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General Introduction to the Dissertation

The objective of this dissertation is to develop the mathe-
metical aspects of an S-matrix theory of strong interactions based
on the coneept of _O_r_d_t_;ﬁ. In the meson sector, this approach has
reglstered sufficient success to meke generalization to all hadronic
ampll cudes appear worthwhile.

The dissertation is presented in two separate and self-con-
tained parts. In the first part we discuss the concept of “order“* in
Hadron physies, a concept central to the theory. The basic point
of the concept 1s to define a Hilbert space of hadronic states where
channels are defined not only by particle mementa and helicitins
but also by an additional relation between any given particle A
and a subset of particles N}, called neighbors of A.

The most natural way to represent these relatioms is
by meane of graphs. The vertices of the graph represent the par-
tleles and the edges represent the relations between a vertex and
its neighbors. Ordered emplitude graphs - representing reactlons -
are then formed by combining the channel graph according to well-
defined rules. The properties of these amplitude graphs are

examined,
*

cf. Chew and Rosenzwelg: "Dual Topological Expansion", LBL-6783
(1977), to be published in Physics Reports.



Throughout this dissertation, and in particular in the first
part, the importance of the role of vertices of order three is
exhibited. A potential explanation of this role had been discussed
in a separate paper.* Another potential explanation, based on the
operation of triangulation of a polygone - not developed in this
thesis - is also worth considering. Brlefly, the idea is as follows:
Consider a vertex with n-edges. The dual of this graph is a poly-
gone with n sldes. There are in general several ways to trlangulize
the polygone. However, if the triangulation 1s considered as & graph,
constructing its dual produces a tree graph with 3-vertices
exclusively. Since the dual of the dual of a graph is the graph
itself, we are essentially back to the original topology (i. e.
cennections). The triangulation performed on the polygone has,
however, transformed the n-vertex into a tree graph composed of
3-vertices.

Thus, a n-vertex is eventually decomposed into a cubic
tree graph. The special role of the 3-vertex is therefore related
to the fact that every polygene can be trianguiarized, a fundamental

result of Algebraic Topology.

* J. P, Sursock. " On a Connection Between Charge Conjugation,

Quark Structure and Ordered S-Matrix Theory", LBL-7515 (1978),

submitted to Nucl. Phys. B.



Ordered amplitudes are only an approximation to physical
amplitudes since, in the physical world, order is not observed.*
Corrections to ordered amplitudes are needed. In fact, an infinite
number of higher-order corrections must be introduced for each
amplitude. These corrections eomstitute the "topological expansion”,
the subject of the second part of the thesis.

Here egeln, our emphasis is on the mathematical aspects of
this expansion. The underlying physical framework is of course the
unitarity properties of the S matrix and the resulting constraints
on the singularity structure of the analytic connected parts (i. e.,
amplitudes).

Another avenue for the topological expansion was explored
with some success in the meson sector but was later ebandcned. The
idea war to classify non-ordered products of amplitudes by their
degree of "disorder". That is to say, given an intermediate state
where particles do not have the same sequential order in both members
of the product, the relevant index for the classification of the
product would be the minimum number of permutations of intermediate

partisles in one member of the produet to reproduce the order of

It is interesting to note that both S-matrix theory and Field
theory Introduce, as basic concepts, uncbservable properties

<f matter.



the other member., It turns out that this nunber is equal to the
minimum number of handles used, for instence, in Venezisno's approach
end hence is perfectly relevant in the meson sector. The
generalization was found to be complicated in the case of generalized
order buat the question remains open whether such en approesch is
fruitful or not. If it were useful, then it would provide a commec-
tion between the concept of order and disorder and the singularity
structure of all topological amplitudes.

We realize that these comments may not be fully appreciated
by a reader unfamiliar with the contents of the dissertation. We hope
we have not eroded his /her interest before he/she has had a chance

to read more sbout this faseinating subject.



PART I

MATHEMATICAL PROPERTIES OF ORDERED AMPLITUDE GRAPHS *



1. Introduction

The S-matrix approach to the topological expansion of
Venezianol is made possible by invoking the notion of "order" first
introduced by Chew et. 31.2 for mesonic amplitudes and later general-
ized to all hadronic amplitudes.3 The ordered S matrix is defined
in an ordered Hilbert space and obeys unitarity as does the physical
S matrix. This fact guerantees consistence between poles and
asymptotic states. The attempt to get rid of the unobservable order
by summing over ull ordered amplitudes (plenar amplitade) produces
a breaking of the uniterity constraint. Unitarity is restored when
all terms of the topnlogical expansion are taken into account.

The objective of this paper is to discuss the mathematical

framework of the material presented in Ref. 3.

2. The Concept of Order

The first step of the theory 1s ¢ define a siwmpler S matrix
(in terms of analytical structure) in an unobservable Hilbert space,
called the Ordered Hilbert Space (OHS). In this space, a particle,
in addivion to its mass, momentum and spin has a well-defined col-
lection of "neighbors”.* For instance, each mescn has two neighbors,

each baryon has three neighbors and so on. A more general chammel

¥  The number of neighf:ors will turn out to be characterizable as

the number of "quarks" and "antiquerks" that "builid" a hadvon.



defined by n rarticles is specified by the particles involved and
by the specifica’lon c¢f each particle neighbor (concept of order).
For instance, in the simple case of a channel containing mesons only,
the channel could be written as [a> = [Ml "Mi"'Mj"'Mn> . Here,
the order matters as it specifies the nelghbors of eacn mesons Mi'
This channel is, in general, different from the chamnnel [b> =
IMl...Mj...Mi...Mn> .

In either chermel e} or [b), M eand M, have each
one neighbor. However, considered in en amplitude, they will even-
tually havs two neighbors also. For example, in the amplitude
¢ Mk...Mmlrile...Mn> M, will have M, and M =s neighbors and
M will have M_ and M . as neighbors. Such a channel fa)
can be graphically represented in Fig. la and the amplitude in
Fig. 1b. Thus, although all the neighbors of a given particle are
no* necessarily completely specified in & channel they sre unambigu-
ously defined wnen the particle is considered in a process (transition
amplitude).

In the more general case, a particle may have many nelghbors
(e. g., Fig. 2). Apriori, any grsph can represent a channel c{ the
OHS. We shall however impose the following restrictlons:

(1) The graph must be connected.

(2) The graph must not contain loops or tadpoles (i. e.,

edges leaving and returning to the same vertex).



(3) The graphshould not include vertices of degree higher
than three.* This requirement is discussed in more detail in Appendix
C and is independently justified in Ref. 4. It does not preclude
the existence of particles with more then three neighbors because a
particle does not necessarily correspond to a vertex but can corres-
pond to a whole graph. So, for instance, particles with four snd
five neighbors are shown on Fig. 3w

(4) Each edge of the graph representing a channel of the
OHS must be distinguishable. As will be shown in Section 4, this

requirement is cruelal 1o obey the constraints of the ordered S-matrix

3. The Ordered Hilbert Space (OHS)

To construct the OHS we start from the cubic tree graphs(i.e.,
tree graphs such that all vertices are of degree three. Contrary to
mathematician's practice, we drop the l-vertices at the "tips" of the
tree.). Examples are shown on Fig. 4.

