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Science and Engineering; University of California, 
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ABSTRACT 

The plastic deformation of crystals is usually accomplished through the 

motion of dislocations. The glide of a dislocation is impelled by the applied 

stress and opposed by microstructural defects such as point defects, voids, pre­

cipitates and other dislocations. 

The planar glide of a dislocation through randomly distributed obstacles is 

considered. The objective of the present research work is to calculate the critical 

resolved shear stress (CRSS) for athermal glide and the velocity of the disloca­

tion at finite tempereature as a function of the applied stress and the nature and 

strength of the obstacles. 

Dislocation glide through mixtures of obstacles has been studied analyti­

cally and by computer simulation. Arrays containing two kinds of obstacles as 

well as square distribution of obstacle strengths are considered. The critical 

resolved shear stress for an array containing obstacles with a given distribution 
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of strengths is calculated using the sum of the quadratic mean of the stresses 

for the individual obstacles and is found to be in good agreement with the com­

puter simulation data. 

Computer simulation of dislocation glide through randomly distributed 

obstacles containing up to 106 obstacles show that the CRSS decreases as the 

size of the array increases and approaches a limiting value. Histograms of forces 

and of segment lengths are obtained and compared with theoretical predictions. 

Effects of array shape and boundary conditions on the dislocation glide are also 

studied. 

Analytical and computer simulation results are compared with experimen­

tal results obtained on precipitation-, irradiation-, forest-, and impurity cluster-

hardening systems and are found to be in good agreement. 



I. INTRODUCTION 

The dislocation theory of plastic flow originated in 1911 through a sugges­

tion by Prandtl 1 , 2 in explaining the mechanical hysieresis in metals in which 

several characteristic elements of dislocations were present. Dehlmger3 was the 

first to consider dislocations in connection witn questions of slip in a theory of 

recrystaliization. The first, detailed theoretical discussions and the foundations 

of the modern dislocation theory of slip were laid by Orowan4--, Polanyi'' and 

Taylor7 in 1934. 

In an attempt to explain the discrepancy between the high theoretical esti-

mate and the low observed value of yield stress Beckerf and Orowan9 suggested 

that the non-linear resistance to deformation derives from the flow units in the 

solid which are larger than the atomic size. The large internal concentrations c-' 

the applied stress produced by the flow units in plastic deformation make the 

thermally activated production of new flow units easy. This means in content 

porary language that the rale process in plastic deformation derives from ther­

mally activated motion of crystal dislocations over locai slip plane obstacles. 

The ideas of Becker and Orowau were developed and extended later by 

Orowan10, Kauzmann11 , Seeger12 and Friedel.13 Since then the theoretical and 

experimental studies of dislocation dynamics have aimed at providing a clearer 

understanding and more accurate description of the plastic deformation of cry­

stals. 

The achievement of a microstructure-based theory of mechanical behavior 

of engineering alloys however remains still one of the centra! objectives of basic 
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research in metallurgy. This is from an engineering point of view important for 

two reasons: First, in order to provide a firm basis for materials selection and 

engineering design with real materials e. predictive theory is needed. Second, 

an interpretive theory of mechanical behavior is needed to guide metallurgical 

research in the design of new alloys to meet advanced engineering needs. The 

complexity of the mechanical behavior of materials suggests however thai a 

complete understanding of plastic deformation has a long way to go yet, indica­

tions are that a slight advance in understanding has a large effect on the 

development of new materials for specific uses. 

The purpose of this thesis is to study the plastic deformation of crystals 

through thermally activated glide of dislocations. This problem is relevant, as 

discussed below, to deformation of single crystals and to yielding and initial 

plastic flow in engineering alloys. The objective of this research is to complete 

a theory of athermal and thermally activated dislocation glide through fields of 

microstructural barriers. The technical approach to the problem is to use com­

puter models to directly simulate glide under precisely controlled conditions and 

to use the results to guide the development of predictive theories. The results 

of this research are used to interpret and predict the experimental data. 
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II. OUTLINE OF THE PROBLEM 

Following Friedel14, a typical problem in the mechanical behavior of 

engineering alloys sets up essentially as follows . As indicated schematically in 

Figure 1, an alloy consists of an aggregate of individual crystalline grains. Each 

of these grains is described by its composition, its crystal structure, its defect 

structure, its size and shape, and the nature of the grain boundaries which 

define its contact with adjacent grains. The defect structure includes point 

defects, the network of existing dislocations and the type and distribution of 

voids or precipitates. 

To initiate plastic deformation, dislocations must be created or liberated 

onto slip planes bearing a resolved shear stress to sustain glide. The yield 

strength of imperfect crystals is determined by the resolved shear stress thai is 

needed to move glide dislocations across their slip planes. If the applied stress 

is small the response is elastic with a small anelastic supplement due to bowing 

or recoverable motion of dislocations and lo short range chemical re­

arrangements. 

One of the most interesting and important (Kocks et al.1 5) theoretical 

problems in plastic deformation of crystals is the problem of yield and initial 

deformation in a grain or single crystal which is assumed tc contain dislocations 

or active sources of dislocations, together with microsiructural features which 

act as barriers to free dislocation glide. The bulk of prior research (summarized 

in references 15, 16 and 17) argues that this is a central problem in the defor­

mation of engineering materials. Potentially mobile dislocations may generally 
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be assumed to exist in a metal and the native lattice resistance (Peierls -

Nabarro Stress) to glide may generally be assumed small compared to that 

offered by such internal barriers as point defects, "forest" dislocations, precipi­

tates, voids, and other internal stress fields. 

If there are no obstacles to dislocation motion present, dislocations would 

sweep through crystals at infinitesimally low stresses. All real crystals, how­

ever, contain obstacles. It is the nature and distribution of such obstacles that 

determines the plastic behavior of metals and alloys. 

The central parameters of this narrowed problem are 

1) the resolved shear stress impelling glide, 

2) the nature and distribution of the barriers, 

3) the temperature and, 

4) the nature of dislocations in the matrix. 

At zero temperature the important parameter is the critical resolved shear 

stress for dislocation glide through the microstructure, a function of the nature 

and distribution of barriers. At finite temperature thermal activation may assist 

dislocation glide. The critical resolved shear stress is consequently less well 

defined, and essentially becomes the stress which allow's sensible deformation 

within some appropriate experimental time. The problem is further compli­

cated by the variety of possible barrier distributions and dislocation-barrier 

interactions, by the possibility that the barriers are mobile, and by the possibil­

ity of cross-slip of the mobile dislocations, particularly when it encounters a 

forest dislocation of appropriate Burger's vector and line direction. 
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The initial research on this problem concentrated on the motion of an iso­

lated segment of a dislocation by cutting through or bowing around an obstacle 

or simple configurations of obstacles of given type. This research continues'8 

as investigators have sought more precise solutions to more realistic dislocation 

obstacle models. 

However, as was recognized in early research by Mott 1 9 and by Friedel'-1. 

the distribution of barriers is also of qualitative importance. The modest intro­

duction of statistics by Friedel1-' for high temperature glide through a random 

array of point obstacles showed that the nature of activation barriers woulu 

change with applied stress even though the physical nature of the obstacles 

remained the same. The source of the change was a statistical tendency for the 

dislocation to contact a greater number of obsiaclej per unit length with 

increasing stress. Because, as the applied stress i<; increased, dislocations bow 

to smaller radii of curvature oiusing the average dislocation length between the 

obstacles to decrease. Mott and Nabano 2 0 treated an essentially similar 

phenomenon in the case of diffuse barriers. This initial research led to a series 

of studies on the effect of statistics of the obstacle distribution on the charac­

teristics of dislocation glide (summarized by Kocks, Argon, and Ashby in refer­

ence 15 and by Nabarro in references 16 and 17). in the cas-; of "localized" 

obstacles, whose range of interaction with a dislocation is small compared to 

their mean spacing, the "Friedel statistics" has been used as a theoretical tech­

nique. "Mott statistics" is used for "diffuse" obstacles. The "localized" obstacles 

approximation appears generally more applicable to hardening by small precipi­

tates, "forest" dislocations which interact weakly in the glide plane, small voids 
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and inclusions, and solute aloms in dilute concentration The"difTuse" obstacle 

approximation is thought to be applicable to hardening by a higher concentra­

tion of soluie atoms and by dislocations which interact strongly in the glide 

plane. Criteria separating the two cases have been given by Labusclr' and ela­

borated further by Nabarro22. More theoretical progress has been made on the 

"localized" obstacle approximation, largely due to the observation (initially h> 

Foreman and Makin21) that under suitable approximations this case could be 

set up for direct computer simulation 
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III. SPECIFIC PRIOR WORK 

The plastic deformation of crystalline solid* involves generally the move­

ment of dislocations against the resistance by various types of obstacles, in 

many cases the obstacle has only short-range interaction with a glide dislocation 

and may be replaced as a point obstacle24. Furthermore, obstacles are assumed 

to be randomly distributed rigid barriers to dislocation motion. 

Fnedel 1 3 was first to introduce elementary concepts of statistics to the 

motion of dislocations past randomly distributed point obstacles. The bulk of 

the research on the problem of dislocation glide through a statistical distribution 

of localized microstructural obstacles addresses variants of the following basic 

problem25. Consider a crystal plane which is the glide plane of a dislocation. 

Let it contain a random distribution of microstructural barriers, which are 

represented as point obstacles to dislocation glide. The array is described by 

the statement that its points are randomly distributed and by a characteristic 

iruerobstacle spacing 

ls=(a)U2 (III.l) 

where a is the average area per point. The total area of the array is 

A - N(ls)7 (III.2) 

where N is the total number of points contained. We can non-dimensionalize 

the area by dividing through by the square of the characteristic length, so as to 

get 

A'=A/QS)2=N (III.3) 



and the edge length of the square area in dimensionless form is 

W'= f/j*; !"= A'1''2 (1114) 

Le! a dislocation be introduced into the glide plane. We model the dislocation 

as a flexible string of constant line tension 1', its energy per unit length, and 

Burger's vector of magnitude b, which is taken to He in the glide plane. Any 

dependence of r on the orientation of the line or on the mutual interaction of 

segments of the dislocation is neglected. 

The resolved shear stress, 7, impelling glide of this dislocation may be con­

veniently written in dimensionless form 

Let the dislocation under the applied stress T *, encounter a configuration of 

point obstacles denoted by (ij (Figure 2). Between two adjacent obstacles the 

dislocation will take the form of a circular arc of radius 

H = ~ (II1.6) 
TO 

which can be written in dimensionless form, 

R'-^-~r = ~ (in.7) 
ls rbls 2T * 

If the distance between any two adjacent obstacles along (i) exceeds 2/? * or if 

the dislocation line anywhere intersects itself, then the configuration (i) is tran­

sparent to the dislocation and will be mechanically bypassed. If (i) is not tran­

sparent, its mechanical stability is governed by the strength of the dislocation-
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obstacle interaction. 

The obstacles are assumed to be identical, circularly symmetric, localized 

barriers to the dis'ocation whose effective range of interaction (d) is small com­

pared to their mean separation i^). They may hence be treated as point obsta­

cles24. At the (k-th) obstacle on the (i-th) configuration the dislocation line 

forms the asymptotic angle ^^(O^ili^n) (Figure 2). The force, /"*, that the 

dislocation exerts on the (k-th) obstacle is simply, from Figure 2 

/"*= 2Fcos(y it*) (III.8) 

or in dimensionless form 

Fk 1 
P'= Tr = c o s ( T l / ' * ) ( , n 9 ) 

The dislocation-obstacle interaction is governed by a force-displacement rela­

tionship24, f3(x/d), the effective dimensionless point force on the dislocation &:• 

it sweeps through (or folds around26) the obstacle. The mechanical strength of 

the obstacle is measured by the dimensionless parameter /3C (or angle il>c) and 

corresponds to the maximum force the obstacle can sustain without being cut 

or locally by-passed. /, non-transparent line configuration of obstacles consti­

tutes a mechanically stable barrier to the t-lide of a dislocation under stress r *if 

P^<PC for all obstacles (k) on (i), where pc is a critical pre-selected obstacle 

strength, or if /3,</3c where /J, is taken to be the maximum of /3,A. The smal­

lest stress T* at which P,>PC for all configurations within the array (i.e., 

@1>PC, where fix is the minimum of $,) is the critical resolved shear stress rf*. 
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The dislocation line containing /^ i>- the strongest configuration within the 

array 

FneJe l 1 ? employed essentially this mode! lo treai thermally activated glide 

al high temperature and low stress He attempted 10 estimate the influence of 

the obstacle spacing on the yield stress h\ assuming that the average 

configuration might be approximated as shown in Figure 3 fie assumed that 

when the stress became high enough in cause trie dislocation lo cut the obsta­

cles A.B.C.' etc.. the dislocation advanced to the next set of obstacles, eg H. 

where the area swept out per obstacle. /,;. is approximated by 

/ ; - lh Oil. 10) 

The average segment length between the obstacles as a function of the applied 

stress can be calculated as follows: As required by the simple geometric rela­

tionship (Figure 3), 

/ ? 2 = ( « - / i j : + / : (111.111 

which can be written for weak obstacles, where h«2R 

I? P = 2Rh = 2R-j (111.12) 

The mean length between adjacent weak obstacles increases with increasing 

vaiues of the radius of curvature and using equation (III.6) it can be approxi­

mated by 

/ = 5—--rjr (III. 13) 
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Accordingly, following 

. «K / TW 
C 0 S l y ) = JR = IF 

M23 

- r p till.14) 

the flow stress r f l ai the absolute zero temperature corresponding to a critical 

value of the included angie <i<r, is piven by 

= ( C O S — - ' ' •nl.'i .'w 
21' 2 

or, in dimensionless form, using equations (HI.5' and (III.9) 

T * = ( / 3 ) 1 2 ('" 

or 

0 = ( T * ) 2 ' 3 (MI 

and / ' , the separation between adjacent obstacles, is 

/ ' = - - • = ( T * ) - , / 3 (Hi.18) 

/ " = / 3 - 1 / 2 (111.19) 

Thus the average distance, /", between adjacent obstacles increases as the stress 

decreases. 

