 2 _ o

(i.e. (Ruse Ruﬁe) = RUge Rus@)°

PROOF. (i) Using Schwartz's inequality and the definitions of

5 (Eq. 3.16) and R (Eq. 3.49), we see from the following
2/8 o~
V.

(Qes XQSSI:

M, 0

sequence of inequalities that R maps Lz(ﬂga) into L

M0

[(A, g ©)(EY] = lj (c.€) x(c,&) alz,E,0)dc]

ﬁp (2.8) | alz.E.0)d0) /7 (jx(c,g) alz.£.0)dc) /2

f!p (2,£)]% a(z,£,0)dz) /2 E&Uge(i)]“2 e

g)dg < jﬁp £,8) | a(r‘;gig@)dcda) < o
9

A

_ A 25
Therefore Ruae 0= AU o p/x g €L (S Xu56)°

To show that Ru 9 is an onto mapping, take a function he:Li\§@§§w e)
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and let

o(x:y) = x(x,¥) h(-xsind+ycoss) .

Then using Eqs. (3.16), (3.17), and (3.49)

(Rio 98 = == [ x(z.8) h(e) a(c.z,0)a
Y6 G

= h(g).

To show that p € LZ(Qsa) we have,using Schwartz's inequality and Fubini's

theorem,

iglﬂﬁﬁx»y)lz a(x,ysmxsine+yc036,6)dxdy)1/2
Y

i

{gig]x(x,y) h(axs%ne+ycose)}2 a(xgy,mxsine+ycosege)dxdy)]/2
9}

fl

Eji{%(caa)lh(a>!2 a(z,&,0)dcdg) /2

§
([ In@1* %, o6 d0)/? <o
QS

it

&
(ii) The proof that Ru o R g is an identity on LZ(Q

3 s 6? XU36)
follows immediately from Theorem 3.10.

(i11) Using the result in (ii) we have

R R )2 =R R ®" R
( W0 87 T8 T,0 .6 T,
*
) Ru,@ 1 Rugﬁ
=R* R .|

1,0 1,0
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COROLLARY 3.12.1. For any function p € LZ(Qsa) the operator

Pu 5 operating on p' defined as

*
Puse p' = p' RusG Rusﬁ (p-p") & (3.51)

is a projection operator mapping LZ(Q,a) onto the subspace p + N(Ru 6)°

9

PROOF. The operator Pu is an idempotent operator, which can be

, 0
shown as follows

.*.
Pl (Puse ') =P g P TR Ry (o - Pu,e P )

k. % % y
=p' + R g R o (emp")*R g R g Lo=p" =R gR, o lpo=0")]
By Th 3.12 (ii1) we know that (R. . R )%= (R" R )
y Theorem 3. iii) we know that { 1,0 Use) = e Ruel
therefore
* * * o
PyotPuye @) = 0" Ry Ry olomp") + Ry Ry olo=p") = Ry gRylem0")
- 1 * B
=p' 4 Rp,eRu,e(p”p ) .

Further one can show that Pp is Hermitian and the subspace p + N(RHAS)

,0
is equal to {p'IPu g P = 0'}. Using (Theorem 3, p. 44, Halmos 1957,

is a projection operator mapping LZ(Qsa) onto the

Use)a “
This result has important application in developing an algorithm

we know that Puse

subspace p + N(R

for determining a solution to a finite set of projections Ru . 0
VY

R . Po oo R po. The algorithm is due to Kaczmarz (Hamaker and
Hs0s Wy O

Solmon, 1978) and in computed tomography is more commonly calicd ART
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(Gordon, Bender, and Herman, 1970). The concentration functions which
have the same projections as the solution p are those in the subspace

N
M= (p+ igi N(RusGi))° If PUSN is the projection operation given by

==

p =

WN g P

» then for an initial guess p_ the theorem due to
1 ugei 0

Kaczmarz (Durand, 1960) shows that Pi N P converges to the projection

of Py ON M. If o is choosen to be zero, then PK P, converges to the

by A

0 of smallest norm that satjsfies RUsei p = Rusei P

unique function
for i=1,...,N.
In keeping consistent with the results given for the composite
of the projection and adjoint transforms for the attenuated Radon
transform Au given in Theorem 3.3, we give the following result for

the single angle projection operators Au and Ru

.0
:LZ(RZ)

»0°

-+ LZ(

THEOREM 3.13. For the operator Au R) defined by

0
*
Eg. (3.16) and the adjoint operator A;J 5 defined by Fq. (3.45), the
x®
operator Au 0 Au giP B where B is given by Eq. (3.4) with the kernel

K given by

K{x',y' [x.y) = a(x,y,~x'sinb+y'cos0,0) a(x',y',-x'sino+y'cosd,o)

x §(-(x'-x)sino+(y'-y)coss) . (3.52)

%
PROOF. This follows immediately by evaluating AU 0 Au 9 using

Egs. (3.16) and (3.45). |l

THEOREM 3.14.  For the operator R o:L%(0,a) » L83 ) defined

*
by Eq. (3.49) and the adjoint operator RU 5 defined by Eq. (3.50), the
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%*
operator Ru 0 Ru o'f B where B is given by Eq. (3.4) with the kernel

S

K given by

KI5y ' [xsy) = x(x'Ly ') x(x.y) alx,y,=x'sind+y'coso,8)
(3.53)
X S(w(x'mx)sine+(y‘wy)cose)/Qe(mx'sine+y‘cose)a

¥
PROOF. This follows immediately by evaluating Ru 0 RU 0 using

Egs. (3.49) and (3.50). |
3.4.5. The N-fold Projection Operator

The N-fold projection operator, AU N° Mmaps the function p into

the N-tuple made up of the projections at the angles 9?3°°°98N

(i.e. AUSN:p + A (A 0, Angez Dseoas A p)). For A

wN P M504
will consider only situations where A

. e
UseN Usi\l

0N is a bounded linear operator;
9

then the space of invisible functions (i.e. AugN p = 0) commonly
referred to as the null space of the operator, N(AUSN)’ is a closed
subspace. The optimum reconstruction is to seek a function p whose
projections AusN pareclose to the sampled projections in an L2 sense.
Unfortunately this is not a well posed problem in that the space of
invisible functions, N(AUBN)’ is nonempty.

From Theorem 3.7 we see that if [ ]a(xsygmxsinei+ycoseiﬂefﬂz dxdy
maps LZ(RZ) 2(

into L“(R)® ....

N
R) . We define the operator Az N to be the mapping of N-tuples

<« for angles 055 i=1,...,N, then Au

® L4

of real valued functions defined on R denoted as h = (h1’ h s N

pseers Ny)

%*®
into the functions AU " h given by
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%

AUSN ,h__(xs\y) = 'ﬁ

o)

N
h.(=-xsin0.+ycoso. sYe-%5in0 .+ .. 0.
. J( ne +yc 3) a{X,y,=x inej ycose\j 93)

o

i=1

(3.54)

where

sY.=XSin0,+ycos0,,0.) =
alX,y,=x jtycose, 3)

exp u{xsin Bo»ycose,s%nej+§'c036«gaxsine.cssej+ycos 0.+z'sin6.)dg’
050, +ysing.,
Xcos8, ySTﬂ@J

2 N
For the N-tuples g and h the inner product for Ly(R) = @& L%(R) fis
i=1
1
[g.h] =7 = [ 950 ny( . (3.56)
Lg(R) szj R J J

%
Using this inner product it is easy to show that AU N is an adjoint of
2/ m2 2
LR > Ly
The results given in Theorems 3.6, 3.10, 3.11, and 3.12 used the

the operator AU LR (R).

attenuation function a(x,y,-xsin0+ycos6,0) as a weight function in the
spaces L“(sta) and LZ(Qsa)° Since a(x,y,-xsin6+ycos6,8) is a
function of 6, we define a new weight function a(x.y) which is
independent of © in order to generalize the results for a single
projection angle to N projection angles 61,9.9; eN:

a(x,y) = max {a(x,y,-xsino,+ycoso,,0.)} . (3.57)
i=1,N ! v

The function @(x,y) represents the minimum attenuation that photons

emitted at (x,y) will experience for the N projection angles.
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Now we can investigate a generalization of the single angle
projection operator RU 5 given in Eq. (3.49).
DEFINITION. For a set @ C R® with characteristic function y,

*
the operators RU N and Ru are defined as follows

N
(1) R, yio > (R g ps Ry g 0seces Ry g ) (3.58)
1 2 N
2 @ * - * loned
(1) R, yiho= (s hpseens ) > (AL h) O6GY)/30GY) (3.59)

where Ru 0 is given by Eq. (3.49).
*7i

We will use the notation Li(ﬁu) to be the direct sum of the spaces

2 n ~ ,
L (Qeig xugeﬁ)g that is,

2 ~ - 2 ~ ~ . 2 ~ A )
Ly(x) = L (@613 X“s%) ® ... ®L (QeNg % aeN) : (3.60)

2

THEOREM 3.15. For any bounded open set @ € R™ the following are

true

o 2 ~ ° 2 ~
(1) Rn,N maps L°(Q,3) into LN(XU) .

- * 2, . 2 -
(1) RugN maps LN(XU) into L°(Q,3)

PROOF. (1) Using Schwartz's inequality and the definition of

Ap o in Eq. (3.16), we see for 05, 1=1, N that

I(Augei p)(e)]| = | o(z,€) x(z,€) alz,€,6,)dz]

fig 9.

£, 9,
< (Jlote.0)1? a(re0) ([ alze0)d
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<(flo(z01? ale.z.0) @02 13, (012
*

Since a(z;,é;se_i) <3(z,&) where @ is given in Eq. (3.57),

00, 2001 = (flote.0)1? 2000/ 1, (12

This implies that for p € LZ(Q;af)

(A, 4 0|

X0, (848 < (flo(z, 2) 1% 3(z.8)de) 12 <
1

i _ ~ L 2.n ~ .
Therefore Rus@.i p = Ause.i p/xugei €L (Sze_is X sei) for i=1,N and RUSN

maps L2(2,3) into Lﬁ(%p),

*
(11) Using Schwartz's inequality and the definition of RU " in

Eq. (3.59) we have the following sequence of inequalities:

h,(=xsinei+ycoseqi) a(xgysmxsinei+ycoseige_§)

L 172
-xs1n0;+ycos8; ) a(x,y,-xsind+ycose, ,0.)}

N 1/2
X{Z a(xgy,—xsin81.+ycose_ise_i)> §

i=1
* 2. N “
(R, w1 O6x) 73, Z -xs1n,+ycos8,)a(X.y,-xsino, +ycoso, ,0.)
§ % a(xgyrxsmeiwcosei,ei)§
i=1 g(x,y)
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Since a(xgyaaxsinei+ycoseiﬁei) < 3(x,y) we know that the second sum is

less than or equal to N. Therefore

N
* L 2 8
!(Ru N@)(xgy)iza(xsy):g-% z:h%(mxs1nei+ycosei)a(xsysmxs1nei+ycoseiseiy

Integrating over Q and using Fubini's theorem, we have for h € Li(%u)

=

n5(€) alc,£,0,)dde

22|

=] -

%*
Therefore R\ h € L2(2,3). |

2( 2

N
defined by Eg. (3.59), the

THEOREM 3.16. For the operator RU yik 0,a) ~ L (%U) defined by

Eq. (3.58) and the adjoint operator R: \
*
operator Ru N Ru NP -+ B where B is given by Eq. (3.4) with the kernel

K given by

K(x'sy'[x,y) =

Ja( L.yt ,-x"sing.+y'cosh. .0,
Jalxy §#"c0s0,.,0.)

(wx'sinej+y'cosej) alx',y")

' SVo=x'sind.+y'coso. .0
KXy ) x(X,y) a(x,y,-x"sin0 y"cosd;,

X

50
Moy

(3.61)

X 6(m(x’~x)sinej+(y'ay)cosej) .
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PROOF. This follows immediately by evaluating R: N Ru N using

Egs. (3.58) and (3.59). |
* z o ° o
The operator IugN = RugN o RusN 1s the composite of the adjoint

and projection operations such that Iu N h is an N-tuple with

components given by

1
(1, 1)y = 2o h )(E) . (3.62)
oN J N k=1 Usej Ua K k

The next theorem gives the integral expression for the operator Iu N
THEOREM 3.17. The operator I is given as follows

u,N
1 &
(L, y ;) =5 ; Wik M (e (3.63)

The operator [ is defined by the integral equation

Mk
([(h(-xsino,tycose.)a(x.y, &, 6 )12 8(Exsnd,-ycoso. ) dxdy

Qu,ej (sz) a0x.y)

1U9jj
(3.64)
and for j+k

h(g') T, 5 (E[g")d (3.65)

where
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o, (£,8")
1o (Elgh) = Jk
us Jk N (5) |sin(o.-6 )]N(é'cosej-gcosek g’sinejmgsinek>
X sin(e.- 3 . - , . -
ugﬁj ik sm(ej ek) sm(e‘j 0
- -£5in0 .+ ., +257n0.
X exp u( gs1nej zcoseJ E;coseJ §s1n63)dc
| u(wg‘sinek+g'cosek9 €‘cosek+gsinek)dc' (3.66)
CO '
and
L, = & cot(@kwej) - & CSC(ek"Gj) (3.67)
Ty = £ csc(ek=ej) - £ cot(ekuej) (3068)‘
1T if a(g,8,) N z(g'gek) € Q
95 (E:E") = ! (3.69)
0 otherwise
z(gsej) = {(xgy){£+5”inejaycosej = 0} (3.70)
%(g'sek) = {(xsy)}£‘+xsinek=»ycosek = 0} . (3.71)

PROOF. The proof follows similar steps as given in the proof of

Theorem 3.5. ||

Figure 3.5, shows the lines 2(£§6j) and R(S‘QSK) where Sj = 0 and

0, = 8', and the coordinates Ly (Eg. (3.67)) and cé (Eq. (3.68)) which

satisfy Ty = -d and cé = -d', respectively.
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3.5 The Modified Attenuated Radon Transform

The attenuation factor in Eq. (3.17) can be rewritten so that the
argument in the exponential is the sum of two integrals; namely the
integral of the attenuation distribution from ¢ to 0 plus the integral

from 0 to «, If we let Gu(gse) be the latter integral:

ep(g,e) = exp% p(-gsinet+z'coso, Ecoso+r'sing)ds' |,  (3.72)

then we can rewrite Eq. {3.16) as

00

py(gse) = Gu(gse) g p(-Esino+rcose, Ecoso+rsing)a(z,z,0)ds  (3.73)

where

alz,8,0) = exp n(=&sin6+z'coso, gcose+c'sine)dc'§ . (3.74)

The factor Gu(gse) represents the integral of the attenuation distri-
bution between the central axis and the detector. Note that the
variable ¢ in the Timit for the integral may be positive or negative.
Therefore for a positive function u, the integral from 0 to ¢ may be
either positive or negative and the exponential in Eq. (3.74) multiplied
by Gu(gse) s equivalent to the exponential factor given in Eq. (3.17).
Eliminating GU(EBG) from Eq. (3.73), we can define a modified
attenuated Radon transform for a fixed attenuation distribution v,

to be the mapping Au:p + p where
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p(&,0) = f o(-&sind+rcosB, Ecoso+rsing) alz,£,0)dg (3.75)

and a(z,£,0) is given in Eq. (3.74). Thus the modified attenuated
projections (Au 0)(&,0) and the measured attenuated projections

(Au p)(£,0) are related by
(Au p)(£,6) = Gu(iae) A o(E,8) . (3.76)

A transform such as Au isvappeaiing to work with since it is independent
of any sort of detector geometry and gives for a particular © and £
an attenuation factor a which is only dependent on the coordinate ¢
whose absolute value is the distance from the central rotation axis.
One can think of the detector as being placed at the center of rotation
in the coordinate system shown in Fig. 2.6. Photons emitted left of
the detector will be attenuated as usual with a reduction in the
measured number; whereas photons emitted right of the detector will
be increased in number as if they were experiencing a negative
attenuation coefficient.

The following are equivalent definitions for the attenuated Radon

transform A:

) j

where

o(X,y) a{X,y,5,0) S(E+xsin6-ycoso)dxdy (3.75a)

Y X ;
eﬁa u(x,y) 6(£+x'sineay’cose)dx'dy'§
o

a(xsysgsg) = exp (3745)
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r [ XCos8+ysino

a(X,y,£,6) = exp|

u(-&sino+z' coso, acose+;'sin6)dc'§

(.,mb)

o

1]

2. p(£,0) uls,04m/2+cos”™ ' (/) )

u{t,6+m/2 - cos™ ' (g/t)} —Ldt (3.75b)
Vi2-22 |) Vrl. g2
: f
3. p(&,0) o(E0+z87) exp u(ee+z' )dE} dg (3.75¢)

where 6 = (-sine, cose) and Q% = (cos6, sing).

The results which were proven for the attenuated Radon transform
for the single angle projection operator and the N-fold operator also
apply for the modified attenuated Radon transform. A1l one needs to
do is replace the attenuation function a(x,y,£,8) with the attenuation
function a(x,y,£,0). The important case when the modified attenuated
Radon transform has interesting properties is when the attenuation
coefficient distribution is constant. These results will be investi-

gated in Section 3.5.4,
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The following two theorems give the shift properties for the
modified attenuated Radon transform similar to those given for the
attenuated Radon transform in Theorems 3.1 and 3.2.

THEOREM 3.18. The modified attenuated Radon transform of
p(x+a, y+b) with respect to the attenuation coefficient distribution

pl(x+a, y+b) is

Alp(x+a, y+b), u(xt+a, y+b)s £,0} = Alp(x,y), ulx,y)s &',6}
acoso+bsing
X @xp ‘l§~ u(~&'sine+z' coso, £'coso+r'sing)dg’ (3.77)

0

where £' = £ - asind + bcos8.

PROOF. The modified attenuated Radon transform of p(x+a, y+b)

for the attenuation distribution u(x+a, y+b) is

Alp(x+a, y+b, u{x+a, y+b); £,0} = &gﬁ o(-Esino+rcoseta, EcosO+rsing+b)

C
X expglﬁﬂ u(-£sino+z' coso+a, gcose+c'sin6+b)dg{} dg. (3.78)
0

Let &' = £-asind + bcosd, then we can rewrite Eq. (3.78) as
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A{o(x+a, y+b), u(x+a,y+b); &,0} =

%gap{wi'Siﬂ@+(C+acose+bsin6)coses £'coso+(z+acoso+bsing)sing}

g
X Eng;gaLHFE'sin6+(g'+acose+bsine)cosesg'cose+(z'+acose+bsine)sine}dci§dg
0

Making the further change of variables

i

u z + acosd + b sind

it

U ¢' + a cos6 + b sind

gives

<0

A{p(x+a, y+b), u(x+a, y+b); £,0} = dg‘ p(-£'sind+ucosd, &£'cos6+using)

=00

u
X exp E eﬁr u(-&'sin6+u'cos6, £'cosd+u'sing)du’ | du.

acosO+bsing (3.79)

By integrating from 0 to u in the integral of the exponential term, we

can rewrite Eq. (3.79) as

Alp(x+a, y+b), u(x+a, y+b); £,6}

= eﬁ;(=g'sine+ucoses £'cosd+using)
=00 u
X exp Eagg u(-&'sind+u'coso, g‘cose+u's€ne)du'} du
0

acos6+bsing

X exp i - w(=&'sin6+u'coso, g'cose+u'sine)du'§
0 ,

= Alp(x,y), nlx,y)s £',0}

S~

acosotbsing
X exp E - u(-&'sine+u'coso, g'cose+u‘sine)du'E& Il
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THEOREM 3.19. The modified attenuated Radon transform AU of

p(x+a, y+b) is

Ao(xta,y+b), u(x,y)s £,0} = Alp(x,y), u(x-a,y-b); &',6}

acos0+bsing
X exp iﬁf w(=&'sind+r' cosd-a, £'cosb+r'sind-b)de’ (3.80)
0

where £' = £ - asin® + bcoso.

PROOF. This proof follows similar steps as those given for the
proof of Theorem 3.18, except the attenuation distribution u(x+a, y+b)
is replaced with u(x,y). Il

When Theorems 3.18 and 3.19 are compared with the corresponding
theorems for the attenuated Radon transform (Theorems 3.1 and 3.2),
one can see that for the modified attenuated Radon transform there is
an extra exponential factor which must multiply the transform of the

unshifted isotope concentration distribution.

3.5.1 Adjoint and Back-Projection Operators

The adjoint transform for the modified attenuated Radon transform

which maps LZCRZQW) into LZ(ng) is a mapping A::LZ(@,W) -> LZ(RZEW)

given by
(A 0)(x,y) =
U PINKsY) =

2m

] p(-xsin6+ycos6,0)a(x,y,-xsind+ycos0,0)w(-xsind+ycose,0)de

W{x,y
0

(3.81)
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where

a(X,y,-xsin6+ycosd,0) =
[ XCcosO+ysing

p(xsinzeaycosesin6+c’cose,exsin6c056+ycosge+g'sin@)d;é
(3.82)"

The back-projection operator Bp which operates on LZ(@SW) is

defined by

2m .
(BU p) (x,y) :J{ p(=xsinb+ycos0,6)/a(x,y,-xsino+ycoso,o)ds.
0

(3.83)

The adjoint operator and the back-projection operator for the modified
attenuated Radon transform differ from the corresponding operators for
the attenuated Radon transform only in the 1imits of integration for
the integral in the exponential factor in Eq. (3.82). (Compare
Eq. (3.82) and Eq. (3.23)).
3.5.2 The Composite of the Projection and Back-Projection Operators

1

The operator A:Au restricted to the space R(A:)::N(AU) is a

one-to-one and onto mapping of N(AU)L onto itself if the space R(Au)

is closed. For the modified attenuated Radon transform Aug the

*
operator AUAU: p > B is defined by

B(x'sy") :j?fp(xsy) K(x'sy"|x,y)dxdy (3.84)

where the kernel K is g%ven by the following theorem.
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THEOREM 3.20. For the modified attenuated Radon transform
AU:LZ(Rzgw) %=L2(@,w) defined by Eq. (3.75) and the adjoint operator
A: defined by Eq; (3.81) and w(£,0) independent of 6 and satisfying
w(g) = w(-£), the operator Az Au:p + B maps p into B where B is given

by Eq. (3.84) with the kernel K given by

. KXy [x,y) Xy ' =yx'
K{x'sy' [xsy) = Jmer 35 W Sssgh (3.85)

where
d d'
Kix'y'xy) = - % coshésgq u(b+z'e,ctg' f)dg' + }f u(btg'e,ctg' f)dg's,
x=%"1 0 0

(3.86)
and d, d', b, c, e, f are given by Egs. (3.28) - (3.33).

