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ABSTRACT 

A classification of products of general amplitude graphs 

in terms of three indices is presented. The classification is 

shown to be consistent, i. e., indices corresponding to the product 

of two amplitudes are completely determined by the indices of the 

members of the product and the specified intermediate state. In 

conjunction with the underlying ordered S-matrix, the proposed 

topological expansion provides the basis for a complete (unitary) 

theory of strong interactions. In the meson sector, the new topo-

logical classification reduces to the "standard" one based on 

handles and boundaries. 
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* 1. Introduction 
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The objective of the Dual Topological Unitarization (DTU) 

program is to systematically approach complete satisfaction of 

unitarity for physical transition amplitude through an infinite 

sum of simpler structures called topological amplitudes. Formally, 

one may write the transition amplitude between states li) and 

If) as 

I (1) 
(l 

where a stands for a number of "indices" completely characterizing 

the topological amplitudes. The word "indices" is used rather 

loosely here (for historical reasons). It refers not only to the 

integers g and r to be discussed in Sec. 5 but also to the 

boundary structure of the amplitude ( cf. Sec. 5) which is a 

graph, not an integer. (In the early days of the topological 

expansion only the number of boundaries was considered important 

for the 1/N expansion). Thus, the symbol a represents a 

couple of integers (g and r) as well as the specification of 

interconnections between vertices representing particles 

(the boundary structure). Henceforth, this set will be referred 

to as the "indices" of a topological amplitude. 

* This paper is a continuation of Ref. 1. 
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The adjective "topological" describes the fact that the 

analytical structure of the T 's is related to the topological 
(l 

properties of associated dual-like diagrams. This adjective will 

be used for all amplitudes Ta except those corresponding to the 

lower order of the expansion (the ordered amplitudes). 

2. General ordered amplitude 

The leading terms in the expansion of Eq. ( 1) are called 

ordered amplitudes. 2 ' 3 The ordered amplitudes are defined in 

an ordered Hilbert space and obey unitarity:1 ' 3 In this section 

we only briefly recall the basic properties of ordered hadronic 

amplitudes. For more details, the reader is referred to Refs. 

1, 3, and 9. 

1. The order between particles of a given state is 

represented by a colored and oriented graph relating each particle 

to its neighbors. In the ordered Hilbert space, two states with 

the same particles (same spin and momenta) but differing by the order 

i. e., by the graph representing the connections between particles 

are considered different. 

2. Not all graphs are allowed to represent ordered states. 

· .. 

It can be shown1 that the most general graphs are those con- ~ 

structed starting with cubic trees- i. e., such that all internal ·. 
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vertices are of degree three - and expanding according to the 

following operation (cf. Fig. 1): 

(a) Select an edge and cut it in two parts (color i). 

(b) Connect the two vertices newly created with two 

edges colored j and k (j t k t i) and with 

opposite orientation. 

(c) Iterate as many times as necessary with any edge. 

It can be shown that in such graphs all edges are distinguishable. 

3. Particles (poles) are represented by subgraphs of 

these grapha In general particles are represented by subtrees. 

Mesons could be represented either by 2-vertices or by the graph 

of Fig. lc. In this paper we use the latter for convenience 

of presentation (all vertices are 3-vertices) but the 2- vertex 

representatio~ can be shown to be equivalent. 

4. A colored oriented tree graph and all graphs derived 

from it by the operation above form a sector of the ordered Hil­

bert space. The tree graph is called the skeleton of the sector. 

5. Ordered amplitudes are non-vanishing only between 

states belonging to the same sector. The ordered amplitude 

graph ( OAG) is obtained by matching the "corresponding outer edges" 

of each state. In this context, two "corresponding" outer edges 

refer to th.e same outer edge of the common skeleton graph. 
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6. Among many topological properties of the OAG one of the 

most important is the existence of mates. Given a vertex A, there 
I I 

exists a unique vertex A such that A and A are connected by 
I 

three disjoint paths (equivalently, A arid -A are on the same 
I 

three faces). A and A are called mates. An example is shown 

on Fig. 2. ~ and A2 are mates as well as B1 and B
2

; 

c1 and c2 . 

and 

7. OAG 1 s are planar, 3-colorable and bipartite. As a 

result, without loss of generality, the graphs can be imbedded 

on a sphere such that the orientation of the vertices alternates 

on any cycle. (By convention, a vertex is positively oriented if 

the cyclic order of the colored edgesis clockwise and negatively 

oriented if the cyclic order is anticlockwise). For instance, 

in the graph of Fig. 2, ~' c1 and B2 are positively oriented 

and c2 are negatively oriented. Once imbedded 

on an orientable surface (e. g., sphere), the orientation of the 

edges ( i. e., arrows) becomes redundant and henceforth will be 

dropped. 

