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ABSTRACT 

An examination is made of the degree of scaling observed in inclusive 

pion production from high energy nuclear collisions. While apparent 

scaling does occur for forward pion production, the scaling limi~ is not 

reached in backward n production between 0.7 - 8 GeV/nucleon. We show 

that the shapes of the pion inclusive cross sections in both the forward 

and backward directions can be explained by a simple, hard scattering 

model employing elementary proton-proton n production rates, or alter-

natively, in terms of elementary proton-light cluster n production rates. 

The essential features of this model are an invariant parametization of 

the elementary subprocess, the proper handling of kinetmatical effects, 

and the use of a universal pseudo-Fermi motion distribution function 

with an exponential tail for nucleons or clusters. We find that much 

of the "apparent" scaling in the fon.rard direction can be attributed to 

kinematical effects. The importance of final state interactions on 

the interpretation of the pseudo-Fermi function is emphasized, and the 
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connection to quasi-two-body scaling is examined. 

PAC: 24.50. + g, 25.10. + s, 25.40Rb, 25.50.-n, 25.60-t, 25.70. - z 
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I. INTRODUCTION 

Data on nuclear collisions are now becoming available1-6 for a wide 

variety of projectile (P = p,d,a,C) and target (T = p,···,U) combinations 

in the energy range from ~ 500 MeV to ~ 10 GeV per projectile nucleon. 

Of particular current interest7-13 is the observation of pion and proton 

fragments with momenta larger than those obtainable in elementary nucleon-

nucleon scattering at these same energies. Such fragments can arise 

only as a result of the coherent interaction of many nucleons and Fermi 

motion, i.e. nuclear binding effects. The hope therefore is that by 

studying the highest energy single particle fragments, the cluster 

aspects of nuclei and/or the high momentum tail of nuclear wavefunctions 

can be deduced. 

Recently, Schmidt and Blankenbeder (SB) 9 have proposed a hard 

scattering model in which the xF (Feynrnan scaling variable) dependence 

of the inclusive cross sections provides information on that high momentum 

component of nuclear wavefunctions. One very attractive feature of the 

SB model is that it yields simple counting rues which predict a power 

law behavior of cross sections as In applications to TI 

and p production in the projectile fragmentation region celab ~ 0 and 

P << T) the model enjoyed considerable success in reproducing widely 

varying powers S (3 ~ S ~ 65). Our study is motivated by those successes 

and the subsequent questions raised6,lo concerning the predictions of 

the model for TI production in the target fragmentation region 
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We display below the discovery of Chessin et a1. 6 that for the 

energies studied (1 - 8 BeV) the scaling limit has not yet been attained 

in backward n production. In addition, the rate of fall off with xF is 

much less than predicted in the SB model, suggesting a possible cluster 

production mechanism. 10 We then attempt to modify the SB model in the 

spirit of the static cluster models of Ref. (11). While improving the 

fit, large descrepancies still remain. Finally, we are led to introduce 

a pseudo-probability distribution, p(p), to account for Fermi motion 

of the clusters in the spirit of Refs. (12,13). For "clusters" con

sisting of a single nucleon, our p(p) is similar to that of Amado and 

Woloshyn7' 14 ,15 and Frankel. 8, 23 

With p(p) in the hard scattering model, we can account for both 

the magnitude and the energy dependence (non-scaling) of the power S 

controlling the fall-off of the backward n production in terms of either 

n production off light clusters or production off protons. 

We next investigate why apparent scaling exists in the projectile 

fragmentation region but not in the target fragmentation region. We 

show that forward angle production is mainly sensitive to proper kine

matics but not to the dynamical details of the model. In fact, the 

shapes of the pion inclusive cross sections in the forward region can be 

explained in terms of nucleon-cluster scattering with any size cluster 

c = 1 to ~· In particular, simple nucleon-nucleon scattering 

including the same pseudo-Fermi distribution as used for the target 

fragmentation region can account for the data in the projectile frag-

mentation region as xF + 1. 

... 
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Thus, n production in both th,e_projectile and target fragmentation 

regions can be understood in terms of a rather transparent, simple model. 

Previous indicationsll,lZ had led us to believe that at least in the 

target fragmentation region such a simple model could not account for the 

data. 

We also analyze the connection between our p(p) and the distribution 

function considered in Refs. (7,8). We conclude, as in Ref. (14), that 

final state interactions cloud the interpretation of both distributions. 

·In particular, neither distribution can be interpreted as the true 

probability of finding a nucleon with momentum p inside a nucleus. 

Nevertheless, they have the great virtue of reducing a wealth of 

seemingly unrelated data to one simple function. A corollary of the 

above is that much of the differences between reactions producing high 

energy pions can be traced to simple kinematic (Lorentz transformation) 

effects. Thus, while experiments of this sort provide information on 

p(p), more theoretical work is needed on the structure and reactive 

content of this function . 
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I I • HARD SCATIERING MODELS 

We consider in this paper hard scattering (or impulse approximation) 

7-13 models (HSM) that have had much success in reproducing the high 

energy particle production inclusive cross sections in proton and heavy 

ion induced reactions. For the proton case the invariant single pion 

inclusive cross section 

R(p + A -+ n + X) 

is computed in HSM from known R(p + p -+ n+ x) data. Of course, the 

actual scattering amplitude i'Y( (p + A -+ n+ X) is, as illustrated in 

Fig. Ia, very complex. The complications arise from three unknown 

factors: 

(1) 

1) ~A(p') = amplitude of finding an off-shell nucleon with four 

momentum p' in a nucleus with A nucleons. 

2) Tpp'nx = off-shell p + p' -+ n + x amplitude. 

3) ~nX = final state distortion factor. 

One of the major simplifying assumptions of the HSM is the neglect 

of final state interactions, 

~TIX = l, (2) 

so that Fig. Ia reduces to Ib. The hope is that ~nX in Fig. Ia affects 

mainly the normalization and not the shape of R in eq. (1). The 

normalization of R is therefore not well determined in these models. 