Many detailed statistical descriptions of the motion of dislocation through 

random points at 0°A" are given: Labusch 2 7 used the me; ;iod of distribution 

functions which yielded functional agreement with Friedel model at low 

stresses. Fleischer 2 8 and Fleischer and Hibbard 2 9 suggested that the same 
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model might be applied to determine the critical resolved shear stress for ather-

mal glide through a laridom array of weak obstacles Their expectation seemed 

confirmed by the computer simulation experiments ol foreman and Makin'n\ 

who determined the critical resolved she^r stress for athermal glide <rt) as a 

function of obstacle strength 1/3,1 For random arrays of up to 4xl0 4 points 

They found good agreement with equalion Nil.16) when the obslacle strength 

was small F-oreman and Makin inferred thai the other features of the friede) 

model, c g. equation (111.18), were also obeyed for small obstacle strengths, but 

apparently did not confirm this result, Kocks3'1 who used graphical methods to 

determine critical resolved shear stress obtained good agreement with the value 

of r ( — 0.82 which was found b> Foreman and Makm, through computer 

simulation for very strong obstacles (fir — 1.0). His method of approach was 

adopted by Stefansky and Dorm" and Dorn et al. 3 2 used the "unzipping" model. 

Foreman and Makin3-1 have also considered the glide through arrays of 

unlike obstacles and Foreman, Hirsch and Humphries34 simulated the motion 

of a dislocation through random arrays of impenetrable point and parallel line 

obstacles. Scattergood and Das 3 5 developed a computer simulation method to 

determine the flow stress of a random distribution of circular, impenetrable 

obstacles. And recently, Shewfelt and Brown31' extended the computer model 

initially developed by Foreman and Makin23 to include the case in which some 

of the obstacles are bypassed by local climb. 

The first code to simulate thermally activated glide of a dislocation was the 

first Berkeley code written by Klahn, Austin and Dorn3 7. The code successfully 
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simulated dislocation glide as a function of stress, obstacle strength, and tem­

perature, assuming a simple step form for the dislocation-obstacle interaction. 

Zaitsev and Nadgornyi-18 calculated using a Monle-Carlo method the velocity of 

the dislocation as a function of stress and temperature Arsenault and Cadman 

used computers to calculate the force-distance profile'111 and the flow stress as a 

function of temperatme for single and two types of obstacles4". 

Morris and Klahn- found that fundamental statistical theorems could be 

used to substantially simplify the computational effort required in a simulation 

of thermally activated glide, and to give a precise statistical definition to the 

glide velocity obtained. High and low-temperature limits were identified which 

reduce the theoretical problem to the computation of characteristics of particu­

lar dominant configurations found in glide: the most stable, or "strength-

determining" configuration in the case of low-temperature glide, and the "ran­

dom" configuration in the case of high-temperature glide. At intermediate tem­

peratures, the glide path, or sequence of configurations assumed during glide, 

becomes a statistical function of temperature. 

Morris and Klahn41 and Altintas et al. 4 2 4 3 used the statistical results 

presented in reference 25 to study thermally activated glide at low temperature, 

assuming an array of like obstacles and a dislocation-obstacle interaction of sim­

ple step form. The central results obtained were three: 

(1) Studying the glide velocity as a function of temperature Stress and 

obstacle strength, they found that low temperature approximations could be 

used to represent the data over a wide range of conditions. Since these approx-
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imations obey relatively simple equations, they may easily be used to assess the 

effect of the operational variables on the qualitative features of glide. 

(2) Behavior in low-temperature glide is strong!; influenced by the charac­

teristics of the most stable configuration encountered during glide. These most 

stable configurations depend on applied stress, but are identically the 

configurations which determine the critical resolved shear stress as a function of 

obstacle strength. Detailed examination of these configurations showed that 

while their strengths were reasonabl) approximated by the Friedel relation (at 

low- stress) their other pertinent characteristics (shape, distribution of forces, 

distribution of segment lengths! were not. This discrepancy is significani, since 

the distribution of forces is important to the kinetics of low-temperaluie glide 

and since the mean segment length is a parameter often used in attempts to fit 

experimental data to the point obstacle model. 

(3) Simulation of crystal deformation using a model constructed by "stack­

ing" slip planes showed features in interesting correspondence with the defor­

mation of real crystals. At very low temperature slip concentrated on well-

defined slip planes. As temperature was raised deformation became more, uni­

form, appearing homogeneous at high temperature. 

To remove discrepancies between the Friedel model and the results of 

computer simulation reported in reference 41, Hanson and Morris4'' reinvesti­

gated the strength-determining configurations at low stresses. Using a variant 

of the extinction theorem of branching processes in probability theory they 

were able to arrive at an analytic solution for critical resolved shear stress for 
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infinitely large arrays. The strength, distribution of forces, and mean segment 

length defined by this solution were compared to the computer simulation data 

obtained in examining arrays containing up to 104 obstacles. Even though the 

derived strength and distribution of forces were in reasonable agreement with 

the computer simulation data the distribution of segment lengths were not 

The speculation that the discrepancy might be due to finite arrays used in com­

puter simulation cailed for reinvestigation. 

The approach used in reference 44 was extended to treat glide through an 

array of obstacles having an arbitrary distribution of properties. The resi.\!t,s 

were given in terms of integral equations and comparison was made with com­

puter simulation experiments using arrays containing obstacles of two different 

types.45 
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IV. PURPOSE AND SCOPE OF THE PRESENT INVESTIGATION 

Given the status of research a1 the time the present investigation started, i» 

was believed that a realistic attempt could be made to complete a theoretical 

solution to the general problem of dislocation glide through distributed local­

ized microstructural barriers. Granting that the problem to be attacked is :i 

small and specialized part of the overall problem of mechanical behavior i; is 

however the most realistic problem in dislocation theory which is cpei. tn 

detailed theoretical study. The results model the deformation of grains or ci., -

stals which may be assumed to deform by the above mechanism and arc of 

significant value both in their own right and also for the insight the) give in.-, 

the influence of the statistics of microstruciure on plastic deformation. 

The specific objective of this dissertation is to calculate the CRSS a =. 

function of the strength of the obstacles and to determine dislocation velocity 

as a function of temperature, applied stress and strength of the obstacle.--, i hi' 

technical approach is to use a computer model to directly simulate glide ut.dcr 

precisely controlled conditions and to compare the results with the c; Iculr.liV..-. 

and with available experimental data. 

The results can be summarized as follows: Given that the computer simu­

lation results are very important in comparing with theoretical predictions and 

as a guide to further theoretical work, a systematic study uas necessary <o 

obtain accurate results using a computer code which can handle very large 

arrays. Most of the previous analytical predictions were suspect because they 

were compared with the results obtained from relatively small sized arrays. 



Computer simulation of dislocation glide through randomly distributed 

obstacles containing up to 10° obstacles has be-.-n penormed using an efficient 

code. (The details of the computer proguiii is gueti in a later seeiior>>. ihe 

results indicate that the CRSS is array size dependent and decrease-: n , 

size increases, approaching a limning value. Hiit'igiams of farces &nt ^ f.\;,c;>* 

lengths are obtained and compared v.nr iheDretic,.! predictions. Lflecia . : n-r-i 

shape and boundarj conditions on the dislocation glide are also studied 

Since most phvsica'ly rtdliiiic systems contain oostacles of ciflereti'. .vet 

an extension of the analytii solutions is ruade i-> treat ..r.-avs .v.-. is .\ ;i,. -irji-

trary distribution of obstacle strengths anu simple ;"orriiuiu> '" , '.n. •.. ; ... ..... 

average segment length ate obtained. The case in v-inch iv.ii kind:-, ui i,';v.L. •..-., 

contribute to the strength i; considered in aela:i and cr.n-p-;:cJ .v ;. t •*.: .ii:,. 

predictions in the literature 4 '" It is shown iha me CKSS car. b.-. i_:>,..^:._ 

using the quadratic mean of the stresses for each kind of obstacles, i ;.> .-• »-.. 

are compared with computer simulation data and snov. good agreement. 

In crystals containing obstacles whose range of interaction *vi'.h -hr -.'.>. ' 

tion is short compared to their spacing, thermal activation may help '.; o.-i* 

come the barriers. Computer simulation of thermally activated dislocation ghae 

indicates that the stress at a given velocity decreases as teniper3tu;e I'lereases 

It is shown that ihe stress exponent of disloca'ion velocity varies ii:.t;r.v-;> w,t)-. 

temperature and that the obstacle strength can be estimated using the experi­

mentally delermined values. The character of the strength deterniiniiu-

configuration changes with tcmperaiurc strongly in the case of arrays conainiic. 

http://iv.ii
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two-types of obstacles. The effects of temperature on mc dislocation motion 

have important consequences with respect to deformation behavior of the cry­

stals. 

Even though the results of the Friedel model have been used in the litera­

ture to predict the strengthening of crystals 4 8 ' ' 9 no detailed comparison of the 

model and computer simulation results with experiments have been made In 

this thesis, such a task was undertaken to compare the results with experiments 

performed on materials which were strengthened through irradiation and pre­

cipitation. The general features of dislocation motion obtained from computer 

simulation showed remarkable similarities to the Transmission Electron Micro­

scope (TEM) observations conducted by Barnes50. Recent m-suu High Voltage 

Electron Microscope (HVEM) deformation gave experimental results which 

made direct comparison with computer simulation data possible. Dislocation 

velocity measurements by Val'kovskii and N&dgornyi52 on MgO crystals and m-

siiu HVEM studies by Appel et al. 5 1 gave results which were in excellent agree­

ment with computer simulation results. Saimoto and co-workers S 3 S 4 studied 

the deformation behavior of Cu single crystals and measured the segment 

length distribution. The comparison of this distribution with the one obtained 

from computer simulation also showed excellent agreement. In an attempt to 

compare the computer simulation results of Foreman and Makin33, Munjal and 

Ardell55 made an extensive study of a precipitation hardened alloy. Even 

though their results were interpreted 10 disagree with the computer simulation 

data, the calculations and computer simulation of this investigation showed 

good agreement with the experiment. 
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In the next sections, we first give analytical calculations concerning the ath-

ermal and thermally activated disioca'ion glide through randomly distributed 

obstacles. The descriplion of the computer cr-di: and comparison of ths results 

with analytical predictions and experimental data arc given in Inter sections. 
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V. ANALYTICAL CALCULATIONS 

A. ATHERMAL GLIDE 

1. CRSS For Like Obstacles 

A dislocation moving through an array containing -andomly distributed 

obstacles will encounter various configurations under the influence of the 

applied stress. As illustrated in Figure 2, if the dislocation encounters a 

configuration (i) under stress T*, it wiil take the form of a circular arc of 

dimensionless radius R"(=\I7T") between adjacent obstacles. If the distance 

between any two adjacent obstacles along (i) exceeds 2R ' or if the dislocation 

line anywhere intersects itself then configuration (i) is transpareni to the dislo­

cation and will be mechanically by-passed. If (i) is not transparent its mechani­

cal stability is governed by the geometry of the configuration. 

At the (k-th) obstacle on (i) the dislocation exerts a force /S* on the obsta­

cle, where 0^/3,*<! and is given by equation (III.9). If/3 f is the strength of 

the obstacle impeding glide then it is necessary for the mechanical stability of 

the configuration that /3*</3f for all (k) on (i), or that 

fi,<Pc (V.l) 

where /3, is the maximum of the pf. If there is to be at least one mechanically 

stable barrier configuration within the array for given stress r ' then necessarily 

/3, = min(j3,) < /3C (V.2) 

where /3j is the minimum force exerted by the dislocation on the most stable 
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configuration within the array. 

The non-transparent configura::.';n'; in a given array of obstacles are 

uniquely fixed by the dimensionless stress (-*) as are the forces, 0,*, exerted 

on them 4 1. The maximum force exerted on the most stable configuration 

within the array is hence specified by the function 

0, - /3,(- °) (V "i 

whose inverse 

T ("= T*(/3,) = T*{fic) <YA) 

gives the critical resolved snear stress for athermal glide through an array of 

obstacles of strength /3 t. 

A useful technique for locating the stable configurations within a random 

array of point obstacles is '.he "circle rolling" described in reference 41. The 

dislocation line between two obstacles (say, k-1 and k) is the arc of a circle of 

dimensionless radius R *•= l/(2r *). If k-l and k are obstacles of strength /3 r in 

a stable configuration at T", then there must be at least one obstacle (k + 1) in 

the area swept out by rotation of the circle counterclockwise about (k) through 

an angle 

Bc = 7r - <fic = 2 sin - 10S f) (V.5.) 

Since this requirement holds for all obstacles on a stable line, the line may be 

generated by successive circle rolling. Using this technique, Hanson and 

Morris44 approximated the critical resolved shear stress r'c for an arbitrarily 

large array of obstacles of like kind by identifying a "limiting configuration" 
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which was necessarily at least as strong as the most stable configuration which 

might be encountered during glide. The derivation may be summarized as fol­

lows. 

A stable dislocation configuration can be viewed as a chain of stable seg­

ments connecting the left-hand side of the array to the right-hand side. Thus a 

stable configuration can be constructed by beginning from the left-hand side 

with a single segment and searching for segments which continue the chain 

across the array. If the applied stress is r" and the obstacle strength is [i. , 

then a segment may be continued by connecting its right-hand terminal point to 

any point found in the area shown in Figure 4, an area generated by rotating a 

circle of radius R' through an angle #[.(=2sin~1/3f) about the terminal point. 

The search area is parametrized by the coordinates (9,<b) shown in Figure 4 

The lines of constant 9 are generated by the leading edge of the circle as it is 

rotated; the lines of constant tji are generated by the trailing edge. The range of 

0 is chosen to be ( K 0 < 0 f . The range of <t> is taken to be -7r<(£^0 r . Points 

of the array are distributed over this search area with density unity, hence the 

number of points in differential dimensionless area dA ' is simply dA \ where 

dA'= (RVsm(9-<j>)dedd> = (RVda(9,<j>) (V.6) 

Each point within the search area defines a possible segment continuing the 

chain. 

The procedure for constructing a stable chain across the array by stochasti­

cally searching successive areas shown in Figure 5 bears a strong formal resem­

blance to the classical branching process in probability theory. The theory of 
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branching processes i 6 estimates the size of the (k-th) generation of descent 

from a given initial event, assuming "hat !he probability distribution for the 

number of descendants per paren! is known. A principal result of the theory is 

the extinction theorem, which states that if the expected number of descen­

dants ( < n > ) is less than unity the line of descent will necessarily terminate 

after a finite number of generations in the present problem it follows thai -" 

and S, must be such that the search area A ' of Figure 4 is greaier than unity if 

it is to be possible to construct a stable chain acrrss an array of arbi:iaril> large 

size. 

