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DEDICATION

To all who wondered about not only when but if, especially
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ABSTRACT

Many quantitative studies of relativistic cosmic ray propagation

exist in which "standard" values for the input quantities are adopted

in an uncritical manner. In contrast, the major emphasis of this study

is on developing the proper set of formulae and error estimates for

each of the atomic and nuclear processes that govern the composition

of the cosmic rays between lithium and nickel. In particular, it is

shown that errors of approximately a factor of two exist in the

standard (Bohr) cross sections for stripping, that the correction

function from high energy photoionization needs to be introduced into

the standard cross section for radiative attachment, and that because

the half-life of a fast nucleus with at most one [-shell electron can

differ from the half-life of a neutral atom, several laboratory-based

values need correction. The framework used to assemble and correct

these quantities is a matrix formalism for the leaky box model similar

to that used by Cowsik and Wilson in their "nested leaky box" model.

It is shown that once the assumption of species-independent leakage

is introduced, the matrix formalism becomes virtually identical with

the standard exponential path length formalism.
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INTRODUCTION

The measurement of the charge composition and energy spectra

of relativistic cosmic rays permits a quantitative study of their

origin and propagation. Once the effects of interactions with the

interstellar medium are removed, the composition at the source can

be compared to the predictions of models. Thus, it is important to

include those processes that can change the composition from its

source value. For some elements, the difference between the charge

composition at the source and at the top of the atmosphere can be

quite dramatic. The elements Li, Be, and B provide a classic example

of this difference. At the top of the atmosphere the ratio (Li + Be + B)/

(C+O) is quite large (~O.25) and yet spectroscopic observations

(cf. Cameron 1973 and Meyer and Reeves 1977) and the fact that all

three elements are destroyed in stellar interiors with T ~ lO6K

indicate that the same ratio should be ~ 0 at the source.

The assumption that the ablIDdances of Li, Be, and B at the top

of the atmosphere reflect the effects of the intervening medium has

been used in all models for cosmic ray propagation. The original

equilibrium model of Bradt and Peters (19~O) sought to explain their

ablUldances in terms of the cross sections for production from the

fragmentations of such heavier parent nuclei as C and O. When that

model predicted too much Li, Be, and B (relative to C and 0), their

abundances were used to determine the mean amount of intervening

matter. The concept of using one thickness for the slab of intervening
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matter was most fully developed by Fichtel and Reames (1966) and CaIne to

be called the slab model. When a single thickness failed to explain

both the abundances of Li, Be, and B and the ablIDdances of the elements

in the range 19 ~ Z ~ 25, the slab model was extended to the exponential

path-length model by Cowsik et ale (1967). In this model the abundances

of Li, Be, and B were used to detennine the mean matter thickness. This

model was given a better theoretical justification and the new name of

the "leaky box" model by Gloeckler and Jokipii (1969). Once again, the

abundances of Li, Be, and B were used t..o determine the mean amount of

matter traversed by primaries before "leaking out of the Galaxy."

For the elements between lithium and nickel many quantitative

studies of cosmic ray propagation exist (Shapiro et ale 1975, Garcia-

Munoz et ale 1977, Raisbeck and Yiou 1977, Hagen et ale 1977, Webber

et ale 1977) in which "standard" values for the input quantities are

adopted in an uncritical manner. In contrast, in this study the

major emphasis is on developing the proper set of formulae for the

atomic and nuclear processes that govern the composition. In particular,

errors in the standard rates of decay of lIDstable nuclei and in the

cross sections for the attachment and stripping of atomic electrons

are pointed out and corrected.

The framework used to assemble and correct the input quantities

is a matrix formalism for the standard leaky box model that is similar

to that used by Cowsik and Wilson (1973, 1975) in their "nested leaky

box" model. The major difference is that the "nested leaky box" model

requires a product of two modification matrices (one for each
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confinement region) ,while in this work only a single modification

matrix is required. In addition, this work provides a much more

detailed discussion of how the matrix formalism connects with other

methods and shows how to obtain the minimal set of isotopes that

requires explicit treatment.
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I. Matrix Fonnu1ation

(a) General considerations

The basic transport equation for cosmic ray nuclei is a second

order partial differential equation (cf. Ginzburg and Syrovatskii 1964).

However, if one imagines that the nuclei are confined in some region

within which they are lUlifonnly distributed and such that their frequent

encolUlters with the boundary have a low probability for escape, their

transport equation becomes somewhat simplified. Further simplification

is possible at energies above 1 GeVjnuc1eon because the processes of

energy loss and solar modulation have a negligible effect. In

particular, the equation for cosmic ray nuclei that incorporates the

change with time of the differential number density N(Z ,A,z) (T) of

particles having kinetic energies per nucleon between T and T + dT that

also have atomic number Z, mass number A, and net charge z is given by

(cf.G10eck1er and Jokipii 1969; Cowsik and Wilson 1973, Eq. [2.1]) the

expression

dN(Z ,A,z) (T) = 1: N
(Z A Z) - ~a (Z ,A) v N(Z ,A,z)d T

)
' ,

t (Z,A,z

+ ~
(Z',A') "'\J fa (Z ,A) , (Z I ,A') (T, T') v'N (Z' ,A' ,z,/T' )dT I

1 N + ~
+ S(Z,A,z) - yr * (Z,A,z) (Z,A,z) (Z",A")

-- N(Z" ,A" ,z")

(1)
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att
N strip N- Il..T 0" V - n 0" v

1:1 (Z,A,z) (Z ,A,z) H (Z ,A,z) (Z ,A,z)

(1)

att strip
+ nH O"(Z,A,z+l) v N(Z,A,z+l) + nH O"(Z,A,z-l) v N(Z,A,z-l)

where

T is the kinetic energy per nucleon;

liT (
.., A ) is the leakage probability per unit time for (Z ,A,z) ;'--, ,z

nH is the number density of hydrogen in the containment volume;

O"(Z,A) is the reaction (or inelastic) cross section per hydrogen

atom at energy T;

O"(Z,A), (Zf ,Af) (T,T') is the partial cross section per hydrogen

atom per unit energy interval for the fonnation of a nucleus (Z ,A) at

energy T from the interaction of a proj ectile nucleus of (Z f ,A') and

energy T f ;

S(Z,A,z) is the differential source injection rate per unit

volume at the energy T;

v is the velocity;

2 2 - k
Y is the Lorentz factor (1 - v Ic) 2;

C 1S the velocity of light;

T*(Z,A,z) is the mean-life (not half-life) for radioactive

decay in the rest frame of a nucleus (Z ,A) that has Z-z electrons

attached;
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0(~~A, z) is the cross section per hydrogen atom at the energy T

for an electron attachment by a nucleus (Z,A) that reduces its net

charge from z to z-l (0 if z = 0);

0(~:i~z) is the cross section per hydrogen atom at the energy T

for stripping an electron off a nucleus (Z,A) and increasing its net

charge from z to z+l (0 if z = Z).

Note that the first three terms of Eq. (1) represent leakage losses,

interaction losses, and interaction gains, respectively. If (Z ,A) is

an unstable parent nucleus, the fifth term represents losses due to

radioactive decays. If (Z,A) is a daughter nucleus, the sixth term

represents its gains through radioactive decays. Although not nOTIIlally

included, the last four terms incorporate the atomic processes that

govern the net charge. That is, the seventh (eighth) terms represent

the losses due to an increase (decrease) in the number of electrons

attached. Similarly, the last two tenns represent gains because of

an increase or decrease in the ntmlber of electrons attached. These

last four terms become important for nuclei that can decay via electron

capture. 1 Lastly, note that it is common to introduce the definitions

x = TIH nH vt,

(2)

Xo=TIH~VT

IThroughout this work, the term electron capture will be lL"ed to mean

the nuclear decay process. The tenn electron attachment will be used

to mean the atomic process by which an electron becomes bound to a
nucleus.
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into Eq. (1), where TIE is the mass of a hydrogen atom. However, this

substitution is not useful whenever, as in this work, long-lived decays

are to be explicitly included in the formalism.

It is commonto make two further approx~ations before using

Eq. (1). The first is to assume that those events in which the cosmic

ray suffers an inelastic collision, but remains intact, constitute a

negligible fraction of the total reaction cross section, or equivalently,

that the fragmentation cross section is approx~ately equal to the

reaction cross section. More explicitly, in this work it will be

asslDIled that

( f (J (Z,A) , (Z,A) (T,T') dT.) fa (Z,A) (T) « 1
(3)

where the numerator is just the cross section for inelastic-yet-intact

events. The second approximation stems from the fact that for

projectiles and fragments with A : 5, the fragments have very nearly

the same velocity as the projectile (cf. Heckman et ale 1972 and

Greiner et ale 1975). This means that the differential cross section,

a(Z,A) ,(Z' ,A,)(T,T'), is concentrated at a kinetic energy per nucleon,

T, close to that of the projectile. Thus, since this workdeals with

the elements between Li and Ni, the delta function approximation

(Ginzburg and Syrovatskii 1964) which assumes

a(Z,A) ,(Z' ,A') (T,T') ~ a(Z,A) ,(Z' ,A,)oCT-T')
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can be used where a(Z,A),(Z' ,A') is now the integrated cross section for

producing (Z ,A). With these approximations, Eq. (1) becomes a simple

algebraic relationship describing the transmutations cosmic rays

undergo while propagating from the sources.. That is, considering the

various N (Z ,A,z) 's and S (Z,A,z) 's as components of column vectors,

the equation has a matrix form.

Before making an explicit definition of the matrices, it is

convenient to introduce some further notation. Let n. be the total
1S0

number of species in the propagation analysis. Next, let Nand S be,..., '"

column vectors of length n 1 whose components provide the elementale em

density and injection rate per unit volUlle, respectively. That is,

~ and ~ represent the results of keeping Z fixed and stm1II1ingover A

and z. Also, let 8 be the rectangular matrix of dimension n. by1S0

n 1 whose (i,j)-th entry contains the fraction of the j-th componente em

of N that belongs to the i~th component of N(Z,A,z). Similarly, let

v be the rectangular matrix of n. by n 1 which expands S tp S (Z A z)
.

1S0 e em "', ,

Tnus with these definitions the quantities N(Z ,A,z) correspond to

the column vectors 8~ and v~, respectively. Strictly speaking, 8 and v

are two-dimensional matrices; however, they are also slinilar to column

vectors in that each has a maximum of one non-zero entry per row and the

fonn sketched below:
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With the above definitions Eq. (1) can then be written in the

more compact form

d .

dt l£~)= Mv(£~) + \)~ (5)

where in order to permit a rapid conversion from density to flux one

power of v has been "removed" from the modification matrix M and where

M is the sum of the fragmentation and leakage matrix, F; of the decay

matrix, D; and the electron attaChment and stripping matrix, E. That is,

if (eN). corresponds to N
(Z A )

then
""'"' 1 , ,Z

M.. = F.. + D.. + E. .
1) 1) 1) 1)

(6)

where

-(T; + ~ 0(Z,A))
, if i = )

F. .=
1)

~ ° (Z ,A) , (Z' ,A') , if i :f j and j corresponds to (Z' ,AI) (7)

0 , otherwise

1
- v

YT*(Z,A,z)

, if i = j, (Z,A,z) unstable

D. .=
1)

+ 1

YT*(Z",A",z")v
if i :fj, (Z",A",z") decays to (Z,A,z)

and j corresponds to (Z" ,A",z") (8)

0 , otherwise
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where * denotes a non-zero entry.

As will be seen in § I (b) and III, the introduction of the E

. and v arrays permits a clearer distinction between those aspects of

a propagation analysis that take place at the species level and those

that occur at the element level. Finally, note that because at a

given energy/nucleon the sum of all of the fractions must yield unity,

E and v satisfy the normalization equations

n.
1.50

~
i=l

and

EiK = 1 (4a)

niso

~ viK = 1i=l
(4b)

for each K=l,...,nelem.

nelem
r
* 0

:\
* 0

0 * \

,

niso,I

0 *

0 *
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att strip
- [nHcr(Z ,A,z) + ~cr (Z ,A,z)]

if i = j

E..=
1J

'strip
+ nHcr(Z ,A,z -1)

, if i f j, j corresponds to (Z,A,z-l) (9)

att
+ nI-f(Z,A,z+1)

0

, if i ~ j, j corresponds to (Z,A,z+l)

, otherwise.

Finally, note that if a steady state has been reached within

the confinement region, i.e., if the gains and losses are balanced

for each species, then Eq. (5) says

:Mv€~+\>S =0 (10)

(b) Leaky box model

The leaky box model assumes that the entire Galaxy acts as the

confinement region and that a steady state has been reaChed. Once its

parameters ~ and T(Z,A,z) are specified (or determined), Eq. (10)

tells how to derive the isotopic source abundances from the isotopic

abundances at the top of the atmosphere.

Of course, most of the present cosmic ray observations above

1 GeVjnucleon provide fluxes at the elemental, not isotopic, level.

That is, in the notation of Eq. (10), observations provide a v~, not

both € and vN. Thus, some assumption must be made about the isotope

fractions at either the sources or the top of the atmosphere. The

typical assumption (Tsao et ale 1973) is that the sources inject fully

stripped isotopes and that the isotope fractions at the source (the
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non-zero components of the matrix v) are given by the Cameron (1973)

compilation. For example, this assumption would fix the l2C/13C and

160/170 ratios at the source at their "universal" values but would

not make any asslUIlption about the C/O ratio at the source. Once an

assumption for \) has been made, the measurements of v~ and the

measurements and estimates for the components of M can be used in

Eqs. (4) and (10) to solve for E and S as a function of the parameters

nH and T (Z ,A,z) .

(c) Connection between matrix and path-length formulations

Since cosmic ray propagation calculations are often discussed

in terms of particular path-length distributions, this section will

make the connection between the matrix and path-length formulations.

First, however, note that as shown below the path-length formulation

can treat only those cases in which, at the same kinetic energy per

nucleon, the leakage is independent of species. No such restriction

occurs in the matrix formulation.

(i) Slab Model

As noted above, the slab model was an early attempt to

incorporate the effects of nuclear interactions with the interstellar

medium. In this model these effects are obtained via the approximation

that all cosmic rays must pass through a single tmiform slab of material

that neither creates nor "leaks" particles. In this way, Eq. (5) can

be treated as an initial value problem for the column vector ~ = EN.