As we discuss below, the price paid for eq. (2) is that final conclusions 

drawn in HSM, even if data are fit well, must be drawn with extra care. 14 

~I 
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The second major assumption in HSM is how the off-shell amplitude, 

Tpp 1nx' is evaluated. Experimentally, it is only known on-shell for 

certain energies. The common prescription is to evaluate the on-shell 

amplitude with the Mandelstam variables s 1 = (p + p 1
)
2, 

t 1 =- (kn- p) 2, U1 = - (kn- p 1)
2 by setting the energy of the virtual 

nucleon with momentum p 1 to be p~ = j p 12 + m2 • 

Therefore, 

T =Ton-shell (s 1 t 1 u 1 ). 

pp 1TIX pp 1 TIX ' ' 
(3) 

In eq. (3) we surpress the other kinematic variables associated with the 

final nucleons. Of course, eq. (3) ·cannot be justified ~priori and 

can only be viewed as a prescription. In the absence of a detailed field 

theory it is, however, a reasonable guess. By adopting eqn. (2,3), the 

hard scattering models cease to be theories and become phenomenological 

tools to study the relative importance of particular physical effects 

such as kinematics or clustering on the data. It is as phenomenological 

tools that HSM are valuable models. 

The final expression for R for proton projectiles is then 

R(p +A+ n +X)= NA 1~~;) GA(p') R(p + p + n + x; s',t',u') g, 

(4) 

where GA(p 1
) is the pseudo probability of finding a nucleon with mo

mentum p 1 in the target A CM (the lab here) , and where Y is a phase 

space factor involving the ratio of relative flux factors. In addition, 

the phase space factor _c} vanishes for those momenta p 1 that lead to pion 

produced in the subprocess that are outside the kinematic boundaries 

for pions produced in the pA ~ nX collision. 
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For nuclear projectiles, the expression for R becomes 

X R (p + p -+ 1T + X ; s I 't I 'u I ) ( p ' ( 5) 

where p 1 is the momentum of one nucleon in the A frame and q 1 is the 

momentum of the other in the B frame. The internal variables S 1 ,t 1 ,u 1 

are then computed by transforming q 1 to the A frame and setting 

s' = (p 1 + (q 1 )A) 2 etc. The phase space factor .~))in eq. (5) also 

serves to limit the domain of the p' ,q' integrations so again only 

kinematically allowed pions are produced in the subprocess. Since the 

ratio of relative velocities in ,~ is always near 1 for the relativistic 

collision we consider here, ,sP is effectively a theta function con

straint on the momenta in both eqs. (4,5). The normalization factors 

NA and NAB in eqs .. (4,5) are not determined in the model we present. 

We regard eqs. (4,5) as definitions of GA(p), and call GA(p) a 

pseudo-probability distribution to emphasize that GA could be interpreted 

as the probability of finding a nucleon with momentum p inside a nucleus 

A only if eqs. (4,5) were exact. 

The Equations (4,5) are the basis of all hard scattering models. 

main differences between those models7-13 lie then in the specific 

choices of GA(p), the exact kinematical region where (} :f 0, and the 

parameterization of the elementary pp -+ nx rates. In the next section, 

we consider first the particular model developed in Ref. (9) . 
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III. THE SCHMIDT-BLANKENBECLER (SB) MODEL9 

The remarkable property of the pion production rates observed1 1n 

the projectile fragmentation region is that although they vary over five 

orders of magnitude when plotted against the Feynman scaling variable 

xF, they appear to be energy independent (i.e., scale) for 1 < Tp < 5 

GeV/nucleon. To account for this scaling SB proposed a version of the 

relativistic hard scattering model that is successful in understanding 

hadron-hadron interactions. We analyze some features of their model 

below. 

For the inclusive (sub) process b + a ~ 'IT + x, where "b" nucleons 

with total 4-momentum pb are incident on "a" nucleons with 4-momentum 

Pa producing pion n with 4-momentum p , and anything "x", the maximum 
1T 

allowed momentum of the pion in the ab center of mass occurs when all 

of the "x" particles 

where 

For 

and m2 
X 

2 * s >> m , pb (n) ::: IS /2. x a max 

2/5 

2 2 
(a + b) m • 

(6) 

The radial Feynman variable (fractional momentum) is then defined 

as 
* * xab- xba = Pba(n)/pba(n)max (7) 

* where Pab(nJ 1s the magnitude of the observed 3-momentum of the n trans-

formed to the ab CM. Clearly 0 ~ xab ~ 1. Along the beam direction 

(8lab = 0°), xab is identical to the longitudinal Feyrunan variable 
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* * xF = p
11
;p

11 
(max) while in the opposite direction (elab = 180°) xab = - xF. 

In the relativistic version of eq. (5), light cone variables 

(x,p1) are used in Ref. (9) instead of (p ,p ,p ). The pseudo proba-x y z 

bilities GA (p) are then replaced by structure functions Gp/A (x,p1 ). In 

the ultra-relativistic limit x ~ P/PA is simply the longitudinal mo

mentum fraction of the nucleon. 

As we shall see, one of the most crucial aspects of SB's theory 

is the model shown in Fig. IIa which they proposed to evaluate GA(p). 

The motivation behind their approximation is that a pion with xab ~ 1 

could only arise from a "hard" NN collision with one of the A nucleons 

that carried a very large fraction of the nuclear momentum. For large 

enough momenta, the remaining A-1 nucleons must recoil coherently and 

share an equally large and opposite momentum amongst themselves. Such 

high momentum transfer scatterings presumably involve the hard core 

NN interactions, which are thought to be mediated by vector mesons 

(wiggly lines in Fig. II). The simplest diagram representing this com-

pletely coherent process is then the one in Fig. IIa. Whi.le at 

x = 1 (or for elastic scattering) all nucleons must recoil coherently, 

for smaller x, there may be considerably less coherence as we shall see. 