PROOF. The proof involves doing similar calculations to that
given for the attenuated Radon transform in Theorem 3.3. |l

The kernel function for the modified attenuated Radon transform
has a simpler expression than does the attenuated Radon transform given
in Eq. (3.27). This is due to the parity relationship in the argument
of the exponential function for the attenuation function a (i.e.,

z z
exp{ [ u(c',&,8)dg'} = exp{- [ u(zg',&,0+n)dz'}).
0] [¢]

The integrals in the argument of the hyperbolic cosine function
in Eq. (3.86) are line integrals from the point (b,c) to X and X',
respectively,in the direction of the unit vector (e,f). These points

and vectors are illustrated in Fig. 3.6.
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LDomain of p

Figure 3.6.

XBL791=3072

The integrals in the argument of the hyperbolic cosine
of Eq. (3.86) are line integrals from the point (b,c)
to the points X and X'. The distances in the direction
of the unit vector (e,f) from the point (bsc) to the
points X and X' are equal to d and d', respectively.
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THEOREM 3.21. For the back-projection operator Bu defined by
Eq. (3.83), the operator BUAU:Q + B maps p into B where 8 is given by

Eq. (3.84) with the kernel given by

d
K(x',y' | x.y) = cosh § ulb+z'e, ct+g'f) dg'é (3.87)
d

I %-%"1l
and d, d', b, ¢, e, f are given by Egqs. (3.28) - (3.33).

PROOF. The proof involves doing similar calculations as those
given for the attenuated Radon transform in Theorem 3.4. |

The kernel function for the attenuated Radon transform given in
Theorem 3.4 is precisely the same as that given above for the modi fied

attenuated Radon transform.

3.5.3 The Composite of the Back-Projection and Projection Operators

* *
The operator AuAu is a one-to-one and onto mapping of }\!(AU)‘L onto
itself if R(AU) is closed. For the modified attenuated Radon transform

AUS the operator AuAu: p + g is given by
g(€,0) = [[ p(g',0") 1(&,0]E',0")dg"do! (3.88)

where the kernel I is given by the following theorem.

THEOREM 3.22. For the modified attenuated Radon transform

Z(IRZ,W) "=>L2

AQ:L (C,w) defined by Eq. (3.75) and the adjoint operator

*
A: defined by Eq. (3.81), the operator AUAu :p > g maps p into g
where g is given by Eq. (3.88) with the kernel I given by
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Dy o T(g,00g',0") w(e',0')
1(g,0[e",0') = W (E'cosemgcose' g'sin6~£sine'>

sin(6-6") *  sin{6-8")

where
o
I(g,6]g',0") = m exp@jﬂu(»isin%ccosesEcose+csin6)dc
0
o
+ Bﬁm u(-g'sing'+z'coso’, g‘cose'+c‘sine’)ng§ (3.89)
O .
and
g, = £ cot(6'-0) - &' csc(0'-0) (3.90)
0
cé £ csc(6'-0) - &' cot(e'-0) (3.91)

PROOF. The proof involves doing similar calculations as those
given for the attenuated Radon transform in Theorem 3.5. ||

The points Zo and ¢, one illustrated in Fig. 3.5.

3.5.4 Constant Attenuation Coefficient

For constant attenuation coefficient, the attenuation function a

in Eq. (3.74b) reduces to

a(x,y58,0) = explu(x cos 8 + y sin 6)] . (3.92)

and the mapping Au:p -+ p given by Eq. (3.75a) reduces to

p(E,8) = &ggfp(xsy) explu(xcoso+ysing)] &(&+xsino-ycosd)dxdy (3.93)
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where p is the constant attenuation coefficient.

The following are equivalent definitions for the constant

attenuated Radon transform:

1. p(g,0) = }{ o(-Esin6+zcoso, Ecos@+csin6)e”§ dg
- /vl E2
2. p(g,0) = }f Ep{rse+ﬂ/2+cos Yg/r)pe it
r=|g|
- wrl-g2 rdr
+ ofr,8+n/2-cos (&/r)} e e
' f2 2
ro-g
<el X ~
3. p(g,0) = jp(ii) e X sE - (0,%0) dR
where

it

(-sind, coso)

(cos®, sind)

5> @c;)&__ i@
i

= (X,Y)

and (6,%X ) denotes the inner product.

4. p(g,0) = fo(zg%gi)em dg

3.5.4.1 Examples

Example 1. If we expanded p(x,y) in a Fourier series

oxy) = 25 p,(r) L
H]

(3.93a)

(3.93b)

(3.93c)

(3.93d)

(3.94)

then the projection function for the constant attenuated Radon trans-

form has the equation
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where Gn(a) has the following equivalent expressions:

o0

D) o) =2 [ o0 {1 () cosnuA?E )

r=|¢|

i Vi - TE(S/P) S?ﬂh(u%PZugi )} _rdr (3.96)
. szgz

1

[eo]

D) op@ =2 [ o () T () cosh(uiZed) Ll
n r:igl n n ;’m—zagz

- 2i f 00 (r) U,y (&/r) sinh(uwhl-g?) —Ldr (3.97)
el : f2-¢2

c) Gn(g) = 2 &gﬁ pn(r) coshiju rzmgz - in cos“?(g/r)] _rde (3.98)
r=]g| ey

where Tn(x) and Un(x) are the Tchebycheff polynomials of the first and
second kind, respectively. For variable attenuation distributions
Ansari and Wee (1977) have shown that 0, can be represented as a Voltera
integral equation of the first kind with a singular kernel.

We will use the expression given in Eq. (3.93b) for the constant
attenuated Radon transform to show these results. Substituting

Eg. (3.94) into Eq. (3.93b) gives the following expressions:
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[eed

p(E,0) = j 32 o (1) ein[6+w/2+cos”1(g/r)] e«p/rz.sgz
n
p=|g] ' "

+ 5 pn(r) eiﬂzeﬁr/chosw‘I(E/Y‘)] eux/r‘z—gzé r dr
n

(2.2

o0

" 2.2
= inn(r)ean/Z {cos{nemcos“.] (E/P)}+’isin{n6+ncos=7 (£/r) }}e‘“ﬁ
r=lgl 1"

i 2_.2
t320,(r) emﬁ/z[cos{ne—ncos"-i(g/r)}ﬁsin{ne«ﬂcos"?(g/r)}]eli/;:;_}:__Qr_
" J2 2

= j an(r) eim/z !:COS noe cos{ncosq(i/r)} sin nd sin{n cosmi(g/r)}
n

r=|g]

+ isin ne cos{ﬂcosq(g/r)}ﬁsin{cosq(g/r)}cos n@]e”“ r-g

+2 eplr) e!"/? [COS no cos{ncos™ (£/r) }+sin ne sinfncos™ (&/r)}
n

2 .2
+ isin no COS{”COSQ‘[(‘Z/Y‘)}“iSin{ﬂCOSET(g/y‘)}cos n@]e” ro-g f r dr

(2.2
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= &5“ §§:pn(r)einﬂ/2 {Zcos ne Tn(E/r) cosh(uwrzagz )
r=lg]t "

+ 21 sin no Tn(g/r) cosh(uVrzngz) + 2 sin no sin{ncossj(g/r)}sinh(u rzmgz)

r dr

2.2

§

21 cos no sin{n cos“1(g/r)}sinh(u ro-€ )]g

Therefore

8

p(c,6) =3 2en(0+1/2)
n

p (r)ng(E/r) cosh(w/?-£%)

n

r=|g]

- Vi g/r s1nh(¢r2 52 z

rzggz

The expression in Eq. (3.97) follows immediately from the relation

Eq. (3.98) follows immediately from the relations cosh(x+y) =

m1(x) = sin{n cos » 0 < x <1, The expression in

coshx coshy+sinhx sinhy and coshix = cosx.

If we add projections 180° apart, we get p(£,0) + p(-£,0+n) =

o in(e+m/2)
E g (&) e
where
&Ea (&/¥) cosh(y 22y rdr

r=|g] W22
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Example 2. For the Hermite polynomials Hm(x) and Hﬂ(y)s the

constant attenuated Radon transform of the function

2 2
o(xy) = H (x) H (y) e ™ (3.99)
is
p(g,0) =
172 -£2 1274 U -9 /MM | k+2 k+2 2+k
n'lce”% ¥ :i; ji: (-1 < ><£> Hn+msk»2(g)1l (cos0) " (sing)MTE,
k=0 2=0 ' k
(3.100)
For 6=0
2

2
p(g,0) = (-1)" 72 78 eH /ATy (e)

This is shown by substituting Eg. (3.99) into Eq. (3.93a) giving
¢ 2.2
p(g,0) = ajr Hm(sgsine+gcoss) Hn(gcose+csine)e P dc.

Using the generating functions for the Hermite polynomials Hm(x) and

H (v)s

we obtain the expression
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— . Sn e Bgzg )
mi nl JgaHm(‘ESi“9+CCOS@) H, (Ecosetzsing)e™ ~5 eMe dr

2 . 2 . 2 2
-t +2t(-EsinB+zCcos6) -5 t2s(Ecosetzsing) o€ "t e dc .

Collecting terms involving ¢ and completing the square, we can rewrite
the second integral so that

n
3

ml i }O(E,G):

2
-8 exp[st2a32=2tgsine+ngcose+(tcose+ssine +u/2)2]

e

[oed

X &gsexp[~;2+2c(tcose+ssin@*muz) - (tcose+ssin6+m/2)2]dc

=00

2
= W1/Ze=£ exp[atZwSZEZtgsine+23gcose+(tcose+S siﬂ9+u/2)21

2 7
= 'n'l/ze“‘Z s /4 exp[m(stsin6+scose)2~%Zg(atsine+scose)]exp[u(tcose+ssine)]

m  (tcoso+s sing)"
m!

(-tsin6+scoso)"
ni

- V2 E /A

j(“ﬂl)k (Z> sﬂak(case)nmk tk(sinﬁ)k
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If we Tet n-k = v, k =w, m-2 = 3 and £ = b we can rewrite

Ho (&) a+b
+ +a, Wb
DY e arpr s (coss

)v+b( )w+aw

sinod

Next make a change of variables v+a = p, wtb = q, a = ¢, b = d, then

m=0 n=0

o}

2 2 o
SN A %gjéjqﬁ -
p:Q q:O c=0 d=0

o rqecd ()
(p-c)1(g-d) Tctd!

(-1)9°d

- =q+
UC’%‘dSth( )p C'*“d( )q d+c .

coso sind

Equating the coefficients of t" s" gives

p(€,6)

-2 Mnamek-g (£) <

2 2
- 128 /A
=71 '"e e (n=-K)T(m-2)Tk1g?!

nlm!

)n=k+2,( )m“52,+¥(

sind

_ n /m k44,
" <k><z> st (€)1

m=-2+k

x {cose

[H]

2 2, &
iV 2amE W /A >

(3.100)

)nekaﬁ(s

x (cos® ino)
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For © = 0 Eq. (3.100) reduces to

p(£,0) = (-1)" /% 78

The sum of projections 180° apart gives

2 2
p(E,6) + p(-£,04m) = 2 /2 o"& W /4 (LM

H k+& (cose)nsk+2 (

k-2 (B

3.5.4.2 Properties

Theorems 3.23 - 3.25 will prove some properties for the modified
attenuated Radon transform with constant attenuation which are similar
to those proven by I. M. Gel'fand and co-workers (1966) for the Radon
transform. These properties will be proven using the definition given
in Eqg (3.93c).

THEOREM 3.23. Let U be an orthogonal transformation. For
constant attenuation the modified attenuated Radon transform of

oy(X) = o(UT %) satisfies

A{pu(s\()s 2 gsg} = A{Q(§)9 Us Es UT ,@,,}°

PROOF. For constant attenuation the modified attenuated Radon
transform operating on pU(Q) gives

o T'\ <69L Q) A ~
Aloy(X)s ws8,01 = [ p(U'R) e¥' = 2% 8{g - <g,%0) d% .
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T

Let X = UX', then X' = U'X and

s A @ L URH A N
Aoy (%) 13,0} =fp(x')e“ 8HUKY s te-co,Ux 3] det UJdR"

Since (%, UX'> = <U'%, X') and for orthogonal matrices |det U] = 1,
we have

| TL &, o
Aloy(%) sus€,0) = jp(x‘) MU LX) sre - cufe, k0 1ax' .

~

Tsi

~

(uTe)t

Since U is an orthogonal transformation, we know that U

Therefore,
Aloy (%) 138,03 = Alp(X) 138, UTQ}S I
THEOREM 3.24. For constant attenuation the modified attenuated
Radon transform of o(x+3) is

1l A
Mo(3#a) 36,81 = Alp(R) s £+(0,8), gy ¢ H(€o)

PROOF. For constant attenuation the modified attenuated Radon

transform of p(X+3) is

I~ | |
Alp(3+3) usE,0) = jp(%g) X sir (0,507 dR.

The change of variables X = X' - & gives
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..L /\' N
Alp(X+3) 15 €,0) = jp(X')e“@v XD SrEg,%'-8)) dR

L, IR
s jp(ﬁ‘)e“@« X 0,8y - 00,800 ) dR!

~u{0,a)> i

i
p=
Lasan?

o
——
>

)31«1;‘5"}'(,@92)9 ,@} e

THEOREM 3.25. For constant attenuation the modified attenuated

Radon transform of the convolution

o(%) = jwm 8(3%-9) df
is

AMp(R), w5 £.0) = jra(ge) 9(5-2,0) de

where p and g are the modified attenuated Radon transform for constant
attenuation of w and B, respectively.
PROOF. For constant attenuation the modified attenuated Radon

transform of p(X) is
A @0 - NN
Alp(X) 138,60} =jjw(§) B(R-§) ™% » % §{E - (X,00} dY dX .

Let £ = X-§ and substituting for x, we have

1 A A
ALo(R) 13,0} =ﬁm<§/> 8(2) M€ sie (545,001 df 02 .

Ay e, E) (@59 o
jw(j‘/) fﬁ(z) e T (e~ (9,0 -¢2,00) d2 MRV g)
[ ) e“@isy)dy,

w(y) g(g-¢¥,0),6)
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Using the delta function, this can be rewritten so that
. | o @5 A
Ap(R)15€,8) :jﬁ(y) 9(e2,00e" 2 Y 5o 5,001 df dz

=jp(cae) g(&-z,0) dz. |

The differentiability property which holds for the Radon
transform (Gel'fand et. al., 1966) does not hold for the modified
Radon transform for constant attenuation. Also the result given in
Theorem 3.23 1is weaker than for the Radon transform which only
requires that U be non-singular.
2( 2(Rz,w) for constant

*
The adjoint transform Au: LY(C,w) »~ L

attenuation u is defined by

i

2
(A:g)(xﬁy) = Wri%yyhjag(sxsinefycose,e)
0

euXCOSG+UyS1neW(nX5inefycosese)de»

(3.101)

This follqws immediately from Eq. (3.81) for the modified attenuated
Radon transform. For constant attenuation the back-projection operator

Bu which operates on LZ(@SW) is given by

2T ,
(BU p) (X,¥) =§§e Kﬂaxsin6+ycosese)e““xcose““ysjne de . (3.102)
0



-126-

THEOREM 3.26. For constant attenuation coefficient and w(E,0)
independent of 0 and satisfying w(g) = w(-£), the operator
A: Au: p > B maps p into B where B is given by Eq. (3.84) with the

kernel K given by

K(X'5y| le)’) = K w(syl ;X?)/ w<x>t'_,xx:>

where

212 2 .2
S o _ 2 uL(x-x"") + (y*-y' )]
K(x',y' [%,y) T cosh § t!A S é . (3.103)

PROOF. This follows immediately from Theorem 3.20 when we set

u(b+z'e, c+z'f) to a constant u. |

Note that for both the variable and constant attenuation, the
operator A:Au cannot be represented as a convolution unless u=20
everywhere.

THEOREM 3.27. For constant attenuation coefficient, the operator

BUAU:D ~ B maps p into B where B is given by Eq. (3.84) with the

kernel K{x',y'|x,y) given by

K(x',y' [x,y) = E§§§Tﬁ' cosh(ull %-%'1) , (3.104)

PROOF. This follows immediately from Theorem 3.21 when we set

u(b+z'e, c+z'f) to a constant u. |
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The result in Theorem 3.27 implies that the linear operation of the
composition of projecting and back-projecting for constant attenuation
is shift invariant; thus the operation can be characterized by the

convolution equation

B(x',y') = eﬁr ng p(x,y) K(x'-x, y'-y)dxdy

K(x,y) = ﬁf—ﬂ- cosh(ullX1l).

where

For p=0, the image p(x,y) can be reconstructed from the back-projection

image B(x,y) using the expression

p(x:y) = T T, [806Y) 1T, [K(xy) T

This is the filter of the back-projection algorithm described in
Section 2.2.6. However, for attenuation coefficients u > 0 the Fourier
transform of K(x,y) does not exist. Therefore this algorithm is not

appropriate for the back-projection operator Bu given by Egq. (3.102).

THEOREM 3.28. For constant attenuation coefficient, the operator
*
AuAu:p + g maps p into g where g is given by Eq. (3.88) with the kernel
I(g,0]¢',0") given by

ey - 1(£,0[5',0') w(E',0")
1(€.0]e",0") w{E;‘coseugcos@' g'51ne»£sineT§

sin(6-0") ° sin(6-6")

where

T(£.0]8',6') = T;;;zé:gT;T» exp [u(g-g') (§$;§g::2§+1)] . (3.105)
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PROOF. This follows immediately from Theorem 3.22 when we set

the distribution of attenuation coefficients to a constant u. ||

3.5.4.3 Convolution Result for Constant Attenuation

The convolution result due to Tretiak and Delaney (1978) gives

an inverse relationship for the constant attenuated Radon transform:

2m

Blx,y) = Jgewgg cp(~xsin6+yc036mt) p(t,0)dt exp[-uxcoso-pysine]do
0 e .

(3.106)
where cu(t) is a function whi?h is convolved with the data before
back-projecting and p(t,0) are projection data given by Eq. (3.93).

The subscript u is used to indicate that the convolution function is
a function of the attenuation coefficient. Chapter 5 investigates
some methods for evaluating the convolution function Cu(t)°

The following theorem states that the reconstructed image o(x,y)
given in Eq. (3.106) is equal to the convolution of the original image

with the attenuated back-projection of the convolution function cUw

THEOREM 3.29. For constant attenuation coefficient u the
reconstructed image p given by Eq. (3.106) can be represented by the

expression

p(x,y) = Bu{cu} ** o(X,y) (3.107)

where ** denotes the two-dimensional convolution of the true distri-

bution p with the back-projection operator given by Eq. (3.102) acting
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on the convolution function Cu'
PROOF. Substituting Eq. (3.93) into Eq. (3.106) gives the

expression for the estimated reconstruction

21

st - [
0

xS (t+x'sin6-y'cose) dx'dy'dt expl[-uxcoso-pysino] de .

c, /cosemxsinewt)kglgp(x'sy') explu(x'cose+y'sing)]

%Qm““ms

Integrating first with respect to t, we have

X5Y) jfj "Ysin6+(y-y')coso)

x expl-p(x-x")coso-u(y-y')sinelde p(x',y')dx'dy’

Let
i

2
Bu{cu} = jf cu(=xsin6+ycose) expl-uxcosd-pysinelde,
0

then

Bx,y) = BU{CU} ** o(x,y) . |l

3.5.4.4 Fourier Space Result for Constant Attenuation

An inversion relationship due to Bellini and co-workers (1979)
involves first taking the Fourier transform of the projection data and
then interpolating in Fourier space:

oI

Renlian? | exi sinn”™! (w2nR))e 2RO ST(0-0) o1 4 4

%kmmws

(3.108)
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where p(R,0) :§§}{p(a,e)} are the one-dimensional Fourier transforms
of the modified attenuated projection data p for constant attenuation
coefficient (Eq. 3.93). This result is proven in the following theorem.
THEOREM 3.30. For constant attenuation, the projection p(&,8) =
(Aup)(gga) given by Eq. (3.93) satisfies Eq. (3.108).
PROOF. First Fourier transforming the projections [Eq. (3.93)]

and changing to polar coordinates gives

B(R',6) ;ﬁjpwm’)exp[w*cos(eu@')Ja<a+r'sin<e*~¢'>>

« ridridyle IR 6

Interchanging the order of integration and integrating over the

variable & gives
p(R",8") :&j:gb(r',¢‘) explur'cos(8'-¢')] exp[2miR'r'sin(0'~¢') Jr'dr'ds’ .

Substituting the expressions R' = V§Z+u2/4ﬁ2 and 8' = o+i sinhwx(u/ZWR)

gives
~ 2 2 2 . N ‘“1 - ] y 1 1 1 ]
p(/@ +u”/4n" 5, 0+ 1 sinh ' (p/2mR)) = o{r',0")exp(r'z)r'dr'de
(3.109)
where

z = ycos(0+i sinh™' (u/21R)=¢") + 2mi REH2/4ne sin(o+isinh™ | (1/2mR)=0").
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Using the identities for the sum of angles gives

ucos{(0-¢') COS(iSinhET(U/ZWR)) - usin(isinh”1(u(2wR)) sin(6-¢"')

™
it

7 L)

2wi¢?2+ué/4ﬂ2 sin(e-¢')cos(i Siﬂhgl(u/ZﬂR))

+

2

2ﬂ1¢@2+u2/4ﬁ

o

cos(0-¢")sin(i sinh™ (u/2mR)). (3.110)

Substituting the relationships:

: 2
cos(i Siﬂh?T(U/ZNR)) Z%E§%§413-
sin(i sinh™!(u/2mR)) = o
into Eq. (3.110) gives
B/ o ST
z = u cos(06-¢') R a sin(6-¢") TR
VRN, PR + /°
+ 2mivR™ +u"/41° sin(6-9') TTTOART
+ 2miRE 415407 cos(e-9') ok
= 2mi R sin(6=¢').
Therefore Eq. (3.109) can be written as
~ %/2 2., 2 .
p(/R™+u"/4n", o+1 sinh”! (u/2mR)) “exp[i2mr'R sin(6-¢')]

X rtdr'de’.
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Integrating j over R and © as shown in Eq. (3.108) gives

[

rmm

+u /Qﬂ , O+1i sinh” (U/ZWR)) exp[2miRr sin(¢-0)]|R|dR do

8%’"‘”‘%8

I [e.0]
:QﬁﬁJga o(r',¢') exp[i2mr'R sin(6-¢")]r'dr'de" exp[2miRr sin(¢-0)]
0 -«

R2
X |R|dR do . (3.111)

Interchanging the order of integration gives just the inverse two-

£
dimensional Fourier transform of exp[i2mr'R sin(6-¢')] which is just
the two-dimensional delta function §(x-x')8(y-y'). Thus Eq. (3.111)

reduces to the convolution of p(x,y) with 8{x-x")8(y-y'):

o]

T
Jg j R +U /47r , 6+1 sinh” (u/Z’n‘R)) exp[2miRr sin(¢-6)1|R|dR de
0 -

ﬁfj p(x"sy') 8(x=-x") &(y-y') dx' dy' = p(x,y). |
R2

An algorithm for implementing Eg. (3.108) is described in
[Bellini et al., 1979 a,b]. If the projection data are rotationally
invariant then we get a much simpler result.