The stable configurations of 'he dislocation are. however, additionally con­

strained in that the dislocation line cannot intercept itself. A necessary (though 

not sufficient) condition44 is that the expected value of the coordinate rf> of the 

points used to extend the chain musi be zero. Since the average value of * 

over the search area is less than zero (at least for 8C<TT) the condition <<*> 

= 0 constrains the manner in which points may be selected from among those 

contained in A '; points may only be used in subsets which have zero < $ > . 

Given these considerations, the points used to define the segments which 

extend a chain across the array are chosen according to a distribution function 

f(B,4>), 0 < / < l , whirh gives the fraction of the p -ints found in da(9,<b) in an 

arbitrarily large sequence of searches of areas like A' which are used to form 

the segments of a stable chain. The function f(6,<t>) must satisfy at least the 

two constraints : 

< « > = (RY ff(6,4>)da(e,<t>) > 1 (V.7) 
a 



and 

<4>> = iR')2 f<f>f((l,<t,)da(f>.<t>) = 0 

24-

(V.8) 

For given values of < n > and the obstacle sirengih dl ii may be shown 

(Appendix to Reference 44) that the radius ft' is minimized ( T* maximized ) 

under the constraint (V.8) if we choose 

f(Q,4>) = 1 -<A0<<A£»( 

= 0 ct>^<t>Q 

where 4>o is the solution of the equation 

<<£> = f<t>da(e.<t>) = f <t>da(d>) = 0 

(V.9) 

(V.10) 

with the integral taken over the area a0 shown in Figure 5. 

If we now set 

< n > = 1 
<<*>> = 0 (V.ll) 

and choose f{0,<t>) according to equation (V.9), we obtain a value of r *, T0", 

which is necessarily larger than the stress necessary to pass the most stable 

chain which might be consiructed across an arbitrarily large array of obstacles of 

strength 0C. Hence 

Jda(e,<j>) 1/2 
> T f * ( « f ) (V.12) 

places an upper limit on the critical resolved shear stress. 
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To compute the properties of the limiting configuration we require the 

function <£(,(#,.) determined by equation (V.IO). The differential area 

do(<t>) = fd,ii».<b) (V.I3) 

is (Figure 6) 

da(d>) = c o s * - c o s (^ - * ) , 

cos* - 1. 

0 ^ * 0 , 
C, - 7 7 ^ * ^ 0 (V.14) 
- 7 7 ^ * 0 , -77 

Since from equation (V.IO) 

f d,da((b) = 0 (V.IO) 

and using regions I and II (Figure 6) 

J " * ( l - c o s ( 0 r - * ) W * + f d>{coscb-cos(t)c-(b))d<l> = 0 

for 0^tt>>(tc-iT (V.15) 

we obtain 

1 „ • > 8;-cos(b0-<t>0sm<t>0 + cos(9c + <f>0)+ d>Qsin(9c + d>0) = 0 

using 

and 

s i n x ~ x - — + — 

x 2 x 4 

cosx = l - | r + ^ 
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we get 

e r

4 -6fl ;d. 0

3 - 8 0 , ^ = 0 CV 16) 

which can be solved for <^Q^ ( ,. 

Similarly, from equation (V.12) 

(2T,')2 = J da (0,4.) (V.17) 

or using (V.14) 

( 2 T J ) 2 - S r + sin<i 0 -sin((9 r + <t(1) (V.18) 

or, approximately 

( 2 T 0 * ) 2 - y [ 6 » r

2 + 3 e f < i 0 + 3 ( i 0

2 ] (V.19) 

The solution of the equation (V.16) using conventional methods 5 7 gives 

<£(T (3 + 2 V 2 ) 1 / 3 + ( 3 - 2 V 2 ) 1 / 3 - l 

<£0 = 0.33886 c 

Putting (V.20) into (V.19), we obtain 

( T 0 V = 0.7870(l /2S f ) 3 

which may be rewritten for weak obstacles 

T 0 * - 0.8871 ( /3 0 ) 3 / 2 

(V.20) 

(V.21) 

(V.22) 

/ V = 1.083(T 0*)2/3 (V.23) 
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which differs from the Friedel relation (equation HI.16) through a multiplica­

tive constant. The agreement ia functional form is not fortuitous, since virtu­

ally any technique for searching an array by rolling or bowing a (ircle of radius 

# " through a small angle 9C leads to a search area proportional to (R Ve f

3 , and 

will, hence, yield an equation which differs from Friedel relation only through a 

multiplicative result. Regarding the disagreement, note that the value in equa­

tion (Y.22) is an upper bound on the value of T r'in an array of arbitrarily large 

size, which lies below the Friedel limit by —11%. 

The normalized distribution of forces along the limiting configuration may 

be computed from the relation 

PU).T*)d6= (Rt)2Jda(9,4>) (V.24) 

where p(0,T*) is the distribution of angles 9, in the limiting configuration at 

stress T0*. Using equation (V.I4) and assigning appropriate limits to the 

integral, we obtain 

p{9,r*) = /?* 2[l-cos(fl + <£0)], f)>0^Tr-9c 

= 2R'2, 9c^e^ir-<t>0t<i>o>Tr-9c (V.25) 
= R*2[\-cos(e+<t>0)], T-4>D^.e^Q,(t>0>ir-e(. 

For the range of interest here, 0</3 0<0.7, 0 O is less than (rr~9c), and only 

the first term is important. Since P = sin(l/2e r), 

P(/3.T*) =p(e , T *) -g 
P (V.26) 

= 2#* 2 (1 -p2)-V2ti - (1 - 2,32)cos0o] + 2/3sin<A0 
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where we have assumed di0^Tr - 0(. This distribution is, of course, sharply cut 

off at /90. It is uniquely fixed by either T 0 or /3 0, since either is sufficient to 

determine the radius R\ the angle <£(„ and the maximum /3(J. 

In the limit of small obstacle strength (or, equivalent!), low stresses) the 

density of forces takes the form 

p(/3./3„) = {{£-'. +- A- ,J 2 / f A-2

2/JC>> ( /3< /3 0 «l ) (V.27> 
Po 

where A, = 0.3388 and A2=0.8871, Note that this limiting distribution can be 

recast in the form 

l>(-§-} = K-£-) + A,P/A7 ( - f < l , / 3 0 « l ) (V.28) 
PO P« P0 

which is independent of r * or /30. 

The distribution of the angles <b can also be derived from equation (V.14) 

and is given by 

p(4>) = J?* 2 [ ] -cos(0 r - t f ) ] , ( K < K 0 f 

= * , 2[cos<£-cos(0 I.-<£)], 6»(.-77<(*<0 (V.29) 
= #*2[cos4>+1], —rr<<i<e r-i7 

The normalized distribution of segment lengths, p(l'.r') , may be found 

by expressing /* as a function of 9 and <t> over which /" is constant. The result 

is for (/>0<7r-fl<., 

pU'.T*) =i'6c 0</"^/' 

=/*(e f + * 0 -2s in- 1 ( /72i?*)) I'^l'^f ( V 3 0 ) 

where 
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/" = 2«"sin((fl.+# n)/2) ( V ' 3 ' 

The mean segment length , < / " ( T " ) > , is the quantity which is usually com-

pared to the Friedel relation (111.18). Using equation (V.30) 

< / * ( T * ) > = [i'nd'.T'lttl 

= (2 /3M2/0 3 i cos ( - ^ ) [ l -~cos 2 ( - ^ ] fV.32) 
2 .1 2 

9.. + d>., l , ft, J- <i f , , 
- cos ( -—•—Jl J -yCos^ - -^ -—)] ) 

When r * or 0, is small, < / ' ( T * ) > is approximated by the asymptotic relation 

</'(-*>> = 0.764(9 r/2)" 1 / 2 

-0.734Cr*)-'« f V " 3 3 ) 

or 

</ ' ( -*)> = O.764(0 f) _ 1 / 2 (V.34) 

which suggests that the Friedel relation (equation III.19) overestimates the 

asymptotic < / " ( T * ) > , by about 27 %. The two relations are, however, identical 

in the functional form. 

The comparison of the results outlined above to the computer simulation 

data showed44 while the mean segment length, the distribution of forces gave 

good fit, the density function p(/",T*) calculated from equation (V.30) did not 

correctly reproduce the shape of the empirical distribution, which was deter­

mined by compiling the segment lengths found along the most stable 

configuration in each of the 10 arrays of 104 points at T* = 0.1. It was not 
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clear whether this discrepancy principally resulted from the approximations 

involved in the theoretical model or from the finite size of the arrays used to 

generate the empirical distribution. 

Recently, Labusch58 criticized the model by Hanson and Morris44 on the 

grounds that the theoretical link length distribution and the one found in com­

puter simulation tests disagreed, and that the function f(tt>) was not deter­

mined correctly. The method of calculation used by Labusch51* is similar to the 

entropy calculation used in Statistical Thermodynamics. 

He uses same parameters as shown in Figure 4. The search area A ' is 

divided into L elements dAt\ki with the coordinates <bt and Gr The test lines of 

K links is constructed stepwise according to the following scheme: on arriving 

at point (k) the next link is drawn as a circular arc of radius R* with its end 

point in an area element dA^ in the (k-th) step. A test line is stable only if a 

pinning point exists in each of the area elements dAja). The probability that a 

given test line is stable is 

UdA,\k) (V.35) 

If n, is the frequency of occurence of the values of (1) among (k) links, this 

probability can be written as 

K L . . 

n dA?,k) = n (dA.T"'' (V.36) 

subject to the condition 

£ » / = * (V.37) 
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and to the quasi - straightness condition 

I nrf, - 0 (V.38) 
/ - ] 

The number of different test lines that can be constructed from a given set of 

links is given by the number of distinguishable permutations of the sequence of 

links which is equal to 

A'! 

n («,!) 
(V.39) 

Thus, the expectation value of the total number of stable lines is 

/> = -r^-U(dA^i" (V.40) 
n«,! 

(-1 

The solution of this equation subject to the constraints (V.37) and (V.38) can 

be calculated from the equation 

1 ^ - ( I n / , +?£*» ,« ,+ \ J > , ) « 0 (V.41) 

tin, , i 

from which the "partition function" can be found to be 

- J>*<£4' (V.42) 
z 

A' 

which gives 

t . 4 ^ « P ( r < ) - l (v.43) 
4 y 3 

where the parameter y is given by 
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(V.44) 

For the critical condition, 2=1, the critical resolved shear stress obtained by 

Labusch is, 

T Z - 1-186 / 3 0

3 / 2 (V.45) 

(V.46) /30 = 0.892(1/ ) 2 ' 3 

which is =12% higher than the Friedel limitfequation (111.16)). 

In an attempt to take the problem of the degeneracy of the lines into 

account Labusch corrected his result to get 

T'L = 0.954 / S 0

3 / 2 

which differs from equation (111.16) by 5%. 

The normalized distribution of forces on pinning points is 

(V.47) 

P iCS) - exp(2ysin '/?) (V.48) 
He 

(•%/] -(S2) J(exp(27sin- 1/3)/Vl -/3 2 ) <//3 
o 

In the limit of small /3 r 

Pi 03) 2yff 
exp(2y/5f) - 1 

The distribution of angles <j> is given by 

exp(2y/3) (V.49) 

pL(4>) = Ar0exp("y</>). 

sinn—r-2^-). O<<£<0 

s i n 2 ( - ~ ^ - ) - s i n 2 ( | - ) . -7r<<]i<0 (V.50) 

l - s in*( - | ) , -TT^^B-V 
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where normalizing factor k0 is chosen so that 

e 

- 7 T 

The distribution of segment lengths in normalized form is given by 

/ 'exp(-2ysin~'(-—)) 
PL(I°) - A (V.51) 

J / ' exp( -2ys in - 1 (~ v J ) i i ' / 
2/T 

which depends on the pinning strength through y and on the applied stress 

through R*. For small obstacle strengths, t /.51) can be written as 

i 

pLW) = -^r/ 'expC-y/"//?*) (V.52) 
R'2 

The average value of /* is given by 

< / / > = ^ - = 0.7088 (/?*«) 

Since tf* = — ; and 0=2/3, 

< / i > =0.7088-^ 

- 0.597 J " 1 " ( V - 5 3 ) 

Using equation (V.46) for <3, we obtain 

< / / > = 0 . 6 3 2 6 ( T * ) - ' / 3 (V.54) 

or in corrected form 

<I'L> =0.7314(r *) - ] ' ' 3 (V.55) 
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which is 27% lower than the Friedel limit. 

In an attempt to characterize the first stable configuration encountered dur­

ing glide Landau59 obvained the following results for the average angle of attack 

<8> and the average segment length </*> 

< 6 > =0.831 (-^-)Ui (V.56) 

and 

and the ratio 

</"> = 0.979(3JR*)! /3 fV.57) 

<9> 0.85 (V.58) 

However, for a quasi-straight dislocation in a large array, using the relationships 

K^~Z (V.59) 

where \. is the angle corresponding to the circle length of //between two obs­

tacles, and assuming straight, long dislocation, 

2>, = 2>. (V.60) 

and so 

Zfl/-^I'. ( v - 6 1 > 

^--h ™ 
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The discrepancy between equations (V.62) and (V.58) suggests that the solu­

tion by Landau59 is probably in error. The average values of the angle <8> 

and segment length </"> can also be obtained from equations (V.25) and 

(V.30) and we obtain 

«t>> = 0.92A(R')~2''3 (V.63) 

and 

< / ' > = 0.924(#*) 1 / 3 (V.64) 

giving 

•^~- = R* (V.65) 

exactly the same result as equation (V.62). The ratio of </"> to <6> for 

Labusch's solution58 gives also the correct result. 

2. CRSS For Unlike Obstacles 

Most realistical systems contain more than one type of obstacles, as for 

example the precipitate size, shape or location may vary, hence changing the 

interaction force between obstacles and dislocations. Other systems may contain 

more than one type of strengthening barriers, e.g. solute atoms in a precipita­

tion hardened alloy. 