With the above model, it is clear that GA must be a strongly de

creasing function of A since the scattering of all A nucleons as in 

Fig. IIa becomes more and more improbable with increasing A. Indeed, 

in the SB model with vector meson exchange and monopole form factors, 

the asymptotic form of GA is9 

(8) 
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With this model SB were able to evaluate eqs. (4,5) by parameterizing 

the elementary pp + n-x process as 

-4x -15k2 
R(pp + nx) = R

0 
(1 - x ) e pp e 1 

PP 
(9) 

where x is the pion radial Feynman variable in the pp CM, eqn. (7), pp 

and k1 is the pion transverse momentum. Unfortunately, this fit to 

6 Gev16 and 12 Gev17 data only provides a crude representation of the pp 

cross section in the 1-2 GeV region where heavy ion experiments were 

performed. The xpp"' 1 behavior may be correct,, but at present the data 

are too scarce to be sure. This difference results in part from the 

. f h A h 1 • 19 W h" prommence o · t e u 33 resonance at t ese ow energ1es e see t 1s 

in Fig. III where the 6 Gev16 ,18 and the more relevant 3 Gevl9 data are 

+ compared to eq. (9) and our own fits to the 3 GeV 11 data: 

with a= 0.45, B = 0.075, and 

1 + X pp 
1 +exp ( (x -a)/B) 

PP 

+ -1 
R(pp +n x, 3 GeV) = R0 (1 :..xpp) (xpp +y) 

where y = 0.3, X = 0.41, f = 0.22. 
0 

r 

We note that plotting the invariant cross section vs. x, as in 

(10) 

(11) 

Fig. III, helps hide much of the resonance structure of dojdQdk which 

is clearly seen in the data when plotted against the pion center of mass 

* kinetic energy Tn (see the insert in Fig. III). 
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Thus, simple scaling for pp reactions as in eqn. (9) does not apply 

at such energies. (It has been noted16 that n production does not even 

scale between 6 and 12 GeV.) 

While scaling of pp ~ n + x at these energies does not hold, to 

develope counting rules it is still convenient to parameterize the 

asymptotic xpp ~ 1 behavior of the pp ~ n X cross sections as 

R(pp ~ n x) ~ (1 - x )H. 
~p~l pp 

Note that H = 1 for all fits in eqs. (9-11). 

In this way, the asymptotic form of the rates for pion production in 

nuclear collisions can still be simply estimated as in Ref. (9). 

(12) 

As a first example, SB computed R(p +A~ n-(0°) +X) and obtained: 

(13) 

Miraculously, eqn. (13) was found9 to be in almost perfect agreement 

with data1 on n production in the projectile fragmentation region 

(8~ab = 2.5°) at all energies between 1 and 5 GeV. ForxpA ~ 0.4, we 

consider that agreement to be somewhat fortuitous because (1) eqn. (9) 

does not reproduce the measured pp ~ n-x spectrum shape at these energies 

for xpp::; 0.7 (see Fig. III), (2) the measured pp rates do not scale 

(i.e., they are energy-dependent), (3) the R(pn ~ n-x), rate which are " 

also needed for p + A reactions, differs for ~p ~ 0.6 even more from 

the input eqn. (9) (it is expected to be more like eqn. (11) ), and 

(4) nuclear charge exchange n- production (p + A ~ TI
0 + X' ~ n + X) 

is expected to be comparable in magnitude to direct pn 4 n for small 

~p' but such two step processes are neglected in eqn. (4). 



• 

-11-

.. . 3 
Nevertheless, given the empirical fact that eqn. (13), R ~ (1-xpA) , 

provides an excellent fit to p + A ~ n (0°) + X data for essentially 

all X A' it can be used to predict B + A ~ TI (0°) + X rates for nuclear . p 

projectiles B. Equation (5) then becomes 

where for R, eqn. (13) is to be used. Inserting eqn. (8) into eqn. (14), 

SB then find 

(15) 

h h . h. h . f 11 B 1 1 ·1· h 1 9 ,l5 w ere t 1s 1g power ar1ses rom a - nuc eons reco1 1ng co erent ~ 

Since the R input via eqn. (13) is empirically very good, eqn. (15) is 
I 

on a much sounder theoretical footing than is the :derivation of eqn. (13) 

9 using eqn. (9). In fact eqn. (15) reproduces very well the data for 

d + C + n (2.5°) +X and a+ C + n (2.5°) + X. 

Observe that in the projectile fragmentation region, the power in 

eqn. (15) does not depend on the target A. The effect of any target with 

A .2. 2 is essentially to increase the power in eqn. (12) from H = 1 

appropriate for nucleon-nucleon collisions to H = 3 in eqn. (13) 

due to the internal Fermi motion. 9 Note also that xBA = 1 corresponds 

to a larger pion momentum than x = 1, so for heavier projectiles the . pp 
model is expected to work for smaller and smaller xBA' 

In the target fragmentation region (e~ab ~ 180°), we merely inter

change B +-+ A: 

R(B + A ~ TI (180°) + X) = R(A + B ~ TI (0°) + X) 
~ (1 - xAB) 6A-3 = (1 _ xBA) 6A-3. (16) 
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Equation (16) holds only when eqn. (13) holds, i.e. for B 2_ 2. For 

B = 1 we should use the elementary pp-+ n-x rates; as long as eqn. (12) 

holds with H = 1 the SB prediction is9 

R(p +A-+ n (180°) +X) ~ (1 - xpA) 6A-S, (17) 

which is just two powers less than eqn. (16). Since A in eqns. (16,17) 

tends to be much larger than the B's in eqn. (15) for the available data, 

backward n production represents a much more stringent test of the SB 

model than does forward n production. In the next section we therefore 

extend the work of SB by comparing eqn. (17) to data. 

t 
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IV. 180° TT PRODUCTION AND 1HE CLUSTER MODEL 

In the target fragmentation region, eqn. (17) predicts huge powers, 

e.g., 6A-5 = 67 for C, and 379 for Cu, and 1243 for Pb. Furthermore, 

these powers are predicted to be energy independent (the variation of 

H in eqn. (12) with incident energy could change these mnnbers by at most 

a few units). 

In Fig. IV data20 on p + Cu ~ TT (180°) + X are displayed. The 730 

MeV data are those of Cochrane et a1. 21 as analyzed by Landau, 10 and those 

at 5.14 and 7.51 GeV are from Baldin et a1. 11 It is clear that the 

power fall-off is much smaller than the predicted 379. Furthermore, 

there appears to be a strong energy dependence of this power fall off, 

which the preliminary analysis of data6 at 1 and 2 GeV also confirms. 

In addition, there is evidence at both high11 and low10 proton 

energies that at any one energy the power law is fairly independent of 

the target. For example, at 730 MeV, R z (l-xpA) 13 for C, Cu, and Pb. 

If confirmed, these three pieces of experimental evidence would completely 

rule out eqn. (17). It must, however, also be noted that xpA is not 

close to 1 for these data. It is possible that very close to xpA = 1, 

eqn. (17) may be valid, but for the range of xpA measured so far 

eqn. (17) does not apply. 

