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PLASTIC DEFORMATION OF CRYSTALS:

ANALYTICAL AND COMPUTER SIMULATION STUDIES OF
DISLOCATION GLIDE
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Lawrence Berkeley Laboratory and Pepartment of Materials
Science and Engineering; University of Cabfornia,
Berkeley, California

ABSTRACT

The plastic deformation of crystals is usually accomplished through the
motion of dislocations. The glide of a dislocation is impelled by the applied
stress and opposed by microstructural defects such as point defects, voids, pre-
cipitates and other dislocations.

The planar glide of a dislocation through randomly distributed obstacles 1=
considered. The objective of the present research work is to caiculate the critical
resolved shear stress (CRSS) for athermal glide and the velocity of the disloca-
tion at finite tempereature as a function of the applied stress and the nature and
strength of the obstacles.

Dislocation glide through mixtures of obsiacles has been studied analyti-
cally and by computer simulation. Arrays containing two kinds of obstacles us
well as square distribution of obstacle strengths are considered. The critical

resolved shear stress for an array containing obstacles with a given distribution
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of strengths is calculated using the sum of the quadratic mean of the stresses
for the individual obstacles and is found to be in good agreement with the com-
puter simulztlion data.

Computer simulation of dislocation glide through randomly distributed
obstacles containing up 1o 10 obstacles show that the CRSS decreases as the
size of the array increases and approaches a limiting value. Histograms of forces
and of segment lengths are obtained and compared with theoretical predictions.
Effects of array shape and boundary conditions on the dislocation glide are also
studied.

Analytical and computer simuilation results are compared with experimen-
tal results obtained on precipitation-, irradiation-, forest-, and impurity cluster-

hardening systems and are found to be in goed agreement.



I. INTRODUCTION

The dislocation theory of plastic flow originated in 1911 through a sugges-
tion by Prandtl’:? in explaining the mechanical hysieresis in metals in which
several characteristic elements of dislocations were present. Dehlmger" was the
first to consider dislocations in connection with questions of slip 1n a theory of
recrystailization. The first, detailed theoretical discussions and the foundations
of the modern dislocation theory of slip were laid by Orowan?®*, Polanyi® and

Taylor’ in 1934,

In an attempt to explain the discrepancy between the high theoretical esti-

-
mate and the low observed value of vield stress Becker® and Orowan? suggested
that the non-linear resistance to deformation derives from the flow units in the
solid which are larger than the atomic size. The Jarge internal concentrations ¢
the applied stress produced by the flow units in plastic deformation make the
thermally activated production of new flow units easy. This nieans in contem

porary language that the rate process in plastic deformation derives from ther-
mally activated motion of crystal dislocations over local shp plane obstacies.

The ideas of Becker and Orowan were developed and extended later by
Orowan!?, Kauzmann!! |, Seeger!? and Friedel.!? Since then the theoretical and
experimental studies of dislocation dynamics have aimed at providing a clearer
understanding and more accurate description of the plastic deformation of cry-
stals.

The achievement of a microstructure-based theory of mechanical behavior

of engineering alloys however remains still one of the central objectives of basic
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research in metaliurgy. This is from an engineering point of view important for
two reasons: First, in order to provide a firm basis for materials selection and
engineering design with real materials & predictive theory is needed. Second,
an interpretive theory of mechanical behavior is necded to guide metallurgical
research in the design of new ailoys to meet advanced engineering needs. The
complexity of the mechanical behavior of materials suggests however that a
complete understanding of plastic deformation has a long way to go yet, indica-
tions are that a slight advance in understanding has a large effect on the

development of new materials for specific uses.

The purpose of this thesis is to study the plastic deformation of crystals
through thermally activated glide of dislocations. This problem is refevant, as
discussed below, to deformation of single crystals and to yielding and initial
plastic flow in engineering alloys. The objective of this research is to complete
a theory of athermal and thermally activated dislocation glide through fields of
microstructural barriers. The technical approach to the problem is to use com-
puter models to directly simulate glide under precisely controlied conditions and
to use the results to guide the development of predictive theories. The results

of this research are used 1o interpret and predict the experimental data.



1. OUTLINE OF THE PROBLEM

Following Friedel'®, a typical problem in the mechanical behavior of
engineering alloys sets up essentially as follows . As indicated schematically in
Figure 1, an alloy consists of an agpregate of individual crystalline grains. Each
of these grains is described by its composition. its crystal structure, its defect
siructure, its size and shape. and the nature of the grain boundaries which
define its contact with adjacent grains. The defect structure includes point
defects, the network of existing dislocations and the type and distribution of
vaoids or precipitates.

To initiate plastic deformation, dislocations must be created or liberated
onto slip planes bearing a resolved shear stress to sustain glide. The yield
strength of impesfect crystals is determined by the resolved shear stress that is
needed to move glide dislocations across their slip planes. If the applied stress
is small the response is elastic with a small anelastic supplement due to bowing
or recoverable motion of dislocations and to short range chenmucal re-
arrangements.

One of the most interesting and important (Kocks et al.15) theoretical
problems in plastic deformation of crystals is the problem of yield and initial
deformation in a grain or single crystal which is assumed te contain dislocations
or active sources of dislocations, together with microstructural featwres which
act as barriers to free dislocation glide. The bulk of prior research (summarized
in references 15, 16 and 17) argues that this is a central problem in the defor-

mation of cngineering materials. Potentially mobile dislocations may generally
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be assumed to exist in a metal and the native lattice resistance (Peierls -
Nabarro Stress) to glide may generally be assumed small compared to that
offered by such internal barriers as point defects, "ferest” dislocations, precipi-
tates, voids, and other internal stress ficlds.

If there are no obstacles to dislocation motion present, dislocations would
sweep through crystals at infinitesimally low stresses. All real crystals, how-
ever, contain obstacles. It is the nature and distribution of such obstacles that

determines the plastic behavior of metals and alloys.
The central parameters of this narrowed problem are
1) the resolved shear stress impelling glide,
2) the nature and distribution of the barriers,
3) the temperature and,
4) the nature of dislocations in the matrix.

At zero temperature the important parameter is the critical resolved shear
stress for dislocation glide through the microstructure, a function of the nature
and distribution of barriers. At dnite temperature thermal activation may assist
dislocation glide. The critical resolved shear stress is consequently less well
defined, and essentially becomes the stress which allows sensible deformation
within some appropriate experimental fime. The problem is further compli-
cated by the variety of possible barrier distributions and dislocation-barrier
interactions, by the possibility that the barriers are mobile, and by the possibil-
ity of cross-slip of the mobile dislocations, particularly when it encounters a

forest dislocaiion of appropriate Burge:’s vector and line direction,



The initial research on this problem concentrated on the motion of an iso-
lated segment of a dislocation by cuiting through or bowing around an obstacle
or simple configurations of obstacles of given type. This research continues'$
as investigators have sought more precise solutions 1o more realistic dislo.ation

obstacle models.

However, as was recognized in early research by Mot1!? and by Friedel'?,
the distribution of barriers is also of qualitative importance. The modest intro-
duction of statistics by Friedel!? for high temperature glide through a random
array of point obstacles showed that the nature of activation barriers woulc
change with applied stress even though the physical nature of the obstacles
remained the same. The source of the change was a statistical tendency for the
dislocation to contact a greater number of obstacles per unit Jength with
increasing stress. Because, as the applied stress i< increased, dislocations bow
1o smaller radii of curvature causing the average dislocation length between the
obstacles 10 decrease. Mott and Nabario?® treated an essentially similar
phenomenon in the case of diffuse barriers. This initial research led to a serie:
of studies on the effect of statistics of the obsiacle distribution on the charac-
teristics of dislocation glide {(summarized by Kocks, Argon. and Ashby in refer-
ence 15 and by Nabarro in references 16 and 17). n the cas? of "localized”
obstacles, whose range of interaction with a dislocation is small compared to
their mean spacing, the "Friedel statistics” has been used as a theoretical tech-
nique. "Mott statistics” is used for "diffuse” obstacles. The "localized” obstacles
approximation appears generatly more applicable to hardening by small precipi-

tates, "forest" dislocations which interact weakly in the glide plane, small voids
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and inclusions, and solute aloms in dilute concentration The'diffuse” obstacle
approximation is thought to be applicable to hardening by a higher concentra-
tion of solute atoms and by dislocations which interact strongly in the ghde
plane. Criteria separating the two cases have been given by Labusch?! and elu-
borated further by Nabarra??. More thearetical progress has been made on the
“localized” obstacle approximation, largely due to the observation (ritalh b

Foreman and Makin?®®) that under suitable approximations this case could be

set up for direct computer simulation



I11. SPECIFIC PRIOR WORK

The plastic deformaticn of crystalline solids invuives generally the move-
ment of dislocations against the resistance by various types of obstacles. In
many cases the obstacle has only short-range interaction with a glide dislocation
and may be replaced as a point obstacle?®. Furthermore, obstadies are assumed
to be randomiy distributed rigid barriers to dislocation motion.

Friedel'* was first 10 introduce elementary concepts of stalistics to the
motion of dislocations past randomly distributed point obstacles. The bulk of
the research on the problem of dislocation glide through a statistical distribution
of localized microstructurat obstacles addresses variants of the following basic
problem?®. Consider a crysta) plane which is the glide plane of a dislocation.
Let it contain a random distribution of microstructural barriers, which are
represented as point obstacles to dislocation glide. The array is described by
the statement that its peints are randomly distributed and by a characteristic

interobstacle spacing

I = (a))/? (1.1
where a is the average area per point. The total area of the erray is
A =N{()? (111.2)

where N is the total number of points contained. We can non-dimensionalize
the area by dividing through by the square of the characteristic length, so as to

get

AT=A4/U)1=N (1L.3)



and the edge length of the square area in dimensionless form is

. rin
s

W= (4500 = NI72 (111 4)

Let a dislocation be introduced into the glide plane. We model the dislocation
as a flexible sitring of constant line tension 1, its encrgy per unit length, and
Burger’s vector of magnitude b, which is taken to lie in the glide plane. Any
dependence of T nn the orientation of the line or on the mutuz! interaction of
segments of the dislocation is neglected.

The resolved shear stress, 7, impelling ghde of this dislocation may be con-

veniently written in dimensionless form

P L (11.5)

Let the dislocation under the applied stress 7*, encounter a configuration of
point cbstacles denoted by (i) (Figure 2}. Between two adjacent obstacies the

dislocation will take the form of a circular arc of radius

R=—— (111.6)

pr=k_ T _ ] i

If the distance between any two adjacent obstacles along (i) exceeds 2R or if
the dislocation line anywhere intersects itself, then the configuration (i) is tran-
sparent 10 the dislocation and will be mechanically bypassed. If (i) is not tran-

sparent, its mechanical stability is governed by the strength of the dislocation-



obstacle interaction.

The obstacies are assumed to be identical, circularly symmetric, localized
barriers to the dis'ocation whose effective range of interaction (d) is smal! com-
pared 1o their mean separation (/). They may hence be treated as poirl sbsta-
cles?®. A1 the (k-th) obstacle on the (i-th) configuration the dislocatior line
forms the asymptotic angle ¥ /(0S¢ < m) (Figure 2). The force. Ff, that the

dislocation exerts on the (k-th) obstacle is simply, from Figure 2

Ft = 2Tcos(%w,") (111.8)

or in dimensionless form

h
'

K o 1ok 17 Q)
g, 3 cos(zdl) Ik

The dislocation-obstacle interaction is governed by a force-displacemeni rele-
tionship?®, B(x/d), the effective dimensionless point force on the dislocaticn as
it sweeps through (or folds around?®) the obstacle. The mechanical strength of
the obstacle is measured by the dimensionless parameter 8. {or angle ¢ ) and
corresponds to the maximum force the obstacle can sustain without being cut
or locally by-passed. £ non-transparent line configuration of obstacles consti-
tutes a mechanically stable barrier to the glide of a dislocation under stress + *if
Bk<pB, for all obstacles (k) on (i), where B, is a critical pre-selecied obstacie
sirength, or if B, <, where B, is taken to be the maximum of B,"'. The smai-
lest stress 7* at which 8,>B, for all configurations within the array (i.e.,

B,>B,, where 8; is the minimum of 8,) is the critical resolved shear stress 7.
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The dislocation line containing g5, 1~ the strongest configuraion within the
array

Friecdel' employed essertially this maode! 1o treat thermally activated ghde

al mgh temperature and low stress He aitempied 1o estimate the influence of

the obstacle spucing on the yield stress by assuming that the average

conhigurstion mught he approximated as shown an Figure 3 He assumed that

when the stress became high enouph 1o cause the dislotation to cut the ob-te-

cles AB.C cte., the dislocation advanced to the nexi set of obstacles. ey B

where the area swept out per obstacle, I.f‘. 15 approximated by

(5= Ih (1100

\

The average scgment length betweer the obstadles as a function of the apphed
stress can be calculated as follows: As required by the simple geometric rela-

tionship (Figure 3),
RI={(R-h)"+F 1111
which can be writien for weak obstacles, where h<<2R

!2
[2=2Rh = 2R—’/— (111.12)
The mean length between adjacent weak obstacles increases with increasing
vatues of the radius of curvature and using equation (1I1.6) it can be approxi-

mated by

/S
= (+L,b/ 2D (13




Accordingly, following

CIiti4)

the flow stress = al the absolute zero temperature corresponding to a critica
value of the included angie ¥ . is given by

T(l'lub o .
~— = {cos— ) * (ST

2r
or. in dimensionless form. using equations (I11.5 and (I11.9)

7t = ()32 e

or

B={(7%)23 (onir

and !, the separation between adjacent obstacles, is

V= IL = (7 %)=}/ (111.18)

)
or

= g2 (111.19)

Thus the average distance, /°, between adjacent obstacles increases as the stress
decreases.

