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1.0 INTRODUCTION 

This paper is an exercise in strategic energy planning. The goal 

is to develop tools for technology evaluation which address questions 

involving the economics of large scale systems. Underlying this point 

of view is the assertion that the engineering constraints associated with 

different kinds of energy technologies are so different from one another 

that there are serious implications for costs in the large. Choosing 

one kind of energy conversion technology as opposed to another involves 

systems costs. This perspective is not marginalist. Rather it rests 

upon a claim that important large scale systems costs cannot easily be 

addressed by looking only at the next incremental project and its alter­

natives. The kind of cost we will be discussing usually involves some 

dynamic aspect of the energy system. In particular such properties as 

flexibility, stability, and resilience are features of entire systems. 

The strategic perspective in energy technology evaluation has received 

most attention to date in the study of financial viability and stability of 

electric utilities. Ford has shown the financial advantage of small power 

plants compared to large units given uncertain future electricity demand. (32) 

The main feature in this study is the advantage of short lead time projects 

in tracking cyclic fluctuations of demand. Willey has shown the compara­

tive financial advantages to utilities and their customers of an energy 

supply system based largely on solar, and conservation as opposed to large 

base load plants. (33) Kahn and Schutz have proposed a framework for 

financial risk assessment that distinguishes various kinds of financial 

risk associated with different technologies. (34) 

These analyses are all concerned in one way or another with the coup­

ling between an energy system (i.e. a utility system) and the macro-economy 

in which it is embedded. These discussions do not look at the technical and 

economic consequences within the energy system itself of strategic techno­

logical choices. This is particularly significant where implementation of 

solar resources is anticipated. Attention must be paid to the question of 
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reliability; i.e., availability on demand. It is often claimed for example 

that solar alternatives will require so much storage to smooth out the 

mismatch of supply and demand patterns that these options are uneconomic. (35) 

The storage problem and the planning for reliability in utility systems are 

the subjects of this paper. 

1.1 Reliability Planning: Preliminary Definitions 

Electric energy systems consist of,a variety of components which are 

designed into a system that provides service in response to time-varying 

demand. Fitting the various components together, integrating the system, 

is constrained by economics and service standards. Planning engineers 

seek to minimize the cost of providing electric service at specified 

levels of reliability. Without a reliability constraint, economies can 

always be achieved by degrading the quality of service delivered. Due in 

part to the complex nature of electric energy systems, there has not 

evolved a single measure of reliability. Instead there are indices which 

characterize the performance of subsystems. Ideally a power system planner 

would like to have models which show the relationship between reliability 

and cost components for the whole system. Unfortunately he would be lucky 

to have such models even for the major subsystems of generation, transmission 

and distribution. 

In this exercise we will lilllit:_ attent~ollt~tlleg~peI'~t:_~()n system. 

We will focus on the contrast between conventional power generation techno­

logies with controllable output and intermittent resources such as wind and 

solar electric conversion devices. We will address the storage problem 

strategically rather than incrementally. That is we will imagine hypothe­

tical power systems dominated by either conventional central station plants 

or wind generators and compare bulk storage requirements. This analysis 

is carried out in Section 3 after we develop a parametric characterization 

of the technologies studied in Section 2. The system studied is a stylized 

representation of California conditions. 

1.2 Uncertainity, Resilience and Other Sensitivities 

We are really, of course, interested in the basic relations among 

utility loads, resources, storage and reliability. This means that under-
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standing the sensitivity of results to parameter changes is essential. 

We will examine the implications of various uncertainties and the importance 

of certain initial assumptions. One question of this kind is the ability of 

different systems to withstand large exogenous disturbances. The usual 

power system planning framework does not address itself to the occurance 

of droughts, coal strikers or major inter-regional supply deficiences. 

The ability to absorb such shocks gracefully has been called the "resilience" 

of a system. In Section 4 we formulate this property and compare the central 

station power system to the intermittent resource system. Our analysis supports 

the thesis associated with Lovins that the intermittent resource technologies 

produce a more resilient system. 

We also examine the importance of our limited knowledge concerning the 

capacity factors of various generator types and the role of reliability 

standards. We will estimate trade-offs between storage capacity requirements 

for our two systems and the service standards, i. e., the design level of 

reliability, we will find that lower standards are relatively more favorable 

to the intermittent resource technologies. 

Finally we address ourselves to the design of bulk power storage as a 

back-up to each of our two systems. We will argue that the quality of back­

up requirements varies radically in the two systems. The magnitude and 

duration of expected outages; i.e., back requirements, are sufficiently 

different to require very different sizing of the storage unit. This logic 

will be applied to the case of hydroelectric facilities with large energy 

storage that are currently part of the California power system. 

2.0 PARAMETRIC CHARACTERIZATION OF DISTRIBUTED AND CONVENTIONAL TECmrOLJGriS 

We will be studying two different distinctions that characterize power 

plants; conventional vs. distributed and controllable vs. intermittent. 

