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General Introduction to the Dissertation 
The objective of this dissertation is to develop the mathe­

matical aspects of an S-matrix theory of strong interactions based 
on the concept of Order. In the meson sector, this approach has 
registered sufficient success to make generalization to all hadronic 
amplitudes appear worthwhile. 

The dissertation is presented in two separate and self-eon-
tained parts. In the first part we discuss the concept of "order" 
Hadron physics, a concept central to the theory. The basic point 
of the concept is to define a Hllbert space of hadronic states where 
channels are defined not only by particle momenta and helicities 
but also by an additional relation between any given particle A 
and a subset of particles IN), called neighbors of A. 

The most natural way to represent these relations is 
by means of graphs. The vertices of the graph represent the par­
ticles and the edges represent the relations between a vertex and 
its neighbors. Ordered amplitude graphs - representing reactions -
are then formed by combining the channel graph according to well-
defined rules. The properties of these amplitude graphs are 
examined. 

cf. Chew and Rosenzweig: "Dual Topological Expansion", IBL-6783 
(1977), to be published in Physics Reports. 
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Throughout this dissertation, and in particular in the first 
part, the importance of the role of vertices of order three is 
exhibited. A potential explanation of this role had been discussed 
in a separate paper. Another potential explanation, based on the 
operation of triangulation of a polygone - not developed in this 
thesis - is also worth considering. Briefly, the idea is as follows: 
Consider a vertex with n-edges. The dual of this graph is a poly­
gone with n sides. There are in general several ways to triangulise 
the polygone. However, if the triangulation is considered as a graph, 
constructing its dual produces a tree graph with 3-vertices 
exclusively. Since the dual of the dual of a graph is the graph 
itself, we are essentially back to the original topology (i. e. 
connections). The triangulation performed on the polygone has, 
however, transformed the n-vertex into a tree graph composed of 
3-vertices. 

Thus, a n-vertex is eventually decomposed into a cubic 
tree graph. The special role of the 3-vertex is therefore related 
to the fact that every polygone can be trianguiarized, a fundamental 
result of Algebraic Topology. 

•i. P. Sursock. " On a Connection Between Charge Conjugation, 
Quark Structure and Ordered S-Matrix Theory", LBL-7515 (1978), 
submitted to Nuel. Phys. B. 
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Ordered amplitudes are only an approximation to physical 
amplitudes since, in the physical world, order is not observed. 
Corrections to ordered amplitudes are needed. In fact, an infinite 
number of higher-order corrections must be introduced for each 
amplitude. These corrections constitute the "topological expansion", 
the subject of the second part of the thesis. 

Here again, our emphasis is on the mathematical aspects of 
this expansion. The underlying physical framework is of course the 
•unitarity properties of the S matrix and the resulting constraints 
on the singularity structure of the analytic connected parts (i. e., 
amplitudes). 

.toother avenue for the topological expansion was explored 
with some success in the meson sector but was later abandoned. The 
idea wae to classify non-ordered products of amplitudes by their 
degree of "disorder". That is to say, given an intermediate state 
where particles do not have the same sequential order in both members 
of the product, the relevant index for the classification of the 
product would be the minimum number of permutations of intermediate 
partlules in one member of the product to reproduce the order of 

It is interesting to note that both S-matrix theory and Field 
theory introduce, as basic concepts, unobservable properties 
if matter. 
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the other member. It turns out that this number is equal to the 
minimum number of handles used, for instance, in Veneziano's approach 
and hence is perfectly relevant in the meson sector. The 
generalization was found to be complicated in the case of generalized 
order bat the question remains open whether such an approach is 
fruitful or not. If it were useful, then it would provide a connec­
tion between the concept of order and disorder and the singularity 
structure of all topological amplitudes. 

We realize that these comments may not be fully appreciated 
by a reader unfamiliar with the contents of tte dissertation. We hope 
we have not eroded his /her interest before he/she has had a chance 
to read more about this fascinating subject. 
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PART I 

MATHEMATICAL PROPERTIES OF ORDERED AMPLITUDE GRAPHS * 



1• Introduction 

The S-matrix approach to the topological expansion of 

Veneziano is made possible by invoking the notion of "order" first 
2 

introduced by Chew et. al. for mesonic amplitudes and later general-
3 ized to all hadronic amplitudes. The ordered S matrix is defined 

in an ordered Hilbert space and obeys unitarity as does the physical 

S matrix. This fact guarantees consistence between poles and 
asymptotic states. The attempt to get rid of the unobservable order 
by summing over all ordered amplitudes (planar amplitude) produces 
a breaking of the unitarity constraint. Unitarity is restored when 
all terms of the topological expansion are taken into account. 

The objective of this paper is to discuss the mathematical 

framework of the material presented in Ref. 3. 

2. The Concept of Order 
The first step of the theory is tc define a simpler S matrix 

(interms of analytical structure) in an unobservable Hilbert space, 
called the Ordered Hilbert Space (OHS). In this space, a particle, 
in addition to its mass, momentum and spin has a well-defined col­
lection of "neighbors".* For instance, each meson has two neighbors, 
each barycm has three neighbors and so on. A more general channel 

* The number of neighbors will turn out to bt charaeterizable as 
the number of "quarks" and "antiquarks" that "buiia" a hadron. 
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defined by n particles ia specified by the particles involved and 
by the specification of each particle neighbor (concept of order). 
For instance, in the simple case of a channel containing mesons only, 
the channel could be written as [a^ = |lL ...M....M....M N . Here, 
the order matters as it specifies the neighbors of each mesons M . 
This channel is, in general, different from the channel |b/ = 
|ML...M....M....M) . 

In either channel |a^ or |b^ , IL and M have each 
one neighbor. However, considered in an amplitude, they will even­
tually havs two neighbors also. For example, in the amplitude 
(VL..M |TJ1L...MN M. will have M, and M as neighbors and 
M will have 11 and M as neighbors. Such a channel |a^ 
can be graphically represented in Fig. la and the amplitude in 
Fig. lb. Thus, although all the neighbors of a given particle are 
not necessarily completely specified in a channel they &re unambigu­
ously defined when the particle is considered in a process (transition 
amplitude). 

In the more general case, a particle may have many neighbors 
(e. g., Fig. 2). Apriori, any graph can represent a channel of the 
OHS. We shall however impose the following restrictions: 

(1) The graph must be connected. 
(2) The graph must not contain loops or tadpoles (i. e., 

edges leaving and returning to the same vertex). 
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(3) The graph should not include vertices of degree higher 
than three. This requirement is discussed in more detail in Appendix 
C and is independently justified in Ref. i,. It does not preclude 
the existence of particles with more than three neighbors because a 
particle does not necessarily correspond to a vertex but can corres­
pond to a whole graph. So, for instance, particles with four and 
five neighbors are shown on Fig. 3 

(4) Each edge of the graph representing a channel of the 
OHS must be distinguishable. As will be shown in Section i , this 
requirement is crucial to obey the constraints of the ordered S-matrix, 
3. The Ordered Hilbert Space (OHS) 

To construct the OHS we start from the cubic tree graphs (i.e., 
tree graphs such that all vertices are of degree three. Contrary to 
mathematician's practice, we drop the l-vertices at the "tips" of the 
tree.). Examples are shown on Fig. 4. 