The fact that the magnitude of the power in eqn. (17) is too large 

can be traced to the model of GA(p), eqn. (8), and not to uncertainties 

in H (in eqn. (12)) for pp ~ n-x. It was noted that eqn. (8) arose 

from assuming, as in Fig. IIa, that all A nucleons undergo a high 

momentum transfer collision to transfer all their momEnta to one 

nucleon. Because, we consider mainly small xpA in Fig. IV, it 
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seems very unlikely that pions produced in this region require the co-

herent interaction of all A nucleons. We are therefore led to consider 

a modification of the SB approximation for GA(p) by al_lowing only a 

subset (cluster) c < A of the nucleons to have hard collisions and 

scatter coherently with the incoming proton. This frozen cluster model 

for GA(p) is specified by 

where x = 

GA(p)"" Gc(p) - (1-x)6c-7 

-1 (E(p) + Pz) (E(c) + Pz(c) ) is now the longitudunal 

(18) 

momentum fraction of the nucleon emerging from a cluster of c nucleons 
-

within the nucleus A moving with a longitudinal momentum p (c). z 
In this approximation the rest of the A-c nucleons act as specta-

tors, as illustrated in Fig. lib. TI1is modification of eqn. (8) is 

11 in the same spirit as the "cumulative meson production" of Baldin et al., 

except that we will treat carefully the Lorentz transformation in going 

from the pA to the pc center of mass. 

The essential idea behind eqn. (18) is that it is far more probable 

for the incoming proton to interact strongly with a small cluster of 

nucleons than with the entire nucleus. Of course, giving these clusters 

some Fermi motion will·modify the results, as we show below, but the 

physical picture remains the same. 

With eqn. (18), eqns. (16, 17) become for c <A 

SBc 
R(B + A(c) ~ n (180°) + X)~ (1 - xBc) , (19) 

(20) 

.. 

• 
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On the other hand, in the projectile B_fr_agJ11e~~ati?_n region the_ fr~:nen. 

cluster c < B model gives 

R(B(c) + A~ n (21) 

where SAc is given by eqn. (20) with A~ B. 

To relate eqns. (19, 21) to data that are plotted as a function of 

xAB, we need to transform from the BA center..;of-mass frame to the Be 

center-of-mass frame. This Lorentz transformation relating xAB to 

xBc is given in the Appendix for convenience. As a function of xBc' 

xAB(xBc) varies over a range 0 to x[B,A(c)] ~ 1, where 

(22) 

is the maximl.Dll momentum fraction in the BA frame that a pion carries away 

when the projectile B hits a small cluster of c nucleons in the target 

A and produces a n with xBc = 1 in the Be subsystem. Therefore, as a 

function of xBA' eqn. (19) becomes 

For pion production in the projectile fragmentation region, eqn. (21) 

can be expressed as a function of xAB as 

(24) 

where 

x[B(c),A] = xBA(xcA = 1), (25) 
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and the e function imposes the constraint that xcA < 1 in the cluster-A 

center of mass. 

Note that x[B(c),A] r x[B,A(c)] in eqns. (22, 25) in general, i.e. 

the maximum XAB differs for 8lab = 0° and 180°. The dependence of 

x[B(c),A] and ~[B,A(c)] on the incident energy is shown in Fig. V for 

two cases of interest, p + c + TI (0°) + X and p + Cu + TI (180°) + X. 

The vertical bars indicate the ~A range covered by the available ex-

periments. The significance of Fig. V will be discussed below. 

The effect of the e functions in eqns . (23 , 24) is to increase · the 

effective power of the fall-off of R as a function of xAB. Defining an 

effective slope via 

(26) 

then as XBA + x[B,A(c)] (i.e.' XBc+ 1) 

Since SBc << SBA for c «A, and~~ 0.4, it is clear that Seff will 

be much smaller in general than the predicted slope SBA in the SB model. 9 

Also significant is that Seff now has an explicit energy dependence due 

to that of x[B,A(c)], as in Fig. V. Therefore, the frozen cluster 

model, qualitatively at least, has the behavior observed in Fig. IV. 

Equations (23,24) show explicitly that a given cluster c contributes 

to R only in a restricted range 0 ~ xAB ~ x[B,A(c)] < 1. This range 

* * decr.eases for larger cluster sizes c; for c' < c, we expect PBc, < PBc 

and x[B,A(c')]< x[B,A(c)]. If we consider a pion with a fixed XAB' 
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the minimum size cmin of a cluster that can produce a pion with that 

momentum is determined by x[B,A(cmin)] = XAB. The fact that different 

clusters may contribute to different parts of phase space has also been 

pointed out in Refs. (11) (where the degree of cumulativity is c . ). 
m1n 

It is clear from Fig. V, that much of the 180° data shown in Fig. IV 

lies in the kinematic range of small clusters. We therefore show in 

Fig. VI (dashed curves) the fit to the p + Cu + n (180°) + X data 

with c = 1 and 2. 

While the slopes are much closer to the slopes of the data than 

is the predicted S(pCu) = 379 of the SB model in eqn. (17), the data 

extend to x values larger than this frozen cluster model permits. 

Similar results were obtained with a clusters (c = 4). In fact, we 

find that no combination of frozen clusters can account quantitatively 

for the data. 

We therefore conclude that for these values of xBA the model of 

Fermi motion in both eqn. (8) and eqn. (18), illustrated in Figs. 

IIa,b, is inadequate. What Fig. VI shows is that additional Fermi 

motion, not included in eqns. (8,18), is needed to explain the range and 

slope of the data. In the next section we introduce a phenomenological 

distribution p(p) to account for that additional Fermi motion. 
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V. PHENOMENOLOGICAL FERMI DISTRIBUTION 

A natural way to provide additional Fermi motion in the cluster 

model is to give the clusters themselves Fermi motion. Physically, 

such a Fermi motion arises from the interaction of a cluster with the 

remaining spectator nucleons as illustrated in Fig. lie. We thus define 

a phenomenological pseudo-probability distributions pc(p) that charac

terize the momentum distribution of clusters. The pc(p) are phenomeno

logical since no attempt is made here to calculate them from diagrams 

as in Fig. IIc, and they are pseudo-probabilities for the same reasons 

as GA(p) are pseudo-probabilities, i.e. because of the neglect of final 

state interactions in hard scattering models as used here. 