3. Topological amplitudes 

In order to get rid of the order degree of freedom, one 

is led to define a new amplitude as the sum of all possible ordered 

amplitudes containing the relevant particles. 3 For historical 
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reasons, this new amplitude is called "planar amplitude". An 

example is shown on Fig. J, 

One quickly realizes that planar amplitudes do not 

obey unitarity since the product of two planar amplitudes includes 

* unordered products. The unordered products can be classified in 

terms of their topological structure. More specifically, it will 

be shown that they can be classified in terms of three "indices". 

The topological structure of a product being related to the 

analytic structure of the associated complex function. All 

products belonging to a given classification (i. e. with a specific 

ret of "indices") are then attributable to the discontinuity 

formula of a topological amplitude characterized by the same 

"indices." 

Since the planar amplitude is not unitary it must be 

corrected. The corrections include these topological amplitudes 

generated through unordered products by the mechanism described 

above. One expects a better approximation (i. e., closer to 

uni tarity) to be achieved by adding to the planar amplitude 

* The expression "ordered product" refers to products of 

amplitudes that could appear in discontinuity formulae of ordered 

amplitudes. The "unordered products" never appear in such 

formulae. 
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all the topological amplitudes found in products of planar 

amplitudes. This new amplitude is still not unitary because a pro-

duct of two of these new amplitudes will generate still higher 

order topological amplitudes. The process needs to be repeated in-

definitely. Of course, to be meaningful this topological expansion 

must comverge at a reasonable rate. There are numerous indications -

although no ·rigorous proof - that such is the case. 

4. Mesonic sector revisited 

Mesonic amplitudes, with simple sequential order have 

been extensively studied. The original concept, due to Veneziano4 , 

made use of dual diagrams in the Feynman spirit and interpreted the 

expansion in terms of the parameter 1/N where N is the number 

of flavors. Two topological properties of the graph were 

identified as affecting the power of 1/N. 

(a) 

(b) 

The genus of the graph (h ) v 

The number of boundaries ( B ) • v This latter number 

is essentially the number of orbits (see Appendix A) 

to which external particles are attached. Later, 

C d R 
• 2 hew an osenzwe1g reinterpreted the diagrams 

in the S -matrix spirit and have shown that 

(1) the genus of the graph is related to the 

strength of the discontinuity 

• 
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(2) the number of boundaries is related to the pole 

structure. 

Thus, h and B characterize the analytic structure of 
v v 

the function associated to the graph. 

Three types of graphs have been used to represent the 

topological amplitudes of mesons. In the mesonic sector they are 

all equivalent. Examples are shown in Fig. 4. Figure 4a is 

a representative of the quark ( or dual) diagrarrs (lines represent 

quarks); whereas Fig. 4c is the equivalent particle diagram 

(lines represent particles -they are not oriented). Figure 4b 

is the equivalent hybrid diagram (oriented lines represent quarks, 

non-oriented lines represent particles). It turns out that the 

most useful type of diagram for generalization par.poses is a 

modified version of the hybrid diagrams. Figure 5 is equivalent to 

·the diagrams of Fig. 4 (h = 1• B = 1) except that each 
v ' v 

particle line is replaced by two particle lines. * At each 

vertex, the cyclic order is alternatively quark line and 

particle line. A particle line either starts and ends "outside" 

* It is tempting to associate the pair of particle lines with 

quarks as for dual diagrams. However, such association will not 

be made in this paper; our particle lines are not oriented. 
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the quark rings or starts and ends ".inside" the quark rings. 

("Outside the ring" means that at any vertex, a clockwise rotation 

goes from the incoming quark edge to the outgoing quark edge. The 

situation is opposite if we are "inside the ring" as in Fig. 5 

for instance ) • 

The genus, h, of the graph in Fig. 5 and the number 

of orbits, f, are higher than in the corresponding graphs of 

Fig. 4. However, it is easy to see that we have a general re-

lation relating the new and old quantities: 

h 

f 

2h +1 
v 

2f . 
v 

C2) 

Now, the orbits of the new graphs can be coupled in pairs 

such that both members of a given pair have the same particle 

structure (number ~ order). The boundary is now redefined as 

being a couple of orbits with the same particle structure. 