All cubic tree graphs are allowed to represent ordered
channels. In generel, the topological structure of the tree graphs
is sufficient to distingulsh between the edges. However, some tree
graphs exhibit a two- or a three-fold symmetry (e. g., Fig. 4b). It
is possible to show (Appendix A) that in order to restore the dis-
tinguishebility of every edge i1t is necessary end sufficlent toarient
and color the edges of the graph. The orientationis such that alledges are

* The degree of a vertex 1s the number of edges attached to it.
* A more complete discussion of exotie states is found in Ref. 3.



incoming toward a vertex or outgoing away from it. Then every edge
is given a color index 1, 2 or 3 such that, at any J-vertex, the
three edges all have different color indices. This operation insures
that no graph is symmetric.* An example is shown on Fig. 5.

A colored cubic tree graph is called a skeleton. All

possible ordered states are built from skeletons by the following
operation (shown on Fig. 6):

(1) Sclect an edge a (Fig. 6a) with a color inlex i
and cut it into two parts a; and a, (Fig. éb).

(2) Connect the two ends with two edges b and ¢ with
color indices J and k such that 1, j and k are all different

and with opposite orientation relative to a (Fig. éc).

It is easy to see that the new edges (b and ¢) are stili distinguish-
able. First thiy can be distinguished from one another because they
have different color and second they cen be distinguished from any
other edge in the graph because they are "Inserted" in the old
edge & which was distinguishable by construction.

The two operations described above can be iterated at will
on any edge or edges of the new graph thus constructed. An example
is shown on Fig. 7 (where the arrows and color indices are omitted

for clarity).

* This operation is called induced sywumetry breaking.
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Finally, any number of vertices of degree two (mesons)
can be inserted in any edge of such graphs without altering its
topology. Sometlmes, however, a meson will be represented as the
cubic graph of Fig. 6e. For the ordered S matrixz, the two notetions
are equivalent. It can be shown that the graphs thus constructed
are the most general graphs cornsistent with unitarity. However, the
proof will be postponed until the end of Section 4.

Thus, every graph of the OHS {allowed graph) can be related
to a unique skeleton. The OHS 1s divided in disjoint subspaces
called sectors. Each sector is defined by a skeleton and all graphs

derived therefrom by the operations described earlier (Fig. 6).

4. The Ordered Amplitude Graphs (0AG)

We shall postulate that the sectors defined above are
orthogonal. That is, the ordered S matrix does not allow communi-
cation between channels belonging to different sectors. Thus, for
a transition amplitude to be non-vanishing, the following requirements
must be met:

(1) Poinceré invarience

(2) Conservation of internasl quentum numbers

(3) Conservation of order (i. e. sectors)

The transition amplitude between two states belonging to the same
sector 1s represented by a graph such that all the neighbors of all

particles are defined. An example is shown on Fig. 8.



11

* s
The OAG 1is constructed by matching all the corresponding

outer“ edpes of each state. One can see now the importance of these
edges being all distinguishable. If this were not the case, several
matching would have been equally possible. This would be contrary
to the principle that given the initiel and final stetes, the tran-
sition amplitude is unanbiguously determined.

The fact that every edge should be distinguisheble, not only
the outer edges, will result from the requirements of crossing
symmetry (every edge can be an outer edge).

An important property of a unitary &£ matrix is factorization.
In this context it means that each cut separating the amplitude
graph into two connected parts {bisection) defines a collection of
poles belonging to the same sector (the cut edges) and two channels
that should belong to the OHS. Several bisections of the amplitude
graph of Fig. 8 are shown on Fig. 9. The cuts can all be thought of
as planes cutting a sphere on which the amplitude graph is imhedded.*“

It is now possible to prove the statement made earlier that
the most general channels alldwed By unitarity are those defined in
Section 3. We show in Appendix € that vertices of degree higher than

3 should be discarded and in the remainder we concentrate on

¥
This poinu will be discussed in Section 5.

b "Outer" or "dangling" edge refers to the peripheral edges of a
tree graph (the "tips" of the tree).

Although, for the considerations discussed in this paper, we do
not require such an imbedding.
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graphs constructed with 3-vertices only (2-vertices can be added
anywhere).

We (I‘irst remark that the graph of Fig. 10 cannot be allowed
in the OHS because the edges are not all distinguishable.* Then we
show that any state with the same topology as Fig. 10 is inadmissible
regardless of the coloring. ILet's assume that we can use as many
colors or indices as we wish to distinguish the edges and we start
from Fig. 1lla which we combine with itself to form the amplitude
graph of Fig. 11b. This should always be possible. Next we cut
{11b) as shown on Fig, 1le to obitain the state of Fig. 11d on the
right hand side. This new state is made to combine with itself in
a new amplitude shown on Fig., lle which we cut again as shown on
Fig. 11f. The resulting states are the unwanted states of Fig. 10.
Thus, regardless of coloring and orientation, the graph of Fig. 10
should not appear in the OHS as a graph or as a subgraph.

The immediate consequence of this result is that any graph
containing a subgraph of the type of Fig. 12a should not be
allowed, because by combining this state with itself in an amplitude
(Fig. 12b) we generate the unwanted graph of Fig. 10 as shown by
the bisection in F‘ig 12c. Finally, it is easy to see that a graph

without subgraphé of the type (12a) and with only one outer edge

¥ The undesireble aspect of this graph was first noted by G. Weissmann.



13

is not coloreble (Fig. 13) and therefore camnot be made consistent
with uniterity.

This completes the proof that the only allowed states of the
OHS ere those constructed by the operations of Section 3 (Fig. 6).

In summary, an allowed channel graph hes the following characteristices:

(1) It hes more than one outer edge.

(2) Every cycle is connected to the set of outer edges
by two and only two edges (Fig. éc in contrast to Fig. 12a). These
two edges will be called links. The vertices at which the links
connect to the cyele will be called getes of the cycle and the disjoint
peths of the cycle connecting the two gates will be called legs of
the cycle.

In the remainder of this paper we shell use the notation
(gf|gi) to denote the OAG cbtained from the graph g, and g,
corresponding to the states ]!‘) and ]i) respectively. Y,
and Yy are the corresponding skeletons and we must heve yf = Yi

for (Sflgi> to be non-vanishing.

5. Topologicael Properties of the Ordered Amplitude Graphs

(1) Up to a homeomorphism, an Ordered Amplitude Graph
(0AG) must have the topology of a regular cubic graph (i. e., ell
vertices are of degree three). In other words, all outer edges of
the channel graphs must be connected es mentioned earlier. Failure

to do 8o would result in a possibility of cutting the graph in
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three parts when attempting to isolate certain ordered states.3 This
is shown on Fig. 14. Inasmuch as a single quark would be associated
with a one-vertex, one can see that the failure to reconcile graphs
such as Fig. 14 with unitarity guarsntees that quarks cannot be poles
of the S-matrix and thus camnot be considered as asymptotic states
(quark confinement )?*

(2) The OAG are connected and planar (evident).

