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ABSTRACT

Many quantitative studies of relativistic cosmic ray propagation
exist in which "'standard" values for the input quantities are adopted
in an uncritical manner. In contrast, the major emphasis of this study
is on developing the proper set of formulae and error estimates for
each of the atomic and nuclear processes that govern the composition
of the cosmic rays between lithium and nickel. In particular, it is
shown that errors of approximately a factor of two exist in the
standard (Bohr) cross sections for stripping, that the correction
function from high energy photoionization needs to be introduced into
the standard cross section for radiative attachment, and that because
the half-life of a fast nucleus with at most one K-shell electron can
differ from the half-life of a neutral atom, several laboratory-based
values need correction. The framework used to assemble and correct
these quantities is a matrix formalism for the leaky box model similar
to that used by Cowsik and Wilson in their 'mested leaky box'' model.

It is shown that once the assumption of species-independent leakage
is introduced, the matrix formalism becomes virtually identical with

the standard exponential path length formalism.
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INTRODUCT ION

The measurement of the charge composition and energy spectra
of relativistic cosmic rays permits a quantitative study of their
origin and propagation. Once the effects of interactions with the
interstellar medium are removed, the composition at the source can
be compared to the predictions of models. Thus, it is important to
include those processes that can change the composition from its
source value. For some elements, the difference between the charge
composition at the source and at the top of the atmosphere can be
quite dramatic. The elements Li, Be, and B provide a classic example
of this difference. At the top of the atmosphere the ratio (Li+ Be+B)/
(C+0) is quite large (~0.25) and yet spectroscopic observations

(cf. Cameron 1973 and Meyer and Reeves 1977) and the fact that all
6

three elements are destroyed in stellar interiors with T 2 10°K
indicate that the same ratio should be =~ O at the source.

The assumption that the abundances of Li, Be, and B at the top
of the atmosphere reflect the effects of the intervening medium has
been used in all models for cosmic ray propagation. The original
equilibrium model of Bradt and Peters (1950) sought to explain their
abundances in terms of the cross sections for production from the
fragmentations of such heavier parent nuclei as C and 0. When that
model predicted too much Li, Be, and B (relative to C and O), their

abundances were used to determine the mean amount of intervening

matter. The concept of using one thickness for the slab of intervening
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matter was most fully developed by Fichtel and Reames (1966) and came to
be called the slab model. When a single thickness failed to explain
both the abundances of Li, Be, and B and the abundances of the elements
in the range 19 £ Z < 25, the slab model was extended to the exponential
path-length model by Cowsik et al. (1967). In this model the abundances
of Li, Be, and B were used to determine the mean matter thickness. This
model was given a better theoretical justification and the new name of
the "leaky box'"' model by Gloeckler and Jokipii (1969). Once again, the
abundances of Li, Be, and B were used to determine the mean amount of
matter traversed by primaries before ''leaking out of the Galaxy."

For the elements between lithium and nickel many quantitétive
studies of cosmic ray propagation exist (Shapiro et al. 1975, Garcia-
Munoz et al. 1977, Raisbeck and Yiou 1977, Hagen et al. 1977, Webber
et al. 1977) in which '"standard" values for the input quantities are
adopted in an uncritical manner. In contrast, in this study the
major emphasis is on developing the proper set of formulae for the
atomic and nuclear processes that govern the composition. In particular,
errors in the standard rates of decay of unstable nuclei and in the
cross sections for the attachment and stripping of atomic electrons
are pointed out and corrected.

The framework used to assemble and correct the input quantities
is a matrix formalism for the standard leaky box model that is similar
to that used by Cowsik and Wilson (1973, 1975) in their 'mested leaky
box'" model. The major difference is that the 'nested leaky box" model

requires a product of two modification matrices (one for each
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confinement region), while in this work only a single modification
matrix is required. In addition, this work provides a much more
detailed discussion of how the matrix formalism connects with other

methods and shows how to obtain the minimal set of isotopes that

requires explicit treatment.
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I. Matrix Formulation

(a) General considerations

The basic transport equation for cosmic ray nuclei is a second
order partial differential equation (cf. Ginzburg and Syrovatskii 1964).
However, if one imagines that the nuclei are confined in some region
within which they are uniformly distributed and such that their frequent
encounters with the boundary have a low probability for escape, their
transport equation becomes somewhat simplified. Further simplification
is possible at energies above 1 GeV/nucleon because the processes of
energy loss and solar modulation have a negligible effect. In
particular, the equation for cosmic ray nuclei that incorporates the
change with time of the differential number density N(Z,A,ZJ(T) of
particles having kinetic energies per nucleon between T and T + dT that
also have atomic number Z, mass number A, and net charge z is given by
(cf. Gloeckler and Jokipii 1969; Cowsik and Wilson 1973, Eq. [2.1]) the

expression

Nz an™ 1
a T(Z,A,2)

Nz.a " e YNz
) (zg\-) E f“(z,A),-(z',A') CLAEPL B A

1 1 :
! S(ZSA’Z) ) YT - EZ,A,Zj N(Z’A’z) " (Z;AH) .YT % (Z”’A”’Z”) }\(Z”’A”lz")

(1)
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where
T is the kinetic energy per nucleon;
1/T(2 A,2) is the leakage probability per unit time for (Z,A,z);
- it |

ny is the number density of hydrogen in the containment volume;

9z,4) is the reaction (or inelastic) cross section per hydrogen
atom at energy T;

- . :

O(Z,A), (Z‘,A')(T’T ) 1s the partial cross section per hydrogen
atom per unit energy interval for the formation of a nucleus (Z,A) at
energy T from the interaction of a projectile nucleus of (Z',A') and
energy T':

S(Z A.2) is the differential source injection rate per unit
volume at the energy T;

v is the velocity;

- 2,24,

¥ 1s the Lorentz factor (1 - v /c™) ™

c is the velocity of light;

Ty is the mean-life (not half-life) for radioactive

(Z,A,2)
decay in the rest frame of a nucleus (Z,A) that has Z-z electrons

attached;
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U?EtA 2) is the cross section per hydrogen atom at the energy T
s |

for an electron attachment by a nucleus (Z,A) that reduces its net

charge from z to z-1 (0 if z = 0);

E

O?ET;PZ) is the cross section per hydrogen atom at the energy T
L it |

for stripping an electron off a nucleus (Z,A) and increasing its net

charge from z to z+1 (0 if z = 7).

Note that the first three terms of Eq. (1) represent leakage losses,
interaction losses, and interaction gains, respectively. If (Z,A) is
an unstable parent nucleus, the fifth term represents losses due to
radioactive decays. If (Z,A) is a daughter nucleus, the sixth term
represents its gains through radioactive decays. Although not normally
included, the last four terms incorporate the atomic processes that
govern the net charge. That is, the seventh (eighth) terms represent
the losses due to an increase (decrease) in the number of electrons
attached. Similarly, the last two terms represent gains because of
an increase or decrease in the number of electrons attached. These
last four terms become important for nuclei that can decay via electron
capture.l Lastly, note that it is common to introduce the definitions
X =m, n, vt,

2
Xy = My Ny VT &

lThroughout this work, the term electron capture will be used to mean

the nuclear decay process. The term electron attachment will be used
to mean the atomic process by which an electron becomes bound to a
nucleus.
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into Eq. (1), where my is the mass of a hydrogen atom. However, this
substitution is not useful whenever, as in this work, long-lived decays
are to be explicitly included in the formalism.

It is common to make two further approximations before using
Eq. (1). The first is to assume that those events in which the cosmic
ray suffers an inelastic collision, but remains intact, constitute a
negligible fraction of the total reaction cross section, or equivalently,
that the fragmentation cross section is approximately equal to the
reaction cross section. More explicitly, in this work it will be

assumed that
(.’:j(Z,A),(Z,AJ(T’T') dT‘) /U(Z’AJ(TJ <<l , (3)

where the numerator is just the cross section for inelastic-yet-intact
events. The second approximation stems from the fact that for
projectiles and fragments with A 2 5, the fragments have very nearly
the same velocity as the projectile (cf. Heckman et al. 1972 and
Greiner et al. 1975). This means that the differential cross section,
O(Z,A),(Z',A')(T’Tt)’ is concentrated at a kinetic energy per nucleon,
T, close to that of the projectile. Thus, since this work deals with
the elements between Li and Ni, the delta function approximation

(Ginzburg and Syrovatskii 1964) which assumes

Oz,0), (2, a0 (LT =07 4y (20, any8T-T")
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can be used where U(Z,A),(Z‘,A’) is now the integrated cross section for
producing (Z,A). With these approximations, Eq. (1) becomes a simple
algebraic relationship describing the transmutations cosmic rays
undergo while propagating from the sources. That is, considering the
various N(Z,A,z)‘s and S(Z,A,z)1s as components of colum vectors,
the equation has a matrix form.

Before making an explicit definition of the matrices, it is
convenient to introduce some further notation. Let N:co be the total
number of species in the propagation analysis. Next, let N and S be
colum vectors of length B vai whose components provide the elemental
density and injection rate per unit volume, respectively. That is,

N and S represent the results of keeping Z fixed and summing over A

and z. Also, let € be the rectangular matrix of dimension Bias by
Honecs whose (i,j)-th entry contains the fraction of the j-th component
of N that belongs to the i-th component of N(Z,A,z)‘ Similarly, let

v be the rectangular matrix of n. by n

s which expands S to S(Z,Ajz)'

elem
Thus with these definitions the quantities N(Z A,z) correspond to

e |
the colum vectors eN and vS, respectively. Strictly speaking, € and v
are two-dimensional matrices; however, they are also similar to column

vectors in that each has a maximum of one non-zero entry per row and the

form sketched below:



=

With the above definitions Eq. (1) can then be written in the

more compact form
d ¢ = + vS 5)
3 (EN) = My(eN) + VS (

where in order to permit a rapid conversion from density to flux one
power of v has been ''removed' from the modification matrix M and where

M is the sum of the fragmentation and leakage matrix, F; of the decay
matrix, D; and the electron attachment and stripping matrix, E. That is,

if (eN); corresponds to N(Z,A,z) then

M.. =F.. +D.. +E.. (6)

where
1 g g
_(ﬁ-'-nHG(Z,A)] s lfl—_]
Fii= o " °z,A),(Z',A") , if i # j and j corresponds to (Z',A') (7)
0 , otherwise
i s s 2
= , if i = j, (Z,A,z) unstable
[ Tezan Y
1 s -
D..= ( + ¢ 3E 1 # J5 (BNAEN) VeSS B6 (2,42)
1] , YT*(ZH’AH’ZHJV
and j corresponds to (Z",A",z'") (8)
\

0 , otherwise
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* 0
0 %* |
niso< 0 *
0 *
:
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where * denotes a non-zero entry.
As will be seen in § I(b) and III, the introduction of the €
“and v arrays permits a clearer distinction between those aspects of
a propagation analysis that take place at the species level and those
that occur at the element level. Finally, note that because at a
given energy/nucleon the sum of all of the fractions must yield unity,

€ and v satisfy the normalization equations

Ti-
150
Z e = 1 (4a)
i i
. and
niso
Z vigk =1 (4b)
1=i

for each K=l""’ne1em'
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att strip ]  SEY =3

[0 A7) * @A)

- strip T YR B )
Eij + nHO(Z,A,Z—l) , if i # j, j corresponds to (Z,A,z-1) (9)
att S % PR
t O 7 A ze]) if i # j, j corresponds to (Z,A,z+1)
0 , otherwise.

Finally, note that if a steady state has been reached within
the confinement region, i.e., if the gains and losses are balanced

for each species, then Eq. (5) says

MreN+vS =0 - (10)

(b) Leaky box model

The leaky box model assumes that the entire Galaxy acts as the
confinement region and that a steady state has been reached. Once its
parameters ny, and T(Z,A,z) are specified (or determined), Eq. (10)
tells how to derive the isotopic source abundances from the isotopic
abundances at the top of the atmosphere.

Of course, most of the present cosmic ray observations above
1 GeV/nucleon provide fluxes at the elemental, not isotopic, level.
That is, in the notation of Eq. (10), observations provide a VN, not
both € and vN. Thus, some assumption must be made about the isotope
fractions at either the sources or the top of the atmosphere. The
typical assumption (Tsao et al. 1973) is that the sources inject fully

stripped isotopes and that the isotope fractions at the source (the
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non-zero components of the matrix v) are given by the Cameron (1973)

12C/13

compilation. For example, this assumption would fix the C and

160/170 ratios at the source at their "universal' values but would
not make any assumption about the C/0 ratio at the source. Once an
assumption for v has been made, the measurements of vN and the
measurements and estimates for the components of M can be used in

Egs. (4) and (10) to solve for € and S as a function of the parameters

ny and T{Z,A,z) .