COROLLARY 3.30.1. If p(&,0) = p(&) for all © the concentration

distribution p(r,¢) is given by

m
):fj R+u /41°, @) iR}dee,‘ (3.112)
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PROOF. For rotationally invariant projection data

B(R,0) = P(R,6+iw) for all w. |
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4. ITERATIVE METHODS FOR VARIABLE ATTENUATION COEFFICIENTS

4.1 Introduction

The practical implementation of inverting the attenuated Radon
transform given in Eq. (1.7) requires that the relationship between
the unknowns representing the distribution of the concentration of radio-
nuclide and the observed projection values be put into a form which
is tractable for digital computer processing. Therefore, the con-
tinuous transforms discussed in Chapter.3 are reduced to discrete
Tinear transforms which are used in a matrix equation to represent
data measured at discrete angular and Tateral sampling. The solution
to this matrix equation is determined by jterative methods.

A complete description of the discrete attenuated Radon transform
involves obtaining projection data from a transmission experiment. The
reconstruction of the transmission data is used as a priori information
for the attenuation factors in the equations used to model the emission
projection data. A major concern in our study of the discrete
attenuated Radon transform is how the magnitudes of the attenuation
coefficients affect the rate of convergence for the iterative methods
and how they amplify the statistical fluctuacions of the measured data
in the reconstructed image.

For a study of a particular organ such as the heart, the physician
has at his disposal various radiopharmaceuticals and various radio-

99%m 99m

nuclides: Tc - stannous pyrophosphate, Tc - tetracycline,
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99mTc - glucoheptonate (140 keV) which have an increased uptake in

myocardial infarcts; and rubidium - 81 (446 keV), potassium - 43

(373 keV), cessium - 129 (372 keV), thallium - 201 (80 keV) which have
a decreased uptake in myocardial infarcts.  These tracers are usually
evaluated based on the specificity of the tracer to the myocardium

for the desired pathological study so that there is sufficient contrast
between the myocardium and surrounding tissue such as the liver. They
are also evaluated based on the camera system's ability to sufficiently
collimate high energy phoions for isotopes such as Cs-129 or eliminate
the Compton scattered photons by energy selection for low energy radio-

nuclide such as 99m

Tc. Our analysis shows that these tracers must also
be evaluated based on the iterative algorithms' ability to accurately
reconstruct the true concentration disiribution in light of the in-
creased statistical uncertainty for large attenuation experienced by
low energy radionuclides such as T1-201.

In the sections which follow we discuss in detail the development
of the linear equations for the least-squares problem using the theorems
in Chapter 3, the iterative algorithms for reconstructing large systems
of Tinear equations, and the statistical aspects of reconstructing

noisy transmission and emission data.

4.2 Basis Functions

The concentration function p and the attenuation function u are
real valued functions of position. In order to represent these
functions by a digital computer, one must sample the continuous

distribution by a finite array of numbers, called samples. These
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samples should be chosen so that the distribution can be reconstructed

with small errors.

We consider the samples as coefficients of an expansion of basis
functions for the continuous distribution. There are many collections
of basis functions which can be used; however, the choice depends on the
errors incurred not only by the numerical approximation of taking only
a finite number of terms in the series expansion, but also the amplifi-
cation of statistical noise and the efficiency of calculating the
continuous distribution.

In this chapter we will consider an orthonormal basis which is a
set of characteristic functions defined over rectangular pixels. Sup-
pose that the region D as shown in Fig. 4.1 is divided into disjoint

rectangular regions called pixels for i=1,..., M and j=1,..., N:

D;5 = {0x.y)]a(2i-M-2)/2 < x <a(2i-M)/2, b(2] - N-2)/2 <y <b(2j-N)/2}

where a is the width and b is the height of the rectangular pixel Dija
Later we will show reconstruction results for square pixels (a=b) but for
the present we will keep the discussion more general. Over these

rectangular regions we define the orthonormal basis as

((1\/% . .
(gﬁ) if (Xsy)EDij

Xij(xy) = | .,
{ 0 otherwise

Using these basis functions, we can expand the function p as
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Din Dmn
Du
D3
. Di2 |D2o
B |Pu_|Da|Ds Dwi
-a~|

XBL793=3298

Figure 4.1. The rectangular region ID is divided up into disjoint
rectangular pixels Dij with width a and height b.
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7:_1 3:1 -!J XTJ(xsy) H (4°2)
where
a(2i-M) b(2j-N)
: 172 2 2
oy = <55~§ f f o(x,yldxdy . (4.3)
a(2i-M-2) b(2j-N-2)
Z 2

The coefficients Pi ; are the average value of the concentration over
the rectangular region Dﬁjs ‘

The basis {Xij} given by Eq. (4.1) is referred to by Rosenfeld and
Kak (1976) as standard sampling and is chosen primarily due to its
computational efficiency. The disadvantage of choosing these basis
functions is that the approximate function p can have sharp boundaries
(see Gordon and Herman, 1974; and Herman, Lent, and Rowland, 1973).
Thus the number of pixels must be chosen large enough so that it is
a good approximation even for a smoothly varying function. A generaliza-
tion of standard sampling is the finite element approach (Strang and
Fix, 1973) which uses basis functions that are piece-wise linear
polynomials in two variables whose supports are polygons which possibly
overiap. Other possible basis functions include Fourier and Bessel
functions.

4.3 Projection of the Basis Functions

The evaluation of the attenuated Radon transform of the basis
functions Xi3 is simplified iT we consider the attenuated Radon trans-
form of Xp which is the characteristic function of a rectangle D with

sides a and b positioned at the center of rotation as shown in Fig. 4.2.
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XBL789=3564

Figure 4.2. The rectangular region D with sides a and b is positioned
at the center of rotation and rotates with the
xy-coordinate system.
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Then one can obtain the corresponding transforms of X using the

J
shift properties given in Theorems 3.1 and 3.18 for the attenuated
and modified attenuated Padon transforms, respectively.

4.3.1 The Attenuated Radon Transform

The attenuated Radon transform Au of the characteristic function
Xp with u{x,y) equal to a constant p for all (x,y) € D and zero other-

wise is given by Ap:XD > A{XD(xey)g UXD(XsY)é £,0} where

Alxp(6y) s uxg(xay)s €,6) =

0 if %|sine|+%|cose|<g

%lsin 6] =%}cos 8l <& <%|sin 8| +g—}cos 8l

%{] - exp[-ﬂl(a/z lsj?cgl g|bf§i!!lcg? ol E}H i

1 a - b | 8 s b
Ellcexp[-u Y H if & |sin e - % |cos 8l <€ <-3 [sin o] 5 |eos o]
1 b T b 3 |ox b
E{l—exp[w Ss H if -5 |sin e + 5 |cos 8] < g < 5 [sin o] -5 |cos o]

H] } exp[w{ a/2 Is;n 8]+ b/2 Jcos of + gm Hu% [sin o] - _121 lcos 8] < g <

2 s b .
cos 8] |sin 8] 7 Isin o] - 7 |cos o]

0 if 5<~%Isinei~%icose[

(4.4)

Figure 4.3 gives a plot of Eq. (4.4) for attenuation coefficients

Vgt 0= 300 witha=0b=1.

u =20, .15, and 2 pixel”
If we Tet u go to zero in Eq. (4.4) we get the expression for the
Radon transform of the characteristic function XD(x,y) (See Eggermont,

1975):
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Alxp(xsy)s mg(xsy)s €,6=307)

pn=2.0

Figure 4.3.

XBL793-3299

Plot of the attenuated Radon transform at 6=30° of the
characteristic function x, with a=b=1. The general
expression for the transfgrm is given in Eq. (4.4).
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®ixp(xsy)s €,0) =

0 if g—{sin 8| +w2b—{cos 8l <t
a/2 jsin 6| + b/2 |cos 8] = : a .. b .
| |co|se| ]siria g - if 15 lsin e - 5 lcos o] ;5<%]S1n 8] +%|cos 8|
a . 8 (. b -3 .
Teos 8T if 5 [sin e - 5 |cos 8] i£<?a¥iswn 9| +%]cos 8]
b if ii : + 0 8 y.s b
TsmeT > |sin of 75 |cos 8| <& <5 |sin el - 5 [cos o]
a/2 |sin 8| *+ b/2 fcos 8] + & L. -a .. b a .. b
[cos o] o7 6] if ~2f|s*m 8| -5 |cos 8] < < 5 |sin o = 7 |cos o]
. a g b
0 if g < -5 |sin e - % |cos o]

(4.5)

Equation (4.5) is plotted in Fig. 4.4.
Using the shift property given by Theorem 3.1, the attenuated
Radon transform, A{Xij(X9y)9 uijxij(xgy); £,6},0f the basis functions

xij(xsy) = XD(x - a(2i-M-1)/2, y - b(2j=N=1)/2 1is given by

Al 306y )s 1y x5 06Y)5 8,08 = Al 06y ) s wy pxqpxy)s €1,61
where &' = g + [a(2i-M-1)/2] sine - [b(2j-N-1)/2] cosé. This gives

A{Xij(xsy)s UTJ Xij(xsy)g Ese} =

P

0 it $isin ol + Blcos o] < ¢ + [a(2i-0-1)/250n 0 = [b{23h-1)/2)cos s

b - el far2 lsin el + br2 lcos of - 2\}]
Wi [‘ e"p[ ”ij( [cos 8] [sin &) if

%isin al - g—lcos Bl'i £+ [a(2i-M-13/2]sin 8 = {b{25-N-1)72]cos 8 < - %[sin ol + ?b-}c\os 8]

1 N N ie Blas b : : :
,,1.3.1‘ e“’l‘r‘ﬁj Tc?s‘er” it 3lsin o - glcos 8] < ¢ + [a(2i-M-1)/2]sin o = [b(25-N-1)/2]cos 6 < - %Isin 8] + %jcos 0]
4
1 ~ . b sp Byos b : . .
W *] e""[ Hij sin‘“‘gTH A slsin o] + Ffcos of < £+ [a(24-M-1)/2]sin & = [b(25-N-1}/2]cos o < Sisin gf - glcos 5}
. /6/2 Isin o] + b/2 fcos 6] + ¢ . . b .
o [) - e"p["’ij\ Teos 6] §S§,11 5] l if §{sin 6| - Jfcos o] < & + [a(2i-H-1)/2]sin 6 ~ [b{2§-8-1}/2]cos & < Hsin o] - %|cos e}’

0 if £+ [a{2i-M-1)/2]sin 8 = [b{2j-N-1)/2]cos 8 < - %jsin g].~ i2>.|cgs ol (4 6)
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é ?(g;@)
_b_
sing)
. X 5 |sin@] % lcos| - ¢
= |sing|+ gl+e b
2'5! | éﬂcos ‘ éff E 4 lcosB| |sing|
[cosd] |sing] S E
G 5
u 3
] ]
4 +
i - % !siﬂé]#%lcgs% 0 %|§iﬁ§l 1,{% lcos 6 ? ¢
- % |sing| m.%.lggggl | %}giﬁéf%%lcoséi
T < I
g %=z
j PL&6)
feosd]
|cosé
. P : %lginéﬁ{%iwg@l”é
a1.. 2 ! '
5 |sing|+ 3 |cos6l +¢ | | [cos8||sing]
Jcosd] |sing] § B
a 3
} f
z g
. %]smglaglcos@{ 0 =%ﬂ§m8|%%lcogél ¢
»%ﬂsin@hzﬂce%@! %lsm@l%s%icgsel
0<o9 g{g

XBL789-3567

Figure 4.4. Plot of the Radon transform of the characteristic
function xp. The top figure is a plot of Eq. (4.5)
for angles w/4 <6 < 7/2 and the bottom figure is for
angles 0 <6 < 1/4,
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4,3,2 The Modified Attenuated Radon Transform

The modified attenuated Radon transform AU of the characteristic
function Xp with u(x,y) equal to a constant u for all (x,y) € D and

zero otherwise is given by Au:XD +‘A{XD(x9y), UXD(xgy); £,0} where

A{XD(Xsy)a UXD(Xs.y)§ £,0}) =

0 ‘ if a|s1n6!+—[cosei<5
exp[—u<€ COSSiGn = b/Z)} »explw(il%?Tse—eLF«a/-z)} if ‘% [sin o] - % |cos e|i <& <§|sin §| +‘£2)~ lcos e}
exp{w(i—l%e—sl—g}ﬂ)] -exp{w(ﬂ%ﬂgﬂ if -g— |sin 8| = -g— Jcos 8] <& < - —S- Jsin 8] +%— |cos o
exp{mu(‘Z cosSian' - b/2)] - exp’-p(g—]f%ﬁ’—%juﬂ)] i - 5 [sin o] «u% fcos 8} <t <F [sinef - g— |cos 8|
ex;o[nu(E sincoes e"‘ & 2)] - exp[ (Lbﬁ’s%.n‘ﬁe_{i_fll?.)] if - % |sin 8] - 75— |cos 8| < & < % |sin o] - % lcos el‘

0 if s<=%|s1‘ne|=%|cose|

T et T

T

=N

(4.7)

Using the shift property given by Theorem 3.18, the modified

attenuated Radon transform, A{xij(xsy)9 (x,¥); £,8}, of the

Usineij

basis functions Xij(xgy) is given by

A{Xij(xsy)s M e Xs

i 13( y): &,0} =

(4.8)

Cl
A{XD( Xs¥) s ”1JXD( ; £',0) expg u (-&'sino+zcosh, &' cos@+cs1n6)d%}
0

where &' = £ + [a(2i-M-1)/2] sine - [b(2j-N-1)/2] cos6 and ' =
-[a(2i-M=1)/2]cose - [b(2j-N-1)/2]sin6. Note that for the modified
attenuated Radon transform the shift results in an extra exponential

factor.
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4.4 Projection of the Radionuclide Distribution

With the preliminary results given in Sections 4.2 and 4.3, we
can now obtain an explicit expression for the attenuated Radon transform

of the radionuclide distribution

Moo
plGy) = 20 2 ogs xq5(xey) (4.9)
=1 4=

with an attenuation distribution given by

Moo
u(x,y) = % ,;; Hon X (XsY) (4.10)

If we let sij(gse) be the attenuated Radon transform of Xij(xsy)

[i.e., S:ij(‘gse) = A{xij(xsy)g u(x,y)s €,0}], then we have

JRERY (4.11)

o MoN
p (£:0) = 2, 2o oo
v i=1 =1 M

where

8
sij(g,e) = }r Xij(ﬁgsin6+ccosea £c0s0+zs1n0)
6

X exp {==B§Q;d—€sin6+§'cose, gcose+§'sin6)dc'}dc . (4.12)
4

The Tower limit o and the upper limit 8 for the integral in Eq. (4.12)
are the intersections of the Tine g = ~xsinB+ycosd with the rectangular
support Dij of the characteristic function Xij (Fig. 4.5). Substituting

the expansion for u(x,y) given in Eq. (4.10) we obtain
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Detector—«!

€ + xsinf-ycosf=0

Figure 4.5,

XBL793-3297

For the angle 6 and lateral sampling &, the attenuated
Radon transform of the basis function Xi3 with sunport
Djj is the integral between a and B of Xj3 modified by
the integral of the attenuation coefficie%t distribution
u(x,y) along the line E+xsind-ycose = 0 as given by

Eq. (4.12).
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i

B
Sij(ise) }f X13 -£s1n0+zcosO, EcosO+rsing)
o

B8
X exp i u13a5ﬁ>%3 -&£sin6+;'cosd, Ecos@+r'sing)dg j dg
(¢4

x expﬂv % ; o ﬁ{xmn(xay);' S,e}] (4.13)

(msn)e‘éEij

where @{an(xgy); £,0} is the Radon transform of Xan (x,y) and

Esy = {(m,n) [mcos6 + nsino > éiéi%ﬂ:ll, cos® + Eiéjgﬂzll_ sine}. (4.14)

The integral of the basis function Xij in Eq. (4.13) is just the atten-

1J( X5¥)s U

Therefore we can simplify the expression for Sij:

uated Radon transform A{y. ijXij(xgy); £,0} given by Eg. (4.6).

5;5(86:8) = Ay 06y) s g5 x4 5(%:¥) 38,00 exp[wﬁ %Z umn@i{xmn(xsy);ase}]o

n
(m,n) €E, (4.15)

Likewise the modified attenuated Radon transform of Eq. (4.9) for

an attenuation distribution given by Eq. (4.10) satisfies

MoN
(£,0) = Zi Z g 6) (4.16)
j= .:
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. '(XS.V)a Uinij(Xsy)ggse}

(4.17)
M

| N 4
X expgn= E: 2; Lﬁw1j€ xmn(agsin6+c'coses gcose+g'sin9)dc}
L 0

m=0 n=0

and A{xij(x,y)9 Us (x,¥)5€,0} is given by Eq. (4.8). The expression

i3 X3
for the argument in the exponential of Eq. (4.17) is not expressed in
terms of Radon transforms of pixels as is done in Eq. (4.15), because
if one analyzes Fig. 4.5, one can see that at ¢ = 0 the axis intersects
the line &+xsinb-ycos® = 0 in the interior of a pixel and, therefore,
the Tine integral over this pixel is only a partial Radon transform of

the characteristic function for that pixel.

4.5 Formulation of the Reconstruction Problem as a Solution to a Set
of Linear Equations

If the projections given by Egq. (4.11) or Eq. (4.16) are sampled
for a finite number of angTes'Sz &=1,...,L and a finite number of
points gkg k=1,...,K for each angle, then the reconstruction of the
radionuclide distribution is the solution to the following system of

equations

s

J

M
2
i=1

N
3 pij sij(gkgez) = p#gkgez)s k=1,....K; 2=1,...,L (4.18)
for attenuated data and

Mo N '
§: 3 pss 843 (£200) = p(g50,)s k=T,.. 0K 2=1,...,L (4.19)
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for modified attenuated projections. The samples p(gksex) for the
modified attenuated Radon transform is obtained by dividing the projec-
tions %jgkseg) by Gu(ak’eﬁ) in Eq. (3.72) representing the attenuation
between the central axis (z=0) and the detector . In order to simplify
notation, Eq. (4.18) and (4.19) can be rewritten in matrix form by re-
sorting to a lexicographic or stacked notation which contracts the
double indices (i,j) and (k,2) to single indices i' and k', respectively.
Thus

o

i
-

(4.20)

and
Ap = P (4.21)

where A and A are KL x MN matrices with elements T Sfj(gksei) or
éij(£k99£) such that i' = (j-1) x M + 1 and k' = (2-1) x K + k. The
vector p has elements Pjr = pij9 and P and P are vectors with elements
Pt = Py and Pr = P respectively.

Through the remainder of this chapter we will be primarly
concern with the matrix operator A and its elements sij(gkgGQ)a An
approximafion of sij(gkgeﬁ) is used in solving Eq. (4.18) by the
computer. The attenuation factor for the pixel Dij is evaluated only
from the center point (a[2i-M-1]/2, b[2j-N-11/2) in the direction
of gi = (cosezs sinez) instead of evaluating the Radon transform of
the entire pixel as done in Eq. (4.15). This gives the following
approximation to S;

je

= . . .
S'i\](g;ks6ﬁ;) ‘R{XT"J(XS‘y)B gkseﬁ,} expL uij R{Xij(xd)ﬁgijseg’}/z]

X exp E_

B F0n (¥)5 €450 0,) j (4.22)
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where gij = -[a(21-M-1) sin62]/2 + [b(2j-N-1) cosegj/z is the Tateral
sampling for a ray passing through the center of the pixel. This
approximation is useful for computer applications since it reduces
storage requirements.

The estimate © for the radionuclide distribution minimizes the

least-squares function

o) = (Ao - P)T o1 (np - p) (4.23)

where & is the covariance matrix for the data and is a symmetric
positive semidefinite matrix. The estimate is given by the following

two equivalent forms

o)

= (o712 )G g71/2 p (4.24)

(AT o] A)G AT 71

i

o P (4.25)
where G denotes the Moore-Penrose generalized inverse (see Boullion and
Odel1, 1971; and Ben-Israel and Greville, 1974).

ey

The least-squares solution D is the best approximate solution to

the system of equations

-1/2

o2 po=oV2p, (4.26)

and § is the best approximate solution of Eq. (4.26) if and only if

P is a best approximate solution of

Ap=A 0 P, (4.27)
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The system given in Eq. (4.26) can be described using the following
terminology:

1) Overdetermined and Underdetermined Systems - An overdetermined
system implies that the number of equations is greater than the number
of unknowns, i.e. KL > MN. An underdetermined system implies that the
number of equations is less than the number of unknowns, i.e. KL < MN.

2) Consistent and Inconsistent Systems - A consistent system

implies that the vector @mT/Z P is in the range of the matrix operator

®%1/2A5 For an inconsistent system the vector o1/ 2p i not in the
range of the matrix operator @u}/ZA;
3) Full Column Rank - The columns of the matrix operator @mi/zA

forms a linearly independent set of vectors. Also the null space of
the operator ®G1/ZA contains only the zero vector.
The solution to these systems are as follows:

1) Overdetermined, Consistent, Full Column Rank

2} Overdetermined, Consistent, Not Full Column Rank

b = (®ET/ZA)G ®w1/2 p

2(3) = 0
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3) Overdetermined, Inconsistent, Full Column Rank

T -1

4) Overdetermined, Inconsistent, Not Full Column Rank
5 = (®»1/2 A)G ®®7/2 p

(8) >0

5) Underdetermined, Consistent
5= (0712 pB 512,

2(3) = 0

6) Underdetermined, Inconsistent

E(p) >0 .

In most cases the data collected from any patient study requires
the determination of a best solution to an inconsistent system of
Tinear equations. The inconsistency in the data comes from such
physical factors as statistical noise in the data, inadequacy of the
model, and patient movement.
The dimensions of fhe matrix A are too large in all practical appli-

cations so that at the present the solution to the best estimate b can-
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not be found by inverting a matrix and determining a solution using Egs.
(4.24) or (4.25). Therefore, we must resort to iterative methods to
minimize the XZ function in Eq. (4.23). These methods will be discussed
in Section 4.7 but first we will investigate some of the properties of

discrete attenuated projection operators A and A.