All cubic tree graphs are allowed to represent ordered 
channels. In general, the topological structure of the tree graphs 
is sufficient to distinguish between the edges. However, some tree 
graphs exhibit a two- or a three-fold symmetry (e. g., Fig. 4b). It 
is possible to show (Appendix A) that in order to restore the dis-
tinguishability of every edge it is necessary and sufficient to <rient 
and color the edges of the graph. The orientation is such that alledges are 
x 

The degree of a vertex is the number of edges attached to it. 
A more complete discussion of exotic states is found in Eef. 3. 
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incoming toward a vertex or outgoing away from it. Then every edge 
is given a color index 1, 2 or 3 such that, at any 3-vertex, the 
three edges all have different color indices. This operation insures 
that no tfraph is symmetric. An example is shown on Fig. 5. 

A colored cubic tree graph is called a skeleton. All 
possible ordered states are built from skeletons by the following 
operation (shown on Fig. 6): 

(1) Select an edge a (Fig. 6a) with a color iniex i 
and cut it into two parts a. and a. (Fig. 6b). 

(2) Connect the two ends with two edges b and c with 
color indices j and k such that i, j and k are all different 
and with opposite orientation relative to a (Fig. 6e). 

It is easy to see that the new edges (b and c) are stili distinguish­
able. First they can be distinguished from one another because they 
have different color and second they can be distinguished from any 
other edge in the graph because they are "inserted" in the old 
edge a which was distinguishable by construction. 

The two operations described above can be iterated at will 
on any edge or edges of the new graph thus constructed. An example 
is shown on Fig. 7 (where the arrows and color indices are omitted 
for clarity). 

This operation is called induced symmetry breaking. 
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Finally, any number of vertices of degree two (mesons) 
can be inserted in any edge of such graphs without altering its 
topology. Sometimes, however, a meson will be represented as the 
cubic graph of Fig. 6e. For the ordered S matrix, the two notations 
are equivalent. It can be shown that the graphs thus constructed 
are the most general graphs consistent with unitarity. However, the 
proof will be postponed until the end of Section 4. 

Thus, every graph of the OHS (allowed graph) can be related 
to a unique skeleton. The OHS is divided in disjoint subspaces 
called sectors. Each sector is defined by a skeleton and all graphs 
derived therefrom by the operations described earlier (Fig. 6). 

A. The Ordered Amplitude Graphs (OAG) 
We shall postulate that the sectors defined above are 

orthogonal. That is, the ordered S matrix does not allow communi­
cation between channels belonging to different sectors. Thus, for 
a transition amplitude to be non-vanishing, the following requirements 
must be met: 

(1) Poincare invariance 
(2) Conservation of internal quantum numbers 
(3) Conservation of order (i. e. sectors) 

The transition amplitude between two states belonging to the same 
sector is represented by a graph such that all the neighbors of all 
particles are defined. An example is shown on Fig. 8. 
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The OAG is constructed by matching all the corresponding 
outer edges of each state. One can see now the importance of these 
edges being all distinguishable. If this were not the case, several 
matching would have been equally possible. This would be contrary 
to the principle that given the initial and final states, the tran­
sition amplitude is unambiguously determined. 

The fact that every edge should be distinguishable, not only 
the outer edges, will result from the requirements of crossing 
symmetry (every edge can be an outer edge). 

An important property of a unitary £ matrix is factorization. 
In this context it means that each cut separating the amplitude 
graph into two connected parts (bisection) defines a collection of 
poles belonging to the same sector (the cut edges) and two channels 
that should belong to the OHS. Several bisections of the amplitude 
graph of Fig. 8 are shown on Fig. 9. The cuts can all be thought of 
as planes cutting a sphere on which the amplitude graph is imbedded. 

It is now possible to prove the statement made earlier that 
the most general channels allowed by unitarity are those defined in 
Section 3. l»e show in Appendix C that vertices of degree higher than 
3 should be discarded and in the remainder we concentrate on 
a 

This point will be discussed in Section 5. 
** "Outer" or "dangling" edge refers to the peripheral edges of a 

tree graph (the "tips" of the tree). 
Although, for the considerations discussed in this paper, we do 
not require such an imbedding. 
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graphs constructed with 3-vertices only (2-vertices can be added 
anywhere). 

We first remark that the graph of Fig. 10 cannot be allowed 
in the OHS because the edges are not all distinguishable. Then we 
show that any state with the same topology as Fig. 10 is inadmissible 
regardless of the coloring. Let's assume that we can use as many 
colors or indices as we wish to distinguish the edges and we start 
from Fig. 11a which we combine with itself to form the amplitude 
graph of Fig. lib. This should always be possible. Next we cut 
(lib) as shown on Fig. lie to obtain the state of Fig. lid on the 
right hand side. This new state is made to combine with itself in 
a new amplitude shown on Fig. lie which we cut again as shown on 
Fig. llf. The resulting states are the unwanted states of Fig. 10. 
Thus, regardless of coloring and orientation, the graph of Fig. 10 
should not appear in the OHS as a graph or as a subgraph. 

The immediate consequence of this result is that any graph 
containing a subgraph of the type of Fig. 12a should not be 
allowed, because by combining this state with itself in an amplitude 
(Fig. 12b) we generate the unwanted graph of Fig. 10 as shown by 
the bisection in Fig. 12c. Finally, it is easy to see that a graph 
without subgraphs of the type ;i2a) and with only one outer edge 

* The undesirable aspect of this graph was first noted by G. Weissmann. 
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is not colorable (Fig. 13) and therefore cannot be made consistent 
with unitarity. 

This completes the proof that the only allowed states of the 
OHS are those constructed by the operations of Section 3 (Fig. 6). 
In summary, an allowed channel graph has the following characteristics: 

(1) It has more than one outer edge. 
(2) Every cycle is connected to the set of outer edges 

by two and only two edges (Fig. 6c in contrast to Fig. 12a). These 
two edges will be called links. The vertices at which the links 
connect to the cycle will be called gates of the cycle and the disjoint 
paths of the cycle connecting the two gates will be called legs of 
the cycle. 

In the remainder of this paper we shall use the notation 
^gf Is. / to denote the OAG obtained from the graph g„ and g. 
corresponding to the states |f) and |i/ respectively. Y f 

and y are the corresponding skeletons and we must have Y f = Y-
for ^ g f |g. \ to be non-vanishing. 

5. Topological Properties of the Ordered Amplitude Graphs 
(1) Up to a homeomorphism, an Ordered Amplitude Graph 

(OAG) must have the topology of a regular cubic graph (i. e.f all 
vertices are of degree three). In other words, all outer edges of 
the channel graphs must be connected as mentioned earlier. Failure 
to do oo would result in a possibility of cutting the graph in 
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three parts when attempting to isolate certain ordered states. This 
is shown on Fig. 14. Inasmuch as a single quark would be associated 
with a one-vertex, one can see that the failure to reconcile graphs 
such as Fig. 14 with unitarity guarantees that quarks cannot be poles 
of the S-matrix and thus cannot be considered as asymptotic states 
(quark confinement): 

(2) The OAG are connected and planar (evident). 