The internal momentum of the cluster must then be folded into 

eqns. (23, 24). However, an unnecessary complication is introduced if 

a full three dimensional folding is performed. That is the k1 de-
9 pendence of the pion production rates. In this paper we have con-

centrated on the longitudinal momentum dependence of those rates by 

focusing on 7T elab ~ 0° and 180°. No attempt has been made to discuss 

finite k1 pion production. However, if a full three dimensional folding 

of cluster motion is carried out, the k1 dependence of the rates in 

eqns. (9, 23, 24), as well as the xAB dependence would be needed. 

Since Pc is a phenomenological distribution and the most important 

effect of folding for 0° and 180° production is motion along the beam 

axis, we avoid the uncertainties of the p1 dependence by restricting 

the folding to one dimension along the beam axis. Therefore, the rates 

including internal cluster motion are computed via 
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00 

·100 dp, 
(28) 

= 

x {8(1-x[B,A(c)]) 8(x[B,A(c)] -xBA)} 

Pmin SBc r dpz pc (pz) [l-xBc (xBA)] (29) 

)Pmax 

The extra constraint introduced into eqn. (28), 8(1-x[B,A(c)]), insures 

that the absolute kinematic bound on the pion momentum in the BA CM, 

* p ax' is not exceeded; this determines p . The other constraint, m · max 

8(x-xBA), requires xBc<l and determines the minimum Fermi momentum, 

p . , which can lead to a pion with the xBA of interest. A similar one m1n . 

dimensional folding of eqn. (24) will yield the pion production rate for 

8lab "' 0°. We note that for large xAB, Pmin and Pmax are generally 

negative. We will consider the relation of p . in eqn. (29) to the mln 

~in of Refs. (7,8) and to the concept of quasi-two-body scaling in 

Section VI. 

The Fermi motion included in eqn. (28) is "minimal" or kinematic 

Fermi motion since we do not average over the energy dependence of the 

elementary NN cross sections. ~e are only folding over the Pz dependences 

of the xBc variables which arises from the dependence of the Lorentz 

transformation to the Be CM from the BA CM and the dependence of 

* p Bc(n)max in eqns. (6,7). 

We consider here two possible forms P (·p ) that appear in the 
c l 

literature, both of which are independent of c. The first is a Gaussian 

form as observed in projectile fragmentation experiments of Greiner 
22 et al. , i. e . , 
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Pc (p z) a: exp [ -p;/2 oz 
2

] (30) 

where oz:::: 130 MeV/c for all light clusters c_~ 2. For protons (c = 1), 

the width as determined in Ref. (22) and as estimated from a harmonic 

oscillator shell model is smaller, oz ~ 70-90 MeV/c. However, we will 

use oz = 130 MeV/~ for all clusters c ~ 1. As we shall see the data 

seem to require even a larger value of oz. The second form is an 

exponential suggested in Refs. (7,8), 

(31) 

where k ~ 100 MeV/c. 7 (This k is somewhat larger than the k ::; 70 MeV/c 
0 0 0 

value used most recently by Ref. (23)). 

The results of the Gaussian folding for a single nucleon cluster 

(c = 1) are shown in Fig. IVa and those of the exponential folding are 

shown in Fig. IVb. In Fig. VI we show for comparison the results with 

no Fermi motion. Note again that normalizations in eqn. (28) are not 

determined, and we are interested here only in shapes of R. The remarkable 

result seen in Fig. IV is that this type of simple folding of the 

pp ~ n-x rate (eqn. (10)) accounts well for both the magnitude and energy 

dependence of the slopes of the data. The Gaussian form leads to slightly 

steeper slopes, while the exponential form (with k ~ 100 MeV/c) leads to 
0 

slightly flatter slopes. Overall, the exponential form seems to give 

the best fit. 

To investigate the sensitivity of R to the cluster aspect of the 

model in eqn. (28), we show in Fig. VII the results for deuteron and alpha 

clusters (c = 2 and 4). While the deuteron cluster model with exponential 

Fermi motion (and k still = 100 MeV/c) fits the data as well as single . 
0 

nucleon clusters in Fig. IV, the a clusters do not fit as well for low 

energies. Possibly larger values for k and a , or a different shape 
0 z 

are needed. Alternately, the SB model for the (unmeasured) pa cross 
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. (1 )19 . . sect1on, o ~ -x 1s 1naccurate. Neverthless, it is remarkable that 

for high energies the results seem to be insensitive to whether clusters 

with c = 1, 2 or 4 are involved. For energies E ~ 2 GeV/nucleon, only 

c = 1 and 2 reproduce the data in our model. We note that preliminary 

analysis of 1. OS and 2.1 GeV proton data6 indicates agreement with the 

predicted shapes in Fig. IVb for those energies. It is amusing to note 

that for E "" 300 GeV our model gives accidentally the same slope~ 400 

as SB. 

Having accounted for the p + Cu ~ n·(l80°) +X data, we turn now 

top+ d ~ TI- (180°) +X data of Baldin, et a1. 1 and Cochran et a1. 12 ,10 

These data are particularly interesting in that they indicate (see 

Fig. VIII) apparent scaling for 0. 7 < Tp < 8 GeV/nucleon in sharp constrast 

to the p + Cu ~ n-(180°) +X data. In fact, for this one reaction in the 

target fragmentation region, the SB model provides a good fit in constrast 

to the data in Fig. IV. The reason for this is simply that the target d 

only has two nucleons so that Fig. IIa can be expected to be more reliable 

than for Cu where 63 nucleons are required to interact coherently. 

As seen in Fig. VIII, the predicted curves from eqn. (28) with c = 1 

also reproduce the trend of the data. It is important to realize that 

within this model the energy dependence of the shape of R comes about 

purely from the Lorentz transformations involved in computing x[p,d(p)]. 

We refer to the scaling displayed in p + d ~ TI (180°) + X as only "apparent" 

since it results from the weak energy dependence of x[p,d(p)] , in con-

strast to the stronger energy dependence of x[p,Cu(p)] in Fig. V. There-

fore, apparent scaling in this reaction is a kinematical effect. We shall 

see below that the apparent scaling of B + A ~ TI (0°) + X is also kine-

matical in origin. 
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Before turning to the projectile fragmentation data, we note that 

6 -preliminary analysis of the data on a + Cu + rr (180°) + X at 1.05 and 

2.1 GeV/nucleon also agrees with the shapes predicted from eqn. (28) and 

shown in Fig. IX. 