These distinctions are related in the following way: 

Power Generators 

conventio~ ~~ribute~ 
Controllable Intermittent 
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Drawing up this conceptual map requires that we invoke rather different 

criteria at each level. The notion of distributed vs. conventional 

technology is defined primarily by criteria which speak to the social 

functioning of engineering devices, rather than to technological parameters 

alone. The analysis of Lovins, for example, is based on qualities such 

as flexibility, thermodynamic appropriateness and relative scale. (5) These 

concepts can only be defined of the interface of society and technology. 

However useful such criteria may be, they tend to obscure the basic 

technical difference between those generators with controllable output 

and those which are inherently intermittent. Thus there is a class of 

distributed technologies (fuel cells, co-generation, geothermal electric) 

which resemble conventional technology in their output characteristics. 

We can turn all of these qualitative distinctions into a formal framework 

by translating the output characteristics of each class into probabilistic 

language. The main concept used is the relative variance on availability. 

2.1 The Small Variance Technolo~ies 

Power generators using conventional technologies with controllable 

output are modeled as independent random variables in system reliability 

analysis. (27) Each unit has a probability distribution of availability 

that is parameterized by the random forced outage rate. The mean Si 

and_th~ varianceo~_. on power availability of such technologies are given 
1 

by the expressions below, 

s. ct. (1 - L. ) (1) 
1 1 1 

2 2 (1 L.) L. (2) 0" ct. -
s· 1 1 1 

1 

where 

ct. = 
1 

capacity of unit i 

L. = 
1 

random forced outage rate of unit i 

These expressions are discussed in references 2 and 12. It is clear from 

equation (2) that unit size has a significant impact on the variance of 

available power. A numerical example will illustrate this. 
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Let us compare two resource plans for adding 1000 MW of rated capacity 

to a power system. One option is the addition of a single 1000 MW plant. 

Another is the addition of 10 plants, rated at 100 MW apiece. An example 

nlight be nuclear versus geothermal. Assuming a forced outage rate (FOR) 

for each alternative will allow us to calculate total variance and compare. 

This involves an extra subtlety since FOR typically increases with unit size. 

To check this sensitivity we will also add a variation which includes an 

FOR 50 percent greater in the large unit case. The results of these calcu­

lations are given in Table 1. Note that total variance in the multi-unit 

case is n times the single unit variance, where n is the number of units. 

Table 1 

Power Availability Variance* as a 
Function of Uriit Size and FOR 

1000 MW, FOR = .15 (J 2 
s 

1000 MW, FOR .10 2 
= (J 

s 

10 units, 100 MW, FOR .10 2 
= (J 

s 

*Variance is in units of 1000 MW? 

= .1275 

= .0900 

= .0090 

The interpretation of these variances will be discussed more fully in 

Section 3. They are related to backup requirements. What is of interest 

for now is the comparison of relative effects. Small units contribute 

disproportionally smaller variance. There is an economy of back-up or 
. (12) reserve margln. 

Within the category of generators that are in principle controllable 

and can plausibly be modelled on the unit level as independant random 

variables, scale is the main distinction between distributed and conventional. 

Nuclear plants and conventional coal fired generators typically come in large 

sizes, i.e., 800-1000 MW. (36) On the other hand, such distributed generators 

as fuel cells or geothermal plants are expected in small sizes, i.e., 25-50 

MW. The FOR values listed in Table 1 are also consistent with EPRI estimates. (36) 
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2.2 Correlated Output Technologies: Consequences for Variance 

Wind turbines and solar electric generating devices cannot be modeled 

as independent random variables for capacity availability purposes. Even 

over hundreds of miles separation, there is usually a correlation between 

insolation at pairs of sites. The same is true for wind power. This 

property has been modeled explicitly in the wind resource studies. (10) 

It is implicit in simulation studies of solar electric technology such as 

reference 1. 

A subtle but significant problem involved in modeling such correlated 

resources is choosing the geographical region over which correlations should 

be estimated. This involves both resource and institutional issues because 

the optimal geographical region from the physical viewpoint is unlikely to 

coincide with smaller utility company service area boundaries. The optimality 

of a region over which to integrate power system planning depends upon the 

total mix of resources. In reference (11) Kahn has found smaller capacity 

credit for a region with "better" wind availability compared to one with 

somewhat poorer wind availability. Such results show the influence of the 

other elements in a power system. 