That is, 11 is the unique solution to the problem
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d1l

I

at = M'v 11t -

!J (t=o) = !Jo

T t >0

(11)

where M' (= (M+ ~)) is the modification matrix without leakage andTV

~ is the column vector that contains the injection density for each

species. At high energies M' is independent of t so that the matrix

solution of Eq. (11) is just

11= exp (M'vt) 11- -0 , ¥" t ? 0 (12)

00

where the matrix exp (M'vt) = 2:
n=O

(M'vt)n Inl .

Equation (12) and meaSurements of the abundances at the top of

the atmosphere can then be used to determine the (constant) time

interval, ts' between the injection and the detection of a cosmic

ray. This calculation is done by finding a value ts such that

[exp (-M'vt ) 11]" ~ 0, if i is any of the isotopes of Li, Be, and B.s '" 1

As shown by Ginzburg and Syrovatskii (1964), ~here is an

equivalent way of writing Eq. (12) that emphasizes the diagonal terms

and the time dependence. This alternate form will be useful for some

formal manipulations and is given by the equation

11. = A -d J
" t

1 ij e (13)



-14-

where d. is the diagonal term of M'v and the A.. are recursivelyJ 1J

defined in terms of the off-diagonal, diagonal, and initial values

of the isotopes heavier than the i-th isotope. Explicit values for

the A.. are not needed for this work; they are given in Ginzburg and
1J

Syrovatskii (1964).

(ii) General Path-Length Formulation

Even if the distribution of times, P(t), between the injection

and the detection of cosmic rays is not narrow enough to be approximated

by a single value, the observed density can often be written as

superposition of solutions to different slab models. That is, if
00

pet) is species-independent and is normalized such that~p(t)dt ~ 1,0

then II is given by (cf. Meneguzzi et ale 1975) the equation

00

11 ~ f r:!s(t)P(t)dt
0

(14)

where ~s is a solution to the slab model. equation (11)). Assuming

that the sources constantly inject the same initial composition~ Eq. (12)

can be used so that Eq. (14) becomes

r:! ~ [..( "'exp (M'vt)P(t)dt] r:!o
(15)

Equation (15) gives the most general form for the asymptotic (steady

state) cosmic ray density in terms of the distribution P, the elements

of MT, and the injection composition, II .~o
Note that it is the

requirement that P be a scalar function or, equivalently, the fact

that M' is not diagonal that does not permit the path-length to be

species-dependent.
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(iii) Leaky Box Model

As the name implies, in the leaky box model it is assumed that

the distribution of times between injection and detection stems from

the confinement region's leakage losses. More specifically, if the

leakage rate is a constant, T, and independent of the previous history

of the particle, then the equation

-1
PCt) = T exp(-t/T) (16)

glves the properly normalized distribution. This forn for P (t)

demonstrates why another name for this model is the exponential path-

length model.

With this definition of P, Eq. (15) becomes

00

Tj =(f exp0 [CM'- } I)vt ]
dt( ~o/T (17)

where I is the identity matri~. Us ing the power series definition

for the exponential operator, and Eq. (13) for the evaluation at the

upper limit, Eq. (17) becomes

T1 = -
(M' - ~I) -l T1 IT

~ T ~o
(18)

After reintroducing the definitions of €, ~, and M, Eq. (18) becomes

M v E N + T1 IT = 0
~ ~o (19)
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Equation (19) differs from Eq. (10) only in the way the steady

state source term is represented. In the matrix formulation (Eq. (10))

it is convenient to think in terms of a source injection rate per unit

volume so that the second term is written v~; while in the path-length

formulation (Eq. (19)) the steady state injection is determined by the

equivalent loss rate from the material, i.e., the density at injection

of each species divided by the mean time spent in the material. Thlli,

if the T of Eq. (10) is independent of species, the matrix formulation

becomes equivalent to the exponential path-length formulation.

(iv) Path-Length Distributions in grn/cm2

Radioactive decays are often treated in the limiting cases of

complete survival or instantaneolli decay. In these cases, the D matrix

(Eq. (8)) does not appear and it becomes convenient to introduce the

variables x and xo (see Eq. (2)) having the units of grn/cm2. For the

leaky box model, these substitutions result in the path-length

distribution

-1
pex) = Xo exp (-xix)0 (20)
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II. A Critical Review of Input Quantities

(a) Reducing the Number of Coupled Propagation Equations

In the quite general discussions of § I it was never necessary

to specify the actual number of isotopes and charge states that were

being explicitly treated by the formalism. The minimum size of the

column vectors and matrices can be determined by the requirement that

an isotope or charge state be truly "coupled". That is, those isotopes

or charge states whose N's (densities) are completely specified by

another N do not need to be included in the minimal set of coupled

equations.

(i) Can N(Z,A,Z-l) be eliminated?

The first reduction via the above requirement comes from the

fact that even though nuclei that are not fully stripped have been

included in the propagation equation, the inclusion can affect more

than one other N only when the nuclei decay via electron capture. This

claim is demonstrated most clearly by writing the steady state equation

for a nucleus (Z,A) having one electron attached. Then

dN N
dt (Z,A,Z-l)= 0 ~ - (Z,A,Z-l)

YLEC

strip
nH a (Z ,A,Z-l) vN(Z,A,Z-l)

att N
+nH O'(Z,A,Z) v (Z,A,Z)

(21)
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where leakage, spallation, and attachment losses have been neglected

relative to the stripping loss, and it is implicitly assumed that the

source of cosmic rays injects fully stripped nuclei, that spallation

products are fully stripped, that S-decay products are fully stripped,

and that the concentration of nuclei with 2 electrons is negligible.

Next note that, with the above assumptions, N(Z,A,Z-l) will occur in

a maximum of 2 equations other than Eq. (21) - namely the equation for

the fully stripped nucleus and, if electron capture is possible, in

the equation for the fully stripped end product (Z-l,A). In fact,

N(Z,A,Z-l) actually enters into the equation for the fully stripped

nucleus in the same combination as the last two tenns of Eq. (21)

(although with opposite signs). Moreover, Eq. (21) shows that if

the nucleus does not decayby electron capture then these two terms

would sum to zero. In so doing, however, not only is the occurrence

of N(Z,A,Z-l) completely eliminated in the equation for the fully

stripped nucleus, but also eliminated is the need to include the charge

state in the minimal set of coupled equations.

As discussed by Yiouand Raisbeck (1970), a nucleus that decays

by electron capture falls into one of two classes - "spallation"

isotopes (if yrEC« Tstrip) and "clock" isotopes (if YTEC </< Tstrip)

where T
t . is the mean time between electron stripping collisions.s rlp

For a "spallation" isotope, stripping cannot compete with decay so

that an attachment is always followed by that decay. This sequence

has two consequences - first, the term in the steady state equation

for N(Z,A,Z) which is proportional to a(~:;:Z-l) can be neglectedand

second, Eq. (21) becomes
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= aatt vN~ (Z,A,Z) (Z ,A,Z)
(22)

Since the left hand side of Eq. (22) also occurs in the steady state

equation for (Z-l,A,Z-I), and since the right hand side also occurs in

the equation for (Z,A,Z), Eq. (22) can be used to bypass (andthereby

eliminate) N(Z,A,Z-l)' Note that these substitutionsthen provide a

direct spallation-like coupling of the fully stripped parent nucleus

to the fully stripped daughter nucleus that is independent of the mean

life for the decay. This somewhat paradoxical result can be understood

by nothing that for such an isotope, the rate limiting step for the

process is the target density-dependent attachment and not the decay

rate of the partially stripped nucleus.

For "clock" isotopes, the decay rate of the partially stripped

species does enter into the process and no such simplification is

possible. For these isotopes, both the one-electron case and the fully

stripped case are truly coupled and must be propagated.

In summary, the standard practice of including only fully

stripped nuclei in the minimum set of species is correct for all cases

other than' 'clock" isotopes.

(ii) Eliminating short-lived beta decays

The simplified propagation equation for nuclei with short-lived

- +
S or S decays also leads to a reduction. If its mean life is

sufficiently short, then a particle \\ill decay to a stable (or at least
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a long-lived) end product before fragmentation or leakage can take place.

For definiteness.~ assume (Z" ,An) decays to (Z ,A) and that its mean life

is so short that

~» 1
YT*(Z",A") T(Z",A",Z")

+ nH a (Z" ,A") v
(23)

Then the steady state equation for eZ" ,AI() becomes

0 =
(Z I ,A ') ~ (Z" ,A") I}j ° (Z" ,A") ,(Z' ,A') vN (Z' ,A I ,z ') + S (Z" ,A" ,Z")

(24)

1

YT*eZ",A")

+ L:

N(Z",A",z") (Z'",A"')

1

* (Z'" ,A"') N (Z' 7' ,A' " , Z' I , )

Incorporating Eq. (24) into the steady state equation for the daughter

(Z ,A) gives

1

0 = - T(Z,A,Z,)

N -n a vN
(Z,A,z) H (Z,A) (Z,A,z)

+

(Z' ,N) ~(Z,A) I}j [0(Z,A) ,(Z' ,A') + 0(Z",A") ,(Z' ,A')] vN(Z' .A' ,Z')

+ [S eZ ,A , z ) + S (Z II,A" , z ")] -

1

YT * e Z ,A)
NeZ,A,z)

(25)

L
+ e Z'" ,A" I)

1

YT*ez'" ,A"')
Nez'" ,A"' ,zIJ')
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Equation (25), when generalized, shows that by (1) redefining an

effective partial fragmentation cross section as the sum over the set

of all the short-lived parents plus the daughter nucleus, (2) redefining

the source strength as the sum over the same set, and (3) summing over

all gains through radioactive decays to either the short-lived parents

or the daughter, then those nuclei which satisfy inequality (23)

need not be explicitly treated.

How short-lived must a decay be in order for inequality (23)

to hold? The answer is a function of the values of the parameters

and constants within a model and should be determined self consistently.

MOst important is to know the size of the 1 0 -confidence region for

the parameters nH and T because the values used in inequality (23)

are not necessarily the best fit values. In particular, previous

studies have fOlUld that only the product, nHT, of the parameters

(or equivalently the grammage xo) can be well-determined.
Hence if

y ~ 2.4 (see § II.(i)), and a ~ 950 mb (see § II.d) , while x ~ 5 gm/cm2,0

and Tbest ,,~1.5 x 107y (Garcia-Munoz et al. 1977), then the inequality

becomes

6

T*(Z",A") « 1.6 x 10 y (TCZII,AI,z")/Tbest)
(26a)

or 6
T!Z(Z",A") « 1.1 x 10 y CrCz",A",z")/Tbest)

(26b)
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Thus in order to allow '"[(Z",Z",Z") to vary up to two orders of

magnitude away from its best fit value, and at the same time keep

the right hand side of the inequality at least an order of magnitude

larger than the left hand side means (Z",A"J should have a half-life

less than 1100 y. Put another way, a long -lived nucleus can be

defined as any S-active nucleus with a half-life, T1, such that~

T1 ~ 1100 Y~ (27)

Applying the reduction procedures for electron capture isotopes

and S-active nuclei yields the minimum number of nuclides to be

explicitly treated. Sections II (b) - (i) give the quantitative values

necessary to perform this reduction and propagate those that remain.

A discussion of details is deferred until later; however, for a preview

of the resulting simplified chart of the nuclides, see Fig. 2.

(b) Stripping Cross Section

As discussed above, the stripping cross section explicitly enters

only in the treatment of electron capture isotopes. What is needed is

the cross section for ionizing a hydrogenic atom that is in its ground

state and is moving relativistically through the interstellar medium.

The formula used by almost all cosmic ray researchers (cf. Reames 1974,

Raisbeck 1974, but also Fowler et al. 1970) has been an expression due

to Bohr (1948). However, as discussed in Appendix A, Bohr's formula is

in error because it neglects ionizations via distant collisions

(I thank F2Y Hagstrom (Hagstrom 1977) for originally suggesting this

possibility. )
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As is also discussed in Appendix A, an improved approximation

for low-Z media is the expression

2 2
4'IT0', 0',

0

crstrip = Z 2 S2CR
(Zmed2 + Zmed)

{ Cl ~n((4S2y2) )- S2] }
C2ZCR2 0',2

(28)

where the factor in curly brackets isolates the deviations from the

Bohr formula and where ao is the Bohr radius,

0', is the fine structure constant,

Z d is the nuclear charge of the medium,me

Zm is the nuclear charge of the cosmic ray,

and the constants Cl and C2 have the values 0.285 and 0.048, respectively.

An expression for 0' t . that is virtually identical to Eq. (28) is
S T1P

given in Appendix B of Fowler et ale (1970). Their equation was

given with little discussion, was without derivation, and was neither

adopted nor discussed by other workers. The treatment given in

Appendix A of this work was completed before I lmew of the Fowler et ale

formula.

Recall that in Eq. (1) all of the cross sections were expressed

as per hydrogen atom, thus Eq. (28) needs to be averaged over the light

constituents of the confinement volume. Assuming that the He abundance

of the medium is as given in the Cameron (1973) compilation (He/H= 6.9%),

the effective cross sectionper hydrogen atom is then given by
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-20 2 2 2 2a
t . = (4.53 x 10 am IS ZCR ) [4.06 + .57 In(8yIZ CR) - .285 S ]s rlp

(29)

Lastly note that the uncertainty of the interstellar He

abundance, coupled with the approximation involved in deriving Eq. (28),

means that the error in Eq. (29) is approx~ately 20%.

(c) Attachment Cross Section

As has been pointed out by Raisbeck and Yiou (1971), there are

two distinct processes that can lead to electron attachment: radiative

and non-radiative (which dominates at lower energies.) Further, because

of the low density of the interstellar medium, attachments into excited

states are always followed by electromagnetic cascades to the ground

state. Thus, to obtain the effective cross section for attachment,

one must both sum over the cross sections to capture into excited states

and sum over the constituents of the medium.

(i) Radiative attachment

As the inverse to photoionization, radiative attachment is a

two-body process in which an initially "free" electron becomes bound

to a nucleus and an energy-conserving photon is emitted. In this

context, the word free means that the orbital velocities of electrons

in the medium are negligible when compared to the cosmic ray velocity.

In the rest frame of the cosmic ray, the incident electrons then have

a kinetic energy given by

Te = (m 1m )Te u (30)
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where me is the electron rest mass, Il\t is the mass of an atomic mass

lll1i t, and T is the kinetic energy per nucleon of the cosmic ray, as

measured in the lab frame. Sunce T > 1 GeV, Eq. (30) shows both that

the final binding energy is negligible compared to Te and also that the

relativistic theory of radiative attachment or photoionization is

required. Using the principle of detailed balance one gets

-

[
2(llw) 2

]

1

oRA - °phI PeEec ~ (31)

where °phI is the photoionization cross section per electron, }iw is

the energy of the emitted photon, and S , Pe' E are the velocity,e e

momenta, and total energy of the "incident" electron. Note that the

factor in brackets comes from the ratio of the densities of final

states (including polarization degeneracy) while the remaining factor
,\

comes from the ratio of the relative velocities of the incident

particles.