(3) Every cycle of the OAG has an even number of vertices.
This results from the fact that each vertex of the left hand skeleton
has one counterpart on the right hand skeleton (cf. Fig. 8) and all
cycles within each skeleton contains by construction of Section 3
an even number of vertices on either leg of the cycle. As discussed
in Ref. 3, this property enables one to specify Ferml statisties for
baryons.

74) Therefore the OAG is bipartite (theorem of graph t.heory).5
That is, it 1s possible to divide the set of vertices of the graph
into two disjoint parts A and B such that no vertex of A
1s adjacent to another vertex o‘f A and simllarly for B.

(5) If we assign e coefficient +1 to the vertices of 4
and <1 to the vertices of B, then, beecause of properties 3 and 4,

the algebraie sum of these coefficients on any cycle is zero. This

This argument was originally put forth by G. Weiséman. A somewhat
different argument for quark econfinement is developed in Ref. 4.
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is also true for the overall amplitude. If we associate these coef-
Ticients with the baryon number we automatically obtain baryon number
conservation.

(6) Property 5 is equivalent to the possibility of coloring
the edges of the OAG with three colors:)('5 Furthermore, 1t 1s possible
to assign the coeffiecients 21 to a vertex such that when the graph
is imbedded on an orientsble surface (e. g., sphere), the coefficient
+1 is associated with the clockwise cyclic order of the color Indices
1, 2 and 3 around the vertex and the coefficient -1 to the opposite
orientation.5 Thus, if the OAG is imbedded on an orientable surface
the edge orientaticn becomes redundant. The orientation of the color
indices 1s associated with the charge conjugation operat:lon.4 That
1s, an odd permutetion of color indlees trensforms en amplitude into
i1ts charge conjugate.

(7) Existence and uniqueness of mates: In an OAG we
define the mate of a vertex A as a vertex A" wnich could be
reached from A by three disjoint paths (i. e., paths that have no
edge in common). The fact that to each veriex of an OAG corresponds

one and only one mate 1s a crucial result that will enable 2

This is also true for the faces of the QAG: namely, the faces of
the OAG can be colored using three colors only sueh that no two

adjacent faces are colored with the same color.
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consistent topological expans:i.on.8 We establish this result in

Appendix B.
(8)

Algebraic notation: Since each edge of the OAG is

distinguishable let us relabel the edges with labels o . Then a

vertex A is associated with three labels oy, uj, % . We adopt

the following conventions:

(a)

(v)

(e)

We write A with the o-indices as superseript or
subseript acecrding to whether the arrows are out-

going or incoming (or, if the graph is imbedded on an
orientable surface, according to whether the color cyelic
order around A 1is clockwise or anticlockwise).

The order of the indices is such that the first one
applies to color Index 1, the second to color index 2
and the third to color index 3.

Finally, we associate to each mate pair a number which
helps identify the members of the pair. An example is
shown oﬂ Fig. 15. One can see that each a-index should
appear twlce, once as a superscript and once as a sub-
seript. The algebraic notation stresses the fact that

only the comnections between vertices are important.

If the subgraph (AB) of Fig. 15 represents one particle

(= meson) then we could have used the more compact notation



.. a.0,0
M 3= al?3
o 0,0,0,. Similerly, if (AD) is a baryonium,
-0
[« 9+ } . a0
we can write Ealaz' = p123 o
45" 4573
One can readily see the connection between the edges of the
OAG and the quark structure usually associated to hadronic states.

The concept of order thus implies the quark structure, including zero

triality and quark coni‘inement.z’g 24,7

6. Unitarity and Cluster Decomposition

In this section we meke no distinction between graphs

representing a connected part T and its complex conjugate

fi
¥
Tﬁ.

As discussed in the introduction, the wmitarity condition
is expressed through the discontinuity relations in a given process.
The process is specified i, an Initial state |1> and & final
state li‘} . Let us denote the corresponding graphs g and gp
and the corresponding skeletons by Yi and yf. Furthermore, for
any intermediate state- In) to which we assoclate a graph &,
and a skeleton Yn we can define two QAG which we denote <gf|gn7
and <gnlgi> . The product of the two ordered smplitudes,
<gflgn> <gnlgi>will be non-gero only if Y, =Y, =Y, The
result Yy =Yg indicates that the product of two ordered

17
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amplitudes can always be interpreted as part of the discontinuity

of an ordered amplitude <gf|gi> . This fact is essential for

the consistency of the theory. It is a consequence of the requirement
of conservation _of order discussed earlier.

We now turn to Cluster Decomposition. Consider th« two

states [1> and |f> introduced sbove. FEach graph g; and
gy can be decomposed into n connected subgraphs gij and ng.;
j=1,...,n. =and correspondingly, each skeleton into n connected
subskeletons Yij and ij' The following rules however must
be obeyed by the decomposition:

(1) To each skeleton Yij there corresponds an identical

skeleton ij at the same relative location in the original tree.

In other words, the two skeletons Yi and Yf must be decomposed
identically.
{(2) A subgraph representing a single particle must lie

entirely in the same gi. or gf,j'

i i for
We then define n ordered emplitudes <gfjlgi ,j>
each couple of graphs (gfj’gij) separately. If one or more of
these amplitudes vanish, the particular cluster decomposition is set
equal to zero. An example of cluster decomposition is shown on

Fig. 16.
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Finally, we address the question of erossing. Consider
an amplitude in the phase space region where |a) and fo)
are the initial and final states respectively. This ordered
amplitude is associated to an OAG < gblg& ) ., It is possible to
analytically continue this amplitude to another region of phase space
vhere lc) and |d> are the initial and final states respectively,
provided <gd|gc> = (gb|ga7 . In other words, given an OAG,
the reglons of phase space related by analyticel continuation are
those corresponding to all possible bisections of the OAG such that
one connected graph thus obtained corresponds to an initial state

and the other to a final state.
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Conclusion

The objective of this paper was to expand on the mathematical
aspects of the ordered hadronic amplitudes presented in Ref. 3. In
particular we have presented a systematic way to construct the
ordered Hilbert space of Ref. 3 and we have shown that it is the
most general Hilbert space consistent with ﬁnitarity.

We have also discussed a number of topological properties
of the ordered amplitude and, in particular, the concept of mates
was exhibited and will turn out to be crucial in the topological
r-xpansion.8 Finally the ordered S matrix turms out to be cluster

uvecomposable and therefore crossing symmetric.
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APPENDIX A: INDUCED SYMMETRY BRE-KING

To establish thet cubic tree graphs havi only three possible
symmetries we recall Jordan and Sylvester's theorem:6 “Every tree
has a center* cousisting of either one vertex or two adjacent
vertices.” Thus there are two cases to consider.

(a) There is only one central point. Since it is a 3-vertex,
the symmetry requires either that the three branches of the point be
identical ylelding a 3-fold symmetry (e. g., Fig. 41) or two branches
only are identicel yielding a 2-fold symmetry (e. g., Fig. 42).

(b) There are two central points. In that case, the theorem
states that the two points are connected by one edge: e. The only
possible two-fold symmetry of a cubic tree graph is then obtained
where the two subgraphs on either side of e are ldentical
(e. g., Fig. A3).