The most useful simplification of the problem is the development of 

some measure of the relation between correlation, geographical diversity 

and power availability_ variance. We address this by looking at the average 

variance of a correlated array of sites compared to the variance of an 

individual site, as follows: 

cr 2 = cr 2[1 + (n-l)1r] 
(3) A 1 n 

where 2 average array output variance cr = 
A 

2 individual site output variance cr = 
i 

n 
number of sites in array 

p 
= average array correlation coefficient 

A transformed version of Eq. (3) is graphed in Figure 1, where the level 
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Array to single site standard deviation ratio 

for array with n sites and cross corre­

lation p. 
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curves show the ratio of array standard deviation GA to individual site 

standard deviation G .. 
1 

Figure 1 shows that the ratio, which expresses the effect of geographical 

diversity on the square root of output variance, is insensitive to n when 

it is greater than 10. Therefore once we know something about the average 

correlation coefficient p for either wind or solar and something about 

Gi
2, the typical variance at a site, we can estimate the behavior of arrays. 

For large arrays, Fig. 1 suggests we can neglect details of the siting 

configuration and just parameterize by p. Although the array problem can 

be posed for joint systems of both dispersed wind and solar, data is 

insufficient even for our limited purposes. Instead we will assess wind 

and solar arrays separately. Even here the data is of poor quality, but 

we can derive some first approximations from it. 

Wind speed correlations have been studied for California (10,11). 

Qualitatively, the behavior of individual sites shows a lot of variance 

compared to the mean. For example, Sacramento data yields a coefficient 

of variation of .52, which is the ratio of the standard deviation of wind 

speed to V, the mean wind speed (11). This gets considerably reduced in 

arrays since the average correlation coefficient is low, roughly 0.3. 

We can convert this data to power using a linear approximation introduced 

by Justus (10). In section 3 we will develop such data for use in the 

normal model of LOLP. The technical details of this adaptation are discussed 

in Appendix l. 

Insolation correlations have not gotten a very extensive treatment. 

For data relevant to California we rely on one limited simulation study done 

for EPRI by Aerospace Corporation (1). This data shows that the individual 

sites have much less relative variance compared to wind sites. The coefficient 

of variation is typically .17. A rough estimate of correlation shows much 

greater values than in the case of wind. In Appendix 2 we develop an 
G 

estimate of p = .8 and /~ the coefficient of variation. The product of 

these effects shows that solar arrays have much less variance per unit than 

wind turbine arrays. These results are suggestive, but uncertain even in 

comparison with the wind statistics. In Section 3 below we will neglect 

these uncertainties and deal only with solar cogeneration units that are 
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assumed to have enough storage to be modelled as independent random variables. 

3.0 THE COMPARATIVE STORAGE PROBLEM FOR CALIFORNIA: 
SCENARIOS AND ANALYSIS 

The comparative storage problem for conventional and intermittent 

resources was formulated in a particularly clear and simple form by 

Martin Ryle. (24) Ryle postulates a conclusion to the problem by simply 

asserting that storage requirements for a power system dominated by nuclear 

generators would be the same as that for one dominated by intermittents. 

The qualitative argument supporting this conclusion rests on what might be 

called a "baseload excess." The nuclear units would produce excess energy 

at seasonal or daily low points in demand and would not be sized to meet 

peak demand. Thus storage would be needed to track demand fluctuations. 

Otherwise a huge amount of excess baseload capacity would be necessary. 

Even today large generators are being required to cycle in response to 

supply and demand patterns. (3l)If Ryle's hypothesis were correct, then 

economic evaluation could be performed by comparing average unit capacity 

factors. If the nuclear plants operated at an average rate equivalent 

to 60 percent full utilization and the wind generator at 30 percent average, 

then twice the capacity of wind machines is required to displace a given 

nuclear capacity. The comparative economics are only this simple if Ryle's 

equal storage hypothesis holds. We will analyze this thesis by specifying 

a context in which the relative storage needs can be calculated. 

It is convenient to rely upon the scenarios developed by the UC-LBL 

Distributed Technology Study for a hypothesized 2025 California energy system. (5) 

In this study a demand level for electric energy is specified by end-use 

methods and matched to specified energy resources. A comparison is sketched 

between two supply mixes, called Centralized and Distributed. Both share a 

more or less common base of low variance technologies (hydro, geothermal, 

cogeneration). These provide just under half the energy. The remainder 

of the energy is supplied by roughly 40 large central station power plants 

(coal or nuclear) in one case, and by wind generators in the other. No 

attempt was made in that study to look at reliability and systems integra-

tion questions. In this section we will ask Ryle's question of the Centra-
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lized and Distributed Supply systems (5). To do this we must first 

. introduce and discuss the main methodological tool of the analysis, the 

normal model of LOLP. 

3.1 Normal Model of LOLP 

2 
In section 2.1 we introduced expressions for the mean (Sjand variance 

(oS) of available capacity for individual conventional generators. Let us 

suppose we know these parameters for a given power system, that is, the sum 

of contributions from many generators. The Loss of Load Probability (LOLP) 

is the measure of reliability which tells what the chances are of failing 

to meet additional load when the system is already responding to some load W. 

We can write this as follows: 

LOLP = Prob [S-W = 0] 

where S is the (random variable) available supply and W is the load. 