(c) Connection between matrix and path-length formulations

Since cosmic ray propagation calculations are often discussed
in terms of particular path-length distributions, this section will
make the connection between the matrix and path-length formulations.
First, however, note that as shown below the path-length formulation
can treat only those cases in which, at the same kinetic energy per
nucleon, the leakage is independent of species. No such restriction
occurs in the matrix formulation.

(i) Slab Model

As noted above, the slab model was an early attempt to
incorporate the effects of nuclear interactions with the interstellar
medium. In this model these effects are obtained via the approximation
that all cosmic rays must pass through a single uniform slab of material
that neither creates nor 'leaks' particles. In this way, Eq. (5) can
be treated as an initial value problem for the column vector n = eN.

That is, n is the unique solution to the problem
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I " M'v n , ¥ t>0 s

(11)

where M' (E (M + 13) is the modification matrix without leakage and
TV

1 is the column vector that contains the injection density for each

species. At high energies M' is independent of t so that the matrix

solution of Eq. (11) is just

n=exp Mvt)n, ,¥t2O0 (12)

where the matrix exp (M'vt) = :E: (M'vt)n/nl.
n=0

Equation (12) and measurements of the abundances at the top of
the atmosphere can then be used to determine the (constant) time
interval, tes between the injection and the detection of a cosmic
ray. This calculation is done by finding a value t, such that
[exp (‘M'Vts)ll]i ~ 0, if i is any of the isotopes of Li, Be, and B.

| As shown by Ginzburg and Syrovatskii (1964), there is an
equivalent way of writing Eq. (12) that emphasizes the diagonal terms
and the time dependence. This alternate form will be useful for some

formal manipulations and is given by the equation

= A5 © , (13)



= s

where dj is the diagonal term of M'v and the Aij are recursively
defined in terms of the off-diagonal, diagonal, and initial values
of the isotopes heavier than the i-th isotope. Explicit values for

the A, are not needed for this work; they are given in Ginzburg and

J
Syrovatskii (1964).

(ii) General Path-Length Formulation
Even if the distribution of times, P(t), between the injection
and the detection of cosmic rays is not narrow enough to be approximated
by a single value, the observed density can often be written as
superposition of solutions to different slab models. Thatwis, if
P(t) is species-independent and is nommalized such that‘/rP[t)dt =1,

o
then n is given by (cf. Meneguzzi et al. 1975) the equation

n = f n  (£)P(t)dt (14)

0

where n

Ng is a solution to the slab model equation (11)). Assuming

that the sources constantly inject the same initial composition, Eq. (12)

can be used so that Eq. (14) becomes

iR [f exp (M'Vt)P(t}dtJ e F (15)

o]

Equation (15) gives the most general form for the asymptotic (steady
state) cosmic ray density in terms of the distribution P, the elements
of M', and the injection composition,go . Note that it is the
requirement that P be a scalar function or, equivalently, the fact
that M' is not diagonal that does not pemmit the path-length to be

species-dependent.
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(iii) Leaky Box Model
As the name implies, in the leaky box model it is assumed that
the distribution of times between injection and detection stems from
the confinement region's leakage losses. More specifically, if the
leakage rate is a constant, 1, and independent of the previous history

of the particle, then the equation

=,

P(t) = 1 " exp(-t/1) (16)

gives the properly normalized distribution. This form for P(t)
demonstrates why another name for this model is the exponential path-
length model.

With this definition of P, Eq. (15) becomes

n = fexp M- T vt dt{n /1 17
o}

where I is the identity matrix. Using the power series definition
for the exponential operator, and Eq. (13) for the evaluation at the
upper limit, Eq. (17) becomes

D= - 207/t (18)

0

After reintroducing the definitions of €, N, and M, Eq. (18) becomes

Mve N + QO/T =0 (19
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Equation (19) differs from Eq. (10) only in the way the steady
state source term is represented. In the matrix formulation (Eq. (10))
it is convenient to think in terms of a source injection rate per unit
volume so that the second term is written v§ ; while in the path-length
formulation (Eq. (19)) the steady state injection is determined by the
equivalent loss rate from the material, i.e., the density at injection
of each species divided by the mean time spent in the material. Thus,
if the t of Eq. (10) is independent of species, the matrix formulation

becomes equivalent to the exponential path-length formulation.

(iv) Path-Length Distributions in gm/cm2

Radioactive decays are often treated in the limiting cases of
complete survival or instantaneous decay. In these cases, the D matrix
(Eq. (8)) does not appear and it becomes convenient to introduce the
variables x and X, (see Eq. (2)) having the units of gm/cmz. For the
leaky box model, these substitutions result in the path-length

distribution

P(x) = x&l exp(-x/x,) . (20)
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II. A Critical Review of Input Quantities

(a) Reducing the Number of Coupled Propagation Equations

In the quite general discussions of § I it was never necessary
to specify the actual number of isotopes and charge states that were
being explicitly treated by the formalism. The minimum size of the
column vectors and matrices can be determined by the requirement that
an isotope or charge state be truly "coupled". That is, those isotopes
or charge states whose N's (densities) are completely specified by
another N do not need to be included in the minimal set of coupled

equations.

(i) Can N A,Z-1) be eliminated?

(Z,
The first reduction via the above requirement comes from the
fact that even though nuclei that are not fully stripped have been
included in the propagation equation, the inclusion can affect more
than one other N only when the nuclei decay via electron capture. This

claim is demonstrated most clearly by writing the steady state equation

for a nucleus (Z,A) having one electron attached. Then

_ Nz.az-1) strip

dN » =
G GAZD =0 e " 9(z,A,2-1) YN(Z,A,2-1)

att
My %z,A,2) Nz,A,2) (21)
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where leakage, spallation, and attachment losses have been neglected
relative to the stripping loss, and it is implicitly assumed that the
source of cosmic rays injects fully stripped nuclei, that spallation
products are fully stripped, that B-decay products are fully stripped,
and that the concentration of nuclei with Z electrons is negligible.
Next note that, with the above assumptions, N[Z,A,Z-l) will occur in
a maximum of 2 equations other than Eq. (21) - namely the equation for
the fully stripped nucleus and, if electron capture is possible, in
the equation for the fully stripped end product (Z-1,A). In fact,
N(Z,A,Z-l) actually enters into the equation for the fully stripped
nucleus in the same combination as the last two terms of Eq. (21)
(although with opposite signs). Moreover, Eq. (21) shows that if
the nucleus does not decay by electron capture then these two terms
would sum to zero. In so doing, however, not only is the occurrence

of N completely eliminated in the equation for the fully

(Z2,A,Z-1)

stripped nucleus, but also eliminated is the need to include the charge
state in the minimal set of coupled equations.
As discussed by Yiou and Raisbeck (1970), a nucleus that decays

by electron capture falls into one of two classes - ''spallation'

isotopes (if YTpe << ) and '"'clock" isotopes (if YTgq </< )

Tstrip strip

where T is the mean time between electron stripping collisions.

strip

For a '"'spallation' isotope, stripping cannot compete with decay so
that an attachment is always followed by that decay. This sequence

has two consequences - first, the term in the steady state equation

strip

for N(Z,A,Z) which is proportional to G(Z,A,Z—l

) can be neglected and

second, Eq. (21) becomes



=] G

Nez 4,2-1) att

YTgc = ™ %(z2,A,2) Wz A,2) (22)

Since the left hand side of Eq. (22) also occurs in the steady state
equation for (Z-1,A,Z-1), and since the right hand side also occurs in
the equation for (Z,A,Z), Eq. (22) can be used to bypass (and thereby
eliminate) N(Z,A,Z-l)' Note that these substitutions then provide a
direct spallation-like coupling of the fully stripped parent nucleus

to the fully stripped daughter nucleus that is independent of the mean
life for the decay. This somewhat paradoxical result can be understood
by nothing that for such an isotope, the rate limiting step for the
process is the target density-dependent attachment and not the decay
rate of the partially stripped nucleus.

For "clock" isotopes, the decay rate of the partially stripped
species does enter into the process and no such simplification is
possible. For these isotopes, both the one-electron case and the fully
stripped case are truly coupled and must be propagated.

In sumary, the standard practice of including only fully
stripped nuclei in the minimum set of species is correct for all cases

other than '"'clock' isotopes.

(i1) Eliminating short-lived beta decays
The simplified propagation equation for nuclei with short-lived
8" or 8" decays also leads to a reduction. If its mean life is

sufficiently short, then a particle will decay to a stable (or at least
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a long-lived) end product before fragmentation or leakage can take place.
For definiteness, assume (Z'",A") decays to (Z,A) and that its mean life

is so short that

1 1
>> TNy 0oy g Vo (23)
YT:& (ZII,AH) T(ZH’AH,ZH) nH (Z SA )

Then the steady state equation for (Z'',A') becomes

2
Z',A0 S @A M O,z AN LAzt Sz
(24)

1 1
- o N " " " *
(Z !A ,Z } (‘Zrn ,Arrl) YT*(ZrH ,AHI)

N 1t AR N |
YT* [Z” ,A”) (Z ,A sy 2 ]

Incorporating Eq. (24) into the steady state equation for the daughter

(Z,A) gives

_ 1 )
MR el S B S VR W
YT an e, T T, @ an! Naoae
% [Bla + S 8 ot (25)
(Z,A,z) (ZM, A 2™ YT*(Z,AQ (Z,A,z)

I
+
(ansA”!] YT*(ZHT ’AI'H) N(ZT” rAI”:Z”')
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Equation (25), when generalized, shows that by (1) redefining an
effective partial fragmentation cross section as the sum over the set
of all the short-lived parents plus the daughter nucleus, (2) redefining
the source strength as the sum over the same set, and (3) summing over
all gains through radioactive decays to either the short-lived parents
or the daughter, then those nuclei which satisfy inequality (23)
need not be explicitly treated.

How short-lived must a decay be in order for inequality (23)
to hold? The answer is a function of the values of the parameters
and constants within a model and should be determined self consistently.
Most important is to know the size of the 1 o -confidence region for
the parameters ny and T because the values used in inequality (23)
are not necessarily the best fit values. In particular, previous
studies have found that only the product, T, of the parameters
(or equivalently the grammage xo) can be well-determined. Hence if
v ~ 2.4 (see § II1.(i)), and O < 950 mb (see § II.d), while X, ~ 3 gm/cmz,
and T ~ 1.5 x lD?y (Garcia-Munoz et al. 1977), then the inequality

best

becomes

6
T*(er’An) << 1°6 X 10 } (T(Z”,A“,Z”)/Tbest) (26&)

6
or T%(Z”,A”) << 1.1 x 10" y (T{Z”,A”,z”)/Tbest} (26b)
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Thus in order to allow T(Z”’Z”’Z”) to vary up to two orders of
magnitude away from its best fit value, and at the same time keep
the right hand side of the inequality at least an order of magnitude
larger than the left hand side means (Z'",A") should have a half-life
less than 1100 y. Put another way, a long-lived nucleus can be
defined as any R-active nucleus with a half-life, T%, such that

T, 21100 y . (27)

1/2

Applying the reduction procedures for electron capture isotopes
and B-active nuclei yields the minimum number of nuclides to be
explicitly treated. Sections II(b) - (i) give the quantitative values
necessary to perform this reduction and propagate those that remain.

A discussion of details is deferred until later; however, for a preview
of the resulting simplified chart of the nuclides, see Fig. 2.
(b) Stripping Cross Section

As discussed above, the stripping cross section explicitly enters
only in the treatment of electron capture isotopes. What is needed is
the cross section for ionizing a hydrogenic atom that is in its ground
state and is moving relativistically through the interstellar medium.
The formula used by almost all cosmic ray researchers (cf. Reames 1974,
Raisbeck 1974, but also Fowler et al. 1970) has been an expression due
to Bohr (1948). However, as discussed in Appendix A, Bohr's formula is
in error because it neglects ionizations via distant collisions
(I thank Ray Hagstrom (Hagstrom 1977) for originally suggesting this

possibility.)
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As is also discussed in Appendix A, an improved approximation

for low-Z media is the expression

2.2
4wao o

2.2 :
- (487y") Z
Ostrip ~ 7 2 g2 (Zmedz * Lned) { G En( C7 2 2)- B } } (28)
R 28R @

where the factor in curly brackets isolates the deviations from the

Bohr formula and where a, is the Bohr radius,

o is the fine structure constant,
zmed is the nuclear charge of the medium,
LR is the nuclear charge of the cosmic ray,

and the constants C1 and C2 have the values 0.285 and 0.048, respectively.

An expression for ¢ that is virtually identical to Eq. (28) is

strip
given in Appendix B of Fowler et al. (1970). Their equation was
given with little discussion, was without derivation, and was neither
adopted nor discussed by other workers. The treatment given in
Appendix A of this work was completed before I knew of the Fowler et al.
formula.