(3) Every cycle of the OAG has an even number of vertices. 
This results from the fact that each vertex of the left hand skeleton 
has one counterpart on the right hand skeleton (cf. Fig. 8) and all 
cycles within each skeleton contains by construction of Section 3 

sin even number of vertices on either leg of the cycle. As discussed 
in Ref. 3, 1ihis property enables one to specify Fermi statistics for 
baryons. 

(4) Therefore the OAG is bipartite (theorem of graph theory). 
That is, it is possible to divide the set of vertices of the graph 
into two disjoint parts A and B such that no vertex of A 

is adjacent to another vertex of A and similarly for B. 
(5) If we assign a coefficient +1 to the vertices of A 

and -1 to the vertices of B, then, because of properties 3 and 4, 
the algebraic sum of these coefficients on any cycle is zero. This 

This argument was originally put forth by G. Weissman. A somewhat 
different argument for quark confinement is developed in Ref. 4. 
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is also true for the overall amplitude. If we associate these coef­
ficients with the baryon number we automatically obtain baryon number 
conservation. 

(6) Property 5 is equivalent to the possibility of coloring 
#5 the edges of the OAG with three colors. Furthermore, it is possible 

to assign the coefficients ±1 to a vertex such that when the graph 
is imbedded on an orientable surface (e. g., sphere), the coefficient 

+1 is associated with the clockwise cyclic order of the color indices 
1, 2 and 3 around the vertex and the coefficient -1 to the opposite 
orientation. Thus, if the OAG is imbedded on an orientable surface 
the edge orientation becomes redundant. The orientation of the color 
indices is associated with the charge conjugation operation. That 
is, an odd permutation of color indices transforms an amplitude into 
its charge conjugate. 

(7) Existence and uniqueness of mates: In an OAG we 
define the mate of a vertex A as a vertex A which could be 
reached from A by three disjoint paths (i. e., paths that have no 
edge in common). The fact that to each vertex of an OAG corresponds 
one and only one mate is a crucial result that will enable a 

This is also true for the faces of the OAG: namely, the faces of 

the OAG can be colored using three colors only such that no two 

adjacent faces are colored with the same color. 
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consistent topological expansion.5 We establish this result in 
Appendix fl. 

(8) Algebraic notation: Since each edge of the OAG is 
distinguishable let us relabel the edges with labels a.. Then a 
vertex A is associated with three labels a., a,, a . We adopt 
the following conventions: 

(a) We write A with the a-lndiees as superscript or 
subscript according to whether the arrows are out­
going or incoming (or, if the graph is imbedded on an 
orientable surface, according to whether the color cyclic 
order around A is clockwise or anticlockwise). 

(b) The order of the indices is such that the first one 
applies to color index 1, the second to color index 2 
and the third to color index 3. 

(c) Finally, we associate to each mate pair a number which 
helps identify the members of the pair. An example is 
shown on Fig. 15. One can see that each a-index should 
appear twice, once as a superscript and once as a sub­
script. The algebraic notation stresses the fact that 
only the connections between vertices are important. 

If the subgraph (AB) of Fig. 15 represents one particle 
(a meson) then we could have used the more compact notation 
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a 3 _ 0 l a 2 a 
a a a,. Similarly, if (AD) is a baryonium, 

6 °l a2. a l a 2 a 3 we can write E = A D 

One can readily see the connection between the edges of the 
OAG and the quark structure usually associated to hadronic states. 
The concept of order thus Implies the quark structure, including zero 
triality and quark confinement.z>3>4," 

6. Unitarity and Cluster Decomposition 

In this section we make no distinction between graphs 

representing a connected part T . and its complex conjugate 

As discussed in the introduction, the unitarity condition 
is expressed through the discontinuity relations in a given process. 
The process is specified t.y an initial state |i^ and a final 
state |f y . Let us denote the corresponding graphs g. and g„ 
and the corresponding skeletons by y. and yf. Furthermore, for 
any intermediate state |n/ to which we associate a graph e 
and a skeleton y we can define two OAG which we denote ( SplS-1 

and ^glg. /. The product of the two ordered amplitudes, 
( g f Igjj) (&n\&i) y A 1 1 b e non-zero only if Yj = Y n = Y f • The 
result y. = Y f indicates that the product of two ordered 
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amplitudes can always be interpreted as part of the discontinuity 
of an ordered amplitude ^gjg. } . This fact is essential for 
the consistency of the theory. It is a consequence of the requirement 
of conservation of order discussed earlier. 

We now turn to Cluster Decomposition. Consider tbo two 
states |i) and |f> introduced above. Each graph g. and 
g. can be decomposed into n connected subgraphs g., and g„.; 
0 = l,...,n. and correspondingly, each skeleton into n connected 
subskeletons Y* • and Yf-> The following rules however must 
be obeyed by the decomposition: 

(1) To each skeleton y.. there corresponds an identical 
skeleton Y^- a"t the same relative location in the original tree. 
In other words, the two skeletons Y. and Y f must be decomposed 
identically. 

(2) A subgraph representing a single particle must lie 
entirely in the same g.. or g... 

We then define n ordered amplitudes ^g..|g. .^ f° r 

each couple of graphs (g-.,g.,) separately. If one or more of i J ij 
these amplitudes vanish, the particular cluster decomposition is set 
equal to zero. An example of cluster decomposition is shown on 
Fig. 16. 
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Finally, we address the question of crossing. Consider 
an amplitude in the phase space region where |a/ and |b̂ ) 
are the initial and final states respectively. This ordered 
amplitude is associated to an OAG ^g. |g ) . It is possible to 
analytically continue this amplitude to another region of phase space 
where Jc/ and |d/ are the initial and final states respectively, 
provided (g dls. / = ^e^|g a"^ • In other words, given an OAG, 
the regions of phase space related by analytical continuation are 
those corresponding to all possible bisections of the OAG such that 
one connected graph thus obtained corresponds to an initial state 
and the other to a final state. 
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Conclusion 
The objective of this paper was to expand on the mathematical 

aspects of the ordered hadronic amplitudes presented in Ref. 3. In 
particular we have" presented a systematic way to construct the 
ordered Hilbert space of Ref. 3 and we have shown that it is the 
mc/st general Hilbert space consistent with unitarity. 

We have also discussed a number of topological properties 
of the ordered amplitude and, in particular, the concept of mates 
was exhibited and will turn out to be crucial in the topological 

o 
' xpansion. Finally the ordered S matrix turns out to be cluster 
decomposable and therefore crossing symmetric. 
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APPENDIX A: INDUCED SYMMETRY BREAKING 

To establish that cubic tree graphs hav only three possible 
symmetries we recall Jordan and Sylvester's theorem: "Every tree 
has a center consisting of either one vertex or two adjacent 
vertices." Thus there are two cases to consider. 

(a) There is only one central point. Since it is a 3-vertex, 
the symmetry requires either that the three branches of the point be 
identical yielding a 3-fold symmetry (e. g., Fig. Al) or two branches 
only are identical yielding a 2-fold symmetry (e. g., Fig. A2). 

(b) There are two central points. In that case, the theorem 
states that the two points are connected by one edge: e. The only 
possible two-fold symmetry of a cubic tree graph is then obtained 
where the two subgraphs on either side of e are identical 
(e. g., Fig. A3). 

In the case (a), the symmetry around the central point is 
manifestly broken by coloring the three edges of the central 
vertex with different colors and in the case (b), the symmetry is 
broken by giving to the edge e an orientation. 