Many detailed statistical descriptions of the motion of dislocation through
random points at 0°K are given: Labusch?’ used the meitod of distribution
functions which yielded functional agreement with Friedel modei at low

stresses. Fleischer?® and Fleischer and Hibbard?® suggested that the same
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model mught be applied to determine the critical resolved shear stress for ather-
mat glide through a random array of weak obstacles  Their expectation seemead
confirmed by the computer simulution expeniments of Foreman and Makin™ .
who determined the critical resolved shear stress for athermal ghde 77 as a
function of obstacle strength (8,) for random arrays of up to 4%10% points
Thev found good agreement with equation (J1L.16) when the obstacle strength
was small  Foreman and Makin inferred that the other features of the Friedel
model, ¢ g. equation (1118, were also obeved for small obstacle strengths. but
apparently did not confirm this result, Kocks®™ who used graphical methods to
determine critical resolved shear stress obtained good agreement with the value
of r(' ~ 0.82 which was found by Foreman and Makin, through compulter
simulation for very strong obstacles (8, —~ 1.0). His method of approach was
adopted by Stefansky and Dorn?' and Dorn et al.3? used the "unzipping” model.

Foreman and Makin®? have also considered the ghde through arravs of
unlike obstacles and Foreman, Hirsch and Humphries*® simulated the motion
of a dislocation through random arrays of impenetrable point and parallel line
obstacles. Scattergood and Das®® developed a computer simulation method to
determine the flow stress of a random distribution of circular, impenetrable
obstacles. And recently, Shewfelt and Brown?® extended the computer model
initially developed by Foreman and Makin? to include the case in which some
of the obstacles are bypassed by local climb.

The first code to simulate thermally activated glide of a disiocation was the

first Berkeley code written by Klahn, Austin and Dorn?”. The code successfully
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simulated dislocation glide as a function of stress, obstacle strength, and tem-
perature, assuming a simple step form for the dislocation-obstacle interaction.
Zaitsev and Nadgornyi®® calculated using a Monte-Carlo method the velocity of
the dislocation as a function of stress and temperature. Arsenault and Cadman
used computers to calculate the force-distance profile’” and the flow stress as a

function of temperature for single and two types of obstacles®’.

Morris and Klzhn®® found that fundamental statistical theorems could be
used 1o substantially simplify the computational effort required in a simulation
of thermally activated glide, and to give a precise statistical definition to the
glide velocity obtained. High and !cw-temperature imits were identified which
reduce he theoretical problem to the computation of characteristics of particu-
lar dominant configurations found in glide: the most stable, or “strength-
determining” configuration in the case of low-temperature glide, and the "ran-
dom"” configuration in the case of high-temperature glide. At intermediate tem-
peratures, the glide path, or sequence of configurations assumed during glide,

becomes a statistical function of temperature.

Morris and Klahn®' and Alintas et al. 424% used the statistical results
presented in reference 25 to study thermally activated glide at low temperature,
assuming an array of like obstacles and a dislocation-obstacle interaction of sim-
ple step form. The central results obtained were three:

(1) Studying the glide velocily as a function of temperature siress and
obstacle strength, they found that low temperature approximations could be

used to represent the data over a wide range of conditions. Since these approx-
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imations obey relatively simple equations, they may easily be used 10 assess the
effect of the operational variables on the gualitztive features of glide.

(2) Behavior in low-temperature glide is strongly influenced by the charac-
teristics of the most stable configuration encountered dunng glide. These most
stable configurations depend on applied stress, but are identically the
configurations which determine the critical resolved shear siress as a function of
obstacle strength. Detailed examination of these configurations showed that
while their strengths were reasonably approximated by the Friedel relation (at
low stress) their other pertinent characteristics (shape. distribution of forces.
distribution of segment lengths) were not. This discrepancy is significant, since
the distribution of forces 1s important {¢ the kinetics of low-temperature giide
and since the mean segment! length is a parameter often used in attempts to fit
experimental dala to the point obstacle model.

(3) Simulation of crystal deformation using a model constructed by "stack-
ing" slip planes showed features in interesting correspondence with the defor-
mation of real crystals. At very low temperature slip concentrated on well-
defined slip planes. As temperature was raised deformation became more uni-
form, appearing homogeneous at high temperature.

To remove discrepancies between the Friedel model and the results of
computer simulation reported in reference 41, Hanson and Morris™ reinvesti-
gated the strength-determining configurations at jow stresses. Using a variant
of the extinction theorem of branching processes in probability theory they

were able to arrive at an analytic solution for critical resolved shear stress for
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infinitely large arrays. The strength, distribution of forces, and mean segment
length defined by this solution were compared to the computer simulation data
obtained in examining arrays containing up to 10* obstacles. Even though the
derived strength and distribution of forces were in reasonable agreement with
the computer simulation data the distribution of segment lengths were not
The speculation that the discrepancy might be due to finite arravs used in com-
puter simulation cailed for reinvestigation.

The approach used in reference 44 was extended to treat glide through an
array of obstacles having an arbitrary distribution of properties. The rasuits
were given in terms of integral equations and comparison was made with com-
puter simulation experiments using arravs containing obstacles of two ditferent

types.®
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IV, PURPOSE AND SCOPE OF THE PRESENT INVESTIGATION

Given the status of research at the time the present investigation slarted, it
was believed that a realistic attempt could be made to complete a theoretical
solution to the general problem of dislocation glide through distributed lncal-
ized microstructural barriers. Granting that the problem to be attacked is
small and specialized part of the overall problem of mechanical behavior i 1
however the most realistic problem in dislocation theory which is cpe:. 1o
detailed theoretical study. The results model the deformation of grains os cr, -
stals which may be assumed to deform by the above mechanism and are of
significant value both in their own right and also for the insight they give inu,
the influence of the statistics of microstructure on plastic deformation.

The specific objective of this dissertalion is 1o calculate the CRSS a =
function of the strength of the obstacles and to determine disiocation velocity
as a function of temperature, applied stress and strength of the obstacles. (he
technical approach is to use a computer model 10 directly simulate ziide undur
precisely controlled conditions and 1o compare the resulls with the ¢ lculiiins
and with available experimental data.

The results can be summarized as follows: Given that the computer simu-
lation results are very important-in comparing with theoretical predictions and
as a guide to further theoretical work, a systemalic study was necessary 'n
obtain accurate results using a computer code which can handle very large
arrays. Most of the previous analytical predictions were suspect becsuse they

were compared with the results obtained from relatively small sized arrays.
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Computer simulation of dislocation glide through randomly distribuled
obstacles containing up to 10° obstacles has bewr: pertormed using an =Heent
code. (The delails of the computer progin s gisven in a ister secucni, ihe
results indicate that the CRSS is array size dependeni and decreases es wo,
size increases, approaching s hmung vaiue. Histowrams of [arces eid o gines
lengths are obtained and corapdred wiin theorelcal predctions. kflecis © 0 s
shape and boundary conditiens on the dislocation ghde are also siud.ed

Since most! physically realistic svetoms contun obstacles of cifleren:

an extension of the apalvti soivucns o raade 1o weal oriavs o
trary distribution of obstacie sirongihs anc Simpic JovmUIGs ¥ i L L
average segment length are abtained. The case in which twe Kinds of onslao,
contribute to the strength i comsidered in qeia’l and tonpared v v ane
predictions in the literature. %7 1 15 showr that e CKSS can bo ot o
using the quadrauic mean of the siresses for each kind of ohstactes, §ie o o0
are compared with computei simulation deta end show good agreement,

In crystais containing obstacies whose range of interacticn with tho s,
tion is short compared ¢ their spacing, thermal activation may Leip 0 2our
come the barriers. Compuler simulation of thermally activated dislocatios ghae
indicates that the stress at a given velocity decreases ds lCmperaluje uviesses
It is shown that the stress exponent of disiocation yvelocity varies msarasy wiih
temperature and that the obstacle strength can be estimared using the experk

mentally determined values. The character of the strength deternenine

configuration changes with temperature strongly in the case of arrays coraining
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two-1ypes of obstacles. The effects of temperature on 1he dislocs*ion motion
have important consequences with respect to deformation hehavior of the cry-
stals.

Even though the results of the Friedel model have been used in the litera-

.99 ng detuiled comparison af the

ture 1o predict the strengthening of crystals
model and computer simulation results with experiments have been made 1In
this thesis, such a task was undertaken to compare the results with experiments
performed on materials which were strengthened through irradiation and pre-
cipitation. The general features of disiocation motion oblained from computer
simulation showed remarkable similarities to the Transmission Electron Micro-

50 Recent m-situ High Voltage

scope (TEM) observations conducted by Barnes
Electron Microscope (HVEM) deformation gave experimental results which
made direct comparison with computer simulation data possible. Dislocation
velocity measurements by Val’kovskii and Nadgornyi’? on Mg0 crystals and -
sie HVEM studies by Appel et al.’! gave resuits which were in excellent agree-
ment with computer simulation resuits. Saimoto and co-workers3-%* studied
the deformation behavior of Cu single crysials and measured the segment
length distribution. The comparison of this distribution with the one obtained
from computer simulation also showed excellent agreement. In an attempt 10
compare the computer simulation results of Foreman and Makin33, Munjal and
Ardell’® made an extensive study of a precipitation hardened alloy. Even
though their results were interpreted 1o disagree with the computer simulation

data, the calculations and computer simulation of this investigation showed

good agreement with the experiment.
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In the next sections, we first give analytical calculations concerming the ath-
ermal and thermally activated disincation glide through randomly distributed
obstacles. The description of the computer erde and comparison of tha results

with analytical predictions and experimcnial data arc given in Jater seclions.
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V. ANALYTICAL CALCULATIONS
A. ATHERMAL GLIDE

1. CRSS For Like Obstacles

A dislocation moving through an array containing -andomly distributed
obstacies will encounter various configurations under the nfluence of the
applied stress. As illustrated in Figure 2. if the dislocation encounters a
configuration (i) under stress =% it will take the form of a circular arc of
dimensionless radius R (=1/27*)} between adjacent obstacles. If the distance
between any two adjacent obstacles along (i) exceeds 2R ~or if the dislocation
line anywhere intersects itself then configuration (i) is transparent to the dislo-
cation and will be mechanically by-passed. If (i) is not transparent its mechani-
cal stability is governed by the geometry of the configuration.

At the (k-th) obstacle on (i) the dislocation exerts a force 8% on the obsta-
cle, where 0<B8F<1 and is given by equation (1I1.9). If B, is the strength of
the obstacle impeding glide then it is necessary for the mechanical stability of

the configuration that 8*< 8, for all (k) on (i), or that
B;<8B. (v.1)

where B, is the maximum of the B,“. 1f there is to be at least one mechanically

stable barrier conﬁgu_ralion within the array for given stress 7 * then necessarily
B8; = min(8,) € B, (v.2)

where f#; is the minimum force exerted by the dislocation on the most stable



configuration within the array.
The non-transparent confipuratisns in a given arrav of ohstacles are
uniquely fixed by the dimensionless siress {7 %) as zre the forces, B*, exerted

on them?!. The maximum force exerted on the mosl stable configurztion
within the array is hence specified by the function
8y BGe) (7
whose inverse
o= (B = T8 (v 4)
gives the critical resolved shear stress for azthermal glide through an array of
obstacles of strength 8,.

A useful technique for locating the stable configurations within a random
array of point obstacles is the "circle rolling” described in reference 41. The
dislocation line between two obstacles (say, k-1 and k) 1s the arc of a circle of
dimensionless radius R "= 1/(27*). If k-1 and k are obstacles of sirength B, in
a stable configuration at 7 * then there must be at least one obstacle (k+1} in
the area swept out by rotation of the circle counterclockwise about (k) through

an angle
8, =w—, = 2sin"}(8,) (V.5)

Since this requirement holds for all obstacles on a stable line, the line may be
generated by successive circle rolling. Using this technique, Hanson and
Morris*® approximated the critical resolved shear stress -r; for an arbitrarily

Jarge array of obstacles of like kind by identifying a "limiting configuration"
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which was necessarily at least as strong as the most stable configuration which
might be encountered during glide. The derivation may be surnmarized as fol-
lows:

A stable dislocation configuration can be viewed as a chain of stable seg-
ments connecting the lefi-hand side of the array Lo the night-hand side. Thus a
stable configuration can be constructed by beginning from the left-hand side
with a single segment and searching for segments which continue the chain
across the array. If the applied stress is +* and the obstacie strength is 8, .
then a segment may be continued by connecting its right-hand terminal point 1o
any point found in the area shown in Figure 4, an area generated by rotating a
circle of radius R’ through an angle 9l‘(=2sin‘1ﬁ() about the terminal point.
The search area is parametrized by the coordinates (6,4) shown in Figure 4
The lines of constant @ are generated by the leading edge «' the circle as it is
rotated; the lines of constant ¢ are generated by the trailing edge. The range of
6 is chosen 10 be 0K 8<6,.. The range of ¢ is taken to be —7<¢p<8,. Points
of the array are distributed over this search area with density unity, hence the

number of points in differential dimensionless area d4 " is simply d4 ", where
d4" = (R %in(6—¢)d6 dp = (R )2da(8,d) (V.6

Each point within the search area defines a possible segment continuing the
chain.