Recall that in Eq. (1) all of the cross sections were expressed
as per hydrogen atom, thus Eq. (28) needs to be averaged over the light
constituents of the confinement volume. Assuming that the He abundance

of the medium is as given in the Cameron (1973) compilation (He/H=6.9%),

the effective cross section per hydrogen atom is then given by
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(29)

Lastly note that the uncertainty of the interstellar He
abundance, coupled with the approximation involved in deriving Eq. (28),
means that the error in Eq. (29) is approximately 20%.

(c) Attachment Cross Section

As has been pointed out by Raisbeck and Yiou (1971), there are
two distinct processes that can lead to electron attachment: radiative
and non-radiative (which dominates at lower energies.) Further, because
~of the low density of the interstellar medium, attachments into excited
states are always followed by electromagnetic cascades to the ground
state. Thus, to obtain the effective cross section for attachment,
one must both sum over the cross sections to capture into excited states

and sum over the constituents of the medium.

(i) Radiative attachment
As the inverse to photoionization, radiative attachment is a
two-body process in which an initially ''free' electron becomes bound
to a nucleus and an energy-conserving photon is emitted. In this
context, the word free means that the orbital velocities of electrons
in the medium are negligible when compared to the cosmic ray velocity.
In the rest frame of the cosmic ray, the incident electrons then have

a kinetic energy given by

Te = (me/mu)T (30)
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where m, is the electron rest mass, m, is the mass of an atomic mass
unit, and T is the kinetic energy per nucleon of the cosmic ray, as
measured in the lab frame. Sunce T > 1 GeV, Eq. (30) shows both that
the final binding energy is negligible compared to T, and also that the
relativistic theory of radiative attachment or photoionization is

required. Using the principle of detailed balance one gets

2
(giﬁ] ] 1: (31)

where OphI is the photoionization cross section per electron, fw 1is
the energy of the emitted photon, and Bgs Pgs Eg are the velocity,
momenta, and total energy of the "incident'" electron. Note that the
factor in brackets comes from the ratio of the densities of final
states (including polarization degeneracy) while the remaining factor
comes from fhe ratio of the relative velocities of the incident
particles.

When Raisbeck and Yiou used Eq. (31), they substituted the
photoionization cross section originally obtained by Sauter (1931) and
given in Heitler (1954). However, as discussed in a review by Pratt,
Ron, and Tseng (1973), the Sauter calculation is systematically higher
than experimental data. In fact, deviations can range up to factors
of 2 even for elements as light as aluminum. Much of this discrepancy
stems from the fact that the electron wave function is significantly
affected by the Coulomb field of the nucleus, even at energies much
greater than the ionization potential. Although there does not exist

a fully analytic expression for improving the Sauter form, Pratt et al.
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have shown that a semi-empirical formula that combines the analytic
expressions for two limiting cases does fit the data. Incorporating
both their correction function and the Sauter formula into Eq. (31),

and multiplying by Z

el the number of 'free'' electrons per atom,

gives the cross section per atom for attachment into the 1s state,

namely

5 4 T mcé S

rad _ %
g = 7 2R Zned ® o7

att,ls

(T, + mcH - m e

(32)
314 . ¥y ~2) B l1+8
% (B [§'+ Y+ 1 (1 ZBYZ T B)J] feor
The correction function fﬁor 1s given by the equation
B 2%t exp[-2(a/B) cos 1 (a)]
x {1 + ma [N(B)/M (B)] + R(a)} (33)

where
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op = 8Tl'1"02/ 3 (the Thompson cross section),

as= ZCR o S

1

£=-1+ (1-a9)? ,

M) = 4/3+ YO =2 g . 1 gt By
vy +1 28'\’2 1-8

N(B)=—1- 4y .4 631 .25 1 8 1

g3 15 15 IS5y 15 2 15 Y3

_-2) (y-1) 1+8
26y3 " (F_BJ] S

R(a) << 1 and tabulated by Pratt et al.

The term R(a) is small for all a; in fact for Zp < 29, R(a) < 4 x 1074,

Therefore, in this work R(a) has been neglected. Also note that in the

extreme relativistic limit Eq. (32) takes the form

2
i 4 TS lim
%att,1s = 7 2R Zmeg @ Ol 1 ) foor (34)
with
lim _ 2% -1 4
fcor' =a exp(-2a cos “(a)) g 1- g Ta (35)
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It is this slower decrease with energy that allows the radiative terms
to eventually exceed the non-radiative terms.

For attachments into higher states, the results from Oppenheimer
(1928) can be used. Oppenheimer studied the non-radiative process and
showed that for a/B << 1 only the higher s states provide significant

contributions and that the ratio (Gn/UIJ ~ n_s, where n is the

3

principal quantum number. However, one can show that this n o Uralst

holds for the radiative case also (cf. Bethe and Salpeter 1957).

Therefore for a given constituent the radiative attachment cross section

is given by

rad . rad | = -3 rad
%att ~ Yatt,ls n}:: s B 1.202 Tare. 16

and the limiting cross section becomes

T =3 g lim 2
Oatt - Sud7 % 40 ZCR Zmed fcor /T @ (36)

where T 1s in units of GeV/nucleon.

(i1) Non-radiative attachment
The non-radiative process is a quantum mechanical three-body
problem involving the transfer of the electron from one nucleus to
the other. Little work exists on the relativistic problem; in fact,
there is even some disagreement about how to compute an accurate

non-relativistic cross section (see Mott and Massey (1965, ch XIX).
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The disagreement centers about whether a first Born approximation should
neglect the (nucleus)-(incident particle) interaction. However, there
is agreement that the Brinkman-Kramers relation (Brinkman and Kramers
1930), provides a reliable upper limit to the magnitude of the cross
section and provides the asymptotically but non-relativistically correct
scaling with energy and charge. Because it turns out that its
contribution becomes negligible at relativistic energies (see § II.(iii)),
it suffices to use this upper limit for comparison with the radiative
term

The Brinkman-Kramers relation for attachment into the ls state

is given by

BK

b 2,18 5 5 8
Oatt,ls ~ (ma,"2"/5) iR Ipeq” S

(37)

% 2]-5 [ 2 213
. [b * Zep * Zpeg) ] 5%+ (Zcp - Zped) ]

is the Bohr radius, and v_ = ez/H. The

where s = RB/o. = v/v_, a 5

(o)
calculation pertains to a hydrogenic medium and requires Zmedxs’

ZcR/S < 1. As discussed by Jackson and Schiff (1953) and Bohr (1948),
one can think of the cross section as coming from an '"overlap"
between the momentum per nucleon of the incident particle and the
momentum space wave function of the bound electron. On this basis,
only the K shell electrons of a non-hydrogenic atom will have wave

functions that extend to sufficiently high momenta. One K shell

electron also partially screens the nuclear charge from the other, so
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that the Zmed in Eq. (37) should not be the full nuclear charge for a
non-hydrogenic medium. Thus, to obtain a more realistic limit for a
non-relativistic velocity much greater than the electron's orbital

velocity on either nucleus, Eq. (37) should be modified to

BK

N U L

_ 2,18 5
= rK(naO 2 /SJZCR ( i
where Ty is the number of K shell electrons, and Sq is the inner
screening constant (0, for hydrogen medium; 0.3, otherwise , Slater
1930). As discussed above, for attachments into higher states, one

3

can use the Oppenheimer n ° 'rule" so that the actual cross section

satisfies the inequality

nrad BK
Tott &:1.202 catt,ls (39)

After substituting for the constants and letting Ty = 2, inequality

(39) becomes

2.53 x 10757 /g12

nrad -39 .6 5 5 2

Do 2 2.58 x 10 °7/T Zop (Zpeg = +3)° m (40)
R 10_37/(Y10 Blz)
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where T is in GeV/nucleon. The purpose of the three expressions in
inequality (40) is to emphasize the dilemma in attempting even a
qualitative extrapolation of the non-relativistic Brinkman-Kramers
formula. The first form would hold if B were the correct variable

in both the non-relativistic and the relativistic regimes. The

second would hold if the relationship T = 1/2 m, c262 were first

~used in the non-relativistic form and then the resulting T'6 law
extrapolated into the relativistic regime. The third would hold if
momentum per nucleon were the relevant variable in both regimes and

the relativistic increase in the density of final states were accounted
for (since vy - 1 for B << 1). Thus the choice of extrapolation can
lead to a difference of almost 4 orders of magnitude at ~ 1 GeV/nucleon.
The preliminary analysis of recent attachment experiments by Raisbeck
et al. (1977a) shows that the first form of inequality (40) is
inconsistent with their data and that the middle form provides a
satisfactory upper limit. Therefore, the kinetic energy extrapolation

will be used in this work.

(iii1) Magnitude of the attachment cross section
The ratio of the non-radiative to radiative formulae is a
strong function of both the kinetic energy of the cosmic ray and the
relative amount of high Z elements that are present in the medium.
However, if the kinetic energy extrapolation law is used for the
non-radiative case and if the relative iron abundance in the
containment region is given by the Cameron (1973) table

(nFe/nH = 2.6 x 10'5), then a weighted sum over the constituents
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of the medium shows that the non-radiative attachment process becomes
negligible when compared to the radiative.

Recall that the attachment cross section of Eq. (1) was
defined per hydrogen atom. Thus the effective attachment‘cross

section is given by

_ rad _

Ogrt = 1.202 X Cra.tt,ls(zmed = L) %%é Zned (nzmed/nH) (51)
_ Tad -
#.1.38 Oatt ,1s (Zeqg = 1) (42)

where the Cameron abundances were used to evaluate the term enclosed
in brackets in Eq. (41).

As discussed in § II(a), the attachment cross section can
be important in the propagation of electron capture isotopes. Thus
in Table 1, a list is prbvided of the total effective attachment
cross sections for those elements between lithium and nickel which
have electron capture isotopes. The tabulation is for three
energies (1, 3 and 5 GeV/nucleon and provides at each energy the
value of the correction function (Eq. [33]). Although the cross
sections in Table 1 are quite small relative to atomic dimensions,
they are very comparable to, and often exceed, the characteristic
size of partial fragmentation cross sections. It is this latter

comparison that is most relevant for propagation.
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Lastly, note that because ¢ is derived by detailed balance

att
from a photoionization formula of high accuracy, it has a negligibly
small uncertainty (i.e. less than 10%).

(d) Total Reaction Cross Section

The total reaction cross section represents the cross section
for a "catastrophic'" loss of the cosmic ray. That is, it is a sum
over all cases in which an interaction caused either a change in the
number of its nucleons or caused an inelastic energy loss that left
it intact. (Recall that this work assumes that the inelastic-yet-intact
events can be ignored.) In principle, values for the reaction cross
section are required for each target species present in the
interstellar medium.

The best set of data using a proton projectile appears to be
that of Renberg et al. (1972), who obtained data at 4 different proton
energies between 220 and 570 MeV and with 12 different targets. In
addition, they tabulated existing data in the energy range from
10 MeV to 10 GeV. Their curves show that above 200 MeV the proton
reaction cross section for targets other than hydrogen becomes nearly
constant (i.e., variations are £ 5%). However, since some of the data
are accurate to < 2%, an alternative interpretation is that there are
indications that each cross section reaches a maximum near 2 GeV and
then decreases slowly at higher energies.

A common parameterization for such data has been the two
parameter Bradt-Peters (1950) form of 8 {1 * A;/S - b)z (cf. Juliusson
et al. 1975), where A is the atomic mass of the target. However,

another fit, involving essentially no free parameters, is provided
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by the theoretical calculations of Karol (1975). Working in the
optical limit of Glauber theory, Karol derived an expression for the
nucleus-nucleus reaction cross section in terms of the experimental
parameters of the nuclear density distribution and the nucleon-
nucleon cross sections. His calculation provides a natural explanation
for both the limited variation of the cross section as a function of
energy and the occurrence of a slight maximum near 2 GeV. The near
constancy stems from the roughly logarithmic dependence upon the
total nucleon-nucleon cross section. The maximum comes from the
fact that the nucleon-nucleon cross section peaks near 2 GeV.

Karol's expressions are systematically higher than the Renberg
et al. data by approximately 4%. More precisely, if the highest
energy points of the ten targets (including compounds) that did not

contain hydrogen are used, then

< %aro1/Renberg > = fx = 1.037 £ .008 (43)

where the error was computed as if the deviations from the mean were
independent of target.

Table 2 provides a comparison between the experimental data
of Renberg et al. and Karol's formulae (after dividing by Eq. (43).
Also compared in the table is an even more phenomenological fit
using the Bradt-Peters form. The input to the non-linear least
squares fitting program consisted of the same independent points
used to determine Eq. (43). The output consisted of the best values

and the error matrix for the parameters % and b. These quantities
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are given in Table 3, and were used to derive the Bradt-Peters column
in Table 2. It is quite clear that both the two-parameter Bradt-
Peters form and the 'renormalized' Karol results are in good agreement
with the proton-nucleus data.