In the case (a), the symmetry around the central point is
manifestly broken by coloring the three edges of the central
vertex with different colors and in the case (b}, the symmetry is

broken by glving to the edge e an orientation.

To each vertex of a tree graph one can associate an integer
corresponding to the (unique) path from thet vertex to the most
remote "tip" of the tree (relative to the vertex). A central vertex
is a vertex with the smellest integer emd the center of the tree

graph 1s the set of all central vertices.



;

As we take a path on one (now well-defined) branch, away from
the center of the tree graph and towerd an ocuter vertex we encounter
at each vertex a bifurcation. The choice at the bifurcation
can be made well defined by the same coloring procedure. Thus,
any edge of the graph can be sepcified by the colored path one
must take to reach it with the center of the graph as starting peint.

As an example, in Fig. A4, edge a is defined by the path
that starts at the center of the graph ¢ and follows the colored

edge, 1, 2 and 3 successively.

22
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APPENDIX B: EXISTENCE AND UNIQUENESS OF MATES

Existence: Given a vertex A in an ordered amplitude graph
G we want to show that there exlsts another vertex A' such that » A
and A' are connected by three disjoint paths.

Since in g regular cubic graph each vertex is at least on
two eircuits (in fact on three circuits), A 1is on some circuit K.
We btisect G such that K is entirely on one channel graph.
Again, this is always possible because it suffices to isolate part
of an edge of G as the bisection. Then by the construetion of
Section 3, 4 is necessarily the gate of some circuit C. Then
let A' be the other gate of the same circuit C. It is easy to
see that two of the three disjoint paths comnecting A to A:
are the two legs of the circuit C. The third path is obtained
by following a path containing the links of C -- which always
exists since the amplitude graph is regular.

Unigueness: Consider A" 4 A'. If A" is on one leg of
C then the path from A to A" containing the links and the path
containing the other leg are no longer disjoint. If A" is not
on C, then the paths containing the two legs have at least one

L}
link in common. Thus, no other vertex than A can fulfill the

definition of a mate.
Alternatively, ‘1t can be shown that two mstes A and A'

share the same three Edmond orbits (1. e., faces of G).



APPENDIX C: CONSTRUCTION OF HILBERT SFACE WITH n-VERTICES IN GENERAL

First we note that the sector displayed in Fig. €1 (two
edges with different colors) would conflict with unitarity unless
it does not communicate with any other state. This could be seen in
the amplitude of ¥Fig. C2 where a state with indistinguishable
edges can be extracted.*

Now we discuss the possiblility of admitting n-vertices
{n > 3) in the graphs. This automatically requires at least n
colors to distinguish the edges of a single vertex. There are two
possibilities:

(a) The n-vertices are admitted comcurrently with the 3-
vertices. In this case, one can readily construct the unwanted state
of Fig. Gl (e. g., Fig. 03). " Incidently, Fig. €3 also shows that
we cannot have more than three colors even if we restriet ourselves
to 3-vertilces.

(b) The 3-vertices are not admitted. There we have two
subecases:

(b-1) n is even: In this case, one cammot construct skeletona“

with an odd number of outer edges. This results from

the fact that any skeleton is constructed with k

This part of the argument is due to G. Weisamann."

#% For n > 3, skeleton graphs may include cycles as 1long as no more

than two vertices reside on any cycle.

24



(b-2):

25

vertices. We thus have nk edges at our disposal but
nk is even and every connection reduces that number

by two. Hence the final number of outer edges is always
even. Therefore the resulting Hilbert space is much .
more restrictive than the QHS (constructed with
3-vertices).

n is odd (end n > 3). In this case it is easy to see
that one cannot construct a skeleton graph with three
outer edges. In fact, more generally, it 1s impossible
to construct a skeleton graph with m outer edges and
with m<n if m and n are odd. This can be seen
as follows: 1f k is the nuwber of vertices and

e the number of internel edges we have kn - 2e = m.
On the other hand, if k is even, erax " kn/2 -1

and if k dis odd, Crax = (k - 1)n/2. Tne latter
cage is of interest here (m,n odd) and we have

Byin,odd = ¥n - (k - 1)n = n. So the resulting
Hilbert space 1s agaln more restrictive than the COHS.
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FIGURE CAPTICNS
(a) Mesonic ordered state. (b) mesonic emplitude
Generalization of the sequential order
Particle graph representing (a) a particle with four
neighbors and (b) with five neighbors
Cubic tree graphs: basis of the ordered Hilbert space
Oriented and colored tree graph (skeleton)
Elementary operation generating all graphs of the ordered
Hilbert space
Successive iterations of the operations of ™ig. 6.
Coxbining stetes 1o obiain an ordered amplitude graph (OAG)
Bisections of ordered amp.itude graphs
This graph is illegel because the diaganal edges are not
distinguishsebles.
Constructing the graph of Fig. 10 starting with an arbitrary
number of indices to distinguish between edges
(a) Prototype of inadmissible subgraph. (b) The result of
its combinatfon with itself and (c) showlng the emergence
of the unwanted graph of Fig. 10
Uncolorable graph with only one external vertex.
Possibility of cutting the OAG in three parts if l-vertices

are allowed
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Algebraic notation for ordered amplitude graphs

Cluster decomposition of a transition amplitude

Cuble tree with one central vertex and 3-fold symmetry

Cubic tree with one ceﬁtral vertex and 2-fold symmetry

Cubic tree with two central vertices and 2-fold symmetry
Colored cubic tree of type {(A-b) 1llustrating the fact

that each edge{e.g.,8) is distinguishable. Edge orlentation
should be superposed but is not needed here. The graph

is drawn with the convention that the orientation of the

vertices alternate on any path, C is the central vertex.

Undesirable sector defined by two outer edges of different
colors.

Construction of a state with undistinguishsble edges

using a state belonging to the sector of Cl

Construction of a state belonging to the sector Cl

using 3-vertices and more than taree colors.



29

, M, Mp ~
, \
/ \
e ‘
\ !
\ /
N 7/
~ M, M~
Fig. 1b

[

Fig. 3a

IS

Fig. 3

7S

Fig. 4a

Fig. 4b

XBL 785.715



Flg. 6a

Fig. 7

Fig. 6b

XBL 784-714

30



Fig. 8

XBL 784-716

31



5

& >

7 7
Fig, 11a Flg. 1Ib ! Fig. llc
2 2
5 u
3 [
6 6 6 ' & - ’ -~
? D
3
3
Fig. 114 Fig. 1lle Fig. 11f
@ B \@ -
Fig, 12a Fig. 12b Fig. 12¢
2

XBL 784.713



pF

bE -

rD

33

Fig. 14
a‘ az Q3 Q50|Qe
= 1) B(1) c@ D2y
Al Ba,aaae as5a, ay
Fig 15

e
BE——>»E + 8 E + a@e
)

ceEe—>>» cE—>» ¢

Fig. 16 XBL 784-712



34

Fig. &1 Fig. A2 Fig. A3

Fig. c1

Fig. €3
XBL 784-718



PART II

GENERAL TOPOLOGICAL EXPANSION OF HADRONIC AMPLITUDES*
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1. Introduction*

The cbjective of the Dual Topologicel Unitarization {DTU)
program is to systematically approach complete satisfaction of
unitarity for physical tranéition amp" ‘tude through an infinite
sum of simpler structures called topological amplitudes. Formally,

one may write the transition emplitude between states |i > and

£ ‘as
Teg = Z {Tydes (1)

a

where o« stands for a number of "indices" completely characterizing
the topological amplitudes. The word "indices" is used rather
loosely here (for historicgl reasons). It refers no% only to the
integers g and r to be discussed in Sec. 5 but also to the
boundery siructure of the amplitude (ef. See. 5) which 1s a
graph, not an integer. (In the early days of the topological
expansion only the number of houndaries was considered important
for the 1/N expansion). Thus, the symbol & represents a
couple of integers (g and r) as well as the specification of
interconiections between vertices representing particles

(the boundary structure). Henceforth, this set will be referred

to as the "indices" of a topologlcal amplitude.
¥

This peper is a continuation of Ref, 1.