The procedure for constructing a stable chain across the array by stochasti-
cally searching successive areas shown in Figure S bears a strong formal resem-

blance to the classical branching process in probability thcory. The theory of
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branching processes °¢ estimates the size of the (k-th) generation of descent
from a given initial event, assuming that the probability distribution for the
number of descendants per parent is known. A principal result of the theory is
the extinclion theorem, which states that if the expected number of descen-
dants (<n>) is less than unity the hine of descent will necessanly terminate
afier a finite number of gercrations In the present problem it follows thay = °
and & must be such that the search arca 4 of Figure 4 is grealer than unty if
it 15 to be possible to ccnstruct a stable chain acress un array of arbitranidy large
size.

The stable configurations of the dislocation are. however, additionaily con-
strained in that the dislocation line cannot intercept itsell. A necessary (though
not sufficient) condition®® is that the expected value of the coordinate & of the
points used to extend the chain musi be zero. Since the average vaiue of ¢
over the search area is less than zero (at least for ,<) the conditon <@
=0 constrains the manner in which points may be selected from ameng thase
contained in 4, points mey only be used in subsets which have zero <g¢>.

Given these considerations, the points used to define the segments which
extend a chain across the array are chosen according to a distribution function
f(8,¢), 0< S <1, which gives the fraction of the p::ints found in da (6, ®) in an
arbitrarily large sequence of searches of areas like 4~ which are used to form
the segments of a stable chain. The function f(8, ¢) must satisfy at least the

{wo constraints :

<n> = (R [f(0,8)da(6,6) > 1 V.7
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and

<¢>= (R [osl8,d)dath,6) =0 (V8)

For given values of <n> and the obstacle sirength # it may be shown
(Appendix to Reference 44) that the radius R " is minimized ( 7 * maximized )

under the constraint (V.8) if we choose

fle.d) =1 —d Lo <H,
=0 & <dg (v.9)
where dy is the solution of the equation
f,
<¢> = [¢da(6.¢) = [ dda(d) =0 (V.10)
ay —dg
with the integral taken over the area ay shown in Figure 5.
If we now set
<n>=1 -
<¢> =0 VD

and choose f(8, ) according to equation (V.9), we obtain a value of 7% 74,
which, is necessarily larger than the stress necessary to pass the most stable
chain which might be constructed across an arbitrarily large array of obstacles of

strength .. Hence

2 5 ) Vi

o= 11[dat6,4) 6,
2|9

places an upper limit on the critical resolved shear stress.
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To compute the properties of the limiting configuration we require the

function &6} determined by cauation (V.10). The differential area

3
datd) = fditv,¢)

15 (Figure 6)
I=costfl —di, 0 <A,
da{d) = {cosd—cos{#, —d), 6, —-r<a<0
cosdh = 1. —TLOLH, — 7

Since from equation {V.10)

H

f ddata) =0
and using regions I and II (Figure 6)

fd)(l—cos(é‘ - dd+ fzb(cosd>~cos(9 —d))de =0

—
for 6. 2260, ~7

we obtain
%93 — c05¢hg — dsindg+ cos (8, + @) + ¢gsin{B. + ¢g) = 0

using

X3 Xs
Sinx = x— -+ —

35

and

X2
cosx~1—»5‘—+

(V.13)

(V.14)

(V10

(V.135)
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we get
8i—06010¢—80.070 =0 (V.16)

which can be solved for ¢80, ,.

Similarly, from equation (V.12)

(2r)2 = [dat6, o) (Va7
a
or using (V.14)
(276)? = 6, +singy—sinf, + b} Vs
or, approximately
(2792 = %[93+39r¢0+ 3d>3] (V.19)

The solution of the equation (V.16) using conventional methods®’ gives

4
$o = —4‘—{(3+2~/§)”3 +(3-2VD)P 1}

o = 033886, (v.20)
Putting (V.20) into (V.19), we obtain
(rg)? = 0.7870(1/26)° v.an
which may be rewritten for weak obstacles
70 = 0.8871 (8¢)¥/? (v.22)

or

Bo = 1.083(7g)?/> (v.23)
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which differs from the Friedel relation (equation 1I1.16) through a multiplica-
tive constant. The agreement i functional form is not fortuitous, since virtu-
ally any technique for searching an array by rolling or bowing a circle of radius
R through a small angle 6, leads to a search area proportional to (R )%}, and
will, hence, yield an equation which differs from Friedel relation only through a
multiplicative resull. Regarding the disagreement, note that the value in equa-
tion (V.22) is an upper bound on the value of 7. in an array of arbitrarily large
size, which lies below the Friedel limit by ~11%.

The normalized distribution of forces along the limiting configuration may

be computed from the relation
®
pl6,7%)d0 = (R da(6,8) (v.24)

where p(8,7*) is the distribution of angles €, in the limiting configuration at
stress 7-0'. Using equation (V.14) and assigning appropriate limits to the

integral, we obtain

p(6,7%) = R*{1—cos(8+dy], d<T—0,
= 2R*?, 8. 2027 —dg b2 —6, (V.25)
= R*1—cos(8+op)], T—¢p2020,¢p2m 8,
For the range of interest here, 0<By<0.7, ¢ is less than (7 —~8_), and only

the first term is important. Since 8 = sin(1/28,),

40
)dB

= 2R*21(1 -8 12[1 — (1 - 28D cosgg) + 2Bsingg

pB.7") =plo,7
(V.26)
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where we have assumed &, <w —€é,. This distribution is, of course, sharply cul
off at B¢y. It is uniquely fixed by either 7y oF By. since either is sufficient to
determine the radius R* the angle &, and the maximum B,

In the limit of small obstacle strength {(or, equivzlently, low stresses) the

density »f forces takes the form

p(B.Bg) = [(Bﬁo: sk 2Ty (B<By<<l) (V27)

where k;=0.3388 and k,=0.887]. iote that this limiting distribution can be

recast in the form

pLy =By s w2kl (B gy<<y (V.28)
Bg BU BU

which is independent of r*or 8.
The distribution of the angles ¢ can also be derived from equation (V.14)
and is given by
pld) = R*[1—cos(8,~¢), 0<p<8,
= R*{cos¢ —cos(6,. — )], 8, ~m<S<0 (v.29)
= R*[cose + 11, —T<o6<l . — 7
The normalized distribution of segment lengths, p(/’,7*) , may be found
by expressing /° as a function of 8 and ¢ over which /" is constant. The result

is for pp<w—8,,

pllt™) =1%, 0gi'gr
P

= [‘(e‘.+¢0—25in—1(l'/2Rn)) Ivgl'é (V30)

where



b
/= 2R'san(-2—”)

- Vv
J = 2R*sin((8, +64)/2) (v.31)

The mean segment length | <{(z*)> is the guantily which is usually com-
e @S

pared to the Friedel relation (111.18). Using equation (V.30)

<I(r*)> = f/frz(/‘,T')(//

& ¢
= (/3 02R ) eost 2011 = Leos21 29 (V.32)
2 3 2
B+ dy 1 L Hordyg
—COS(——Z"—‘”‘ —ECOS (T‘—')”

When = *or ¢, 1s small, </'(*)> is approximated by the asympictic relation

<G> = 0.764(8,2)"11

= 0.734(:*)7)8 33

or
<1z > = 0.764(8,) 712 (\V.34)

which suggests that the Friedel relation (equation III.19) overestimates the
asymptotic </'(7*)>, by about 27 %. The two relations are, however, identical
in the functional form.

The comparison of the results outlined above to the computer simulation
data showed** while the mean segment length, the distribution of forces gave
good fit, the density function p(I", 7*) calculated from equation (V.30) did not
correctly reproduce the shape of the empirical distribution, which was deter- '
mined by compiling the segment lengths found along the most stable

configuration in each of the 10 arrays of 10 points at 7* =0.1. It was not
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clear whether this discrepancy principally resulted from the approximations
involved in the theoretical model or from the finite size of the arrays used to
generate the empirical distribution.

Recently, Labusch®® criticized the mode! by Hanson and Morris** on the
grounds that the theoretical link length distribution and the one found in com-
puler simulation tests disagreed, and that the function /(&) was not deter-
mined correctly. The method of calculation used by Labusch® is similar to the
entropy calculation used in Statistical Thermodynamics.

He uses same parameters as shown in Figure 4. The search area 4 is
divided into L elements dA,;,, with the coordinates ¢, and 8,. The test lines of
K links is constructed stepwise according to the following scheme: on arriving
at point (k) the next link is drawn as a circular arc of radius R* with its end
point in an area element dA,;,, in the (k-th) step. A test line is stable only if a
pinning point exists in each of the area elements d4,;;,. The probability that a

given test line is stable is
K .
kI‘lldA,(k) (V.35)

If n, is the frequency of occurence of the values of (1) among (k) links, this

probability can be written as
K, L (n
i = II'll(dA,’) " (v.36)
subject to the condition

jm=]
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and to the quasi - straightness condition

3
e, =0 (v.38)
[

The number of different test lines that can be constructed from a given set of
links is given by the number of distinguishable permutations of the sequence of

links which is equal to

il
it v.33
T1 ()
(=1
Thus, the expectation value of the tota] number of stable lines is
v L
p= 21 )" (V.40)
im1
!

The solution of this equation subject to the constraints (V.37) and (V.38) can

be calculated from the equation

D (1P + yT b, + AT ) =0 (VA1)
on, 7 7

from which the "partition function” can be found to be

z=fertaq’ (V.42)
J.
which gives
i= 4R'2Ei"—(4103)—‘—l (V.43)
Y

where the parameter y is given by
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y = 2.8214/9 (V.44)

For the critical condition, z=1, the critical resolved shear siress obtained by

Labusch is,

7, = 1186 B3"? (Vv.45)

By = 0.892(+ )3 (V.46)

which is =12% higher than the Friedel limit(equation (111.16)).
In an attempt to take the problem of the degeneracy of the lines into

account Labusch corrected his result to get

7/ =0954 p? (Vv 47)

which differs from equation (111.16) by 5%.

The normalized distribution of forces on pinning points is

in-1
pLB) = 2P (2ysin p) (V.48)
(V1-82) [ (exp(2ysin~1B) /N1 - g?) dp
0
0sB<B,

In the limit of small 8,

- 2B
p (B xp2yB) <1 exp(2yp) (V.49)

The distribution of angles ¢ is given by

9; ), 0<$ <0

pL(®) = koexplys) . sinz(ogd’)—sinz(%l). —r<$<0  (V.50)

sin?(

1—sin2(52’i). —r K$<O—m
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where normalizing factor k is chosen so that
)
Jrwds =1
-

The distribution of segment lengths in normalized form is given by

{exp{—2ysin~{ 22,))
p I = - (v.51)
) - .
Jexp(=2ysin (5= hd!

which depends on the pinning strength through y and on the applied stress

through R* For small obstacle strengths, «V.51) can be written as
o, '
p D) = —}%Jlexp(—y/ /R*) (V.52)
The average value of {"is given by
2R*

<> = ol 0.7088(R "8)

1

T.

Since R* = 3 and #=283,

<i> = 0,703347‘1,

— 0.5976p1/2 (V.53)

Using equation (V.46) for 8, we obtain
<> = 0.6326(r*)"1/? (V.54)
or in corrected form

<l > =0.7314(z )13 (V.55
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which is 27% lower than the Friedel limit.

In an attempt to characterize the first stable configuration encountered dur-
ing glide Landau®® obtained the following results for the average angle of attack

<> and the average segment length </">

<8> = 0831 (—3=)!/3 (V.56)
R!Z
and
<!> =0979(3R*)!/3 (V.57)
and the ratio
<6> _ 908 (v.58)
<i™> R

However, for a quasi-straight dislocation in a large array, using the relationships

(V.59)

where A, is the angle corresponding to the circle length of /,' between two obs-

tacles, and assuming straight, long dislocation,

Zx, =¥, (Vv.60)
and so
%6~ };,2:,1, (V.61)
or
<é> _ 1 (V.62)
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The discrepancy between equations (V.62) and (V.58) suggests that the solu-
tion by Landau®® is probably in error. The average values of the angle <6>
and segment length </'> can also be obtained from equations {V.25) and

{V.30) and we obtain

<¢> = 0.924(R*)~% (V.63)
and
<I™> =0.924(R*)1/3 (V.64)
giving
z;; - R* (V.65)

exactly the same result as equation (V.62). The ratio of </™> 10 <8> for

Labusch’s solution®® gives also the correct result.

2. CRSS For Unlike Obstacles

Most realistical systems contain more than one type of obstacles, as for
example the precipitate size, shape or location may vary, hence changing the
interaction force between obstacles and disiocations. Other systems may contain
more than one type of strengthening barriers, e.g. solute atoms in a precipita-
tion hardened alloy.