To each vertex of a tree graph one can associate an integer 
corresponding to the (unique) path from that vertex to the most 
remote "tip" of the tree (relative to the vertex). A central vertex 
is a vertex with the smallest integer and the center of the tree 
graph is the set of all central vertices. 
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As we take a path on one (now well-defined) branch, away from 
the center of the tree graph and toward an outer vertex we encounter 
at each vertex a bifurcation. The choice at the bifurcation 
can be made well defined by the same coloring procedure. Thus, 
any edge of the graph can be sepcified by the colored path one 
must take to reach it with the center of the graph as starting point. 

As an example, in Fig. M, edge a is defined by the path 
that starts at the center of the graph c and follows the colored 
edge, 1, 2 and 3 successively. 
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APPENDIX B: EXISTENCE AND UNIQUENESS OF MATES 

Existence: Given a vertex A in an ordered amplitude graph 
t 

G we want to show that there exists another vertex A such that A 
r 

and A are connected by three disjoint paths. 
Since in a regular cubic graph each vertex is at least on 

two circuits (in fact on three circuits), A is on some circuit K. 
We bisect G such that K is entirely on one channel graph. 
Again, this is always possible because it suffices to isolate part 
of an edge of G as the bisection. Then by the construction of 
Section 3, A is necessarily the gate of some circuit C. Then 

i 
let A be the other gate of the same circuit C. It is easy to 
see that two of the three disjoint paths connecting A to A 
are the two legs of the circuit C. The third path is obtained 
by following a path containing the links of C — which always 
exists since the amplitude graph is regular. 

V I II 
Uniqueness: Consider A f1 A . If A is on one leg of 

it C then the path from A to A containing the links and the path 
it containing the other leg are no longer disjoint. If A is not 

on C, then the paths containing the two legs have at least one 
i 

link in common. Thus, no other vertex than A can fulfill the 
definition of a mate. 

Alternatively, it can be shown that two mates A and A 

share the same three Edmond orbits (i. e., faces of G). 
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APPENDIX C: CONSTRUCTION OF HILBERT SPACE WITH n-VERTICES IN GENERAL 

First we note that the sector displayed in Fig. CI (two 
edges with different colors) would conflict with unitarity unless 
it does not communicate with any other state. This could be seen in 
the amplitude of Fig. C2 where a state with indistinguishable 
edges can be extracted. 

Now we discuss the possibility of admitting n-vertices 
{n > 3) in the graphs. This automatically requires at least n 
colors to distinguish the edges of a single vertex. There are two 
possibilities: 

(a) The n-vertices are admitted concurrently with the 3-
vertices. In this ease, one can readily construct the unwanted state 
of Fig. CI (e. g., Fig. C3). Incidently, Fig. C3 also shows that 
we cannot have more than three colors even if we restrict ourselves 
to 3-vertices. 

(b) The 3-vertices are not admitted. There we have two 
subcases: 

(b-l) n is even: In this case, one cannot construct skeletons 
with an odd number of outer edges. This results from 
the fact that any skeleton is constructed with k 

* 7 
This part of the argument is due to G. Weissmann. 

** For n > 3, skeleton graphs may include cycles as long as no more 
than two vertices reside on any cycle. 
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vertices. We thus have nk edges at our disposal but 

nk is even and every connection reduces that number 
by two. Hence the final number of outer edges is always 
even. Therefore the resulting Hilbert space is much 

more restrictive than the OHS (constructed with 
3-vertices). 

(b-2): n is odd (and n > 3). In this case it is easy to see 
that one cannot construct a skeleton graph with three 
outer edges. In fact, more generally, it is impossible 
to construct a skeleton graph with m outer edges and 
with m < n if m and n are odd. This can be seen 
as follows: if k is the number of vertices and 
e the number of internal edges we have kn - 2e = m. 
On the other hand, if k is even, e = kn/2 - 1 

max 
and if k is odd, e = (k - l)n/2. The latter 
ease is of interest here (m,n odd) and we have 

m • ~u - kn - (k - l ) n = n . So the r e s u l t i n g min,odd 
Hilbert space is again more restrictive than the OHS. 
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FIGURE CAPTIONS 
Fig. 1: (a) Mefonie ordered state, (b) mesonie amplitude 
Fig. 2: Generalization of the sequential order 
Fig. 3: Particle graph representing (a) a particle with four 

neighbors and (b) with five neighbors 
Fig. 4: Cubic tree graphs: basis of the ordered Hilbert space 
Fig. 5: Oriented and colored tree graph (skeleton) 
Fig. 6: Elementary operation generating all graphs of the ordered 

Hilbert space 
Fig. 7: Successive iterations of the operations of ~ig. 6. 
Fig. 8: Combining states to obtain an ordered amplitude graph (OAG) 
Fig. 9: Bisections of ordered amplitude graphs 
Fig. 10: This graph is illegal because the diagonal edges are not 

distinguishables. 
Fig. 11: Constructing the graph of Fig. 10 starting with an arbitrary 

number of indices to distinguish between edges 
Fig. 12: (a) Prototype of inadmissible subgraph, (b) The result of 

its combination with Itself and (c) showing the emergence 

of the unwanted graph of Fig. 10 
Fig. 13: Uncolorable graph with only one external vertex. 
Fig. 14: Possibility of cutting the OAG In three parts if 1-vertices 

are allowed 
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Fig. 15: Algebraic notation for ordered amplitude graphs 

Fig. 16: Cluster decomposition of a transition amplitude 
Fig. Al: Cubic tree with one central vertex and 3-fold symmetry 
Fig. A2: Cubic tree with one central vertex and 2-fold symmetry 
Fig. A3: Cubic tree with two central vertices and 2-fold symmetry 
Fig. M- Colored cubic tree of type (A-b) illustrating the fact 

that each edge (e.g., a) is distinguishable. Edge orientation 
should be superposed but is not needed here. The graph 
is drawn with the convention that the orientation of the 
vertices alternate on any path. C is the central vertex. 

Fig. CI: Undesirable sector defined by two outer edges of different 
colors. 

Fig. C2: Construction of a state with undistinguishable edges 
using a state belonging to the sector of CI 

Fig. C3: Construction of a state belonging to the sector CI 
using 3-vertices and more than three colors. 
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PART II 

GENERAL TOPOLOGICAL EXPANSION OF HADRONIC AMPLITUDES* 
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1. Introduction 
The objective of the Dual Topological Unitarization (DTU) 

program is to systematically approach complete satisfaction of 
unitarity for physical transition amp". * tilde through an infinite 
sum of simpler structures called topological amplitudes. Formally, 
one may write the transition amplitude between states |i / and 
|f> as 

Tfi = £ ^ f i ( 1 ) 

a 

where a stands for a number of "indices" completely characterizing 
the topological amplitudes. The word "indices" is used rather 
loosely here (for historical reasons). It refers nob only to the 
integers g and r to be discussed in Sec. 5 but also to the 
boundary structure of the amplitude (of. Sec. 5) which is a 
graph, not an integer. (In the early days of the topological 
expansion only the number of boundaries was considered important 
for the 1/N expansion). Thus, the symbol a represents a 
couple of integers (g and r) as well as the specification of 
interconnections between vertices representing particles 
(the boundary structure). Henceforth, this set will be referred 
to as the "indices" of a topological amplitude. 