4.6 Properties of the Discrete Attenuated Projection Operators

The attenuated projection operators A and A are members of the

space L(RMN SRKL) of Tinear operators which map the finite dimensional
Hilbert space RMN into the finite dimensional Hilbert space RKL,
The space L(PMN SRKL) is a normed linear space with respect to the
norm defined by
HALL = sup lApll (4.28)
holl =1

where A € L(R'™ R and

loll =

(4.29)
lpll = . b = Ap.

The discrete attenuated projection operators A and A are nonnegative
operators (i.e. A > 0). Properties for these types of operators are
discussed in (Marek, 1970; Vandergraft, 1968; Varga, 1962). In this
discussion‘the pertinent results for nonnegative matrices will be dis-
cussed as they apply to the composite of the projection and transpose

operations.
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The solution to the reconstruction problem for attenuated data as
formulated in Eq. (4.27) for ¢=1 requires determining the inverse of the
matrix AT A restricted to the range of AT° The Rayleigh quotient q(p)

for the operator ATA is defined by the expression

T
alp) = pathe) (4.30)

The minimum and maximum eigenvalues AN and AT of ATA are the minimum

and maximum of the Rayleigh quotient (Bellman, 1970):

T
A = max P2 AAp) (4.31)
1 (ps p)
Y
. {p ATA )
Ay = min R D00 (4.32)
N (ps p?
o
where A1 >=A2 >=A3 >:a,aa>=AN are the eigenvalues of the linear
operator ATAo One can show that the norm of A given by Eq. (4.28) is
T

equal to the square root of the maximum eigenvalue of A'A; that is,
IA1 = ()% (p.a1, Ortega and Rheinboldt, 1970).

The properties of ATA are summarized as follows:

1. ATA is symmetric.

2. ATA is normal (i.e. ATA commutes with its transpose).

3. A'A is positive semidefinite.

4. The eigenvalues of ATA are real and = 0, ATA is positive

definite if all eigenvalues are nonzero.
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T T T, T

5. A'A=VATAv' and AA" = UnATuT where V and U are orthogonal

matrices and A is a diagonal matrix with the square root

Tp and aaT.

(AE/Z) of the common nonzero eigenvalues of A

6. ATA is a nonnegative matrix (i.e. all its elements are greater
than or equal to zero).

7. If sufficient angular sampling is taken, than ATA is a positive
matrix and has a unique eigenvalue which has the greatest
absolute value. This eigenvalue is positive and simple, and
its associated eigenvector may be taken to be positive. (A
simple eigenvalue means that the eigenvalue is real and has a

multiplicity of 1.) This implies that the spectral radius

P(ATA) = max lAi' is a simple eigenvalue of ATA.
i

These properties are developed and discussed in (Bellman, 1970). The
result given in 7. is known as the Perron theorem (Perron, 1907).
Bounds for the unique largest eigenvalue are given by Minc (1970).

TA and AAT have a decomposition in

The result in 5. means that A
terms of their common spectrum. Decomposing ATA and AAT leads to a

singular value decomposition of the projection operator A:

R
A= a2y T (4.33)

where R is the rank of the matrix A, LJ_i and Vi are the eigenvectors of
AAT and ATAgrespective1ys and kﬁ are the corresponding eigenvalues.

The outer product UiV§ is an KL x MN matrix and the matrices U(KL xKL)
and V(MN xMN) with columns composed of the vectors Ui and VigrespectiveTyg

are orthogonal. The generalized inverse of the matrix A has a similar
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decomposition, namely

R
D R WL AT (4.34)
i

One can show that this satisfies the Moore-Penrose properties for the
generalized inverse of the attenuated projection operator A.

The spectrum of ATA was investigated for attenuation coefficients
u=0, .0958, .15, .18 p‘ixe’!mﬂi and are shown graphically in Fig. 4.6. The
64 eigenvalues of the matrix ATA were evaluated for attenuation projec~
tion operators A which operate on an 8x8 transverse section image con-
veniently giving projections at 72 angles equally spaced over 360°. The
matrix elements S%j(gksez) of A were evaluated for an attenuator which
was constant throughout the 8x8 transverse section. Instead of using
line lengths as in Eq. (4.22) the projection of the basis functions Xi3
were evaluated using ray factors (Huesman et al., 1977) by replacing

R{x. . (X.¥) s gkgeg} with the area that the ray (k,2) intersects the

iJ
pixel (i,j). The curves in Fig. 4.6 which decrease monotonically from
left to right are the eigenvalues X of ATAs and the curves which
increase monotonically from left to right are the reciprocals of the
eigenvalues. The minimum and maximum values for A and 1/X and the
condition numbers for ATA are summarized in Table 4.1 (condition

).

Analyzing Fig. 4.6 and Table 4.1, it is obvious that the maximum

number = Anaxd Mmin
eigenvalue for A decreases as the attenuation coefficient increases.
Also the trace of ATA which is proportional to the area under the

curves for A in Fig. 4.6, decreases as the attenuation coefficient
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Figure 4.6. The curves which decrease from left to right are the
64 eigenvalues (1) of ATA where the operator A operates
on an 8x8 transverse section giving projections of
72 angles equally spaced over 360°., The curves which
increase from left to right are the eigenvalues of
(ATA)-1 equal to 1/A. The units for u are pixel=1,
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Table 4.1T. The minimum and maximum eigenvalues of A'A and (AT )"1 and
the condition number of ATA. The operator A operates on
an 8x8 transverse section giving projections of 72 angles
equally spaced over 360°. The total spectrum for u=0,
-0958 and .18 are plotted in Fig. 4.6.

. -1 s
u(pixel ') Awin Mnax 1/Xmin T/Amax Condition No.

0 0121 551 82.6 .00181 45537

.075 0564 308 17.7 .00325 5460
.0958 .0731 266 13,7 .00376 3638
. 150 . 106 185 9.4 .00541 1745
.180 116 154 8.6 .00649 1327
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increases. These observations are stated precisely in the following
theorem.

THEOREM 4.1. For the discrete attenuated Radon transforms A] and

A, with the attenuation distributions satisfying ui(xgy) > uz(xgy) for

2

all (x,y) € R“, the following are true:

T

a) The maximum eigenvalues of AjAy and AZAZ satisfy A

max,1 <
XmaxSZ"
T

T ' T . T
b) The traces of A1A1 and AR, satisfy ir(A1A1) < tr(AZAZ).

PROOF. We first evaluate the element Ci'j' of the matrix ATA

using Eq. (4.15) and k' = (&-1)K+k, ' = (§-1)M+i, §' = (g-1)M+p:
C.:i:vt =§ aklilakijl
= ;% 515(8080) SpqlE0y)

:;% :’-\{Xﬁj(xsﬁsuijxij(xsy)sikaez} expE- %;Umnﬁ{xmn(xsy);gksﬂz}j

(myn) € Eij

X Al (6D sy o xng (X5) 5850, expE— % ; “mn“{xmn(xﬁ)?gw%ﬂ :

e
(m,n) qu

(4.35)

a) From the expression for Cin g in Eq. (4.35) it is easy to see

. T T
that if Hy > Mo s then the elements Cij 1 of AiA1 and Cijsz of AZAZ

5

satisfy Cij,? < Cij92° Therefore
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1/2 1/2

T - 2 2 _ T
oWy E;Z(% cikak)} <EZ ey Zpk)j = 1A I

and A = sup |l A]A}pn < sup | AzAsz

T o= loli=1 ax,2 -

b) The trace of the matrix A'A is equal to

My o
- .;Z}'C-i"i' , (4.36)
'32

It is clear from Eq. (4.35) that as the attenuation coefficient
increases, the exponential factors will decrease. Therefore we see
from Eq. (4.36) if Wy > then tr(A?Aj) < tr(AZAZ) I

The proofs for the trace and the maximum eigenvalue of ATA in
Theorem 4.1 were straightforward. Theorems relating the variation in
the minimum eigenvalue, the condition number, and the trace of the
inverse of ATA to the increase in attenuation coefficient are difficult
to state precisely and prove. Therefore the computer was used to
determine the eigenvalues for attenuated projection operators which
operate on 8x8, 10x10, and 12x12 transverse section arrays conveniently
giving in each case projections at 72 angles equally spaced over 360°.
In Tables 4.2, 4.3, and 4.4 the matrix elements Sij(gkseﬁ) of A were
evaluated using Eq. (4.22) for an attenuator which was constant
throughout; whereas in Tables 4.5, 4.6, and 4.7 the Tine length
weighting represented by Q{Xij(XBy)ggk’ez} in Eq. (4.22) was replaced

by ray factors. In both cases the projection bin width and the pixel
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Table 4.2. For attenuation coefficients between 0 and .60 pixel 19 the
minimum and maximum eigenvalues, the condition number, the
trace, and the trace of the inverse of the matrix ATA are
evaluated for attenuated projection operators A which operate
on an 8x8 transverse section giving 72 projections equally
spaced over 360°. The matrix elements for A were evaluated
using Eq. (4.22) which weights by Tine lengths the pixel's
contribution _to the projection. Both the maximum eigenvalue
and trace (ATA) decrease monotonically with an increase in
the attenuation coefficient. The maximum shown for Apmin is
at u= .18, agd the minimum shown for the condition number
and trace [(ATA)=17 is at p = .38 and u = .10, respectively.

. T T,v=1
U Nain ax Condition Number Trace(A'A) Trace[(A'A) ]
0 .234 557 2384.4 4376.3 8.33
.02 222 474 2129.3 3774 .1 9.03
.04 .240 405 1690.3 3284.2 8.90
.06 .266 348 1309.7 2882.6 8.57
.08 L2972 301 1029.4 2550.8 8.32
10 .315 261 828.4 2274.5 8.20
12 . 334 228 683.1 2042.6 8.22
14 . 347 200 576.7 1846 .4 8.37
.16 . 354 176 497.6 1679.3 8.62
.18 . 357 156 438.0 1535.8 8.97
.20 . 355 139 392.6 1411.8 9.42
.22 . 348 125 357.9 1303.8 9.97
.24 . 338 112 331.3 1209.1 10.62
.26 . 326 101 310.9 1125.7 11.37
.28 311 92.0 295.5 1051.7 12.24
.30 .295 83.9 284.2 985.7 13.24
.32 .278 76.8 276.4 926.4 14.38
.34 .260 70.6 271.4 873.1 15.67
. 36 L2472 65.1 269.0 824.8 17.13
.38 224 60.3 268.9 780.9 18.79
40 .207 56,1 271.0 740.8 20.66
42 190 52.3 275.1 704.1 22.79
.44 174 48.9 281.2 670.3 25.19
.46 .159 45.9 289.3 639.1 27.91
.48 . 144 43,2 299.5 610.2 30.99
.50 131 40.7 311.7 583.4 34,48
.52 .118 38.5 326.2 558.5 38.44
.54 . 106 36.5 343.1 535.2 42.92
.56 . 0956 34.7 362.5 513.5 48.02
.58 .0858 33.0 384.6 493.1 53.81
.60 .0768 31.5 409.8 473.9 50.40
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Table 4.3. The same as Table 4.2 except the attenuated projection
operators *A operate on a 10x10 transverse section giving
72 projection angles equally spaced over 360°. The “
maximum shown for Apin is at pw = .12, .14, and the minimum
shown for the condition number and trace [(ATA)-1] is
at w = .28 and u = 0, respectively.

VL. ' T Tayv~-1
U Ain Amax ~ condition Number  Trace(A'A) Trace[(A'A) ']
0 .206 596 3384.4 6868.5 11.81
.02 . 190 569 2990.6 5722.0 13.08
.04 .202 469 2323.5 4834.8 13.02
.06 .219 390 1777.9 4139.7 12.82
.08 .235 327 13%2.6 3588.5 12.86
10 . 245 276 1125.3 3146.1 13.14
12 . 251 235 937.7 2786.6 13.67
14 .251 202 804.4 2491.1 14.43
.16 247 175 708.4 2245.5 15.43
18 .238 152 639.1 2039.0 16.66
.20 227 134 589.3 1863.8 18.16
.02 214 119 554.,2 1713.5 19.94
24 . 200 106 530.7 1583.6 22.05
.26 . 184 95.2 516.6 1470.3 24,52
.28 . 169 86.1 510.5 1370.6 27 .42
.30 . 153 78.3 511.4 1282.4 30.81
.32 . 138 71.6 518.7 1203.8 34.76
.34 124 65.9 532.2 1133.4 39.39
.36 110 60.9 551.9 1069.8 44,80
.38 .0978 56.5 577.9 1012.3 51.12
.40 .0864 52.7 610.6 959.8 58.52
.42 .0759 49.4 650.4 911.9 67.18
.44 .0664 46.4 698.1 867.9 77.35
.46 L0579 43.7 754.6 827.4 89.28
.48 .0503 41.3 820.8 789.9 103.30
.50 .0436 39.1 898.3 755.1 119.80
.52 .0376 37.2 988.5 722.9 139.23
.54 .0323 35.4 1093.3 692.7 162.14
.56 .0278 33.7 1214.8 664.6 189.18
.58 .0238 32.2 1355.8 638.2 221.13
.60 .0203 30.8 1519.2 613.4 258.92



Table 4.4.
shown for X
and y =

H Amin Amax
0 . 185 835
.02 .167 656
.04 417 522
.06 . 184 420
.08 191 342
.10 .192 282
12 . 189 235
14 .182 198
.16 172 169
.18 160 146
.20 . 146 127
22 132 112
.24 .118 99.8
.26 .104 89.5
.28 0914 80.9
. 30 .0795 73.7
.32 . 0687 67.6
.34 . 0589 62.3
.36 .0503 57.8
.38 0427 53.8
.40 .0360 50.4
A2 .0302 47.3
.44 .0253 44.6
.46 0211 42.2
48 0175 40.0
.50 .0144 38.0
.52 0119 36.2
.54 .00976 34.6
.56 .00799 33.0
.58 . 00651 31.6
.60 .00530 30.3
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The same as Table 4.2 except the attenuated progection

operators A operate on a 12x12 transverse section 91v1ng

72 projection angies equally spaced over 360°.
.10, and the $1n1mum shown for

is at p =

the cond1t1@%nnumber and trace [(ATA)
0, respectively.

Condition

4511,
3936.
3005.
2283.
1793.
1465.
1242,
1089.

985.

916.

873.

851.

847,

859.

886.

927.

984.
1057,
1149,
1261.
1398.
1564,
1763.
2001.
2288.
2631,
3044.
3540.
4136.
4855,
5722.

Number

—‘NU‘)-—‘@CDNOO—JNmmﬂwo&o-b\lmhm-hwmm@d@wB\)

Trace(

9753.
7845,
6438.
5381.
4573.
3946.
3450.
3052.
2727,
2459,
2235.
2044,
1881.
1740.
1617.
1508.
1412.
1326.
1249,
1179.
1116,
1058.
1005.

957.

912.

871.

832.

796.

763.

732.

702.

The maximum

Jisatu= .24

ATa

4
8
0
0
5
0
2
1
7
5
0
7
6
5
3
8
5
6
4
7
4
7
9
3
5
1
6
8
4
1
8

)

Trace[(ATA)™1]

16.88
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Table 4.5. For attenuation coefficients between 0 and .60 pixel 19 the
minimum and maximum eigenvalues, the condition number, the
trace, and the trace of the inverse of the matrix ATA are
evaluated for attenuated projection operators A which
operate on an 8x8 transverse section giving 72 projections
equally spaced over 360°. The matrix elements for A used
ray factors instead of Tine lengths by replacing

Glxij(xsy)s Es0g) in Eq. (4.22) with the area that the

ray stz) intersects the pixel (i,j). The maximum shown

for Amin is at w = .22 and .24, and the minimum shown for
the condition number and trace [(ATA)-17] is at pu = .38 and

u = .16, respectively.

. T Tav-1
U Xmin kmax Condition Number  Trace(A'A) Trace[(A'A)™"]
0 0121 551 45537 3177.6 133.47
.02 .0162 468 28879 2739.2 104.19
.04 .0282 401 14195 2382.6 67.45
.06 L0439 344 7833.6 2089.9 49, 31
.08 .0605 297 4909.0 1847.9 40,28
10 . 0763 258 3382.8 1646.2 35.48
A2 . 0900 225 2499.4 1476.9 32.89
.14 . 101 197 1946.6 1333.6 31.60
.16 110 174 1579.9 1211.6 31.19
.18 116 154 1325.8 1106.8 31.40
.20 .120 137 1143.8 1016.3 32.12
.22 121 123 1010.3 037.5 33.28
.24 121 110 910.9 868.6 34.83
.26 119 99.6 836.2 807.8 36.78
.28 .116 90.4 780.1 754.0 39.13
. 30 112 82.4 738.5 706.0 41.89
.32 . 106 75.4 708.5 663.0 45.09
.34 101 69.2 638.1 624.3 48.77
.36 . 0945 63.8 675.8 589.4 52.98
. 38 . 0881 59.1 670.6 557.6 57.77
40 .0816 54.9 672.0 528.6 63.22
42 0752 51.1 679.4 502.1 69.40
.44 . 0690 47.7 692.5 477.8 76.42
.46 .0629 44,7 711.4 455 .3 84.37
.48 . 0571 42.0 735.9 434.6 93.38
.50 0516 39.6 766.3 415.3 103.60
.52 . 0465 37.3 802.7 397.4 115.19
.54 .0418 35.3 845.6 380.8 128.35
.56 L0374 33.5 895.4 365.2 143.30
.58 0334 31.8 952.5 350.6 160.29
.60 .0297 30.2 1017.8 336.9 179.61
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TabTe 4.6. The same as Table 4.5 except the attenuated projection
operators A operate on a 10x10 transverse section giving
72 projection angles equally spaced over 360°. The maximum
shown for Ayip is at w = .18, and ?he minumum shown for the
condition number and trace [(ATA)=17 is at u = .30 and
w = .12, respectively.

. T Tay=1
U Amin Amax Cond1tjon Number  Trace(A'A) Trace[(A'A) ']
0 .0086 690 80639 4942 .8 253.3
.02 0127 565 44285 4115.5 162.81
.04 .0239 465 , 19467 3474.4 98.53
.06 0371 386 10422 2971.6 73.39
.08 . 0497 324 6515.7 2572.5 62.26
.10 .0603 273 4528.3 2251.9 57.14
12 . 0685 233 3394.0 1991.4 55.20
.14 .0741 200 2692.7 1777.3 55.28
.16 L0773 173 2234.3 1599.3 56.82
.18 . 0782 150 1923.2 1449.8 59,60
.20 0774 132 1707.4 1323.0 63.50
.22 .0752 117 1556.7 1214.5 68.52
.24 .0718 104 1453.0 1120.7 74.72
.26 L0676 93.6 1384.8 1039.0 82.20
.28 .0628 84.5 1345.0 967.3 91.14
. 30 .0578 76.8 1329.1 903.9 101.71
.32 . 0525 70.1 1334.4 847.5 114.18
.34 L0474 64.4 1359.5 797.0 128.85
. 36 .0423 59.4 1404.1 751.5 146.11
.38 0375 55.0 1468.5 710.4 166. 38
.40 .0329 51.2 1553.6 673.0 196.23
.42 .0288 47.8 1661.3 638.9 218.30
44 . 0249 44.7 1793.5 607.6 251.36
.46 .0215 42.0 1953.4 578.8 290.35
.48 .0185 39.6 2144 .4 552.2 336.39
.50 .0158 37.4 2370.9 527.6 390, 81
.52 L0134 35.4 2638.2 504.7 455,24
.54 0114 33.6 2952.7 483.4 531.61
.56 .0960 31.9 3322.1 463.5 622.25
.58 .0809 30.4 3755.3 444 .8 729.97
.60 08679 29.0 4263.3 427.4 858.16
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Table 4.7. The same as Table 4.5 except the attenuated projection
operators A operate on a 12x12 transverse section giving
72 projection angles equally spaced over 360°. Tbe
maximum shown for Ayin is at w = .16, and the mipimum
shown for the condition number and trace [(ATA)-17 is at
W= .26 and p = .10, respectively,

., . T Toy=1

u Aoin . Condition Number  Trace(A'A) Trace[(A'A)™ "]
0 .00462 830 179850 7111.8 441.13
.02 .00966 653 67556 - 5720.0 233.53
.04 L0197 519 26302 ' 4693.1 138.55
.06 . 0307 418 13614 3922.2 105.47
.08 . 0403 340 8442.5 3333.4 92.18
10 L0475 280 5896.7 2876.1 87.57
12 . 0521 233 4480.6 2514.9 87.82
14 .0543 197 3627.8 2225.1 91.43
16 . 0544 168 3088.7 1989.0 97.80
.18 . 0529 145 2740.7 17941 106.79
.20 . 0501 126 2518.5 1631.0 118.51
.22 . 0466 111 2385.7 1492.8 133.25
.24 .0425 98,7 2321.5 1374.5 151.47
.26 .0382 88.4 2314.6 1272.3 173.79
.28 .0338 79.8 2359.6 1183.0 201.03
.30 .0296 72.6 24557 1104.4 234.21
.32 0255 66.4 2605.4 1034.8 274.63
.34 0217 61.1 28141 972.6 323.89
.36 .0183 56.5 3089.8 916.8 384.02
.38 .0153 2.5 3443.3 866.4 457,52
.40 .0126 49,0 3888.4 820.6 547.54
A2 .0103 45,9 4442 .2 778.8 658.00
44 . 00842 43,2 5126.8 740.6 793.81
46 . 00682 40.7 5969.3 705.5 961.12
.48 . 00549 38.5 7004.1 673.0 1167.6
.50 . 00440 36.4 8273.8 643.0 1423.0
.52 . 00352 34.6 9831.6 615.1 1739.4
.54 .00280 32.9 11744 589.1 2132.2
.56 .00222 31.3 14092 564.9 2620.5
.58 .00176 29.9 16979 542.2 3228.6
.60 .00139 28.6 20532 520.9 3987.2
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width were equal.

In Tables 4.2, 4.3, and 4.4 the minimum eigenvalue A increases

min
to a maximum before it decreases monotonically as the attenuation
coefficient increases. As the size of the transverse section
increases, the attenuation coefficient at which the maximum is
obtained decreases. The maximum is obtained at u = .18 for the 8x8
transverse section array, at u = .12 for 10x10, and p= .10 p‘i’xe”ig‘1
for 12x12. As the attenuation coefficient increases the condition
numbeyr of ATA decreases monotonically to a minimum before it begins

to increase monotonically. As the size of the transverse section
array increases the minimum is obtained at lower and lower attenuation
coefficients. The minimum is obtained at u = .38, u = .28, and

u= .24 pixe?m] for the 8x8, 10x10, and 12x12 transverse section
arrays, respectively.

The trace of the inverse matrix is somewhat oscillatory at first
before it increases monotonically. Again as the size of the transverse
section increases, the oscillatory behavior terminates at lower and
lower attenuation coefficients. Note that the termination is at much
Tower attenuation coefficients (v = .10, w = .06, and yu = .04 p‘ixe’lm-1
for 8x8, 10x10, and 12x12 transverse section arrays, respectively)
than the maximum for Amin or the minimum for the condition number.