The extension of the theory4 5 as outlined in the previous section to the 

case when obstacles are not identical can be treated by modifying the procedure 

for generation of the limiting configuration. Let a stable line be constructed left 

to right across an array which contains randomly distributed obstacles of P dis-
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tinct types, labelled i = 1,2,3, P, having fractions x, and strengths /3,. Again 

using the constraints (V.7) and (V.8) we obtain 

0 = J_x, aj)<<t>>l (V.67) 

where T0' is the strength of the limiting configuration (an upper limit on r.°), 

a,0 is the subarea of a. over which - w ^ i i ^ S , and <4>>' is the average value 

of cf> over a,. The fraction of obstacles of lype (i) on the strongest 

configuration can easily be calculated and is given by 

c, = x,a,°(R V (V.68) 

The computation of the distribution of forces in the limiting configuration 

is straight-forward given the discussion in the previous section. The distribu­

tion of forces on obstacles of type i is specified by the density function 

= 0, p>fi, ( V 6 9 ) 

where p(/3,r*) is the density function given by equation (V.26). The density 

of forces in the limiting configuration is hence 

p(/3)=Ir,p,(/3) = p(j3,T*)2>A03) (V.70) 

where ht{fi) is a weighting function and is given by 

(1 if j8^9, 
* . W " ' 0 if J8>/S, (V.71) 
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With similar arguments the average segment length aiong the configuration can 

be calculated through 

< / ' > = ! > , < / ' ( T * ) > , (V.72) 

where the function < / ' ( T * ) > , is given by equation (V.30). 

Using lower order series expansion to the area a 0 obtained from equation 

(V.14) 

a,°= (^•) 2 [6, + s in * 0 - s in (e ; + <i0)] (V.73) 

we obtain 

n 
a?= ^ - [e , 2 + 3e,* 0 + 3<*0

2) (V.74) 
6 

The series expansions of equations (V.66) and (V.67) are then 

24(T0V = Y.xfij+yz.xfij^+yz.xfi^ (v.75) 

and 

0 = 2>,0, 4 ~ 65>,-0;W - «Zx,0^ (V.76) 

To obtain a closed form solution of the critical resolved shear stress for multi­

ple obstacles as a function of x, and 6, we approximate <i>0 from equation 

(V.76) as 

«~1L«} ( V ' 7 7 ) 

As a function of obstacle fraction x, and strength /3, the CRSS for multiple 
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obstacles is approximately given by 

<M,V = y2>,/3,' + y*o5>,02 + j*o22>,/3, (V.78) 

where 

I*.0* 
«*(? = 2 , 

3 2>./3,2 
(V.79) 

Inserting (V.79) into (V.78) gives 

<TJ>2 = y2>A 3 + ^»I*A 2 HI^/8, 4 )J , / 2 + J2>,/3, 
I*,0,4 

2>A2 
(V.80) 

The fraction of obstacles of type i on the strongest configuration is calcu­

lated from equation (V.68) and (V.74) as 

24(r 0V 
(V.81) 

The lower order series expansion for the average segment length can be 

calculated as follows: 

From equation (V.72) 

where < / ( T * ) > , is approximated from equation (V.30) as 

</(r*)>(--^-{(9<+*o)4-*.4 (V.82) 

and 
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</•> = -^T i-(IA•,ft,4 + 42:A,e,3<i0-^-62:.v,#,2<iff+4X.v,&>o,) (V.83) 

or approximately 

4(RV<t,n 

<l > ~ 12 <3Z A ' . y , ' ! *o- r Z- x ' , f , ; ' - r Z^ w .*o^ f V-84i 

or using equation (V.75) 

5 > A 3 + 3j_x,S?4>o = 24(7 0 V- 3£x,e,<40

2 (V85) 

to get 

</ > = 

which gives in terms of/3, 

</ > 

4 o r )•'</., i f - M - 3 
12 2 4 T ^ - 2 2 > , » , * 0

! ) 

6 K Zxfl. 

(VM) 

(V.87) 

a) CRSS for two types of obstacles 

If we have two kinds of obstacles ( strong and weak ) distributed randomly 

and having strengths /35 and pw and fractions xs and x„., the formulas 

developed above can easily be applied. For the CRSS we obtain from equation 

(V.80) 

where 

and 

(T 0*) 2 = (T J") 2X J + (T„)2XK + small terms (V.88) 

(V.89) 
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TK* = k£ln (V.90) 

where k is a constani. i[ and r,' are stresses if the arrays contained only strong 

or weak obstacles, respectively. 

There have been empirical formulas in the literature, developed for the 

superposition of two mechanisms. First one is due to Koppenaai and 

Kuhlmann-Wilsdorf47 and requires that the squares of the stresses should he 

added, i.e. 

T 2 = 7 S

2 + T^ (V.91) 

or in dimensionless terms 

( T * ) 2 = ( T ; ) V ( ' , ' ) : I , (V.92I 

which is almost the same as obtained in this study. 

The second formula is given by Kocks46 and was obtained for the special 

case of arrays containing a lot of weak and a few strong obstacles. In this case, 

the stress due to weak obstacles has been treated as a friction stress and simple 

addition of stresses is required, i.e. 

T * = T , y * j + T H V ^ ( V - 9 3 ) 

if xw»xs and T J * » T * (or 0/»/3„") (V.94) 

The above constraints are necessary for the above formula to hold, since if 

T S = T W and xs = xK = — we get 
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b) CRSS for arbitrary distribution of obstacle strengths 

To obtain CRSS for crystals containing arbitrary distribution of obstacle 

strengths the equations (V.66) and (V.67) can be used in principle, but to gel 

closed form formulas we approximate the CRSS for weak obstacles by, 

( T * ) 2 = A-2J>,/33 (V.95) 

or 

( T * ) 2 = J > / < 0 2 <V.96) 

Since the distribution of obstacle strengths is not a priori known and has 

to be determined independently, we consider two simple cases of strength dis­

tributions. However, the technique used here could be extended to any type of 

distribution. 

The first case to be considered is the distribution of angles, which has also 

been empirically studied by Foreman ans Makin33 through computer simula­

tion. The obstacle strength is given by the critical angle i|if and square spectrum 

of angles is assumed (Figure 7). This distribution is characterized either by 

i//mjn and i/(m a x or by the mean value <pm and the width of the distribution t|/„., 

and is given by 

pW = ^ (V.97) 
*max ~ 0min 

We use for the stresses T, in equation (V.96) the following formulas, depend­

ing upon the range of ^ih For strong obstacles we use the empirically found 
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T,"= 0.82 c o s y for iA,<y (V.98) 

- d 
T , ' = A-cos 2 (y) for <ii,>~ (V.99) 

Converting the equation (V.96) into integral form and using equations (V.97), 

(V 98), and (V.99) we obtain the CRSS for the square spectrum of angles 

, , o ( 0 . 8 2 ) 2 , , ^ T , • ^ M f , ^ w 
( T»)i = 1$ +2cosi//_,sin—-j for i i m < ^ r 

2i|/„ 2 i 
, , , (V.100I 

= — [ 3 c o s — s m — + —cos(—i//m)sin(—t//JJ for <J/m> — 
0 „ / 4 j J 4 J 

where 

and 

2^» = li'mm+li' mm ^max 

The second case considered here is the square spectrum of obstacle 

strengths /3, (Figure 8). In this case, the distribution function is given by 

"W - «—hr~ ( V 1 0 1 ) 

" m a x " m i n 

For the stresses T,-, we use the equivalent forms of equations (V.98) and 

0, 
(V.99) using the relation 0, = cos(—). 
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Using the equations (V.96) and (V.101) we obtain the CRSS for the 

square spectrum of strengths ( £, ) 

( T ' ) J = {O.Z2)H[i2„,+ -ljPl) for / 3 m > 0 . 7 
, (V.102) 

- * 2 1 0 A + 7 0 J 3 ; 1 for p m < 0 . 7 

where the average strength / 3 m and thu width of the distribution (3K are given 

by 

2/3„, = / } m l n + / 3 m 3 X 

and 

The CRSS obtained for the square spectrum of obstacle strengths can be 

written in terms of angles <iim and i/i„, using the definitions 

„ 1 , t , "Ama*-. "Am "AH 
/ 3 m = y ( c o s - ^ — + c o s — — ) = c o s — c o s — (V.103) 

and 

"Amin Vmax - . * m "AH- , . . . - , . , 
Pw = c o s — cos . •= 2 s i n - — c o s — - (V.104) 

* 2 2 2 4 
we obtain 

( T . )2 = i o ^ 2 ) i n + c o s i ; , m C O S ^ + I ( c o S ( / , m + c o s ^ ) ] f o r 0 m < | : 
, , , , (V.105) 

= — [ 2 c o s — c o s — l [ l + c o s i / / m c o s — J for i A m > y 

The consistency of the formulas can be checked by , for example, letting 

/}„ go lo zero, giving only one type of obstacle, which gives for weak obstacles, 
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from equation 'V.102) 

which is equivalent to the theoretical predictions 

B. THERMALLY ACTIVATED GLIDE 

Recently, Zaitsev and Nadgornyr'0 discussed the problem of waiting time 

calculation for computer simulation of thermally activated motion and identified 

three different methods: 

1) the accumulated time method3 7 6 I 

2) the wailing time method6 0 6 ; 

3) the residence time method 2 5- 4 l- A 2 

and concluded that the methods 2 and 3 are equivalent and the empirical 

method ] is a good approximation. They also indicated that the residence time 

method can have some advantages under the simulation of dislocation motion 

through randomly distributed point obstacles. To avoid confusion and to over­

come the difficulties of comparing the results obtained using different methods, 

an account of the statistics employed in this study will be given. 

The assumptions and basic equations are summarized in Table 1. The obs­

tacles are randomly distributed and the dislocation is allowed to move through 

them, starting from the bottom as a straight configuration. Let the dislocation 

at an intermediate position be pressed against a line configuration of point obs­

tacle by the resolved shear stress (Figure 2). If configuration (i) is mechani­

cally stable it must be passed by thermal activation. We ignore the possibility 
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of thermally activated bow-out of the dislocation line between obstacles and 

require that activation occur at an obstacle. The activation energy is propor­

tional to the area in force-displacement diagram (Figure 9), and may be written 

in dimensionless form 

g,A= u(fic)~iiU3^) (V.106) 

where u(/3) is the dimensionless area under both the force-displacement curve 

and a horizontal line of height /?. The activation barrier at the (k-th) obstacle 

on (i) is then 

A C * = 2 r ^ * (V.107) 

~ = ag* (V.108) 

where a is the "dimensionless reciprocal temperature" 

„ J_ 2LI 
a 7- = kT 

(V.109) 

and d denotes the interaction range, usually of the order of one Burger's vec­

tor, Ar is the Boltzmann constant and 7"is the temperature. 

For the statistics of thermal activation past a mechanically stable 

configuration of obstacles we require two general assumptions about the statisti­

cal nature of the activation process25: 

i) Thermal activation is assumed in a sense that the probability of success 

in a given trial is independent of previous failures. 
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ii) Activation trials at a given obstacle are assumed stochastically indepen­

dent of trials at the other obstacles in simultaneous contact with the dislocation 

and are taken lo occur randomly in time with fixed frequency w. Using these 

two assumptions, the statistics of thermal activation past a line configuration 

may be leveloped as follows: 

Th probability for thermal aclivalion past the (k-th) obstacle in 

configuration (i) in one attempt is 

/>,*=exp(-«K,*") (V.110) 

where ( ) and gf have been defined in equations (V.109J and (V.106), respec­

tively. Tie probability thai the barrier remains uncut after j trials, given that it 

was inta.; initially is 

Let the nslocation attempt the obstacle with mean frequency cu, assumed con­

stant, then, following assumption ii), that the activation trials occur randomly 

in time \* ith expectation unity per unit of dimensionless time 

/ '=&)/ (V.112) 

the probability of exactly j trials in time r * is given by the Poisson formula 

pO.'*) = ~ * " ' ' (V.I13) 

and the probability <?*(f *) can be written 2 5 as 

qfW) = exp(-p*0 (V.U4) 
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The probability that the i-th configuration remains uncut after time i' is the 

probability that all obstacles on (i) remain intact at / 

.v 
<?,(/") = IT <?*(M = exp(-.\.;*) rv.l 15) 

where 

•V= !/>.* (V.1I6) 
» - i 

and A', is the number of obstacles on (i). 

The residence time of the dislocation in configuration (il is the time 

required for thermal activation past at least one obstacle on (i). Hence the 

expected value of the residence time is 

< / > = A,"1 (V.117) 

The probability that thermal activation will occur first at an obstacle (k) on 

configuration (i) is 

V(kj) = - ~ = j - (V.I18) 

In thermally activated glide the dislocation encounters a seqence of obsta­

cle configurations as it moves through the array. These define the "glide path" x' 

of the dislocation. If there are (r) stable configurations along a particular path 

(*) through the array then the expected transit line of a dislocation along (\) 

is 

<'x> - l A r 1 (V.119) 
. - I 
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where we assume that the time required for dislocation glide between succes­

sive stable obstacle configurations is negligible compared to the time required 

for thermal activation past these configurations. 

Given thai the dislocation may take any one of many available glide paths 

through the array, the expected transit time is 

<'"> = ! > * < ' * • > (V.120) 

where nx is the probability that the path \ is followed in a given trial. 

A variety of ways have been suggested to calculate the average velocity of 

a dislocation; such as from the total area swept through and the total time dur­

ing motion; from the average area per activation event and the average expec­

tation time and from the distance traveled by the end of a dislocation and total 

time. We define the expected value of the velocity of glide through a given 

array of obstacles in the following way: We consider a crystal made up of paral­

lel glide planes, which contain a distribution of non-interacting gliding disloca­

tions (i.e. the distance between planes is assumed to be sufficiently large). The 

expected value of the instantaneous strain rate of the crystal is 

y = y<SA/dt> (V.121) 

where <dA/di> is the expected total area swept per unit time and Kis the 

volume of the crystal. The strain rate in dimensionless form is 

y = & < v ' > (V.122) 
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where p is the number of dislocations per dimensionless area and <v"> is the 

expected value of the dimensionless velocity, which can be written as 

<v"> = NU1I <t'> (V.123) 
or 

<v*> = — A - r - (V.124) 
W <l > 

where A' is the dimensionless total area swept and W' is the dimensionless 

width and A' is the number of obstacles in the array. 