This paper is a continuation of Ref. 1. 
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The adjective "topological" describes the fact that the 
analytical structure of the T 's is related to the topological 
properties of associated dual-like diagrams. This adjective will 
be used for all amplitudes T except those corresponding to the 
lower order of the expansion (the ordered amplitudes). 

2. General ordered amplitude 

The leading terms in the expansion of Eq. (l) are called 
2 3 ordered amplitudes. The ordered amplitudes are defined in 

1 3 an ordered Hilbert space and obey unitarity. ' In this section 
we only briefly recall the basic properties of ordered hadronic 
amplitudes. For more details, the reader is referred to Eefs. 

1, 3, and 9. 
1. The order between particles of a given state is 

represented by a colored and oriented graph relating each particle 
to its neighbors. In the ordered Hilbert space, two states with 
the same particles (same spin and momenta) but differing by the order 
i. e., by the graph representing the connections between particles 
are considered different. 

2. Not all graphs are allowed to represent ordered states. 
It can be shown that the most general graphs are those con­
structed starting with cubic trees - i. e., such that all internal 
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vertices are of degree three - and expanding according to the 
following operation (cf. Fig. 1): 

(a) Select an edge and cut it in two parts (color i). 
(b) Connect the two vertices newly created with two 

edges colored j and k (j / k j* i) and with 
opposite orientation. 

(c) Iterate as many times as necessary with any edge. 
It can be shown that in such graphs all edges are distinguishable. 

J. Particles (poles) are represented by subgraphs of 
these graphs. Jh general particles are represented by subtrees. 
Mesons could be represented either by 2-vertices or by the graph 
of Fig. lc. In this paper-we use the latter for convenience 
of presentation (all vertices are 3-vertices) but the 2-vertex 
representation can be shown to be equivalent. 

4. A colored oriented tree graph and all graphs derived 
from it by the operation above form a sector of the ordered Hu­
bert space. The tree graph is called the skeleton of the sector. 

5. Ordered amplitudes are non-vanishing only between 
states belonging to the same sector. The ordered amplitude 

graph (OAG) is obtained by matching the "corresponding outer edges" 
of each state. In this context, two "corresponding" outer edges 
refer to the same outer edge of the common skeleton graph. 
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6. Among many topological properties of the OAG one of the 

most important is the existence of mates. Given a vertex A, there 
i i 

exists a unique vertex A such that A and A are connected by 
three disjoint paths (equivalently, A and A are on the same 

r 
three faces). A and A are called mates. An example is shorn 
on Fig. 2. A. and A ? are mates as well as B^ and B ; and 
C. and C-. 

7. OAG's are planar, 3-colorable and bipartite. As a 
result, without loss of generality, the graphs can be imbedded 
on a sphere such that the orientation of the vertices alternates 
on any cycle. (By convention, a vertex is positively oriented if 
the cyclic order of the colored edges is clockwise and negatively 
oriented if the cyclic order is anticlockwise). For instance, 
in the graph of Fig. 2, A^, C and Bp are positively oriented 
whereas A , B , and CL are negatively oriented. Once imbedded 
on an orientable surface (e. g., sphere), the orientation of the 
edges (i. e., arrows) becomes redundant and henceforth will be 

dropped. 
3. Topological amplitudes 

In order to get rid of the order degree of freedom, one 
is led to define a new amplitude as the sum of all possible ordered 
amplitudes containing the relevant particles. For historical 
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reasons, this new amplitude is called "planar amplitude". An 
example is shewn on Fig. 3. 

One quickly realizes that planar amplitudes do not 
obey unitarity since the product of two planar amplitudes includes 
unordered products. The unordered products can be classified in 
terms of their topological structure. More specifically, it will 
be shown that they can be classified in terms of three "indices". 
The topological structure of a product being related to the 
analytic structure of the associated complex function. All 
products belonging to a given classification (i. e. with a specific 
set of "indices") are then attributable to the discontinuity 
formula of a topological amplitude characterized by the same 
"indices." 

Since the planar amplitude is not unitary it must be 
corrected. The corrections include these topological amplitudes 
generated through unordered products by the mechanism described 
above. One expects a better approximation (i. e., closer to 
unitarity) to be achieved by adding to the planar amplitude 

The expression "ordered product" refers to products of 
amplitudes that could appear in discontinuity formulae of ordered 
amplitudes. The "unordered products" never appear in such 
formulae. 
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all the topological amplitudes found in products of planar 
amplitudes. This new amplitude is still not unitary because a pro-
duet of two of these new amplitudes will generate still higher 
order topological amplitudes. The process needs to be repeated in­
definitely. Of course, to be meaningful this topological expansion 
must comverge at a reasonable rate. There are numerous indications -
although no rigorous proof - that such is the case. 

4. Ifesonie sector revisited 
ifesonic amplitudes, with simple sequential order have 

been extensively studied. The original concept, due to Veneziano , 
made use of dual diagrams in the Feynman spirit and interpreted the 
expansion in terms of the parameter 1/N where N is the number 
of flavors. Two topological properties of the graph were 
identified as affecting the power of 1/N. 

(a) The genus of the graph (h ) 
(b) The number of boundaries (B). This latter number 

is essentially the number of orbits (see Appendix A) 

to which external particles are attached. Later, 
2 Chew and Rosenzweig reinterpreted the diagrams 

in the S -matrix spirit and have shown that 

(1) the genus of the graph is related to the 
strength of the discontinuity 



42 

(2) the number of boundaries is related to the pole 
structure. 

Thus, h and B characterize the analytic structure of v v ^ 
the function associated to the graph. 

Ihree types of graphs have been used to represent the 
topological amplitudes of mesons. In the mesonic sector they are 
all equivalent. Examples are shown in Fig. 4. Figure 4a' is 
a representative of the quark (or dual) diagrams(lines represent 
quarks); whereas Fig. 4c is the equivalent particle diagram 
(lines represent particles - they are not oriented). Figure 4b 
is the equivalent hybrid diagram (oriented lines represent quarks, 
non-oriented lines represent particles). It turns out that the 
most useful type of diagram for generalization pur.poses is a 
modified version of the hybrid diagrams. Figure 5 is equivalent to 
the diagrams of Fig. 4 (h = 1; B = 1) except that each 
particle line is replaced by two particle lines. At each 
vertex, the cyclic order is alternatively quark line and 
particle line. A particle line either starts and ends "outside" 

It is tempting tc associate the pair of particle lines with 
quarks as for dual diagrams. However, such association will not 
be made in this paper; our particle lines are not oriented. 
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the quark rings or starts and ends "inside" the quark rings. 
("Outside the ring" means that at any vertex, a olookwise rotation 
goes from the incoming quark edge to the outgoing quark edge. The 
situation is opposite if we are "inside the ring" as in Fig. 5 
for instance). 