We therefore find that all available data on backward rr production 

can be accounted for by eqn. (28) with c = 1, or 2 and the exponential 

fonn for p( R) in eqn. (31). z 

A critical second test of the above model is pion production in 

the projectile fragmentation region, where the SB model is known to work 

well. We therefore want to find out if eqn. (28) also reproduces those 

data and if so, why the SB model works in this region but not in the 

backward n region. 

In Fig. X, the data at Papp et a1. 1 on p + C + rr (2.5°) +X is 

shown together with the results of eqn. (28) (A and B now being inter

changed in this projectile fragmentation region). Note that the 

xpc ~0.6 shapes are indeed reproduced, but for smaller xpC substantial 

deviations are found (note too the large deviation between fit SB and 

:t:i t A for xpC ::;0. 4) . In the small xpC region, rescattering, pion absorbtion, 

and charge exchange, not included in a hard scattering model like eqn. (28), 
24 can be expected to decrease the results greatly. As expected, the 

main deviations in fact occur for the region of xpc's where the ~33 
dominates (see Fig. III inserts) and the pions have the highest 

scattering and absorbtion cross sections. The deviation and ~33 
dominance is even more apparent for rr+ (Fig. XI) where 

d2o/dndk[pC + rr+x] data actually show a peak, at the resonance energy. 
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The remarkable point to note in connection with Figs. X,XI is agalll 

the apparent scaling that follows from eqn. (28) in the projectile frag-

mentation region in agreement with data. That this apparent scaling is 

again only a kinematical effect can be seen in Fig. V which shows that 

x[p,C(p)] in the projectile fragmentation region is a very weak function 

of energy, and that x[p,C(c L 1)] is very close to 1. The additional 

folding in eqn. (28) simply extends the range of the cluster contribution 

a little closer to 1. This is in sharp constrast to the target fragmentation 
A 

region where x[p,Cu(p)] (see Fig. V) is small thereby making the influence 

of the folding in eqn. (28) much larger. Consequently, the shapes of 

the rates R in the projectile fragmentation region are rather insensitive 

to the specific dynamical model of GA(p) or p(p). In fact all three 

models in Fig. II give essentially the same agreement with data in the 

high ~C region in Fig. X. 

Turning to the dC ~ n (2.5°)X and aC ~ n. (2.5)X data in 

Figs. XII, we again find that our model leads to apparent scaling as seen 

in the data. For these reactions the shapes of the data are somewhat 

better reproduced with the Gau.ssian folding than with the exponential 

folding. However, we emphasize that we have made no attempt to find 

the single best function p(p) to account for all reactions in the 

projectile and target fragmentation region. Our philosophy has been 

simply to take p(p) from other sources in eqs. (30,31) as the input to 

eqn. (28). Since most data fall between the Gaussian and exponential 

fits, we expect that there is an optimal choice for p(p) bounded by 

eqns. (30 ,31). 
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VI. RELATION TO QUASI -1WO BODY SCALING8 (QTBS) 

In this section we compare our model, eqn. (28), with the hard 

scattering models of Amado and Woloshyn7 and Frankel et al. 8 ' 23 that 

have led to the concept of QTBS. The main differences are (i) the choice 

of the kinematic constraint &Yin eqns. (4,5) and p . , p in eqn.(28), · m1n max 

(ii) the parameterization of the elementary pp -+'IT X rate, and (iii)· the 

way the integration in eqn. (28) is approximated. 

The kinematic constrain in Refs. (7,8) follows from assuming that 

final state interactions can be neglected, as in Fig. Ib, and that the 

exchanged (virtual) cluster p' is not part of the energy constraint. 

For pion production, the minimum cluster momentum Pc = p'= 
23 

necessary to produce a pion of momentum k is determined by 
7T 

- 2 . 2 +;' .. (p-B - krr. + k . ) + m m1n B+c 

k. m1n 

+ 1{2 .. + mA2 ' (32) ··nnn -c 

where pB is the beam B momentum, cis the cluster size, A is the target,. 

mB+C = (B+c)m, and_ mA-c = (A-c)m. Equation (32) expresses simply energy 

conservation for B "sticking" to c, but without other final state inter-

actions. 

On the other hand, if the theory were more realistic and included 

final state interactions, then the rr,B,c, and A-c in eqn. (32) would 

also be virtual and the specific constraint of eqn. (32) need no longer 

apply. In this case it seems more consistent to build a model which 

simply imposes the energy constraint on the B + c collision vertex 

.• 
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directly and thus requires somewhat smaller values of internal nuclear 
~ ~ ~ 

momenta p' = p = p . : c m1n 

// 2 2 
p + m / min c 

;k' 2 
= / 'IT 

2 
+ m 

'IT 

(33) 

Of course if one had a complete theory, as opposed to simple hard 

scattering models, then all final state interaction would be included and 

overall energy conservation would be insured. In the present cases, how-

ever, we believe that eqn. (33) is better-particularly when integrated 

with the analytic Be+ nx rate, as in eqn. (29), and when combined with 

the requirement that k be less than the maximum momentum in that direc
TI 

tion from the B + A + n + X reaction. 

Both p . and k . are shown in Fig. XIII for different beam energies m1n m1n 

as a function of xpCu and (kn)lab" Here the positive values refer to a 

direction opposite to. the beam. Although p . and k . both cross zero m1n m1n 

at roughly the same pion momentum, p . < k . for the important large m1n m1n 

pion momenta. 

We now come to the second and third points, namely, the parameteriza-

tion of pp + nx and the approximation of the integral in eqn. (28). In 

Ref. (23) the arguments of Refs. (7,8) for proton inclusive rates were 

extended to pion inclusive rates. The main assumption is that the 

elementary rates inside the integral are slowly varying functions of the 

cluster momentum and can be pulled outside the integral. Then for 

k . ~ k ~ 100 MeV/c, the integral in eqn. (28) can be approximated m1n 0 
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R a: p (k . ) 
mln 

a: e 

-26-

- k . /k mm · o (34) 

First it is clear that eqn. (34) can be applied only for the limited 

range of data where k . > k . mln 0 
As seen from Fig. XIV, that range is 

strongly energy dependent and is bounded below by a minimum x Cu value, . p 

x . ::: 0.28 for 730 MeV, 0.17 for 2.1 GeV, and 0.08 for 7.5 GeV data. mln 

From Fig. IV this range of applicability is seen to cover only about a 

half of the xpCu range of the available data. In the projectile frag

mentation region the range of applicability is even more limited with 

x . ~ 0.9 for p + C ~ n + x at 2 GeV. mm · 

We have verified though that in the limited (energy dependent) 

range of its applicability, eqn. (34) does provide a reasonable fit to 

the shapes of these data. 