Further, if the number of quark rings (i. e., the number of 

connected graphs when all particle lines are removed) is d 

instead of 2 as in the previous example, then we have the 

more general formula: 

h 

B 

2h +d-1 
v 

( 3) 
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As will be discussed later, the amplitude is still character-

ized by hv(and Bv) and not h. (More specifically, the index g 

to be discussed in Sect. 5 is equal to 2hv for mesonic ampli-

tudes). 

5. Hadronic Amplitudes 

5.1. Construction of Topological Amplitudes 

The construction of higher order topological amplitudes 

is carried through products of amplitudes of lower order. In 

as much as these products define the higher amplitudes, a 

topological amplitude is defined by its discontinuities. 

A necessary and sufficient set of conditions to define a 

consistent topological expansion can be stated as follows: 

(.a) The first condition is to define a multiplication 

rule for the OAG consistent with the unitarity requirements at 

the ordered level. In other words, the multiplication rule should 

be such that the ordered product of two OAG can be interpreted 

as representing the discontinuity of an ordered amplitude in 

an ordered discontinuity formula. 

(b) The next condition is to characterize the graphs 

representing the product of two OAG by a set of "indices" such 

that substitution of an ordered subgraph of the intermediate 

-12-

* state of the product by its skeleton (single particle) - or 

conversely - does not alter the indices and substitution of 

unordered subgraphs by their skeletons alters at least one index. 

In other words, these "indices" completely determine the product 

relative to an ordered product. 

(c) The particular product - or discontinuity - can 

then be attributed to a topological amplitude carrying the same 

"indices." Therefore, by definition, the topological amplitude 

can be represented by any, (product) graph carrying the relevant 

"indices". In practice however one chooses the simplest graph 

carrying these "indices". The algebraic notation, to be intro-

duced later, automatically incorporates this feature. 

(d) The product of two general topological amplitudes must 

be defined by the same multiplication rule as in condition (a) 

and carry the same set of "indices" as found in (b). Furthermore·, 

knowledge of the "indices" of both members of the product and 

* A subgraph of the intermediate state is a connected subgraph 

such that all vertices belong to the intermediate state. This 

subgraph is "ordered" if the corresponding vertices on either 

side of the product are connected in exactly the same way 

' (ordered product) and is "unordered" otherwise. 

•• 
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specification of the particular intermediate state should be 

sufficient to determine the set of "indices" characterizing the 

product. 

In summary, the topological amplitudes are defined through 

products of lower order amplitudes. They are characterized by a 

set of "indices" related to the topological structure of the 

associated graphs. These "indices" are selected by the multiplica­

tion rule of the lower order graphs and by the requirements of 

consistency and completeness (i. e., products of topological 

amplitudes are defined by the same set of "indices" as either mem­

ber of the product and this set is completely determined by the 

indices of the members of the product and the intermediate state 

under consideration). 

5.2 Product of two amplitudes 

Generalizing the rule for products of mesonic amplitude 

graphs discussed in Sec. 4 to general ordered amplitude graphs 

(regular cubic graphs), we connect corresponding vertices belonging 

to the intermediate states (henceforth called intermediate 

vertices) with three "particle lines"; each starting 

-14-

between a different couple of "quark lines" ( i. e., colored 

edges) (i,j), (j,k) or (k,i) and ending between the corresponding 

couple of quark lines on the other graph. Simple examples are shown 

in Figs. 6 and 7. When the detailed structure of the intermediate 

lines (particle lines) is not needed, a wavy line will be drawn 

instead of three particle lines (e. g., Fig. 8). 

We now discuss the topological indices in details. These 

indices are first obtained in products of amplitude graphs as 

discussed in Sec. 5.1. They are then - and only then - associated 

with _amplitude graphs. 

5. 3. The boundary structure 

As in the me sonic case, the boundary structure is 

defined in terms of Edmonds 1 orbits (Appendix A). We shall say that 

two orbits are connected if they have at least one vertex in 

cOIIllllon. 

Then, given a graph representing either an amplitude or a 

discontinuity we group the orbits in sets of connected orbits. 