When Raisbeck and Yiou used Eq. (31), they substituted the

photoionization cross section originally obtained by Sauter (1931) and

given in Heitler (1954). However, as discussed in a review by Pratt,

Ron, and Tseng (1973), the Sauter calculation is systematically higher

than experimental data. In fact, deviations can range up to factors

of 2 even for elements as light as ah.nninum. Much of this discrepancy

stems from the fact that the electron wave function is significantly

affected by the Coulomb field of the nucleus, even at energies much

greater than the ionization potential. Although there does not exist

a fully analytic expression for improving the Sauter form, Pratt et al.
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have shown that a semi-empirical formula that combines the analytic

expressions for two limiting cases does fit the data. Incorporating

both their correction function and the Sauter formula into Eq. (31),

and multiplying by Zmed' the number of Ilfree" electrons per atom,

gives the cross section per atom for attachment into the Is state,

namely

[

2

5 4 Te.. .~
rad = lz z (J.aT 2 2 - 2 4cratt Is 2 CR med

(T + m c.) - me c' e e

m c2 5

]

(~)
Te

(32)

x (B'1)3
[! + '1(Y - 2) (1 - ~ In (1 + B))

]
f .

3 Y + 1 2B'12 1 - B cor

The correction function f
cor is given by the equation

fcorr = a2~ exp[-2(a/B) cos-l(a)]

x {I + TIa [N(S)/M (B)] + R(a)} (33)

where
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2 2
Y = 1 + T /m c = 1 + T/m ce e u

2 k
S = (1 - l/y ) 2

aT= BTIro2/3 (the Thompson cross section),

a = ZCR a. ,

. 2 ~
~ = -1 + (I-a)

M(8) = 4/3 + y(y - 2) (1 - 1 In (1 + 8 )) .

y + 1 28y2 1 - 8

N(8) = ...!.. .

[
-41 + 34 - 63 !. + ~ ~ - ~ ~

S3 . 15 15 ITY 15 y2 15 y3

- (y - 2) (y - 1)

28y3

1 + 8
)]In (~ and

R(a) « 1 and tabulated by Pratt et a1.

The term R(a) is small for all a; in fact for ZCR < 29, R(a) < 4 ~ 10-4.

Therefore, in this work R(a) has been neglected. Also note that in the

extreme relativistic limit Eq. (32) takes the form

2
lim 3 5 4 mec 1im

aatt ,Is = '2 ZCR Zmed a. aT( -r;-) fcor
(34)

with

lim 2~ -1 j 4 t

fear = a . exp( -2a eas (a))11 - 15 1Ta ~

(35)
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It is this slower decrease with energy that allows the radiative terms

to eventually exceed the non-radiative terms.

For attachments into higher states, the results from Oppenheimer

(1928) can be used. Oppenheimer studied the non-radiative process ffi1d

showed that for a/S « 1 only the higher s states provide significm1t

contributions m1d that the ratio (Gn/Gl) ~ n-3, where n is the

principal qUm1tlIDl.nlUIlber. However, one can show that this n -3 "rule"

holds for the radiative case also (cf. Bethe m1d Salpeter 1957).

Therefore for a given constituent the radiative attaChment cross section

is given by

00

rad, , rad ~ - 3 - rad

Gatt ~ Gatt,ls n~l n - 1.202 Gatt,ls

m1d the limiting cross section becomes

lim -33 5 lim /G tt = 3.17 x 10 ZCR Z d f Ta re mr
an2 (36)

where T is in units of GeV/nucleon.

(ii) Non-radiative attachment

The non -radiative process is a quantlIDl.mechanical three-body

problem involving the transfer of the electron from one nucleus to

the other. Little work exists on the relativistic problem; in fact,

there is even some disagreement about how to compute an accurate

non-relativisticcross section (seeMott and Massey (1965,ch XIX).
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The disagreement centers about whether a first Born approximation should

neglect the (nucleus)-(incident particle) interaction. However, there

is agreement that the Brinkman-Kramers relation (Brinkman and Kramers

1930), provides a reliable upper limit to the magnitude of the cross

section and provides the asymptotically but non-relativistically correct

scaling with energy and Charge. Because it turns out that its

contribution becomes negligible at relativistic energies (see § II.(iii)),

it suffices to use this upper limit for comparison with the radiative

term

The Brinkman-Kramers relation for attadIll1ent into the Is state

is given by

BK 2 18 5 5 8
0att,ls = (TIao 2 15)ZCR Zmed s (37)

[ 2 2
J

-5
[ 2 . 2

J
-5

x s + (ZCR + Zmed) s + (ZCR - Zmed)

where s = Bla = vivo' ao is the Bohr radius, and Vo = e2/~. The

calculation pertains to a hydrogenic medium and requires z d/s,me

ZCRls < 1. As discussed by Jackson and Schiff (1953) and Bohr (1948),

one can think of the cross section as coming from an "overlap"

between the momentumper nucleon of the incident particle and the

momentumspace wave function of the bound electron. On this basis,

only the K shell electrons of a non-hydrogenic atom will have wave

functions that extend to sufficiently high momenta. One K shell

electron also partially screens the nuclear charge from the other., so
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that the Z d in Eq. (37) should not be the full nuclear charge for ame

non-hydrogenic medium. Thus, to obtain a more realistic limit for a

non-relativistic velocity much greater than the electron's orbital

velocity on either nucleus, Eq. (37) should be modified to

BK 2 18 5 5 12; 12
0att,ls = rK(TIao 2 /5)ZCR (Zmed-sl) a /6 (38)

where rK is the number of K shell electrons, and sl is the inner

screening constant (0, for hydrogen medium; 0.3, otherwise, Slater

1930). As discussed above, for attachments into higher states, one

can use the Oppenheimer n-3 "rule" so that the actual cross section

satisfies the inequality

BK
nrad < 1.202 0att,ls0att (39)

After substituting for the constants and letting rK = 2, inequality

(39) becomes

2.53 x 10-37/612

0nrad <
I 2.58 x lO-39/T6

i 5 5
0112 (40)att ZCR (Zmed - .3)

2.53 x 10-37/(y10 612)
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where T is in GeV/nucleon. The purpose of the three expressions in

inequality (40) is to emphasize the dilemma in attempting even a

qualitative extrapolation of the non-relativistic Brinkman-Kramers

f011Ilula. The first form would hold if S were.the correct. variable

in both the non-relativistic and the relativistic regimes. The

second would hold if the relationship T = 1/2 mu c2S2 were first

used in the non-relativistic form and then the resulting T-6 law

extrapolated into the relativistic regime. The third would hold if

momentumper nucleon were the relevant variable in both regimes and

the relativistic increase in the density of final states were accounted

for (since y ~ 1 for S « 1). Thus the choice of extrapolation can

lead to a difference of almost 4 orders of magnitude at '" 1 GeV/nucleon.

The preliminary analysis of recent attaChment experiments by Raisbeck

et ale (1977a) shows that the first form of inequality (40) is

inconsistent with their data and that the middle fonn provides a

satisfactory upper lnnit.

will be used in this work.

Therefore, the kinetic energy extrapolation

(iii) Magnitude of the attachment cross section

The ratio of the non-radiative to radiative formulae is a

strong function of both the kinetic energy of the cosmic ray and the

relative amolUlt of high Z elements that are present in the medium.

However, if the kinetic energy extrapolation law is used for the

non-radiative case and if the relative iron abundance in the

containment region is given by the Cameron (1973) table

(npe/nH = 2.6 x 10-5), then a weighted sum over the constituents
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of the medium shows that the non-radiative attachment process becomes

negligible when compared to the radiative.

Recall that the attachment cross section of Eq. (1) was

defined per hydrogen atom. Thus the effective attachment cross

section is given by

Gatt = 1.202 x G~~,lS (Zmed = 1) 1 £d Zmed (nZmelIJi) !

(41)

rad= 1.38 a tt 1 (2 d = 1)a , s me (42)

where the Cameron ablUldances were used to evaluate the term enclosed

in brackets in Eq. (41).

As discussed in § II (a) , the attachment cross section can

be important in the propagation of electron capture isotopes. Thus

in Table 1, a list is provided of the total effective attachment

cross sections for those elements between lithium and nickel which

have electron capture isotopes. The tabulation is for three

energies (1, 3 and 5 GeVjnucleon and provides at each energy the

value of the correction function (Eq. [33]). Although the cross

sections in Table 1 are quite small relative to atomic dimensions,

they are very comparable to, and often exceed, the characteristic

size of partial fragmentation cross sections. It is this latter

comparison that is most relevant for propagation.
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Lastly, note that because0att is derived by detailed balance

from a photoionization fonnula of high accuracy, it has a negligibly

small uncertainty (i.e. less than 10%).

Cd) Total Reaction Cross Section

The total reaction cross section represents the cross section

for a "catastrophic" loss of the cosmic ray. That is, it is a sum

over all cases in which an interaction caused either a change in the

ntmlber of its nucleons or caused an inelastic energy loss that left

it intact. (Recall that this work assumes that the inelastic-yet-intact

events can be ignored.) In principle, values for the reaction cross

section are required for each target species present in the

interstellar medium.

The best set of data using a proton projectile appears to be

that of Renberg et ale (1972), who obtained data at 4 different proton

energies between 220 and 570 MeV and with 12 different targets.

addition, they tabulated existing data in the energy range from

In

10 MeV to 10 GeV. Their curves show that above 200 MeV the proton

reaction cross section for targets other than hydrogen becomes nearly

constant (i.e., variations are ~ 5%). However, since some of the data

are accurate to ~ 2%, an alternative interpretation is that there are

indications that each cross section reaches a maximum near 2 GeV and

then decreases slowly at higher energies.

A connnon parameterization for such data has been the two

parameter Bradt-Peters (1950) form of °0 (1 + Al/3 - b)2 (cf. Juliusson

et ale 1975), where A is the atomic mass of the target. However,

another fit, involving essentially no free parameters, is provided
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by the theoretical calculations of Karol (1975). Working in the

optical limit of Glauber theory, Karol derived an expression for the

nucleus-nucleus reaction cross section in terms of the experimental

parameters of the nuclear density distribution and the nucleon-

nucleon cross sections. His calculation provides a natural explanation

for both the limited variation of the cross section as a function of

energy and the occurrence of a slight maximum near 2 GeV. The near

constancy stems from the roughly logarithmic dependence upon the

total nucleon-nucleon cross section. The maximum comes from the

fact that the nucleon-nucleon cross section peaks near 2 GeV.

Karol's expressions are systematically higher than the Renberg

et ale data by approximately 4%. More precisely, if the highest

energy points of the ten targets (including compounds) that did not

contain hydrogen are used, then

< a /a > - £
Karol Renberg = k = 1.037 I .009 (43)

where the error was computed as if the deviations from the mean were

independent of target.

Table 2 provides a comparison between the experimental data

of Renberg et ale and Karol's formulae (after dividing by Eq. (43).

Also compared in the table is an even more phenomenological fit

using the Bradt-Peters form. The input to the non-linear least

squares fitting program consisted of the same independent points

used to determine Eq. (43). The output consisted of the best values

and the error matrix for the parameters cr and b.0 These quantities
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are given in Table 3, and were used to derive the Bradt-Peters column

in Table 2. It is quite clear that Qoth the two-parameter Bradt-

Peters form and the "renormalized" Karol results are in good agreement

with the proton-nucleus data.

A further comparison of theory with exper~ent is provided

by the data of Jaros (1975), who measured nucleus-nucleus reaction

cross sections for light projectiles and targets. As in the case

of proton-nucleus, Jaros' data are systematically lower than the Karol

prediction, but this trend has less significance since the individual

cross sections are only good to ~ 5%. However, for consistency

wi th Table 2, the conparison shown in Table 4 was made after Karol's

formulae were also divided by Eq. (43). Although this table shows

more scatter between theory and experiment than was shown in Table 2,

Karol's version of Glauber theory is, again, in good agreement.

The data of Lindstrom et al. (1975a) allow an estimate of the

importance of inelastic-yet-intact events and hence provide a test

of the assumption that the cross section for such cases is small

(see § I (a) ) . That is, since they measured the transmutation

(or fragmentation) cross section for nucleus-nucleus reactions, any

systematic difference from the Karol results would likely be from

such events. For nucleus-proton collisions, their data compare

closely with the Karol results. For nucleus-nucleus collisions

their measurements are low by 8-18%. However, after this discrepancy

is weighted by the relative abundance of the elements heavier than

hydrogen, the approximation of Eq. (2) will remain appropriate.
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Recall that in Eq. (1) the total reaction cross section was

defined as the "effective" cross section per atom of interstellar

hydrogen. Because the reaction cross section _Z2/3, the only other

relevant target material is interstellar helium with an abundance

(relative to hydrogen)l of 0.07 (Cameron (1973)). The effective cross

sections that result from the -Karol formulae (divided by Eq. (43))

are given in Fig. 2. Note that for consistency with the off-diagonal

terms (see § II (e)) a kinetic energy of 2.3 GeV/nuc1eon was assumed

for the calculation.

For studies of the effects of random error, an uncorre1ated

error of 10% should be used. This figure comes mainly from the fact

that to be consistent with assumption about the off-diagonal terms,

the cross section would have to be treated as a constant, independent

of energy. Additional contributions come from the variations in the

results when either the parameters are varied or the composition of

the i.nterstellar medium is modified.

(e) Partial fragmentation cross sections

The partial fragmentation cross sections represent the inclusive

cross section for producing a particular nucleus as the result of the

fragmentation of a heavier parent nucleus. In principle, values

for this cross section, as a function of energy, are required for

each target species present in the interstellar medium. A valuable

simplification is that at high energies (~2 GeV/nucleon) the partial

cross sections appear to reach asymptotic values (i.e., variations ~10%)

lIt is more common to use 0.1.

Cameronvalue was used.
However, for internal consistency the
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and can be taken as approximately energy- independent (Lindstrom et ale

1975b; however, see also Raisbeck and Yiou 1975c).

Note the large number of cross sections that are required. Even

after applying all of the reduction procedures of § II (a), there are

84 fully stripped isotopes with 3 ~ Z ~ 28 (see Fig. 2). Because each

of these isotopes is coupled to all higher isotopes, 3570 partial

cross sections (constituting most of the off-diagonal elements of the

modification matrix) are needed. As might be expected, only a limited

number of these cross sections have been measured, and at very few

energies, so that one must turn to phenomenology.