A further comparison of theory with experiment is provided
by the data of Jaros (1975), who measured nucleus-nucleus reaction
cross sections for light projectiles and targets. As in the case
of proton-nucleus, Jaros' data are systematically lower than the Karol
prediction, but this trend has less significance since the individual
cross sections are only good to = 5%. However, for consistency
with Table 2, the comparison shown in Table 4 was made after Karol's
formulae were also divided by Eq. (43). Although this table shows
more scatter between theory and experiment than was shown in Table 2,
Karol's version of Glauber theory is, again, in good agreement.

The data of Lindstrom et al. (1975a) allow an estimate of the
importance of inelastic-yet-intact events and hence provide a test
of the assumption that the cross section for such cases is small
(see § T (a)). That is, since they measured the transmutation
(or fragmentation) cross section for nucleus-nucleus reactions, any
systematic difference from the Karol results would likely be from
such events. For nucleus-proton collisions, their data compare
closely with the Karol results. For nucleus-nucleus collisions
their measurements are low by 8-18%. However, after this discrepancy
is weighted by the relative abundance of the elements heavier than

hydrogen, the approximation of Eq. (2) will remain appropriate.
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Recall that in Eq. (1) the total reaction cross section was
defined as the "'effective'' cross section per atom of interstellar
hydrogen. Because the reaction cross section ~22/3, the only other
relevant target material is interstellar helium with an abundance
(relative to hydrogen)l of 0.07 (Cameron (1973)). The effective cross
sections that result from the Karol formulae (divided by Eq. (43))
are given in Fig. 2. Note that for consistency with the off-diagonal
terms (see § II(e)) a kinetic energy of 2.3 GeV/nucleon was assumed
for the calculation.

For studies of the effects of random error, an uncorrelated
error of 10% should be used. This figure comes mainly from the fact
that to be consistent with assumption about the off-diagonal terms,
the cross section would have to be treated as a constant, independent
of energy. Additional contributions come from the variations iﬁ the
results when either the parameters are varied or the composition of
the interstellar medium is modified.

(e) Partial fragmentation cross sections

The partial fragmentation cross sections represent the inclusive
cross section for producing a particular nucleus as the result of the
fragmentation of a heavier parent nucleus. In principle, values
for this cross section, as a function of energy, are required for
each target species present in the interstellar medium. A valuable

simplification is that at high energies (22 GeV/nucleon) the partial

cross sections appear to reach asymptotic values (i.e., variations $10%)

llt 1s more common to use 0.1. However, for internal consistency the
Cameron value was used.
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and can be taken as approxiﬁately energy-independent (Lindstrom et al.
1975b; however, see also Raisbeck and Yiou 1975c).

Note the large number of cross sections that are required. Even
after applying all of the reduction procedures of § II(a), there are
84 fully stripped isotopes with 3 < Z < 28 (see Fig. 2). Because each
of these isotopes is coupled to all higher isotopes, 3570 partial
cross sections (constituting most of the off-diagonal elements of the
modification matrix) are needed. As might be expected, only a limited
number of these cross sections have been measured, and at very few
energies, so that one must turn to phenomenology.

The most successful parameterizations of proton-nucleus data
are the semi-empirical formulae of Silberberg and Tsao (1973a,b). For
nuclei with Z < 28, they distinguish between two types of reactions--
spallation and peripheral--and provide quite separate functional forms.
These formulae were updated by Silberberg and Tsao (1977) to incorporate
some of the systematics of recent experimental data and to correct errors
in their earlier paper. Thus, if recent measurements are not available
the appropriate semi-empirical formula provides the best estimate for
the needed cross section.

Following Raisbeck and Yiou (1973) and Meneguzzi et al. (1975),
a uniform error of 30% is assumed on all semi-empirical cross sections.
This error assigmment is also consistent with the standard deviation

fora found by Silberberg and Tsao in their original study.

calc/cexp
Recall that the partial cross sections in the matrix M represent
the production of both the *'stable' isotope and any of its short-lived

progenitors (see § II(a)). Experimental data represent a similar sum
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and it is important to determine the number of 'channels' over which a
measurement has been summed. For example, secondaries with lifetimes

> 10_8 sec are individually measured by the direct projectile frame
observations of Lindstrom et al. (1975b), while only secondaries with
lifetimes 25 days are individually measured by the target frame, mass
spectrometry observations of the Orsay group (Yiou et al. 1973, Raisbeck
and Yiou 1975a, Raisbeck et al. 1975, and Perron 1976). Also, there are
a few cases in which not all of the chammnels of a partial production
cross section have been experimentally determined. For example, Raisbeck
and Yiou (1975a) measured the cross section for producing ZZNa from

22

protons on a Si target, but not for producting ““F and ZZNB. However,

ZZNa decays to ZzNe with a half-life of 2.6 years while 22F decays to

22Ne with a half-life of 4 sec, so that all three isotopes actually

. contribute to the "'summed' partial cross section for producing 22Ne
(cf 8 IT1 (a)).

With four exceptions, Table 5 provides a list of '"summed' partial
cross sections which have at least one channel measured in a recent
experiment,l and were measured at energies greater than 2.1 GeV/nucleon.
The errors were obtained by assuming the individual terms in the sum

2

had independent, random errors. In cases such as the 2Ne example

given above, the semi-empirical formulae at a kinetic energy of

lThose labeled with a e were obtained by assuming semi-empirical
predictions for Ni and Fe would deviate from experiment in the same
way. Hence, the semi-empirical cross sections for production by a
proton with 2.3 GeV on Fe were scaled by the ratio Uexp Ni/o
As with other semi-empirical cross sections, a 30% 4
error was assumed.

calc,Ni®
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2.3 GeV/nucleonl were used for the unmeasured contributors. The error
for the semi-empirical cross sections was set at the fraction necessary
to produce a 30% error if no terms had been determined experimentally.

2 22F + 22Ne portion is combined

For example, for 2Ne a 40% error in the
with the 9% experimental error on 2ZNa to obtain the 14% error shown
in Table.S.

All that remains is to incorporate the effects of the
constituents of the interstellar medium heavier than hydrogen. However,
there are very limited data for relativistic alpha particles on complex
nuclei (Raisbeck and Yiou 1975b) and no data for nuclei incident on
helium targets. Raisbeck and Yiou found that the average of the high
energy a-induced to proton-induced cross sections was 1.74 + 0.23 and
that the ratio for light targets was approximately independent of energy.
Some of the cross section ratios for the production of fragments much
lighter than the parent nucleus did show significant variations with
energy. However, as pointed out by Raisbeck and Yiou, such modes make
negligible contributions to the overall abundance of a fragment. Thus,
the above ratio can be taken as ''universal'. With this assumption,

the effective cross section per hydrogen atom is then given by the

equation

o= cp[l + (04/9,) (e /My ] (44)

1The seml-empirical formulae become energy-independent for kinetic
energies > 2.3 GeV/nucleon.
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where cp(ca) denotes proton (o)-induced fragmentations and nHe/nH is the
relative abundance of helium in the interstellar medium. Thus, since

” - 15
Oaxgp =1.74 £ 0.23 and nNe/nH = 0.07 = 0.03," Eq. (44) becomes

0 =1.12 o,[1 * 0.05] (45)

Note that the extra 5% error in Eq. (45) makes no difference when combined
with the 30% error on all semi-empirical cross sections. However, the
extra error does increase the errors on the effective cross sections above
those given in Table 5.

A table of all of the 3570 partial fragmentation cross sections
would be unwieldy and has not been included. A smaller table of
"weighted'" cross sections has been included as a part of Table 8. For

details of the table's construction see § III.

(f) Half-lives

As shown in § II(a), separate entries in the column vectors are
required for isotopes that, as cosmic rays have B-decay half-lives
greater than 1100 years. Also, the half-life required is that for a
fast nucleus having at most one K-shell electron and not that for a
neutral atom with a full complement of orbital electrons. In principle,
this difference in "environment'' for the nucleus leads to a difference

in its decay rate. The discussion below is directed towards isolating

1The error assignment for nHe/n reflects the decision that the
""canonical'' value of 10% by number must lie within the 1-¢ limits of
the Cameron (1973) value. The error does not stem from a study of
experimental measurements.
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those effects which can cause the decay rate of a neutral atom to
differ by more than approximately five per cent from that of the stripped
nucleus.

As discussed by Bahcall (1963), the decay of an unstable nuclide
in the lab should be described in terms of the atomic states involved.

Hence, if H, represents the Hamiltonian for beta-decay, the decay rate

B
takes the symbolic form (h = c = 1)

) (46)

. 2
A= 2m | <f| H8|1> |” 8(E¢ - E;

where the full atomic energies are included in E; and E., and |i> and
|£> represent the initial and final states. More explicitly,
|li> = |G;k> and |[£> = |A"; ei; v;k> where |G> is the state vector
for the atom in its ground state, |A'> represents any of the final
states of the daughter ion (including continuum states for some electrons),
|k>, |k'> denote the initial and final nuclear variables, |e®> denotes
the positron (electron) variables, and |v> denotes the neutrino variable.
The atomic environment enters in both the description of the states
[ei:>, and in the energy conserving delta-function, as well as in the
states |G> and |A'>.

The description of the contimuum state |ei:> enters via the
Fermi function K, (Z,W) and the shape function S,(W,2) (applicable in
forbidden decays). To determine the impact on the half-life, an
estimate is required of the effect the screening by orbital electrons
has on these functions, when Eq. (46) is integrated over the entire
spectrum of electron energies. For allowed decays a comparison of

screened and unscreened results is provided by Behrens and Jdnecke (1969)



A

and Gove and Martin (1971). Moreover, Good (1954) showed that the effect
of screening on a forbidden spectrum is comparable to the effect on an
allowed spectrum.

The graphs of Behrens and Jdnecke show that for Z < 40, the
effect of screening on the integrated statistical factor for electron
emission is less than 2 per cent, regardless of endpoint energy. For
positron emission their curves show that the effect decreases rapidly
with increasing endpoint energy. They show that for Z 5 28 and endpoint
energies 2 800 keV and for Z I 19 and energies > 450 keV, screening
has less than a 2 per cent effect on the statistical factor for positrons.
In keeping with Good's finding, it will be assumed that if screening
makes less than a 2 per cent change in the rate for an allowed decay
that has the same Z and endpoint energy as a forbidden decay, then its
effect on the forbidden decay will be less than the ''threshold' of
~ 5 per cent. As discussed above, this limited dependence means that
the effect of screening can be neglected in this work.

The dependence of the beta-decay on the remaining 'environment'
factors is even smaller. As discussed by Bahcall (1963), the argument
of the energy-conserving delta function can be written in the form

E; - E. = (Eio - Efo) + E(G') - E(A")

where E.l0 - Ef0 is the usual atomic mass difference and E(G'), E(A")
are the atomic binding energies of the ground state |G'> and the
arbitrary state |A'>, respectively. By 'expanding' the delta-function

in terms of the difference Eio . Efo and taking advantage of closure
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via the sum over final states, he showed that there is a slight decrease
in the decay rate because of the overlap with a large number of final
states. He found that if Eéx denotes the average excitation of the
final atom, then the fractional decrease in the total decay rate, AA/A,

is given by

AN/ A ~ Eex/EmaX . 47)

where E .« is the maximum kinetic energy (or endpoint energy) for the
decay. His calculation dealt only with allowed decays. However, since
the additional energy dependence of the shape factors enters only via
the coefficient that multiplies (Eéx/Emax]’ it also can be used to
determine the order of magnitude of the decrease for forbidden decays.

In addition, he obtained the estimates

B 297Y/3 v |, ifz <10
- -y (48)

162%/° ev , if 7 > 10

with a smooth joining of the two forms at Z = 10.

A further environmental effect for electron emission (Bahcall)
1963) involves an exchange mechanism whereby the initially present is
electron is "flipped into the continuum state, making room for the
creation of a 1ls' electron by the decaying nucleus.' Bahcall found
that this mechanism was competitive with the shift given by estimate

(47). However, because of the higher powers of the nuclear radius
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involved in a forbidden decay, this mechanism contributes very little to
the dependence of a forbidden decay rate on the presence of atomic
electrons.