The trace of the inverse matrix is an important indicator of error
propagation, since for equal statistical fluctuations in the projections,

the average variance in the reconstruction is equal to Gz(projeciion)x

tracel}ATA)mij/MNﬁ Therefore the tables indicate that as the
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attenuation coefficient increases then so will the average variance.
Note that the minimum of trace [(ATA)“1]/MN for the 8x8 (MN=64),
10x10 (MN=100), and 12x12 (MN=144) arrays are all equal to .13,

The results given in Tables 4.5, 4.6, and 4.7 corresponding to
replacing H{xij(xgy);gkseg} with ray factors in Eq. (4.22), show a
similar behavior; that is, as the attenuation coefficient increases
the minimum eigenvalue increases to a maximum before it decreases
monotonically and the condition number and trace [(ATA)E1] both
decrease to a minimum before monotonically increasing. Note that
trace [(ATA)°1] for the same size transverse section is larger weighting
by ray factors than weighting by line Tengths. This indicates that
the average variance for the reconstructed image is larger using

weights corresponding to ray factors than using line lengths.

4.7 Iterative Reconstruction Algorithms

Iterative methods are used to determine the minimum solution
for the XZ function in Eq. (4.23). There are two principal types
of iterative reconstruction procedures: (1) those which adjust
the parameters that are involved in one or a smali number of projec-
tion constraints at each iterative step--these are referred to as
ART-type methods; and (2) those which adjust all the parameters
based on information from all the projection samples at each

iteration--these are referred to as SIRT-type methods.
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An ART (for Algebraic Reconstruction Techniques) method was First
proposed by Gordon, Bender, and Herman (1970). A tutorial on ART was
Tater published by Gordon (1974) and a description of other types of
ART methods along with optimization criteria and theorems on the con-
vergence of the algorithms to optimum images was given by Herman and
Lent (1976). A method for incorporating errors with the ART-type
algorithms was described by Huebel and Lantz (1975). The ART-type
algorithm was‘first suggested by Kaczmarz (1937). For the finite-
dimensional case, the proof of convergence for consistent systems is
given in (Durand, 1960; Tanabe, 1971; and Herman, Lent and Rowland,
1973). Convergence rates for this iterative procedure are analyzed
by Hamaker and Solmon (1978).

SIRT (for Simultaneous Iterative Reconstruction Techniques) methods -
were first applied to reconstruction tomography by Goitein (1971) and
Gilbert (1972). Later steepest descent methods and conjugate gradient
methods were implemented by Huesman and co-workers (1977). A more
recent paper about SIRT-type algorithms is by Lakashminarayanan and
Lent (1979). These iterative schemes basically determine a direction
qn and a step Tength o for each iteration such that the new solution
is given by

pn+1 - pn + &ﬂ qn ] (4.37)

ﬁ+i)

The step length calculation o is determined so that Xz(p
xz(pn + aﬂq“) is a minimum. It was shown in (Huesman et al., 1977)
that Goitein's method is the same as a steepest descent method in a

transformed space. In most cases, convergence of the iterative process
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is accelerated by performing a scale change on the parameters. The

scale change is given by

o' = Dp (4.38)

where D 1s a diagonal matrix with diagonal elements equal to

1/2
= Ty=1

The iterative stepping is performed on the transformed variables o'

and the final reconstruction is obtained by the operation

o=D" p'. (4.40)

This method of parameter scaling also improves the rate of conver-
gence for the conjugate gradient method. The conjugate gradient method
for solving a system of linear algebraic equations was originally
developed by Hestenes and Stiefel (1952). Rates of convergence
are discussed in Ortega and Rheinboldt (1970) and in Kammerer and
Nashed (1972).

In the next three sections the gradient, conjugate gradient and
ART-type algorithms are discussed as they apply to reconstructing
attenuated data.

4.7.1. The Gradient Method

At a given point o" the gradient method takes a step (i.e.,

pﬁ+1 = pn + anqﬂ) in a direction qn which is one half the negative

of the gradient at pn:
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T.~1

q" = AT (P-Ap"). (4.47)

This 1is a direction which gives the steepest descent of the XZ function
-- thus such methods are commonly called steepest descent methods.

The step length o in the direction of qn is choosen so that

2( n

nony . ..
X {p +aq) is a minimum:

1

" =q", qMs ATe Iagh, gy . (4.42)

The resulting algorithum is described as follows (Huesman et.al., 1977,

Budinger et.al., 1979):

1.q% = alol p o aTeTag® = aTe ! (p-no)

2. 8 = ()T ATeT e - 2(6%) AT 4 pTe7 T
3. 8" =alelag"

4. o =¢q"q" 7 ¢8" ™)

5 pn+1 - pn + " qn

6. X§+1 = Xg . <qn,qn )

7 qn+i = q" - og"

8. Jjump back to 3 .

Most of the computation time is expended in step 3 in calculating

T.-1

A Aqn, The computation time is cut in half by calculating this

once and storing the result in an which 1is then used in steps 4 and 7.

The aigorifhm requires that memory is allocated for the vectors pns qns

and 8" which are updated at eacn iteration.
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4.7.2 The Conjugate Gradient Method

The conjugate gradient method improves the convergence of the
iterative process. The direction of the first step qo is taken the
same as the gradient method,

0 o T.-1

g’ =r?=ne7" (P~ A°)

1

]

0 po + OLqu . (4043)

The succeeding step directions are given by

Q"= g g™l (4.44)

where

1 T ,T.~1

" = (", aToT T g™y g™, aTe A T (4.45)

and where rﬂ::AT®“1(P»Apn) is equal to one half the negative of the gra-

1

dient. This gives an AT®G A- orthogonal set of vectors{q19,,, qn}; that

is the inner product <qn,AT®Aqm>z 0¥ n#m. The step length calcula-

tion o is given by Eq. (4.42). This gives a new estimate:

n+1l n n on
o) =p taoa g .

The following identities proven in (Hestenes and Stiefel, 1952,

Hestenes, 19563 Ortega and Rheinboldt, 1970; Budinger et al., 1979)

m

(", ™y =0 form #n (4.46)

2
nel -t
g+l o T (4.47)
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2
n )
o = . (4.48)
<rn9AT@ 1Aqn )
P AT " (4.49)

simplify the calculations which are given in the following algorithm

1oor® = aTe! (p o ag®)

2. Xg = (po)T AT®E1 AQQ - Z(QO)T AT<Z>4 F’wlﬁf-”T@DE‘1 P
3. 9° =0 |

4. 8% =0

6. " = =1 gh qn~i
-7 Bn - mT/( an‘ﬁl]s rn";i>
g. " = ATe 1 A Q"

10. " =" 4ol qn
11. xi = Xiaf”@n <rnsis -1,
12, el ogh v

13.  Jjump back to step 5 .

Most of the computation time is expended in step 8. The result for

T.-1

A A qn is calculated once and stored in vn which is then used in

steps 9 and 12. The algorithm requires that memory is allocated

for the vectors pn, rn, qn, and yns
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For a sequence {pn} which converges to p, Ortega and Rheinboldt

(1970) define the factor R1{pn} to be

R o"} = Tin supllp" - o'/ (4.50)

If 0 < R1{pn} < 1, the convergence of {p"} to o is R - Tinear, while
if R1 =1 or RT = 0 the convergence is R-sublinear or R-superlinear,
respectively. Under conditions where the minimum of xz(p) in Eq. (4.23)
has a unique solution it can be shown that fhe gradient algorithm is
R-Tinear. Whereas the conjugate gradient algorithm converges to the
sotution of minimum norm in a finite number of steps. Therefore the
conjugate gradient algorithm has a superlinear rate of convergence.

To test the convergence of the gradient and conjugate gradient
methods, computer simulations were done that projected pseudo data of
a 64x64 array containing a 60 pixel diameter disc of uniform concen-
tration and uniform attenuator so that the measured projections were in
the range of the discrete attenuated projection operator. The data were
taken at 100 equal angles over 2m. The results at each iteration are
shown in Table 4.8 for the conjugate gradient algorithm and in Table
4.9 for the gradient algorithm. Since the true solution was known,
the difference between it and the solution at the nth iteration was
tabulated along with the XZ at each iteration. For consistent data
ilpn»pll and the xz function 1is guaranteed to converge to zero in 4096
steps for the conjugate gradient algorithm if one has perfect numerical
accuracy. For the gradient algorithm convergence is guaranteed only

as the number of iterations approach infinity. A comparison of the
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rate of convergence for the conjugate gradient and gradient algorithms
is shown in Fig. 4.7.

The data in Tables 4.8 and 4.9 indicate that the rate of con-
vergence at least for the first thirty iterations decreases as the
attenuation coefficient increases above u = .0958 (see also Fig. 4.7).
The rate of convergence for u = .0958 is better than u = .001 and
u=20 and it seems to decrease as you approach zero. It appears that
there s an attenuation coefficient u* at which there is an optimum
rate of convergence at least for the first thirty iterations so that

as you decrease or increase u the rate of convergences decreases.

4.7.3 The ART Method

The ART algorithm determines the solution to a consistent system

of equations

Ap = P . (4.20)
At the nth iteration the solution vector pn satisfies the equation

n n
{a.. ) =D, - 1, .
aj 0 pJ rJ | (4.51)

where aj is the jthrow of the matrix A, pj is the jth projection
sample, and rg is the residual in the j th projection. A new solution

to p is determined by solving the equation
n n
{a,, + )= p, 4,52
g, P+ Py (4.52)

for q". Combining Eqs. (4.51) and (4.52) gives

n n
(a., Y =y, . .5
a5 3 (4.53)
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Figure 4.7. The top graph compares the convergence of the conjugate
gradient algorithm for attenuation coefficients .0958,
15, and .30 pixel~!. The bottom graph compares the
convergence of the gradient and conjugate gradient algorithms
for p=,15 pixel=!.” In all cases the data were 100 true
projections of p taken over 2m where p was a 60 pixel
diameter disc of uniform emitter concentration and uniform
attenuator in a 64x64 array.
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The solution for qn satisfies

(4.54)

G

where aj denotes the generalized inverse of the row matrix a.. The

generalized inverse of aj is easily calculated and is given by

G _ 1 T
aj = 5 aj . (4.55)
IlajH

The new solution for p is given by

+
M= o ! (4.56)

For a given p, the operator PU j at the nth iteration is given by

1] ] G i
. = + . A D= .
PUsJ o' =p' +ay 83(0 p') (4.57)

where j = n mod KL+1, K is the number of projection bins, and L is the
number of angles. For the discrete case the operator PU 5 in
Corollary 3.12.1 is the product of the individual projections P

UsJ
which corresponds to the projection bins at the angle 6; that is,

(o)

Pue = PuLi

where KT(S) and KZ(G) are the minimum and maximum index for j cor-

responding to the first and the last projection bin at the angle 8.
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The ART algorithm is summarized in the following steps. Let KL

be the total number of projection samples for all angles, then

1. Choose po

2. J=nmod KL + 1

n n
.or. =p.-fa.,
3 rj p3 a\j o )
n o~ on T 2
4. q r aj/llajﬂ
5 pn+1 - pn + qn

6. Jump back to 2 .

The vector qﬂ will be zero except for a very few pixels which intersect
the jth ray. |

[T the projections P have statistical f1ucfuations, then it is
highly Tikely that Eq. (4.20) is inconsistent. In this case Eq. (4.20)

s augmented to include errors giving

Bo + E

ATE =0

]
v

(4.58)

where the zero matrix 0 indicates that the back-projection of the errors

E are constrained to be zero (Huebel and Lantz, 1975). The solution

p and E to the new matrix equation

(4.59)

is determined by the ART algorithm described above :
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1. Choose pO, £°
2. 3 =n mod (KL + MN)+1
3. if 1 <j <KL then

n n n
r. = p., - {a., Y = e,
J pJ J P eJ

if Kb+1 <jJ<KL+MN then j' = KL+MN-j and

n T n
. = = (a ‘15E >
i ( 2‘1
4, if1<j<KL then

]

n n T 2
q Y‘j aj/(liaji! + 1)

<
i

n 2 n_ . .,
rj/OlajH +1), V=0 d=T, 00 KL

ifFKL+ 1T <j<KL+MN then j' = KL+MN-J and

qg =0
n_ n . T.7 T 2
Vo= (a {rﬂl(a G,H
5 pn+1 = oM+ "
En+1 =" 0

6. Jjump back to 2}

The (aT)j denotes the jth row of the matrix ATE

If the initial solution is chosen to be zero then both algorithms
converge to the minimum norm solution (Tanabe, 1971). Hamaker and
Solmon (1978) have shown that the rates of convergence depend on the
angle between the projections, the order in which the angles are chosen

for the succeeding iterations, and the choice of the initial solution.
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4.8. Emission and Transmission Noise Propagation in Emission Computed
Tomography

The algorithm illustrated in Fig. 4.8 can be used to reconstruct

radionuclide distributions from projection data which have been attenu-
ated by a variable attenuation coefficient. A transmission reconstruc-
tion is first done to accurately determine the attenuation coefficients.
Then the factors sij(gkgez) are evaluated using either Eq. (4.15) or

Eq. (4.22). The radionuclide distribution is then reconstructed using
an iterative algorithm to fit the emission projection data to the pro-
jections given by the discrete attenuated transform in Eq. (4.20).

This method of attenuation correction requires two reconstructions:
one for the transmission data to obtain the attenuation coefficients and
one for the emission data to obtain the final reconstruction. Errors
in the reconstruction of the attenuation coefficients will increase
the errors in the emission reconstruction. These errors in the
emission reconstruction are the result of noise propagated from three
sources: 1) statistical fluctuations in emission data, 2) statistical
fluctuations in the incident transmission beam, and 3) statistical
fluctuations in the emerging transmission beam. In the sections to
follow we will first define some statistical concepts and then analyze
the emission and transmission noise propagation for the algorithm in

Fig. 4.8.

4.8.1 Definitions for the Statistical Aspects of the Attenuated
Reconstruction Problem

In the previous sections, we have been discussing the deterministic

problem of reconstructing attenuated projection data. However, by the
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ALGORITHM FOR VARIABLE ATTENUATION CORRECTION

17 em_

INPUT THE PROJECTION
DATA FROM THE
TRANSMISSION SCAN

TRUE IMAGE

p=.0958 om-! p=15 cm™l
/

RECONSTRUCT THE
TRANSMISSION DATA

u=.056 cm\

EVALUATE FOR EACH
ANGLE § THE
ATTENUATION FACTORS

Sij €k, 0kl

RESULT

INPUT THE PROJECTION
DATA FROM THE
EMISSION SCAN

RECONSTRUCT THE
EMISSION DATA

RESULT

XBB 793-3411

Figure 4.8. Algorithm for reconstructing emission data attenuated bg
a variable attenuation coefficient. Transmission data is
reconstructed in order to determine the actual attenuation
factors sij(fk,0g) in Eq. (4.15) or Eq. (4.22). The emis-
sion reconstruction uses these factors to compensate for
attenuation.
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statistical nature of the measured projections, the reconstructed image
represents one possible outcome of a random stochastic process. A
stochastic process is a function of a one-dimensional subset S of the
real numbers so that for every element of S there exists a set of
possible outcomes defined by a probability density function. When the
dimensionality of S is two or greater, the random process is called a
random field (Rosenfeld and Kak, 1976). The family of reconstructions

p(x,y) = o(X) is a random Ffield with probability distribution function

.,AA /\: /\-< /\< /\\
f@z(z1azzgaueszna x19x29,,99xn) Prob{p(x}) Zys p(xz) zz,oaagp(xn)<izn}

(4.60)

The random field p(X) is a random variable for every X in the xy-plane.
Thus the probability density function given by /ﬁgzgﬁ) = d(Cpp(z;Q)L@z
and its expected value

feed

m (X) = E{p(X)} = &gﬂ z }%(Z;Q)dz (4.61)

Y

is a function of X. This expectation is called the mean of the random
field p at X. Other important concepts which describe a random process

are as follows (Rosenfeld and Kak, 1976)

Autocorrelation -

~

R (R)%,) = Elo(3,) p(xz)}{ﬁizz folzy.2,3% .8, dz dz,  (4.62)
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Autocovariance -
CopXpaXp) = ELLo(xp) = m 04) 1 [e(xp) = m (x,) 1)
(4.63)
Rpp(x']sxz) = mp(x‘]) mp(xz)
Cross correlation of two random fields p and u -
Conl¥yxp) = ELLo(xy) = m (x))T [u(xy) - m (x,)]}
(4.64)
= Rpu(x19x2) - mp(x1) mu(xz)

~

The variance of the random field p at x is Gi(x) = C_ (X,X). Two
random fields p and u are uncorrelated if Cpu(§1g§2) = (0 for all §39
QZB This implies that E{p(ﬁl) u(§2)} = E{p(Qi)} E{u(ﬁz)}, Two random
fields p and p are called orthogonal if Rpu(§19§2) = 0.

The random field is homogeneous if the mean value function in

FEq. (4.61) is constant (i.e., mp(?) =m for all X) and the autocorrela-

tion function is transiation invariant:

R 21922) = R (21-&2) . (4.65)

Dp( pp

In Eq. (4.65) the expression for Eq. (4.62) has been reduced from an
expression in four variables to an expression in two variables, which
are the coordinates of the difference vector. This allows us to

redefine the autocorrelation function:

Rpp(asﬁ) = E{p(x,y) p(x+a, y+8)} .
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A homogeneous random field is a generalization of the one-
dimensional wide sense stochastic process for higher dimension and
is referred to as a wide-sense stationary random process. If the
autocorrelation function is only a function of the distance between
the two vectors (i.e. Rpp(§1,§2) = Rpp([?1 = X,1)) then the random
field is homogeneous and isotropic.

The spectral density Spp(u,v) of a homogeneous random field p(X)

is the Fourier transform of its autocorrelation
Ay Ay =G2ARLWY A
w) = R e dx . 4,56
s =ffr %) (4.66)

Up to now we have been defining the mean, autocorrelation, etc.
of a random field which are called ensemble averages. In the case of
a homogeneous random field, one may ask if it is possible to take just
one sample of the random field (i.e. perform one reconstruction) and
then infer what the mean and autocorrelation are for a large sample of

random fields by taking spatial averages:

1

6 ~uglmmu% éjp(xsy) dxdy (4.67)
- qim 1

R(a,B) -ﬂuglmoo A é{p(xay) p(x+a, y+8) d{<dy (4.68)

where A is the area of a region Q of the xy-plane and by 11@£+w is
meant a limiting process which tends to include the entire xy-plane.

Since p is a random variable, likewise both 7 and R{u,B) are random
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variables. The homogeneous random field is called ergodic with respect
to the mean if 7 is Constant for all possible outcomes of p and equal
to mp(?) =m. Likewise it is ergodic with respect to the autocorrela-
tion if R(a,B) is constant at each (a,B) for all possible outcomes

of p and this constant value is equal to Rpp(qsﬁ), For a homogeneous
random field a sufficient condition for the sample means to be ergodic
is that Rpp(age) +~0 as o ~ « and B »~ « (Parzen, 1962).

Single-photon emission cbmputed tomograms are not ergodic processes
with respect to the mean or autocorrelation nor are they homogeneous
random fields. The salt and pepper effect illustrated in Fig. 4.9 is
more evident in the center and decreases toward the outer portion of
the disc. Therefore the variance in each picture value is not the
same, which implies that the autocorrelation is not space invariant.
This is not the situation in transmission computed tomography where
the autocorrelation function is for all practical purposes isotropic

(Snyder and Cox, 1977).

4.8.2 Optimal Sampling

If a random field p(x,y) is expanded in terms of the orthonormal

basis functions wij’



Figure 4.9.

~188-

XBB 793-3410

Reconstruction of emission data with Poisson statistics
results in larger variations in the center of the disc
than toward the edge. This means that emission computed
tomograms are not homogeneous random fields.
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then the coefficients Pi; are random variables. The sampling error is
the mean square error averaged over all the distributions p in the

random field:

2
e = E é [o(x,y) - - P (X,y) ] dxdyé
/I :
- japp(&sg)dg : jRpp(xgx') (4.69)
9] 9]
g5 () vy (R dk aR

If p is a homogeneous random field then Rpp(i,?) = Rpp(Oaﬂ) and

Rpp(Q,Q’) = Rpp(x=x'5 y-y'), allowing us to simplify Eq. (4.69):
M N
2 _ N : ot g
£ =AR(0,0) - | f R 0exs vy
i=1 j=1 Q@
Xy (6y) By (xtLy") dxdy dx'dy! (4.70)

where A is the area of Q.

The optimal sampling of a random field in ECT is the set of
orthogonal functions wij(x9y) which for every M and N yields a minimum
value for the sampling error eZ in Eq. (4.69). In TCT if the random
field is homogeneous then the optimal set of orthogonal functions
minimize Eq. (4.70). Since RQQ(OSO) is independent of the choice of
the basis,Athe sampling error is minimized when the second term in
Eq. (4.70) is maximized for the functipns wij(xsy) subject to the

orthonormality condition. It has been shown by Brown (1960) that the



-190-

optimal set of basis functions are the eigenfunctions of the following

integral operator:
ijpp(xay9X'sy') Pix',y') dx'dy' = ab(x,y) . (4.71) .
0

In order to solve Eg. (4.71) the autocovariance function must be known,
and if known the solution for the eigenfunction can present an
insurmountable mathematical challenge. Synder and Cox (1977) have pointed
out that when the area A1is large combared to the spatial variations

of p(x,y) and the autocorrelation function Rpp(?s X') is a function only
of the distance between X and X', then sampling with Bessel functions

is the optimal choice of basis functions. However for the attenuated
reconstruction problem it is not clear what the optimal choice of

basis functions is. Standard sampling given by Eq. (4.1) was chosen,
primarily for computational efficiency since computer codes can be
written which are very fast in comparison with any other sampling

scheme (Huesman, Gullberg, Greenberg, Budinger, 1977).

4.8.3 The Autocovariance Matrix

For the least-squares solution given by Eq. (4.25) the auto-

covariance function Cpp(ﬁg X') is estimated by the covariance matrix

Cov(p) = (A" @~ A)" , | (4.72)

where ¢ is the data covariance matrix. Choosing ¢ as a weighting

matrix yields a minimum error covariance matrix (Deutsch, 1965).
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The average variance over the reconstructed image is equal to the -

trace of Cov(p) divided by MN:

=
=

. - trace(Cov(p)) _ 1 1
Average variance M N e %

—
(]
—

-

where A are the eigenvalues of Alg™!

A. The results in Tables 4.2-4.7
indicate that for ¢ = 021 (i.e. equal projection errors) in Eq. (4.72)
the average variance will .increase as the attenuation coefficient
increases.