The most successful parameterizations of proton-nucleus data

are the semi-empirical formulae of Silberberg and Tsao (1973a,b). For

nuclei with Z ~ 28, they distinguish between two types of reactions--

spallation and peripheral--and provide quite separate functional forms.

These formulae were updated by Silberberg and Tsao (1977) to incorporate

some of the systematics of recent experimental data and to correct errors

in their earlier paper. Thus, if recent measurements are not available

the appropriate semi-empirical formula provides the best estimate for

the needed cross section.

Following Raisbeck and Yiou (1973) and Meneguzzi et ale (1975),

a uniform error of 30% is assumed on all semi-empirical cross sections.

This error assignment is also consistent with the standard deviation

for 0
1 /0 found bySilberberg and Tsao in their original study.ca c exp

Recall that the partial cross sections in the matrix Mrepresent

the production of both the ilstable" isotope and any of its short-lived

progenitors (see § II (a)). Experimental data represent a similar sum
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and it is important to determine the number of "channels" over which a

measurement has been summed. For example, secondaries with lifetimes

> 10-8 sec are individually measured by the direct proj ectile fralle

observations of Lindstrom et ale (1975b), while only secondaries with

lifetimes::: 5 days are individually measured by the target frame, mass

spectrometry observations of the Orsay group (Yiou et ale 1973, Raisbeck

and Yiou 1975a, Raisbeck et ale 1975, and Perron 1976). Also, there are

a few cases in whid1 not all of the channels of a partial production

cross section have been experimentally determined. For example, Raisbeck

and Yiou (1975a) measured the cross section for producing 22Na from

protons on a Si target, but not for producting 22F and 22Ne. However,

22Na decays to 22Ne with a half-life of 2.6 years while 22p decays to

22Ne with a half-life of 4 sec, so that all three isotopes actually

, contribute to the "summed"partial cross section for producing 22Ne

(cf § II (a)).

With four exceptions, Table 5 provides a list of "summed" partial

cross sections which have at least one channel measured in a recent

experirnent,l and were measured at energies greater than 2.1 GeVjnucleon.

The errors were obtained by asswning the individual terms in the sum

had independent, random errors. In cases such as the 22Ne example

given above, the semi-empirical formulae at a kinetic energy of

lThose labeled with a ~ were obtained by assuming semi -empirical
predict ions for Ni and Fe would deviate from experiment in the same
way. Hence, the semi -empirical cross sections for production by a
proton with 2.3 GeVon Fe were scaled by the ratio 0exp No/0 1 N

o.
As

0
h h

. 0 0
1

.
300 1 ca c 1

Wlt ot er seml-emplrlca cross sectlons, a 70' ,
error was assumed.
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2.3 GeV/nucleonl were used for the unmeasured contributors. The error

for the semi-empirical cross sections was set at the fraction necessary

to produce a 30% error if no terms had been determined experimentally.

Par example, for 22Ne a 40% error in the 22p + 22Ne portion is combined

with the 9% experimental error on 22Na to obtain the 14% error shown

in Table 5.

All that remains is to incorporate the effects of the

constituents of the interstellar medium heavier than hydrogen. However,

there are very limited data for relativistic alpha particles on complex

nuclei (Raisbeck and Yiou 1975b) and no data for nuclei incident on

helium targets. Raisbeck and Yiou found that the average of the high

energy a-induced to proton-induced cross sections was 1.74 I 0.23 and

that the ratio for light targets was approximately independent of energy.

Some of the cross section ratios for the production of fragments much

lighter than the parent nucleus did show significant variations with

energy. However, as pointed out by Raisbeck and Yiou, such modes make

negligible contributions to the overall abundance of a fragment. Thus,

the above ratio can be taken as "lUliversal". With this assumption,

the effective cross section per hydrogen atom is then given by the

equation

0' = 0' [1 + (0' /0' ) (TIn /nH)]pap He (44)

lThe semi-empirical formulae become energy-independent for kinetic
energies> 2.3 GeV/nucleon.
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where 0 (0 ) denotes proton (a) -induced fragmentations and TIn In H
is the

p a He

relative abillldance of helilllTI in the interstellar medilllTI. Thus, since

1
0a/0p = 1.74 I 0.23 and nNe/nH = 0.07 I 0.03, Eq. (44) becomes

0 = 1.12 0 [1 I 0.05]
P

(45)

Note that the extra 5%error in Eq. (45) makes no difference when combined

with the 30% error on all semi-empirical cross sections. However, the

extra error does increase the errors on the effective cross sections above

those given in Table 5.

A table of all of the 3570 partial fragmentation cross sections

would be unwieldy and has not been incl ucled. A smaller table of

"weighted" cross sections has been included as a part of Table 8. For

details of the table's construction see § III.

(f) Half-lives

As shown in § II(a), separate entries in the collllTIll vectors are

required for isotopes that, as cosmic rays have S-decay half-lives

greater than 1100 years. Also, the half-life required is that for a

fast nucleus having at most one K-shell electron and not that for a

neutral atom with a full complement of orbital electrons. In principle,

this difference in "environment" for the nucleus leads to a difference

in its decay rate. The discussion below is directed towards isolating

lThe error assignment for nH In reflects the decision that the
"canonical" value of 10% by ~lUIl~ermust lie within the 1-0 limits of
the Cameron (1973) value. The error does not stem from a study of
experimental measurements.
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those effects which can cause the decay rate of a neutral atom to

differ by more than approximately five percent from that of the stripped

nucleus.

As discussed by Bahcall (1963), the decay of an unstable nuclide

in the lab should be described in terms of the atomic states involved.

Hence, if HS represents the Hamiltonian for beta-decay, the decay rate

takes the symbolic fonn (h = c = 1)

A = Zn I <f I HS Ii> 12 <5(Ef - Ei)
(46)

where the full atomic energies are included in Ei and Ef' and Ii> and

If> represent the initial and final states. More explicitly~

+
Ii> = IG;k> and If> = IA';e-; v;k> where IG> is the state vector

for the atom in its groWld state, lA'> represents any of the final

states of the daughter ion (including continuum states for some electrons),

I k >, I k' > denote the initial and final nuclear variables, Ie:!:> denotes

the positron (electron) variables, and Iv> denotes the neutrino variable.

The atomic environment enters in both the description of the states

Ie:!:> , and in the energy conserving delta-function, as well as in the
\

states I G> and lA'> .

The description of the continuum state Ie:!:> enters via the

Fermi fooction F:!:(Z,W) and the shape fooction Sn (W,Z) (applicable in

forbidden decays). To determine the impact on the half-life, an

estimate is required of the effect the screening by orbital electrons

has on these functions, when Eq. (46) is integrated over the entire

spectrum of electron energies. For allowed decays a comparisonof

screened and unscreened results is provided by Behrens and Janecke (1969)
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and Gove and Martin (1971). Moreover, Good (1954) showed that the effect

of screening on a forbidden spectrum is comparable to the effect on ml

allowed spectrum.

The graphs of Behrens and Janecke show that for Z : 40, the

effect of screening on the integrated statistical factor for electron

emission is less than 2 per cent, regardless of endpoint energy. fur

positron emission their curves show that the effect decreases rapidly

with increasing endpoint energy. They show that for Z : 28 and endpoint

energies ~ 800 keV and for Z ~ 19 and energies: 450 keV, screening

has less than a 2 per cent effect on the statistical factor for positrons.

In keeping with Good's finding, it will be assumed that if screening

makes less than a 2 per cent change in the rate for an allowed decay

that has the same Z and endpoint energy as a forbidden decay, then its

effect on the forbidden decay will be less than the "threshold" of

~ 5 per cent. As discussed above, this limited dependence means that

the effect of screening can be neglected in this work.

The dependence of the beta-decay on the remaining "environment"

factors is even smaller. As discussed by Bahcall (1963), the argument

of the energy-conserving delta function can be written in the form

Ei - Ef = (Eio - Efo) + E(G') - E(A')

where Eio - Efo is the usual atomic mass difference and EeG'), E(A')

are the atomic binding energies of the ground state IG'> and the

arbitrary state lA' > , respectively. By "expanding" the delta-function

in terms of the difference Eio - Efo and taking advantage of closure
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vla the sum over final states, he showed that there is a slight decrease

in the decay rate because of the overlap with a large number of final

states. He found that if E denotes the average excitation of theex

final atom, then the fractional decrease in the total decay rate, ~A/A,

is given by

6A/A -- Eex/Emax
(47)

where E is the maximum kinetic energy (or endpoint energy) for themax

decay. His calculation dealt only with allowed decays. However, since

the additional energy dependence of the shape factors enters only via

the coefficient that multiplies (E /E ), it also can be used toex max

detennine the order of magnitude of the decrease for forbidden decays.

In addition, he obtained the estimates

E - 1
ex - - Yz

49Zl/3

46Z2/5

eV if Z < 10

(48)

eV if Z > 10

with a smooth joining of the two fonns at Z = 10.

A further environmental effect for electron emission (Bahcall)

1963) involves an exchange mechanism whereby the initially present is

electron is "flipped into the continuum state, making room for the

creation of a Is' electron by the decaying nucleus." Bahcall fOlllld

that this mechanism was competitive with the shift given by estimate

(47) . However, because of the higher powers of the nuclear radius
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involved in a forbidden decay, this meChanism contributes very little to

the dependence of a forbidden decay rate on the presence of atomic

electrons.

Table 6 provides a compilation of the endpoint energies (in keY)

and decay modes of the isotopes with Z ~ 28 that have laboratory half-

lives greater than 1100 years. Equations (47) and (48), as well as the

graphs of Behrens and Janecke, show that the right hand side of Eq. (47)

never exceeds 6 x 10-4 and that only the 8+ -decay of 36CI fails the

36 '

The S+ decay of Cl has such a2 per cent criterion for screening.

small branChing ratio that the removal of the effect of screening will

still have no effect on the total decay rate. Thus it suffices, for

this work, to treat all of the decay rates for electron and positron

emission, as if they were independent of their atomic environment. Ps

will be seen below, no such conclusion is possible for electron capture.

(1) Isotopes with electron capture branches

For an isotope with a long laboratory half-life that decays by

both beta emission and electron capture, the half-life as a cosmic ray

increases because of the suppression of its electron capture branch.

To verify this claim, let LL be the mean life for a neutral atom in

the laboratory and let rEC be its branching ratio (in the lab) for

electron capture. As discussed above, the beta-decay portion of the

lab decay rate is, to a very good approximation, independent of the

presence of its atomic electrons so that the mean life for a cosmic ray

to beta-decay, LCR,f ' is just
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LOR~ = LL/ (1 - rEC)., (49)

However, the decay rate via electron capture depends upon having and
. -1

keeplng an electron attached. Thus, let L t . (~(nyn t . v) ) be
s rlp t1 s rlp

the mean time between stripping collisions. If LL is so large that

Lstrip « (LL/rEC)' then the stripping rate will be faster than the decay

rate via electron capture. But under these circumstances (essentially

the clock isotope criterion of § II (a)), the effective mean life for an

electron capture by an unstable cosmic ray is approximated by (Yiou

and Raisbeck 1970)

LCR,EC ~ 2 (LL/rEC)(0strip/0att)
(50)

Since Eq. (29) and either Eq. (42) or Table 1 show that at energies

~ 1 GeV/nucleon the ratio 0 t . /0 tt is : 103 for the isotopes ofs rlp a

interest in this work, Eq. (50) shows that the electron capture branch

will be completely suppressed. Thus, the mean Ii fe as a cosmic ray

becomes

LCR= LCR,~ = LL/(l - rEC)
(51)

As shown in Table 6, this suppression increases the half-lives of

26Al 1, 36C1, and 40K.

INote that the first excited state of 26.A1only beta decays. Thus implicit
in using the lifetime of the 26.Al ground state is the assunption that the

fraction spalled into excited states is negligible or, equivalentlyz thatits production cross section is only for interactions that produce 6Al in
the ground state (cf. Raisbeck et al. 1977b).
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Even if its laboratory half-life is short, there is still a

possibility for an isotope to have a long half-life as a cosmic ray.

This chance arises when an isotope decays via electron capture but also

has a Q value large enough to permit beta emission. Based on the

1977 Atomic Mass Evaluation (Wapstra and Bos 1977), the isotopes 54Mn,
56
N
. .

d 59N. . 1
. .

h.1 54..-.
11, an 1 are potent1a pos1tron em1tters, W 1 e 'Mn 1S a so a

potential electron emitter. However, 59Ni can be omitted because of

the combination of its long lab half-life, (8 I 1) x 104 y, and the

recently determined branching ratio for positrons of 1.5 x 10-7

(Berenyi et al. 1976). Figure 1 gives level schemes for those branches

of 5\111and 56Ni that would involve beta emission. Note that for both

nuclei the non-electron capture decays are so forbidden that they have

not been observed in the lab.

As shown by Casse (1973a, b), if both 5~~ and 56Ni are stripped

of their atomic electrons, the relevant transitions for each are the

3+ transitionsl (also called unique second-order forbidden) which are

indicated by the dotted lines in Fig. 1. He showed that in spite of its

requiring only a change of 2 units of spin, the 2+ transition had a

negligibly small decay rate because of its very small endpoint energy.

In addition, he showed that the two 4+ and 5+ transitions have negligible

probability due to the very large change of spin and being, as a result,

highly forbidden.

lTransitions are categorized by the difference in the nuclear spins and

parities of the initial and final states. In this work these changes are
written in the short-hand fom ~I7T , where ~I denotes the spin change and
7T denotes the product of the initial and final parities.
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Casse:also,atternptedto, determine'the'half+lives'f6r ",the remaining

transi tionsc;by'analyzirigthe,rvariationsof;,ithe log (ft ):values )of :other

+, ",,',,'
-3, decays;. ;Infact,,',he 'claimed<somewhataccurate'-thalf""-life estimates

are;rp.ossib~;e;,'!a, :poin"t:Gonsidyred and'Teje.cted 'i1n,AppendixB (c£. Raisbeck

et ale 1973). The study of the well-detennined second-order~forbidden

transitions given in Appendix B shows that there is too much dispersion

,in both the log. ,(~O!),~~,,~<:)g.-(~2t)'.'y~iues t~,p:rovide.Clpredicti ve

capability. Iristead:one must hqpethat:"the dispersion in log (ft)

54 56 .
values of such cases brackets the range of values for Mn.and Nl.