Table 6 provides a compilation of the endpoint energies (in keV)
and decay modes of the isotopes with Z < 28 that have laboratory half-
lives greater than 1100 years. Equations (47) and (48), as well as the
graphs of Behrens and Jidnecke, show that the right hand side of Eq. (47)

30¢1 fails the

never exceeds 6 x 10_4 and that only the g, - decay of
2 per cent criterion for screening. The 8, decay of 36Cl has such a
small branching ratio that the removal of the effect of screening will
still have no effect on the total decay rate. Thus it suffices, for
this work, to treat all of the decay rates for electron and positron
emission, as if they were independent of their atomic environment. As
will be seen below, no such conclusion is possible for electron capture.
(1) Isotopes with electron capture branches
For an isotope with a long laboratory half-life that decays by
both beta emission and electron capture, the half-life as a cosmic ray
increases because of the suppression of its electron capture branch.
To verify this claim, let L be the mean life for a neutral atom in
the laboratory and let The be its branching ratio (in'the lab) for
electron capture. As discussed above, the beta-decay portion of the
lab decay rate is, to a very good approximation, independent of the
presence of its atomic electrons so that the mean life for a cosmic ray
to beta-decay, TR + is just

+
y—
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TCR,i - ’IL/ a - rEC)' (49)

However, the decay rate via electron capture depends upon having and

VY be

keeping an electron attached. Thus, let Tstrip (= (anstrip

the mean time between stripping collisions. If T is so large that
Tstrip << &L/rEC}, then the stripping rate will be faster than the decay
rate via electron capture. But under these circumstances (essentially
the clock isotope criterion of § II(a)), the effective mean life for an

electron capture by an unstable cosmic ray is approximated by (Yiou

and Raisbeck 1970)

TRr,EC = 2 ("L/TeQ) Ostrip/%att) (50)

Since Eq. (29) and either Eq. (42) or Table 1 show that at energies

Z 1 GeV/nucleon the ratio o i85 2 103 for the isotopes of

strip/gatt
interest in this work, Eq. (50) shows that the electron capture branch
will be completely suppressed. Thus, the mean life as a cosmic ray
becomes

= TL/(l = rEc) . {:51)

»—

As shown in Table 6, this suppression increases the half-lives of

1
260 1 360 ana 40k

lNote that the first excited state of 26A1 only beta decays. Thus implicit
in using the lifetime of the 2671 ground state i1s the assumption that the
fraction spalled into excited states is negligible or, equivalently, that
its production cross section is only for interactions that produce 2671 in

the ground state (cf. Raisbeck et al. 1977b).
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Even if its laboratory half-life is short, there is still a
possibility for an isotope to have a long half-life as a cosmic ray.
This chance arises when an isotope decays via electron capture but also
has a Q value large enough to permit beta emission. Based on the

54

1977 Atomic Mass Evaluation (Wapstra and Bos 1977), the isotopes ~ 'Mn,

56Ni, and 5gNi are potential positron emitters, while i is also a

potential electron emitter. However, 59Ni can be omitted because of
the combination of its long lab half-life, (8 = 1) x 104 y, and the

recently determined branching ratio for positrons of 1.5 x 10'7
(Berenyi et al. 1976). Figure 1 gives level schemes for those branches

SﬁNi that would involve beta emission. Note that for both

ofsﬁh_mﬁ
nuclei the non-electron capture decays are so forbidden that they have
not been observed in the lab.

As shown by Cassé (1973a, b), if both Mo and *ONi are stripped
of their atomic electrons, the relevant transitions for each are the
5 transitionsl (also called unique second-order forbidden) which are
indicated by the dotted lines in Fig. 1. He showed that in spite of its
requiring only a change of 2 units of spin, the 2+ transition had a
negligibly small decay rate because of its very small endpoint energy.
In addition, he showed that the two 4% and 5% transitions have negligible
probability due to the very large change of spin and being, as a result,
highly forbidden.

1Transitions are categorized by the difference in the nuclear spins and
parities of the initial and final states. In this work these changes are
written in the short-hand form AI™ , where AI denotes the spin change and
T denotes the product of the initial and final parities.
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Cassé also attempted to determine the half-lives for the remaining
transitions by analyzing the variations of the log (ft) values of other
- 3% decays. In fact, he claimed somewhat accurate half-life estimates
are possible; a point considered and rejected in Appendix B (cf. Raisbeck
et al. 1973). The study of the well-determined second-order forbidden
transitions given in Appendix B shows that there is too much dispersion
_in both the.log._[fUt)_an@_1Qg"(fzt)jvaluesmtq'provide a predictive
capability.. Instead one must hope that the dispersion in log (ft)
values of such cases brackets the range of values for 54Mm and 56Ni.

Table 6 shows the deduced ranges using this assumption.

56Ni can still decay

Of.course even as COSmig rays, 54Mh_and _
by ele;trén captufe_ii an electron has been attached. In.fact,_boﬁh
ére.spallation isdtopes (see § Il(gj], so that the rate 1imiting_step
in théir decay by electfqn capture is the atomic process of,picking.

up an electron from the medium. That means the effective lifetime

for decay by electron capture, TRC.* » is given by the expression

Tpo 4 % (g Ogee¥) Tm 200 107 (0B ¥ (52)

att
is a rapidly-decreasing function of energy, Eq. (52) shows it

where ‘o, gives 0., in units of 50 mb and ng is in ™. Since

Satt

is quite possible to have the forbidden f-decay rate comparable to
or even much larger than the effective rate via electron capture.
Thus, a complete treatment of the propagation of 54Mn and SﬁNi_must_

include theleffects of both forbidden B-decay and electron capture.
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As discussed in § II(a), if an electron-capture isotope has a
half-1life that is too long to satisfy the spallation criterion then
both the one-electron and fully-stripped cases must be included. Using

Bg. (29) Tor o this criterion is given quantitatively by the

strip’

expression

9.33 x 10°(2ep/20)% 8

Yegg << (53)

ng(en™®) [2.35 + .57In(By/(Z5/20)) - .285 %]

Those isotopes that fail to meet this criterion are called 'clock"
isotopes. Thus, this category includes 41Ca, 44Ti, SSMM, and 59Ni

(although **

Ti needs to be included only when the density ny is high
or y is large.) As in the cases above, the lifetimes of these nuclei
will differ from the laboratory measurements. A first approximation
for the life of the state with one orbital electron would be to
merely double the lab half-life (because there is only 1 K-shell
electron). However, as discussed in detail in Appendix C, there are
two smaller effects. First, the decay rate is reduced by = 10%
because there are no captures from the higher shells; and second,

the rate is increased by =~ 4% because the nucleus is unscreened.

The resulting half-lives are shown in Table 6.

(2) Other long-lived isotopes
For the four isotopes in Table 6 that have not already been

mentioned, the cosmic-ray half-life is essentially unchanged from the

laboratory half-life.
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(g) The Isotope Fractions at the Source

As discussed in § I(b), the isotope fractions at the source, the
non-zero components of the v matrix, are not as fundamental an input
as the quantities described in the earlier sections. In fact, once
high energy observations can resolve isotopes, the v array will be one
of the basic findings of any propagation analysis. Until then, some
assumption must be made. The assumption made in preparing Table 8
(see § III) was that the isotope fractions at the source are identical
with those given by the Cameron (1973) compilation of the "universal®
abundances. Explicit values of these fractions are provided in line 3
of Fig. 2.

Note that the choice of Cameron ''fractions' carries with it the
""hidden assumption' that the mean time between nucleosynthesis and
acceleration (cf. Cass€ and Soutoul 1975) is so long that all unstable
species have negligible abundances at the time of acceleration.
However, note also that without having a detailed model for the
origin of at least all of the nuclides in Fig..2, it is quite hard to

relax this assumption of "universality"'.

(h) The Abundances at the Top of the Atmosphere

The abundances at the top of the atmosphere for all elements
between Li and Ni, that is, the components of the N column vector,
constitute the final input quantity. The ''best set'" of such
abuncances seems to be the compilation by Silberberg et al. (1976),
whose Table 6 has been reproduced in Table 7 of this work. Note that

the table provides relative abundances and errors for rigidities R>4 GV.
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III. Discussion

Using the input quantities from § II, the matrices and column
vectoré of § I can be constructed.
(a) Final list of the nuclides

The reduction procedure of § II(a), coupled with the parameters
from § II( b)-(f), yields the minimum number of nuclides that must be
explicitly propagated. The resulting simplified chart for those
nuclides having atomic numbers between 3 and 28 is shown in Fig. 2.
Note that for an unstable nucleus, line 1 gives the mode(s) of decay
for the nucleus when it has at most one K-shell electron. The notation
"aGEC" denotes the sequence electron attachment followed by electron
capture. As noted earlier, ''spallation' isotopes decay by this mode
with a rate governed not by the laboratory half-life, but by the
magnitude of the attachment cross section. The notation '"a/EC' in
line 1 denotes the sequence electron attachment followed more often
by electron stripping but sometimes by electron capture. In these
cases the half-life for the nucleus with one electron attached (T%,EC)
is given in parentheses. As discussed earlier, ''clock' isotopes decay

UFe, short-

by such a sequence. Note also that, as in the case of .
lived intermediate links in a decay chain do not have to be explicitly
propagated. Lastly, line 2.of the figure gives the total effective
reaction cross section per hydrogen atom. As discussed in § II(d),
these cross sections include an estimate of the contributions from

interstellar helium and were calculated using a slight renormalization

of Karol's analytic version of the Glauber formalism.



=

(b) The elemental modification matrix
In addition to its dependences on many of the quantities discussed
in § II, the modification matrix is also a function of the parameters

n, and T In a quantitative propagation calculation, the values

H (Z,A,2)°
of these parameters are determined by testing the hypothesis that the
source abundances of Li, Be, and B are zero. That is, values are
determined that minimize the differences between the computed abundances

at the top of the atmosphere and the actual abundances of Li, Be, and B.

Such a study is beyond the scope of the present work. However, as
shown below, some of the algebraic manipulations necessary to such
a study also enter into the calculations of the elemental modification
matrix.

As discussed earlier, the entire modification matrix would make
a lengthy table in which most of the entries would not be based on
recent experimental data. A more useful matrix is the "weighted",
or elemental modification matrix, Vg?ﬂ which acts on vN instead of the
expression veN . To derive/ﬁ, first multiply Eq. (10) by Mt
and sum the resulting equation over all the isotopes belonging to the

K-th element. Then, after Eq. (4a) is used to eliminate € , the

propagation equation becomes

wW+ 4 ts=o0 (54)

-1
whereu4é7 is given by the expression
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i (K)

M- ML (55)
KL igll(kz) ij L

and where il(K) denotes the first isotope belonging to the element in
the K-th row ofvgf’-l and i (K) denotes the last isotope. Note two
points abouthzg?. First, as shown in Eq. (55), the collapse from
isotope to element was done by weighting M-l with the assumed isotope
fractions at the source. Secondly, multiplying Eq. (54) by Jﬁ?’gives

the equation

S= AW , (28]

in which S is completely specified in terms of the input quantities
and the parameters.

Because so many of the terms of M and.,ﬁ? have the form of a
product of a cross section and the parameter N, it is more conven;ent
for display purposes to give the matrices in the units of a cross
section. Thus, Table 8 gives the value of wﬁ?'/ﬂH for the elements
between Li and Ni. Note first that before the collapse of the larger
matrix, the lifetimes were taken from Table 6, the kinetic energy was
assumed to be 2.3 GeV/nucleon, the leakage time, T, was assumed to be
species-independent with a value of 1.5 x IU?y, and n, was given the

3

value 0.2 an . The values for T and n, are taken from the lower energy

study of Garcia-Munoz et al. (1977) but should be reasonable values
at the higher energies of this work. Secondly, note that from the

definitions of the F and D matrices (cf. § I(a)), if my is 0.2 an™>,
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then a half-life of 106y corresponds to an effective cross section of

?y corresponds to an effective

1100 mb, while a leakage time of 1.5 x 10
cross section of 368 mb. Lastly, note that the errors shown just
below and to the right of each term in “4?’XHH were obtained by the

procedures discussed in Appendix D.

(c) The impact of the corrections and improvements

The major emphasis of this work has been to critically
investigate the quantities that constitute the input to a quantitative
propagation calculation. Less importance has been placed on the
extent to which any corrections or improvements in the input will
cause a change in the output. The reasons for this emphasis are
two-fold. First, by emphasizing the nuclear and atomic physics that
govern the composition of cosmic rays, this work is more fundamental
and therefore less model-dependent. Secondly, because the well-
determined output quantities tend to be insensitive to the net effect
of the changes found in § II, while those that are sensitive are rather
poorly determined, it turns out that few of the corrections will have
an immediate quantitative impact.