We can also consider W a random variable. This will be useful in some 

applications below. In any event, S-W is a random variable which we can 

call the margin. Let us standardize this variable and re-write the definition, 

LOLP = Prob [S-5 = W-5 ]. 
Os Os 

LOLP will vary continuously with load. For a fixed power system we can 

look at just the right hand side of the equality and then 

LOLP = Prob [w-I,-] 

° s 

At this point we invoke the normal approximation technique. This 

amounts to assuming that the distribution of the variable of interest 

has the following form: 

LOLP = F (W-S) , where 
N Os 

F (X)=/2~ J X -t 2/2 
N e 

_00 

normal distribution function. 

dt is the cumulative 

A little algebra allows us to re-express this relation in terms of 

the complementary error function, 
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LOLP = ~ erfc (b), where (4) 

S-W 
and (5) b = 

120 

=} fro S 

erfc(x) _t 2 
(6) edt. 

x 

this form (4)-(6) allows easy numerical calculations with the standard 

error function tables. 

The justification of the normal approximation is usually made by 

appeal to the Central Limit Theorem. Sums of large numbers of random 

variables approach the normal distribution. In the case of our particular 

application, however, there is also a numerical study which compares (4)-(6) 

to the standard discrete model of LOLP (2). These authors found that the 

accuracy of the approximation improved with increasing system size, average 

forced outage rate and number of generators. Typical minimum values for 

these variables in the cases where the approximation is reasonable are 

20,000 MW and above for system size, 10% and above for FOR and 150 and 

above for the number of units. Such results can be unified under the 

heading of large variance. The normal approximation yields good results 

in systems with large variance. This will justify our calculations 

below. 

;<;.7. Gross Storage Capacity Requirements· 

We now apply equations (4)-(6) to the alternate supply scenarios. 

The data and calculations are given in Table 2 for the central station 

case and Table 3 for the distributed/intermittent supply case. In both 

cases the assumed demand is 1400 X 1012 BTU or roughly 410 X 109 kWh. 

This is the level postulated in ref. (5). For our purposes it is an 

essentially arbitrary but convenient level from which to work. The 

fraction of energy supplied by central stations in one case and wind 

arrays in the other is just over half the total. In both cases the 

remaining energy comes from small variance distributed technologies. 

Although the mix of technologies differs in the two cases, results are 
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not sensitive to the differences. The reason for this will become apparent 

after some further argumentation. 

3.2.1 Specification of System Parameters 

We start with an estimate of energy from each resource. Next, a 

capacity factor is assumed for all technologies. This will tell us 

what the total rated capacity must be for each resource. For conventional 

technologies we then assume a forced outage rate and use equations (1) and 

(2) to calculate normal parameters. We assume that our solar cogeneration 

installations have sufficient on-site storage for us to model them simply 

as conventional cogeneration units. This means we treat them as independent 

random variables and ignore solar correlations and partial cloudiness. For 

technical reasons solar cogeneration requires on-site storage (1, 26). 

Where possible, capacity factor and FOR estimates are consistent with 

engineering experience. 

Having specified supply mixes we must now choose an LOLP criterion. 

To begin with, we use the conventional 1 day in 10 years rule of thumb. 

Since this rule has many interpretations, we rely on the variation used 

by the Pacific Gas and Electric Company. This version specifies an upper 

limit on LOLP of 8.5 x 10-3 . For simplicity, we assume at first that all 

the risk is concentrated at the peak, i.e., we need only consider the LOLP 

for our maximum demand . This assumptionis relaxed below. Equation (4) 

and the error function tables translate this requirement into the value 

b = 1.69. That is, Yz erfc (1.69) = 8.5 X 10- 3 . 

We cannot use our model without some estimate of the peak power and 

load distribution expected by the systems. A first approximation involves 

at least a load factor which converts assumed energy into peak demand by 

specifying the ratio of average demand to the peak. Power systems today 

which must meet significant summer air conditioning peaks typically 

experience load factors of 50-55%. Although models adequate to predict 

changes in basic parameters of the load forecast distribution are still 

in the development stage (17), some techniques have been developed to 

forecast load factors. We adapt an approach used by the California Energy 
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Commission (19). The details of our application are contained in Appendix 3. 

Since such exercises are inherently uncertain, it is best to try to bound 

an expected forecast result by the application of an additional constraint. 

High load factor alone is not an absolute benefit in system planning. 

At some point, as load factor increases, risk will emerge in traditionally 

off-peak periods. Perhaps there won't be enough seasonal slack to do 

maintenance. A recent EEl study documents the increased reserve margin 

requirements associated with high load factor (8). Although results 

varied across systems, the most reasonable load shifting pattern showed that 

a 5% shift of the peak required roughly 20% extra in reserve margin. The 

next 5% shift required proportionately larger back-up. Qualitatively the 

increasing nature of the problem with increasing load factor is clear. 