There is however an important caveat in the interpretation of k
0 

in eqn. (34) that can be seen from eqn. (28). This concerns the mo

mentum dependence of the elementary subprocess in eqn. (28). If we 

approximate R by exp(-1Pminl/k
0

) for IPminl ~ k
0 

(replacing kmin by pmin) 

then we find that the slopes predicted are flatter than those obtained 

with k . and thus agree less well with the data. However, including the mln 
momentum dependence of the pp ~ nx rates leads to the slope observed 

in the data. We therefore conclude that this strong effect of the mo-

mentum dependence of the elementary rates must be buried phenomenologically 

in eqn. (34). Therefore not only final state interactions, as pointed 

out in Ref. (14), but also off shell effects and the momentum dependence 

of the elementary pion production rates cloud any simple interpretation 

of the exponential form in eqn. (34). 
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Quasi-two body scaling seems then to be a remarkable phenomenology
26 

over its limited range o:f applicability which is however difficult to 

interpret theoretically. 
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VII. SUMMARY AND CONCLUSION 

Our main result is the success with which the shapes of the inclusive 

pion production cross sections in both the projectile and target frag

mentation regions are accotmted for by the simple hard scattering 

model given by eqn. (28). A simplifying - but powerful - feature of this 

model is the invariant parametization of the pp + rrx and pc(cluster) +rrx 

rates in terms of the Feyrunan scaling variable "x ". In this regard we pc 
follow closely the work of Schmidt and Blankenbecler. 9 In particular, . 
we find that the magnitude as well as the energy dependence (i.e. non-

scaling) of the slopes of the nucleus-nucleus pi production cross 

sections are correctly obtained by simply averaging elementary pp + rrx . . 

rates over internal nucleon momenta with an exponential pseudo-Fermi 

distribution in eqn. (28). The shapes of the cross sections from 700 

MeV to 7.5 GeV can be so explained. 

Although elementary nucleon-nucleon collisions provide one ex

planation, we find that projectile - light cluster collisions also 

provide a possible explanation of these shapes. Specifically, the data 

in the target fragmentation region (e~ab ::;; 180°, Ar » Ap) rule out pro

duction from large clusters, such as the c = Ar model of Ref. (9). 

However, production from 2 or 3 nucleon clusters is compatible with 

the data as long as these clusters are assumed to have the same Fermi 

motion distribution. At present we consider the dependence of the 

Fermi distribution on cluster size an open question. The measurements 

of Greiner et a1. 22 tend to indicate very little c dependence, in 

contrast to the models considered in Refs. (12, 13) which assume in-

creasingly broader distributions with cluster size. 
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After non scaling in the target fragmentation region was analyzed, 

we investigated why there was "apparent scaling" of pion production in 

the projectile fragmentation region. 1 We find that this apparent scaling 

is largely due to kinematic (Lorentz transformation) effects. As 

illustrated in Fig. V, the projectile fragmentation region is rather in-

sensitive to the dynamical details of the production mechanism. In fact, 

any cluster c, including the c = Ar model of Ref. (9), can explain the 

shape of these data at xAB ~ 1. 

Since exponential tails to Fermi distributions have been receiving 

much attention lately7' 8, 23 and since they also appear to be important 

in relativistic heavy ion collisions, it is essential to understand 

some of the physics buried in the empirical distribution p(k)~exp( -k/k
0

) 

that was used in eqn. (28). After analyzing Fig. Ia and b and in-

vestigating the range of momenta which may contribute in each, it be-

came clear that p(k} is not proportional to 
~ 2 

I~A(k)j , the real prob-
~ 

ability of finding a nucleon of momenta k in the nucleus. The complex 

final state interactions, as well as the unknown off-shell pp ~ TIX 

amplitudes are mixed in p(k) in a way which does not permit an obvious 

separation of the structure and reactive parts. We are therefore forced 

to regard p(k) as a phenomenological function that appears to be uni-

versal for the range of reactions studied so far. 

The primary value of the model presented here lies in its ability 

to gauge the relative importance of (1) simple kinematics (multiple 

Lorentz transformations), (2) production on multi-nucleon clusters 

(or correlations), and (3) Fermi motion within the nucleus. In 

addition, this model has the purely phenomenological value of 

succintly summarizing the shapes of a wealth of experimental data. 
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It is clear that much more theoretical work is needed to understand why 

such a simple form for p(k) and the hard scattering model work so well 

for pion production from both nucleons and clusters. In any case, we 

agree with Ref. (14) that a simple,·unambiguous physical interpretation 

of p (k) is not as yet possible.· 

To calculate absolute normalizations, extensions of the present model 

are obviously required. In this paper we have focused only on the 

shapes of the cross sections in order to keep the analysis of the 

essential physics as simple and transparent as possible. One existing 

approach that does provide normalizations and does include the results 

of the hard scattering model in lowest order is the intra-nuclear cascade 

model with multiple scattering and absorption. 25 However, the price paid 

in such models is a large number of assumptions combined with great 

numerical complexity, from which the relative importance of different 

physical effects is often difficult to extract. 

For the future, we suggest that experiments on pion production con

centrate on the target fragmentation region with beams of low energy 

E < 2 GeV/nucleon (particularly < 700 MeV) and of course look for pions .-
with as large momenta as possible. As demonstrated in Figs. IVa and b, 

the predictions of the theory are more sensitive to reaction dynamics 

and nuclear structure at the lower energies. In this regard we note that 

since relativistic projectiles up to 56Fe are now available, the target 

fragmentation region could perhaps be more easily studied via the 

Ap + Ar-+ 1r (0°) +X reaction where Ap(Ar,Fe) »~(p,d). 
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Other experiments of considerable interest would be 

p +A + rr(0°, 180°) +X with light targets, A= d,a etc., since the 

elementary rates, e.g. (l-x)3 '~ used in a hard scattering model such as 

eq. (28) have been tested only for large A. Finally, we note that the 

elementary p + p + rr + x rates also need further experimental study and 

compilation in the energy range between 0.5 and 3 GeV. 
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APPENDIX 

We note here for convenience the Lorentz transfonnation relating 

x.AB and xBc in eqs. (22-25, 28, 29). We consider only the case when 

the pion momentum and the cluster c lab momentum Pc are parallel to the 

beam momentum pB. The target A is assumed to be at rest in the lab. 