For a crystal made up of stacking of (M) parallel slip planes containing a 

uniform41 distribution of dislocations the steady state strain rate may be written 

in dimensionless form 

r "=(pA/ / 3 )v" (V.125) 

where v is the average of the expected glide velocity for the individual planes 

in the crystal, 

v = ^ 7 l < v , > (V.126) 
MI-I 

with <v/> the expected value for the glide velocity of the dislocation^ 

in the (1-th) plane and M is the total number of glide planes. 
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VI. COMPUTER SIMULATION 

Given the geometric complexily of the dislocation structure and the 

microstructure in the usual realistic case the treatment of dislocation glide 

rapidly becomes analytically intractable, even when rather simple assumptions 

are made about the properties of the dislocations. In analytic treatment of 

dislocation motion, as described in the previous section, one is usually forced 

into idealizing assumptions concerning both the critical events which govern 

glide and the manner in which these events sum statistically to yield glide con­

ditions or glide rates. 

The availability of large computers adds a new dimension to the study of 

dislocation motion. Since these are capable of rapid numerical calculation, of 

storing and recalling complex geometrical information, and of modeling simul­

taneous interaciing processes the efficient use of computers allows the study of 

dislocation models in much more elaborate detail. While computer models, 

like any theoretical models, require initial idealizing assumptions, the number 

of these assumptions may be greatly reduced and the richness of the results 

significantly enhanced. 

The computer simulation research of this investigation has concentrated on 

the effects of the configuration of dislocations and the nature and distribution 

of microstructural barriers on the critical resolved shear stress and the velocity 

of thermally activated glide. Given the intent of this work the properties of the 

dislocations and the microslructural barriers have been modelled in the simplest 

plausible way so that the full power of the computer could be devoted to pro-



- 51 -

viding the geometrical structure needed to give jiĉ od statistical detail. 

A solution to the problem of plastic deformation in the simple model out­

lined in the previous section should predict at least three types of information: 

(1) The athermal yield stress, or critical resolved shear stress for athermal 

glide (T'>, which depends upon the distribution of <JiMm.<uions, the nature of 

dislocation interactions, and the strength and distribution of hp.rners. 

(2) The rate of deformation, which depends additionally on the applied 

stress, the temperature and the specific nature of the dislocation-obstacle 

interaction. 

(3) The salient morphological features of the deformation process, includ­

ing in particular the temporal "jerkiness" and spatia'. heterogeneity of flow. The 

solution should, moreover be phrased in analytic form, either as 'he analytic 

solution to a well-posed subproblem, or as an accurate analytic fit to probative 

computer-generated data. 

Given these desirable features a suitable computer simulation code should 

have at least the following capabilities: 

(1) The flexibility to simulate a variety of interesting cases; 

(2) The ability to generate accurate data on the critical resolved shear 

stress and the flow rate for non-trivial models in reasonable computer time: 

(3) The ability to monitor the deformation process in sufficient detail that 

critical mechanistic features may be identified and isolated for detailed study; 

(4) The capability of computing and retrieving the specific data needed to 
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assesss and critisize theoretical models. 

A code which generally satisfies these criterion has been in use at Berkeley 

for sometime. In the following section the central features of thai code, which 

have been reported primarily in references 41, 42, and 63, are described. 

A BASIC CODING TECHNIQUES 

In the basic problem simulated in this research a dislocation is introduced 

into a glide plane containing a distribution of point barriers of specified proper­

ties. A stress is applied and the dislocation is allowed to move freely until it 

finds itself an obstacle configuration which cannot be passed mechanically under 

the applied load (Figure 10). 

Subsequent behavior depends on the process being simulated. In simulat­

ing athermal glide the applied stress is increased until the dislocation 

configuration just becomes mechanically unstable. The dislocations are then 

displaced through the array until a new stable configuration is found. 

As indicated in Figure 11 this process of raising the stress to the minimum 

point of instability and advancing the dislocation until a new stable 

configuration is found is continued until a new value of the stress is reached at 

which no further stable configurations occur. The lowest such value is the criti­

cal resolved shear stress, Tf". The salient feature of the athermal glide process 

is the strength determining configuration, the configuration of dislocations and 

obstacles which is most stable mechanically, and hence determines Tr°. 

In simulating thermally activated glide the applied stress is constant and 
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the activation barrier is computed at each pinning point in the configuration. 

The site for thermal activation is then chosen using proper statistical pro­

cedures25 (or well- defined approximations to them.) The activated site is bro­

ken, and the dislocation is advanced until a new configurauon is found This 

process is iterated and the velocity of glide is computed from statistical formu­

lae4 1. The salient feature of thermally activated glide is the sequence of stable 

configurations encountered during passage through the obstacle array, the 

geometric properties of these configurations determine the relevant activation 

barriers. 

The precise code used to simulate the processes described above depends 

on the specific case under study e.g. whether the dislocation motion is assumed 

to be athermal or thermally activated. These various specific codes are, how­

ever, obtained by varying the peripheral features of a code which depend upon 

three central techniques: (1) A method for storing obstacle arrays so that local 

subsets can be easily accessed; (2) a data structure for dislocations, which car­

ries all relevant information in a compact form and allows efficient modification 

as the disloce'ion is moved; (3) a consistent algorithm which advances disloca­

tions efficiently and without loss of information. 

1. Storing the Obstacle Array 

Clearly any algorithm for locally advancing a dislocaiion need consider only 

the obstacles in the immediate vicinity of the portion of the dislocation 

currently being advanced. It is hence efficient to store the obstacle array in 

subarr^ys such that only the relevant local subarrays need to be accessed and 
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considered when locally advancing the dislocation. If a subarray has an area, A, 

containing randomly distributed point1, of density one then the probability, 

pin. A), of finding n points in the subarray is 

(An,A I = ~-exp<-/4) (VI 1J 
n! 

Inverting this function, a random number generator can be used to determine 

the number of points in each subarray Thus b> choosing the dimensions of 

the subarrays each subarray can be constructed individually 

The subarrays may be filled in either one of two ways If the total si/.e of 

the array is relatively small, so that computer storage is not an issue, one ma> 

simply fill the subarrays by using a random number generator to establish the x 

and y coordinates of the points contained. The x and y coordinates of all points 

may be stored in ordered one-dimensional arrays with additional ordered one-

dimensional arrays, as needed, containing the strengths and other pertineni 

properties of the individual obstacles. Two additional arrays of dimensions two 

are used to store the start and the end location of each subarray in the x and y 

arrays. Thus a directory is created for finding the necessary subregions of the 

entire array. The directory also allows efficient storage of the x and y arrays. 

Finally, each obstacle is marked with a digit indicating whether it is behind , 

ahead of, or on a given dislocation. 

When the simulation considers either glide through large arrays or simul­

taneous glide in several arrays computer storage becomes relevant. A straight­

forward and useful alternative method may then be used. Rather than storing 
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the entire array the seeds for the random number generator for each subarray 

are stored in the directory on construction of the subarrays previously 

described. Then no subarray need be retained in storage since each can be con­

structed consistently as reeded. Arrays can be recorded and reproduced in 

separate experiments by simply recalling, (or umsislenlK regenerating) the 

subarray structure and the associated seeds. 

If the subsequent reproducibility of the particular obstacle array is not 

necessary to the simulation experiment an even more efficient technique may 

be used. The only a priori information known about a random array of obsta­

cles is its density, which is, in this problem, identically one if the unit length is 

taken to be / v It is hence statistically permissible to construct random subre-

gions as they are needed when the dislocation is advanced. Since the disloca­

tion dees not know what is in front of it, and does not remember what is 

behind it, the only obstacle information which ever need be actively in storage 

is the nature and location of the obstacles which are actually in contact with the 

dislocation and the nature and location of the obstacles immediately in front of 

the specific local section of the dislocation which is currently being advanced. 

In this the glide of an isolated dislocation through an array of very large size 

may be efficiently treated with minimal demand on computer memory. 

These are the basic algorithms used in the simulation code to efficiently 

create, store and retrieve the obstacle arrays. The modification of these tech­

niques to treat non-random distribution of obstacles is straight-forward. 
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2. Representing (he Dislocation 

To optimize the information obtai;, 'd from the simulation of glide it is 

important that the dislocation be stored in the computer in a simple array which 

contains all relevant information and can be easiiv accessed and updated 

These criteria are efficiently mel by a data structure in which a dislocation is 

represented by a two-way chained list. The central element of this structure in 

a simple ordered list of the x and y coordinates of the obstacles in current con­

tact with the dislocalion. Each obstacle in this list is then connected to two 

identifiers which give the location in storage of the obstacles to its immediate 

left and right, and to a mark which indicated whether the mechanical stability 

of the dislocalion segment to the right of the obstacle has been verified. The 

configurations of several dislocations may be simultaneously stored by adding a 

list of pointers to one obstacle on each dislocation; given periodic boundary 

conditions the sublist representing a single dislocation will be closed under the 

operation of left and right connection. 

All relevant information concerning the dislocation, such as the shapes of 

inter-obstacle segments, the forces on the obstacles, and the mechanical stabil­

ity of the configuration, may be easily computed from the information con­

tained in this double chained list. When the dislocation is advanced the by­

passing of an obstacle is accounted for by simply deleting it from the list and 

updating the relevant connections; contact with a new obstacle is achieved by 

simply adding it to the list. Interesting configurations, such as the strength 

determining configuration may be stored for later study by simply copying the 
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list in storage. 

3. Advancing the Dislocation 

The dislocation is advanced in the code by the analytic equivalent of the 

following procedure. A dislocation configuration becomes unstable by by­

passing an obstacle along it, either because of mechanical instability ol the seg­

ment to the left or right of the obslacle due to the increasing stress or because 

the obslacle has been passed by thermal activation according to some criterion. 

This obstacle is appropriately marked and removed from the list representing 

the dislocation, the obstacles to its left and right are connected in the list and 

the associated segment is marked to indicate that its stability has not been 

verified. 

The new dislocation segment will bow out between its terminal obstacles 

toward equilibrium. This bow-out process will be terminated by the first of 

three events: 

(1) the dislocation encounters a new obstacle of the array, 

(2) the dislocation violates the angle condition ij/>t)/r or the strength con­

dition /3<pc at one of its two end points; 

(3) the dislocation segment bows into the equilibrium radius i?"(=l/27"). 

To determine the first of these events the following geometric relation is util­

ized (Figure 12): if a circular arc is drawn through two points A and B, and if a 

third point, C, is located on this arc and connected to A and B by lines AC and 

C5, then the angle, a, measured clockwise between the extension of AC and 
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CB is given 

a, = sin~HAB/2R) (VI 2) 

where AB is the distance from A to B and R is ihe radius of the arc. Using the 

terminal conditions (2) and (3), a maximum value, «„,, may be found at which 

the bow-out process necessarily terminates. The aiea of the aiiay associated 

with bow-out to am may then be identified and the values of a, computed for 

each obstacle, Q , within this area. 

If there are obstacles having a^u„, then the particular obstacle having 

the minimum value of a would be the first contacted by the dislocation in a 

continuous bow-out process. The obstacle is added to the dislocation and the 

list is updated to correct for its connections to left and right. The correspond­

ing sections are marked and their stability or possible further subdivision is 

tested in turn. 

If there are no obstacles having ak^am then the appropriate terminal con­

dition (2) or (3) is invoked. If condition (2) pertains then the unstable end 

point is by-passed by properly marking it, removing it from the list, and updat­

ing the list. The update defines a new segment whose stability must be tested. 

If condition (3) pertains then a stable segment has been found. When the list 

representing the dislocation contains only stable segments a stable configuration 

has been found. 

When tr.'e dimensionless applied stress is high ( T ' ^ 0 . 5 ) an additional 

check must be made for possible instability due to self-intersections of the 

dislocation and a procedure must be provided to decompose the dislocation list 
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to account for the formation of stable loops from self-intersections during glide. 

The procedures for handling these cases are straight-forward using the data 

structure and search algorithm described. At lower values of T" such intersec­

tions are extremely uncommon, and may usually be ignored. 

A stable configuration may be broken by either increasing the stress or 

selecting an obstacle for thermal activation. The stress at which the 

configuration first becomes unstable may be precisely calculated, and corrected 

for possible contact with additional obstacles during bow-out as the stress is 

raised. The athermal critical resolved shear stress is that value of T ' which is 

just sufficient to insure that no stable configurations are found. It may be 

found by continuously increasing T* until no further stable configurations are 

encountered(Figure 11). 

For thermally activated glide, the following procedure is used to calculate 

the velocity of glide. Given a stable configuration, the code computes the 

angles i|),A along it, and uses the assigned value of the dimensionless reciprocal 

temperature, a, to compute the mean residence time according to equation 

(V.117). It then calls a random number and chooses an activation site accord­

ing to the probability assignment given in equation (V.118). The chosen point 

is passed, and the code then initiates a new search to establish the next stable 

configuration. In this way a statistically chosen glide path is generated and a 

transit time is computed according to equation (V.119). By allowing several 

sequential passages the ergodic average of the transit time is estimated (equa­

tion (V.120)) and the glide velocity< v"> found. 
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The above described data structure and search algorithm combine to yield 

a code whose efficiency is sufficient for the purposes of this research. In 

currcnl use on the CDC 6600/7600 system al the Lawrence Berkeley Labora­

tory the code requires —25 computer units (~8 seconds) of running time to 

determine the athermal resolved shear stress for glide through an array of 10* 

points together with a geometric analysis and TV-graphic plot of the strength 

determining configuration. The simulation of thermally-activated glide is only 

slightly less rapid. The simulation of glide through very large arrays is rela­

tively time-consuming, but not prohibitively so. Analysis of glide through a 

square array of 10(> points requires —1500 computing units ( — 7 1/2 minutes). 
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B. APPLICATIONS AND RESULTS 

The coding procedures described above have been used to conduct simula­

tion studies on the problem cl dislocation motion through randomly distributed 

point obstacles. The athermal critical resolved shear stress for glide through a 

random array of like obstacles was previously investigated by Ko.ks 3 0 'for the 

particular case of impenetrable obstacles) and by t-iTer an --ind Makin.*-' The':.3 

studies were extended4" lo include the statistics of ihe atherma! glide suess and 

the detailed features of the particular obstacle configurations in the limit ol 

large array size. To test the validity of the equations obtained for CRSS and 

the geometric properties of the strength-determining configurations it was 

necessary lo simulate glide through very large arrays. The results obtained 

from this study are reported below. 