For our purposes, it seems unreasonable to rely solely on the sta­

tistical regression technique of Appendix 3. One of the major linlitations 

of that approach is its failure to include load management explicitly. In 

light of the second-order effect on reserve margin just discussed, we limit 

the peak shaving to 5% of that forecast by the Appendix 3 method. This will 

result in a final forecast peak of 70.0 GW and a load factor of 67%. 

3.2.2 Results, Interpretation and Major Technical Uncertainties 

We re-write equation (5) solving for S, the mean available capacity, 

S=W+b~ 
S 

(7) 

Our problem reduces to the following calculation. We have specified 

W = 70.0, b = 1.69 for both systems. We have estimated variance O~ and 

mean available capacity S in Tables 2 and 3. We find in both cases that 
_ 2 

by solving (7) for S with the estimated aS we get a value greater than 

that which is available. This difference is just the storage capacity 

requirement, which we will call ~S. This is summarized in (8) 

~S = S - S (8) 
(7) A 

where 
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~S = Storage Requirement 

S = Available Capacity Needed for 
(7) Reliability estimated from eq. (7) 

S = mean available capacity from energy 
(7) conversion units. 

The calculation using equation (8) tells us only part of the story 
about storage. Namely how much capacity we need to meet peak demand. It 

says nothing about the amount of energy to be stored. Answering such 

questions requires greater knowledge of load distribution than we have 

assumed. Indeed, the accounting for storage losses would require make­

up energy on the supply side, increasing energy production requirements. 

We ignore such complications to concentrate on the more limited results 

at hand. 

Table 2 shows a storage requirement of 12.4 GW for the central station 

case compared to 15.3 GW in the distributed intermittant case of Table 3. 

For comparison, the hydroelectric system in California as projected to 

1995 would have 9.2 GW of capacity. This suggests a major storage require­

ment for either outcome, the distributed case requiring roughly 25% more 

capacity than the central station use. This result represents an estimate 

within a range of outcomes since there are major uncertainties involving 

the average capacity factor of both central station and wind turbine 

technologies. To assess the impact of these uncertainties we have 

examined the sensitivity of results to capacity factor estimates. 

Capacity factor is an important parameter because it determines 

capaci ty requirements for a fixed energy level. In the Central Station 

Scenario we assume capacity factors of .65 for such units. Historical 

performance of nuclear plants, for example, is closer to .55. Our results 

in Table 4 show the trade-off between capacity factor, storage and capacity 

requirements. When we reduce estimated capacity factor to 60%, we must 

add 3.0 GW of extra capacity and we remove 2.35 GW of storage. For 

capacity factor = .54, we must add 7.0 GW of capacity and we remove 

3.70 GW of storage. These results show that we pay a high price to 

reduce storage with poorer unit performance. 
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Table 2 

CENTRAL STATION SUPPLY 

Resource Energy (1012 Btu) (10
9 kWh) 

Cogeneration 330 96.7 

Geothermal 200 58.6 

Hydro 140 41.0 

Central Station 730 213.9 

Normal Parameters Uriit Number 
Resource Size (GW) of Units 

Cogeneration .050 276 

Geothermal .100 79 

Hydro .050 184 

Central Station 1.000 38 

TOTALS 

Storage Requirements 

Need S = 70.0 + 1.69 n 
75.33 

for LOLP = 1 day in 10 

Since SA = 62.91, then 

Storage Requirements = 

h.94 

years. 

I'1S 75.33 - 62.91 

= 12:42 GW. 

I'1S 

Data Sources 
Capacity Factor: 
and Forced Outage 

Rates 

Unit Size: 

Capacity Rated 
Factor .·CaEacity (GW) 

.80 13.8 GW 

.85 7.9 GW 

.50 9.2 GW 

.65 38.0 GW 

FOR Mean Variance 

.10 12.42 .06 

.08 7.27 .06 

.03 8.92 .01 

.15 32.30 4.84 

62.91 4.97 

Hydro and Geothermal represent 
historical performance 

Central Station from (36) 
Cogeneration from (37) assuming 

gas turbine 

Cogeneration, assuming gas turbine 
Central station from (36) 
Geothermal - current P.G.&E. size 
Hydro - P.G.&E. dispatch 

assumption 



Resource 

Fuel Cogeneration 

Solar Cogeneration 

Geothermal 

Hydro 

Wind 

Normal Parameters 
Resource 

Fuel Cogeneration 

Solar Cogeneration 

Geothermal 

Hydro 

Wind 

Storage requirements 

Need S n = 70.0 + 1.69 

= 84.42 

for LOLP 1 day in 10 

Since SA = 69.17, then 

Storage requirements = 
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Table 3 

Distributed/lntermittant Supply 

Energy 
(1012 Btu) (l09 kWh) 

Capacity 
Factor 

40 11.7 .80 

130 38.1 .45 

330 96.7 .85 

140 41.0 .50 

760 222.7 .35 

Unit Number 
Size (GW) of Units FOR MEAN 

.050 34 .10 1.53 

.050 193 .10 8.70 

.100 130 .08 11.96 

.050 184 .03 8.92 

38.06 

TOTALS 69.17 

172.83 

years. 