The adjective "topological" describes the fact that the
analytical structure of the Tu's is related to the topological
properties of associated dual-like diagrams. This adjective will
be used for all amplitudes Ta except those correspending to the
lower order of the expansion (the ordered amplitudes).

2.  Gemeral ordered amplitude

The leading terms in the expansion of Eq. (1) are called
ordered ampl:’d;udes.z’3 The ordered amplitudes eare defined in
an ordered Hilbert space and otey un:i.t'.arit_\,'.'1’3 In this section
we only briefly recall the basice properties of ordered hadronic
amplitudes. For more details, the reader is referred to Refs.
1, 3, end 9,

1. The order between particles of a given state 1s
represented by a colored and orlented greph relating each particle

to its neighbors. In the ordered Hilbert space, iwo states with
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the seme particles (same spin and momenta) but differing by the order

1, e., by the graph representing the connections between particles
are considered different.

2. MNot all graphs are allowed to represent ordered states.
It can be shownl that the most general graphs are those con-

strueted starting with cuble trees - i. e., such thet all internal



vertices are of degree three - and expanding according to the
following operation (cf. Fig. 1):
(a) Select an edge and cut it in two parts (color i).
(b) Connect the two vertices newly created with two
edges colored jJ and k (j#k #1i) and with
opposite orientation.

(c¢c) Iterate as meny times as necessary with any edge.

It can be shown that in such graphs all edges are distinguishable.

3. Particles (poles) are represented by subgraphs of
these graphs. In general particles are represented by subtrees.
Mesons could be represented elther by 2-vertices or by the graph
of Fig. le. In this paper-we use the latter for convenience
of presentation (ell vertices are 3-vertices) but the 2-vertex
representation can be shown to be equivelent.

4. A colored oriented tree graph and all graphs derived
from it by the operation above form a sector of the ordered Hil-
bert space. The tree graph 1s called the skeleton of the sector.

5. Ordered emplitudes are non-vanishing anly between
states belonging to the same sector. The ordered emplitude
graph (0AG) is obtained by metching the "corresponding outer edges"
of each state. In this context, two "corresponding" outer edges

refer to the same outer edge of the common skeleton graph.
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6. Among many topological precverties of the OAG one of the
most important is the existence of mates. Given a vertex A, there
exists a unique vertex A' such that A and A' are connected by
three disjoint paths (equivalently, A and A' are on the same
three faces). A and A| are called mates. An example is shown
on Fig. 2. A1 and A2 are mates as well as Bl and BZ; and
Cl and 02.

7. OAG's are plaenar, 3-colorable and bipartite. As a
result, without loss of generality, the graphs can be lmbedded
on a sphere such that the orientation of the vertices alternates
on any eycle. (By convention, a vertex is positively oriented if
the cyelic order of the colored edges is clockwise and negatively
oriented if the cyclic order is anticlockwise). For instance,
in the graph of Fig. 2, Al’ Cl and 52 are positively oriented
whereas A2, ),
on an orientable surface (e. g., sphere), the orientation of the

and 02 are negatively oriented. Once imbedded

edges (i. e., arrows) becomes redundant and henceforth will be

dropped.
3. Topological amplitudes

In order to get rid of the order degree of freedom, one
is led to define a new amplitude as the sum of all possible ordered

amplitudes containing the relevant particles.3 For historical
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reasons, this new amplitude Is called "planar amplitude"”. An
example is shown on Fig. 3.

One quickly realizes that planar amplitudes do not
obey unitarity since the product of two plenar emplitudes includes
unordered products.* The unordered products can be classified in
terms of their topological structure. More specifically, it will
be shown that they can be clessified in terms of three "indices'.
The topologlcal structure of a product being related to the
anelytic structure of the assoclated complex function. All
products belonging to a given classification (i. e. with & specific
st of "indices") are then attributsble to the discontinuity
formula of a topological amplitude characterizedby the same
"indices.” .

Since the planar amplitude is not unitary it must be
corrected. The corrections include these topological amplitudes
generated through unordered products by the mechanism deseribed
above. 6ne expects a better approximation (i. e., closer to

unitarity) to be achieved by adding to the planar amplitude

The expression "ordered product” refers to products of
amplitudes that could appear in discontinuity formuilae of ordered
amplitudes. The "unordered products" never appear in such

formulae.



all the topological amplitudes found in products of planar
amplitudes. This new emplitude is still not unitery because a pro-
duct of two of these new ampllitudes will generate still higher
order topological amplitudes. The process needs to be repeated in-
definitely. Of course, to be meaningful this topological expansion
must comverge at a reasonable rate. There are numerous indications

although no rigorous proof - that such is the case.

4. Mesonle sector revisited

Mesonic amplitudes, with simple sequential order have
been extensively studied. The original concept, due to Venezianol',
made use of dual diagrams in the Feynman spirit and interpreted the
expansion in terms of the parameter 1/N where N is the number
of flavors. Two topological properties of the graph were
identified as affecting the power of 1/N.
(a) The genus of the graph (hv)
(b) The number of boundaries (Bv)' This latter number
is essentially the number of orbits (see Appendix A)
to which external particles are attached. 1Later,
Chew and Rosenzweig2 reinterpreted the diagrams
in the S -matrix spirit and have shown that
(1) the genus of the graph is related to the
strength of the discontinulty
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(2) the number of boundaries ic related to the pole
structure.

Thus, hv and Bv characterize the analytic structure of
the function associated to the graph.

Three types of graphs have been used to represent the
topological emplitudes of mesons. In the mesonic sector they are
all equivalent. Exemples are shown in Fig. 4. Figure 4a' 1s
a representative of the quark (or duel) disgraws(lines represent
quarks); whereas Fig. 4c is the equivalent particle diagram
(lines represent particles - they are not oriented). Figure 4b
is the equivalent hybrid diagram (oriented lines represent quarks,
non-oriented lines represent particles). It turns out that the
most useful type of diagram for generalization parposes is a
modified version of the hybrid diagrams. Figure 5 is equivalent to
the diagrams of Fig. 4 (hv =1; B, = 1) except that each
particle line is replaced by two particle 1ines.* At each
vertex, the cyclic order is alternatively quark line and

particle 1line. A particle line elther starts and ends "outside"

It is tempting tc assoclate the palr of particle lines with
quarks as for dual diagrams. However, such association will not

be made in this pesper; our particle lines are not oriented.
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the quark rings or starts and ends "inside" the quark rings.
("Outside the ring" means that at any vertex, a ciorkwise rotation
goes from the incoming quark edge to the outgoing quark edge. The
situation is opposite if we are "inside the ring" as in Fig. 5
for instance).