Table 6 ~hows tl?-e deduced ran.gesusiI1;g this as;s,ump:tipn~: '.'

q~i-cour$e even ,as cosmic:~ rays" 54ivfn and 56Ni can still dec.ay.

by electron captu!e ,if an elec,troI} ,has been attached. In 'fact :";,,p()th

are S
"pa, llation isotopes, (see § II (a)), so that the r:ate limiting step

:,: ," :"',; ;,::'," ., ' );, "', , '-', " ,:: :',

in their decaY1:>Y,electron capture i? the at()mic,process o:f}~icking

up an electron from the medium. That means the effective lifetime

for decay by electron captl1;re, 5EC,* , is given by the eJq)ression

TEC,* '" ;(% <J.1ttv j -t '" 2 ,iL ~ 1Of / CI1fIcr5(13)
y :(52)

: , ,'" i, ",..'" i," ", . ,:..,"';' ': ," ':,,, "',', , " ,...3 ",~'"

where'o5():gives' °att'in tmits of :50.irib ahd nH is in 'CJn,: .'Since
"" "'i"':,,, ';'"," """,,, "",'., ; "''','' ' " '," : ,', "','" ,:"

Gatt is a rapidly-decreasfrlgJfunction'of~neigy,Eq. :'(52)' :shows:It"'-::

is quite possible to have the for~id~en S-decay rate cqmparable to

or even ~u~hlarJ~~r than,th~: eff~cf~ye rate ,v;ia elestron c~pture.

Thus ~ a complete treatment of the prqpagation of 54Mn.and 56Ni mus,:t .
, "";,::L'>'; ,,'«,' "'! " ' '" , :' -,

include the effects of both forbidden B-decay and',ele~t:ron ~ap~H"f~'~
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As discussed in § II(a), if an electron-capture isotope has a

half-life that is too long to satisfy the spallation criterion then

both the one-electron and fully-stripped cases must be included. Using

Eq. (29) for a t . , this criterion is given quantitatively by the-srlp

expression

9.33 x 103(ZCR/20)2 S
YT «

EC ~(cm-3) [2.35 + .57In(Sy/(ZCR/20)) - .285 S2]
y (53)

Those isotopes that fail to meet this criterion are called "clock"

.
Th hi

.
1 d

4l
C

44
T . 5~- d 59

N
.

1sotopes. us, t s categorylncu es a, 1, -Mn,an 1

(although 4~i needs to be included only when the density-nH is high

or Y is large.) As in the cases above, the lifetimes of these nuclei

will differ from the laboratory measurements. A first approximation

for the life of the state with one orbital electron would be to

merely double the lab half-life (because there is only 1 K-shell

electron). However, as discussed in detail in Appendix C, there are

two smaller effects.
J

First, the decay rate is reduced by ~ 10%

because there are no captures from the higher shells; and second,

the rate is increased by ~ 4% because the nucleus is unscreened.

The resulting half-livesare shown in Table 6.

(2) Other long-lived isotopes

For the four isotopes in Table 6 that have not already been

mentioned, the cosmic-rayhalf-life is essentiallyunchanged from the

laboratory half-life.
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(g) The Isotope Fractions at the Source

As discussed in § I(b), the isotope fractions at the source, the

non-zero components of the v matrix, are not as fundamental an input

as the quantities described in the earlier sections. In fact, once

high energy observations can resolve isotopes, the v array will be one

of the basic findings of any propagation analysis. Until then, some

assumption must be made. The assumption made in preparing Table 8

(see § III) was that the isotope fractions at the source are identical

with those given by the Cameron (1973) compilation of the "lUliversal"

abundances. Explicit values of these fractions are provided in line 3

of Fig. 2.

Note that the choice of Cameron "fractions" carries with it the

"hidden assumption" that the mean time between nucleosynthesis and

acceleration (cf. Casse and Soutoul 1975) is so long that all lUlstable

species have negligible abundances at the time of acceleration.

However, note also that without having a detailed model for the

origin of at least all of the nuclides in Fig. .2, it is quite hard to

relax this assumption of "universality".

(h) The Abundances at the Top of the Atmosphere

The abundances at the top of the atmosphere for all elements

between Li and Ni, that is, the components of the ~ column vector,

constitute the final input quantity. The "best set" of such

abuncances seems to be the compilation by Silberberg et al. (1976),

whose Table 6 has been reproduced in Table 7 of this work. Note that

the table provides relative abundances and errors for rigidities R> 4 GV.
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III. Discussion

Using the input quanti ties from § II, the matrices and column

vectors of § I can be constructed.

(a) Final list of the nuclides

The reduction procedure of § IICa), coupled with the parameters

from § II ( b}- (f), yields the minimum number of nuclides that must be

explicitly propagated. The resulting simplified chart for those

nuclides having atomic numbers between 3 and 28 is shown in Pig. 2.

Note that for an tmstable nucleus, line I gives the modeCs) of decay

for the nucleus when it has at most one K-shell electron. The notation

"a&EC" denotes the sequence electron attachment followed by electron

capture. As noted earlier, "spallation" isotopes decay by this mode

with a rate governed"not by the laboratory half-life, but by the

magnitude of the attaChment cross section. The notation' 'a/EC" in

line I denotes the sequence electron attachment followed more often

by electron stripping but sometimes by electron capture. In these

cases the half-life for the nucleus with one electron attached CT1 EC)
~,

is given in parentheses. As discussed earlier, "clock" isotopes decay

by such a sequence. Note also that, as in the case of 60pe, short-

lived intermediate links in a decay chain do not have to be explicitly

propagated. Lastly, line 2 of the figure gives the total effective

reaction cross section per hydrogen atom. As discussed in § II(d),

these cross sections include an estimate of the contributions from

interstellar helium and were calculated using a slight renorrnalization

of Karol's analytic version of the Glauber fonnalism.
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(b) The elemental modification matrix

In addition to its dependences on many of the quantities discussed

in § II, the modification matrix is also a function of the parameters

nH and T(Z,A,z). In a quantitative propagation calculation, the values

of these parameters are determined by testing the hypothesis that the

source abundances of Li, Be, and B are zero. That is, values are

determined that minimize the differences between the computed abundances

at the top of the atmosphere and the actual abundances of Li, Be, and B.

Such a study is beyond the scope of the present work. However, as

shown below, some of the algebraic manipulations necessary to such

a study also enter into the calculations of the elemental modification

matrix.

As discussed earlier, the entire modification matrix would make

a lengthy table in which most of the entries would not be based on

recent experimental data. A more useful matrix is the ''weighted'',

or elemental modification matrix, vii, which acts on v~ instead of the

expression v E~. To derivevi! ' first multiply Eq. (10) by M-l

and sum the resulting equation over all the isotopes belonging to the

K-th element. Then, after Eq. (4a) is used to eliminate E: , the

propagation equation becomes

d-l
v~+J~ ~=O (54)

-I

wherevl! is given by the expression
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~ -1 =KL

iT'(K)

.1:
l=il (K)

-1
M.. \>.

).L1)
(55)

and where il(K) denotes the first isotope belonging to the element in

the K""throw of1-l and in(K) denotes the last isotope. Note two

points about ~ . First, as shown in Eq. (55), the collapse from

isotope to element was done by weighting M-l with the assumed isotope

fractions at the source. Secondly, multiplying Eq. (54) by vi! gives

the equation

~ = -A v1;j (56)

in which ~ is completely specified in terms of the input quantities

and the parameters.

Because so many --6f the terms of M and vi! have the form of a

product of a cross section and the parameter nH' it is more convenient

for displaypurposes to give the matrices in the units of a cross

section. Thus, Table 8 gives the value of ../11 /nH for the elements

between Li and Ni. Note first that before the collapse of the larger

matrix, the lifetimes were taken from Table 6, the kinetic energy was

assumed to be 2.3 GeVjnucleon, the leakage time, T, was assumed to be

species-independent with a value of 1.5 x lO7y, and nH was given the
-3

value 0.2 an . The values for T and nH are taken from th~ lower energy

study of Garcia-Munoz et ale (1977) but should be reasonable values

at the higher energies of this work. Secondly, note that from the

definitions of the F and D matrices (cf. § l(a)), if nH is 0.2 am-3,
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then a half-life of 106y corresponds to an effective cross section of

1100 mb, while a leakage time of 1.5 x 107Y corresponds to an effective

cross section of 368 mb. Lastly, note that the errors shown just

below. and to the right of each term in ~/nH were obtained by the

procedures discussed in Appendix D.

(c) The impact of the corrections and improvements

The major emphasis of this work has been to critically

investigate the quantities that constitute the input to a quantitative

propagation calculation. Less importance has been placed on the

extent to which any corrections or improvements in the input will

cause a change in the output. The reasons for this emphasis are

two-fold. First, by emphasizing the nuclear and atomic physics that

govern the composition of cosmic rays, this work is more flllldamental

and therefore less model-dependent. Secondly, because the well-

determined output quantities tend to be insensitive to the net effect

of the changes found in § II, while those that are sensitive are rather

poorly determined, it turns out that few of the corrections will have

an TImffiediatequantitative impact.

This limited impact is very evident for the (well-determined)

quantity nHT. In this case the addition of the effects of interstellar

helium to the off-diagonal tenns of M will tend to lessen the changes

in (nHT) that arise from adopting the cross sections given in Fig. 2.

To illustrate this point, recall that the grannnage, or equivalently

~ T, is most dependent on the L/M ratio, i.e. on the experimental

quantity([Li]+ [Be] + [B])/([C] + [0]) where the bracket enclosing
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each symbol denotes that element's ablll1dance at the top of the atmosphere.

Note also that the term (l/y Td)[lOBe] cancels out if all the

propagation equations for the isotopes of Li, Be, and B are added

together. Thus, the equation for ([Li] + [Be] + [B]) can be written in

the approximate form

(;T + ~ < 0L» ([Li] + [Be] + [B]) = nH <0LM> ([C] + [0]) (57)

where <a L > is an average reaction cross section for the isotopes of

Li, Be, and B, and < a 1M> is an average partial cross section for

producing the same isotopes from the isotopes of C and o. It follows

from Eq. (57) that the constraint of producing a given L/M ratio as

the input cross sections are varied can be translated into an equation

governing the fractional change in nH T . This equation is

8 (nHT)
= nH T v < a L > rL - (1 + ~T V < °L » rLM (58)

where r L is the fractional increase in <0L > and r 1M is the fractional

lncrease in <aIM >. As shown in Eq. (45), rLM has the value 0.12.

Since the difference between the cross sections given in Fig. 2 and

the cross sections obtained by using the Bradt-Peters formula with

the parameters of Table 3 is approximately 30%, rL ~ 0.30. An

estimate of < ° L > can be obtained by averaging, with uniform weights,

the cross sections obtained with the Brad-Peters form. The result is
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that < o-L> ~ 185 mb. Thus at a kinetic energy of 2.3 GeV/nucleon and

if nH l = 3 My an -3, Eq. (58) shows that I1I l will decrease by

approximately 3%, even if the diagonal terms increase by 30% and the

off-diagonal tenus increase by 12%.

In the case of the attachment cross sections, the limited impact

arises because the corrections further reduced the importance of the

inclusion of a "spallation" coupling between a fully stripped isotope

capable of decaying by electron capture and its daughter. Even the

lengthened estimates of the lifetimes of several long-lived species

do not dramatically increase the ability of those species to compete

with the lOBe clock.

The greatest change brought about by this work is to the

effective life for those electron capture isotopes that are clock

isotopes. Recall that for these isotopes the effective life for

the fully stripped state depends on the term (o-strip/o-att) lEC ' where

lEC is the lifetime with one K-shell electron. Thus~ since the

corrections to 0- t . were approximately 60%while the corrections tos rlp
0-

tt were approximately a factor of two, both the ratio (0- t . /0- tt )a s rlp a

and the effective life will change by approximately a factor of 3.

Unfortunately, this large increase also has limited practical

consequences. In the cases of 59Ni, 4lCa, and 53Mh, the limitation

sterns from their already long lifetimes with one K-shell electron;

while for 44Ti, it arises from the requirement that it be a clock

isotope. At high energies, the ratio Co-strip/o-att) is ~ 104 for these

isotopes, while the lifetimes of the one-electron species of 59Ni,
41 53 5 5 6

Ca, and Mn are 1.7 x 10 y, 2.2 x 10 y, and 7.7 x 10 y (see Table 6).
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Thus, their effective lives are ~ lOgy and any increase merely worsens

the tlllfavorable comparison with a leakage time of the order 107y.

Because the one-electron lifetime of 44Ti is 10Dy , at high energies

its effective life would be ~ 106y, if it were a clock isotope, i.e. if

-1
YT > en cr . V )EC - H strlp

(59)

For a kinetic energy of 2.3 GeVjnucleon, Eq. (59) corresponds to the

requirement that

~ ~ 7.9011--3 (60)

The restriction of % to rather high values shows that 44Ti is

generally a spallation isotope and hence less dramatically affected

by the changes of § II.

CONCLUSIONS

In contrast to most other studies relevant to the propagation

of cosmic rays, in this stilly the major emphasis has been on developing

the proper set of formulae for the atomic and nuclear processes that

govern the composition. As a result, several calculations in

relativistic atomic physics were required. These ranged from

developing a better cross section for stripping an orbital electron

to incorporating the change in the beta decay rate due to the fact

that a cosmic ray nucleus is unscreened. The nuclear physics

calculations ranged from computing reaction cross sections within

the Glauber formalism of Karol to investigating the systematics of

unique second-order forbidden beta decays. As was shown in § II,
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this critical review of the input quantities for the "leaky box" model

led to the detection of several errors in the standard values. These

errors and their corrections are listed below:

(1) Deviations of approxtmately a factor of two were found

between the standard (Bohr) cross sections for stripping and a more

reliable estimate (also obtained by Fowler et ale 1970) that properly

included distant collisions (see § II (b)).

(2) The correction function from high energy photoionization

was properly introduced into the standard (Raisbeck and Yiou 1971)

cross section for radiative attachment (see § II (c)).

(3) Because the half-life of a fast nucleus with at most one

K-shell electron differs from the half-life of a neutral atom,

several standard (laboratory-based) values had to be corrected.

These corrections ranged from approximately a factor of 2 increase

in the lifetimes of the one-electron states of clock isotopes to

slight increases due to the suppression of electron capture branches

(s ee § I I (f) ) .

In addition to the above corrections, several improvements

were presented. These advances are given below:

(1) For the reaction cross section, the Glauber formalism

of Karol was introduced both as a means of reliably incorporating

the effects of interstellar helium and as a less phenomenological

method of parameterizing the data (see § II (d)).