~S = 84.42 - 69.17 

= 15.25 GW. 

~S 

Rated 
Capacity 

1. 70 

9.67 

13.00 

9.20 

72.50 

Variance 

.008 

.043 

.095 

.014 

36.25 

36.41 
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Table 4: Impact of Capacity Factor Uncertainty 

Central Station Scenario: Sensitivity to Central Station Capacity 
Factor and FOR 

Capacity Factor 

Installed Capacity 

S 
2 

(JS 

fo,S 

Impact 

* FOR 

Base Case 

.65 

38.0 GW 

32.30 

4.84 

12.42 

assumed .18 

.60 .54 

41. 0 GW 45.0 

34.85 36,90 
* 5.22 6.64 

10.07 8.71 

Installed 3.0 GW Installed 7,0 GW 
Central station Central station 

Remove 2.35 GW Remove 3.70 GW 
Bulk storage Bulk storage 

(Note: since capacity factor reflects both forced and planned 
outages, lower capacity factors require higher FOR's. 
The value chosen represents a modest adjustment for 
this effect.) 
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B. Distributed/Intermittent Scenario: Wind Array Performance 

Varying capacity factor can be expressed as a variation on available 

capacity. Since the degree of these variations can only be determined 

by extensive simulation we estimate two changes for each capacity factor. 

The base case has 8 = (.525) Rated Capacity. For higher capacity 

factor this fraction should increase (we consider .55 and .57); 

conversely for lower capacity factor. 

Capacity Factor 

Installed Capacity 

S 

Impact 

Base Case 

.35 

72.50GW 

38.06 

15.25 

.40 

63:60GW 

(a)36.25 

(b)34.96 

(a)17.05 

(b)18.35 

Remove 9.0GW 
wind turbine 

Add (a) 1. 80GW 
(b) 3.l0GW 

bulk storage 

.30 

84.74GW 

(c)39.83 

(d)42.87 

(c)13.49 

(d)10.94 

Add l2.24GW 
wind turbine 

Remove (c) 1. 76GW 
(a)4.31GW 

bulk storage 

Notes~_ (a) 8=_(.57) Rated Capacity 

(b) = (.55)" " 

(c) = (.47)" " 

(d) (.50)" " 
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Table 4 also shows the trade-off for wind generators. If average 

wind turbine capacity factor were 40%, then installed capacity requirements 

would drop by 9.0 GW and storage requirements go up ·by 1.80-3.10 GW. On 

the other hand, performance as poor as 30% capacity factor means an extra 

requirement of 12.24 GW of wind turbines with a storage savings of 1.76 to 

4.31 GW. All these trade-offs are at equal system reliability. It would 

be useful to examine the sensitivity of our results to the somewhat arbitrary 

reliability criterion we have used. This subject requires a little deeper 

look at the nature of reliability and its relation to other notions. It is 

to this that we now turn. 

4.0 PASSIVE RESILIENCE; OR RELIABILITY SENSITIVITY 

All of our discussion so far has been in a static context. This 

is common in traditional generation reliability studies. The study of 

dynamic disturbances in power systems has been typically oriented toward 

the highly specified network analysis and the contingency enumeration 

approach (7, 28). There is a more abstract, generic approach to dynamic 

questions of reliability that has been postulated by Lovins and others. 

This is the study of system resilience. 

Resilience is a difficult concept because it incorporates both a 

passive, behavioral notion and an active feedback control notion. A 

resilient system absorbs shock more easily than a "rigid" system; that 

is, it falls apart less easily. This is a passive characterization. The 

corrective response to disturbance is an active control notion. In the 

case of power systems, the corrective response ultimately involve the 

political economy in which the system is embedded. Regulatory agencies 

institute investigations of major disturbances and initiate action to 

reinforce perceived weaknesses. It is difficult to bring the entire 

social and political process implied by this reality into the framework 

of the probabilistic calculation techniques. Recently there have been 

efforts at partial analysis by bringing regulatory delay impacts into 

reserve margin and reliability analysis. These efforts are more 

suggestive than definitive (9). 
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Because the active control aspect of resilience is so difficult, 

we will concentrate attention on the passive aspects. From this perspective 

it is possible to compare the response of our two systems to changes in 

reliability criteria, to contrast the response to uncertainty and the impact 

of shocks. This discussion will proceed by examining the structure of the 

risk in our two supply systems. 