This limited impact is very evident for the (well-determined)
quantity nT . In this case the addition of the effects of interstellar
helium to the off-diagonal terms of M will tend to lessen the changes
in (nHT) that arise from adopting the cross sections given in Fig. 2.
To illustrate this point, recall that the grammage, or equivalently
n.T, is most dependent on the L/M ratio, i.e. on the experimental

quantity ([Li] + [Be] + [B])/([C] + [0]) where the bracket enclosing
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each symbol denotes that element's abundance at the top of the atmosphere.
Note also that the term (1/y Td) [mBe] cancels out if all the
propagation equations for the isotopes of Li, Be, and B are added
together. Thus, the equation for ([Li] + [Be] + [B]) can be written in

the approximate form
(T%F'+ ny < op>) ([Li] + [Be] + [B])= my <opy> ([C] + [0])  (57)

where <o L> is an average reaction cross section for the isotopes of
Li, Be, and B, and <o M is an average partial cross section for
producing the same isotopes from the isotopes of C and 0. It follows
from Eq. (57) that the constraint of producing a given L/M ratio as
the input cross sections are varied can be translated into an equation

governing the fractional change in n,T. This equation is

6{nHT)
v =y TV <o rL-[l+n.HTv<GL>]rLM (58)

where rL is the fractional increase in <cL> and Ty is the fractional

increase in <opy - As shown in Eq. (45), r;,, has the value 0.12.

LM
Since the difference between the cross sections given in Fig. 2 and
the cross sections obtained by using the Bradt-Peters formula with
the parameters of Table 3 is approximately 30%, T = 0.30. An

estimate of <op > can be obtained by averaging, with uniform weights,

the cross sections obtained with the Brad-Peters form. The result is
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that <igp s 185 mb. Thus at a kinetic energy of 2.3 GeV/nucleon and
if nyT=3 My cmfs, Eq. (58) shows that Ty, T will decrease by
approximately 3%, even if the diagonal terms increase by 30% and the
off-diagonal terms increase by 12%.

In the case of the attachment cross sections, the limited impact
arises because the corrections further reduced the importance of the
iﬁclusion of a "spallation'" coupling between a fully stripped isotope
capable of decaying by electron capture and its daughter. Even the
lengthened estimates of the lifetimes of several long-lived species
do not dramatically increase the ability of those species to compete
with the ‘%Be clock.

The greatest change brought about by this work is to the
effective 1ife for those electron capture isotopes that are clock
isotopes. Recall that for these isotopes the effective life for

the fully stripped state depends on the term (o where

strip/gatt) TEC »

is the lifetime with one K-shell electron. Thus, since the

'EC
corrections to Ustrip were approximately 60% while the corrections to
O 4p WETE approximately a factor of two, both the ratio (Ustrip/catt)

and the effective 1life will change by approximately a factor of 3.

Unfortunately, this large increase also has limited practical

59 41

consequences. In the cases of ""Ni, ~Ca, and SSMn, the limitation

stems from their already long lifetimes with one K-shell electron;
while for 44Ti, it arises from the requirement that it be a clock

isotope. At high energies, the ratio (o /oatt) 15 2 104 for these

strip
isotopes, while the lifetimes of the one-electron species of 59Ni,

*ea, and My are 1.7 x 10y, 2.2 x 10%, and 7.7 x 10% (see Table 6).
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Thus, their effective lives are 2 107y and any increase merely worsens

the unfavorable comparison with a leakage time of the order 107y.

4

Because the one-electron lifetime of Mri s 100y , at high energies

its effective life would be 2 106y, if it were a clock isotope, i.e. if
TN . (59)
EC ~ “"H “strip
For a kinetic energy of 2.3 GeV/nucleon, Eq. (59) corresponds to the

requirement that
> -3
n, < 7.9 am (60)

The restriction of n, to rather high values shows that 44Ti is
generally a spallation isotope and hence less dramatically affected

by the changes of § II.

CONCLUSIONS

In contrast to most other studies relevant to the propagation
of cosmic rays, in this study the major emphasis has been on developing
the proper set of formulae for the atomic and nuclear processes that
govern the composition. As a result, several calculations in
relativistic atomic physics were required. These ranged from
developing a better cross section for stripping an orbital electron
to incorporating the change in the beta decay rate due to the fact
that a cosmic ray nucleus is unscreened. The nuclear physics
calculations ranged from computing reaction cross sections within
the Glauber formalism of Karol to investigating the systematics of

unique second-order forbidden beta decays. As was shown in § II,
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this critical review of the input quantities for the ''leaky box'' model
led to the detection of several errors in the standard values. These
errors and their corrections are listed below:

(1) Deviations of approximately a factor of two were found
between the standard (Bohr) cross sections for stripping and a more
reliable estimate (also obtained by Fowler et al. 1970) that properly
included distant collisions (see § II(b)).

(2) The correction function from high energy photoionization
was properly introduced into the standard (Raisbeck and Yiou 1971)
cross section for radiative attachment (see § II(c)).

(3) Because the half-life of a fast nucleus with at most one
K-shell electron differs from the half-life of a neutral atom,
several standard (laboratory-based) values had to be corrected.

These corrections ranged from approximately a factor of 2 increase
in the lifetimes of the one-electron states of clock isotopes to
slight increases due to the suppression of electron capture branches
(see § II(f)).

In addition to the above corrections, several improvements
were presented. These advances are given below:

(1) For the reaction cross section, the Glauber formalism
of Karol was introduced both as a means of reliably incorporating
the effects of interstellar helium and as a less phenomenological
method of parameterizing the data (see § II(d)).

(2) The effects of interstellar helium were also included for

the first time in the partial production cross sections (see & II(e)).
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(3) For all input quantities except the matrix v, error
estimates were given.

(4) A more complete analysis of unique second-forbidden beta
decays with well-determined parameters was given. In contrast to the
findings of an earlier study by Cass€, no predictive capability
was discovered (see § II(f)) and Appendix B).

All of the error corrections and improvements were presented
within the context of a matrix formalism for the propagation of
relativistic cosmic rays within a ''leaky bok”. In addition, it was
shown that once the assumption of species-independent leakage was
introduced, the formalism was essentially identical with the standard
exponential path length formalism (see § I(c)).
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TABLE 1: Effective Attachment Cross Sections and Correction Functions

1 GeV/nuc 3 GeV/nuc 5 GeV/nuc
= :

Element [mb/;t;tom) fCDr (mgjgt;tom) fcor (mbjgt;tom) fcor
Be .0073 .916 .0013 .915 .0007 <AL
Ar 10.51 .710 1.86 .706 1.01 .689
Ca 1726 .688 3.06 . 684 1.65 .665
Ti 26.97 .667 4.77 .663 257 .643
) 33410 .658 5.87 053 D545 .632
Cr 40.48 .648 7.16 .643 3.84 .622
Mn 48.95 .639 8.65 . 634 4,63 .012
Fe 58.74 +031 10.38 +DL5 5,580 .603
Co 69.99 .622 12.36 .616 6.60 «593

Ni 82.84 .614 14.62 . 608 7.79 . 584
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TABLE 2: Comparison at 530 MeV of the Proton-Nucleus Reaction Cross
Section Measurements of Renberg et al. with Theory and

Phenomenology.
Target® Ren’t(}]?ﬂ:;% et al. Karolé fi( Bradt—PEters
(mb) (mb)
Be 195.4+6.2 198.4 = 5.0 191.7
B 213 +6 217 %8 220
c 233 x5 231 2 238
0 290 15 291 £ 3 294
Al 433.2% 7.7 428 13 430
Fe 712 %13 732 %®79 722
Cu 788 17 793 £ 37 792
Ge 877 18 862 £ 40 870
Sn 1201 +23 1203 11 1229
Pb 1781 46 1739 % 18 1811
Nal 1704 +43 1599 * 58 1670

dassumed to have isotopes in normal abundance
busing fk = 1.037 + .009 (see eq. (43)) and Karol's formulae with the

following constants: Opp = 36.3 mb, Opn = 36.1 mb, ers either from

1/3

experiment or the equation ers = .82 A + .58, c either from experi-

145

ment or the equation c = 1.07 A™~, and t either from experiment or

thevalue 2.4. %p and are from Bugg et al. (1966) and experi-

Opn
mental values of ers’ c, and t are from de Jager et al. (1974).

Cusing the values o = 56 and b = 1.23 given in Table 3.
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TABLE 3: Fitting Parameters for Renmberg et al. Data
Using 0 = o (1 + A )R

Parameter Value
co[mb) 56
b 1:23
2
<(600) > 1.3
<80_6b> 3.3 x 107°
<(6b)2> 9.3 x 1074
x2 5.1%

*vs. 8 degrees of freedom (10 data points - 2 para-

meters)
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TABLE 4: Comparison of Nucleus-Nucleus Reaction Cross Sections with

Theory
eaction  fgetlcmery  Egerlmn el
C-H 2.1 270 * 14 266 + 1
C-H .87 260 * 14 264 +1
He - H 2ud 111 + 6 106 2
He - H .87 120 = 6 105 * 2
D-H 8.1 60 * 16 FREE o
C-D B 426 * 15 469 + 1
C-1 /87 433 & 21 466 1
He - D el 0% & " 218 * 2
He - D .87 198 * 10 216 2
D-D 7.1 134 + 8 141.3 + .2
C - He g 535 + 19% 549 6
C - He .87 527 + 20° 547 6
He - He 2.1 276 * 14 269 3
He - He 87 262 * 18 268 3
C-C 2.1 888 * 44 954 £ 2
¢ =G .87 939 * 50 951 * 2

8711 measurements are from Jaros (1975). Note that the errors were
obtained by adding Jaros' estimated systematic error of 5% to his
tabulated statistical error.

bU'sing fk = 1.037 = .009 (see text) and the same parameters as in
Table 2 except that o

PP
kinetic energies .87 and 2.1 GeV respectively, with Gpp and

= 47.2, 44.8 mb and Upn = 39.6, 43.1 mb for

%on
from Bugg et al. (1966).

CWeighted average of two measurement modes (both nuclei used as pro-

jectiles).
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TABLE 5: Experimental Production Cross Sections for Proton-Nucleus

Reactions at Energies Greater than 2.1 GeV/nucleon.

Frag- Target
ment
32Ca’b 13Cb 1503 Z“Mgc 2aSiC sepee

LI 14,9 #1,3% 13,9 20,4 17.3%5,25
JL 11,0 #1.0 11.1 1.3 19,025, 7%
gBe** 9.2 = .4 3.741.0 10.1 1.2 9.9+ .9 10.7+ .9 11.4%1.2
1%6 6.04* .46 6.4%f .7 4.26% .55 8.1+1.2
lnBe 3.47¢ .30 5.9%1.7 2.05% .31 4.6 .8
115 19.3 £3.0 107 =17 5.4+1.6€
LB 57.0 4.2 26.5 1.9 9.5+2,9°
. 34.3 %4.8
i 22.6 1.8
1. C 3.69% .38
ol 31.8 £3,2
- 61.5 *4.2
e 315839 18.2%2.6 7.4%1.5

Sc 18.0+1.9
“STi 27.5¢7.5
2971 25.1+5.6
oy 18.6%3.2
Ay 10.0+1.6
oLy 2.9+ .6
ey 15.1%2.4
*Cr 25.1£3.2
S2Cr 46 *12
g 4 8.5+1.7
S P 2.4+1.0
**Mn 29.2+2.7

*A11 cross sections are in millibarns.

**%1,i9 branches to Be9 25% of the time.
References: (see text)

4 indstrom et al. (1975b)

inou et al. (1973)

“Raisbeck and Yiou (1975a) and semi-empirical
dPerron (1976) and semi-empirical

®Raisbeck et al. (1975) and semi-empirical to convert from Ni to Fe



TABLE 6a: Isotopes which, as Cosmic Rays, either have Half-Lives Greater than 1100 Years, or are

EC Clocks.

Isotope Lab T% v) Remarks* CR Ty, (y) Reference

10, (1.6£0.2)x10° B ,555.8 max (100%), 3* (1.6+0.2)x10° a,k

14, (5730£40) 8 ,156.6 max (100%), 1" (5730+40) b,k

2601 (7.2£0.3)x10° 8,,1174.0 max (82.1+2.5)%, 3" (8.840.5)x10° ¢,k
EC,1066.3 (2.7+.02)%, 3"
EC,2196.0 (15.2+2.5)%, 3"

Mey (3.01£0.02)x10°  B_,709.6 max (98.1¢0.1)%, 2* (3.07:0.02)x10° ¢,k
B,122.2 max (1.7:0.1)x10"7§, 2"
EC,1144.2, (1.9+0.1)%, 2"

iy (1.28+0.01)x10°  B_,1311.6 max (89.33+0.11)%, 4 (1.43:0.01)x10° ¢,k
B,,483.0 max (1.03+0.11)x1073%, 4~
EC,44.2 (10.67:0.11)%, 2~

Heg (1.06£0.09)x10°  EC clock, see Appendix C (2.2+0.2)x10° d,e, £,k**

44Ti (47.5¢1.2) EC clock, see Appendix C (100£3) ek

>3 (3.6+0.4)x10° EC clock, see Appendix C (7.7+0.9)x10° g, h, kit*

*For B,-decays, the endpoint energy (in keV) is given along with the mode's branching ratio and
its change of spin and parity. For electron capture (EC), the energy (in keV) of the neutrino
is given (ignoring binding). The remaining types of remarks should be self-explanatory.