(2) The effects of interstellar helium were also included for

the first time in the partialproduction cross sections (see § II(el).
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(3) For all input quanti ties except the matrix v, error

estimates were given.

(4) Amore complete analysis of unique second-forbidden beta

decays with well-determined parameters was given. In contrast to the

findings of an earlier study by Casse, no predictive capability

was discovered (see § II (f)) and Appendix B).

All of the error corrections and improvements were presented

within the context of a matrix formalism for the propagation of

relativistic cosmic rays within a "leaky box". In addition, it was

shown that once the assumption of species-independent leakage was

introduced, the formalism was essentially identical with the standard

exponential path length formalism (see § I(c)).
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TABLE 1: Effective Attachment Cross Sections and Correction Functions

1 GeV/nuc 3 GeV/nuc 5 GeV/nuc

°att f °att f °att f
Element (mb/H atom)

cor
(mg/H atom)

cor
(mb/H atom)

cor

Be .0073 .916 .0013 .915 .0007 .911

Ar 10.51 .710 1.86 .706 1.01 .689

Ca 17.26 .688 3.06 .684 1.65 .665

Ti 26.97 .667 4.77 .663 2.57 .643

V 33.19 .658 5.87 .653 3.15 .632

Cr 40.48 .648 7.16 .643 3.84 .622

Mn 48.95 .639 8.65 .634 4.63 .612

Fe 58.74 .631 10.38 .625 5.55 .603

Co 69.99 .622 12.36 .616 6.60 .593

Ni 82.84 .614 14.62 .608 7.79 .584
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TABLE 2: Comparison at 530 NeV of the Proton-Nucleus Reaction Cross
Section Measurements of Renberg et a1. with Theory and
Phenomenology .

Be

Targeta

B

C

0

Al

Fe

Cu

Ge

Sn

Pb

NaI

aassumed to have isotopes in nonna1 abundance

busing fk = 1.037 I .009 (see eq. (43)) and Karol's fonnulae with the

following constants: 0" = 36.3 mb, 0" = 36.1 mb, R either from
pp pn 11llS

experiment or the equation R = .82 A1/3 + .58, c either from experi-11llS

ment or the equation c = 1.07 A1/3, and t either from experiment ot

the value 2.4. 0" and 0" are from Bugg et a1. (1966) and experi-pp pn

mental values of R , c, and t are from de Jager et a1. (1974).rms

Cusing the values 0" = 56 and b = 1.23 given in Table 3.0

Renberg et a1. Karo1/fk Bradt-Peters
(rob)

Cmb)b (mb)c

195.4 I 6.2 198.4 I 5.0 191.7

213 I6 217 I 8 220

233 I5 231 I 2 238

290 I 15 291 I 3 294

433.2 I 7. 7 428 I 13 430

712 I 13 732 I 7 722

788 I 17 793 I 37 792

877 I 18 862 I 40 870

1201 I 23 1203 I 11 1229

1781 I 46 1739 I 18 1811

1704 I 43 1599 I 58 1670
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TABLE 3: Fitting Parameters for Renberg et a1. Data
Using cr = cr (1 + A1/3 - b)20

Parameter Value

cro (rob)

b

56

1.23

«ocr )2>
0

1.3

<ocr ob>
0

-2
3.3 x 10

/'
< ( ob ) 2 > 9.3 x 10-4

x2 5.1*

*vs. 8 degrees of freedom (10 data points - 2 para-

meters)
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TABLE4: Comparison of Nucleus-Nucleus Reaction Cross Sections with
Theory

obtained by adding Jaros' estimated systematic error of 5%to his'

tabulated statistical error.

bUsing fk = 1.037 :!: .009 (see text) and the same parameters as in

Table 2 except that a = 47.2, 44.8 rob and a = 39.6,43.1 mb forpp pn

kinetic energies .87 and 2.1 GeVrespectively, with a and app pn

from Bugg et a1. (1966).

'1veighted average of two measurement modes (both nuclei used as pro-

jecti1es).

Reaction KineticEnergy Experiment Karo1/fk
(GeV/nuc1eon) (rob)a (rob)b

C - H 2.1 270 :!: 14 266 :!: 1

C - H .87 260 :!: 14 264 :!: 1

He - H 2.1 Ill:!: 6 106 :!: 2

He - H .87 120:!: 6 105 :!: 2

D - H 2.1 60 :!:16 72.5:!: .1

C - D 2.1 426 :!: 15c 469 :!: I

e - D .87 411 :!: 21 466 :!: 1

He - D 2.1 203:!: BC 218 :!: 2

He - D .87 198 :!: 10 216 :!: 2

D - D 2.1 134:!: 8 141.3:!: .2

C - He 2.1 535 :!: 19c 549 :!: 6

C - He .87 527 :!: 20c 547 :!: 6

He - He 2.1 276 :!: 14 269 :!: 3

He - He .87 262 :!: 18 268 :!: 3

C - C 2.1 888 :!: 44 954 :!: 2

C - C .87 939 :!: 50 951 :!: 2

a Note that the errors wereAll measurements are from Jaros (1975).
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Experimental Production Cross Sections for Proton-Nucleus
Reactions at Energies Greater than 2.1 GeV/nuc1eon.

Frag-
ment

Target

24MgC 28SiC 5 6Fe e12Ca,b 13Cb 160a

6Li
7Li
7Be
9Be**
lOBe
lOB

lIB

l2C

13C

l4C

14N

15N

22Ne

45SC

46Ti

48Ti

49V

50V

51V

50Cr

51Cr

52Cr

53Cr

54Cr

54Mn

14.9 :!:1.3*
11.0 :!:1.0

9.2 :!: .4
6.04:!: .46
3. 47:!: . 30

19.3 :!:3.0
57.0 :!:4.2

13.9 :!:2.4
11.1 :!:1.3
10.1 :!:1.2

4.26:!: .55
2.05:!: .31

10.7 :!:1.7
26.5 :!:1.9
34.3 :!:4.8
22.6:!:1.8

3.69:!: .38
31.8 :!:3.2
61.5 :!:4.2

9.9:!:.9 10.7:!:.9

17.3:!:5.2~
19.0:!:5.7e
11.4:!:1.2

8.1:!:1.2
4.6:!: .8
5.4:!:1.6e
9.5:!:2.ge

7.4:!:1.5
18.0:!:1.9
27.5:!:7.5
25.1:!:5.6
18.6:!:3.2
10.0:!:1.6

2. 9:!: .6
15.1:!:2.4
25.1:!:3.2
46 :1:12

8.5:1:1.7
2.4:1:1.0

29.2:1:2.7

3.7:!:1.0
6.4:!: . 7
5.9:!:1.7

31.5:!:3.9 18.2:1:2.6

*Al1 cross sections are in mi11ibarns.

**Li9 branches to Be9 25% of the time.

References: (see text)

aLindstrom et a1. (1975b)

bYiou et a1. (1973)

~aisbeck and Yiou (1975a) and semi-empirical

dperron (1976) and semQ-empirica1

eRaisbeck et a1. (1975) and semi-empirical to convert from Ni to Fe



TABLE 6a: Isotopes which, as Cosmic Rays, either have Half-Lives Greater than 1100 Years, or are
EC Clocks.

Isotope Reference

lOBe

l4C

26A1

36Cl

40K

41Ca

44Ti

5\m

Lab T1. (y)~

(1 .61 0 .2) xl 0 6

(5730140)

(7.210.3)x105

(3.0110.02)x105

(1.2810.01)x109

(1.0610.09)X105

(47.311.2)

(3.610.4)x106

Remarks*

+
6_,555.8 max (100%), 3

+
6_,156.6 max (100%), 1

+
6+,1174.0 max (82.112.5)%, 3

+
EC,1066.3 (2.71.02)%, 3

+
EC,2196.0 (15.212.5)%, 3

+
6_,709.6 max (98.110.1)%, 2

6+122.2 max (1.710.1)x10-7%, 2++
EC,1144.2, (1.910.1)%, 2

6_,1311.6 max (89.3310.11)%, 4-

6+,483.0 max (1.0310.11)x10-3%, 4-

EC,44.2 (10.6710.11)%, 2-

EC clock, see Appendix C

EC clock, see Appendix C

EC clock, see Appendix C

CR T~ (y)

(1 .61 0 . 2) xl 06

(5730:!:40)

(8.810.5)x105

(3.0710.02)x10S

(1.4310.01)xl09

(2.210.2)x105

(10013)

(7.710.9)x106

a,k

b,k

c,k

c,k

I
:J

0
I

c,k

d,e,f,k**

c,k

g,h,k**

*For 6+-decays, the endpoint energy (in keV) is given along with the mode's, branching ratio and
its change of spin and parity. For electron capture (EC), the energy (in keV) of the neutrino
is given (ignoring binding). The remaining types of remarks should be self-explanatory.

**Used the weighted average <T> = W ~Ti/oT.2and the root mean square error
~T = w~~ max {I, [~(Ti-<T»2/oTi2(n-l)]~}, 1 where W = ~ 1/oTi2.



Remarks

estimated 3+ decay, see Appendix B
+

S_,150 max (100%), 2

estimated 3+ decay, see Appendix B

EC clock, see Appendix C j,k

CR Tt (y)~

[0.06 to 10]x106

[1 to 9]x105

[0.1 to 6]xl06

5
(1. 7:tO. 2)xl0

aAjzenberg-Selove and Lauritsen (1974)

bMartin and Blichert-Toft (1970)
c

Endt and Van der Leun (1973)

~abuchi et al. (1974)
e

Emery et al. (1972)

fDrouin and Yaffe (1962) as

gHonda and Imamura (1971)

~tsuda et al. (1971)
1
Roy and Kohman (1957)

jVervier (1968)

kWapstra and Bos (1977)

Reference

i,k

corrected by Ref. d)
I
Jf-I

I

TABLE 6b:

Isotope Lab Tt (y)

54Mn

60pe 5
[1 to 9]x10

56Ni

59Ni (8:t1)x104



aA11 ratios normalized to carbon.

-72-

TABLE 7: Cosmic Ray Abundances above the Atmosphere at Rigidities
R4Ql

Element Ablll1dance Element Ab1.ID.dance

Li 18:t2 S 3:t.4

Be 10.5:t1 C1 .5:t.2

B 28:t1 Ar 1.5:t.3

C 100a K .8:t.2

N 25:t2 Ca 2.2:t.5

0 91:t2 Sc .4:t.2

F 1. 7:t. 4 Ti 1.7:t.3

Ne 16:t2 V . 7:t. 3

Na 2.7:t.4 Cr 1.5:t.4

Mg 19:t1 Mn .9:t.2

Al 2. 8:t1 Fe 10.8:t1.4

Si 14:t2 Co .05:t.02

P .6:t.2 Ni .5:t.1
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Table 80

THE ELEMENTAL MODIFICATION MATRIX FOR PROJECTILES BETWEEN Li AND P

LI dE II t II 0 F ME U Ii Al 51

LI I -547 )1 3J 28 27 28 32 29 3i 29 H 21 !l
22 II , 2 , 3 1 5 1 5 , , ,

at I 0 -1>1c1 2:> 20 18 18 18 18 18 18 18 19 11
0 lo , 1 , 2 , 3 " 2 , 2 ,

,) -'13 11 52 40 3' H )0 28 25 23 21
0 0 2J 7 11 " . 7 7 5 . 5 5

0 I} ,) -,,) 76 63 38 34 29 26 22 20 10
0 0 0 29 11 1 9 1 1 5 5 , "

0 0 0 0 -'9" 112 43 42 U 31 2 23 18
0 0 0 0 !3 9 10 9 8 , , 5 "

0 " ,) 0 0 -732 118 89 U 112 I U 37
0 0 0 0 0 35 23 I" IZ 9 9 8 1

0 0 0) 0 0 0 -19" "1 21 20 10 15 12
0 0 0 0 0 0 '3 13 7 5 5 5 "

'Ie I 0 0 IJ 0 0 0 0 -au 117 87 n '0 50
0 0 " 0 0 0 0 U Z3 10 12 9 9

'I' I 0 0 0 0 0 0 0 0 -8:;8 !1 23 22 18
0 0 ;) 0 0 ) 0 0 "7 H H '7 0

;; I 0 0 ,) 0 0 0 0 0 0 -'52 108 8" 00
0 0 0 0 0 0 0 ;) ;) "'0 11 13 11

H I 0 0 0 0 0 0 0 0 0 0 -119 U 28
0 0) ,) 0 0 ;) ;) ) 0 2 10 8

SI I 0 0 IJ 0 0 0 0 0 0 0 0 -901 130
0 0 II 0 ;) 0 0 0 0 0 0 50 2S

0 ,) 0 (\ 0 0 0 0 0 0 (\ 0 -9"9
0 0 \I 0 0 ;) 0 0 0 0 0 0 58

0 0 0) " 0 0 0 0 0 0 0 0 ;)

0 0 0 0 .j ;) 0 0 ;) 0 0 \I 0

tl I 0 0 0 0 0 0 0 0 ;) 0 0 I) 0

0 0 ) 0) ') 0 0 ,) ;) ;) ? ;) "

u I 0 \I I} 0 0 0 0 0 ;) 0 0 0 "
0 0 I) 0 0 0 0 0 0 0 0 0 I)

0 0 ,) 0 0 0 0 0 0 0 0 0 0

0 I) 0 0 0 0 0 0 ,) 0 I) 0 "

t' I 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 " 0 0 0 0 0 ,) 0 \I 0 ;)

SC I 0 0 0 0 0 0 0 0 0 0 0 ,)

0 0 0 0 0 0 0 0 0 0 0 0 0

TI I 0 ,) \I 0 0 0 0 0 0 0 0 0 ;)

0 0 0 0 0 ;) 0 0 ;) 0 Q Q ;)

0 0 0 0 0 0 0 0 0 0 0 0

0 0) 0 0 0 0 0 0 ,) 0 0 " 0

tll I 0 0/ 0 0 0 0 0 0 0 0 0 "
0 0 ;) 0 0 0 0 0 " 0 " 0 0

MN I 0 \I ,) 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 " 0 0 0 0

Fe I 0 0 0 0 0 0 0 0 II 0 0 0 0

0 I) \I 0 0 0 0 ;) ,) 0 ;) \I \I

tn I 0 0 I) 0 0 0 0 0 0 0 0 0 0

0 0 :I 0 0 0 0 0 0 0 0 0 0

HI I 0 0 ,) 0 0 0 0 0 D 0 0 0 ;)