The genus, h, of the graph in Fig. 5 and the number 
of orbits, f, are higher than in the corresponding graphs of 
Fig. 4. However, it is easy to see that we have a gener-1 re­
lation relating the new and old quantities: 

h = 2 h y + l 
(2) 

f = 2f . v 

Now, the orbits of the new graphs can be coupled in pairs 
such that both members of a given pair have the saue particle 
structure (number and order). The boundary is now redefined as 
being a couple of orbits with the same particle structure. 
Further, if the number of quark rings (i. e., the number of 
connected graphs -jhen all particle lines are removed) is d 
instead of 2 as in the previous example, then we have the 
more general formula: 

h = 2h + d - 1 
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As will be discussed later, the amplitude is still character­
ized by h (and B ) and not h. (More specifically, the index g 
to be discussed in Sect. 5 is equal to 2h for mesonic ampli­
tudes). 
5. Hadronic Amplitudes 

5.1. Construction of Topological Amplitudes 

The construction of higher order topological amplitudes 
is carried through products of amplitudes of lower order. In 
as much as these products define the higher amplitudes, a 
topological amplitude is defined by its discontinuities. 

A necessary and sufficient set of conditions to define a 
consistent topological expansion can be stated as follows: 

(a) The first condition is to define a multiplication 
rule for the OAG consistent with the unitarity requirements at 
the ordered level. In other words, the multiplication rule should 
be such that the ordered product of two OAG can be interpreted 

as representing the discontinuity of an ordered amplitude in 
an ordered discontinuity formula. 

(b) The next condition is to characterize the graphs 
representing the product of two OAG by a set of "indices" such 
that substitution of an -rdered subgraph of the intermediate 
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state of the product by its skeleton (single particle) - or 
conversely - does not alter the indices and substitution of 
unordered subgraphs by their skeletons alters at least one index. 
In other words, these "indices" completely determine the product 
relative to an ordered product. 

(c) The particular product - or discontinuity - can 
then be attributed to a topological amplitude carrying the same 
"indices." Therefore, by definition, the topological amplitude 
can be represented by any (product) graph carrying the relevant 
"indices". In practice however one chooses the simplest graph 
carrying these "indices". The algebraic notation, to be intro­
duced later, automatically incorporates this feature. 

(d) The product of two general topological amplitudes must 
be defined by the same multiplication rule as in condition (a) 
and carry the same set of "indices" as found in (b). Furthermore, 
knowledge of the "indices" of both members of the product and 
Tf ————— 

A subgraph of the intermediate state is a connected subgraph 
such that all vertices belong to the intermediate state. This 
subgraph is "ordered" if the corresponding vertices on either 
side of the product are connected in exactly the same v 
(ordered product) and is "unordered" otherwise. 
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specification of the particular intermediate state should be 
sufficient to determine the set of "indices" characterising the 
product. 

In summary, the topological amplitudes are defined through 
products of lower order amplitudes. They are characterized by a 
set of "indices" related to the topological structure of the 
associated graphs. These "indices" are selected fcy the multiplica­
tion rule of the lower order graphs and by the requirements of 
consistency and completeness (i. e., products of topological 
amplitudes are defined by the same set of "indices" as eitrer mem­
ber of the product and this set is completely determined by the 
indices of the members of the product and the intermediate state 
under consideration). 

5.2 Product of two amplitudes 
Generalizing the rule for products of mesonic amplitude 

graphs discussed in Sec. 4 to general ordered amplitude graphs 
(regular cubic graphs), we connect corresponding vertices belonging 
to the intermediate states (henceforth called intermediate 
vertices) with three "particle lines"; each starting 
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between a different couple of "quark lines" (i. e., colored 
edges) (i,j), (j,k) or (k,i) and ending between the corresponding 
couple of quark lines on the other graph. Simple examples are shown 
in Figs. 6 and 7. When the detailed structure of the intermediate 
lines (particle lines) is not needed, a wavy line will be drawn 
instead of three particle lines (e. g., Fig. 8). 

We now discuss the topological indices in details. These 
indices are first obtained in products of amplitude graphs as 
discussed in Sec. 5.1. They are then - and only then - associated 
with amplitude graphs. 

5.3. The boundary structure 
As in the mesonic case, the boundary structure is 

defined in terms of Edmonds' orbits (Appendix A) . We shall say that 
two orbits are connected if they have at least one vertex in 
common. 

Then, given a graph representing either an amplitude or a 
discontinuity we group the orbits in sets of connected orbits. 
Each set will be called a boundary. The number of boundaries 
will be designated by B and the external vertices belonging to 
a given boundary are unambiguously interconnected. Vertices 
(and particles) belonging to different boundaries are completely 
disconnected. As an example, the graph of Fig. 6 has a single 
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boundary whereas the graph of Fig. 7 has two boundaries. In 
general, every boundary can be represented by a regular cubic 
graph. Note that the boundary structure need not be an ordered 
graph or even a planar graph but it must be bipartite. It is, 
however, very important to recognize that once the connections 
between vertices in a boundary are specified, the number of orbits 
of the boundary is completely determined. 

As was true for the mesonic amplitudes, the boundary 
2 structure is related to the pole structure of the amplitude. 

The amplitude has a pole in a particular channel - defined by a 
specific partition of the external vertices into initial and 
final states - if and only if there exist a graph representing 

the amplitude (i. e., with the relevant "indices") that could 
be cut into two connected subgraphs such that one connected 
subgraph contains the vertices of the initial (or final) state 

only and the other subgraph contains all other vertices (i. e., 
all intermediate vertices and all vertices of the final (initial) 
state). For instance, the amplitude of Fig. 8 has poles in the 
channel AD •+ BC but not in the channel AB + CD. 
Tf—' 

In contrast with a discontinuity graph, a graph representing 
an amplitude contains by convention the minimum number of orbits 

compatible with the boundary structure. 
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5.4. The mate-remoteness index (r-index) 

We first define the concept of mate wait. All graphs 
we are concerned with are composed of a certain liumber of ordered 
amplitude graphs (OAG) connected to one another by particle lines 
(wavy lines in Fig. 9). In each OAG, the mating is well-defined. 
However, some vertices may be mated to intermediate vertices; 
(i. e., to which wavy lines are attached). For instance, in 
Fig. 9a, A is mated to B. A thereby "loses" its mate but 
eventually retrieves one in F. The path ABCDEF is called a 
mate wait. Similarly, the path MNPQESTU is a mate wali. A 
and F, M and U are cal?ed remote mates. 

Formally, the operation of finding the remote mate of A 
is to go to its mate in the OAG (B); then jump to the counterpart 
of that mate in the other QAG (C); go to its mate (D), and so 
on, until one reaches an external vertex (no pa-ticle - or wavy 
line attached). 

Since no such operation is required for X and Y in 
Fig. 9a, they are called close mates. 

In Fig. 9b similar situations are displayed except that 
no external vertex appears in the wall:. Such a closed walk will 
be called circuit • Thus ABCD is a circuit and EFGHIJKL is 
another. X and Y as well as Z and T are close mates. 
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Finally a circuit with only four vertices, as ABCD in 
Fig. 9b, is called a trivial circuit or ordered circuit because 
it involves an ordered product. 

We can now define the remoteness index of the product 

of two OAG as 

where the sum is over all walks (open and closed), b is the 
number of wavy lines belonging to a given walk and OQ is the 
number of ordered circuits. The notation CxJ is defined by 

1x2 = sup { n e W / n i x) (5) 

for any real number x. That is, Z*3 is the largest integer 
smaller than or equal to x. (e. g., £3/2]] = l) 

Note that r is completely determined by the boundary 
structure of the members of the product and by the specification 
of the intermediate state. 