Each set will be called a boundary. The number of boundaries 

will be designated by B and the external vertices belonging to 

a given boundary are unambiguously interconnected. Vertices 

(and particles) belonging to different boundaries are completely 

disconnected. As an example, the graph of Fig. 6 has a single 
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boundary whereas the graph of Fig. 7 has two boundaries. In 

general, every boundary can be represented by a regular cubic 

graph. Note that the boundary structure need not be an ordered 

graph or even a planar graph but it must be bipartite. It is, 

however~ very important to recognize that once the connections 

between vertices in a boundary are specified, the number of orbits 

of the boundary is completely determined.* 

As was true for the mesonic amplitudes, the boundary 

structure is related to the pole structure of the amplitude. 2 

The amplitude has a pole in a particular channel - defined by a 

specific partition of the external vertices into initial and ' 

final states - if and only if there exist a graph representing 

the amplitude ( i. e., with the relevant "indices") that could 

be cut into twci connected subgraphs such that one connected 

sub graph contains the vertices of the initial (or final) state 

only and the other subgraph contains all other vertices (i. e., 

all intermediate vertices and all vertices of the final (initial) 

state). For instance, the amplitude of Fig. B has poles in the 

channel AD -+- BC but not in the channel AB -+- CD. 

In contrast with a discontinuity graph, a graph representing 

an amplitude contains by convention the minimum number of orbits 

compatible with the boundary structure. 

-16-

5.4. The mate-remoteness index (r-index) 

We first define the concept of mate walk. All graphs 

we are concerned with are composed of a certain number of ordered 

amplitude graphs (OAG) connected to one another by particle lines 

(wavy lines in Fig. 9). In each OAG, the mating is well-defined. 

However, some vertices may be mated to intermediate vertices; 

(i. e., to which wavy lines are attached). For instance, in 

Fig. 9a, A is mated to B. A thereby "loses" its mate but 

eventually retrieves one in F. The path ABCDEF is called a 

mate walk. Similarly, the path MNPQRSTU is a mate walk. A 

and F, M and U are called remote mates. 

Formally, the operation of finding the remote mate of A 

is to go to its mate in the OAG (B); then jump to the counterpart 

of that mate in the other OAG (C); go to its mate (D), and so 

on, until one reaches an external vertex (no particle - or wavy 

line attached). 

Since no such operation is required for X and Y in 

Fig. 9a, they are called close ~· 

In Fig. 9b similar situations are displayed except that 

no external vertex appears in the walk. Such a closed walk will 

be called circuit Thus ABCD is a circuit and EFGHIJKL is 

another. X and Y as well as Z and T are close mates. 

• 

• 

..... 
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Finally a circuit with only four vertices, as ABCD in 

Fig. 9b, is called a trivial circuit or ordered circuit because 

• it involves an ordered product . 

We can now define the remoteness index of the product 

' 
t of two OAG as 

r L t~J. -c, ( 4) 

w 

where the sum is over all walks (open and closed), b is the 

number of wavy lines belonging to a given walk and C0 is the 

number of ordered circuits. The notation [xJ is defined by 

[x] sup { n e: IN /n ~ x} ( 5) 

for any real number x. That is, [x] is the largest integer 

smaller than or equal to x. (e. g., [ 3/2] = 1) 

Note that r is completely determined by the boundary 

structure of the members of the product and by the specification 

of the intermediate state. 

A discontinuity with r i 0 belongs to an unordered 

( topological amplitude with corresponding r-index. We can now 

define the remoteness index for a general product. Consider 

-18-

a product of two amplitudes ~ and M2 with respective indices 

r
1 

and r 2 . Then the resulting remoteness index is 

(6a) 

where 

( 6b) 

the sum on the right hand side of Eq. (6b) and the term Cai refer, 

respectively, to the walks and ordered circuits created by the 

product of M:J_ and M2. Note again that r i is completely 

determined by the boundary structure of M:J_ and M
2 

and by the 

specification of the intermediate state. We also define for 
I 

future needs the index r : 

I 

r ( 7) 

where Ci is the total number of intermediate circuits created 

by the product. 

In general, 2r represents the minimum number of additional 

. * J-vert1ces (uncorrelated baryons ) in the simplest discontinuity 
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of the amplitude relative to the corresponding ordered amplitude. 

Thus, a topological amplitude with index r will not have a 

discontinuity with less than 2r J-vertices in the channel 

graph representing the intermediate state. 