0 0 0 0 0 0 0 0 0 0 0 0 0

XBL789-10755
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Table 8b

THE ELEMENTAL MODIFICATION MATRIX FOR PROJEC TILES 8ETWEEN S AND Ni

s CL ., " tA SC 11 v t, f! CC "I

ll I 2 J:i 3J !3 32 Itl .." 4'1 4 4 40 51 ..3
. 5 6 . 5 7 10 8 10 . 11 1

IE I 11 11 10 19 18 20 20 21 2:> 21 25 21 20
4 3 3 4 4 It 3 It 3 4 2 .. 3

19 19 ... 17 U 23 25 21 2 H 1 26 22
It J 3 3 3 5 4 5 .. 5 3 5 3

15 13 H 11 1! 13 16 17 H 17 U 16 15
3 2 2 2 3 3 3 " 3 4 3 .. 3

17 1" 13 12 15 12 1't 14 14 1It 14 I" H
4 .. 3 3 3 3 2 3 2 3 3 3 2

35 29 ,II 23 30 22 26 Z3 23 23 23 23 23
. .. 4 .. 5 .. 4 .. .. 4 4 4 3

11 9 II 7 'I a 10 'I a 7 7 7 1
4 2 2 2 3 3 2 3 2 2 2 2 2

E I 46 3d 35 30 31 28 32 28 27 2" 24 22 22
8 c 6 5 7 5 4 5 It 4 3 4 3

HA 17 13 12 10 13 10 l3 11 11 9 9 8 8
5 3 3 3 4 3 3 3 3 3 3 3 2

HG 60 ..a .... 37 45 34 39 54 3 29 28 2.. 24
10 1 7 I> 1 b 5 I> 5 5 .. " 3

iL 21 N J 1b 20 14 11> 13 14 12 12 10 11
1 5 5 4 6 It 3 .. 3 3 3 3 2

5I 102 6d c.. 52 62 ... 2 45 42 37 3. 31 32
18 I\) 10 'I 11 9 7 8 7 7 6 b 5

58 22 21 ld 23 15 16 13 H 12 12 10 12
17 . . 5 1 5 4 " 4 " 3 3 3

-I/ed ..23 UJ 72 83 .4 12 ... 51 51 U 41 ..3
51 19 ld 12 15 12 10 11 9 9 7 8 .

CL I 0 -\I.. 5. 37 "" 3b 38 34 30 27 22 21 20
0 u 14 8 'I 7 S b 5 5 .. " 3

A I 0 1 -.0..1 111 115 H 69 Sb 57 U 47 41 Itl
0 2 ';5 19 2:> 12 l' 10 9 9 8 8 6

0 3 J -13"5 56 53 58 51 H "0 3S 31 28
0 0 3 63 lb n 8 9 7 1 I> 6 ..

tit I 0 0 :> 0 -1t'64 1..0 93 7S ,.. 62 63 52 60
0 0 0 0 is 27 12 12 11 10 9 'I 8

SC I 0 0 IJ 0 0 -1123 33 33 21 23 21 19 18
i) 0 :I 0 0 76 6 a . 1 2 5 ..

T! I 0 -0 oJ :I 0 0 -104'1 141 IU .a .3 71 .3
0 0 J 0 0 0 51 19 lb 16 12 13 11

0 0 :> :> 0 0 0 -1081 ., 59 35 48 35
0 0 0 0 0 0 0 76 10 12 5 10 6

CR I 0 0 u 0 0 0 0 0 -liB 121 111 90 8
0 0 3 ') \) 0 0 0 H 17 13 15 13

ION I 0 0 II 0 0 0 0 0 0 -1147 70 50 41>
0 0 0 0 0 0 0 0 0 aD 12 10 9

FE I 0 u :> 0 0 0 0 0 0 27 -l1bi 184 133
0 " oJ 0 0 0 0 0 :> 22 71 31 17

CI) I 0 oj .. 0 0 0 0 0 0 0 0 -1237 62
0 0 ,) ., J 0 :> 0 0 :> :> 88 15

HI I 0 II IJ U 0 0 0 0 :> 0 0 0 -1224
0 0 J 0 0 0 0 0 0 0 0 0 1>3

XBL789-10756
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FIGURE CAPTIONS

Fig. la The simplified level scheme for the S+ -decay of 561Ji.

Only those levels of 5600 whiCh can be reached by direct S+ -decay

are shown. All energies are in MeV and were taken from Auble (1977).

The limit on the S+ -branching ratio is from Rao (1970).

Fig. lb The simplified level scheme for the S -decay of 54Mn.

Only those levels which can be reached by direct decay are shown.

All energies are in MeV and were taken from Wapstra and Bos (1977).

The limit on the 13+ -branching ratio is from Verheul (1970).

Fig. 2 A simplified chart of the nuclides for cosmlC rays. The

mass nrunber A increases to the right and the atomic number increases

towards the top. As in an earlier chart by Waddington (1975), the

chart is folded (at A = 22 and A = 38). Each box represents a

nuclide which requires explicit inclusion in propagation calculations

(see text § I(b)). In each box, line 1 gives the mode(s) of decay

and half-life, as ~ cosmic ray, line 2 gives the nuclide's total

reaction cross section in the interstellar medium, and line 3 gives

the non-trivial terms of the v matrix (see text § II (g)).
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Appendix A

As stated in § IICb), the stripping cross section can be more

completely described as the total cross section for the loss of a

K-shell electron by a hydrogenic atom following its collisions with

the interstellar medium.

Ca) Non-relativistic form

Dmitriev et al. (1966) have used the non-relativistic Born

approximation to determine the stripping cross sections for arbitrary

one-electron ions colliding with either hydrogen or helium atoms.

They first break the cross section into two contributions - the

elastic collisions in which the atom in the medium remains in its

ground state and the inelastic collisions in which the atom in the

medium does not remain in the ground state. In addition, each of

these pieces is broken down into its contributions from close and

distant collisions. The total cross section is the sum of their

Eqs. (10) and (14) and for high (but non-relativistic) velocities

(13 > 3 Zrn a) can be approximated to within 10% by the expression

4'ITa 2 a2
0 . = 0 (Z 2 + Z )

strlp Z 2 62 med medCR

(Al)

x

[ 1 - U?)20
+ Zmed/4

)
+

(
0.56

)
(Z lnA + lnB)

]

1 + Z d medme
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where ao is the Bohr radius,

a is the fine structure constant,

Z d is the nuclear charge of the medium, andme

ZCR is the nuclear charge of the cosmic ray.

In addition, A and B are defined by the equations

A = min(1.6 S/ZCR a , ZCR/2 Zmed*)

B = min [ (1 . 6 S/ Z CR a)

,
* ~ 1 ,

where Zmed = t 1.69,

1

1 ,u -
s - 1.35,

(1 + 0.8 Us 2/ZCR 2), ZCR/Zmed *]

for H l and
for He ~

forH 1

for He \ .

Note that the first factor in Eq. (Al) is just Bohr's expression for

° t . . Also, Dmitriev et ale showed that only the first two tennss rlp

wi thin the brackets of Eq. (Al) arise from close collisions. Thus ,

Eq. (Al) will deviate from Bohr's fonnula if the logarithmic tenns

from distant collisions make a significant contribution.

Since explicit values for ° t . are needed for ZCR > 18
s rlp

(see Fig. 2 and Table 1), and since the second tenn within its brackets

is negligible for S > 3 ZCR a , Eq. (Al) can be further approximated

by the expression

2 2
4'ITao Ct 2

°strip= Z 2 2 (Zmed + Zmed) [1 + 0.56 In (1.6 S/ZCRCt)]
CR S

(A2)
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(b) Relativistic estimate

There is no directly applicable relativistic calculation for the

loss of a K-shell electron. However, it is possible to reliably

estimate the cross section if one adopts the following argument. First,

view the collisions in the rest frame of the hydro genic atom. Then

if the velocity of the "incident" atom of the medium is sufficiently

high, it should be possible to view its interactions with the hydrogenic

atom as merely a superposition of the effect from the nuclear charge

Z d andZ d times the effect from a single electron. In this way,me me

the calculation reduces to properly weighting the relativistically

correct expression for the ionization cross section due to the passage

of a fast charged particle (instead of an atom). Mter some

rearrangement of the ionization formula given in Mbtt and Massey (1965),

this sum becomes

CJstrip
[ (

2 2

) ]

4 S y 2 2

Cl In CZZCRZ - S (Zmed + Zmed)

(A3)

where the constants Cl and C2 have the values 0.285 and 0.048,
2

respectively. Note that the Z d in Eq. (A3) reflects theme

contribution from the nucleus, while the Z d stems from the
me

electrons.

(c) Reliability of the estimate

In the limitof S « 1, Eq. (A3) becomes
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2 2
41Taa 2

°strip=~ (Zmed + Zmed) [.99 + .57 In (1. 6 13IZ CRa)]

CR S

(A4)

which is virtually identical to Eq. (AZ).

In conclusion, Bohr's formula is significantly in error (by

more than a factor of 2) but can be corrected by properly including

the effects of distant collisions. Equation (A3) is a much better

approximation for the stripping cross section.



-81-

Appendix B

Casse (1973a) has claimed that the variations in the nuclear

matrix elements of "unique second-forbidden" decays (here denoted

3+ decays) are limited enough to provide a means of predicting the

lifetimes of 54Mn and 56Ni. This claim is checked below.

(a) Does there exist a "systematics" for 3+ decays?

This section determines the amount of variation in the values

of the nuclear matrix elements of those 3+ transitions that are both

well-detennined and occur in nuclei with A ~ 70. The characteristics

of the five transitions that meet these two requirements are given

in Table Bl. Note two changes from Casse' s Table I - - two additional
26 60 60

branches for AI and the removal of the Co decay. The Co case

was removed on the basis of a review of the A = 60 chain (Kim 1975).

Kim fOlUld that the two 3+ branches of 60Co were "very questionable"

because the indirect arguments for them had been weakened by new

data on electromagnetic transitions between excited levels in 60Ni.

That is, since a new line could cause the populating of the same levels

as those that would be reached by the 3+ decays, the 8- branching

ratios are no longer reliable.

As was discussed by Casse (1973a,b) the reason for adding log

< 52 > to log (foT*) in order to obtain log (f2T*) is to remove the

variations caUsed by the energy-dependent part of the shape factor and

to isolate the variations in the nuclear matrix elements themselves.

Thus, if the values of the matrix elements were narrowly distributed,

column (7) of Table Bl should have much less dispersion than column (5).
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That is clearly not the case. Note particularly the log(fZT*) values

for the three 26Al cases. Since the last two transitions differ only

in the mode of decay, their equal log(f2T*) values show that the

variations in matrix elements have been isolated. However, that common

value differs from that of the first Z6Al transition by more than an

order of magnitude, even though the matrix elements involve the same

initial states. Thus there is no sound basis for the claim that the

dispersion in log(fZT*) is small.

(b) The 3+ half-lives for 54Mn and 56Ni

As seen above, the large dispersion in both the log(f T*) and0

the log(fZT*) values makes calculations with the distribution's

averages unreliable. However, one can hope that the dispersion for

all 3+ decays is no larger than that seen in Table Bl. There are

two possibilities:
(1) that the table's range of loglfoT*) values

brackets those of other 3+ decays and (Z) that it is the range of

log(f2T*) that brackets the others. In case (1) the range of 12.75

to 14.22 in the log(f T*) values of Table Bl leads to the ranges0

in deduced T1 's shown in the second column of Table BZ, while inYz

case (2), the range of 10.89 to 12.74 in the log(f T*) values leads0

to the values shown in the third column. Strictly speaking, these

estimates apply only to the lifetimes in the laboratory since the

integrated statistical factor was determined from a screened Fermi

function. However, since the lifetimes turn out to have such a

large range, the relatively small modifications that would be

introduced by the removal of screening effects have been neglected
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in this work. Thus, taking the union of the two sets of lifetiIDe

ranges gives the final limits shown in Table 6. That means, for

example, that the half-life of the positron branch of 54Mn might lie

anywhere in the interval from 6 x lO6y to 8 x lOgy.



TABLE Bl: Characteristics of Well-detennined "Unique Second Forbidden Transitions" with A ~ 70.

aNote that for the B decays, E is the maximumkinetic energy of the beta particles.

bT~ is the effective half-life:: Tk/r, where r is the branching fraction. The integrated statistical
factor, fO'is from Gave and Martirl (1971) and incorporates both screening and the effects of the
fini te size of the nucleus.

CObtained from a quadratic interpolation in the tables of Zyranova (1963).

~fined by log (f2T*) = log (foT*) + log (S2>'
e
Wapstra and Bos (1977).

fAjzenberg-Selove and Lauritsen (1974).

gEndt and Van der Lern (1973).

I
00
+::-

I

Transition Tk (y) Ea (KeV)
Branch b c d Ref-

(percent) log (foT*) log(S2> log(f2T*) erence2

lOBe (0 +'+3+) (1.6:!:0.2)xl06 555.8:t0.8 100 l3.51:t.05 -2.62 10.89 e,f

22Na(3+.t0+) 2.602:t0.002 l820.3:t0.5 (6:tl) xlO - 2 l2.75:t.07 -.92 11.83 e,g

26Al (5+C2 +) (7.2:t0.3)xl05 1066.3:t0.5 (2. 7:t . 2) l3.33:t.04 -1.78 11.55 e,g2
26 ++ +

(7.2:t0.3)xl05 (82.l:t2.5) 12.71Al(5 +2 ) l174.0:t0.5 l4.22:t.02 -1.51 e,g1

26AI (5 +IiC2 +) (7.2:t0.3)xl05 2l96.0:t0.5 (15.2:t2.5) l3.19:t.07 -.45 12.74 e,g1



TABLE B2: Possible Half-lives for the 3+ Decays of 54Mn and 56Ni

Intervals for T1
~

Transition
I?

12.75 ~ log (f T*) ~ 14.220

I?,b

10.89 ~ log (f2T*) ~ 12.74

5\1n (3+ .t 0+)

54Mn (3+ -+ 0+)

56 + + +
Ni (0 -+ 3 )

8
[.059,1.7]xlOy

6
[.065, 1.9]xlO Y

6
[.098, 2.9]xlO Y

8
[1.1, 80]xlO Y

6
[.14, 9.8]xlO y

6
[.087, 6.3]xlO y

aLog fo fromGove and Martin (1971) and the endpoint energies gi v~n in text

bDefined by log (f2T*) = log (foT*) + log <52>.

CObtained from a quadratic interpolationin the tables of Zyranova (1963).

dwapstra and Bos (1977).

eSchneider and Daehnick (1971).