The extension of the theory*® as outlined in the previous section 1o the
case when obstacles are not identical can be treated by modifying the procedure
for generation of the limiting configuration, Let a stable line be constructed left

to right across an array which contains randomly distributed obstacles of P dis-
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tinct types, labelled i = 1,2,3,.....P, having fractions x, and strengths 3,. Again

using the constraints (V.7) and (V.8) we oblain

(rp)? = %zx,af’ (V.66)

0=Yxal<e>, (V.67

where 7 is the strength of the limiting configuration (an upper limit on 7" ),
al is the subarea of a, over which ~w <¢ <6, and <d>'is the average value
of ¢ over a,. The fraction of obstacles of type (i) on the strongest

configuration can easily be calculated and is given by

¢, = x,a0(R")? (V.68)

The computation of the distribution of forces in the limiting configuration
is straight-forward given the discussion in the previous section. The distribu-
tion of forces on obstacles of type i is specified by the density function

p,(B) = (%R pB. %), 0<BLB,

-0 8>8, (V.69)

where p(B,7*) is the density function given by equation (V.26). The densily

of forces in the limiting configuration is hence

p®) = Tcp,B) = p(B. 7T x4, B) (v.70)

where 4,(8) is a weighting function and is given by

1if BB,
1,(8)

| =loir B>8, V. 71}
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With similar arguments the average segment length along the configuration can
be calculated through

<> =Fx<'(r*)>, (V.72)

'

where the function </'(r*) >, is given by equation (V.30).
Using Jower order series expansion to the area o obtained from equation

(v.14)
al= (R4, +sindy—sin(6, + dg)] (v.73)
we obtain

U= —1{62+36,¢p+ 308) (V.74)

0x|®

a,

The series expansions of equations (V.66) and (V.67) are then
() = T x0}+ 3T x,0200+3T 0,67 (v.75)
1 i i
and

0=TFx8}-63 x0823— 83 x6,6¢ (V.76)

To obtain a closed form solution of the critical resolved shear stress for multi-
ple obstacles as a function of x, and 8, we approximate ¢y from equation

(V.76) as
2":'0,4

=Ll V.77
¥ 63 107 v.77)

As a function of obstacle fraction x, and strength 8, the CRSS for multiple
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obstacles is approximately given by

(r)? = %};xﬁ} + %d»(,Zx,B? + %dl(fz,x,ﬁ, (V.78)
where
ZxB!
b = % iw: (V.79)

Inserting (V.79) into (V.78) gives

ZIYIBI4
-, 1 1 2 /9 ]
2= = : 3+__(( 2y ( : 4 172 . ! v
(1) 3ZI’A,B, T Z,,x,[i‘) Z/A,[i‘ nies g 2' X8, S (V.80)

'

The fraction of obstacles of Lype i on the strongest configuration is calcu-

lated from equation (V.68) and (V.74)} as

_BxB,+124x,8] + 604x,8,
‘ 24(79)?

C (V.81)

The lower order series expansion for the average segment length can be

calculated as follows:
From equation (V.72)
<> =T x,<lz")>,

where </(r*)>, is approximated from equation (V.30) as

3
<I(z*)>, = i’%’— (9,+¢o)4~¢;}] (V.82)

and



3
<i™> = (—le-(z,\'lﬂl4+42x‘0,3d>o+ 63 x,620d+4Y x.6,¢7)

or approximately

4R

<!> = P (B x 8 bg+ T a0 + T xH o)

or using equation (V.75)

T a0+ 3T x02¢, =24(77)2 -3 x0,04

1o get
<I'™>= 4(Rl‘2)idﬁ(24ré—22xﬁ,d>g)
:
which gives in terms of 8,
<> = ﬂf]—l i‘f 3zx,ﬁ,
70 6 Tp ;

a} CRSS for twg types of obstacles
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(v.83)

(V.84)

(v 85)

(V.86)

(V.87

If we have two kinds of obstacles ( strorig and weak ) distributed randomly

and having strengths B8; and B, and fractions x, and x,, the formulas

developed above can easily be applied. For the CR5S we obtain irom equation

(V.80)

(1032; (r)ix, + (v ) 2x, + small terms

where

T:.= kﬁglz

and

(v.88)

(V.89
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7. = kB2 (V.90

where k is a constanl, 7, and 7, are stresses if the arrays contained only strong
or weak obstacles, respectively.

There have been empirical formulas in the literature, developed for the
superposition of two mechanisms.  First one is due 1o Koppenaal and
Kuh!mann-Wilsdorf*’ and requires thal the squares of the stresses should be

added, i.e.
12=72+73 (V.91)
or in dimensionless terms
(r*)1= (1) x,+ (7)) x, (V.92
which is almost the same as obtained in this study.

The second formula is given by Kocks*® and was obtained for the special
case of arrays containing a lot of weak and a few strong obstacles. In this case,
the stress due to weak obstacles has been treated as a friction stress and simple

addition of stresses is required, i.e.
¢ =1 Xt T (v.93)
if x,>>x and »,>>71. (or B,>>B.) (V.94)

The above constraints are necessary for the above formula to hold, since if

. . 1
T, =7, and xx=xw=3wegex

7'=\/§1’;
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which is unreasonable.

b) CRSS for arbitrary distribution of obstacle strengths
To obtain CRSS for crystals containing arbitrary distribution of obstacle
sirengths the equations (V.66) and (V.67) can be used in principle, but 1o get

closed form formulas we approximate the CRSS for weak obstacles by,
(%)% = k¥ xB} (V.95)
or

(1) = ¥.x,(7,)? (V.96)

Since the distribution of obstacle strengths is not a priori known and haus
to be determined independently, we consider two simgle cases of strength dis-
tributions. However, the technique used here could be e¢xiended to any type of
distribution.

The first case 10 be considered is the distribution of angles, which has also
been empirically studied by Foreman ans Makin®® through computer simula-
tion. The obstacle strength is given by the critical angle ¢ . and square spectrum
of angles is assumed (Figure 7). This distribution is characterized either by
Gmin and Y., or by the mean value ¢, and the width of the distribution ¢,

and is given by

plg) = —A V.97

Ymax ~ ¥min

We use for the stresses 7, in equation (V.96) the following formulas, depend-

ing upon the range of ¢,. For strong obstacles we use the empirically found
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formula®?
. v, L
T, = 0.82 cos—2— for w‘<-2- (V.98)
and
2y
r,'=kcosz(—2‘—) for w,>32— (V.99)

Converling the equation (V.96) 1nto integral form and using equations (V.97),

(V.98), and (V.99) we obtain the CRSS for the square spectrum of angles

(+%)? = io—z'—i—z:ﬁ[w..+2coswmsin%“—] for w",<_’21
= kj (3cos “’znr sin ‘)‘; +%COS(%IJ/M)SIR(%U]“)] or dlm;%_,[oo,
where
20 = it Uiy
and

U = Umax = Ymin

The second case considered here is the square spectrum of obstacle

strengths B8, (Figure 8). In this case, the distribution function is given by

pB) = E”—_]_E‘—' (v.101)

For the stresses 7, we use the equivalent forms of equations (V.98) and

(V.99) using the relation 8, = cos(%).
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Using the equations (V.96) and (V.101) we obtain the CRSS for the

square spectrum of strengths ( 8, )

(z u)?

i

(0.82)2p2 + 713"3] for -8, >0.7
(V.102)

]

KL+ 860 for £,<07
where the average strength B8, and the width of the distribution 8, are given
by

2Bm = ﬁmm+Bmax

and
ﬁ.‘ = Bma\c_Bmm

The CRSS obtained for the square spectrum of obstacle strengths can be

written in terms of angles ¥, and ¢, using the definitions

_ ] Ymin ¥ max ¥ m oy
By, = 2(cos 3 + cos 3 )} =cos 3 cos— (v.103)
and
- Y min d’max . dy
8, = cos 2 cos—5 2sin 3 cos— (v.104)
we obtain

w

2

+ —;—(coswm +cos£2'1)] for ¢, <=
v (v.105)
0 +cosu/,,,cos—zi] for wm>—;—

2
(+%)2 = —(%2—)—[1 + cosw ,,cOs

w

4

I

k? ¥om
4 [2cos—2—cos

The consistency of the formulas can be checked by , for example, letting

B., g0 1o zero, giving only one type of obstacle, which gives for weak obstacles,
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from equation (V.102)
()= 17} = k'p;

which is equivalent to the theoretical predictions

B. THERMALLY ACTIVATED GLIDE
Recently, Zaitsev and Nadgornyi® discussed the problem of waiting time
calculation for computer simulation of thermally aclivated motion and identified

three different methods:

1) the accumulated time method3?-¢!

2) the waiting time method® 62

3) the residence time method?*4!-42
and concluded that the methods 2 and 3 are equivalent and the empirical
method 1 is a good approximation. They also indicated that the residence time
method can have some advantages under the simulation of dislocation motion
through randomly distributed point obstacles. To avoid confusion and to over-
come the difficulties of comparing the results obtained using different methods,
an account of the statistics employed in this study will be given.

The assumptions and basic equations are summarized in Table 1. The obs-
tacles are randomly distributed and the dislocation is allowed to move through
them, starting from the bottom as a straight configuration. Let the dislocation
at an intermediate position be pressed against a line configuration of point obs-
tacle by the resolved shear stress (Figure 2). If configuration (i} is mechani-

cally stable it must be passed by thermal activation. We ignore the possibility
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of thermally activated bow-out of the dislocation line betwe=n obstacles and
require that activation occur at an obstacle. The activation energy is propor-
tional to the area in force-displacement diagram (Figure 9), and may be written

in dimensionless form
gh=ulB,)—ulBr (V.106)
where w () is the dimensionless area under both the force-displacement curve

and a horizontal line of height 8. The activation barrier at the (k-th) obstacle

on (i) is then

AGF = 2T dg* V.107)
or
AGF
= k V.1
T (V.108)

where a is the "dimensionless reciprocal temperature”

1 rd
=== V.
= kT (V.109

o=
and d denotes the interaction range, usually of the order of one Burger’'s vec-
tor, kis the Boltzmann constant and 7 is the temperature.

For the statistics of thermal activation past a mechanically stable
configuration of obstacles we require two general assumptions about the statisti-
cal nature of the activation process?s:

i) Thermal activation is assumed in a sense that the probability of success

in a given trial is independent of previous fajlures,
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i1) Activation trials at a given obstacle are assumed stochastically indepen-

dent of trials at the other obstacles in simullaneous contuact with the dislocation

and are taken 1o occur randomly in time with fixed frequency w. Using these

two assumptions, the statistics of thermal activation past a hne configuration
may be leveloped as follows:

Th probability for thermal activation past the (k-th) obstacle in

configuration G) in one attempt is

ph=cxpl—agh (V1
where { ) and g* have been defined in equations (V.109) and (V.106). respec-
tively. Tae probability that the barrier remains uncut after j trials, given that it
was inta. : initially is

gh)y = (1—phy/ (v.11h
Let the uslocation attenipt the obstacle with mean frequency w, assumed con-

stant, then, following assumption ii), that the activation trials occur randomly

in time with expectation unity per unit of dimensionless time

"= wt (vV.112)

the probability of exactly j trials in time 1" is given by the Poisson formula

pGt) = () -r (V.113)

and the probability g*(¢") can be written %° as

gk () = exp(=pft) (V.114)
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The probability that the i-th configuration remains uncut after time 7 is the

probability that all obstacles on (i) remain intact at :

A
q,(z‘)=knq,*({‘)=exp<—.\,z‘) (V.115)
=i

where
LY )
A=3Yn (V.116)
=]

and A is the number of obstacles on (i),

The residence time of the dislocation in configuration (i} is the time
required for thermal activation past at least one obstacle on (i). Hence the

expected value of the residence time is
<> = A (V.117)
The probability that thermal activation will occur first at ar obstacle (k) on

configuration (i) is

k k

P, '
Mk = —— = 2= (v.118)
DIV
k=)

In thermally activated glide the dislocation encounters a seqence of obsta-
cle configurations as it moves through the array. These define the "glide path” y
of the dislocation. If there are (r) stable configurations along a particular path
(x) through the array then the expected transit time of a dislocation along (x)
is

<> = XA (V.119)

(-]
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where we assume that the time required for disiocation glide between succes-
sive stable obstacle configurations is negligible compared to the time required

for thermal activation pasl these configurations.

Given that the dislocation may take any one of many available glide paths

through the array, the expected transit time is

<> =T <> (V.120)
X

where u, is the probability that the path x is followed in a given trial.

A variety of ways have been suggested 1o calculale the average velocity of
a dislocation; such as from the total area swept through and the total time dur-
ing motion; from the average area per activation event and the average expec-
tation time and from the distance traveled by the end of a dislocation and total
time. We define the expected value of the velocity of glide through a given
array of obstacles in the following way: We consider a crystal made up of paral-
lel glide planes. which contain a distribution of non-interacting gliding disloca-
tions {i.e. the distance belween planes is assumed to be sufficiently large). The

expected value of the instantaneous strain rate of the crystal is

y= =<4 /01> {v.121)

~|e

where <04 /81> is the expected total area swept per unit time and Vis the

volume of the crystal. The strain rate in dimensionless form is

-_[pt
A 1)

<v™> (v.122)
ls
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where p is the number of dislocations per dimensionless area and <v > is the

expected value of the dimensionless velocily, which can be written as

<v'>=N27<™> (V.123)
or
<> = —A (V.124)
W <r>

where 4" is the dimensionless total area swept and W' is the dimensionless
width and N is the number of obstacles in the array.

For a crystal made up of stacking of (M) parallel slip planes containing a
uniform?! distribution of dislocalions the steady stale strain rate may be written

in dimensionless form
= (pb /L)%’ (v.125)

where ¥ is the average of the expected glide velocity for the individual planes

in the crystal,

A (V.126)
= M;’ i )

with. <v,> the expected value for the glide velocity of the dislocations

in the (I-th) plane and M is the total number of glide planes.
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Vi. COMPUTER SIMULATION

Given the geometric complexity of the dislocation structure and the
microstructure in the usual realistic case the treatment of dislocation ghde
rapidly becomes analylically intractable, even when rather simple assumptions
are made about the properues of the dislocations. [n analytic treatment of
dislocation motion, as described in the previous section, one is usually forced
into idealizing assumptions concerning both the critical events which govern
glide and the manner in which these events sum statistically 10 yield glide con-
ditions or glide rates.