A discontinuity with r ^ 0 belongs to an unordered 
topological amplitude with corresponding r-index. We can now 
define the remoteness index for a general product. Consider 
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a product of two amplitudes IL and M_ with respective indices 

r^ and r,. Then the resulting remoteness index is 

(6a) 

"i = Y. &k - c<* ( 6 t ) 

"i 
the sum on the right hand side of Eq.. (6b) and the term C r f refer, 
respectively, to the walks and ordered circuits created by the 

product of It, and M-. Note again that r. is completely 
determined by the boundary structure of M, and M and by the 
specification of the intermediate state. We also define for 

i 
future needs the index r : 

ZUk- (7) 

where C. is the total number of intermediate circuits created 
by the product. 

In general, 2r represents the minimum number of additional 
3-vertiees (uncorrelated baryons ) in the simplest discontinuity 
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of the amplitude relative to the corresponding ordered amplitude. 
Thus, a topological amplitude with index r will not have a 
discontinuity with less than 2r 3-vertices in the channel 
graph representing the intermediate state. 

5.5 The g-index 
The g-index can be thought of as a renormalized handle 

or genus index of the mesonic amplitudes. The g-index of a 
product of two graphs representing amplitudes is defined by 

g = h - b + e - d + l (8) 

where h is the topological number of handles (genus) computed 
with Euler's formula and Edmonds' orbits; D is the number of 
wavy lines (intermediate 3-vertices on either side of the 
product); c is the number of circuits and d is the number 
of OAG included in the product (or number of connected parts 
if all particle lines are eliminated). 

Uncorrelated baryons are pairs of baryons antibaryon that 
cannot be reduced to a single meson. Prof. G. F. Chew has 
suggested a potential suppression mechanism related to this 
fact. 



53 

For ordered products, g is always equal to zero. 

As was true for the h-index, to each topological amplitude 
we associate an index g such that all its discontinuities possess 
the same value of g. 

When performing the product of two amplitudes 11 and 
M- with respective indices g 1 and g, we generally get a graph 
with a new index g. We now shown how to compute g in terms 
of g 1, g ? and the boundary struc ture of 1L and M,. In 
this section, the subscripts 1, 2 and i refer to the members 
of the product M. and M, and to the intermediate state 
respectively. The symbols without subscripts refer to the graph 
product. The letters h, v, e, f symbolize the number of handles, 
vertices, edges and orbits (faces) while g is defined by 
Eq. 8. We shall extensi-'Bly use Euler's formula: 

2h = 2 - v + e - f . (9) 

We first determine h as a function of h. and h,. Starting 
from Eq. 9 applied to M. and 1L respectively and adding, we 
get. 

2(h 1 + h 2 ) = 4 - ( V l + v 2) + (e x + e 2 ) - (^ * f.,). 
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Now, subtrac t ing from Eq. (9) and using v = v., + v_; 

e = e.. + e 2 + e . ; we ge t : 

h = h 2 + h 2 + | ( e . - C± - 2) (10) 

with the formal definition: 

fi = f " ( fl + f 2 ) - ( 1 1 ) 

We can also obviously write: 

(12) 

(13) 

d x + d 2 , (14) 

and therefore, after substitution of Eq. (10) through (14) 
In Eq. (6) and some straightforward algebra we get: 

Note: using the formal definition v. =4; d. = 2; 2h. = 2 - v. 
+ e, - f. and g. = h. - b, + e, - d,+ 1 we get the formulae 
h = 11 + h- + h. and g = g, + g, + g, (comparable to Eq. (6a.)). 
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ei + e 2
 + ? ( e i - f i - 4 > - b i + V (i5) 

Now, e,, b. and c, are completely determined by the specification 

of the intermediate state (note the identity e. = 3b.), f x 

and f, are determined by the boundary structure of 1L and M,, 
and f is determined by the boundary structure and the specification 
of the intermediate state since, to determine the Edmond orbits we 
only need to know the connections between the vertices. Ihus, 
f. is completely determined by the boundary structure of VL 

and M, and by the specification of the intermediate state. 
Therefore, given g, and g,, the boundary structures of M. 
and It, and the intermediate state of the product, g is completely 
specified by Eq. (15). 

5.6. Algebraic notation 
We now discuss how to write algebraically (as opposed to 

graphically) the boundary structure of an amplitude and its 
r and g indices. The major advantage of this notation is to 
exhibit the fact that topological amplitudes are independent of 
their graphical representation. Only the essential features common 
to all graphs (i. e., the connections between external vertices) 
are preserved in this notation. 
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(a) Representation of boundary structure: We recognize 
that, within a boundary, only the connections between vertices are 

significant. Therefore, we associate to each vertex V a set of 
three indices: a., a.s a. (representing the three edges attached 
to V) and we write V(a.a.ou ). The order or the a-indices is i 0 K 
important as it corresponds to the color index of the associated 
edge. The left-to-right arrow corresponds to a positively oriented 
vertex and the right-to-left arrow [V(<J.a,o. D corresponds to 
a negatively oriented vertex. 

The boundary structure is defined by listing all vertices 
of the amplitude with the relevant a-indices. Two vertices 
connected by k edges in the graphical representation will have 
k a-indices in common in the algebraic notation (k = 1, 2 or 3). 

Since different boundaries have no a-index (edge) in common they 
are separated by a semi-column in the list. 

Finally, it is useful to specify pairs of mates by an 
arbitrary integer. The two members of the pair would then carry 
the same number and would be readily identified. For example, 
{V(n,o^o? 3) W(n,a^a 5)}. 
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(b) r and g indices. The remoteness index r and the 
g index of a topological amplitude M will be specified by a super­
script and a subscript respectively (e. g., M {boundary structure}). 
Furthermore, the remote mates must be specified since two adjacent 
remote mates correspond to a different pole structure than two 
close mates. The specification is done by connecting the remote 
mates by a bar over the amplitude. 

As an example, the algebraic notation corresponding to the 
graph of Fig. 10 is: 

M Q {A(l,o~a^a3) Bd.c^cyXj); 0(2,0^0^)11(2,0^0^)} 

Products of two amplitudes can he computed with this notation. 
The procedure is detailed in Appendix B. This fact clearly shows 
that all the necessary ingredients to determine the product of two 
topological amplitudes are included in r, g and the boundary 
structure. 

Another advantage of the algebraic notation is that it 
enables a sharp distinction between amplitudes and products of 
amplitudes or discontinuities. Although they are both represented 
by the same type of graphs it is crucial - in order to avoid 
confusion - to have a clear idea whether a given graph is supposed 
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to represent an amplitude or a discontinuity. In the latter case, 
the intermediate state is well defined and cannot be altered while 
in the former case, there is no intermediate state - or particles 
and some particle lines may be removed - so long as the indices 
are not altered. Conversely, analytic continuation from one 
reaction to a crossed reaction is a property of amplitudes, 
not discontinuities. Failure to recognise these simple facts 
could lead to a paradoxical situation. The consistent use of 
the algebraic notation guarantees a clear distinction between 
amplitudes and discontinuities. 