The calculation of the covariance matrix is virtually impossible
for the large dimension of (AT @‘1 A) which occurs in reconstruction
tomography. However the effects of a finite number of projection
angles and finite lateral sampling on the propagation of satistical
errors in transverse section reconstruction was analyzed by Huesman

(1977) for the unattenuated problem using the sampling in [Eq. (4.1)].

For this case the reconstructed intensities pj satisfy

KL Moo
o5 = kz_j_] Py 1; Mji, asy (4.73)

T.-1 1

. where aij is an element of A i is an element of the inverse

d M,
an MJ

or generalized inverse of M = (AT @’1 A) and u = 0. The variance of

p. is the diagonal elements of Cov(p) in Eq. (4.72):

J

-1

2 -
o (pj) = ij . (4.74).
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If D is the diameter of the reconstruction region, a = b = d is the
pixel size and o(pi) = const = 0y then for the case when D/d is large

with 1.5 D/d angles and a sahp]ing interval of about .5 d,

Do2

-1 _ P
= 1.59 3

M.
JJ MNd

This gives a measure of the propagation of errors since ME} cannot be
evaluated directly for large dimensional matrices.

For the attenuated reconstrUctionAprob]em ME} will vary depending
on the attenuation distribution. Also if the attenuation coefficients
are determined from a transmission study ME; will be a random variable

and it is not correct to use Eq. (4.74) to calculate the variance of

pj. In this case the variance of pj is

KL MN.
oz(pj) = Z {oz(pk)<z oZ(ME} aik))
k=1 i=] \ (4‘75) ’
MN 2 MN
¥ Gz(pk) (Z E(M\;]] a1k)) ¥ E(pk)2<z GZ(MS: a1k)>}
i=1 i=1

where it is assumed that ME} a5k and p, are independent. This presents

a serious mathematical problem--in order to evaluate the variance of

21 ~1
(M55 3i ik

cannot be evaluated for the large matrices that

p; one must know both o
the elements of M']

aik) and E(M a,

one experiences in computed tomography.

) for all i,j,k. Here again

et
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4.8.4 Measure of Percent Root-Mean-Square Uncertainty from Simulated
Projection Data

An approach to estimating the propagation of errors in single-
photon ECT which does not require inverting a matrix is to reconstruct
simulated projection data with noise using an iterative a]gorithm.

If the simulation is done many times then the sample mean and sample

variance can be evaluated for each pixel value. However, this can be-
costly in terms of computer time. If the picturé function is approxi-
mately an ergodic process with respect to the mean and with respect to
the autocorrelation function, then one can use Eqgs. (4.67) and (4.68)

as an estimate of the sample mean and sample autocorrelation. In the
discrete case these equations reduce to the following spatial averages

for the mean and variance:

_ Os s :
b = Z & (4.76)
i,Je
o) = D oy o1 o w
o = —_ .
° oo N - 1 .
1,J€0 :

where N is the number of pixels sampled for the region Q.

Circular discs of 60 and 40 pixels in diameter were chosen to. -
simulate the propagation of errors. The 60 and 40 pixel diameter discs
were reconstructed in a circular image array with.64 and 44 pixels
across, respectively. The reconstruction procedure as outlined in
Fig. 4.8 involved first reconstructing simulated transmission data,

then evaluating the attenuation factors, and then reconstructing
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simulated emission data. The attenuation coefficients were reconstructed
from transmission data at 100 and 70 projection angles over 180° and
the emission concentration were reconstructed from 200 and 140 projec-
tion angles over 360° for the 60 and 40 pixel diameter discs,
respectively. The projections had bin sizes .66 that of the pixel
size in order to conform to the correct reconstruction criterion
(Huesman, 1977).°

The projection data were evaluated using analytically calculated
1ine integrals that did not involve subdividing the discs into

pixels. For the transmission data,.the true projection data are
Pro = ~I.u(—gksine+zcose, gkcose+zsine)dz. (4.78)

If the incident numbey of photons per projection bin for the trans-
mission beam is Io’ then the number of transmitted photons Ike is

given by

Ie = 1o exp(-pke) . (4.79)

Noise was added to the true projections Pro by generating Poisson
random variates T; and Tke with variances equal to VT;' and /T, ,

respectively. Then the random variate Eke was evaluated uSing

Prg = (I /T 0). (4.80)

The errors in ﬁke propagated in this way are approximately equal to
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o(’ﬁke)= \/1/’1“0+‘1/Tk8 . (4.81)

Likewise the emission data had Poisson noise added with errors equal
to the square root of the measured analytically calculated Tine

integrals:

o(Bg) = Mg + (4.82)

The data were calculated for various attenuation coefficients and
counting statistics.

These data were reconstructed by minimizing the least-squares
function in Eq. (4.23) weighted by the errors given in Eq. (4.81) for
the transmission data and Eq. (4.82) for the emission data using
Goitein's iterative relaxation method (Goitein, 1971) modified for
conjugate gradient stepping to improve convergence. The iterative
procedure was terminated after 30 iterations. In the case of the
40 pixel diameter disc the transmission data were reconstructed using
a convolution algorithm. Selected examples of the reconstructions are
shown in Fig. 4.10 of a 40 pixel diameter disc for various emission
statistics and attenuation coefficients with transmission statistics
of I0 = 1000 photons per projection bin.

The results of the simulations were evaluated based on the
percent root-mean-square (% RMS) uncertainty for pixel values within
the circular discs and are tabulated in Tables 4.10 and 4.11. The

% RMS uncertainty was calculated from the equation
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ITERATIVE CONJUGATE GRADIENT RECONSTRUCTION
WITH ATTENUATION COMPENSATION USING TRANSMISSION
RECONSTRUCTION FOR |5 = 1000 o

" Counts

Attenuation 1 x 102 1x 106 1 x 107
coefficient _ —

pn =018

B = 0.12

p = 0.075

w=0.01

XBB 793-3409

Figure 4.10. Reconstructions of a 40 pixel diameter disc using 30
iterations of the conjugate gradient algorithm applied
to 140 equally spaced Poisson distributed projections
between 0 and 2m. The attenuation factors were evaluated
from a transmission reconstruction using the convolution
algorithm applied to 70 projection angles between 0 and =
with 1000 Poisson distributed incident photons per
projection ray.
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The %RMS as a function of emission and transmission statis-
tics and attenuation coefficient. The %RMS is given for the
reconstruction of a circular disc 60 pixels in diameter

(30 cm). The transmission data were reconstructed from 100
projection angles over 180° and the emission data were
reconstructed from 200 projection angles over 360° with

100 bins per projection. The projections had bin sizes .66
that of the pixel size. The emission data were compensated
for attenuation by using the reconstructed transmission
attenuation coefficients. The total incident photons are
equivalent to the following number of ?hotons per projec-

tion ray Io: 9x107 - Io = 9900, 7.9x107 - I, = 8690 and
3.7x107 - 1, = 4070.
Transmission ' Emission
Aftenuation Total Photons “Total Photons

Coefficients (cm™?) Incident/Transmitted %RMS Reconstructed/Measured %RMS
15 9.0 x 107/5.1 x 10° 10.9 8.5 x 10%/2.3 x 10° 41.6
.15 9.0 x 10%/5.1 x 107 4.3 8.5 x 10%/2.3 x 10° 4.2
15 © .- 8.5 x 108/2.3 x 10° 41.8
15 9.0 x 107/5.1 x 10° 10.9 8.5 x 107/2.3 x 107 16.6
.15 9.0 x 10%/5.1 x 107 4.3 8.5 x 107/2.3 x 107 15.3
15 o --- 8.5 x 107/2.3 x 107 14.8
.0958 7.9 x 107/1.1 x 107 8.98 6.1 x 108/2.3 x 10° | 32.1
.0958 7.9 x 108/1.1 x 108 3.6 6.1 x 10%/2.3 x 10° 31.9

- .0958 w -—- 6.1-x 10%/2.3 x 10° 32.6
.0958 7.9 x 107/1.1 x 107 | 8.98 6.1 x 107/2.3 x 10’ 12.7
.0958 7.9 x 10%/1.1 x 10° 3.6 6.1 x 107/2.3 x 107 11.8
.0958 ™ --- 6.1 x 107/2.3 x 107 . 1.3
.0958 3.7 x 107/5.0 x 10° 12.9 6.1 x 10%/2.3 x 10° 32.4
.0958 3.7 x 10%/5.0 x 107 4.6 6.1 x 10%/2.3 x 10°¢ 31.9
.0958 ' ® --- 6.1 x 105/2.3 x 108 32.6
.0958 3.7 x 107/5.0 x 10° 12.9 6.1 x 107/2.3 x 107 13.6
.0958 3.7 x 108/5.0 x 107 4.6 6.1 x 107/2.3 x 107 1.9
.0958 © -—- 6.1 x 107/2.3 x 107 1.3

XBL794-3388
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Table 4.11. The %RMS uncertainty as a function of emission counting
statistics and attenuation coefficients. The %RMS is given
for the reconstruction of a circular disc 40 pixels in dia-
meter (20 cm) from 140 projection angles over 360°. The
projection data for various statistics were attenuated
assuming a constant attenuation coefficient over the
circular disc. The counts represent the total measured
counts for all 140 projection angles. In compensating for
attenuation, it was assumed that the transmission data had
no errors for Ip=c. For Ig=1000.the incident transmis-
sion beam is Poisson distributed with a mean and variance
equal to 1000. The %RMS uncertainty for the transmission
reconstruction is given in the column next to the attenua-
tion coefficients.

Counts
pcm!? ZRMS 1 x10° 5 x10° 1 x10% 5x106 1x107 5x107 o0

Transmission - Io = o

43.5 32.4 - 16.3 12.9 9.

.18 96.6 8 4.7
.15 91.5 41.5 - 29.3 14.2 11.2 8.6 3.9
12 86.9 39.1 27.2 13.5 10.3 7.4 3.3
.0958 90.0 40.5 27.8 13.2 10.0 6.8 2.9
.075 89.6 40.2 26.9 12.9 9.8 6.5 2.7
.05 85.6 38.4 27.6 13.4 10.0 6.1 2.6
.01 87.7 39.5 26.6 12.5 9.3 5.8 2.5
0 85.0 38.1 26.5 13.4 9.8 6.0 2.5
Transmission - I, = 1000
.18 17.3  99.1 46.3 33.8 18.8 16.7 13.8 12.0
.15 14.9 94.7 41.9 30.7 16.6 14.2 11.5 9.8
2 15.3 85.1 41.0 29.8 15.5 13.5 1.1 8.4
.0958 15.7 93.2 40.6 27.5 15.1 12.5 9.8 7.6
.075 16.7 90.1 40.7 29.3 14.8 12.0 9. 7.3
.05 22.4 87.6 39.9 26.9 14.2 12.1 8.8 6.6
.01 85.5 90.1 . 39.4 27.4 13.5 10.6 7.8 5.8
0 765.0 85.0 40.4 28.0 12.9 10.1 6.1 3.9

XBL794-3387
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100 o(p)
0

%RMS uncertainty = (4.83)

where b and o”(p) are given by Eqs. (4.76) and (4.77), respectively.
The tables show that errors in the attenuation coefficients
increase the %RMS uncertainty in the emission reconstructionf An
example of the amplification of these errors for the 30 cm (60 pixel)
diameter disc.with attenuation coefficient u = .15 cm_] is extracted
from Table 4.10 and is tabulated below for emission statistics of 20

million photons:

Transmission %RMS 1in the Emission
data Reconstruction
S 14.8
7
5 x 10 15.3
5 x 10°  16.6

These data indicate that as you decrease the transmission photons the
errors in the emission reconstruction increase.
The influence of the transmission errors on the emission recon-

struction is not as significant when emission statistics are poor as

~when they are good. This is illustrated in the following two examples.

Example 1. For a 30 cm disc with u = .15 cm_1,:we see from Table 4.10

Transmission Photons

Emission Photons 5 x% 106 5 x 107
2.3 x 10° 1.6 - .2 = .4
2.3 x 107 16.6 - 15.3 = 1.3
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Thus at 2.3 x ]06 emission photons there is a difference of .4 in the

6 to 5 x 107 tranémission photons;

%RMS uncertainty going from 5 x 10
whereas at 2.3 x 107 emission photons there is a difference of 1.3.

Example 2. For a 20 cm disc with y = .18 cm_], we see from Table 4.11

Transmission Photons
5

Emission Photons 3.7 x 10 o
5 x 10° 16.3 - 435 = 2.8
5 x 107 138 - 9.8 = 4.0

where for IO==1000 the total number of transmitted photons is 3.7><105.

The size of the disc influences the % RMS uncertainty. For the
20 cm diameter disc, with u=.15 cm'], transmitted photons = 5.2x10°
.(IO:=]000)’ and emission photons = 1><1O6, the % RMS uncertainty equals
30,7; whereas for the 30 cm diameter disc, with u=.15 cm'], transmitted
photons = 5.1 X106,}and emission photons = 2.3><106 the % RMS uncertain-
ty equals 41.6. Even with better transmission and emission statistics
fof the 30 cm disc, the reconstructed 20 cm disc had a better % RMS
uncertainty. This same result was reported for simulations with
unattenuated data (Budinger et al., 1978). It was found that for an
equal number of recorded events the uncertainties were reduced when the
activity was concentrated in a smaller portion of the field.

The % RMS uncertainty in the transmission results decrease with
an increase in the incident and transmitted photons. Note in Table
4.10 that when the attenuation coefficient decreases from .15 to .0958

7 /

and the total incident photons decrease from 9.0 x 10’ to0 7.9 x 10 .
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the transmitted photons increase and the %RMS uncertainty decreases.
However, as is shown in the second grouping for u = .0958, when the
transmitted photons are kept constant (5 x 106), the incident photons
decrease by almost a factpr of 3 going from u = .15 cm'1 to u = .0958
cm_] and the %RMS uncertainty increases. Remember that the errors on
the projections are a function of both the incident photons and the
measured photohs as given by o(projection) = [o(Incident)_1 +
o(measured)']]]/z.

The results of the tfansmission reconstruction for the 20 cm
diameter disc in Table 4.11 indicate that the %RMS uncertainty given
by Eq. (4.83) becomes large as p~0 because the standard error given
in the numertor of Eq. (4.83) does not go to zero as fast as the
estimate of the mean in the denominator. Therefore there are two
things influencing the %RMS uncertainty for the transmission data:
(1) for a constant number of incident photons Io’ lowering the
attenuation coefficient increases the transmitted data resulting in
smaller errors (Eq. (4.81)) in the projection data given by Eq. (4.80);
(2) however at the same time the numerator in Eq. (4.83) does not
decrease as fast as the denominator, thus increasing the %RMS uncertain-
ty as the attenuation coefficient decreases.

Table 4.11 indicates that for the same transmission and emission
statistics, increasing the attenuation coefficients results in higher
%RMS uncertainty. This observation is similar to the results in

Tables 4.2 - 4.7 which indicate that the trace [(ATA)_]]/MN which

is a measure of variance for projections with equal errors, increases
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as the attenuation coefficient increases.

4.9 Applications

Single-photon ECT with attenuation compensation has been applied
to both human and canine studies using various radionuclide (Budinger,
Cahoon, Derenzo, et al., 1977). The ability to image a particular
organ depends on the ability of the organ to take up the radionuclide
compared to the surrounding tissue, the energy of the emitted photon,
and the measured statistiés for both the emission and transmission
studies. For example, the use of radionuclides for myocardial
imaging generally give a Tow target to nontarget contrast ratio. For
high energy radionuclides such as potassium-43, rubidium-82, rubidium-81
and -82m, and cesium-129, fewer photons are attenuated as compared
with T1-201 and Cs-131, however the contribution of activity from back
muscles and lungs tends to wash out the image on projection (Budinger
and Rollo, 1977). The énterior myocardium is well visualized using
Tower energy radionuclides such as cesium-131 and thallium-201; however
photons from the posterior myocardial wall are greatly attenuated and
quantitation of septal and posterior wall defects is seriously Timited.
The fundamental problem is not so much the specificity of uptake of
radionuclide in the organ versus uptake in the contiguous tissues, but
the physical properties of the radionuclide which one can equate to
attenuation coefficients which in turn dictate the required statiStics
to insure a desired %RMS uncertainty. |

Results from a study showing abnormal accumulation of isotope in

two tumors in a 50 year old woman are shown in Fig. 4.11. This study'
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Tc-99m TUMOR
ACUION

XBB 7711-7514

Transverse sections showing abnormal accumulation in the
head of a 50-year-old patient using 99mTc—pertechnetate
and 36 views. The measured number of emission events for
each section are (from bottom to top) 220582, 251213,
265286, and 222584, respectively.
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9ngc-pertechnetate

was done one hour after injection of 15 mCi of
(140 keV). Normal brain tissue is either relatively or completely
impermeable to the passage of most radionuclides from the blood. In
contrast, brain tumors are much more permeable than normal brain and
this resuits in a significantly higher relative concentration of
radioactivity in the tumor. For the study shown in Fig. 4.11, the
vprojection data were collected in 10 degree increments over 360° which
gave approximately 240,000 counts per s]ice. The attenuation coeffi-
cient was assumed to be constant. - Table 4.5 indicates that for perfect
transmission statistics the percent root-mean-square uncertainty is

-1

between 91.5% and 41.5% for attenuation coefficient y = .15 cm * and

emission counts of 2.5 x 105

. This means that the tumors which have
a contrast of 2 to 1 can be seen, but the boundary of the tumors are
hard to delineate.

Potassium and potasﬁium analogs such as cesium have a high
affinity to the heart because of the high muscular and nerVe activity.

129¢¢ in the human myocardium are shown

Transverse section images of
in Fig. 4.12 for a patient who previously had four myocardial infarctions.
The study was done by taking views at 20° increments. A transverse
section reconstruction of attenuation coefficients was performed first

in order to correct for attenuation in the emission reconstruction.
Section 4 shows a paucity of uptake in the posterior wall and sethm
consistant with electrocardiographic findings. The left myocardial

wall, septum, and right ventricular myocardium are recognizable. The

dome of the liver is seen in sections 2 and 3 as wouid be expected,
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since the liver accumulates cesium and potéssium analogs with about the

same avidity as the heart. In order to obtain the.correct attenuation

coefficients for Cs-129 (375>kev—48%), the results of the transmission

study using Tc-99m (140 keV) were extrapolated using the curve in Fig.

2.4 so that the attenuation coefficients corresponded to the 375 keV ¢
photons emitted from Cs-129. This means in tissue the attenuation coef-

ficient is approximately .11 en .

The transmission study in Fig. 4.12
would have a somewhat higher %RMS, probably about 15%, for an incident

number of photons I0 of almost 4,000 pér projection bin thanbthe 8.98%

in Table 4.10 for pu = .0958 cm'] and total incident photons of 7.9><]O7
(Io==8690). The apprdximate number of 2.5><]05 emission events for the
sections in Fig. 4.12 were much less than the 2.3><105 emission events

given in Table 4.10. Therefore one would guess that fhe %RMS error in

the emission images of Fig. 4.12 could be as high as 50%.

When injected intravenously, selenomethionine is rapidly removed
from the blood and is utilized in protein synthesis. The isotope will
eventually reappear in the form of plasma proteins. The selenomethionine
concentration in muscle is much lower than in the thyroid, parathyroid,
or blood because of the slow rate of turnover of muscle protein. A
study shown in Fig. 4.13 was done on a dog to see how well
755e—se1onomethion1ne (136 keV-57%, 265‘kev-60%) is taken up in the "
heart. On the left are two transverse sections demonstrating the
position of the heart in the chest with sufficient resolution to show

75

the esophagus. The acéumu]ation of "“Se in the myocardium is shown

on the right. The results in Table 4.11 indicate that the %RMS
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uncertainty for 105 counts with Io = 1000 is approximately 90%. Since
the target is not distributed over a 20 cm disc as was simulated in
Table 4.71 the results in (Budinger et al., 1978) would indicate that
the %RMS uncertainty is better than 90% when the activity is concen-
trated in a smaller portion of the field.

The accumulation of 99m

Tc-sulfur colloid in the Tiver and spleen
is shown in the transverse sections of Fig. 4.14. The Kupffer cells
of the Tiver which functioh to remove foreign substances from the blood
accumulate the labeled sulfur grahu]es of T um in diameter.  (See also
Fig. 1.2 and dfscussion in Chapter 1.) The better the Tiver is

functioning, the more 95m

Tc attached to sulfur colloid will be available
for imaging; that is, the funcfioning Tiver becomes labeled. The time
required to reach a steady state accumulation is 3 to 5 minutes, and
the‘time during which the distribution of concentration remains

constant is 30 minutes or Tonger. The results in Table 4.10 indicate
that the %RMS uncertainty for a uniform distribution of 2.3X1O6 counts
in a 30 cm disc is approximately 41%. The resuits in Table 1 of
(Budinger et al., 1978) indicate that the %RMS uncertainty is better

than this (maybe as good as 20%) since the liver and spleen concentrate

the isotope in approximately 30% of the field.
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Figure 4.14.
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Accumulation of J9m
of the liver and spleen are shown both with and without
attenuation correction using the transmission reconstruc-
tion of the attenuation coefficients. 1In 72 projections
over 360° the emission events in each transverse section
totaled from bottm to top - 4.10x10°, 4.58x106, 3.56x106,
2.69x106, 1.69x10° and .81x10° events. The incident
number of photons per projection bin (Ig) for the trans-
mission study is from bottom to top - 1556, 1616, 1611,
1575, 1534, 1492, and 1396.

Tc-sulfur colloid in transverse sections
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HUMAN MYOCARDIUM, LIVER,
SPLEEN TRANSVERSE SECTIONS

Tc—99m 99mTe . Sulfur Colloid

TRANSMISSION EMISSION

No correction Correction for
for attenuation attenuation

XBB 767-5951

Figure 4.14.



-211-

5. THE CONVOLUTION METHOD FOR CONSTANT ATTENUATION

5.1 Introduction

The convo1ﬁtion algorithm proposed by Tretiak and Delaney (1978)
for attenuation compensatfon in single-photon emission computed
tomography is a very appealing approach for reconstructing projection
data attenuated by a constant attenuationbcoefficient. The convolution
algorithm given in Eq. (2.11) is now used in most commercial x-ray
scanners and positron emission tomographic systems because of its
computational efficiency énd because it requires very little computer
memory. Closed form expressions for two important convolution functions
used in these systems were developed by Ramachandran and Lakshminarayanan
(1971) and Shepp and Logan (1974). For the case of constant attenuation
the convolution function does not have a simple closed form expression.
However, convolvers can be evaluated using least-squares and poWer
series expansion methods, or window functions can be designed for
filtering the projections in frequency space which is an equivalent
operation to convolution in real space. The reconstruction results
presented in this chapter indicate that in the case of constant
attenuation, attenuation can be compensated for in emission computed

tomography using an attenuation dependent convolver which reconstructs
the transverse section reliably and requires little computer memory and
very little computer time.