The availability of large computers adds a new dimension to the study of
dislocation motion. Since these are capable of rapid numerical calculation, of
storing and recalling complex geometrical information. and of modeling simul-
taneous interacting processes the efficient use of computers allows the study of
dislocation models in much more elaborate detail. While computer models,
like any theoretical models, require initial idealizing assumptions, the number
of these assumptions may be greatly reduced and the richness of the results
significantly enhanced.

The computer simulation research of this investigation has concentrated on
the effects of the configuration of dislocations and the nature and distribution
of microstructural barriers on the critical resolved shear stress and the velocity
of thermally activated glide. Given the intent of this work the properties of the
dislocations and the microstructural barriers have been modelled in the simplest

plausible way so that the full power of the computer could be devoted to pro-
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viding the geometrical structure needed to give g@q statistical detail.

A solution to the problem of plastic deformatioh in the simple model out-
lined in the previous section should predict at least three types of information:

(1) The athermal yield stress. or critical resolved shear stress for athermal
glide (), which depends upon the distribution of dislocations, the nature of
dislocation interactions, and the strength and distriburicn of hariters.

(2) The rate of deformation, which depends additionally on the appled
stress, the iemperature and the specific nature of the dislocation-obstacle
interaction.

(3) The salient morphological features of the deformation process. includ-
ing in particular the temporal “jerkiness” and spatia! heterogeneity of flow. The
solution should, moreover be phrased in analytic form, either as the analytic
solution to a well-posed subproblem, or as an accurate analytic fit to probative
computer-generated data.

Given these desirable features a suitable computer simulation code should
have at least the following capabilities:

(1) The flexibility 1o simulate a variety of interesting cases;

(2) The ability to generate accurate data on the critical resolved shear
stress and the flow rate for non-trivial models in reasonable computer time;

(3) The ability to monitor the deformation process in sufficient detail that

critical mechanistic features may be identified and isolated for detailed study;

(4) The capability of computing and retrieving the specific data needed 1o
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assesss and critisize theoretical models.
A code which generally satisfies these criterion has been in use at Berkeley
for sometime. In the following section the central features of that code, which

have been reported primarily in references 41, 42, and 63, are described.

A  BASIC CODING TECHNIQUES

In the basic problem simulated in this research a dislocation is introduced
inio a glide plane containing a distribution of point barriers of specified proper-
ties. A siress is applied and the dislocation is allowed to move freely unitil it
finds itself an obstacle configuration which cannot be passed mechanically under
the applied load (Figure 10).

Subsequent behavior depends on the process being simulated. In simulat-
ing athermal glide the applied stress is increased until the dislocation
configuration just becomes mechanically unstable, The dislocations are then

displaced through the array until a new stable configuration is found.

As indicated in Figure 11 this process of raising the stress to the minimum
point of instability and advancing the dislocation unti] a new stable
configuration is found is continued until a new value of the stress is reached at
which no further stable configurations occur. The lowest such value is the criti-
cal resolved shear stress, r,. The salient feature of the athermal glide process
is the strength determining configuration, the configuration of dislocations and

obstacles which is most stable mechanically, and hence determines 7.

In simulating thermally activated glide the applied stress is constant and
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the activation barrier is computed at each pinning point in the configuration.
The site for thermal activation is then chosen using proper statistical pro-
cedures?® (or well- defined approximations 1o them.) The activated site is bro-
ken, and the dislocation is advanced uniil a new confipuranion 1s found This
process is iterated and the velocity of glide is computed from statistical formu-
lae*!l. The salient feature of thermally activated glide 1 the sequence of stable
configurations encountered during passage through the obstacle array, the
geometric properties of these configurations delermine the relevant activation
barriers.

The precise code vsed to simulate the processes described above depends
on the specific case under study e.g. whether the dislocation motion is assumed
to be athermal or thermally activated. These various specific codes are, how-
ever, obtained by varving the peripheral features of a code which depend upon

three central techniques: (1) A method for storing obstacle arrays so that local

W

subsets can be easily accessed; {2) a data structure for dislacations, which car-
ries all relevant information in a compact form and allows efficient modification

as the dislocznion is moved; (3) a consistent algorithm which advances disloca-

tions efficiently and without loss of information.

1. Storing the Obstacle Array

Clearly any algorithm for locally advancing a dislocation need consider only
the obstacles in the immediate vicinity of the portion of the dislocation
currently being advanced. It is hence efficient to store the obstacle array in

subarrays such that only the relevant local subarrays need to be accessed and
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considered when locally advancing the dislocation. lf 4 subarray has an area, A,
containing randomly distntbuted points of density one then the probabihty,

pln,A), of finding n points in the suburray 1s
A .
plnA) = -—cxpl-4) (Vi)
n.

Inverting this function, a random number generator can be used 1o determine
the number of points in each suburray  Thus by choosing the dimensions of
the subarrays each subarray can be constructied individually

The subarrays may be filled in cither one of two wavs  If the totul size of
the array is relatively small, so that computer storage is niot an issue, one mas
simply fill the subarrays by using a random number generator 1o establish the x
and y coordinates of the points contaiued. The x and y coordinates of ail points
may be stored in ordered one-dimensional arrays with additional ordered one-
dimensional arrays, as needed, containing the strengths and other pertinent
properties of the individual obstacles. Two additional arrays of dimensions two
are used to store the start and the end location of each subarray in the x and y
arrays. Thus a directory is created for finding the necessary subregions of the
entire array. The directory also allows efficient storage of the x and y arrays.
Finally, each obstacle is marked with a digit indicating whether it is behind |,
ahead of, or on a given dislocation.

When the simulation considers either glide through large arrays or simul-
taneous glide in scveral arrays computer storage becomes relevant. A straight-

forward and useful alternative method may then be used. Rather than storing
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the entire array the seeds for the random number generator for each subarray
are stored in the directory on construction of the subarrays previously
described. Then no subarray neced be retained in storage since each can be con-
structed consistently as needed. Arrays can be recorded and reproduced in
separate experiments by simply recalling, (or cunsistently regenerating) the
subarray structure and the associated seeds.

If the subsequent reproducibility of the particular obstacle array is not
necessary 10 the simulation experiment an even more efficient technique may
be used. The only a priori information known about a random array of obsta-
cles is its density, which is, in this problem, identically one if the unit length is
taken to be /. It is hence slatistically permissible Lo construct random subre-
gions as they are needed when the dislocation is advanced. Since the disloca-
tion dces not know what is in front of it, and does not remember what is
behind it, the only obstacie information which ever need be actively in storage
is the nature and location of the obstacles which are actually in contact with the
dislocation and the nature and location of the obstacles immediately in front of
the specific local section of the dislocation which is currently being advanced.
In this the glide of an isolated dislocation through an array of very large size
may be efficiently treated with minimal demand on compuier memory.

These are the basic algorithms used in the simulation code to efficiently
create, store and retrieve the obstacle arrays. The modification of these tech-

niques to treat non-random distribution of obstacles is straight-forward.



2. Representing the Dislecation

To optimize the information obtaii,*d from the simulation of glide it is
important that the dislocation be stored in the computer in a simple array which
contains all relevant information and can be easiy accessed and updated
These criternia are efficiently met by a data struclure in which a dislacation is
represented by a two-way chained list. The central element of this structure n
a simple ordered list of the x and y coordinates of the obstacles in current con-
tact with the dislocation. Each obstacle in this fist is then connected to two
identifiers which give the location in storage of the obstacles 1o its immediate
left and right, and to a mark which indicated whethes the mechanical stahility
of the dislocation segment to the right of the obstacle has been verified. The
configurations of severai dislocations may be simultaneously stored by adding a
list of pointers to one obstacle on each dislocation; given periodic boundary
conditions the sublist representing a single dislocation will be closed under the
operation of left and right connection.

All relevant information concerning the dislocation, such as the shapes of
inter-obstacle segments, the forces on the obstacles, and the mechanical stabil-
ity of the configuration, may be easily computed from the information con-
tained in this double chained list. When the dislocation is advanced the by-
passing of an obstacle is accounted for by simply deleting it from the list and
updating the relevant connections; contact with a new obstacle is achieved by
simply adding it to the list. Interesting configurations, such as the strength

determining configuration may be stored for later study by simply copying the



list in storage.

3. Advancing the Dislocation

The dislocation is advanced in the code by the analyvtic equivalent of the
following procedure. A dislocation configuration becomes unstable by by-
passing an otsiacle along il, either because of mechuanical nstability of the seg-
ment 1o the left or right of the obsiacle due to the increasing stress or becausc
the obstacle has been passed by thermal activation according to some criterion.
This obstacle is appropriately marked and removed from the list representing
the dislocation. the obstacles 10 its left and right are connected in the list and
the associated segment is marked 1o indicate that ils stability has not been
verified.

The new dislocation segment will bow out between its terminal obstacles
toward equilibrium. This bow-out process will be terminated by the first of
three events:

(1) the dislocation encounters a new obstacle of the array;

(2) the dislocation violates the angle condition ¢ >4/ or the strength con-
dition B8< 3, af one of its two end points;

(3) the dislocation segment bows into the equilibrium radius R (=1/277.
To determine the first of these events the following geometric relation is util-
ized (Figure 12): if a circular arc is drawn through two points A and B, and if a
third point, C, is located on this arc and connected to A and B by lines AC and

CB, then the angle, a, measured clockwise between the cxtension of AC and
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CBis given
o, =sin " (4B/2R) w12

where 4B is the distance from A to B and R is the radius of the arc. Using the
terminal conditions (2) and (3), &« maximum value, «,,, may be found at which
the bow-vut process necessarily terminates. The area of the array associated
with bow-out 10 a,, may then be 1dentified and the values of «, computed for
each obstacle, C,., within this area.

If there are obstacles having a, < «,, then the particular obstacle having
the minimum value of o would be the first contacted by the dislocation in &
continuous bow-out process. The obstacle is added to the dislocation and the
list is updated to correct for its connecuons 10 left and right. The correspond-
ing sections are marked and their stability or possible further subdivision is
tested in turn.

If there are no obstacles having o, <a,, then the appropriate terminal con-
dition (2) or (3) is invoked. If condition (2) pertains then the unstable end
point is by-passed by properly marking it, removing it from the list, and updat-
ing the list. The updaie defines a new segment whose stability must be tested.
If condition (3) pertains then a stable segment has been found. When the list
representing the dislocation contains only stable segments a stable configuration
has been found.

When the dimensionless applied stress is high (7 20.5) an addilional
check must be made for possible instability due to self-intersections of the

dislocation and a procedure must be provided 10 decompose the dislocation list
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to account for the formation of stable loops from self-intersections during glide.
The procedures for handling these cases are straight-forward using the data
structure and search algorithm described. At lower values of 7 such intersec-

tions are extremely uncommon, and may usually be ignored.

A stable configuration may be broken by either increasing the stress or
selecting an obstacle for thermal activation. The siress at which the
configuration first becomes unstable may be precisely calculated, and corrected
for possible contact with additional obstacles during bow-out as the stress is
raised. The athermal critical resolved shear stress is that value of 7~ which is
just sufficient to insure that no stable configurations are found. It may be
found by continuously increasing = unti! no further stable configurations are
encountered(Figure 11).

For thermally activated glide, the following procedure is used to calculate
the velocity of glide. Given a stable configuration, the code computes the
angles ¥ X along it, and uses the assigned value of the dimensionless reciprocal
temperature, o, 10 compute the mean residence time according to equation
(V.117). It then calls a random number and chooses an activation site accord-
ing to the probability assignment given in equation (V.118). The chosen point
is passed, and the code then initiates a new search 1o establish the next stable
configuration. In this way a statistically chosen glide path is generated and a
transit time is computed according lo equation (V.119). By allowing several
sequential passages the ergodic average of the transit time is estimated (equa-

tion (V.120)) and the glide velocity<v "> found.
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The above described data structure and search algonithm combine to yield
a code whose efficiency is sufficient for the purposes of this research. In
current use on the CDC 6600/7600 system at the Lawrence Berkeley Labora-
tory the code requires ~25 computer units (~8§8 seconds) of running time to
determine the athermal resolved sheur stress for glide through an array of 10°
points together with a geometric analysis and TV-graphic plot of the strength
determining configuration. The stmutation of thermaliy-activated glide is only
slightly less rapid. The simutation of glide through very large arrays is rela-
tively time-consuming. but not prohibitively so. Analysis of glide through a

square array of 10° points requires ~ 1500 computing units {(~7 1/2 minutes).
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B. APPLICATIONS AND RESULTS
The coding procedures described above have been used 10 conduct simuia-
tion studies on the problem ¢f dislocation motion through randomly distributed
poini obstacles. The athermul critical resolved shear stress for ghde through a
random array of like obstacles was previousty invesugated by Kooks?® (far the
particular case of impenetrable obstacles) and by Forer an snd Makin.?" Thees
studies were extended*® 1o include the statistics of the athermal glide stress and
the detailed features of the parucular obstacie configurations 1n the hmit of
large array size. To test the validity of the equations obtained for CRSS and
the geometric properties of the strength-determining configurations it was
necessary to simulate glide through very large arrays. The results oblarned

from this study are reporled below.