Then for pions produced in the projectile (+),target (-) fragmentation 

regions 

* p.AB(TI) 
= ......,..*-- (A.l) 

PBc(n) 

where BABe is the relativistic velocity difference of the·Bc center-of

mass minus the AB center-of-mass velocities, y.ABc = (1-S~c)l/2 , and 

* p.AB(n) is given by ~qn. (6). The expression of xAB(xBc) is of course 

given substituting A++c above and changing±.++ .. The maximum momentum 

fraction in the BA frame is then given by eqn. (22) for the target frag-

mentation region 

and by eqn. (25) for the projectile fragmentation region 

f[B(c),A] = yBAc{p:C(n) - SBAc ~~(n) + m;};p:S(n) (A.3) 

where BBAc is the velocity difference between the Ac center-of-mass 

and the AB center-of-mass. 
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FIGURE CAPTIONS 

Fig. I. (A) General Feynman diagram for p +A+ 1T + X in hard scattering 

models. 1)JA is the nuclear vertex function, T 1 the off-shell pp 1TX 

1T production amplitude, and ~ is the distortion factor which includes 

all final state interactions. In (B) the final state interactions 

are neglected and T 1 is evaluated on-shell. 
PP 1TX 

Fig. II. 'fnree models of the pseudo-probability distribution for 

finding a nucleon with momentum p within the nucleus. 

(A) The completely coherent model used in Ref. (9). (B) The 

frozen cluster model in which "c" nucleons act coherently. 

(C) The cluster model with Fermi motion in which the "c" coherent 

nucleons are given a OM motion of their own. 

Fig. III. The invariant cross section for pp -+ ~ X versus the radial 

fractional momentum xR = x The circles are the 2. 9 GeV data of . pp 

Melissios et a1. 19 and the boxes are the 5.7 GeV data of Gellert. 16 

The solid curves are the fits to these cross sections given by 

eqns. (10,11) and used as input to our model, eqn. (28). The dashed 

curve is the fit of Ref. (9) to 6 and 12 GeV data. The inserts, which 

* show do/d~k as a function of the OM pion kinetic energy T , reveal the 
1T 

1133 dominance. 

Fig. IV. The invariant cross section for pCu -+ 1T (180°)::'(. vs xpcu· 

The 730 MeV data are from Cochran et al.,2l,lO the 5.14 and 7.50 

GeV data are from Baldin et a1. 11 The curves are calculated with 

a model employing elementary pp-+ TIX collisions (c = 1 in eqn. (28)). 

In (A) a Gaussian shape is used for the pseudo-Fermi distribution, 

in (B) an exponential shape is used. 
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Fig. V. The dependence of x[B,A(c)], the pion fractional momentum xAB 

for which xBc = 1, for pion production from various 

. frozen "clusters" within the nucleus. The lower curves are for 

pions in the target fragmentation region; the upper curves 

are for the beam fragmentation region. The vertical bars show the 

range of xpA values covered by Refs. (6,11). The target fragmentation 

region is clearly much more sensitive to clustering aspects. 

Fig. VI. The invariant cross sections for pCu -+ 7T -. (180°)X calculated 

in a model employing elementary pd -+ TIX collisions (A) or elementary 

pp-+ TIX collisions (B). The dashed curves are for production on 

"frozen" clusters. The solid turves are for production on clusters 

with exponential Fermi motion. 

Fig. VII. Invariant cross section for pCu-+ 7T (180°)X calculated in 

a model,. eqn. (28), employing elementary pd -+ TIX collisions 

(A) or elementary pa-+ TIX collisions (B). The dashed curves are 

for exponential Fermi motion of the clusters, the solid curves are 

for Gaussian distributions. 

Fig. VIII. Invariant cross sections for pd-+ 7T- (180°)X calculated in 

our model employing elementary pp -+ TIX collisions. Both the 

calculations and the data [730 MeV- Ref. (21,10); 

5.14, 7.5 GeV- Ref. (ll)] show "apparent" scaling for this light 

target - in contrast to the previous figures. 

'" 
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Fig. IX. Invariant cross section for aCu ~ n (180°)X vs. xaCu for 

1.05 and 2.1 GeV/N beam energies calculated in a model employing 

elementary ad ~ nX f1Jld ap ~ nX collisions. The preliminary data of 

Ref. (6) tend to fall within the solid and dashed curves. Norm-

alizations are arbitrary. 

Fig. X. Invariant cross section for pC ~ n (2.5)X calculated with 

elementary pp ~ nX collisions parameterized in terms of the "SB" 

and "A" fits of Fig. III. Only for xpC > 0.6 do these fits agree 

with (l-~c) 3 . Data are from Ref. (1). 

Fig. XI. The invariant cross section1 and the doubly differential cross 

section for pC. ~ TI+ (2.5°)X calculated with the elementary 

pp ~ nX parameterization of Fit B in Fig. III. d2o/d~dk shows 

the 633 dominance more clearly than the invariant cross section. 

Fig. XII. The invariant cross section for dC ~ TI- (2.5°)X and 

ac·~ n-(2.5°)X as calculated in the model employing elementary 

pC ~ n-X and dC ~ n-X collisions. The dot-dashed curves is 

calculated with no Fermi motion. The data are from Ref. (1). 

Fig. XIII. Minimum Fermi momentum p . and k . of a nucleon inside the m1n m1n 

nucleus necessary to produce a pion in the reaction p + Cu ~ n (180°) 

* +X at a given x C and k in the pCu center-of-mass. Solid curves p U TI 

show p. from eqn. (33); dashed curves show k. of Ref. (23) from m1n m1n 
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eqn. (32). Incident kinetic energies of 0.73, 2.1, 7.5 GeV are 

shown. Positive values correspond to momenta opposite to the beam 

* direction. Fermi motion dominates in the range of xpeu and krr for 

which kmin ;:: + 100 WeV/c leading to eqn. (34). 
.. 
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