The reconstruction of projection data which has been attenuated
by a consfant attenuation coefficient u is performed by first modifying

. the projection data at the angle & and lateral sampling £ using
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Eq. (3.76) so that they conform to projections represented by the
modified attenuated Radon transform:
A R, 00 N
p(.0) = [o(3) %L se-c5, g nag (3.93¢)

~

where p is the transverse section tomogram and ¢ X, 8 and (X, g} )

denotes the dot product between the position vector X = (x,y) and the
vectors § = (-sine, cos6) and Q} = (cosB, sino), respective]y! After
this modification, the convolution is performed with a convolver Cu
which has been previously determined for a particular attenuation

coefficient u so that the attenuated back-projection of the convolver,

2t 1

~ ~ ~uiX, )
h(x) = ,/. cu(<x,g,))e M 27 de, (5.1)
0

is equal to a desired point response function h. The filtered projec-
tions are then back-projected using the attenuated back-projection |
operator given in Eq.‘(3.102). This algorithm gives a reconstructed
image p which can be represented for continuous data sampling by the

formula

(o]

~ d R, 65
o(X) = [f c (5.8 =€) plg,0)dg ™R 7 do. (3.106)
' 0

-00

We see from Theorem 3.29 that under ideal conditions (continuous
angular sampling and infinite data statistics) one would like to choose
the convolution function cu so that its back-projection h given in

Eq. (5.1) is a delta function. However in practical applications with
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finite data samples over a finite number of projections, the discrete
back-projection of cu can only approximate a delta function. In this
case, the function h is referred to as the point spread function of the
reconstruction procedure. Convolvers with point spread functions which
closely approximate a delta function give very good spatial resolution
but tend to amplify statistical fluctuations in the data so that
contrast resolution deteriorates. |
If the pdint spread function is isotropic, for example, it may be

represented as a Gadssian; thén for continuous sampling, the convolu-
tion function Cu correéponding to this type of point spread function
is the solution to the'integra1 equation

| 2m

h(r) = ./. cu(rsine) exp[-urcos6] de. (5.2)

0

For u = 0, Eg. (5.2) is known as the Schldomilch's integral equation
(Whittaker and‘Watson, 1962), and if h(r) has a continuous derivative,

c(&) 1is given by

/2
c(g) = ﬂg_g_h £ f h'(£sino) do . (5.3)
0

Tanaka and Iinuma (1975, 1976) evaluated Eq. (5.3) for a Gaussian point
spread function h.
A convolution function ¢, is a solution to Eg. (5.1) if and only

if cu is a solution to the operator equation

Ah=AAcC (5.4)
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Using Theorem 3.28, we can express this opekator equation for weights

W(x,y) = w(£,8) =1 as the integral equation

| o 1
(Auh)(i,e) iji/;u(i ,68') Tsin(6-6")

«exp|u(e-) ST Taerde.  (5.5)

Davison and Griinbaum (1979) used an eigenvalue decomposi-
tion of the operator AUA: to solve for cu(g',e') for various point
spread functions h. Convolvers were evé]uated for both equal angular
sampling over w and for limited angular sampling. With attenuation
(i.e., p#0) the operator AUA:_does not have an obvious singular
value decomposition which can be expressed as a closed form solution.
In this chapter we will first look at least-squares methods for
solving Eq. (5.1) which give a discrete convolution function and then
look at methods which give an analytical solution to Eq. (5.1). A
statistical analysis will show that the percent root-mean-square
uncertainty increases with an increase in attenuation and increases with
a decrease in total measured photons.

5.2 Convolvers Evaluated Using Least-Squares

The point response function h in Eq. (5.1) can be expanded using

the basis fuhctions.given in Eq. (4.1):

.

L
h(x) = 3
_ i=1 ]

N
3 hij Xij(x) . (5.6)

For finite angular sampling Eq. (5.1) reduces to
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n W R,05 )
h(x) = 20 c (KR, " m’ (5.7)
m

If we sample h at gij e domain X33 then we see from Eq. (5.6) that one

obtains the following system of equations

~u(R o)
hos =3 Cu((ﬁij’ 9. ) e %550 O, | (5.8)

6 ) can be expressed as the linear

The convolution function ¢ (<xij’ o

H
interpolated value between discrete samples of Cu

Cu((xij’ Qm>)=bckf + (1-f) Cray (5.9)

where k = INT[<§1j, 9"3] (INT [Z] meaning the smallest integer less
than or equal to Z) and f((xij’ Qﬂﬁ)z(xij’gm)' k+1. For u=0 and for
the Shepp and Logan convolver (Shepp and Logan, 1974), Eq. (5.9) is
an exact representation of the continuous convolution function. The
Shepp and Logan convolver was designed to be piece-wise 1inear.

!

Equation (5.8) can be rewritten as

Gl)

_ A _ ~ . —U()?..,
hij -%;[ck f(<xij’9m))+ (1 f((xij’gm))) Ck+1] e ij’~m (5.10)

which reduces to

_ km “
hij = %; %; Aij C (5.11)

km . . ~ ~
where Aij is either one of the factors f( X;j5 Qm>)or (]'f((xij’ gm)))

or zero. Equation (5.11) can be represented in matrix notation

ATc=H (5.12)
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where the MNxKL matrix AT is a discrete back-projection operator, the
KLxT matrix C is the convolver and the MNx]1 matrix H is the point spreéd
function. The notation A is used to denote that this is a modified
attenuated projection operator. Therefore we see from Eq. (5.12) that
the convolver C can be chosen such that the back-projection of C fits
some desired point spread function in a least-squares sense.

The matrices A and C in Eq. (5.12) can be partitioned:

C,
C . .

(A-.ll- AZ A[) 2l =y ~ (5.13)
C

where the MNxK matrices AE are the back-projectors for each angle and
the Kx1 matrices Cl are the convolution functions for each angle. If we
assume that the convolution functions are equal for each angle, i.e.

C% = C for 2=1, ..., L, then one can rewrite Eq. (5.13) as
] _
T -
(Z AQ)C = H (5.14)
2=1

where the matrix in parentheses is an MNxK matrix. We can now partition

C and rewrite Eq. (5.14) as

> ) (4
A Co) =N  (5.15
(JL=1 ") ¢ | (5.18)

where CO is the central element of the convolver and the (K-1)/2x1
matrix C] contains the other elements of the convolver which is sym-

metric about CO' Now the matrix representing the sum of the individual
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back-projectors for each angle can be rewritten as
L L .
(s; A") i (g (AM A%0 Azz)) (5.16)

T T

where Az] and A22 are MNx(K-1)/2 matrices and ASL0 is a MNx1 matrix.

Substituting Eq. (5.16) into Eq. (5.15) gives

P R

The system of equations in Eq. (5.12) has now been reduced so that there
are (K-1)/2+1 unknowns to solve for.

The solution to Eq. (5.17) is

Co
((:1) = (M" w8 M H - (5.18)

where

[AEO <AL + AEZ)] . (5.19)

and‘(MTM)G denotes the generalized inverse. Examining MTM, we see that

it
Py
M-
—

it can be expressed as

N | . -
! T (AT 4 AT T (T T
MM = {}; [Azo (Am + A,Lg)]} ;{Azo (Am + Azz)](S.ZO)

o
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1x1 1x (K-1)/2
TxN  1xN XN Nx(K-1)/2
_ T ,
DA A T T
n0 "m0 A (A + A )
n,m e n0 \ ml m2
T i ]
M'M =
T T T (5.21)
AL+ A A A+ A )(% + A )
2%% ( nl né) mO0 P ( nl n2)\ 'ml m2
(K=1)/2xN  NxI] (K=1)/2xN  Nx(K-1)/2
N e~ ——
(K-1)/2x1- (K-1)/2 x (K-1)/2

Therefore the evaluation of the convolver requires determining the
generalized inverse of a [1+(K-1)/2] x [1+(K-1)/2] matrix. For example,
if K =129, this would be a 65x65 matrix.

Using Eq. (5.18) the convolvers tabulated in Table 5.1 were de-
termined for various attenuation coefficients. The back-projection of
these convolvers approximated in a least-squares sense the point spread
function H which is equal to the unattenuated back-projection of the
convolution function given by Ramachandran and Lakshminarayanan (1971)

with the exception of p=.15% p1'xe1'1

in which the point response was
the back-projection of a Shepp and Logan convolver (1974). The point
response functions were determined by back-projecting over 2m, 360 equal
projections representing the appropriate convolvers into a 64x64 array
using Eq. (2.4).

A plot of the estimated convolvers is given in Fig. 5.1 and a
plot of their corresponding Fourier transform is given in Fig. 5.2.

The Fourier transform of the convolvers for low attenuation coeffi-

cients (u = .075 and .0958 pixel"])_is very close to a ramp function
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Table 5.1. Convolvers for constant attenuation coefficient determined.
from Eq. (5.18). The point response function was deter-
mined by back-projecting over 2w, 360 equal projections
of the Ramachandran and Lakshminarayanan convo]ution
function with the exception of p = .15% pixel™" in which
the point response was the back-projection of a Shepp and
Logan convolver.

Attenuation Coefficient

075 .0958 15 15 .18
o | 7.83x107" 7.75x10°] 5.47x107] 4.55x10"7  2.40x107"
1| -3arao”! -zatxott cszxao! cnooxio”! -1.1ax1072
2 | <1310 30 -aex107? -6.11x107% -2.62x10°2
30| -3.54x107%  -3.45x1072  2.71x1072 -2.41x107% -3.43x70°2
4 | 9.09x07 c2s9x1070 <2.75x1072 2.73a1072 -3.49x10°2
5 | -1.28x107% -1.6x107% 1.98x107% 1621072 8.24x1073
6 | -5.8307% 16107 -2.60x1072  -2.49x10°%  -2.06x10°2
7 | -7.08x107%  -7.14x1073 5.71x10"3 7.83x1073 1.23x1072
8 | -2.24x100%  sssx107t 6731073 -1.02x1072 -6.70x70°3
9 | 4403 3410073 9.12x10"3 9.04x10°%  -2.74x103
10 | -73ox107t c2usex0md S33aa0? s2.77x1072 -2.77x1072
n | -z.88x107  -1.58x1073 2.26x10"2 1.77x1072 1.53x1072
12| -9.3x107%  2.64x1073  -1.48x1072 -1.18x1072 2.76x1073
13 | -l.7axao®  -3.66x1074 1.59x10™2 1.19x1072 8.27x1073
14 | 3270t c1i0ex07d souesx07d -7.06x102 g.40x1073
15 | -0 201607 S1.20x107% -ousaxio”d -1.45x1072
16 | -1.55x107% 8.98x10"™* 1.69x1072 1121072 -1.43x1072
17 | -1.a9x1073  —2.40x107  L2.88x103 -3.96x107% 5.50x10"3
18 | -5.93x107%  -5.13x107%  -1.00x1072 - -9.48x1073  -1.66x10°2
19 | -9.62x100%  -1.06x1073 2.41x1073 1.95x1073  4.90x1073
20 | -2.11x07% 4.00x107° 8.94x10"3 7.99x1073 1.26x1072
21 | 773007 -377a07t -6.34x107% -1.54x7073 1.11x107
22 | -tosx107®  2.06x107%  -1.03x1072 -7.99x10°3  -1.10x1072

XBL794~3389
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TABLE 5.1 (Cont'd)
CONVOLVERS FOR CONSTANT ATTENUATION COEFFICIENT

Attenuation Coefficient

XBL794~3386

.075 .0958 15 15% 18
23 | -1.20x1073  -1.38x1073 4.24x10"3 4.40x10"3 9.65x1073
24 1.81x10° 8.84x10™ 2.66x1073 7.60x10°%  -1.03x1072
25 | -6.88x10%  -9.10x107  -7.48x1073  -4.75x1073 1.36x1073
26 9.31x107% 2.52x107°  2.15x1072 1.75x1072 2.73x1072
27 | 694107t -lo2x1073 702 oerxaod -2.28x1072
28 1.50x1073 3.51x107° 1.78x1072 1.38x1072 2.33x1072
29 | -1.57x107°  -2.96x1070  -1.86x1072  -1.30x10°2  -2.50x10-2
30 | -6.91xa07%  -s.21x107 6.68x10™3 4.07x1073 1.51x1072
31 2.6010°"  g.aax10t  7.2x07t 243073 -1.491073
2| -8.76x07% 14307 -45ax1073 sieex107d -6.81x1073
33 3.04x10"3 6.76x10"3 2.33x1072 1.90x1072 1.63x1072
¥ | -2.33x107° 4733107 ieox1072 -1.22x1072 -7.18x10°3
35 9.43x107% 2.08x1073  -1.86x107°  -3.58x10°3  -1.58x10"2
36 | -2.16x107° 42661070 -13x1072 s.oax107? -3.37x10°3
37 2.09x107% 5.8310°% 1,930 6.osx1073  -1.201072
38 5.62x1073 1.33x1072 6.77x10"2 5.23x1072 8.65x1072
39| 21091072 25302 8a7x107% -4.42x10°2  -2.72x1072
40 4.65x1073 1.09x1072  -6.23x1072  7.90x102  -2.37x10"]
iy 4.74x1073 1.26x1072 2.08x107! 1.78x107! 3.95x107!
2 | <1308 sa.2800 casxao] -2.42x07) -3.83x107]
43 1.45x10"2 3.75x1072 2.06x107! 1.46x107" 7.55x10"2
4| 4541072 1207 waaxio”! -2.eexd0”! 2.78x107)
5 | 372005 Co.02x107°  -3.12x07% -2.02x10°8 1.85x107%
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Magnitude

-0.4 -

-0.6 [ | 1 ] | l A L ] ]
0] 2 4 _ 6 8

Distance
XBL787-3398

Figure 5.1. Convolvers tabulated in Table 5.1 for attenuation
coefficients of u = .075, .15, and .18 pixel~
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and .18 pixel-l.
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Figure 5.2.

The Fourier transform of the convolution functions given
in Figure 5.1 and Table 5.1 for u = .075, .0958, .15,
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which is equal to the Fourier transform of the Ramachandran and
Lakshminarayanan convolution function. For higher attenuation

Uand .18 pixel™, the filters

coefficients such as p = .15 pixel”
osc%]]ate considerably and in particular at low frequencies bend away
from the ramp function and approach zero. This is consistent with the
result given in Eq. (3.108) which indicates the projection data attenu-
ated by a constant attenuation coefficient has no useful information for
frequencies less than u/2w cycles per projection bin. Figure 5.2 shows
that for frequencies betwéen u/27 and approximately .15 cycles per pro-
jection bin, all the filters approximate a ramp, suggesting that these
intermediate frequencies are not affected by atténuation, whereas the
higher frequencies are distorted.

Figure 5.3 gives the reconstruction of a 30 pixel diameter phantom
using the convolvers in Table 5.1 applied to 360 equally spaced projec-
tions between 0 and 2w. The resolution deteriorates as the attenuation
coefficient increases. The reason for this becomes more evident if one
analyzes the width of the central window of the convolvers plotted in
Figure 5.1. As the attenuation coefficient increases, the céntra]

window becomes wider--this is noticeably so for u = .18 pixel_].

- 5.3 Convolvers Evaluated Using Power Series

In the previous section we obtained a convolution function which
was piece-wise linear and thus needed only to determine the function
at discrete points. To obtain a continuous varying convolution function
which is not necessarily piece-wise linear, we can expand both fhe

convolution function c, and point response function h in Eq. (5.1) in
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CONVOLUTION RECONSTRUCTION OF DATA
ATTENUATED WITH CONSTANT ATTENUATION

Original Phantom

® =.075

73 =.0958

BB 792-1036

Figure 5.3. Reconstructions of a 30 pixel diameter phantom using the
convolution algorithm (Eg. (3.106)) applied to 360 equally
spaced projections between 0 and 2w. The convolution
functions for u = .075, .0958, .15, .15%, .18 pixel=1 are
tabulated in Table 5.1.
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terms of a power series and by equating coefficients obtain a power
series solution for ¢, (Miller, 1979).

As an example, take a point response function h which is equal to

- 1 -mréys? -
a Gaussian (h(r) = — e ). The solution to the equation
§
2,2 4T
;%-e'“r /8 =./~ ¢ (rsing)e Mrcost 4q ' (5.22)
S 5 2 .
is
_ 2 4 2n
cu(g) =ay tayE ol tooha, B4 (5.23)

where the first four coefficients are given by

ag = 1/(2ns%)
%= [+ ()7 (m)]
oy = g 11+ ()70 + ()" (326%))
2 :
% = ;igS [1+ (1) %/(am) + (u8)*/(320%) + (us)®/(3881%)]

In general,

%0 T B(2n){co'fCZ(UG)Z/ﬂ"+c4(u6)4/ﬂ2-+Q6(u§)6/ﬂ34_.._+ czn(ua)Zn/ﬂn}
(5.24)
where

= (_])n 2+4.,,.2n "
B(zn) 2% ]o3.5.__.(2n_T7 0l 62n+2 (5.25)

and
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2m

2n
- (_1\n-1§B(2n-2) &~ n! 2. . 2n-2
ey = (-1) { -1, ~/. cos“6 sin®""“ede ¢, ,
'IT‘ . 0
2m
2n-2
+ B(Z"'4)‘; ni f cos*s sin? % ode Cong * o
’Tfn- 4' 0
6 21
..... +ﬂ25)—5—“—!— f c0s?" 49 sine do ¢
T (2n-4)
4 2m
+ B(2) & n! coszn_ze sin“6 do ¢
m(2n-2)1 2
0
( )2 2m
B(0)§™n! 2n
+—(_2—nY!_ f cos” 0de 0‘0} (5.26)
0

Evaluating the integrals involving products of sines and cosines gives

_ 1 §r@/2) _1(5/2 r(7/2
Con = T(1/7) { 2T Con-2” T 4T %n-4 T BT %2n-6
3 1 1
'(n-3%) T'(n-%) T'(n+%)
+ + (_])n—1 2 o+ ( 1 n 2 e +(_])n+] B 2 c
(2n-4)T “4 (2n-2)T =2 (2n)] 0
1 1 1 .
= e - d + d
22 11 2n=2 LA, T2n-4 " .6 5 T2n-6

PP 3 D kP D o, + n"t e (5.27)
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Thus for the parameter &, the convolution function cu is given by
Eqs. (5.23), (5.24), (5.25) and (5.27).
The full-width at half maximum (FWHM) of the point respohse

function is related to the parameter § by the equation
2 FuHM) >
52 = m( FWHM)
41n2
This gives a Gaussian function which has an area equal to 1. The
spatial resolution of the reconstruction will improve with a narrowing
of FWHM, but the noise amplification will increase. Therefore FWHM

must be choosen based on the statistical fluctuations in the data and

the resolution requirements for the reconstructed image.

5.4 Fourier Space Filters

Due to the convolution theorem the convolution algorithm can be
implemented either by convolving the projectibn data with a convolution
function in‘rea] space or by multiplying the Fourier transform of the
projection data by an appropriate filter in frequency space. Applying
the convolution theorem to Eq. (3.106), the reconstruction of modified

attenuated projection data for a constant attenuation is given by

2
- N A _L
o(R) = f f @ (R) P(R,6) 2T R CK,0) jp o M K8 0 4o (5.28)
0 =00

and is implemented digitally by the back-projection of filtered
projection algorithm described in Section 2.2.4. The steps of this

algorithm can be symbolized as:
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p = B, {C.}’]'] [’c”UCJ’](p)]} : (5.29)

where QII denotes the one-dimensional Fourier transform and Bu denotes
the attenuated back-projection operator given by Eq. (3.102).

This algorithm can be developed with various options for frequency
space filters which lends itself to easily changing the noise propaga-
tion vs. resolution properties of the convolution kerne1; One can
improve the resolution by changing the fi]tér shape, but the noise
amplification will increase. Alternatively, one can suppress noise;
however, this noise suppression wi]1-come at the cost of resolution.
Fourier space filtering also has the advantage in that the computational
method for reconstructing is more efficient using the Fast Fourier
Trahsform than convolving in real space.

The back-projection of the filtered projection algorithm has been
implemented in the RECLBL Library (Huesman et al., 1977) for unattenuated
data with filter functions equal to the product of a window function

w(R) and the absolute value of the frequency:
Z(R) = |R| w(R) . (5.30)

Window functions such as the Butterworth, Hann, Hamming, Parzen or a
rectangular window have different resolution and noise amplification
characteristics. The width of these windows is measured as the distance
between the closest zeros on each side of the central lobe of the inverse

Fourier transform of the window function. Ideally, for good resolution,
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- the window function should have a central lobe that is tall and narrow.
The side lobes for the inverse Fourier transform of the window

function gives rises to the Gibbs phenomenon, which is observed as
artifacts that are contamination from adjacent parts of the reconstruc-
tion. These side lobes can amplify statistical fluctuations in the

data if the lobes and data fluctuations are in resonance.

For constant attenuation, window functions can be designed which
reconstruct the emission distribution with good resolution. These
window functions must be designed not only to give a narrow central
window to insUre adequate resolution but must be able to deconvolve
the effects of attenuation and leave the required spatial frequencies
which will reconstitute the image when back~projected using the
attenuated back-projection operator (Eg. 3.102).

It has been proven by Tretiak and Metz (1979) that for conétant
attenuation, window functions can be designed for continuous sampling
which reconstruct the emission distribution with a desired spatial
resolution. If we take the Fourier inverse of Eq. (5.30) and sub-
stitute it into Eq. (5.2) we see that the point spread functibn can

be represented in terms of the window function w(R):
21 o . _
h(r) = ff IR| w(R)eZTIRISINGyp o-urcosty, (5.31)
J -o

Rewritting Eq. (5.31) so that the first integration is with respect

to 6, we have
0 2m ’
h(r) = f IR] w(R) f e?MRrsing-1rcosd yoqp (5.32)

0
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Integrating over 0 gives
- ' 2 2,, 2
h(r) = 2n f IR w(R) g (2nr VRZ - v2/an? ) oR (5.33)

where JO is the zeroth order Bessel function.
If the window function is chosen so that w(R) is zero for
|R] < w/2m and w(-R) = w(R) for IR| > u/2m, we can rewrite Eq. (5.33):

o]

h(r) = 2r f 2R w(R) JO(ZﬂY‘\/RZ—uZ/%Z) dR. (5.34)
u/2m

Making the change of variables s = VRZ-u2/4ﬂ2 gives

ol

h(r) = 2n f 2u([s2 + 12/an21" %) J,(2ms) sds . (5.35)
0

Therefore we see that the point response is equal to the Hankel transform

[e ]

1/2
of 2w([52-+p2/4n2] / ), where the Hankel transform is H{f;r} = 2r [ f(s)

6}
X J0(2wrs)sds (Bracewell, 1965).
5.4.1 Rectangular Window
One window function which is of particular interest is a

rectangular window function given by

1 if war<|RI< % |
w(R) = (5.36)

0 otherwise .