5.7 The 1/N expansion 

We conjecture that the suppression of non-ordered products 
relative to the corresponding ordered products (1. e., the ordered 
product with the same particles in the initial, final and inter­
mediate states) can be understood as a 1/N suppression as defined 
by Venezlano. If the product is characterized by g and r 
defined by Eq. (8) and (7) respectively and by B boundaries 
then in all the examples we have r.tudied there are g • (B - 1) + r 
fewer free quark lines than in the corresponding ordered amplitude. 
Thus the suppression factor is (1/N) e*' B _ 1^ + r . 

This conjecture was originally suggested by Prof. G. F. Chew. 
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6. Conclusion 

A classification of the product of general amplitude 
graphs in terms of three topological indices was presented. The 
classification was shown to be self-consistent; i. e., the 
indices corresponding to the product of two amplitudes are completely 
determined by the indices of the members of the product and by the 
specification of the intermediate state. The indices completely 
characterize the graph product and are related to the singularity 
structure of the associated complex function. 

The new classification reduces to the "standard" one 
in the mesonic sector. 

The next phase of the theory should be to analyze the 
spectrum of particles generated by this approach, to determine more 
accurately the connection with the analytical structure of the 
indices, to investigate the mechanisms of convergence and to 
apply it to practical considerations. 
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Appendix A: Edmonds' orbits 
7 8 

The following technique developed by Edmonds and by Young 
enables one to determine the faces (orbits) of a graph imbedded 
on any orientable two-dimensional surface. 

The principle is to start from some point and to move 
alongside an edge such that the edge is always on the right 
(say), until a vertex is reached. At the vertex, we make a clockwise 
rotation until we hit the next edge and we "travel" again with 
the edge to the right until the next vertex where we make a clockwise 
rotation, and so on. In the end, we come back to the starting 
point. This round trip is called an orbit. When all the orbits of 
the graph are determined we should have traversed each edge twice; 
once in each direction. 

The number of orbits, being the number of faces of the 
graph enables us to compute the genus of the graph through Euler's 
formula (Eq. (9)) and also to specify the connections between ver­
tices by recording the sequence in which they appear on each orbit. 

This is why the position of particle edges with respect to quark 
edges is crucial. In fact, when we are on a quark edge of a given 
color in one OAG, the prescription will keep us on the same color 
after "landing" on the other OAG. 
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Appendix B; Edmonds' orbits and algebraic potation 

It is possible, although tedious, to determine Edmonds' 
orbits from the algebraic notation alone. This method is analogous 
to the one introduced in Bef. 5. We shall describe the general rules 
and illustrate them with the simple product of Fig. Bl. In the 
algebraic notation, this product is 

P = 1^ {A(l,a1a2a3)B(l,a~o~cT3)F(2,'a^a6) 

E(2,o~o~a|)} 8 1$ {E(l,g 1B 2B 3)F(l,B 1S 2^) 

C(2,^ 5B 6$ 4)D<2,8 5S 6Bj)} . (Bl) 

We first introduce some definitions. At each step described 
below two a-indices are crossed. The first one is called in-index 
and the second out-index. There are also two types of vertices: 
those without particle lines (e. g., A, B, C, D) called external 
vertices and those with particle lines (e. g., E, F) ealljd 
intermediate vertices. The correspondent of an upper (lower) 
a-index is the sane a-index hut appearing as a subscript 
(superscript) in the same amplitude. The counterpart of an 
a-index is the a-index appearing in the same position (i. e., 
corresponding intermediate vertex and same order in the other 
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amplitude, e. g., the counterpart of a is 8 ) and the follower 
of an index is the next index (cyclic order specified below) on the 
same vertex. We now specify the general rules to determine the 
orbits: 

(l). The clockwise order is followed on vertices with 
negative orientation as the counterclockwise order is followed on 
vertices with positive orientation (hence, the directions of the 
arrows in Eq. (Bl)). 

(2) To start, select any index in one amplitude as 
the first in-index of the sequence. 

(3) Now cross the indices two by two in the following 
sequence: 

(a) If you are on an external vertex 
- after the in-index go to the follower. 
- after the out-index go to the correspondent • 

(b) If you are on an intermediate vertex 
- after the in-index go to the counterpart. 
- after the out-index go to the correspondent. 

Thus the "correspondent" is always an in-index; the "follower" or 
the "counterpart" are always out-indices. 
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(A) An orbit is completed when the starting index is 
reached again as an in-index. Ihe sequence should contain an 
even number of indices. 

(5) At the end of the operation, every index should be 
crossed twice; once as an in-index and once as an out-index. 

As an example, the sequences for the product introduced 
above are given below. Ihe notation tx(U) means the index 
appearing on vertex V. We thus have: 

1st orbit = a2(A)a1(A)a1(E)g1(E)6;L(F)o4(F)0!(,(B)c«2(B) 

2nd orbit = o,(A)a2(A)a2(B)a,(B) 

3rd orbit = a 1(A)a 3(A)a 3(B)a 4(B)a i(F) 1, 1(F)B 1(E)a 1(E) 

4th orbit = B 5(C)B 4(C)B i l{F)a 6(F)a 6(E)6 3(E)B 3(D)6 5(D) 

5th orbit = 86( C )65( C )B5( D)86( E) 

6th orbit = B 4(C)B 6(C)B 6(D)3 3(D)B 3(E)a 6(E)a 6(F)B 4(F) 

7th orbit = c<5(E)B2(E)$2(F)a5(F) 

8th orbit = a 5(F)e 2(F)B 2(E)a 5(E) . 
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Since there are eight orbits , Euler's formula yields h = 2 
and Eq. (8) yields g = 0. But we see that B = 2 because A and 
B do not have any orbit in common with C and D. As a result, 
the amplitude to which the discontinuity belongs can be written as: 

f̂ ° {A(l,a aa 2o 3)B(l )a 1a 2o^);C(2 )i 4a 5o 6)D{2,a 4o 5a 6)}. 

The remote mates can be obtained simply by following a walk of 
mates as discussed earlier. In our example, all mates are close 
and the only circuit is ordered. 

* 
Note that they are compoc. an even number of a-indices and 
an even number of 8-indices. 
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FIGURE CAPTIONS 

Fig. 1: Elementary operation generating all ordered state graphs 
Fig. 2: An ordered amplitude. A^,B,,C are positively oriented 

and A,, B^C are negatively oriented (color cycles). 
( A 1 ( A 2 ) ; (B 1,B 2); (C^C^) are mates. 

Fig. 3: Planar amplitude of four baryons. 
Fig. 4: Three equivalent representations of mesonic amplitudes: 

(a) dual diagram; (b) hybrid diagram; (c) particle 
diagram. 

Fig. 5: New version of hybrid diagram with two particle lines 

at each intermediate vertex 
Fig. 6: Product of ordered amplitudes. The particle lines 

start and end between the same color couples (i,j). 
Fig. 7: Same graph as Fig. 6, but with two boundaries. 
Fig. 8: In this product, the two mates A and B (and C and D) 

are not adjacent. There is no pole in the channel AB-*CD. 
Fig. 9: Walks of mates: (a) open walks, (b) closed walks 

(circuit). 
Fig. 10: In this product A and B are remote mates. C and D are 

close mates. 
Fig. Bl: Product of two ordered amplitudes yielding B = 2. 
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Fig. 6 

Fig. 7 

Fig. 8 
XLB 785-788 
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