4.1 Risk Structure and LOLP Criteria" 

In Figure 2 we graph LOLP as a function of load with storage capacity 

fixed from Tables 2 and 3. The calculation uses equations (4) and (5) 

where the parameter b = b(W) is a function of W. The curves for the two 

systems are designed to intersect at our risk criterion of LOLP = 8.5 X 10-3 

for the expected peak load W = 70.0 GW. What is of interest is the compara­

tive shape and curvature. 

Figure 2 shows that the central station scenario has a considerably 

steeper risk curve than the distributed/intermittent scenario. This geo­

metry has several important implications. First, it says that if we were 

to set a more relaxed criterion for LOLP, the distributed system would 

carry more extra load than the central station system. We show one 

measure of this difference in Figure 2 with the line segment A. This is 

the difference between peak loads servable by the systems at LOLP = .10. 

This level is roughly speaking one day: -per year . -That is only slightly 

higher than the level of 8 days in 10 years recently adopted by the 

New York Public Service Commission in an exploratory ruling (20). The 

line segment A shows the distributed system carrying roughly 4 GW of 

additional load beyond the extra load carried by the central station system. 

The line segment A is probably an over-estimate of the impact--due 

to a change in LOLP criterion. The reason is the problem of accumulation 

of risk. Let us digress a bit into this subject. We have assumed up to 

now that the total risk could be represented by the risk at the time of 

the peak load. However, we pointed out in sec. 3.2.1 that, with the increasing 

load factor, risk may emerge at other times. One measure of this problem 

can be found using the ratio of the second highest load to the peak load 
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and looking at the risk impact of this next biggest load. Pacific Gas 

and Electric Company estimates that this ratio is between .963 and .979. 

Using an intermediate value of .97 we get a second highest load of 67.9 GW. 

Figure 2 shows risk in the central station decreases by a factor of over 

15, while in the distributed case the decrease is less than a factor of 3. 

There are several ways in which we can correct for the accumulation 

of risk in systems such as our distributed scenario, provided we accept 

the measure associated with the second highest load. We can ask how much 

load must be dropped to stay at a 70.0 GW limit if we add the risk of the 

second highest load to the risk at peak. Let us express this as follows: 

LOLP (W = 70.0) + LOLP (W = 67.9) = LOLP (W = x) 

Drop load = 70.0 - x. 

(9) 

Equati<.Ill (9) says simply that the sum of two risks is equivalent to the 

risk at some load W = x greater than 70.0. If we take that difference 

and reduce the allowable peak by it (interruptib~e load) we remain at our 

specified risk level. Doing the calculation thus sketched for the 

distributed case we find x = 70.80 GWat LOLP = 1.2 X 10-2 . This means we 

must curtail 800 MW of load at peak. 

A more stringent accounting for risk accumulation would begin by 

looking at the slope of the two curves and use the inverse of ratio of slopes 

to scale the ratio of allowed LOLP at peak .. We express this· as fo1-1 ows : _ .. 

(oLOLPcS/dLOLP OIST)-l -_ 1 "W "W "i erfc (b ) /~ erfc (b ) 
a a cs OIST 

(10) 

where the subscripts CS and OIST stand for central station and distributed, 
-3 respectively. We fix ~ erfc (bcs ) = 8.5 X 10 ,and approximate the deri-

vatives by a straight line. The ratio on the left of (10) turns out to 

be 2/5. This means we find bOIST such that ~ erfc (bOIST) = (.4)(8.5) 

X 10-3 which is 3.4 X 10-3 . The appropriate b
OIST 

= 1.91. Using this 

value in our original storage requirement calculation of Table 3 increases 

storage capacity by 1.90 GW. This measure is more than twice as stringent 

as the previous calculation of interruption requirement. It should be 

noticed that none of these corrections will affect the sensitivity analysis 

of Table 4. 

Now we return to the question of altering the LOLP criterion. We 
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will use equation (10), this time estimating the derivatives of LOLP = .10. 

The ratio changes to .50. The appropriate value of b for LOLP = .10 is .905. 

Using eq. (8) we get b = 1.165 for the distributed case. We re't"estimate 

storage requirements ~S from equation (8); 

We present the results in Table 5. 

Table 5: Impact of LOLP Criterion 

Central Station 

Distributed 

72.85 

79.94 

62.91 

69.17 

9.94 

10.77 

The gap in required storage b,etween the two systems has narrowed from 

the base case difference of 2.83 GW ( = 15.25 - 12.42) to .81 GW. In Figure 2 

we represent the impact of a relaxed LOLP criterion with risk accumulation 

by the line segment B, which is about 2 GW, as expected (2.83 - .81 ~ 2.0). 

These calculations have shown that the distributed system can carry 

more extra load than the central station system with less risk, and that this 

effect grows with relaxed LOLP criterion. This is one measure of static or 

passive resilience. Another measure is the impact of exogenous uncertainties. 

It is to this subject that we now turn. 