1. DISLOCATION GLIDE THROUGH LARGE ARRAYS

To study the effects of array size and shape we employed computer simuia
tion of dislocation glide through arrays containing 103 1o 10° obstacles. In each
case the properties of the strongest configuration (i.e. CRSS, average segment
length, distribution of forces and segment lengths) were printed out. The size
effect was studied by taking square arrays and increasing the rumber of obsta-
cles (e.g. for 10° obstacles we took an array of size of 1000x1000). For :he
shape effect, the number of obstacles was kept constant (e.g. 250,000) but the

width of the array was changed.

Two types of boundaries were used in this study. Periodic boundaries,

where the array is extended periodically in both directions were used in most of
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the computer simulation runs. Mirror houndaries which require that the dislo-
cation meets the boundaries at right angles has also been used in order to see
the effects of boundary conditions.

Figure 13 shows the data obtained from simulation of arrays containing up
to 108 obstacles. The CRSS for athermal glide is plotied as a function of the
width of the array. The obstacle strength (8.} was chosen to be 0.01 and
periodic boundaries were used. As is clear from the figure, the CRSS decreases
steadily as the array size is increased and approaches a limiting value. The
comparison between computer simulation and predictions (equations (I111.17),
(V.23) and (V.46)) are shown in Figure 14, where the strength of the array 8,
at a fixed value of the applied stress (7 * = 0.001) is plotted as a functior of the
width of the array. As can be seen from the figure, the parameter 8, increases
with array size and appears to asymptote at a value close to that predicted by
Hanson and Morris**. For comparison the value of 8, predicted by Friedel'?,
(equation II1.17), is also included, which underestimates the data for large
arrays. The solution by Labusch?8, equation (V.46), underestimates the data,
but tne corrected form, equation (V.47), gives very close agreement with the
value obtained from arrays containing 10 obstacles. The data bars in Figures
13 and 14 correspond to computer simulation of two different arrays. Notice
that these values are different even for large arrays. The scatter in data, i.e.
changes in the properties of the slrorﬁes_l configuration from array to array has
important conscquences with respect to deformation behavior of idealized cry-

stals.4?
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The distribution of forces on the strongest configuration of an array con-
taining 10® obstacles is shown in Figure 15, where the force exerted by the
dislocation on each obstacle in the strongest configuration is caiculated accord-
ing to equation (111.9). The theoretical distributions are those obtained by Han-
son and Morris®', equation (V.26), and by Labusch,’® equation (V.48). The
data to construct the histogram was obtained {rom dislocation glide through 10°
obstacles at a stress of 7*=0.001. The strongest configuration contained 141
obstacles.

The force distribution given by Hanson and Morris gives a rather good fii
to the empirical histogram obtained from computer simulation. The prediction
by Labusch requires a correction factor in order to give a reasonable fi 10 the
empirical distribution.

The average segment lengths, obtained from iwo arrays containing obsta-
cles from 103 to 108 are plotted in Figure 16 as a function of the width of the
arrays. The <I1*> values seem to be a slowly increasing {unction of array size.
and to approach the value predicted by Hanson and Morris*, equation (V.34}.
for very large arrays. The "Friedel relation", equation (III.I9), overestimaltes
the simulation data by more than 30%. The value obtained by Labusch, equa-

tion (V.53), underestimates the computer simulation results for Jarge arrays.

The distribution of segment lengths are compared in Figure 17, where the
histogram obteined from an array containing 10® points is plotted at a constant
applied stress of 7*=0.001. The thecoretical distribution by Hanson and

Morris**, equation (V.30) does a poor job of reproducing the empirical curve,
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suggesting that the discrepancy is due to the approximations used in the
theoretical model and not due to array size. However, as noted earlier, the
average segmen! length maiches that obtained from theory very closely. The
prediction by Labusch3®, equation (V.51), gives the shape of the histogram rca-
sonably well.

The distribution of the angle & predicted by both theories, equations
(V.29) and (V.50), are compared with the simulation data in Figure 18. The
solution by Hanson and Morris** requires that there is « cut-off angle T
whereas the prediction by Labusch®® gives a rather good fit to the empirical dis-

tribution.
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a) Correction to the Theory
In the following a simple analytic technique for estimating the influence of
the array size on the CRSS will be given. We assume, in addition to those
introduced in reference 44, that an obstacle array of arbitrarily large size con-
tains a high density of strong configurations and the strong configurations
encountered in glide through a finite array are subsets of these. Using these
assumptions one could write the average number of configurations having

strengths 82 f,, to be
4
<m> = (”2—")(9" (V1.3)

where n is the number of obstacles on the dislocation, N is the total number of

points in the array and S is the area of force distribution, (Figure 19).

By setting
<m>=1 (V1.4)
one can write
-1
s(@) = [ﬁzd] " (VLS)
and inverting
B=r(S) (V1.6)

Using equation (V.28) for S, the value of 8 or 7 *can be calculated numerically.

Figure 20 shows the value of the obstacle strength, 8;, required to prevent

athermal glide under given applied stress as a function of array width, for two
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stresses, 7* = 0.005 and 7* = 0.001, where mirror beundaries were used. The
agreement between the compuier simulation and the prediction (equation
(VI.6)) is very good. In Figure 21, the CRSS for atherma) ghde is plotted as a
function of the dimensionless obstacle strength. B8, tor square arrays containing
10% points. Here. periodic boundaries were used  Apain for these sizes of
arrays the agreement between calculation and computer simulation 15 good
However, further refinement of the analysis 15 needed to account for effects
which intrude at higher obstacle strengths and for the influence of boundary
conditions in arrays of small size.

To study the effects of array shape on the properties of the stronges
configuration, rectangular arrays arc considered. where the number of points in
the array is kept constan! and the array width or height is varied. The strength
B, as a function of the width of the array containing 250,000 points is shown in
Figure 22. The computer simulation data was taken for an applied stress 7 * ==
0.005 and periodic boundaries were used. The prediction according 1o equation
(V1.6) is drawn as a continuous line. The agreement between theory and com-

puter simulation is good.

b) Thermally Activated Glide

The dependence of By on array size and shape has profound effects en
dislocation velocity in thermally activated glide. For a dislocation-obstacle
interaction of simple siep form, the velocity of the dislocation at low tempera-

41,42

tures can be writlen in Arrhenius form

<v'> =—lg-;exp['-a(l3r—ﬁx)l (VL.T)
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where N is the number of obstacles in the array and B’ is the width of the
array in terms of /, and « is the thermal parameter (equation (V.109)). As
can be seen from equation (V1.7), as B, increases with W the dislocation vclo-
city will increase exponentially, the more so as a increases, i.e. as temperature
decreases. The scatter in B8 from array to array has also important consc-
quences?2 43 where at low temperatures the dislocation will glide on thuse
planes on which the glide velocity is highest and thus the deformation of tig
crystal appears inhomogeneous. The deformation becomes homogeneous as

temperature is raised or stress is decreased.

2. GLIDE THROUGH FIELDS OF UNLIKE OBSTACLES

Foreman znd Makin®? were the first to report on the computer simu:leiion
of dislocation glide through mixture of obstacles. They carried out their sim.
lation for relatively high strength obstacles and used mirror boundary cond:ticn
Their results seem to confirm equation (V.92), quadratic mean of stresses. for
all strong obstacles except in the region where 8,>>g, and x,<<x,. where

equation (V.93), simple addition of stresses, is assumed 1o be valid.

Hanson and Morris*® extended the analytic procedure to estimate the criii-
cal resolved shear stress for glide through an array of like barriers, to treat the
case of simultaneous random distribution of obstacles of different properties.
The predictions of the equations were compared to the results of simulation
experiments on glide through arrays containing both strong and weak obstacles.
Relevant properties of the strength-determining configurations were deter-

mined, including the distribution of angles and segmient Iengths and the relative
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fractions of strong and weak obstacles in actual contact with the dislocation line.

a) Two types of obstacles

To identify the regions of applicability of the solutions to the CRSS for two
kinds of obstacles we carried out extensive computer simulation of mixiurey of
two kinds relatively weak obstacles using periodic boundary conditions.

In Figure 23, we plot the CRSS for arrays conta’ning strong and weak obs-
tacles as a function of the fraction of weak obstacles {x, ) The CRSS decreases
as more and more weak obstacles occupy obstacle positions. The relative
strengths of the obstacles correspond to the critical angies of 96° and 130°. To
obtain the data we used 10,000 obstacle arrays. For comparison we plot the
data obtained by Foreman and Makin*' and the approximate equation (V. .80).
Both the data obtained in this study and by Foreman and Makin is in gond
agreement with the prediction.

In Figure 24 we show the dependence of the CRSS on the fraction of
strong obstacles (x,), which increases as the relative number of strong obstacles
increases. The obstacles have strengths 0.1, 0.05 and 0.0]. The daw is
obtained from computer simulation of 10 arrays containing 10,000 obstacles
and s shown as data bars. We have also plotted various predictions discussed
earlier. The formula (V.92) fits the dala approximately over the whole region
of obstacle fractions, except in the case where 8,>>3, and x,<<x,, where
the simple addition of stresses can be used. The approximate formula (V.80)
fits the computer simulation data over the whole region of obstacle strengths

and fractions. The ¢xact theoretical prediction (cquations(V.66) and (V.67))
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underestimates the data consistently, a resuit which is believed to be due to
relatively small size of the arrays used to obtain the data. The CRSS (ur arrays
containing two types of abstacles is also array size dependent and decreases as
the width of the array increases. This s illustrated in Fapure 25, where we have
plotted CRSS as a function of the width of the arravs containing twu tvpes of
obstacles of strengths 8,==0.05 and g, =0.01 and relative fractions x, = 0.1 and
v =0.9. The CRSS decreascs steadily and seems to approach a hnhuing valee
for large arrays.

The problem of finding the applicability and the ranges of validiir of equa-
tions (V.92) and (V.93) is considered in Figures 26 and 27. It s cleer from
Figure 24 that the simple addition of stresses consistently overesumatas the
simulation data and the difference diminishes as the ratic of the obsiacle
strengths is increased.‘ This suggests that either the equation (V.93) is vald wr
a very limited range of obstacle strengths and fractions or it is fortuitous ant
holds when the effect of one of the obstacles is negligible. The differentiation
between formulas (V.92) and (V.93) is difficult because «f the scatier ;n daw
obtained from these finite size arrays. Since, the size of the array was no! con-
sidered in obtaining equations (V.92) and (V.93) and since the plot of these
predictions require the knowledge of the end points 7" and 7., al x,=1 and
x, =0, we simulated an array which is rectangular in shape and contains 2000
points. The widih of the array was chosen to be 200 so that ‘he strongest
configuration will contain a larger number of obstacles. The obstacle strengths

were chosen to be 0.1 and 0.01, giving a ratio of 10, which could be considered
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1o be in the range of applicability of cquation (V 93). Figure 26 shows the
CRSS as a function of fractton of strong obstacles in the array We considered
arrays containing up to 10% strong obstacles  Even mothis range. where the
array containy many weak and few strong obstacdes, equation 1V.93) overesu-
mates the computer simulation data, whereas equation (V921 gives @ very good
fit to the simulation results  The date obtained from simulation of arrays con-
taining an even smaller number of obstaclies (o <11 did not fall through the
prediction of equation (V. 931 Asshownan Figure 27, ¢ven for this case. cqua-
tion (V.92) predicts the results rather closely

Aside from the comparisons made with compute; stmuiation data. equa-
tions (V.92) and (V.93) also differ wn their behavior of slopes (d7 %/} as x,
approaches zero. This slope is finite for equations {(V 80) and (V.92), whereas
for the simple addition of the stresses it is infinite. However, 1t is difficult 1o

get (dr*/ax;) from the computer simulation data as x —0  Also as was shown

wn

previously, the equation (V.93) breaks down for 8, = 8, and x,=x, =0,

The fraction of strong obstacles on the strongesi configuration (c.) is
shown as a function of the fraction of strong obstacles in the array {x,) in Fig-
ure 28. The obstacle strengths used to obtain the data were 0.1, 0.05 and 0.01.
The parameler ¢, increases with x; with sharper slope as the {raction (8,/8,}
increases. We have aiso plotted in the figure the analytical prediction, accord-
ing to equation (V.81). As is apparent from the figure the calculation repro-
duces the computer simulation results very well.

The average segment length as a function of the fraction of strong obsta-
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cles is plotted in Figure 29 and compared with the equation (V.87). The calcula-
tion {equation (V.87}) gives a good fit to the daty obtained from the computer
simulation of arrays containing 10,000 obstacles  An interesting feature in the
figure is thal the average segment length as 2 funcuon of x, undergoe: 1 max-
imum in the range where there are a lot of weak and few strong ob rles
This maximum is predicied correctly by the equation (V.R7) and 15 mc nree
nounced when the difference in the obstacle sirengths js large  Thiv wan be
explained with the help of Figure 28. where the dislocation "picks vp” miare
strong obstacles at small fractions which is more proncunced as the ratio
(B,/B,) increases. For example. 11 arrays contaning 5% strong obstac!”
strongest configuration contains 20% strong obstacles for (8,/8.)=2 The
fraction of strong obstacles increases as (8,/8,) increases. For a =o-i. the
fraction of strong obstacles is, from Figure 28, about 55% for B,/f, =35 and

75% for B8,/B, =10.

b) Square spectrum of obstacle strengths

The obstacle strength can be defined either by the critical angle ¢, or the
critical strength 8. We first consider the square distribution of obstacle angles
¥, as shown in Figure 7. The critical resolved shear stress 7" as predicted by
the equation (V.100) is shown as functions of the average angle ¢, and the
width of the distribution +i, in Figure 30. The data obtained by Foreman and
Makin?? in simulating arrays containing 10,000 points is plotied as points. The
data obtained in the present work is plotted as data bars and is taken from com-

puter simulation of five arrays containing 1600 obstacles. As can be seen in the
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figure the prediction (equation (V.100)} fits the data very well within the range
of scatter. The calculation in the range of ¥, € 3n/8 was done for complete-
ness. since the work by Bacon et al* showed. that due to the interaction
between neighbouring segrments the more reabsuc case for point ohsiadic

strengths 1o be 0.7 and lower In general. as shown in Figure 30, 7718 2 ven

i

weak function of the width of the distribution and decreases slowly if o, <

ol

T

and increases with ¢, if u‘m>—2 in Iagure 31 we show the results for CRSS

obtained between the angles % and 7 The constant k in equation (V100

which is array size dependent was obtained for v, = S7/§ to be 0.92 from 5
arrays containing 1600 obstacles.