5. 5 The g-index 

The g-index can be thought of as a renormalized handle 

or genus index of the mesonic amplitudes. The g-index of a 

product of two graphs representing amplitudes is defined by 

g = h - b + c - d + 1 ( 8) 

where h is the topological number of handles (genus) computed 

with Euler's formula and Edmonds' orbits; b is the number of 

wavy lines (intermediate J-vertices on either side of the 

product); c is the number of circuits and d is the number 

of OAG included in the product (or number of connected parts 

if all particle lines are eliminated). 

* Uncorrelated baryons are pairs of baryons antibaryon that 

cannot be reduced to a single meson. Prof. G. F. Chew has 

suggested a potential suppression mechanism related to this 

fact. 
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For ordered products, g is always equal to zero. 

As was true for the !h-index, to each topological amplitude 

we associate an index g such that all its discontinuities possess 

the same value of g .. 

When performing the product of two amplitudes ~ and 

~ with respective indices g1 and g2 we generally get a graph 

with a new index g. We now shown how to compute g in terms 

of g1 , g2 and the boundary structure of ~ and ~. In 

this section, the subscripts 1, 2 and i refer to the members 

of the product ~ and M2 and to the intermediate state 

respectively. The symbols without subscripts refer to the graph 

product. The letters h, v, e, f symbolize the number of handles, 

vertices, edges and orbits (faces) while g is defined by 

Eq. 8. We shall extensively use Euler's formula: 

2h 2 - v + e - f . (9) 

We first.determine h as a function of h
1 

and h
2

• Starting 

from Eq. 9 applied to ~ and ~~ respectively and adding, we 

get, 

• 
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Now, subtracting from Eq. ( 9) and using v v 1 + v 2 ; 

e e1 + e2 + ei; we get: 

h h 1 + h 2 + ~ ( e i - f i - 2 ) 

with the formal definition: 

We can also obviously write: 

b 

c 

d 

b + b + b. 1 2 1 

(10) 

( 11) 

(12) 

( 13) 

( 14) 

and therefore, after substitution of Eq. (10) through ( 14 ) 

in Eq. ( 8) * and some straightforward algebra we get: 

* Note: using the formal definition vi ~ 4; di = 2; 2hi = 2 - vi 

+ ei - fi and gi ~ hi - bi + ci - di + 1 we get the formulae 

h = ~ + h2 +hi and g = g1 + g2 + gi (comparable to Eq. (6~)). 
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g 1 . ) g1 + g
2 

+ -
2 

(e. - f. - 4 - b. + c .. 
1 1 1 1 

( 15) 

Now, ei, bi and ci are completely determined by the specification 

of the intermediate state (note the identity ei 3bi), f
1 

and f
2 

are determined by the boundary structure of ~ and M
2 

and f is determined by the boundary structure and the specification 

of the intermediate state since, to determine the Edmond orbits we 

only need to know the connections between the vertices. Thus, 

fi is completely determined by the boundary structure of ~ 

and M
2 

and by the specification of the intermediate state. 

Therefore, given g1 and g
2

, the boundary structures of ~ 

and ~ and the intermediate state of the product, g is completely 

specified by Eq. (15). 

5.6. Algebraic notation 

We now discuss how to write algebraically (as opposed to 

graphically) the boundary structure of an amplitude and its 

r and g indices. The major advantage of this notation is to 

exhibit the fact that topological amplitudes are independent of 

their graphical representation. Only the essential features common 

to all graphs (i. e., the connections between external vertices) 

are preserved in this notation. 
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(a) Representation of boundary structure: We recognize 

that, within a boundary, only the ·connections between vertices are 

significant. Therefore, we associate to each vertex V a set of 

th · d' s· ~ ~ ~ (representing the three edges attached ree1n1ce. "'i'"'j, .1!: 

to V) and we write V(%). The order or the a-indices is 

important as it corresponds to the color index of the associated 

edge. The left-to-right arrow corresponds to a positively oriented 

vertex and the right-to-left arrow [V(~aj'\)] corresponds to 

a negatively oriented vertex. 

The boundary structure is defined by listing all vertices 

of the amplitude with the relevant a-indices. Two vertices 

connected by k edges in the graphical representation will have 

k a-indices in common in the algebraic notation (k = 1, 2 or 3). 

Since different boundaries have no a-index (edge) in common they 

are separated by a semi-column in the list. 

Finally, it is useful to specify pairs of mates by an 

arbitrary integer. The two members of the pair would then carry 

the same number and would be readily identified. For example, 

----7 ~) {V(n,a
1

a2a
3

) W(n,a
1
a2a

5 
}. 
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(b) r and g indices. The remoteness index r and the 

g index of a topological amplitude M will be specified by a super­

script and a subscript respectively (e. g., Mgr { boundary structure}). 