The genus, h, of the graph in Fig. 5 and the number
of orbits, f, are higher than in the corresponding graphs of
Fig. 4. However, it is easy to see that we have a gener-1 re-

lation relating the new and old quantities:

h = 2hv+1

(2)
£ o= 2f .
v

Now, the orbits of the new graphs can be coupled in pairs
such that both members of a given palr have the saue particle
structure (number and order). The boundary is now redefined as
belng a couple of orbits with the same particle structure.
Further, if the number of quark rings (i. e., the number of
connected graphs 'hen all particle lines are removed) is d
instead of 2 as In the previous example, then we have the
more general formula:

h = 2hv +d-1
(3)

B=Bv
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As will be discussed later, tha amplitude is still character-
ized by hv( and Bv) and not h. {More specifically, the index g
to be discussed in Sect. 5 1is equel to 2hv for mesonic ampli-
tudes ).

5, Hadronic Amplitudes

5.1. Construction of Topological Amplitudes

The construction of higher order topulogical amplitudes
is carried through products of amplitudes of lower order. In
as much as these products define the higher amplitudes, a
topological amplitude is defined by its discontinuities.

A necessary and sufficient set of conditions to define a
consistent topological expansion can be stated as follows:

(a) The first condition is to define a multiplication
rule for the OAG consistent with the unitarity requirements at
the ordered level. In other words, the multiplication rule should
be such that the ordered product of itwo O0AG can be interpreted
as representing the discontinuity of an ordered amplitude in
an ordered discontinuity formula.

(b) The next condition is to characterize the graphs
representing the product of two OAG by & set of “indices™ such

that substitution of an ~rdered subgraph of the intermediate
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state* of the product by its skeleton (single particle)} - or
conversely - does not alter the indices and substitution of
unordered subgraphs by their skeletons alters at least one index.
In other words, these "Indices" completely determine the product
relative to an ordered product.
(e¢) The perticular product - or discontinuity - can
then be attributed to a topologleal amplitude carrying the same
"indices. Therefore, by definition, the topologicel amplitude
can be represented by any (product} graph carrying the relevant
"indices". In practice however one chooses the simplest graph
carrying these "indices". The algebraic notation, to be intro-
duced later, automatically incorporates this feature. .
(4) The product of two general topological emplitudes must
be defined by the same multiplication rule as in condition (a)
and carry the same set of "Indices" as found in (b). Furthermore,

knowledge of the "Indices" of both members of the product and

¥
A subgraph of the intermediate state 1s a connected subgraph

such that all vertices belong to the intermediate state. This
subgraph 1s “ordered" if the corresponding vertices on either
side of the product are connected in exactly the same v

(ordered product) and is ™unordered" otherwise.



specification of the particular intermediate state should be
sufficient to determine the set of "indices" characterizing the
product.

In summary, the topological amplitudes are defined through
products of lower order amplitudes, They are characterized by a
set of "indices" related to the topologiecal structure of the
associated graphs. These "indices" are selected by the multiplica-
tion rule of the lower order graphs and by the requirements of
consistency and completeness (i. e., products of topological
amplitudes are defined by the same set of "indices" as eitler mem-
ber of the product and this set is completely determined by the
indices of the members of the product and the intermediate state

under consideration).

5.2 Product of two smplitudes
Generalizing the rule for products of mesonic amplitude
graphs discussed in Sec. 4 to general ordered amplitude grephs
(regular cubic graphs), we connect corresponding vertices belonging
to the intermediate states (henceforth called intermediate

vértices) with three ‘"particle lines"; each sterting

s
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between a different couple of "quark lines" (1. e., colored

edges) (1,j), (j,k}) or (k,i)} and ending between the corresponding
couple of quark lines on the other graph. Simple examples are shown
in Figs. 6 and 7. When the detalled structure of the intermediate
lines (particle lines) is not needed, a wavy line will be drawn
instead of three particle lines (e. g., Fig. 8).

We now discuss the topological indices in details. These
indices are first obtalned in products of amplitude grephs as
discussed in Sec. 5.1. They are then - and only then - associated
with amplitude graphs.

5.3. The boundary structure

As in the mesonic case, the boundary structure is
defined in terms of Edmonds' orbits {Appendix A}. We shall say that
two orbits are connected if they have at least one vertex in
CONmOLL «

Then, given a graph representing either an amplitude or a
discontinuity we group the orbits in sets of connected orbits.

Each set will be called a boundary. The number of boundaries
will be designated by B and the extermal vertices belonging to
a given boundary are unambiguously interconnected. Vertices
(and particles) belonging to different boundaries are completely

disconnected. As an example, the graph of Fig. 6 has a single
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boundary whereas the graph of Fig, 7 has two boundaries. In
general, every boundery can be represented by a regular cubic
graph, Note that the boundary structure need not be an ordered
graph or even a planar graph but it must be bipartite. It is,
however, very important to recognize that once the connections
between vertices in a boundary are specified, the nuwber of orbits
of the boundary is completely determined.*

As was true for the mesonic amplitudes, the boundary
structure is related to tke pole structure of the ampl:ltv.xde.2
The emplitude has a pole in a particular chaennel - defined by a
specific partition of the external vertices into initial and
final states - if and only if there exist a graph representing
the amplitude (i, e., with the relevant "indices") that could
be cut into two connected subgraphs such that one connected
subgraph contains the vertices of the initiel (or finel) state
only and the other subgraph contains all other vertices (i. e.,
all intermediate vertices and all vertices of the final (initiel)
state). For instance, the amplitude of Fig. 8 has poles in the

channel AD + BC but not in the channel AB + CD,

In contrast with a discontinulty graph, a graph representing
an amplitude contains by convention the minimum number of orbits

compat ible with the boundary structure.
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5.4. The mate-remoteness index (r-index)

We first define the concept of mate walk. All graphs

we are concerned with are composed of a certain number of orderad
amplitude graphs (0AG) commected to cne another by particle lines
(wavy lines in Fig. 9). In each OAG, the mating is well-defined.
However, some vertices may be mated to intermediate vertlces;
(i. e., to which wavy lines are attached). For instance, in
Fig. 9a, A 1is mated to B. A thereby "loses" 1ts mate but
eventually retrieves one in F. The path ABCDEF 1is celled a
mate walk, Similarly, the path MNPQRSTU 1is a mate walk, A
and F, M and U are call=d remote mates.

Formally, the operation of finding the remote mate of A
is to go to its mate in the OAG (B); then jump to the counterpart
of that mate in the other OAG (C); go to its mate (D), and so
on, until one reaches an external vertex (no pa—ticle - or wavy
line attached).

Since no such overation is required for X and Y in
Fig, 9a, they are called close mates.