1. DISLOCATION GLIDE THROUGH LARGE ARRAYS 

To study the effects of array size and shape we employed computer Simula 

lion of dislocation glide through arrays containing 103 lo \0b obstacles. In each 

case the properties of the strongest configuration (i.e. CRSS, average segment 

length, disiribution of forces and segment lengths) were printed out. The size 

effect was studied by taking square arrays and increasing the number of obsta­

cles (e.g. for 106 obstacles we took an array of size of 1000x1000). For ihe 

shape effect, the number of obstacles was kept constant (e.g. 250,000) but the 

widlh of the array was changed. 

Two types of boundaries were used in thir; study. Periodic boundaries, 

where the array is extended periodically in both directions were used in most of 
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the computer simulation runs. Mirror boundaries which require that the dislo­

cation meets the boundaries at right angles has also been used in order to see 

the effects of boundary conditions. 

Figure 13 shows the data obtained from simulation of arrays containing up 

to 106 obstacles. The CRSS for athermal glide is plotted as a function of the 

width of the array. The obstacle strength (/3f) was chosen to be 0.01 and 

periodic boundaries were used. As is clear from the figure, the CRSS decreases 

steadily as the array size is increased and approaches a limiting value. The 

comparison between computer simulation and predictions (equations (111.17), 

(V.23) and (V.46)) are shown in Figure 14, where the strength of the array J8J 

at a fixed value of the applied stress ( T * = 0.001) is plotted as a function of the 

width of the array. As can be seen from the figure, the parameter 0l increases 

with array size and appears to asymptote at a value close to that predicted by 

Hanson and Morris44. For comparison the value of /3] predicted by Friedel13, 

(equation III.17), is also included, which underestimates the data for large 

arrays. The solution by Labusch58, equation (V.46), underestimates the data, 

but the corrected form, equation (V.47), gives very close agreement with the 

value obtained from arrays containing 106 obstacles. The data bars in Figures 

13 and 14 correspond to computer simulation of two different arrays. Notice 

that these values are different even for large arrays. The scatter in data, i.e. 

changes in the properties of the stroneesj configuration from array to array has 

important consequences with respect to deformation behavior of idealized cry­

stals.4 2 
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The distribution of forces on the strongest configuration of an array con­

taining 106 obstacles is shown in Figure 15, where the force exerted by the 

dislocation on each obstacle in the strongest configuration is calculated accord­

ing to equation (111.9). The theoretical distributions are those obtained by Han­

son and Morris 4\ equation (V.26), and by Labusch,58 equation (V.48). The 

data to construct the histogram was obtained from dislocation glide through 106 

obstacles at a stress of T * = 0 . 0 0 1 . The strongest configuration contained 141 

obstacles. 

The force distribution given by Hanson and Morris gives a rather good fit 

to the empirical histogram obtained from computer simulation. The prediction 

by Labusch requires a correction factor in order to give a reasonable fit to the 

empirical distribution. 

The average segment lengths, obtained from two arrays containing obsta­

cles from 103 to 106 are plotted in Figure 16 as a function of the width of the 

arrays. The <1*> values seem to be a slowly increasing function of array size, 

and to approach the value predicted by Hanson and Morris44, equation (V.341, 

for very large arrays. The "Friedel relation", equation (III.19), overestimates 

the simulation data by more than 30%. The value obtained by Labusch, equa­

tion (V.53), underestimates the computer simulation results for large arrays. 

The distribution of segment lengths are compared in Figure 17, where the 

histogram obt?ined from an array containing 106 points is plotted at a constant 

applied stress of T*=0 .001 . The theoretical distribution by Hanson and 

Morris44, equation (V.30) does a poor job of reproducing the empirical curve, 
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suggesting that the discrepancy is due to the approximations used in the 

theoretical model and not due to array size. However, as noted earlier, the 

average segment length matches that obtained from theory very closely. The 

prediction by Labusch58, equation (V.51), gives the shape of the histogram rea­

sonably well. 

The distribution of the angle <& predicted by both theories, equations 

(V.29,1 and (V.50), are compared with the simulation data in Figure 18. The 

solution by Hanson and Morris44 requires that there is a cut-off angle <b{„ 

whereas the prediction by Labusch^8 gives a rather good fit to the empirical dis­

tribution. 
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a) Correction to the Theory 

In the following a simple analytic technique for estimating the influence of 

the array size on the CRSS will be given. We assume, in addition to those 

introduced in reference 44, that an obstacle array of arbitrarily large size con­

tains a high density of strong configurations and the strong configurations 

encountered in glide through a finite array are subsets of these. Using these 

assumptions one could write the average number of configurations having 

strengths /3>/3,, to be 

< m > = (-y-HS)" (VI.3) 

where n is the number of obstacles on the dislocation, A'is the total number of 

points in the array and 5 is the area of force distribution, (Figure 19). 

By setting 

< m > = l (VI.4) 

one can write 

S(j8) nN (VI.5) 

and inverting 

j8 = / ( 5 ) (VI.6) 

Using equation (V.28) for S, the value of/3 or r 'can be calculated numerically. 

Figure 20 shows the value of the obstacle strength, J3J, required to prevent 

athermal glide under given applied stress as a function of array width, for two 
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stresses, T' — 0.005 and r" — 0.001, where mirror boundaries were used. The 

agreement between the computer simulation and the prediction (equation 

(VI.61) is very good. In Figure 21. the C'RSS (or athemiul glide is plotted as a 

function of the dimensionless obstacle strength, /i ( lor square arrays containing 

106 poinls. Here, periodic boundaries were used Again for these sizes of 

arrays the agreement between calculation and computet simulation is good 

However, further refinement of the analysis is needed to account for effects 

which intrude at higher obstacle strengths and for the influence of boundary 

conditions in arrays of small size. 

To study the effects of array shape on the properties of the strongest 

configuration, rectangular arrays are considered, where the number of points in 

the array is kepi constanl and the array width or height is varied. The strength 

j8j as a function of the width of the array containing 250,000 points is shown in 

Figure 22, The computer simulation data was taken for an applied slress - ' -

0.005 and periodic boundaries were used. The prediction according lo equation 

(VI.6) is drawn as a continuous line. The agreemenl between theory and com­

puter simulation is good. 

b) Thermally Activated Glide 

The dependence of /3j on array size and shape has profound effects on 

dislocation velocity in thermally activated glide. For a dislocation-obstacle 

interaction of simple step form, the velocity of the dislocation at low tempera­

tures can be written 4 1- 4 2 in Arrhenius form 

<v*> =— T exp[-a( /3 r - j8 , ) l (VI.7) 
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where N is the number of obstacles in the array and W* is the width of the 

array in terms of ls, and a is the thermal parameter (equation (V.109)). As 

can be seen from equation (VI.7), as fi\ increases with H'"the dislocation velo­

city will increase exponentially, the more so as a increases, i.e. as temperature 

decreases. The scatter in /3] from array to array has also important conse­

quences 4 2 ' 4 3, where at low temperatures the dislocation will glide on those 

planes on which the glide velocity is highest and thus the deformation of tuc 

crystal appears inhomogeneous. The deformation becomes homogeneous as 

temperature is raised or stress is decreased. 

2. GLIDE THROUGH FIELDS OF L'NLIKE OBSTACLES 

Foreman and Makin33 were the first to report on the computer sim'jls'.ior. 

of dislocation glide through mixture of obstacles. They carried out then- sirn-j 

lation for relatively high strength obstacles and used mirror boundary condition 

Their results seem to confirm equation (V.92), quadratic mean of stresses, foi 

all strong obstacles except in the region where /3 S »/3 1 1 . and j r s « j r K , where 

equation (V.93), simple addition of stresses, is assumed to be valid 

Hanson and Morris45 extended the analytic procedure to estimate the criti­

cal resolved shear stress for glide through an array of like barriers, to treat the 

case of simultaneous random distribution of obstacles of different properties. 

The predictions of the equations were compared to the results of simulation 

experiments on glide through arrays containing both strong and weak obstacles. 

Relevant properties of the strength-deiermining configurations were deter­

mined, including !he distribution of angles and segment lengths and the relative 
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fractions of strong and weak obstacles in actual contact with the dislocation line. 

a) Two types of obstacles 

To identify the regions of applicability of the solutions to the CRSS for two 

kinds of obstacles we carried out extensive computer simulation of mixtures of 

two kinds relatively weak obstacles using periodic boundary conditions. 

In Figure 23, we plot the CRSS for arrays containing strong and weak obs­

tacles as a function of the fraction of weak obstacles (.x„) The CRSS decreases 

as more and more weak obstacles occupy obstacle positions. The relative 

strengths of the obstacles correspond to the critical angles of 90'"' and 130°. To 

obtain the data we used 10,000 obstacle arrays. For comparison we plot the 

data obtained by Foreman and Makin1-1 and the approximate equation (V.80). 

Both the data obtained in this study and by Foreman and Makin is in good 

agreement with the prediction. 

In Figure 24 we show the dependence of the CRSS on the fraction of 

strong obstacles ixs), which increases as the relative number of strong obstacles 

increases. The obstacles have strengths 0.1, 0.05 and 0.01. The data is 

obtained from computer simulation of 10 arrays containing 10,000 obstacles 

and is shown as data bars. We have also plotted various predictions discussed 

earlier. The formula (V.92) fits the data approximately over the whole region 

of obstacle fractions, except in the case where / 3 i » /3„ and xs«xK, where 

the simple addition of stresses can be used. The approximate formula (V.80) 

fits the computer simulation data over the whole region of obstacle strengths 

and fractions. The exact theoretical prediction (cquaiions(V.66) and (V.67)) 
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underestimates the data consistently, a resuit which is believed to be due to 

relatively small size of the arrays used to obtain the data The CRSS for arrays 

containing two types of obstacles is also array size dependent and decreases as 

the width of the array increases. This is illustrated in Figure 25, where we have 

plotted CRSS as a function of the width ol the arrays containing two types of 

obstacles of strengths ^ = 0.03 and £„ =0.01 and relative fractions .x5=- 1.1 and 

JCK. = 0.9. The CRSS decreases steadily and seems to approach a limitinr. v.ilue 

for large arrays. 

The problem of finding the applicability and the ranges of validity o! equa­

tions (V.92) and (V.93) is considered in Figures 26 and 27. It is tk-t.r from 

Figure 24 that the simple addition of stresses consistently overestimates the 

simulation data and the difference diminishes as the ratio of the obstacle 

strengths is increased. This suggests that either the equation (V.93) is '.'aha ir 

a very limited range of obstacle strengths and fractions or it is fortuitous atic 

holds when the effect of one of the obstacles is negligible. The differentiation 

between formulas (V.92) and (V.93) is difficult because of the scatter ;n data 

obtained from these finite size arrays. Since, the size of the array was no: con­

sidered in obtaining equations (V.92) and (V.93) and since the plot of these 

predictions require the knowledge of the end points T, and TK., at xs-l and 

xs=0, we simulated an array which is rectangular in shape and contains 2000 

points. The width of the array was chosen to be 200 so that ihe strongest 

configuration will contain a larger number of obstacles. The obstacle strengths 

were chosen to be 0.1 and 0.01, giving a ratio of 10, which could be considered 
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to be in the range of applicability of equation CV 93J. Figure 26 shows the 

CRSS as a function of fraction of strong obstacles in the array We considered 

arrays containing up to 10% strong obstacles Even in this range, where the 

arra> contains many weak and few strong obstacle-., equation I'V 93) overesti­

mates the computer simulation data, whereas equation (V 921 gives a very good 

fit to the simulation results "fhi data obtained from simulation of arrays con­

taining an even smaller number of obstacles <x,^)- ) did no: fall through the 

prediction of equation (V.93i. As shown in I-igure 27, even for this case, equa­

tion (V.92) predicts the results rather closely 

Aside from the comparison*- made with compute,' simulation data, equa­

tions (V.92) and (V.93I also differ in their behavior of slopes idr'/dx^) as x, 

approaches zero. This slope is finite for equations (V 80) and (V.92), whereas 

for the simple addition of the stresses it is infinite. However, it is difficult to 

get (dT'/dxJ from the computer simulation data as xY—0 Also as was shown 

previously, the equation (V.93) breaks down for fii = fin and x, = x„ =0.5. 

The fraction of strong obstacles on the strongest configuration (c\) is 

shown as a function of the fraction of strong obstacles in the array (x ;) in Fig­

ure 28. The obstacle strengths used to obtain the data were 0.1, 0.05 and 0.01. 

The parameter cs increases with xi with sharper slope as the fraction (jijfi^ 

increases. We have also plotted in the figure the analytical prediction, accord­

ing to equation (V.81). As is apparent from the figure the calculation repro­

duces the computer simulation results very well. 

The average segment length as a function of the fraction of strong obsta-
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cles is plotted in Figure 29 and compared with the equation (V.87). The calcula­

tion (equation (V.87)) gives a good fit to the data obtained from the computer 

simulation of arrays containing 10,000 obstacles An interesting feature in the 

figure is that the average segment length as a function of A5 undergoes a max­

imum in the range where there are a lot of weak and few strong oh :..c!cs 

This maximum is predicted correctk by the equation (V.87) and is mo, pr> 

nounced when the difference in the obstacle strengths is large Thi, v.tii he 

explained with the help of Figure 28. where the dislocation "picks r.p" more 

strong obstacles at small fractions which is more pronounced as iho ratio 

03,//},,) increases. For example, tn arrays containing 5% strong obstacle • 'ht 

strongest configuration contains 20% strong obstacles for 03^7/8„)~ 2 f in­

fraction of strong obstacles increases as (lijf3w) increases. For A5«;>-;>. the 

fraction of strong obstacles is, from Figure 28, about 55% for £,//?„ ~5 and 

75%for|S3//3K>=10. 

b) Square spectrum of obstacle strengths 

The obstacle strength can be defined either by the critical angle </», or the 

critical strength (3C. We first consider the square distribution of obstacle angles 

if/, as shown in Figure 7. The critical resolved shear stress r ' a s predicted by 

the equation (V.100) is shown as functions of the average angle i//„, and the 

width of the distribution •-.'< K. in Figure 30. The data obtained by Foreman and 

Makin33 in simulating arrays containing 10,000 points is plotted as points. The 

data obtained in the present work is plotted as data bars and is taken from com­

puter simulation of five arrays containing 1600 obstacles. As can be seen in the 
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figure the prediction (equalion (Y.100JJ fits the data very well within the range 

of scatter. The calculation in the range of >ii„, ^ 37r/8 was done for complete­

ness, since the work by Bacon et al.'"1 showed, that due to the interaction 

between neighbouring segments the more realistic cast for point obsi.:Jt 

strengths to be 0.7 and lower In general, us shown in Figure 30, T" IS a ver\ 

weak function of the widlh of the distribution and decreases slowly if \l„ ' -

and increases with i//„ if i]im>-r in figure 31 we show ;he results for C RSS 

obtained between the angles ~ and -n The constant k in equation (V ]00 = 

which is array size dependent was obtained for ii;„, = 57778 to be 0.92 from 5 

arrays containing 1600 obstacles. 