Furthermore, the remote mates must be specified since two adjacent 

remote mates correspond to a different pole structure than two 

close mates. The specification is done by connecting the remote 

mates by a bar over the amplitude. 

As an example, the algebraic notation corresponding to the 

graph of Fig. 10 is: 

Products of two amplitudes can be computed with this notation. 

The procedure is detailed in Appendix B. This fact clearly shows 

that all the necessary ingredients to determine the product of two 

topological amplitudes are included in r, g and the boundary 

structure. 

Another advantage of the algebraic notation is that it 

enables a sharp distinction between amplitudes and products of 

amplitudes or discontinuities. Although they are both represented 

by the same type of graphs it is crucial - in order to avoid 

.. 

confusion - to have a clear idea whether a given graph is supposed • 
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to represent an amplitude or a discontinuity. In the latter case, 

the intermediate state is well defined and cannot be altered while 

in the former case, there is no intermediate state - or particles 

and some particle lines may be removed - so long as the indices 

are not altered. Conversely, analytic continuation from one 

reaction to a crossed reaction is a property of amplitudes, 

not discontinuities. Failure to recognize these simple facts 

·could lead to a paradoxical situation. The consistent use of 

the algebraic notation guarantees a clear distinction between 

amplitudes and discontinuities. 

5. 7 The 1/N expansion 

. * We conJecture that the suppression of non-ordered products 

relative to the corresponding ordered products (i. e., the ordered 

product with the same particles in the initial, final and inter-

mediate states) can be understood as a 1/N suppression as defined 

by Veneziano. 4 If the product is characterized by g and r 

defined by Eq. (8) and (7) respectively and by B boundaries 

then in all the examples we have studied there are g + (B - 1) + r 

fewer free quark lines than in the corresponding ordered amplitude . 

Thus the suppression factor is (1/N)g+(B-l)+r' 

* This conjecture was originally suggested by Prof. G. F. Chew. 

I 
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6. Conclusion 

A classification of the product of general amplitude 

graphs in terms of three topological indices was presented. The 

classification was shown to be self-consistent; i.e., the 

indices corresponding to the product of two amplitudes are completely 

determined by the indices of the members of the product and by the 

specification of the intermediate state. The indices completely 

characterize the graph product and are related to the singularity 

structure of the associated complex function. 

The new classification reduces to the "standard" one 

-in the mesonic sector. 

The next phase of the theory should be to analyze the 

spectrum of particles generated by this approach, to determine more 

accurately the connection with the analytical structure of the 

indices, to investigate the mechanisms of convergence and to 

apply it to practical considerations. 



-27-

REFERENCES 

* This work was supported by the U. S. Department of Energy. 

l. J. P. Sursock, "Mathematical Properties of Ordered Amplitude 

Graphs", LBL-7556 (1978), submitted to Nucl. Phys. B._ 

2. G. F. Chew, C. Rosenzweig, "Dual Topological Unitarization", 

Physics Reports, LBL-6783 ( 1977). 

3. G. F. Chew, J. Finkelstein, J. P. Sursock, G. Weissmann, 

"Ordered Hadron Amplitudes", LBL-7237 (1977), submi:tteli to 

Nucl. Phys. B. 

4. G. Veneziano. Nucl."Phys. B 76, 365 (1974). 

5. J. P. Sursock, "Products of Topological amplitudes: An 

Algebraic Solution", LBL-7254, submitted to Nucl. Phys. B. 

6. A. T •. White. Graphs, Groups and Surfaces. North Holland (1973). 

7. J. Edmonds. Notices Amer. Math. Soc. z, 646 (1960). 

B. J. W. T. Youngs. J. Math. Mech. 12, 303 (1963). 

9. G. Weissmann, "Particle Order: A New Fundamental Concept in 

Hadron Physics", Ph. D. thesis, University of California, 

Berkeley, LBL- , submitted to Annals of Physics. 

28-

Appendix A: Edmonds' orbits 

7 B The following technique developed by Edmonds and by Young 

enables one to determine the faces (orbits) of a graph imbedded 

on any orientable two-dimensional surface. 