In Fig. 9b similar situations are displayed except that
no external vertex appears in the walk. Such a c¢losed walk will
be called circuit . Thus ABCD is a circuit and EFGHIJKL is

another. Xand Y as well as Z and T are close mates,
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Finally a circult with only four vertices, ms ABCD in
Fig. 9b, is called a trivial circuit or ordered circuit because
it involves an ordered product.

We can now define the remoteness index of the product

of two QAG as

v s X [l;-]w -, (4)
w

where the sum is over all walks {open and closed}, b is the
number of wavy lines belonging to a given walk and Cq is the

mumber of ordered circuits. The notation [xJ is defined by

Ix] = sup {neN/m sx} (5)

for any real number x. That is, [x] 1s the largest integer
smaller than or equal to x. {e. g., [3/2]=1)

Note that r is completely determined by the boundary
structure of the members of the product and by the specification
of the intermediate state.

A discontinuity with r # O belongs to an unordered
topological amplitude with corresponding r-index. We can now

define the remoteness index for a general product. Consider



a product of two amplitudes M.l and M2 with respective indices
Ty and r,. Then the resulting remoteness index is

ros ot b (6a)

where

v Z (%]w - Cy (6b)
wi i

the sum on the right hand side of Eq. (6b) and the term C o Tefer,
respectively, to the walks end ordered circuits created by the
product of M._1 and M2 Note again that Ty is completely
determined by the boundary structure of Ml and MZ and by the
specification of the intermedlate state. We also define for

t
future needs the index r @
L b
ro=or ottt E [E}wi - C (7)

where Ci is the total number of intermedlate circults created

by the product.

In general, 2r represents the minimum number of additional

*
3-vertices (uncorrelated baryons } 2n the simplest discontinuity
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of the amplitude relative to the corresponding ordered amplitude.:
Thus, a topological amplitude with index r will not have a
discontinuity with less than 2r 3-vertices in the channel

graph representing the intermediate state.

5.5 The g-1index
The g-index can be thought of as a renormalized handle
or genus index of the mesonic amplitudes. The g-index of a

product of two graphs representing amplitudes is defined by

g = h-b+c~-qad+1 (8)

where h is the topological number of handles (genus) computed
with Euler's formula and Edmonds' orbits; b 1s the nunber of
wavy lines (intermediate 3-vertices on either side of the
product); ¢ is the number of circults and d is the number
of OAG included in the product (or number of connected parts

if all particle lines are eliminated).

Uncorrelated baryons are pairs of baryons antibaryon that
cannot be reduced to a single meson. Prof. G. F. Chew has
suggested a potentlal suppression mechanism related to this

fact.
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For ordered products, g 3is always equal to zero.

As was true for the h-index, to each topological amplitude
we associate an index g such that all its discontinuities possess
the same value of g.

When performing the product of two amplitudes M1 and
M2 with respective indices gy and g, we generally get a graph
with a new index g. We now shown how to compute g in terms
of €7 8y and the boundary structure of M1 and Mz. In
this section, the subseripts 1, 2 and 1 refer to the members

of the product Ml and M, and to the Intermediate state

2
respectively. The symbols without subscripts refer to the graph
product. The letters h, v, e, { symbolize the number of handles,
vertices, edges and orbits (faces) while g 1is defined by

Eq. 8. We shall extensi—ely use Euler's formula:

2h = 2-v+e-f. (9)

We first determine h as a function of h, &and h,. Starting

1 2
from Eq. 9 applied to Ml and M2 respectively and adding, we

get,

2ny +By) = h- (v +vy) ¢ (e ey) = (£ * Ty).



Now, subtracting from Eq. (9) and using v = vy V5

= + + e.; we :
e e, e2 el, get

_ 1

h -hl+h2+5(ei-fi-2) (10)
with the formal definition:

£, 0F £-(f 4 L) (11)
We can also obviously write:

b = b, +b, by (12)

e = e te,to (13)

4 = 4, +4, (14)

and therefore, after substitution of Eq. (10)  through (14)

in Eq. (8) and some stralghtforward algebra we get:*
¥

Note: wusing the formal definition Al =43 di = 2; Zhi E2-v,
+e1-1‘i and gi= hi-bi+ci-di+1 we get the formulame
h=h +h,+h and g=g + g * 8 ( comparable to Eq. {6a.)).
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e - gt rale -ty -4)-b re. (15)

Now, e, bi and ¢, are completely determined by the specification
of the intermediate state {note the identity e, = B i), o

and f2

and f 15 determined by the boundary structure and the specification

are determined by the boundary structure of Ml and M.2

of the Intermediate state since, to determine the Edmond orbits we
only need to know the connections between the vertices, Thus,

T, 1s completely determined by the boundary structure of Ml

1
and M2 and by the specification of the Intermedlate state.
Therefore, given -4y and By» the boundary structures of Ml

and M2 and the intermedlate state of the product, g 1s completely

specified by Eq. (15).

5.6. Algebraic notation
We now discuss how to write algebraically (as opposed to
graphically) the boundary strueture of an amplitude and its
r and g indices. The major advantage of this notation 1s to
exhibit the faet that topological amplitudes are independent of
their graphical repregentation. Only the essential features common
to all graphs (1. e., the connections between external vertices)

are preserved in thls notation.
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(a) Representation of boundary structure: We recognize

that, within a boundary, only the connections between vertices are
significant. Therefore, we associate to each vertex V a set of
three indices: Qg Og, O (representing the three edges attached
to V) and we write V(&E&)k). The order or the a-indices is
important as it corresponds to the color index of the associated
edge. The left-to-right arrow corresponds to & positively oriented
vertex and the right-to-left arrow [V(Wk)] corresponds to

a negatively oriented vertex.

The boundery structure is defined by listing all vertices
of the amplitude with the relevant oa-indices. Two vertices
connected by k edges In the graphical representation will have
k o-indices in common in the aslgebraic notation (k =1, 2 or 3).
Since different boundaries have no o-index {edge) in common they
are separated by a semli-column in the list. :

Finally, it is useful to specify pairs of mates by an
arbitrary integer. The two members of the pair would then carry
the same number and would be readily identified. For example,

{V(n,uluzuj) W(n, »8; 0, 5)}
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(b) r and g indices. The remoteness index r and the
g index of a topological amplitude M will be specified by a super-
sceript and a subscript respectively (e. g., Mgr { boundary structure}).
Furthermore, the remote mates must be specified since two adjacent
remote metes correspond to a different pole structure than two
close mates. The specification is done by connecting the remote
mates by a bar over the amplitude.

As an example, the algebraic notation corresponding to the

graph of Fig. 10 is:

1l T — R — —
M {A(l,aluzaj) B(l,alazaj); C(2,a4a5a6)D(2,a4u5u6)}

Products of two amplitudes can be computed with this notation.
The procedure is detafled In Appendix B. This fact clearly shows
that all the necessary ingredients to determine the product of two
topological amplitudes are included in r, g and the boundary
structure.