Note that as p ~ 0 |R|w(R) becomes the ramp filter which is equivalent

to the convolution function due to Ramachandran and Lakshminarayanan
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(1971) and Bracewell and Riddle (1967). If we substitute [524‘u2/4ﬂ2]]/2
into w(R) we dbtain
’ 1 2 2.1/2
1 if 0<IS|<§[]-U/TT
w(s) = { (5.37)
0 otherwise .
Taking the Hankel transform of w(s) gives a point response function
2.1/2
: 2 2]/2 J](TTI:]'UZ/TT r)
h(r) =.[1-u /T J - (5.38)
where J] is the first order Bessel function. We see from Eq. (5.38)
that the width of the impu]se response deteriorates as the attenuation
coefficient increases. Note also that for attenuation coefficients
greater than w, the image cannot be restored.
If instead of Eq. (5.36) the rectangular window function is
1/2
1Af w/2en < |R| < % [14pE/n]
w(R) = (5.39)
0 otherwise ,
then substituting [524-u2/4ﬂ2]]/2 for R, w obtain
1 Af 0<|s| <%
w(s) = (5.40)
0 otherwise .
"Taking the Hankel transform gives a point response function
3 () |
h(r) = - (5.41)

In order to obtain a fixed point response function for all u the

rectangular window function w(R) must vary as a function of p as given
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in Eq. (5.39). However when we implement the filtering procedure
digitally using the Fast Fourier Transform, we obtain a maximum
frequency of 1/2 cycle per projection bin. Equation (5.39) tells us
that in order to use a rectangular window with a fixed point response
function for all u, we need to sample the projection data more
frequently than a'projection bin.

5.4.2 Gaussian Window

To improve the resolution of the reconstructed image a Gaussian

window function can be used

expl-m(R® - 12/41%) /81 if wow < |R|
w(R) = { ~ (5.42)

0 : otherwise .

1/2
If we substitute [524-u2/4ﬂ2] / into w(R), then the Hankel transform

of w(s) gives a point response function
2,.2
h(r) = 1 g/ (5.43)

The window function given by Eq. (5.42) insures that the point response
remains constant for all attenuation coefficients. Digitally
implementing Eq. (5.42) zeros all frequencies greater than 1/2 cycle

per projection bin which causes the point spread function to deteriorate

with increase in attenuation.

5.5 Noise Propagation in the Convolution Method for Constant
Attenuation

In contrast to the variable attenuation situation where errors in

the reconstructed image are the result of Statistica] fluctuations in
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the transmission and emission data, the noise bropagated by the
convolution algorithm with constant attenuation is the result of
statistical f]uétuations only in the emission data. If these
fluctuations are statistically independent and Poisson distributed, the
estimate of the variance and mean for each projection random variable

is the projection value measured:
E{pY(g,e)} = pY(E,e) . (5.44)
2 _ .
" {p,(£,8)} = b, (£,0) . (5.45)

Using Eq. (3.76), the éstimate for the mean and variance for the

modified projectibns given by Eq. (3.93c) are
E{p(£,06)} = pY(E,e)/GU(E,e) . (5.46)

o*p(£,0)} = p,(£,0)/[6 (£,0)]° (5.47)

where Gu(g,e) js the exponential factor given by Eq. (3.72).

5.5.1 Statistical Aspects of the Convolution Algorithm

Errors in the reconstructed image are more easily analyzed for the
convolution algorithm than for the iterative methods discussed in
- Chapter 4. Using Eq. (3.106), one can express the mean value function

for the reconstructed image as

mp(X) = Bu{cu(i) * E[p(£,0) 1} (5.48)
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where Bu s the back-projection operator given by Eq. (3.102) and
p(£,8) are the modified projections. Substituting Eq. (5.46) into.
(5.48) gives an expression of the mean value function mp(i) in terms

of the measured projections--

mp(9)==Bu{cu(€) * [pY(E,G)/Gu(E,G)]} (5.49)

The variance in the reconstructed image is given by the equation

o2(8) = E(o(%) - ELo(R) 117 . (5.50)

Barrett and co-workers.(1976) have shown for independent projection

samples that Eq. (5.50) reduces to
oa(R) =By, (c2(8) * olple,0)1) . (5.51)

To express this in terms'of the measured data py(g,e), we use

Eq. (5.47) and obtain

o2(%) =By, e, (£)7 * [p. (£,0)/(6 (£,))13 . (5.52)

The percent root-mean-square uncertainty defined as

| 10002 (%)}/2
%RMS uncertainty = e X (5.53)
(x |

m, )

can be expressed in terms of the measured projections py(E,G) by

substituting Eqs. (5.49) and (5.52) into Eg. (5.53) -
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2, 2717172
100(8 {c (£)" * [p (£,0)/(6 (£,8))"1}]
B (e (&) * [p (£,0)/6 (£,6)]}

% RMS =

(5.54)

Note that the % RMS is a function of position in the transverse section.

The autocovariance function,
Cop3y5%) = ELLa(3)) = m (3)1[0(%y) - m (%)} (5.55)

gives a measure of the "texture" of the reconstructed noise (Metz and

Beck, 1974). One can show that

N o -dX o'
Cpp(x1,x2) =ffcu(< X1 ,0Y-8) e 1°~

A 1 ~

% ¢ (Gps@) - E) e %2287 5210(8,0)1 dedo .  (5.56)
A covariance function which decreases rapidly to zero as the distance
between points increases indicates that the reconstruction values are
relatively independent except at small distances; whereas, a covariance
function which decreases slowly would indicate that the reconstruction
values have correlations of greater extent. A positive covariance
indicates that the errors for the two points §1 and iz are likely to
" be of the same sign. Negative covariance indicates that the errors
are of the opposite sign and the reconstruction va]ueé have positive
to negative fluctuations at the two points about their own mean value.
Note that when §1 = §2 in Eq. (5.56), the autocovariance reduces to
the variance given by Eq. (5.51). For stationary random processes,

the covariance function depends only on the distance between the two
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points Q] and §2; however, this is not the case in emission computed
tomography.

5.5.1.1 Point Source Image |

For a point source image, one can easily evaluate the mean, the
variance, and the covariance functions. Using Eq. (3.73) the projection

of a point source p(x,y) = 6(x—x0) é(y—yo) is

| o
- u{Xp-8 R
P, (£,0) = G (£,6) 70"~ " §(g-(X),0)) . (5.57)

Substituting this into Eq. (5.49) and using the definition of the back-

projection operator given by Eq. (3.102), gives

=]
—
x>
~—
H

- Ro-) .
B, {c (8) * [e"70R " s(g-¢%,,80)])

~ .

2m 1
A A - (3\(‘2 6 )
=./~ cu[<x-x0,9>] e WX7X0-8 7 4g (5.58)
0

Note that if Xog =¥y = 0 this is just the point response function h
given by Eq. (5.1) which should be very close to a delta function.
Likewise substituting the projection of a point source [Eq. (5.57)]
into Eq. (5.52) gives the variance function
2 : NS
o (%) =Of ol XR0s01/6, (¢ R0),0) & H X X0L? gg . (5.59)

If X = Yy T 0, the variance is just the back-projection of the square

of the convolution function divided by the exponential factor GU(O,G).
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Thus the average value given by Eq. (5.58) is very local; whereas, the
variance function has a much larger extent. From the plots Qf the
convolution functions given in Fig. 5.2, one might expect that the
variances will decrease due to the depressed side lobes as the
attenuation coefficient increases. However, the exponential factor
in Eq. (5.59) tends to dominate and negates any noise suppression of
the side Tobes in the convolution function.

For a point source image using Eq. (5.56) the autocovariance

function is given by
2m
Cpp(x1,x2) = fcu[( x]-xo,Q)] Cu[( x2-x0,g>]/Gu(( xo,e>,e)
0

~ A A~ J_
x e WXHKRX0. 0D

0. (5.60) .

5.5.1.2 Circular Disc

For a circular disc the measured projections are

2 C . 2,1/2
G, (£,6) R2usmh[u(R =€) 771 JEl<R

p, (£,0) = m (5.61)
0 otherwise

where Gu(g,e) as defined in Eq. (3.72) is Gu(g,e) = exp[—u(R2-£2)1/2]
- and C is the total emitted photons over the disc. Using Eqs (5.49)

and (3.102), the mean value function is

1/2
s 2C . 2 .2
= B *
.mp(x) ﬂRzu U{CU(E) sinh[u(R=-£%)  7}. (5.62)
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Using Eq. (5.52) the variance function is given by

X) = <58, (c2(e)* (sinn[u(R%-e2) /2] explu(R%-£9)/21)).  (5.63)
mR™u

For a circular disc the % RMS defined by Eq. (5.53) is given by

% RMS = (é)”z (5.64)

where A represents the remaining factors (factors not including C)
after dividing Eq. (5.63) by the square of Eq. (5.62) and multiplying
by 104. We see that the square of the %RMS is “inversely proportional
to the total emitted photons. Since the emitted photons and measured
photons are related by a constant attenuation factor which is
independent of C, we are assured that Eq. (5.64) is also a correct

formulation if we interpret C to mean total measured photons.

5.5.2 Measure of Percent Root-Mean-Square Uncertainty for Simulated
Projection Data

A circular disc of 30 pixels in diameter were chosen to simulate
the propagation of errors for the convolution algorithm. The disc was
reconstructed from 360 projection angles over 360°. The projections
had bin sizes equal to the pixel size. The projection data were
evaluated using analytically calculated line integrals and adding
Poisson noise with mean and variance equal to the measured line

integral. The projection data were then modified as given by
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Eq. (3.76). This modification in essence factored from the data the
attenuation measured between the central axis and the edge of the disc.
These data, which conformed to the projections given by Eq. (3.93c),
were reconstructed using the convolution algorithm given by Eq. (3.106)
for attenuation coefficients equal to .075, .0958, .15, .18 pixe1_].
For each attenuation coefficient, the projection data were convolved
with the corresponding convolvers given in Table 5.1 before back-

projecting. The results for total measured photons of SX105, 1X106,

6, 1X107 and «» are shown in Fig. 5.4. The convolvers for the higher

5x10
attenuation coefficients amplify the noise at Tow statistics resulting
in reconstruction artifacts.

The %RMS uncertainty was evaluated using Eqs. (4.76), (4.77), and
(4.83) for the reconstructions in Fig. 5.4 and tabulated in Table 5.2.
The results indicate that the %RMS uncertainty decreases with an
increase in the total measured photons for each attenuation coefficient.
The %RMS uncertainty increases with an 1ncrea§e in the attenuation
coefficient for the same measured photons. The convolver for p = .15*
was evaluated by a least-squares fit of the attenuated back-projection
of a convolver with a point response function equal to the unattenuated
back-projection (Eq. (2.4)) of a Shepp and Logan convolver. Using
this convolver does not amplify the noise as much as the convolver

fFitted for u = .15 pixel”!

to the point response function which was the
back-projection of the Ramachandran and Lakshminarayanan convolver. The
variation in the reconstructed image for perfect data (counts = «)

are less than 5%; however, the image was thresholded so that the
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CONVOLUTION RECONSTRUCTION OF DATA
ATTENUATED WITH CONSTANT ATTENUATION

_ Counts
1100 5x106 1x107 10

5x109

XBB 792-1935

Reconstructions of a 30 pixel diameter disc using the con-
volution algorithm applied to 360 equally spaced Poisson

distributed projections between 0 and 2w. The convclution
functions for p = .075, .0958, .15, .15%, .18 pixel-! are

‘ tabulated in Table 5.1.
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Table 5.2. The percent root-mean-square uncertainty as a function of
emission statistics and attenuation coefficient for the
reconstruction of a circular disc 30 pixels in diameter
from 360 projection angles over 360° using the convolution
algorithm. The convolvers for u = .075, .0958, .15, .15%
and .18 pixe1'1 are tabulated in Table 5.1. The counts
represent the total measured counts for all 360 projections.

Emission Counts

Attenuation 777 g ____________ é ____________ é-___-_—__-.—_; ---------
Coefficient 5x 10 1T x 10 5x10 1 x10 @

(pixel-1)

0 12.2 . 8.5 3.9 2.9 0.9
.075 18.9 13.9 6.2 4.2 1.1
.0958 24.2 18.1 ' 8.1 5.8 1.4
.15 50.1 34.0 13.8 10.7 3.3
15% 37.7 25.8 13.5 9.1 2.9

.18 35.3 29.2 13.3 9.9 4.6
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resulting structure could be analyzed.
Fitting the data tabulated in Table 5.2 to Eq. (5.64) gives the

following Va]ues for the constant A:

1.82 x 10° - 4 = .075
3.00 x 10° - 4 = .0958
1.23x10° - p = .15

7.03 x 108 -y = 15
6.71 x 10° - u = .18

Note that the constant A is dependent on the attenuation coefficient p.
From the mean value function mp(?) in Eq. (5.62) and the variance
function og(ﬁ) in Eq. (5.63) it is not obvious how the %RMS varies
with p since these functions depend in a more complicated way on u

than does the total counts C.
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6. CONCLUSION

This thesis developed the theory and reconstruction methods for
single-photon emission computed tomography. Reconstruction methods for
variable attenuation coefficient involve iterative techniques of imple-
menting a generalized inverse of the discrete attenuated Radon transform.
Methods for constant attenuation coefficient involve convolution methods
that give an estimate of the inverse of the modified attenuated Radon |
transform when applied to appropriately modified projection data. The
rates of convergence'for the iterative algorithms and the amplification
of statistical errors for both the iterative and convolution methods are
a function of the magnitude of the attenuation coefficient.

The mathematical aspects of single-photon ECT were investigated

for both the attenuated Radon transform (Au: o - pY) -

and the modified attenuated Radon transform (Au: p > p) -

p(£,6) = [ o(X) exp; f §(E-<x', §>)dx fs(e-o?,,ef)d?.

< <x e> < <xel>

where p(£,0) is obtained from py(g,e) using Eq. (3.76). The advantages
and disadvantages of these two transforms are as follows:
1) The kernel for the integral operator, AﬁAu’ has a simpler ex-

pression (Theorem 3.20) than does the attenuated Radon transform
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(Theorem 3.3); whereas the kernel expressioné for BuAu (Theorem 3.4) and.
BUAu (Theorem 3.21) are identical, and the kernels for AuAﬁ (Theorem 3.5)
and AUA; (Theorem 3.22) differ only in the limits of integration for the
integrals in the exponential érguments.

2) The shift properties for the modified attenuated Radon trans-
forms are complicated by an extra exponential attenuation factor for the
projections of the unshifted concentration function p (Theorems 3.18 and
3.19) which is not present for the attenuated Radon transform (Theorems
3.1 and 3.2). This factor and the fact that the central axis most often
intersects the projection ray in the interior of a pixel makes the atten-
uation factors (Eq. (4.17)) for the modified attenuated Radon transform
less efficient to calculate than the attenuation factors for the atten-
uated Radon transform (Eq. (4.15)). However, one may want to use the
discrete modified attenuated Padon transform.A to solve the recon-
struction problem if it has better numerical stability; that is, the
condition number of the matrix A is greater than the discrete attenuated
Radon transform A for the same attenuation distribution. This has not
yet been confirmed.

3) The major application of the modified attenuated Radon transform
is for constant attenuation coefficient in which estimates for the in-
verse of the modified attenuated Radon transform can be evaluated either
by: a) a conVo]ution approach which involves convolving in real space
(Eq. (3.106)) or equivalently filtering in frequency space (Eq. (5.28));
or b) interpolating in frequency space which yields Fourier transforms
of unattenuated projections (Theorem 3.30).

The theorems and mathematical structure developed for the atten-

uated Radon transform and the modified attenuated Radon transform point
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to the fact that with properly chosen weight functions, there exist
eigenfunctions for AuAﬁ’ AﬁAu’ AUAﬁ and AﬁAu' However, explicit expres;
sions for these eigenfunctions have not been developed for even the
simplest case of constant attenuation. For the Radon transform the
eigenfdnctions of &*R have been expressed analytically and analyzed by
various authors (Ma]donado, 1965; Maldonado and Olsen, 19€5; Marr, 1974;
Zeitler, 1974; Eggermont, 1975; Miller, 1978). The eigenfunctfons of
#8* have been developed for various weight functibns by Davison and
Griinbaum (1979).

Inversion of the discrete attenuated Radon transform requires using
iterative algorithms to reconstruct projection data attenuated by a
variable attenuation coefficient. These algorithms converge with
acceptable errors within 15 iterations for most radionuclides used in
nuclear medicine. Simulations have shown that the rate of convergence
decreases as the magnitude of the attenuation coefficient increases
above u = .19 em™! for a 30 cm diameter disc, so that at u = .60 cm”!
the result does not converge to an acceptable error criterion even after
30 iterations. This means that energies of . photons emitted in tissue of
less than 22 keV should not be used in single-photon ECT. The isotope

of 131

Cs has a very low energy photon of 34.5 keV (x-rays of xenon)
which has an attenuation coefficient of .27 cm'] in tissue. This iso-
tope can be used for reconstructing transverse sections of the body in
most areas where there is solid tissue; however, the presence of bone
may yield artifacts due to the photoelectric absorption of calcium

1

leading to an attenuation coefficient of 1.3 cm '. The same scenario

can be given for iodine-125 which emits a 27 keV photon with an
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1

attenuation coefficient of u = .45 cm ' in tissue. Isotopes of T1-201

1), Tc-99m (140 keV, u = .15 em™)), Se-75

(73-80 keV, u = .18 cm~
(136 keV, n = .15 cm'1, 57%; 265 keV, u = .125 cm_], 60%), and Cs-129

(375 keV, u = .11 cm!

» 48%) have been used for ECT with good contrast
and spatial resolutijon.

In contrast to the detrimental effects of high attenuation coef-
ficients, low attenuation coefficients actually improve convergence and
the condition number of thé discrete attenuated Radon transform. It is
believed the reason there is an improvement in the rate of convergence
for increased attenuation coefficients using the iterative mefhods is
due to the existence of more independent equations. For example, data
measured 180° apart give independent 1inear.equations with attenuation,
whereas the coefficients of the equations for 180° conjugate views are
identical with no attenuation. However for high attenuation coeffi-
cients, the added informafion of independent samples for conjugate views
is dominated by the increased sensitivity of the problem (increase in
the condition number) as the attenuation coefficient increases. The
point at which increase in attenuation stops being an advantage in
iteratively reconstructing a circular disc is dependent on the product
of attenuation coefficient with the object size. As the size of the
object increases the minimum of the condition number is obtained at
lower attenuation coefficients.

The rate of convergence is a deterministic factor of the discrete
attenuated transform, whereas trace [(ATA)']] is a stochastic factor
that measures the amplification of statistical errors. For equal

errors on the projections and infinite transmission statistics,
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the average variance is given by {trace [(ATA)']]/ no. of pixels}

X 02 (projection value). For a uniform source distributed in a

circular attenuator the projections are nearly constant (Fig. 2.9).

Thus the errors on the projections of the disc are almost equal assuming
Poisson statistics. The spectra for discrete attenuated projection
operators operating on 8 x 8, 10 x 10, and 12 x 12 transverse sections

TA)'.]] increase almost

indicate that the errors as measured by tr [(A
monotonically és the attenuation coefficient increases. These results
agree with numerica]ISTmu1atidns of objects having diameters of 30 and 40
pixels. These results showed that the % RMS uncertainty increased with
attenuation coefficienf. In summary, the rate of convergence for the
first 30 iterationé improves with an increase in attenuation coefficient
to a maximum, then decreases; however, with the increase in attenuation
coefficient the statistical variation of the solution increases.

‘With thé doses of radiopharmaceuticals used presently in nuclear
medicine, the %RMS uncertainty in the reconstructed image ranges between
50 and 20%. Using Tc-99m as a brain scanning agéntvthe reconstructed
%RMS uncertainty can be no better than 9.8%, even with infinite statistics
if the attenuation coefficients are determined from a transmission ex-

periment with I_ = 1000 (4.2 x 108

total photons) incident photons per
‘projection ray (Table 4.11). The data indicate that changes in the
transmission statistics result in larger 1mprovément in the % RMS un-
certainty for high than low emission statistics. For positron emission

computed tomography a similar conclusion can be drawn as shown analyt-

ically below. For a fixed attenuation coefficient and a disc with
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radius R, the functional relationship for the % RMS uncertainty is

(Gullberg and Huesman, 1979):

C I

K K 1/2
. 1 2

% RMS (Positron) = (-—— + ——-> ,
0

where C is the total number of emission events and I0 is the number of
incident transmission photons per projection ray. The partial deriva-

tive of the % RMS uncertainty with respect to I0 is

3(% RMS) K

5 1

7
21 215 (K/C + K,/1,)

1/2 °

which shows that as the emission counts C increase, the rate of change
of»the %RMS uncertainty with respect to Ié increases. This means that
if one is not able to obtain high statistics for the emission study,
then not much improvement can be expected for a transmission study with
high statistics. For constant attenuation the analysis of errors is
much simpler because it is not comp]fcated by the statistical errors of
a transmission study.

There are three methods for determining convolvers for constant
attenuation: (1) optimum least-squares approach; (2) series expansion
method that fits the back-projection of the convolution to a desired
point spread function; and (3) optimum window functions for filtering
the data in frequency space. The filter functions are zero for fre-
quencies less than u/27 (see Eq. (5.35)). This is consistent with the
interpolation result given in Eq. (3.108) where frequencies less than

u/2w cycles per projection bin are not used to evaluate the Fourier
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transform of unattenuated projections. A1l frequencies greater than

.5 cycles per projection bin are zeroed by digital imp]ementation of
filtering. This suggests that data attenuated by a constant attenuation
coefficient greater than m cycles per projection bin cannot be recon-
structed (i.e., u/2m must be less than .5). Preliminary simulations
show that the upper bound of w/27 = 0.5 is much more restrictive. Thus
filtering and convolution procedures cannot reconstruct attenuated pro-
jections for attenuation coefficients higher than u = .20 cm'] for a

30 cm disc with diameter of 60 resolution elements. In this respect the
filtering or convolution methods are inferior to iterative algorithms
which can accurately reconstruct a 30 cm disc with an attenuation coef-

.30 om ).

ficient u This may be due to the fact that iterative
methods can simultaneously make adjustments in the solution based on
information obtained from all the projections, whereas the convolution
methods modify only one projection at a time. The convolution method
is much faster and is adequate for reconstructing transverse sections

99m " 123

of the head using radionuclides such as Tc o I.
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