The second case to be considered for the disiribution of obstacle strengths 

is the square spectrum of strengths'/} ) according 10 Figure 8. We plot the 

CRSS as a function of the width of the distribution in Figure 32. We used 

equations (V.90) and (V.91) to convert /3, into <//,. The data bars indicate the 

computer simulation results of five arrays containing 1600 points. The predic­

tion according to equalion (V.105) is also plotted in the figure and shows good 

agreement with the computer simulation data. Figure 32 is very similar to Fig­

ure 30, except when the average angle t/im is less than — In this range, the 

decrease in CRSS is stronger in Figure 32 than in Figure 30. The conversion of 

the two kinds of square distribution is also possible using 

(«|i)dJ - l(j3)rf/3 (VI.8) 
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For 

and 

dfi = - i i n - ^ dii (VI 9i 

we get 

s i n l ^ l 

PM* 2,« " T , , V 1 , 0 ) 

or for pdjij = . 

p i p , =

 2 _ — * . - r L _ r (vi 11) 

Thus, the uniform distribution of angles empha' _-s the stronger obv.arles 

Bolh distributions give similar results if the obstacle strengths are small (or for 

large angles). 

The CRSS for the uniform distribution of relatively weak obstacles 

corresponding 10 angles between — and n, is ^iven as a function of </»„ in Fig­

ure 33, where the results are very similar to ne one shown in Figure 31. 

The average segment lengths as a function of i/v for th uniform distribu­

tion of relatively weak obstacles is shown in Figure 34. The average segment 

length depends very weakly on i/i„r ' he prediction, which is obtained from 

equation (V.87), is also plotted in the figure and shows good agreement with 
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the computer simulation data. 

The distribution of fon.es on the strongest configuration obtained from 

computer simulation of arrays containing uniform distribution of obstacle 

strengths is compared with the theoretical prediction in Figure 35 and show 

excellent agreement. 

c) Thermally activated glide 

Thermally activated glide through arrays containing one type of obstacle 

has been studied extensive!) in references 25.41 and 42. In these studies, the 

statistics of thermally activated glide were developed and useful approximation-, 

identified. These approximations were studied through simulation, and their 

range of accuracy identified41 4-. 

In this section, we report results obtained for thermally activated glide 

through arrays containing two types ol obstacles, distributed randomly We 

assume that the force-displacement rc'atton is of simple step form. Also, we do 

not differentiate between obstacles of different types concerning the effective 

range of interaction (d) so that the parameter a remains the same for both 

types of obstacles. If the effective ranges of interaction were different, the 

parameters must be modified accordingly. 

Figure 36 gives the stress (T*) at a given velocity of glide as a function of 

temperature (7**), for an array containing 2000 obstacles, half of which are 

strong ( ps = 0.05 ) and the other half weak ( /3B. = 0.01 '), at a velocity of 

ln<c"> = -10. The stresses at ln< >• > = -10 as a function of temperature 

is also plotted if the arrays contained only strong and only weak obstacles. 

http://fon.es
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Using the data given in Figure 36. we see that the formula 

T':(T') = T;:(T')X^T':<T').^ (VI. 12) 

closely approximates the computer simulation resuiis over the whole range of 

temperature, whereas the formula 

T'IT') = - s ' f r")V^ -i- TM '(r')V^- wmi 

overestimates the data. 

For arrays containing smaller fractions of strong obstacles (10rl'). the 

above results are not chafed and equation (VI.12) gives a good fit to the com­

puter simulation data (Figure 31). 

One of the most striking features in thermally activated glide through 

arrays containing more than one type of obstacle is that the charact ^ristics of 

the configurations change with temperature This is illustrated in Figure 38. 

where we have plotted the fraction of strong obstacles on the strongest line (f3) 

as a function of the inverse of the temperature (1/7"") at a given stress 

(T "=0.005). As can be seen from the figure, the fraction of strong obstacles 

increases as temperature decreases, suggesting that at low temperatures only 

strong obstacles determine the strength and at high temperatures the effect of 

weak obstacles becomes more pronounced. The parameter cs approaches the 

athermal value (Figure 28) as the temperature decreases. The configurations 

obtained at high (7""=» 0.1) and low temperatures (7"'= 0.001) are also shown 

in the figure, where circles represent strong obstacles and dots represent weak 

obstacles. It is clear from the figure that the number of strong obstacles on the 

line decreases as temperature increases. 
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VII. COMPARISON WITH F.XPKRIMKNTS ANT) DISCISSION 

The computer simulation experiments discussed above give us information 

on the statist cs of overcoming loci! obstacles b> dt-.io. aiion • which is needed 

tor a reliable an.iivsis ol the e>.pc; noenial data and lor n . fc-t.Yer development 

of the thcori ol dislocation nnhiltt;. an;! cr>s'..-.i pl.is'oc,-. However, the resul's 

obtained are sensitive to the approvmahons used and i; is necessary to check 

the valkhh ol the assumptions an 1 mo.flkanons of I he model 

The genera! problem of plastu delormaoon arising from culling of local­

ized obstacles is complicated by the intrusion of several factors An extensive 

literature has been developed to describe deformation characteristics due to the 

motion of dislocations past localized stress fields arising from the presence of 

substitutional and interstitial solute a toms 1 5 , " ' • 2 : 2 > 2 9 , tetragonal point 

defects 2 8 -2'1, precipitates and dispersed phases 2 0 2 ' , 4 r 4 ' v < ^ " , ' l < and centers of 

radiation damage 6 9 " 7 3 . While the details will not be reviewed here, it is 

appropriate to reconsider the validity of some of the simplifications that have 

been made to facilitate analyses. The stress fields due to the lattice strain 

centers decrease very rapidly in amplitude and spread over larger areas of the 

slip plane as their distance from the slip plane increases. It has been customary 

to neglect the effects of al' strain centers lying a greate. distance away than one 

atomic plane on either side of the slip plane. In most approaches no considera­

tion is given to the fact that the slrain centers are usually more or less ran­

domly distributed. 

In this study, we assumed the obstacles to be point-like and randomly dis-



tnbuted In mosi models, the nature of the obstacles has general!;, been 

unspecified, however a proper description ol point nns'.dcle approximation is 

necessar>. According to Morn* and S>n-". il the etic^ir.c range of interaction 

<di is srr.aii compared to the mean separation I. 'J "1 me obstacles, which arc-

taken to be identical circular'.. ',;--•: _-:. j . b.irne: • f If'.e Ois.ocaiion glide then 

the obstacles car; be treated as p -1;:,' -11 k • • In . ; - m it.IS model we sh.d. he co-i-

cerned with oarners having short ange interactions i he assumption ot -an-

domness o! point obstacles is ., gum! one if the obstacles are non-interacting 

impurities, small dispersion particles or small voids Interacting point obstacles 

or flexible forest dislocations will not be random 'I tie nature of the motion of a 

dislocation through non-random obstacles can ol course be quite different and 

is more pronounced for high-strength obstacles 4 

We considered dislocations to be flexible, extensible strings of constant 

line tension, thus, neglecting effects of orientation, radius of curvature and the 

influence of elastic anisotropy on the energy of the dislocation. 

Bacon el a l . 6 ? considered the change in line tension with dislocation type 

and obstacle spacing when the obstacles are strong. The magnitude of line ten­

sion can vary by a factor of 4 depending upon whether the dislocation is edge 

or screw in character, however, an average line tension could be used for dislo­

cations of mixed character 4 9 - 7 5 . The elastic anisotropy has beer, considered by 

Scattergood and Bacon 7 6 " 7 8 . 

Given the accuracy and short-comings of the model an attempt will be 

made to make qualitative and quantitative comparison of the results with exper-
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imcntal data The general approach to h_ foliowe-l :r < :::•: to make the i.orr, 

parison is the following since ihe equations g vtn in the previous set.ii :. are-

all in non-dimensional form. lhc> have lo he d'.-e-\ .•:-.:',•;] Th" <"kss ;•• 

dimensional form is given by equation 'III *•> and car he v.:;•••• r, a-

, , ' ? l . v ! i : 

where r * is Ihe dimensionless f'KSS. I is the iine lens'iTi and / :•, the hunter-

veclor The average spacing /. can he calculated fro- the ^erw.ty o! orw.aje-. 

If the character of the moving dislocation is known then the line ten-ae-, 'i .' 

and Burgers vector h can be determined Since -' depend on the obs:.:,ie 

strengthf/3, ), this also has tfj be calculated or estimated and would generally 

depend on the shape 1", size and position of the obstacles relative to the glide 

plane The critical force in dimensional form is given by 

/•,. - 2V/J, (VII 2' 

If the distributions of the obstacle strengths are known than the dimensionless 

CRSS (r ') can be calculated using equation (V.%) and in dimensional form via 

equation (VII.1). 

The most simple but powerful result obtained from the model considered 

here is that the CRSS T is proportional to the square root of the obstacle con­

centration, c. Since I a.—j=- we obtain from equation (VII.1) 

v c 

r a VF (VII.3) 

This is an experimental fact, observed in most of the e^peiiniental studies on 

http://set.ii
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dilute solution and precipitation hardened materials 

The first direct comparison of experiment and computer simulation 

involves qualitative aspects of the dislocation motion The experimental data is 

taken from Barnes*", who studied the moveinc-ii; of dislocations in irradiated 

copper crystals figure: 39 shows the sequence t>, four successive Transmission 

Iilectror. Micrographs of copper which had been bombarded with 3»]f/' 

3SMeV alpti.i particles per cm- and. as a consequence contains small dislocation 

loops jr,d ever, smaller black dots onlv just resolvable The dislocation which 

was induced to slip b> intermittently removing the condenser aperture from the 

electron microscope, moves upward and forms a series of arcs in this direction 

and is held at individual points along its length. The movement can be realized 

more readily from Figure 39. where the four dislocations have been superim­

posed by tracing each in turn, and it can be seen that some sections do not 

advance between photographs, while neighbouring sec'.ions do. It is apparent 

that the dislocation was held by a number of very small obstacles until, under 

the stress the dislocation, released from one, rapidly advanced until it met the 

next obstacle in its path. It is believed that these small obstacles in copper irra­

diated with alpha particles are vacancy clusters which are not planar and that 

each of them is acting as an obstacle, and it is possible that even smaller crystal 

disturbances, which are not detected in the electron microscope,are also 

effective5 0. 

For comparison we have also printed in Figure 39, the motion of the dislo­

cation through randomly distributed point obstacles taken from the computer 
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In direct observation of the interactions between dislocations and precipi­

tates, in an Aluminium - Silicon alloy Ncmoto and Koda s" estimated the C'RSS 

from the measurements of the radius of curvature of moving dislocations 

expanded between the precipitates. Their micrographs showed also close resem­

blance to the dislocation motion through computer simulation. 

In order to study the dynamical behaviour of dislocations a direct method 

has been developed in recen* years. This method is based on the in-suu defor­

mation experiment in a High Voltage Electron Microscope (HVEM) with a ten­

sile device attached 10 it. In this technique, the specin.cn is deformed plasti­

cally while under observation in a HVEM, and the behaviour of individual 

http://specin.cn
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dislocations is recorded continuou.l. Hgurc 4n is taken from such a 

s:ud> M In figure 40 we compare the distribution of segment lengths 

obtained from computer simulation with the experimental!:, determined one 

Saim.'U' e: a! ' ' " studied using 11\'I.M the dclorm.it. :'. of C't: single crystals 

In the.r stuJ>. in order to ch.iractcri/e the disioc.itii.:; • d.siucilinn irilet.ulior.s. 

geometrically, following properties o! Ihe specimen were required 

ai A homogeneous mivtostruciure throughout the iiystal the scale o! ui. ', 

is small enough such that H can be complete!;, examined in the cicMr. :; 

microscope 

b) The dislocation arrays arc more or less random without clustered regions 

such that every dislocation and node can be resolved 

c) The yield stress can be reproducibly determined (rum specimen to speci­

men 

The specimen which satisfied the above structural conditions closely was 

identified and m-snu HVEM deformation studies were conducted5-1. HVEM has 

the advantage of being able to penetrate relatively thick foils which permit 

determinations of the three dimensional array of dislocations. Saimoto et a l . 5 J 

measured the distribution of true segment lengths and the interobstacle spac-

ings. From these measurements and using the following formula for CRSS 

x = 0 . 8 8 7 / ? ^ ! ^ (VH.4) 

they were able to estimate the obstacle strength pc to be between 0.3 and 0.7, 

taking various values for the lower cut-off radius r 0 . They ised two reflection 
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was given as a function of t empera tu re . Several otiier vnes t i iMtors have tried 

to predict m' as a function of stress and t e m p e r a t u r e " 4 R f . Compu le r s imula­

tion s tud ies ' 1 ' suggest that the stress exponent is n f'.i.-iiiion of si iess and 
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I sing the approximat ion 

01 0i 
ln< —) = — - 1 (VII 9) 

0. 0, 
we obtain the stress exponent to be 

m ' = ! / 3 , . - ^ (VII.10) 
3 ^ ' AT 

where (7 is the shear modulus and the interaction distance (d) has been 

assumed to be equal to one Burger's vector. The equation (VII.10) is obtained 

for a particular dislocation-obstacle interaction form. For other types of interac­

tion similar result can be obtained. Equation (VII.10) indicates that the stress 

exponent m' is an inverse function of temperature and is directly proportional 

to the obstacle strength. The stress exponent m*as a function of the inverse of 

the temperature is shown in Figure 41, following the data given in reference 51. 