The second case to be considered for the distribution of obstacle strengths
is the square spectrum of strengths(S )} according 1o Figure 8. We plot the
CRSS as a function of the width of the distribution in Figure 32. We used
equations (V.90) and (V.91) to convert B, into ¢,. The data bars indicate the
computer simulation results of five arrays containing 1600 points. The predic-
tion according to equation (V.103) is also plotted in the figure and shows good

agreement with the computer simulation data. Figure 32 is very similar to Fig-
. m .
ure 30, except when the average angle ¢, is less than ER In this range, the

decrease in CRSS is stronger in Figure 32 than in Figure 30. The conversion of

the two kinds of square distribution is also possible using

bwias| = p@ras] vi3)



For
p{B) = R
ﬁm:n_ fjr‘l\ll‘
and
y 1 [ .
dfs = :_;5111"_; Jdd (VT O
we get
!
sin(%-i
ply) =~ I (VE10)

2(1‘/5m.~.\ - Bmm]

1

max ~ Y min

or for plg) =

4
plf) = e (VI11)
= 1
YUmas ™ ¥rmm  ~ ]'—ﬁz
Thus, the uniform distribution of angles emphu. s the stronger abatacles
Both distributions give similar results if the obstacle strengths are small {or {or
large angles).

The CRSS for the uniform disiribution of relatively weak obstacles
. o . . . .
corresponding 10 angles between e} and =, is iven as a function of ¢ in Fig-
ure 33, where the results are very similar to ne one shown in Figure 31.

The average segment lengths as a function of ¢, for th uniform distribu-
tion of relatively weak obstacles is shown in Figure 34, The average segment
fength depends very weakly on ¢,,. '~ he prediction, which is obtained from

cquation (V.87), is also plotted in the figure and shows good agreement with



the computer simulation data.

The distribution of forees on tha strongest configuration obtained from
computer simulation of arrays contmining uniform distnbutiion of obstadle
strengths is compared with the theorctica! prediction in Figure 35 and show

excellent agreement.

¢} Thermally activated glide

Thermally activaled ghde through arreys contamning onz tvpe of obstacle
has been studied exiensively in referonces 25.41 and 42, In these studizs, the
stanistics of thermally activated giide were developed and usefiu. approximauon-
identiied. These approximations were studied through s.mulation and therr
range of accuracy identified?! 4~

In this section, we reporl resuits oblained for thermally activated glide
through arrays containing two tvpes ol obstacles, ‘istributed randomly We
assume that the force-displacement relation is of simple step form. Also. we do
not differentiate between obstacles of different types concerning the effective
range of interaction {(d) so that the parameler ¢ remains the same for both
types of obstacles. If the effective ranges of interaction were different, the
parameters must be modified accordingly.

Figure 36 gives the stress (77) at a given velocity of glide as a function of
temperature (7). for an array containing 2000 obstacles, half of which are
strong ( B, = 0.05 ) and the other half weak ( B, =0.01 J, at a velocity of
In<v™> = -10. The siresses at In< +'> = -10 as a function of femperature

is also plotted if the arrays contained only strong und only weak obstacles.
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Using the data given in Figure 36, we see that the formula
TTT) = 2 (T x4+ (T ), (V1.12)

closely approximates the computer simulation resuiis over the whole range of

temperature, whereas the formula
TUTY) =7 TN+ 7 (TN, {VIL13)

overestimates the data.

For arrays conuining sinaller f{ractions of strong obsiacles (10%). the
above results are not cha,.2ed and equation (V1.12) gives a good fit to the com-

puter simulation data (Figure 37).

One of the most striking features in thermally activated glide through
arrays containing more than one type of obstacle is that the charact *ristics of
the configurations change with temperature This is illustrated in Figure 38.
where we have plotted the fraction of strong obstacies on the strongest line {¢,)
as a function of the inverse of the temperature (1/7) al a given stress
(r'=0.005). As can be seen from the figure, the fraction of strong obstacles
increases as temperature decreases, suggesting that at low temperatures only
strong obstacles determine the strength and at high temperatures the effect of
weak obstacles becomes more pronounced. The parameter ¢, approaches the
athermal value (Figure 28) as the temperature decreases. The configurations
obtained at high (7" = 0.1) and low temperatures (7" = 0.001) are also shown
in the figure, where circles represent strong obstacles and dots represent weak
obstacles. It is clear from the figure that the number of strong obstacles on the

line decreases as temperature increases.
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VI COMPARISON WITH EXPERIMENTS AND DISCUSSION

The computer simulation experiments discussed ghove give us informatan
on the statist os of overcoming local obstacles by disdocation. which 1s needed
for a rehahic wnafssrs of the espenmienta) data and 1or tr, Tarther developmen:
of the theory of dislocation mesbiity and orvstar plastice . Howeser the resuls
obtained are sensitive 1o the approsmabions wsed and v necessary 1o chedk
the vahdity of the assumpunns and modilicatiens of the model

The general prablem of plustic deformaban ensing from cutting of locai-
ized obstacles s comphcated by the mtrusion of several factors  An extensive
Iiterature has been developed to desinbe deformation characteristics due to the
motion of dislocations past localized stress fields ansing from the presence of
substitutional and interstital solute atoms!®1%22 2829 yeiraponal  point

20 26,4k 49, (S-bFK and centers of

defects®® 29, precipitates and dispersed phases
radiation damage®®~7. While the details will not be reviewed here, 1 is
appropriate 10 reconsider the validity of some of the simphfications that have
been made 1o facilitate analyses. The siress fields due to the lattice strain
centers decrease very rapidly in amplitude and spread over larger areas of the
slip plane as their distance from the slip plane increases. It has been customary
1o neglect the effects of all strain centers lying a grealer distance away than one
atomic plane on either side of the slip plane. In most approaches no considera-
tion is given to the fact that the sirain centers are usually more or less ran-

domly distributed.

in this study, we assumecd the obstacles to be point-like and randomly dis-



ributed  In most models. the nature of the obstacles has generally been
unspecified. however a proper desaripiion ol point obstacle approximation is
necessary. According to Morns and Syn-*.if the etfccive range of interaction
tdd 15 smali compared 10 the mean scparaben 1 ol e obstacles, which are
taken o be dentical arcuiar’y s 2t barmier - o e disoocation ghde then
the obstadles can be treated as poont-hke Thos o tas minded we Chall ke gony-
cerned with oarniers heving short “ungc anterscthions . The assumption of ~an-
domness of point obstades s o pood one if the obstaddes are non-mieracting
impunties, small dispersion perticles or snuall veuds  Intergcting point obstacles
or flexible forest dislocauons will not be random Toe nature of the mouon of a
dislocation through non-random obstacles can oi course be quite different and
is more pronounced for high-strength obstacies ™

We considered dislocations 1o be flexibie, extensible strings of constant
line tension, thus, neglecting effects of orientation, radiu~ of curvature and the
influence of elastic anisotropy on the energy of the dislocation.

Bacon et al.®® considered the change in line iension with dislocation type
and obstacle spacing when the obstacles are sireng. The magnitude of line ten-
sion can vary by a factor of 4 depending upaon whether the disiocaiion is edge
or screw in character, however, an average line tension could be used for disio-
cations of mixed character?® 75 The elastic anisotropy has beer considered by

Scattergood and Bacon76~78.

v’

Given the accuracy and short-comings of the model an attempt will be

made 1o make gualitative and quantitative comparison of the results with exper-



LT
imental date The general approasch 1o b foliowed oo 1o make the com
parison 15 the following  since the cquatinne gooen o e provious seln ooak
all 1n non-dimensional form. they have to be dive orsm co b The CRSS oz

dimiensiong! form s given by cquation (11 %) and co e worven o

5
T - -."] N
L

where 7 %08 the dimensionless CRSSO T s the ine tensnn and /ooy the Bureer.
vector The average spacing /) cun be caicuinted froe the Gonsity of obaiades
if the charscter of the moving dislocetion 15 known then the hne tension 1
and Burgers vector b can be determinzd Since + 7 depent en the obstaor
sirength (B, ), this also has to be caleulated or csumated and would generally
depend on the shape™, size and posinon of the obstacles relative to the ghd

plane. The cnitical force in dimenstonal form s given by
b= 2100, (VI

If the distributions of the obstacle strengths are known then the dimensSionless
CRSS (7% can be calculated using equation (V.96) and in dimensional fornmi vig

equation (VIL1).

The most simple but powerful result obtained {rom the mode!l cansidered

here is that the CRSS 7 is proportional to the square root of the obstacle con-

centration, ¢. Since Ism—l: we ablain from equation (VIL.1)

Je
r o« Je (VIL3)

This is an cxperimental fact, observed in most of the experimental studies on
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dilute solation and precipitation hardened matenals
The first direct companson of experiment and computer simulation
imvolyves gualitative aspects of the dislocabion motion The expermmental data iy
teken from Barnes™. who studied the movement of disiocations i irradiated
copper crystals  Frgure 39 shows the sequence of four successive Transnission
Eicctron Micrographs of copper which had been bombarded with 3» 10
I8MeVN elpra parucles per ¢m- and. as a consequence LGntains smail disiocahion
foope and even smaller black dots only just resoivabie The dislocation winch
was induced to shp by intermittentiy removing the condenser aperture {rom the
clectron microscope, moves upward and forms a series of arcs in this direction
and 15 held at individual points along 11§ length. The movement can be realized
more readily from Figure 39, where the four dislocations have been superim-
posed by tracing each in turn, and it can be seen that some sections do not
advance between photographs, while neighbouring sections do. It is apparent
that the dislocation was held by a number of very small obstacles until, under
the stress the dislocation, released from one, rapidly advanced until it met the
next obstacle in its path. It is believed that these small obstacles in copper irra-
diates. with alpha particles are vacancy clusters which are not planar and that
each of them is acting as an obstacle, and it is possible that even smaller crystal
disturbances, which are not detected in the elecltron microscope,are also
effectiveS?,
For coniparison we have also printed in Figure 39, the motion of the dislo-

cation through randomly distributed point obstacles taken from the compuler



SiMraiatinn CsmepshotsT The diel s e sy wp e ot
ton of the sutcossivs wonfiparatroe o0 <bour Qo T e !
the divlocation arn comgraler s HI Venosn T

poants can by made frong the tompiere,

b The obstades to disiocets mctioron vradiee D o e
I orepdlat mannet rather thes o deanhate b g rrs o e
{ashion

1) The abstaddes are not of coas siee and cach meeras with the o -
ton differentiv, sagpesting thet ther strenpths are not the same

it Not only the dislocation meves o the same fashion. bay w
lengths of dislocation segments between pinning obstacles are very simie

v The dislocation bows between the obstacles w approvimately G gl
fashion

In direct observation of the interactions between distocations and preoip-
tates 1 an Aluminium - Silicon alloy Nemoto and Koda®” estimated the CRSS
from the measurements of the radius of curvature of moving dislocations
exparded between the precipitates. Their micrographs showed also close resem-
blance to the disiocation motion through computer simulation.

In order 1o study the dynamical behaviour of dislocations a direct method
has been developed in recent years. This method is based on the m-simu defor-
mation experiment in a High Voltage Flectron Microscope (HVEM) with a ten-
sile device attached to it. In this technigue, the specimien is deformed plasti-

cally while under observation in a HVEM, and the bchaviour of individual
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distocations 1s recorded  continuouts Figure 44 1y taken from such a
study T In Figure 40 we compare the dicinibation of segment lengths
obtained from computer simulabior with the expenmentalh determined one
Samoto et sl S studied using HVEM the detorniat s of Co single ervatals
In theor study, in order to ¢haractenize the disiocation - diviocalion Interachons.,
geometnically, following properties of the speamen were required
al A homogeneaus murostructure throuphout the crystal the saaie of wi 4
Is smail enough such that ot can be compliciely exanuned i the ciedtn n
MICTOSCOPL
b}  The dislocation arravs are more or less random without cluslered regons
such that every dislocation and node can be resolved
¢)  The yield stress can be reproducibly determined {rom specimen 1o speci-
men
The specimen which satisfied the above structural conditions closely was
identified and in-siw HVEM deformation studies were conducted®. HVEM has
the advantage of being able to penelrate relatively thick foils which permit
determinations of the three dimensional array of dislocations. Saimoto et al.33
measured the distribution of true segment lengths and the interobstacle spac-

ings. From these measurements and using the following formula for CRSS

In(/,
= 0732 G0 I TD) (VIL4)
I 27

they were able to estimate the obstacle strength B8, to be between 0.3 and 0.7,

taking various values for the lower cut-off radius rg. They wsed two reflection
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kT
where G is the shear modulus and the interaction distance (d)} has been
assumed to be equal 10 one Burger’s vector. The equation (VI1.10) is obtained
for a particular dislocation-obstacle interaction form. For other types of interac-
tion similar result can be obtained. Equation (VI1.10) indicates that the stress
exponent m " is an inverse function of temperature and is directly proportional
1o the obstacle strength. The stress exponent m " as a function of the inverse of
the temperature is shown in Figure 41, following the data given in reference 51.