*#*Used the weighted average <T> = W ETi/éTiz and the root mean square error
AT = W% max {1, [E(Ti—<T>}2/6Tiz(n—l)Pﬁ}, where W = % 1/6T12.

_OL_



TABLE 6b:

Isotope Lab T35 (y)

Remarks

CR T» (v) Reference

54

B [1 to 9]x105
S0y

>Ni (8:1)x10*

estimated 3" decay, see Appendix B
B ,150 max (100%), 2"
estimated 3" decay, see Appendix B

EC clock, see Appendix C

[0.06 to 10]x10°

[1 to 91x10° i,k
[0.1 to 6]x10°
(1.7+0.2)x10° ik

aAjzenberg—Selove and Lauritsen (1974)
bMartin and Blichert-Toft (1970)

CEndt and Van der Leun (1973)
dMabuchi et al. (1974)
eEmery et al. (1972)

jVérvier (1968)

fDrouin and Yaffe (1962) as corrected by Ref. d)
fHonda and Imamura (1971)

hMatsuda et al. (1971)

iRoy and Kohman (1957)

Kyapstra and Bos (1977)

_'[‘,L..
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TABLE 7: Cosmic Ray Abundances above the Atmosphere at Rigidities

R2 4GV
Element Abundance Element Abundance
Li 18+2 S 3+.4
Be 10,511 C1 .5%.2
B 28+1 Ar 1.5£.3
¢ 100® K .8£.2
N 25+2 Ca Bt
0 91+2 Sc L
F 1.7%5.4 T 1.7+2.3
Ne 1612 V I/ o
Na 7.4 Cr 1.5%2.4
Mg 191 Mn .9%.2
Al 2.8%1 Fe 10.8+1.4
Si 14+2 Co .05+.02
P D%.2 Ni P Ea |

%All ratios normalized to carbon.
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FIGURE CAPTIONS

Fig. la The simplified level scheme for the B, -decay of 56Ni.
Only those levels of 56Cb which can be reached by direct B, -decay
are shown. All energies aré in MeV and were taken from Auble (1977).
The limit on the 8, -branching ratio is from Rao (1970).

Fig. 1b The simplified level scheme for the 8 -decay of 54Mn.
Only those levels which can be reached by direct decay are shown.
All energies are in MeV and were taken from Wapstra and Bos (1977).
The 1limit on the B, -branching ratio is from Verheul (1970).

Fig. 2 A simplified chart of the nuclides for cosmic rays. The
mass number A increases to the right and the atomic number increases
towards the top. As in an earlier chart by Waddington (1975), the
chart is folded (at A = 22 and A = 38). Each box represents a
nuclide which requires explicit inclusion in propagation calculations
(see text § I(b)). In each box, line 1 gives the mode(s) of decay
and half-life, as a cosmic ray, 1line 2 gives the nuclide's total

reaction cross section in the interstellar medium, and line 3 gives

the non-trivial terms of the v matrix (see text § II(g)).
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Appendix A

As stated in § II(b), the stripping cross section can be more
completely described as the total cross section for the loss of a
K-shell electron by a hydrogenic atom following its collisions with
the interstellar medium.

(a) Non-relativistic form

Dmitriev et al. (1966) have used the non-relativistic Born
approximation to determine the stripping cross sections for arbitrary
one-electron ions colliding with either hydrogen or helium atoms.
They first break the cross section into two contributions - the
elastic collisions in which the atom in the medium remains in its
ground state and the inelastic collisions in which the atom in the
medium does not remain in the ground state. In addition, each of
these pieces is broken down into its contributions from close and
distant collisions. The total cross section is the sum of their
Egs. (10) and (14) and for high (but non-relativistic) velocities

(B >3 Z~,a) can be approximated to within 10% by the expression
CR

2 .2

4 a,” o 2
Ustrip B 7 2 B2 (Zmed ¥ zmed) (AL)
Cr
7
Z 1 +Z
Cg) ‘med/4 0.56
x | 1 (-1§— 157 157 (Zmed InA + 1nB)



o

where a, is the Bohr radius,
o is the fine structure constant,
Zed is the nuclear charge of the medium, and

ZCR is the nuclear charge of the cosmic ray.

In addition, A and B are defined by the equations

I=
1

. - *
mm[l.ﬁ B/ZCR o LCRJ/Z zmed ) »

o 9 s B
B =min[(1.6 B/Zmp o) (1 + 0.8 u /2, Zp/Zp0q®

1 for H
* = 3
mwﬁa%wd ’Lﬁ% ﬁrHe‘ and
_ )1 , for H
Ys 1,55, for Het'®

Note that the first factor in Eq. (Al) is just Bohr's expression for

Gstrip' Also, Dmitriev et al. showed that only the first two terms

within the brackets of Eq. (Al) arise from close collisions. Thus,
Eq. (Al) will deviate from Bohr's formula if the logarithmic terms

from distant collisions make a significant contribution.

Since explicit values for o are needed for ZC > 18

R
(see Fig. 2 and Table 1), and since the second term within its brackets

strip

is negligible for B > 3 ZCch, Eq. (Al) can be further approximated
by the expression

Z 2
41Ta0 o

- 2

Istrip ~ 2.2t (Zneq  * Zpea) [ * 0.56 In (1.6 8/Z0)]
CR

(A2)
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(b) Relativistic estimate

There is no directly applicable relativistic calculation for the
loss of a K-shell electron. However, it is possible to reliably
estimate the cross section if one adopts the following argumént. First,
view the collisions in the rest frame of the hydrogenic atom. Then
if the velocity of the ''incident'" atom of the medium is sufficiently
high, it should be possible to view its interactions with the hydrogenic
atom as merely a superposition of the effect from the nuclear charge
zmed and Z_. 4 times the effect from a single electron. In this way,
the calculation reduces to properly weighting the relativistically
correct expression for the ionization cross section due to the passage
of a fast charged particle (instead of an atom). After some

rearrangement of the ionization formula given in Mott and Massey (1965),

this sum becomes

4ma ® o 4 8 y? ; ,

= . - (7 3

Ostrip ~ 7 2 82 & | 2E C.7 ) 87 Zned * Zmed (a3
“CR 2R

where the constants Cl and C2 have the values 0.285 and 0.048,
2

respectively. Note that the zmed in Eq. (A3) reflects the

contribution from the nucleus, while the Zmed stems from the

electrons.

(c) Reliability of the estimate

In the 1limit of B << 1, Eq. (A3) becomes
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4ma 2 az

_ o] 2
GStI'ip = —:—*Z——B? (Zmed + Zmed) [.99 + 57 ln(1.6 B/ZCRO'-)] {A4)
R

which is virtually identical to Eq. (A2).

In conclusion, Bohr's formula is significantly in error (by
more than a factor of Z) but can be corrected by properly including
the effects of distant collisions. Equation (A3) is a much better

approximation for the stripping cross section.
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Appendix B
Cassé (1973a) has claimed that the variations in the nuclear
matrix elements of "unique second-forbidden' decays (here denoted
3* decays) are limited enough to provide a means of predicting the

lifetimes of 54Nm and 56Ni. This claim is checked below.

(a) Does there exist a '"'systematics" for 3* decays?

This section determines the amount of variation in the values
of the nuclear matrix elements of those 3* transitions that are both
well-determined and occur in nuclei with A £ 70. The characteristics
of the five transitions that meet these two requirements are given
in Table Bl. Note two changes from Cassé€'s Table I -- two additional
branches for 26A1 and the removal of the 60Co decay. The 60Co case
was removed on the basis of a review of the A = 60 chain (Kim 1975).
Kim found that the two 3* branches of 60Co were ''very questionable"
because the indirect arguments for them had been weakened by new
data on electromagnetic transitions between excited levels in 60Ni.
That is, since a new line could cause the populating of the same levels
as those that would be reached by the 3% decays, the B- branching
ratios are no longer reliable.

As was discussed by Cassé (1973a,b) the reason for adding log
<S8, > to log (foT*) in order to obtain log (fZT*J is to remove the
variations caused by the energy-dependent part of the shape factor and
to isolate the variations in the nuclear matrix elements themselves.

Thus, if the values of the matrix elements were narrowly distributed,

colum (7) of Table Bl should have much less dispersion than colum (5).
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That is clearly not the case. Note particularly the Iog[sz*) values
for the three 26A1 cases. Since the last two transitions differ only
in the mode of decay, their equal log[fZT*] values show that the
variations in matrix elements have been isolated. However, that common

value differs from that of the first 26

Al transition by more than an
order of magnitude, even though the matrix elements involve the same
initial states. Thus there is no sound basis for the claim that the

dispersion in log(£,Ty) is small.

(b) The 3* half-lives for >*Mn and °°Ni

As seen above, the large dispersion in both the log(fOT*] and
the log(£,T,) values makes calculations with the distribution's
averages unreliable. However, one can hope that the dispersion for
all 3" decays is no larger than that seen in Table Bl. There are
two possibilities: (1) that the table's range of 1ogLfOT*) values
brackets those of other 3% decays and (2) that it is the range of
log(fZT*) that brackets the others. In case (1) the range of 12.75
to 14.22 in the Iog(fOT*) values of Table Bl leads to the ranges
in deduced T%‘s shown in the second colum of Table B2, while in
case (2), the range of 10.89 to 12.74 in the log(fOT*) values leads
to the values shown in the third column. Strictly speaking, these
estimates apply only to the lifetimes in the laboratory since the
integrated statistical factor was determined from a screened Fermi
function. However, since the lifetimes turn out to have such a
large range, the relatively small modifications that would be

introduced by the removal of screening effects have been neglected
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in this work. Thus, taking the union of the two sets of lifetime
ranges gives the final limits shown in Table 6. That means, for
example, that the half-life of the positron branch of SQMB might lie

anywhere in the interval from 6 x 106y to 8 x lOgy.



TABLE Bl: Characteristics of Well-determined "Unique Second Forbidden Transitions' with A < 70.

Transition T% ) E? (KeV) (E;igggt) 10g(f0T*)b log(82>C log(sz*)d eigi;e
103 (0*33h (1.6£0.2)x10°  555.8+0.8 100 13.514.05  -2.62  10.89 e,f
2282 (3*30h 2.602+0.002 1820.3+0.5  (6+1)x10°%  12.75:.07 - .92  11.83 e,g
2op1 (552, ") (7.240.3)x10°  1066.30.5  (2.7+.2) 13.33:.04 -1.78  11.55 e,g
26A1{5+i21+) (7.2:0.3)x10°  1174.0£0.5  (82.1%2.5)  14.22+.02 -1.51. 12.71 e,g
26;\1(5*1::?21*) (7.2¢0.3)x10°  2196.0%0.5  (15.242.5)  13.19+.07 - .45  12.74 e,g

UNote that for the B decays, E is the maximum kinetic energy of the beta particles.

bT% is the effective half-life = T1/r where r is the branching fraction. The integrated statistical
factor, f, is from Gove and Martin (1971) and incorporates both screening and the effects of the
finite 51ze of the nucleus.

“Obtained from a quadratic interpolation in the tables of Zyranova (1963).
dDefined by log (£2T4) = log (f5T4) + log (Sy).
ehhpstra and Bos (1977).
fAjzenberg~Se10ve and Lauritsen (1974).
8Endt and Van der Leun (1973).

_tg_
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TABLE B2: Possible Half-lives for the 3" Decays of ~ 'Mn and 56Ni

Intervals for T,
*

b
If? If? :
Transition 12.75 < log (foT*) < 14.22 10.89 < log (sz*) < 12.74 log (SZ)C Reference
hin (37 3 0Y [.059, 1.7]x10%y [1.1, 80]x10% -1.81 d

i 3t 3 0h [.065, 1.91x10% [.14, 9.8]x10% 374 d

MNi 0t 3 3h [.098, 2.9]x10% [.087, 6.3]x10% 22.19 d,e

aLog fo from Gove and Martin (1971) and the endpoint energies given in text (Fig. 1)

bDefined by log (sz*) = log (foT*) + log (5,).

_98_

“Obtained from a quadratic interpolation in the tables of Zyranova (1963).
dWapstra and Bos (1977).
®Schneider and Daehnick (1971).
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Appendix C
Since a fast nucleus has at most one K-shell electron, its
half-life via electron capture will as a first approximation be twice
as great as that observed in the lab. In addition there are two
smaller effects -- an increase in the half-life because there are no
captures from the higher shells and a decrease because the fast nucleus
is unscreened. The magnitude of these effects is determined below

+

for the 27, 1%, 27, and 2" decays of the isotopes 41Ca, 44Ti, 5SMn,

and SgNi, respectively.