Another advantage of the algebralc notation is that it
enebles a sharp distinction between emplitudes end products of
amplitudes or discontinuities. Although they are both represented
by the same type of graphs it is crucial - in order to aveid

confusion - to have a clear idea whether a glven graph is supposed
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to represent an amplitude or a discantinuity. In the latter case,
the intermediate state 1s well defined and cannot be altered while
in the former case, there is no intermediate state - or particles
and some particle lines may be remeved - so long as the indices
are not altered. Conversely, analytic continuation from one
reaction to a crossed reection is a property of amplitudes,

not discontinuities. Failure to recognize these simple facts
could lead to a paradoxical situation. The consistent use of

the algebraic notation guarantees a clear distinetion between

amplitudes and discontinuities.

5.7 The 1/N expansion

We conjeeture* thet the suppressicn of non-ordered products
relative to the corresponding ordered products (i. e., the ordered
product with the same particles in the initial, final and inter-
mediate stetes) can be understood as a 1/N suppression as defined
by Venezizmo.[' If the product is characterized by ¢ and rI
defined by Eq. (8) and (7) respectively and by B boundaries
then in all the examples we have rtudied there are g + (B - 1) + r
fewer free quark lines than in the corresponding ordered amplitude.

T
Thus the suppression factor is (1/N)g+(B'1)+r .

This conjecture was originally suggested by Prof. G. F. Chew.
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6. Conclusion

A classification of the product of general emplitude
graphs in terms of three topological indlces was presented. The
classification was shown to be self-consistent; i. e., the
indices corresponding to the product of two amplitudes are completely
determined by the indices of the members of the product and by the
specification of the intermediate state, The indices completely
characterize the graph product and are related to the singuierity
structure of the associated complex function.

The new classification reduces to the "standard” one
in the mesonic sector.

The next phase of the theory should be to analyze the
spectrum of particles generated by this approach, to determine more
accurately the connection with the analytical structure of the
indices, to investigate the mechanisms of convergence and to

apply it to practical consideratioms.
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Appendix A: Edmonds' orbite

The following technique developed by Ed.monds7 and by Yol.z.n,g8

ensbles one to determine the faces (orbits) of a graph imbedded
on any orientable two-dimensional surface.

The principle is to start from some point and to move
alongside an edge such that the edge is always on the rignt
(say), until a vertex is reached. At the vertex, we make a clockwise
rotation until we hit the next edge* and we "travel" agein with
the edge to the right until the next vertex where we make a clockwise
rotation, and so on. In the end, we come back to the starting
point. This round trip is called an orbit. When all the orbits of
the graph are determined we should have traversed each edge twice;
once in each direction.

The number of orbits, being the number of faces of the
graph enables us to compute the genus of the graph through Euler's
formula (Eq. (9)) and also to specif'y the connections between ver-

tices by recording the sequence in which they appear on each orbit.

This is why the position of particle edges with respect to quark
edges 1s crucial. In fact, when we sre on a quark edge of a given
color in one OAG, the prescription will keep us on the seme color

after "landing" on the other OAG.
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Appendix B: FEdmonds' orbits and algebraic notation

It is possible, although tedious, to determine Edmonds'
orbits from the algebraic notation alone. This method is enalogous
to the one introduced in Ref. 5. We shall describe the general rules
and illustrate them with the simple product of Fig. Bi. In the
algebraic notation, this product is

P = Mg {A(1,o:lo:2a3)B(1,u4u2u3)F(2,u4u5a6)

B2,608,)) 8 M0 (E(1, B BNLEER,)

C(2,8,8,8,)0(2,8,8,8,) ] . {B1)

We first introduce some definitions. At each step described
below two a-indices are crossed. The Pirst one is called in-index
and the second out-index. There are also two types of vertices:
those without particle 2ines (e. g., A, B, C, D) called external
vertices and those with particle lines (e. g., E, F) ecall:d

intermedigte vertices. The correspondent of an upper (lower)

o-index is the seme a-index but appearing as a subscript
(superseript) in the same amplitude. The counterpart of an
a-index is the g-index appearing in the same position (1. e.,

corresponding intermediate vertex and same order in the other
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amplitude, e. g., the counterpart of u5 is 82) and the follower

of an index is the next index (cyclic order specified below) on the
same vertex. We now specify the general rules to determine the
orbits:

(1). The clockwise order is followed on vertices with
negative orientation as the counterclockwise order is followed on
vertices with positive orientation (hence, the directions of the
arrows in Eq. (B1)).

(2) To start, select any index in one amplitude as
the first in-index of the sequence.

(3) Now cross the indices two by two in the following
sequence

(a) If you are on an external vertex
- after the in-index go to the follower.
- after the out-index go to the correspondent.
(b) If you are on an intermediate vertex
- after the ir-index go to the counterpart.
- after the out-index go to the correspandent.
Thus the "correspondent” 1s always an in-index; the "follower" or

the "counterpart" are always out-indices.



(4) An orbit is completed when the starting index is
reached again as an in-index. The sequence should contain an
even number of indices.

(5) At the end of the operation, every index should be
crossed twice; once as an in-index end once es an out-index.

As an example, the sequences for the product introduced
above are given below. The notation @(¥) means the index
appearing on vertex V. We thus have:

= A
1st orbit ay(a)a) (A)a) (E)8, ()8, (Fa, (Fa, (B)ay(B)
nd orbit = ey(A)a(A)ay(Blw,(B)
3rd orbit = ul(A)uB(A)uB(B)ul.(B)al,(F)”l(F)Bl(E)ul(E)
4th obit = B(C)B,(C)B,(Flay(Flag(EIB,(E)B,(DIB,(D)
5thoorbit = B.(C)B,(C)B5(DIB,(D)
6th orbit = B,(C)8,(C)B,(D)B,(DIB(Eda(E)ay(FIB,(F)

7th orbit = u5(E)32(E)62(F)a5(F)

8th orbit = u5(F)82(F)62(E)u5(E) .
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*
Since there are eight orbits , Euvler's formula yields h = 2
and Eq. (8) ylelds g = O. But we see that B = 2 because A and
B do not have any orbit in common with C and D. As a result,

the amplitude to which the discontinuity belongs can be written as:
oy —_—
MO {A(l,ul . 3)B(l u.l ,u(z,u4u5u6)D(2,u4u5u6)).
The remote mates can be obtained simply by following a walk of

mates as discussed earlier. In our example, all mates are close

and the only circuit is ordered.

Note that they are compos an even number of a-Iindices and

an even number of B-indices.
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FIGURE CAPTIONS

Elementary operation generating all ordered stete graphs
An ordered amplitude. A1’Bz’°1 are positively orlented
55 By,C, are negatively oriented (color cycles).
(Al,Az); (Hl,Bz); (01’02) are mates.

and A

Planar amwplitude of four baryons.

Three equivalent representations of mesonic amplitudes:
(a) dual diagram; (b) hybrid diegram; (c) particle
diagram.

New version of hybrid diagram with two particle lines
at each int.ermed:l:ate vertex

Product of ordered amplitudes. The particle lines
start and end between the same color couples (1,]).
Same graph es Fig. 6, but with two boundaries.

In this product, the two mates A and B (and C and D)
are not adjacent. There is no pole in the channel AB-CD.
Walks of mates: (a) open walks. (b) closed walks
(circuit).

In this product A and B ere remote mates. C and D are
close mates.

Product of two ordered amplitudes yielding B = 2.
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