The plot gives a straight line through the data points as demanded by equation
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(VIL.10). The same type of behaviour 1 observed for other malerials® **
This plot can be used to estimate the obstacle strength 3 Using the values of
b oand G for MgO. we estimate from the slope of Figare 41 the obstucle
strength 1o be of the order of 0]

The same material was deformed anoa speaal tensibe Stage mside the
HVEM 1o determine the distribution of the dis'ence between the nbstadles’
The obstacles 1o the disiocation mounn are believed to be clusters of impuniues
having sizes of the order of 200 A° The distnbution of scgment lengthe of
screw dislocations obtamned from specimens of Mg0) single crystals by Appe! ¢
al ‘708 shown in Figure 42, The histogram obiained through computer simula
tion of dislccation motion in arrays containing 2000 points 1s also shown n the
figure. This data was obtained from the thermally acuvated glide of disloca-
tions through point obstacles of strength 8, = 0.1. at a temperature of 77 = (101
and stress 7% = 0.005. The agreement beiween compuler simulation and
experiment as shown in Figure 42 15 excellent. The density of obstacles
estimated from [, = <I> .0 00/ <1'>mm/,u,(,, matches with the impurity con-
centration closely.

Munijal and Ardell®S investigated the effect of the width of the y' particle
size distribution on the CRSS of Ni-Al single ciystals containing 6 wt.-% Al
The samples were given two-step aging treatments to produce broader unimaodal
distributions than those resulting {rom isothermal aging. By charging the width
of the distribution by 30% they observed a decrease in CRSS by 8%. The size

distribution of vy’ (Ni;4/) particles was obtained by TEM and the breaking
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angles were calculated according to the procedure given by HamB8%. The aver-
age angle i, was approximated 1o be in the range of 3%/8 The computer
simulation data using uniform distribution of angles, as obtained by Foreman
and Makin®" and in this study. is given i Figure 30. The CRSS in the range of
dr,,. = 378 shows very hitie decrease with the chunges in the width of the dis-
iribution. suggesung that the computer simulation and experiment i1s not in
agreement  However, since the obstacle strength s usually taken to be propor-
tong! 10 the precipitate size® ¥ and since the disinbunon  of angles discrim-
mnates against the weak obstacles. @ mare reasonable approximation to the dis-
tnihutinn of the particle sizes 15 the uniform distribution of obstacle strengths
rather than the angles. The CRSS for the distribution of obstacle strengths is
shown in Figure 32, where 7 is a decreasing function of the width of the distri-
bution in the range of ¢, =3w/8. One-to-one correspondence between com-
puter simulation and the experiment in this case is difficult, partly because the
precipitates are ordered and dislocations travel in pairs and also, the average
particle size and the volume fraction change from experiment to experiment.
Also the scatter in the computer simulation data makes the comparison more
difficult. However, by taking the calculated distributions of angles given by
Munjal and Ardell’® and performing computer simulation through randomly
distributed point obstarles the CRSS changed by 4 to 6%, which is close to the
experimentally observed value. The experimental data is in accord with the
computer simulation studies on at least two accounts: First of all, the CRSS
decreases with the width of the distrib iion of angles and secondly the experi-

mental data show a small decrease with the width of the distribution compared
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to the effect of average size The prodichion. cquation OF (620 aiss supeoais
that the CRSS 15 mamly determaned by the averages value of the absiie

strength

Sinclar approaches have beon taken by My
order approarmiations to the CRSS Ceguation OV 7550 g app o0t e oaper
menialhy deternined particle size distrioations for Goppes wloLc contamine g
pazticddes obtamed by Ashby and Lhehng” % Uane e approach, e

stength of a preapitation hardencd AIZn2ag alloy was aiso calculated recens’,
4 L A ;

and gaod agreement was found between theory and expeniment
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VI SUMMARY AND CONCLUSIONS

The maor bjectuves of investigations on dislocation mechanisms are 1o
provide a basic understanding of the vaned plasuc behaviour of materisls and
to uhlhize these concepts in engineenng apphications . The pnimary godl of this
rescarch was 1o caleulate the CRSS as o function of the strength of the obsta-
cles and 1o deternune the distocation velocity as functions of temperature and
apphicd stress and strength of the obstacles A compuler model was used to
dire 1y simulate ghde under precisely controlled conditions and compared the
results with analytical predictions and experimental data.

f-rom the study of the effects of the array size and shape the following
conclusions can be drawn:

1} The CRSS for athermal glide oblained in simulating finite size arrays
depends on the array size and shape and decreases as the width of the array
increases or the height of the array decreases.

1) The arrav-to-array scatter in the properties of the strongest
configuration still exists even with large arrays.

ii1) The velocity of a dislocation in thermally activated glide will depend on
the array size and increases as the size of the array increases.

iv) The CRSS is also dependent on the boundary conditions (mirror or
periodic) for arrays of small size.

v} Since the microstructural obstacle arrays of physical interest are finite,
the variation of glide propertics with the size of the array should be taken into

account in physical theories.
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Since most of the obstacles in real materials have distribution of strengths.
we have made analytical and computer simulation studies of dislocation motion
through arrays containing distribution of obstacle strengths. Mixture of obsta-
cles change the properties of the strongest configuration drastically, especially in
the case of two kinds of obstacles. The effects are more pronounced when the
array contains a lot of weak and a few strong obstacles We have celeuleted the
CRSS. average segment length. thc fraction of obstacles on the configuration
and distribution of forces and obtained good correlations with computer simula-
tion data. We have also demonstrated that in the case of superposition of two
mechanisms the addstion of stresses does not hold in the ranges of ohstaci:
strengths studied and in general the CRSS can be calculated using the quadratic

sum of the siresses, i.e. 72 =}:-r,1x,. Thermally activated dislocation glide

‘

through two types of obstacles have also been considered and the effects of the
temperature on the strength-determining configuration is studied through com-
puter simulation.

The comparison of the computer simulation results with experiment was
carried out in the last section. The dislocation motion through irradiated Cu is
compared to comruter simulation of dislocation glide through randomly distri-
buted obstacles and very good agreement is found. Quantitative comparison of
the segment length distributions of gliding dislocations obtained from computer
simulation and hardened Cu single crystal showed very good agrcement. The
stress exponent is shown to depend inversely with the temperature which has

been observed experimentally. The distribution of scgment lengths obtained
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from MgQO single crysial containing impuritics matched very closely the com-
puter simulation histogiam. The resuits compared with the experimental data

obtained from a precipitation hardened alloy also showed good agreement.
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Table. I. Assumptions and Basic Equations
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Assumptions:

Obstacles: randomly distributed,
localized and point-like.

Dislocation: flexible string,

constant line tensiorn.

Basic Equations:

' Quantity Dimensional Dimensionless
Number of Obstacles N N
Total Area A4 A= N
Stress 7 T =7 b/2T
Radius of Bow-out R R*=1/(27%)
Force on the B=F/2T

obstacle

Obstacle Strength F.

= cos{y/2)

B, = cos{y./2)

|
|
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6

Figure 7.

Figure 8.

Figure 9.

Schematic illustration of the problem of yield or initial defor-
mation in a grain or single crystal.

Detail of mechanical equilibrium in the i-th obstacle
configuration.

Geometry of randomly distributed localized obstacles.(Afier
Friedel'?).

Parametrization of the area searched by circle-rolling (o an
angle 6, = 7. The parameters 6 and ¢ define the shaded area
2
Division of the search area (a) into a limiting area (a,) and the
excess area (a;) by the coordinate line ¢ = —¢q. The position
of obstacle k+1 to be found in area (ay) is defined by the
angles 6 and ¢.
Division of the search area into regions I, II, and III.
Square distribution of the obstacle strengths measured by the
critical angle ¥,.
Square distribution of the obstacle sirengths measured by 8,.
A possible force-displacement relation, 8{x/d), for dislocation
passage through an obstacie, which forms a simple repulsive
barrier. The shaded area indicates the activation energy(g®) if

the dislocation exerts a force 8} on the obstacle.



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

10.

15.
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Dislocation glide through an array containing randomly distri-
buted point obstacles. The dislocation starts at the bottom of
the array and moves until the strongest configuration is found.
Flowchart explaining the essential features of the compuicr
code fur finding the athermal critical resolved shear stiess.
Parameters for distocation motion algorithm: a) division into
subarrays, b)bow-oul process.
Athermal glide stress versus array width for arrays containing

randomly distributed obstacles of strength, 8.=0.01.

The resistance to dislocation ghde under a dimensionless stress
of 7 '=0.001 as a function of size of 2 square array of identical
point barriers.

The histogram of forces, obtained through direct computer
simulation of glide through an array coitaining 10° randomly
distributed obstacies, compared to theoretical distributicns.

The average segment length, <! > as a function of size of a

square array of identical point obstacles of strength 8,=0.01.

The comparison of theoretical distribution of average segment
lengths with the histogram obtained by computer simulation of
an array containing 106 obstacles at a stress of v =0.00].

The comparison of theoretical distributions of the angle ¢ 1o
the histogram obtained through computer simulation of an

array of 108 obstacles at a stress of r *=:0.001.



Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.
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Schematic distributicn of forces along the strongest

configuration.

The obstacle strength 8, required to prevent athermal glide
under given applied stresses (r '=0.005 and 0.001) as a funclion
of the width of square arrays. The calculated curve is drawn
from equation(V1.6).

Comparison of theoretical prediction and computer simulation
for arrays containing 10® obstacles at various values of stresses.
The strength B, as a function of the width of arrays containing
250,000 obstacles at a stress 7 =0.005 and comparison with
equation(V1.6),

The CRSS for arrays containing two types of obstacles as a
function of the fraction of weak obstacles.

The CRSS for arrays containing two kinds of barriers as a func-
tion of the fraction of strong obstaci~s, x,: a) For obstacle
strengths $5,=0.1, B8,=0.05, b) for obsiacle sirengths f,
=0.05, 8,. =0.01 ¢) for obstacle strengths 8, =0.1, 8, =0.01.
The CRSS for arrays containing two types of obstacles as a
function of array size.

The CRSS for arrays containing mainly weak obstacles as a

function of the fraction of strong obstacles (x,<10%).



Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Figure 34.

Figure 35.
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The CRSS for arrays containing a lot of weak, a few strong obs-
tacles (x,<1%), as a function of the fraction of strong obsta-

cles.

The fraction of strong obstacles on the strongest configuration
(c,), as a function of the fraction of strong obstacles in the
array, x;: a) for B,=0.1 and 8,=0.05, b) for B,=0.05 and
B,=0.01, and ¢) for 8,=0.1 and 8,=0.01.

The average segment length, </"> as a function of the frac-
tion of strong obstacles, x;: a) for g,=0.1 and 8,=0.05, b)
for B,=0.05 and 8,=0.01, and ¢} for 8,=0.1 and g,=0.01.
The CRSS for arrays conlaining obstacles whose strength is dis-
tributed according to Figure 7, as a function

of the width of the distribution ¢ . and the mean value, ¢ ,.
Same as Figure 28, but 7/2<¢ < 7.

The CRSS for arrays containing obstacles with square distribu-
tion of strengths as a function of ¢, and ¢,

Same as Figure 29, but #/2<y,, <.

Average segment length for arrays containing obstacles with
square distribution of strengths as a function of ¢, and ¢,
Distribution of forces along the strongest configurations in
arrays containing obstacles whose strengths is distributed

according to Figure 8.



Figure 36.

Figure 37.

Figure 38.

Figure 39,

Figure 40.

Figure 41.
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The stress al a given glide velocity as a function of temperature
for arrays containing one kind and two kinds of obstacles.

The variation of stress at a given velocity as a function of tem-
perature, for arrays containing relatively large number of weak
obstacles.

The fraction of strong obstacles, ¢, in arrays containing two
types of obstacles, as a function of the inverse of temperature.
The strongest configurations encountered during glide are also
shown for high temperature (left), and for low temperature
(right). The small circles represent strong obstacles whereas

the weak obstacles are indicated by dots.

Comparison of the characteristics of gliding dislocations
through obstacles between experiment (left) and computer
simulation (right). The dislocation motion through irradiation-
induced defects as seen in Transmission Electron Microscope
(TEM) is taken from the work by Barnes®® in England.
Comparison between computer simulation and experimental
distribution of free segment lengths along gliding dislocations in
hardened copper single crystals. Experimental data from High
Voltage Electron Microscope in situ deformation studies by
Saimoto, Saka; and Imura®3 in Japan.

Comparison of predicted temperature dependence of stress

exponent with experimental data obtained on MgO single



Figure 42
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crystals by Val’kavskii and Nadgorny1®! in Soviet Uinion
Comparison butv.een computer simulation and experimental
distribution of segment lenpths alony plching gislocations in
MpO. Experimentsl data {rom in situ HVEM <tudics by Appel.

Bethge and Messerschmidt®? in East Germany
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