(a) Captures from the higher shells

Following Martin and Blichert-Toft (1970) (denoted MB), let €
denote the full rate for decay by electron capture and let &5 denote
the partial rate for capture of an electron from the x-th shell

(x=K,L1,L2,L3,M,N,...). Then it is convenient to write

e = = =
L hy L3-| O !

==1+— |1+ (c1)
K K <
For both allowed and unique forbidden transitions, i.e. for
41

Ca and 44'I'i, only a single nuclear matrix element contributes to an
Ex' This '"uniqueness'' means that any ratio of the EX'S is independent
of the matrix element and is only a function of the Z of the parent

nucleus and the momentum of the outgoing neutrino. In the case of the

53

ol decays of ““Mn and SgNi, the décay rates for each shell depend on

differing linear combinations of three different matrix elements.
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However, Vatai (1973) has used the B-decay formalism of Behrens and
Buhring (1971) to show that, even for non-unique transitions, the
ratios of € 's for shells having the same total angular momentum are
independent of the nuclear matrix elements. He also showed a reasonable
preliminary estimation of other ratios could be obtained by assuming
that they too were independent of the.nuclear matrix elements. For the
cases of 53Mh and SQNi, such estimates show that the sum of the ratios
ELS/ELI and EMS/ELl contribute only ~.1% to the final E/EK. Thus for
calculating the importance of captures from higher shells this work
will treat all ratios of €.'s as if they were independent of nuclear
matrix elements. The results obtained from Eq. (Cl) by using the
tables in MB plus the momentum of a transition's outgoing neutrino
are given in Table Cl.

In the decay of a neutral atom one is unable to distinguish
experimentally between a direct capture of the K-shell electron and
an L-shell capture, if the L-shell vacancy is filled during the
transition by a K-shell electron. In addition to such "exchange
effects," there is an imperfect atomic overlap because of the different
nuclear charge seen by the initial and final atomic states. Thus

in the notation of MB, the experimental K-capture rate is given by

€, = EKO By (C2)

where EKO is the "pure' capture rate and By is the correction due to
the exchange and overlap effects. Table Cl gives the values for By
(according to MB) and also shows that the decay rate of a neutral atom

is approximately 10% greater than the rate due to "pure' K-capture.
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(b) The effects of screening

Once the neutral atom's '"pure" capture rate for the K-shell
has been determined, the remaining differences between the lab decay
rate and its decay rate as a cosmic ray arise from a rate's small
dependence upon screening. Recall that (cf. Konopinski and Rose 1965)
in the normal approximation the K-shell capture rate for any transition
with AI>0 depends on the product of ng, the square of the large

component of the electron's radial wave function at the nuclear surface,

2\A 1

(qK ) (ag is the momentum of the outgoing neutrino), and other factors

that are independent of the number of electrons attached to a nucleus.
Thus, values are required of the ratios (gKu)z/ng and (qéujzal/qKZﬂI,
where the superscript u denotes a quantity's value in the unscreened
case.

Since for Z < 30, the effect of the finite size of the nucleus
is negligible (cf. Konopinski and Rose 1965), the effect on gk due to
screening can be computed by comparing the values given by MB with
those obtained for gy by assuming a point-Coulomb potential. The

unscreened result can be found analytically and is given by the

equation (cf. Bjorken and Drell 1964)

u _ ~ZoR

o = 2007 {[(hy)/r(hzm”z (2R e

(C3)

where vy = ‘V 1 -[Zajz , R is the nuclear radius, the units are
h=c= m, =1, and the term in brackets shows the change from the
non-relativistic case. Table C2 provides the values of the ratio

2
(gKP) /gK2 for the same isotopes that appear in Table Cl.
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The effect on Ay arises from the calculation of the energy
difference between initial and final states. In the neutral atom,
Bahcall (1963) showed that K-capture is really the production of a

K-shell vacancy in the daughter atom so that
g = Q - Bp - W'y (@)

where Q, is the atomic mass difference, Eg is the (non-negative)
difference between the ground state of the daughter nucleus and the
actual level reached by the transition, and'W'K is the (positive)
binding energy of a K-shell electron in the daughter nucleus. In the

unscreened case, un is given by the equation

u
G = Q, - Eg.#m, - Wy (C5)

where Q. is the nuclear mass difference and WK? is the (positive)

binding energy of a K-shell electron in the parent nucleus. However,

for electron capture (where the daughter nucleus has one less proton)

Q, = Q, *+m +E,(2) - E,(z-1), (C6)

where Ee(Z) is the (negative) total electric energy for an atom of
Z electrons. Also for a point-Coulomb potential the ground state

energy is given by the equation

u 2 2

wl = [1-1-2% B . )

Substituting Eqs. (C6 and C7) into (C5) gives the equation

W' TGt B - B @) - Epomll-0r e L (@



-90-

Since the transition energy (Qa = Ef) is much larger than the K-shell
binding energies WKF and w‘K, Egs. (C4) and (C8) mean that the ratio
qu/qK is given by the expression
u v u .
ag’ Vo 0y - B+ E ()

aiu Q7 Ef

(C9)

As shown in Table C2, Eq. (C9) shows that un/qK differs from unity by

less 3 parts in a thousand for the isotopes of interest.

(c) Final determination of the half-lives

Let ECR denote the decay rate for a fast nucleus with one K-shell
electron. Then, as discussed above, €R is just the product of one-half
of the rate for ''pure' K-capture in the lab and the appropriate ratios

of screened and unscreened quantities. That is,

& uz uz.’i\I )
S (8¢ ) (qy )
Eaf%[g][ Kz ] K?,M S (C10)

gk

It was also shown that the ratio of the qK‘s is essentially unity.
Thus, Eq. (C9) means that the half-life for electron capture by a fast

nucleus, Tl/2 is given by the expression

,CR?

=2T c/e 0 u 2/, 2

where T% L&k is the neutral atom half-life. Eq. (Cl1l) and Tables Cl

and C2 were used to generate the half-lives shown in Table 6.



TABLE C1: The Ratio of all Electron Captures to those from the K-shell.

Isotope A" 2 qK2 b quz b e/eK « By . e/ek o
Hey 2 0.6682 0.6784 1.115 0.982 1.095
s i* & 0.0495 0.0531 1.124 0.982 1.104
My g 0.1413 0.1473 1.120 0.892 1.100
> 7 1.3344 1.3585 1.124 0.985 1.107
>InNi 2t 4.3493 4.4050 1.127 0.986 1.111

ApT = [Ii - If[, m= e where I denotes the spin, 7 denotes the parity of the nuclear level and
i(f) denotes initial (final).
qu = Qa = Ef - wx' is the neutrino's momentum where w ' is the binding energy of an electron in the

x-th shell of the daughter nucleus, Q is the atomic mass difference from Wapstra and Bos (1977), E¢
is the difference between the final level and the ground state energy of the daughter nucleus, and
all quantities are expressed in units of m_c”.

“From equation (C1) and the formulas given in Martin and Blichert-Toft (1970).

d'Exchange and overlap correction (see text).

©Branches (98.1 1.5)% to a level 146.25 keV above the " 'Sc ground state (Endt and Van der Leun 1973).
fBranches (1.9 1.5)% to a level 67.85 keV above the 44Sc ground state (Endt and Van der Leun 1973).

44

._1:6_
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TABLE C2: The Effects of Screening on the Large Components of the
K-shell's Radial Wave Function

Isotope gKb | gKu . | (gﬁ)?/gxz (un/qK)'l ©
ey 11169 1195 1.045 5x1074
iR 1367 1397 1.044 3x107> ¢
441y 1367 1397 1.044 2x1073 ©
>\ 1728 1694 1.041 5x1074

i .2097 .2057 1.039 4x1074

ag U is the wnscreened function obtained from Eq. (C2) with R given by
the equation (Martin and Blichert-Toft 1970)

1/3 -1/3

R = (.002908A - .002437A

}hﬁ%c.
bFrom'Martin and Blichert-Toft (1970).

CFrom equation (C8), using atomic mass differences from Wapstra and
Bos (1977), w‘K and Ee(Z) from Huang et al. (1976), and in the case

of 44Ti, values for Ef are from Endt and Van der Leun (1973).

dFor the 98.1% branch.

®For the 1.9% branch.
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APPENDIX D

This appendix provides the detailed manipulations involved in
computing the errors on each term in the elemental modification matrix.
Since the elemental modification matrix is actually defined
via its inverse, the formula connecting perturbations in a matrix with
those in its inverse is needed. Let B be any invertible matrix.

1

Then since BB ~ =1,

e Af .
§Bry (B71)y *+ By (8B1), =0 (D1)

where SBIJ is the perturbation in BIJ’ (SB_l)JK is the perturbation
in (B_IJJK, and the summation convention has been used for the sum over

J. Using Eq. (D1), the Eq. for 6=AﬁVIL becomes

1
SM =My M D M (D2)

Using Eq. (55) and assuming no uncertainty in the v's, the equation
for (éﬂﬁ?-l)JK becomes

oM - Zj:ca MY - (03)

After substituting Eq. (D3) into Eq. (D2) and using Eq. (D1) for

(M 1).., Eq. (D2) takes the form

jk’

S ML = R Mg Ty (D4)
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where the rectangular matrices R and T are defined by the expressions

=)
]

w = A ZfM_lek (DS)
j

and

T = D, v M - (D6)

Thus, the mean square error in the term ”éfEL is given by the

expression

2 w
<EA 1> = RpRpe <O Mg > Top Toug, (D7)

where <6MM GMk‘R'> is the covariance matrix for M. Recall that the
modification matrix is the sum of three matrices, F, D, and E, that
involve different physical processes, so that < 8Fy 8Dp1g0> = 0

and similarly for the other two averages of terms from different{
matrices. However, there can be correlations among elements within
each array. These correlations are computed below.

In principle the correlations of the matrix F can come from
either the total reaction cross sections or the partial fragmentation
cross sections. It was shown in § II(d) that the total reaction
cross sections are generated by formulae that involve the nuclear
charge distributions of the projectile and target. Moreover, an
interpolation formula for the distributions was used whenever:
measurements were unavailable. Thus, in practice many of the terms

are correlated. However, this fact will be ignored in accordance with
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the assumption that actual measurements would randomly scatter about
the results of the interpolation formula and destroy this "artificial"
correlation. Thus in this work it will be assumed that the diagonal
terms are neither correlated with each other nor with the off-diagonal
terms. As discussed in § II(e), most of the off-diagonal terms of

F are given by the semi-empirical formulae of Silberberg and Tsao and
thus have some correlation. However, the simplifying assumption will
be made that there is no mean correlation for different off-diagonal

terms, whether experimental or semi-empirical. Thus the form

. _ 2
<SFp SFag> = R™ > S0 Span s (88
will be used with the error estimates given in § II(d) and (e), and
where Gkk' and Ggg, are Kronecker deltas.

Non-zero terms in D (the matrix of long-lived decays) are
correlated even if the lifetimes of the unstable species are
uncorrelated. These correlations stem from the fact that the effects
of a decay are incorporated twice, both as a diagonal term (with a
minus sign) and as an off-diagonal term (with a plus sign). For
definiteness, assume that the k -th entry of M decays to the £0~th

entry with a mean life T - Then if <§ Ty 25 is the mean square

s 4]
error given in Table 6, the correlation coefficient for D becomes
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Tt Gen B B S =8
<5Dk£ 6Dk'£'> Ko Eko 2 RO kRO kko k 20 k‘ko

<61k 2 >

8]
N e (D9)
(YVTk 2)2
0

where the sum over k_ represents the search through Table 6 and the
extensive string of Kronecker deltas both represents the fact that
only terms from the same physical decay are correlated (the first two
factors) and keeps the bookkeeﬁing straight on the net sign of the
correlation.

In principle, terms in E are correlated in the same manner as

the terms in D. However, as discussed in § II(b), the errors in the
attachment cross sections are negligible. Thus only the correlations
for the 4 cases that require stripping cross sections are needed.

Once again assume that the k0~th entry of M is the one-electron state

of an electron that decays to the £0-th entry of M. Then if

<Ostrip,ko>2 is the mean square error discussed in § II(b), the
correlation coefficient for E is virtually identical to Eq. (D9),

namely

<CEpg SEpige> = Zk: %ko 62*1«:0(51(20 - ‘Skko) (51(';50 - ‘Skfko)
o

X I

2 2
o <6 > (D10)

Ustrip,kO
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where the sum over ko represents the search over the 4 possibilities.

In sumary,

Mg, Mergr> = <GFcg OFrge> + <8Dpy 8Dyyp 4>
+ <6B, OB, ;> (D11)

with <8Fpp SFpagr> » <6y, aDk,2,> , and <55k£ 5Ek'£'> given by
Eqs. (D8), (D9), and (D10), respectively. Substituting Eq. (D11) into
Eq. (D7) expresses the errors in_g/ in terms of the quantities discussed

in § II. These errors are given in Table 8.