The principle is to start from some point and to move 

alongside an edge such that the edge is always on the right 

(say), until a vertex is reached. At the vertex, we make a clockwise 

* rotation until we hit the next edge and we "travel" again with 

the edge to the right until the next vertex where we make a clockwise 

rotation, and so on. In the end, we come back to the starting 

point. This round trip is called an orbit. When all the orbits of 

the graph are determined we should have traversed each edge twice; 

once in each direction. 

The number of orbits, being the number of faces of the 

graph enables us to compute the genus of the graph through Euler's 

formula (Eq. (9)) and also to specify the connections between ver-

tices by recording the sequence in which they appear on each orbit. 

* This is why the position of particle edges with respect to quark 

edges is crucial. In fact, when we are on a quark edge of a given 

color in one OAG, the prescription will keep us on the same color 

after "landing" on the other OAG. 

.. 
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Appendix B: Edmonds' orbits and algebraic notation 

It is possible, although tedious, to determine Edmonds' 

orbits from the algebraic notation alone. This method is analogous 

to the one introduced in Ref. 5. We shall describe the general rules 

and illustrate them with the simple product of Fig. Bl. In the 

algebraic notation, this product is 

p 

(Bl) 

We first introduce some.definitions. At each step described 

below two a-indices are crossed. The first one is called in-index 

and the second out-index. There are also two types of vertices: 

those without particle lines (e. g., A, B, C, D) called external 

vertices and those with particle lines (e. g., E, F) called 

intermediate vertices. The correspondent of an upper (lower) 

a-index is the same a-index but appearing as a subscript 

(superscript) in the~ amplitude. The counterpart of an 

a-index is the a-index appearing in the same position (i. e., 

corresponding intermediate vertex and same order in the other 

-30-

amplitude, e. g., the counterpart of is and the follower 

of an index is the next index (cyclic order specified below) on the 

same vertex. We now specify the general rules to determine the 

orbits: 

(1). The clockwise order is followed on vertices with 

negative orientation as the counterclockwise order is followed on 

vertices with positive orientation (hence, the directions of the 

arrows in Eq. (Bl)). 

(2) To start, select any index in one amplitude as 

the first in-index of the sequence. 

( 3) Now cross the indices two by two in the following 

sequence: 

(a) If you are on an external vertex 

- after the in-index go to the folloWer. 

- after the out-index go to the correspondent. 

(b) If you are on an intermediate vertex 

- after the in-index go to the counterpart. 

- after the out-index go to the correspondent. 

Thus the "correspondent" is always an in-index; the "follower" or 

the "counterpart" are always out-indices. 
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(4) An orbit is completed when the starting index is . * Since there are eight orb1ts , Euler's formula yields h = 2 

reached again as an in-index. The ·sequence should contain an and Eq. (8) yields g = 0. But we see that B 2 because A and 

even number of indices. B do not have any orbit in common with C and D. As a result, 

(5) At the end of the operation, every index should be the amplitude to which the discontinuity belongs can be written as: .. 
crossed twice; once as an in-index and once as an out-index. 

As an example, the sequences for the product introduced 

above are given below. The notation a(Jf) means the index 

appearing on vertex V. We thus have: The remote mates can be obtained simply by following a walk of 

mates as discussed earlier. In our example, all mates are close 

1st orbit and the only circuit is ordered. 

2nd orbit 

3rd orbit 

4th orbit 

5th orbit 

6th orbit 

7th orbit 

8th orbit * Note that they are composed of an even number of a-indices and 

an even number of 13-indices. 
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FIGURE CAPTIONS 

Elementary operation generating all ordered state graphs 

An ordered amplitude. ~,B2 ,c1 are positively oriented 

and A
2

, B1 ,c
2 

are negatively oriented (color cycles). 

(A
1

,A
2

); (B
1

,B
2

); (C
1
,c

2
) are mates. 

Planar amplitude of four baryons. 

Three equivalent representations of mesonic amplitudes: 

(a) dual diagram; (b) hybrid diagram; (c) particle 

diagram. 

New version of hybrid diagram with two particle lines 

at each intermediate vertex 

Product of ordered amplitudes. The particle lines 

start and end between the same color couples (i,j). 

Same graph as Fig. 6, but with two boundaries. 

In this product, the two mates A and B (and C and D) 

are not adjacent. There is no pole in the channel AB+CD. 

Walks of mates: (a) open walks. (b) closed walks 

(circuit). 

In this product A and B are remote mates. C and D are 

close mates. 

Product of two ordered amplitudes yielding B 2. 
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