I
00tI1I

c
Reference

log <52 >

-1.81 d

-3.14 d

-2.19 d,e

(Fig. 1)
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Appendix C

Since a fast nucleus has at most one K-shell electron, its

half-life via electron capture will as a first approximation be twice

as great as that observed in the lab. In addition there are two

smaller effects -- an increase in the half-life because there are no

captures from the higher shells and a decrease because the fast nucleus

is unscreened. The magnitude of these effects is determined below

for the 2-,1+, 2+, and 2+ decays of the isotopes 41Ca, 44Ti, 5~,

and 59Ni, respectively.

(a) Captures from the higher shells

Following Martin and Blichert-Toft (1970) (denoted ME), let E

denote the full rate for decay by electron capture and let E , denotex

the partial rate for capture of an electron from the x -th shell

(x=K,Ll,L2,L3,M,N,...). Then it is convenient to write

E

r
E E

1

E

~ = 1 + L1 1 + L2 + L3 + Ll
EK EK l EL EK- I J [~~.. ]

(Cl)

For both allowed ffi1d unique forbidden transitions, i.e. for

4lCa and 44Ti, only a single nuclear matrix element contributes to an

E.
x This "illliqueness" means that any ratio of the E 1 s is independentx

of the matrix element and is only a function of the Z of the parent

nucleus and the momentumof the outgoing neutrino. In the case of the

+ 53 59 .
2 decays of MIl and Nl, the decay rates for each shell depend on

differing linear combinations of three different matrix elements.
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However, Vatai (1973) has used the [3-decay fonnalism of Behrens and

BOOring (1971) to show that, even for non-unique transitions, the

ratios of E 's for shells having the same total angular momentumarex

independent of the nuclear matrix elements. He also showed a reasonable

preliminary estimation of other ratios could be obtained by assuming

that they too were independent of the nuclear matrix elements. For the

cases of 53Mnand 59Ni, such estimates show that the sum of the ratios

EL /EL and ~ /EL contribute only'" .1% to the final E/EK. Thus for3 1 3 1

calculating the importance of captures from higher shells this work

will treat all ratios of Ex t s as if they were independent of nuclear

matrix elements. The results obtained from Eq. (Cl) by using the

tables in MBplus the momentumof a transition's outgoing neutrino

are given in Table Cl.

In the decay of a neutral atom one is unable to distinguish

experimentally between a direct capture of the K-shell electron and

an L-shell capture, if the L-shell vacancy is filled during the

transition by a K-shell electron. In addition to such "exchange

effects," there is an imperfect atomic overlap because of the different

nuclear charge seen by the initial and final atomic states. Thus

in the notation of MB, the experimental K-capture rate is given by

E =EoB
KKK (C2)

where EKo is the "pure"capture rate and BK is the correction due to

the exchange and overlap effects. Table Cl gives the values for 1\

(according to MB) and also shows that the decay rate of a neutral atom

is approximately 10% greater than the rate due to "pure" K-capture.
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(b) The effects of screening

Once the neutral atom's "pure" capture rate for the K-shell

has been determined, the remaining differences between the lab decay

rate and its decay rate as a cosmic ray arise from a rate's small

dependence upon screening. Recall that (cf. Konopinski and Rose 1965)

in the normal approximation the K-shell capture rate for any transition

with 6 I > 0 depends on the product of gK2, the square of the large

component of the electron's radial wave function at the nuclear surface,

(qK2) 6 I (qK is the momentumof the o\ltgoing neutrino), and other factors

that are independent of the number of electrons attached to a nucleus.
2 2 26 I 26I

Thus, values are required of the ratios (gKu) /gK and (qKu) /qK '

where the superscript ~ denotes a quantity's value in the unscreened

case.

Since for Z < 30, the effect of the finite size of the nucleus

is negligible (cf. Konopinski and Rose 1965), the effect on gK due to

screening can be computed by comparing the values given by :MEwith

those obtained for gK by assuming a point-Coulomb potential. The

unscreened result can be found analytically and is given by the

equation (cf. Bjorken and Dr~ll 1964)

gKU = 2(Za)3/2 I[(1+y)/r(1+2Y)]~ (2ZaR)y-l e-zaRf

y = V 1 - (Za) 2 , R is the nuclear radius, the lU1its are

(C3)

where

h = c = me = 1, and the term in brackets shows the change from the

non-relativistic case. Table C2 provides the values of the ratio

(gKU)2jgK2 for the same isotopes that appear in Table Cl.
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The effect on qK arises from the calculation of the energy

difference between initial and final states. In the neutral atom,

Bahcall (1963) showed that K -capture is really the production of a

K-shell vacancy in the daughter atom so that

q = Q - E - w'K a f K (C4)

where Qa is the atomic mass difference, Ef is the (non-negative)

difference between the grolllldstate of the daughter nucleus and the

actual level reached by the transition, and w'K is the (positive)

binding energy of a K - shell electron in the daughter nucleus.

tmscreened case, qKU is given by the equation

In the

u u
q = Q -E + m - wK n f- e K (CS)

where ~ is the nuclear m~s difference and wKu is the (positive)

binding energy of a K-shell electron in the parent nucleus. However,

for electron capture (where the daughter nucleus has one less proton)

Q = Q + m + E (Z) - E (Z-l)a nee e ' (C6)

where E (Z) is the (negative) total electric energy for an atom ofe

Z electrons. Also for a point-Coulomb potential the grotmd state

energy is given by the equation

wKu = me[1-(1-Z2 a2)~] (C7)

Substituting Eqs. (C6) and C7) into (CS) gives the equation

u
qK = Qa + EeCZ-l) EeCZ) - Ef - me[1-Cl-Z2 a2)~] eC8)
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Since the transition energy (Q - Ef) is much larger than the K-shella -

binding energies wKu and w' K' Eqs. (C4) and (C8) mean that the ratio

qKu/qK is given by the expression

u '

C
. u

(qK w K - WK - E Z-l)+ E (Z))
- =1+ e e
qK Qa - Ef

(C9)

As shown in Table C2, Eq. CC9) shows that qKu/qK differs from unity by

less 3 parts in a thousand for the isotopes of interest.

(c) Final determination of the half-lives

Let ECR denote the decay rate for a fast nucleus with one K-shell

electron.
Then, as discussed above, ECR is just the product of one-half

of the rate for !lpure" K-capture in the lab and the appropriate ratios

of screened and lIDscreened quantities. That is,

E =~
[
E~r,

]. [

CgKU)2

] [
cqKU) 2 f1 I

]CR E 2 2f1I
gK qK

E (ClO)

It was also shown that the ratio of the qK's is essentially unity.

Thus, Eq. (C9) means that the half-life for electron capture by a fast

nucleus, T1 CR' is given by the expression~,

T -2T (
. a u2 2

~,CR- ~,Lab E/EK )/ [(gK ) /gK ]
(Cll)

where T1 L b is the neutral atom half-life. Eq. CCII) and Tables C~
~, a

and C2 were used to generatethe half-livesshown in Table 6.



TABLECl: The Ratio of all Electron Captures to those from the K-shell.

Isotope L1I1Ta

41Ca

44Ti

44Ti

2-

1+ e

1+ f

5\m

59Ni

2+

2+

aL1I = I Ii - Ifl, 1T = 1TiTIfwhere I denotes the spin, 1Tdenotes the parity of the nuclear level and
i(f) denotes initial (final).

bqz = Qa - Ef - wx' is the neutrino's momentumwhere wx' is the binding energy of an electron in the

x-th shell of the daughter nucleus, Q is the atomic mass difference from Wapstra and Bos (1977), Ef
is the difference between the final level an2 the ground state energy of the daughter nucleus, and
all quantities are expressed in units of m c .e

cProm equation (Cl) and the formulas given in Martin and Blichert-Toft (1970).

~change and overlap correction (see text).
e . 44

( )Branches (98.1 1.5) % to a level 146.25 keV above the Sc grolUld state Endt and Van der Leun 1973 .
fBranches (1.9 1.5)% to a level 67.85 keV above the 44Sc ground state (Endt and Van der Leun 1973).

I
\.DI--'I

2 b 2 b
E:/E:K

c
BK

d
E:/E:k

0
qK qL

1

0.6682 0.6784 1.115 0.982 1.095

0.0495 0.0531 '1.124 0.982 1.104

0.1413 0.1473 1.120 0.892 1.100

1.3344 1..3585 1.124 0.985 1.107

4.3493 4.4050 1.127 0.986 1.111
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TABLEC2: The Effects of Screening on the Large Components of the
K-she11's Radial Wave Function

agKU is the tUlscreened function obtained from Eq.
tITe equation (Martin and B1ichert-Toft 1970)

R = (.OO2908A1/3 - .002437A-1/3)

bFromMartin and B1ichert-Toft (1970).

cFrom equation (C8), using atoITac mass differences from Wapstra and
Bos (1977), w'K and Ee(Z) from Huang et a1. (1976), and in the case

of 44Ti, values for Ef are from Endt and'Van der LelID (1973).
dFor the 98.1% branch.

(C2) with R given by

him c.e

eFor the 1.9% brro1ch.

b u a u 2 2 u c
Isotope gK gK . (gK) /gK (qK /qK)-l

41Ca .1169 .1195 1.045 5xlO-4

44Ti .1367 .1397 1.044 3x10-3 d

44Ti .1367 .1397 '1.044 2x10-3
e

5\m .1728 .1694 1.041 5x10-4

59Ni .2097 .2057 1. 039 4x10-4
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APPENDIX D

This appendix provides the detailed manipulations involved in

computing the errors on each term in the elemental modification matrix.

Since the elemental modification matrix is actually defined

via its inverse, the fonnula connecting perturbations in a matrix with

those in its inverse is needed.

Then since B B-1 = 1,

Let B be any invertible matrix.

-1 -1
0 B1J (B ) JK + BIJ (0 B )JK = 0 (D1)

where 0 BIJ is the perturbation in BIJ' (0 B-1) JK is the perturbation

in (B-l)JK' and the sumnation convention has been used for the sum over

J. Using Eq. (Dl), the Eq. for 0 vii 1L becomes

-1 //
01IL = -1rJ (U )JK./a KL (D2)

Using Eq. (55) and assuming nOtnlcertainty in the v's, the equation

~ //-1
for (fya ) JK becomes

-1 ,",-1
(~ )JK = ~(o M )jm vrnKJ

(D3)

After substituting Eq. (D3) into Eq. (D2) and using Eq. (Dl) for
-1

(oM )jk' Eq. (D2) takes the form

01IL = RIk o~~ TQ,L (D4)
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where the rectangular matric~s R and T are defined by the expressions

RIk =~J
" -1

L.J(M )jk
j

CDS)

and

-1 //
TRL = (M ),Qm vmk JIt KL

(D6)

Thus, the mean square error in the tenn AIL is given by the

expression

<CoA)2IL> = RIkRIk' <cSMk~ 8Mk' £,> T£L T£'L CD7)

where <8Mk£ 8Mk'£'>
is the covariance matrix for M. Recall that the

modification matrix is the sum of three matrices, F, D, and E, that

involve different physical processes;' so that < 8Fk£ 8Dk'£'> = 0

and similarly for the other two averages of tenns from different

matrices. However, there can be correlations among elements within

each array. These correlations are computed below.

In principle the correlations of the matrix F can come from

either the total reaction cross sections or the partial fragmentation

cross sections. It was shown in § lIed) that the total reaction

cross .sections are generated by fonnulae that involve the nuclear

charge distributions of the projectile and target. Moreover, an

interpolation formula for the distributions was used whenever,

measurements were unavailable. Thus, in practice many of the terms

are correlated. However, this fact will be ignored in accordance with
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the assumption that actual measurements would randomly scatter about

the results of the interpolation formula and destroy this "artificial"

correlation. Thus in this work it will be assumed that the diagonal

terms are neither correlated with each other nor with the off-diagonal

terms. As discussed in § II (e) , most of the off-diagonal terms of

F are given by the semi-empirical fonnulae of Silberberg and Tsao and

thus have some correlation. However, the simplifying assumption will

be made that there is no mean correlation for different off-diagonal

tenns, whether experimental or semi -empirical. Thus the form

<oFk£ oFk'£'>
2

= <oFk£ > °kk' 0££' , (DB)

will be used with the error estimates given in § II (d) and (e), and

where °kk' and 0££' are Kronecker del tas .
Non- zero terms in D (the matrix C?f long-lived decays) are

correlated even if the lifetimes of the unstable species are

-lllcorrelated. These correlations stem from the fact that the effects

of a decay are incorporated twice, both as a diagonal term (with a

minus sign) and as an off-diagonal term (with a plus sign). For

defini teness, assume that the k -th entry of M decays to the £ -th0 0

entry with a mean life Lk . Then if <0 Lk 2 > is the mean square
0 0

error given in Table 6, the correlation coefficient for D becomes
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<oDk.R, oDk'.R,'>
= ~ o~k °.R,'k (ok.R, - °kk )(ok'~ - °k'k )

kO 0 0 0 0 0 0

x

<OT 2k >
. 0

(YVTk ~) 2
oc

(D9)

where the sum over k represents the search through Table 6 and the0

extensive string of Kronecker deltas both represents the fact that

only tenns from the same physical decay are correlated (the first two

factors) and keeps the bookkeeping straight on the net sign of the

correlation.

Inprinciple, terms in E are correlated in the same manner as

the terms in D. However, as discussed in § II (b), the errors in the

attachment cross sections are negligible. Thus only the correlations

for the 4 cases that require stripping cross sections are needed.

Once again assume that the k -th entry of M is the one-electron state0

of an electron that decays to the ~ -th entry of M.0
Then if

<astrip,k >2 is,the mean square error discussed in § II (b), the0

correlation coefficient for E is virtually identical to Eq. (D9),

namely

<o~~ oEk' ~,> = 2: 0~k 0~ 'k (ok~ - °kk ) (ok' .R, - 0k 'k )k 0 000 0 0
0

2>
x ~2 <OGstrip,ko

(Dl0)
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where the sum over k represents the search over the 4 possibilities.0

In surmnary,

<oMki oMk'£'> = <oFk£ oFk'i'> + <oDk£ o~,£,>

+ <°I1<i oEk'£'> (DIl)

with <oFk£ oFk'£'>' <oDk£ o~'i'> , and <oEki oEk'£'> given by

Eqs. (D8), (D9), and (DID), respectively. Substituting Eq. (DIl) into

Eq. (D7) expresses the errors in1 in terms of the quantities discussed

in § II. These errors are given in Table 8.