The plot gives a straight line through the data points as demanded by equation 
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(VII.10). The same type of behaviour is observed for other materials '* '^ 

This plot can be used to estimate the obstacle strength (i. Using the values ol 

h and (i for MgO. wc estimate from the slope of h g j r e 41 the obstacle 

strength to be of the order of (J I 

The same material was deformed in a spceial tensile stage inside the 

HVf-.M to determine the distribution of the disv.ncc between the onstatles' •'. 

The obstacles lo the dislocation motion are believed to he clusters of impurities 

having sizes of the order ol 20 A'. The distribution of segment length1- oi 

screw dislocations obtained from specimens of MgO single crystals bv Appel ei 

a! '• is shown in Figure 42. The histogram obtained through computer Simula 

tion of dislocation motion in arrays containing 2000 points is also shown in the 

figure This data was obtained from the thermally activated glide of disloca­

tions through point obstacles of strength /3 ( = 0 . 1 . at g temperature of 7 ' = 0 01 

and stress T ° = 0.005. The agreement between computer simulation and 

experimenl as shown in Figure 42 is excellent. The density of obstacles 

estimated from /s = <l> measured! < l ' > computer matches with the impurity con­

centration closely. 

Munjal and Ardell 5 5 investigated the effect of the width of the y' particle 

size distribution on the CRSS of Ni-Al single crystals containing 6 wt.-% Al. 

The samples were given two-step aging treatments to produce broader unimoda) 

distributions than those resulting from isothermal aging. By changing the width 

of the distribution by 30% they observed a decrease in CRSS by 8%. The size 

distribution of y' (Ni3AI) particles was obtained by TEM and the breaking 
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angles were calculated according to the procedure given by Ham8,). The aver­

age angle tl>„. was approximated to be in the range of 3TT/8. The computer 

simulation data using uniform distribution of angles, as obtained by Foreman 

and Mafcin5' anj in Ihis slud>. is given in Figure 30. The CRSS in the range of 

lb,,. •-• 3~,'8 shows very little decrease wiih the changes in the width of the dis­

tribution, suggesting that ihe computer simulation and experiment is not in 

agreement However, since the obstacle strength is usually taken to be propor­

tional to the precipitate size41' '"' and since the distribution of angles discrim­

inates against the weak obstacles, a more reasonable approximation to the dis­

tribution of ihe particle sizes is the uniform distribution of obstacle strengths 

rather than the angles. The CRSS for the distribulion of obstacle strengths is 

shown in Figure 32, where r is a decreasing function of the width of the distri­

bution in the range of <i>„, =3w/8. One-to-one correspondence between com­

puter simulation and the experiment in this case is difficult, partly because the 

precipitates are ordered and dislocations travel in pairs and also, the average 

particle size and the volume fraction change from experiment to experiment. 

Also the scatter in the computer simulation data makes the comparison more 

difficult. However, by taking the calculated distributions of angles given by 

Munjal and Ardell55 and performing computer simulation through randomly 

distributed point obstacles the CRSS changed by 4 to 6%, which is close to the 

experimentally observed value. The experimental data is in accord with the 

computer simulation studies on at least two accounts: First of all, the CRSS 

decreases with the width of the distrib' lion of angles and secondly the experi­

mental data show a small decrease with the width of the distribution compared 
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to ihe effect ol average si/e ' Ihe predulior.. cqi.at.or. <\ 1M i. ais<. s u ^ e v s 

lh.il Ihe f'RSS is m;jin 1 > determined h\ the a\er,ire v.a!je of the ob-.:...;-

stienji ih 

Sin.:1a: approaches h.r.e been taken I-A Me iand- r ' v..1.. . . s - : :i.e :• -*e: 

order approxinialions to the CKSS ( equation <V 7 ; - i , an.; app' e ; to the evpe' 1 

men;ali> determined partkle size dis'n.'Lilion-. for i opp " ; .-.! o,v .om.enmi.' s. :;,., 

particles ohlained b> Ashb\ and J hehne'' v'" I'sine sinni.i: app:.,at!. ;!,•„ 

M;cnj;lh of a preeipitation hardened A l /n . ' - i f allo> v.as ,d-,<. calculated reter.: ' . '• 

and good agreement was found between tbeor\ and experiment 

http://lh.il
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VUI. SIMMARY AM) ( O.NCT.l SIONS 

The major 'bjeclives of investigation:* on dislocation mechanisms are to 

provide a bask understanding of the varied plasm, behaviour of materials and 

to utilize these concepts in engineering applications The pnmarv goal of this 

research was to calculate the C'RSS as a function of the strength of the obsta­

cles and to determine the dislocation velncih as functions of temperature and 

applie.i stress and strength ol the obstacles A computer model was used to 

dire.il> simulate glide under preciseh controlled conditions and compared the 

results with analytical predictions and experimental data. 

i-rom the stud> of the effects of the array size and shape the following 

conclusions can be drawn: 

1) The CRSS for athermal glide obtained in simulating finite size arrays 

depends on the array size and shape and decreases as the width of the array 

increases or the height of the array decreases. 

ii J The array-to-array scatter in the properties of the strongest 

configuration still exists even with large arrays. 

iii) The velocity of a dislocation in thermally activated glide will depend on 

the array size and increases as the size of the array increases. 

iv) The CRSS is also dependent on the boundary conditions (mirror or 

periodic) for arrays of small size. 

v) Since the microstructural obstacle arrays of physical interest are finite, 

the variation of glide properties with the size of the array should be taken into 

account in physical theories. 

http://dire.il
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Since most of the obstacles in real materials have distribution of strengths, 

we have made analytical and computer simulation studies of dislocation motion 

through arrays containing distribution of obstacle strengths. Mixture of obsta­

cles change the properties of the strongest configuration drastically, especially in 

the case of two kinds of obstacles. The effects are more pronounced when the 

array contains a lot of weak and a few strong obstacles We have cvkul^'ed the 

CRSS. average segment length, the fraction of obstacles on the configuration 

and distribution of forces and obtained good correlations with computer simula­

tion data. W'e have also demonstrated that in the case of superposition of two 

mechanisms the addition of stresses does not hold in the ranges of obstaci: 

strengths studied and in general the CRSS can be calculated using the quadratic 

sum of the stresses, i.e. T 2 = X 7 / 2 j r /- Thermally activated dislocation glide 

through two types of obstacles have also been considered and the effects of the 

temperature on the strength-determining configuration is studied through com­

puter simulation. 

The comparison of the computer simulation results with experiment was 

carried out in the last section. The dislocation motion through irradiated Cu is 

compared to computer simulation of dislocation glide through randomly distri­

buted obstacles and very good agreement is found. Quantitative comparison of 

the segment length distributions of gliding dislocations obtained from computer 

simulation and hardened Cu single crystal showed very good agreement. The 

stress exponent is shown to depend inversely with the temperature which has 

been observed experimentally. The distribution of segment lengths obtained 
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from MgO single crystal containing impurities matched very closely the com­

puter simulation histogram. The results compared with the experimental data 

obtained from a precipitation hardened alloy also shoAec! good agreement. 
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Table. I. Assumptions and Basic Equations 

Assumptions: 

Obstacles: randomly distributed, 

localized and point-like. 

Dislocation: flexible string, 

constant line tension. 

Basic Equations: 

Quantity Dimensional Dimensionless 

Number of Obstacles A' A' 

Total Area A A = A' 

Stress T T* = rl.bUY 

Radius of Bow-out R R' = 1/(2T") 

Force on the 
F 

/3 = F/2r 

obstacle = cos(<Ji/2) 

Obstacle Strength Fc 
Pc = cos(0 f/2) 

1 
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FIGURE CAPTIONS 

Figure 1. Schematic illustration of the problem of yield or initial defor­

mation in a grain or single crystal. 

Figure 2. Detail of mechanical equilibrium in the i-th obstacle 

configuration. 

Figure 3. Geometry of randomly distributed localized obstacles.(After 

Friedel1-1). 

Figure 4. Parametrization of the area searched by circle-rolling to an 

angle 9C = IT. The parameters 9 and <£ define the shaded area 

dA'. 

Figure 5. Division of the search area (a) into a limiting area (o0) and the 

excess area (QJ) by the coordinate line <t> = — d>a. The position 

of obstacle k+1 to be found in area (a 0) is defined by the 

angles 8 and #. 

Figure 6 Division of the search area into regions I, II, and III. 

Figure 7. Square distribution of the obstacle strengths measured by the 

critical angle <!>,. 

Figure 8. Square distribution of the obstacle strengths measured by /3,. 

Figure 9. A possible force-displacement relation, fi{x/d), for dislocation 

passage through an obstacle, which forms a simple repulsive 

barrier. The shaded area indicates the activation energy^*) if 

the dislocation exerts a force /?,A on the obstacle. 
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Figure 10. Dislocation glide through an array containing randomly distri­

buted point obstacles. The dislocation starts at the bottom of 

the array and moves until the strongest configuration is found. 

Figure 11. Flowchart explaining the essential features of the computer 

code for finding the athermal critical resolved sheur stiess. 

Figure 12. Parameters for dislocation motion algorithm: a) division into 

subarrays, b)bow-out process. 

Figure 13. Athermal glide stress versus array width for arrays containing 

randomly distributed obstacles of strength, /3 r = 0.01. 

Figure 14. The resistance to dislocation glide under a dimensionless stress 

of T "=0.001 as a function of size of a square array of identical 

point barriers. 

Figure 15. The histogram of forces, obtained through direct computer 

simulation of glide through an array co mining 10{' randomly 

distributed obstacles, compared to theoretical distributions. 

Figure 16. The average segment length, </">,as a function of size of a 

square array of identical point obstacles of strength /3 f=0.0J. 

Figure 17. The comparison of theoretical distribution of average segment 

lengths with the histogram obtained by computer simulation of 

an array containing 106 obstacles at a stress of T "=0.001. 

Figure 18. The comparison of theoretical distributions of (he angle <t> to 

the histogram obtained through computer simulation of an 

array of 106 obstacles at a stress of r "==0.001. 
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Figure 19. Schematic distribution of forces along the strongest 

configuration. 

Figure 20. The obstacle strength j3, required to prevent athermal glide 

under given applied stresses (T"=0.005 and 0.001) as a function 

of the width of square arrays. The calculated curve is drawn 

from equation(VI.6). 

Figure 21. Comparison of theoretical prediction and computer simulation 

for arrays containing 106 obstacles at various values of stresses. 

Figure 22. The strength /3] as a function of the width of arrays containing 

250,000 obstacles at a stress T"=0.005 and comparison with 

equation(VI.6). 

Figure 23. The CRSS for arrays containing two types of obstacles as a 

function of the fraction of weak obstacles. 

Figure 24. The CRSS for arrays containing two kinds of barriers as a func­

tion of the fraction of strong obstacles, xs: a) For obstacle 

strengths / i s =0.1, /3B.=0.05, b) for obstacle strengths /3S 

= 0.05, /3H. =0.01 c) for obstacle strengths /35 =0.1, /3M =0.01. 

Figure 25. The CRSS for arrays containing two types of obstacles as a 

function of array size. 

Figure 26. The CRSS for arrays containing mainly weak obstacles as a 

function of the fraction of strong obstacles (x5<10%). 
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Figure 27. The CRSS for arrays containing a lot of weak, a few strong obs­

tacles ( A S < 1 % ) , as a function of the fraction of strong obsta­

cles. 

Figure 28. The fraction of strong obstacles on the strongest configuration 

(c-j), as a function of the fraction of strong obstacles in the 

array, xy a) for /9,"=0.1 and /3„, = 0.05, b) for /8s-=0.05 and 

/3„.=0.01, and c) for/3, = 0.1 and/3„ = 0.01. 

Figure 29. The average segment length, < / ' > as a function of the frac­

tion of strong obstacles, xs: a) for /H^O.l and /3„.=0.05, b) 

for /3S=0.05 and /3„ =0.01, and c) for/3, = 0.1 and 0 K =0.01. 

Figure 30. The CRSS for arrays containing obstacles whose strength is dis­

tributed according to Figure 7, as a function 

of the width of the distribution i/«K. and the mean value, iAm. 

Figure 31. Same as Figure 28, but w/2<0 m <7r. 

Figure 32. The CRSS for arrays containing obstacles with square distribu­

tion of strengths as a function of I/IH, and (/<„, 

Figure 33. Same as Figure 29, but 7r/2<<^m^ir. 

Figure 34. Average segment length for arrays containing obstacles with 

square distribution of strengths as a function of 0K. and i/im. 

Figure 35. Distribution of forces along the strongest configurations in 

arrays conlaining obstacles whose strengths is distributed 

according to Figure 8. 
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Figure 36. The stress at a given glide velocity as a function of temperature 

for arrays containing one kind and two kinds of obstacles. 

Figure 37. The variation of stress at a given velocity as a function of tem­

perature, for arrays containing relatively large number of weak 

obstacles. 

Figure 38. The fraction of strong obstacles, cs in arrays containing two 

types of obstacles, as a function of the inverse of temperature. 

The strongest configurations encountered during glide are also 

shown for high temperature (left), and for low temperature 

(right). The small circles represent strong obstacles whereas 

the weak obstacles are indicated by dots. 

Figure 39. Comparison of the characteristics of gliding dislocations 

through obstacles between experiment (left) and computer 

simulation (right). The dislocation motion through irradiation-

induced defects as seen in Transmission Electron Microscope 

(TEM) is taken from the work by Barnes50 in England. 

Figure 40. Comparison between computer simulation and experimental 

distribution of free segment lengths along gliding dislocations in 

hardened copper single crystals. Experimental data from High 

Voltage Electron Microscope in situ deformation studies by 

Saimoto, Saka,' and Imura5 3 in Japan. 

Figure 41. Comparison of predicted temperature dependence of stress 

exponent with experimental data obtained on MgO single 
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crystals by Val'kovskii and NadgornyV1 in Soviet Union 

Figure 42. Comparison between computer simulation, and experimental 

distribution of segment lengths alonj.' Riding aislojations in 

MgO. Experimental data from in situ HVJ.M studio. b> Appel. 

Bcthge and Messerschnndi '"' in Hast Germany 
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