4.2 The Impact of Exogenous Uncertainty 
To proceed with any analysis we have had to make assumptions about 

demand and supply parameters on the basis of relatively little information. 

Although limited information is typical in planning, in our case the 

uncertainties are greater than what we normally expect. In some sense, 

uncertainty is inherent in long range analysis. Therefore some 

explicit account of it should be made. We can treat uncertainties 

explicitly and parametrically in the context of the normal model of LOLP 
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by returning for a moment to its initial formulation. 

The discussion of section 3.1 began by defining the margin between 

randomly available supply and load, S-W. We then standardized this variable 

and applied the normal theory. We pointed out that the load W can also 

be considered a random variable. Now we take up this interpretation 

explicitly. If we assume that demand is distributed normally, then we 

can re-write our definition of the parameter b to include the mean value 

of load and its variance as follows: 

(11) 

where W = expected'load, 2 variance of load. CJw := 

The assumption of normally distributed loads has been used in the planning 

literature (27) . Typical value for 2 in reliability studies around CJw are 

3% of peak load (26). 

We are interested in uncertainties of greater magnitude. The source 

of these uncertainties lies in both supply technology and demand behavior. 

Let us consider one example involving the interaction of supply and demand 

in distributed systems. Suppose that the occurrence of weather sensitive 

cooling demand were correlated with lulls in the wind. Such a relationship 

is plausible intuitively, but we don't have any data to test it one way or 

another. We should -also include in OUT imrentory of uncertainty sudi 

events as droughts which reduce hydroelectric energy availability, 

coal strikes or other labor disturbances which interrupt fuel transport" 

and major interregional supply deficiences. It doesn't really matter 

for our analysis whether we call these supply or demand uncertainties, 

since they are equivalent in equation (11). The disruptive uncertainties 

we are interested in are the kind of phenomena which can destroy the 

integrity of a system. We want to see how the two systems respond 

to large perturbations of expected values. 

In Figure 3 we exhibit curves which plot LOLP for the two systems 

fixed by the storage requirements calculated in Tables 2 and 3 as a function 
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2 
of uncertainty .ow These curves show more dramatically than Figure 2 

the slower growth of LOLP in the distributed case compared to the central 

station case. We should expect.that risk as a function of· uncertainty 

would grow slower than risk as a function of load for a given system. 

This follows from analysis of equations (4)-(6). Roughly speaking, the 

derivative of LOLP with respect to .02 goes as 1/.02 , whereas the 

derivative of LOLP with respect to W varies as e-(t(W))2for the linear 

function ~(W). These are discussed mo~e fully in Appendix 4. 

The basic phenomenon in Figure 3 is the difference betwee.n supply 

systems with regard to given levels of uncertaillty. It matters less to 

the risk of the distributed system that variance goes up some amount than to the 

central station system. The reason for this is evident when we consider how 
2 

3LOLP/3.0 behaves. In Appendix 4 we derive the follow-ing expression ::or 

this partial derivative 

3LOLP 
3 2 
a 

(12) 

We put the appropriate numbers into-equation (12) and draw the graph of 

this function for our two systems. The data are given in Table 6, the 

graph is Figure 4. We also include for comparison the function 1/.02 . For 

uncertainties on the order of 10% or greater, the derivative is reasonably 

11 . d / 2 . we approxlmate by 1.0 tlme? spme constant. 
" ' ~;~' 

Examination of Figure 4 shows that there is aki~d of inertia -to 

risk. For systems with relatively little variance the impact oJ uncertainties 

is large and even grows larger at first. ,Then after enoiigh var'iance has 
, -

been absorbed or accumulated, the marginal impact of variance gets smaller. 

The theme of this story might be called ~biting the~bullet". A system 
y' f .• 

such as our distributed supply scenario has already absorbed statistical 

fluctuation and is relatively less affected by more of it than the central 

station system. The bullet of uncertainty has been bitten in the one case, 

but not in the other. From this perspective the central station plants 

have neither the reliability benefit of the small variance technologies, 

nor the passive resilience of large variance technologies. 

" 
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Table 6: Partial Derivative of LOLP with Respect to Variance 

b 2 dLOLP/di l/(i 0 

Base Case DIS 1.69 36 7.6 X 10-4 2.8 X 10- 2 

CS 1.69 5 15.5 X 10-3 2.0 X 10-1 

2 
7.0 o = 

W 
10-4 10-2 DIS 1. 55 43 9.2 X 2.3 X 

CS 1. 09 12 7.8 X 10-3 8.3 X 10-2 

2 17.5 Ow = 
DIS 1. 39 53.5 1.1 X 10-3 1.8 X 10-2 

CS .795 22.5 5.3 X 10-3 4.4 X 10-2 

2 35.0 ° = W 
1.1 X 10-3 X 10-2 DIS 1.21 71 1.4 

CS .596 40 2.9 X 10-3 2.5 X 10-2 

2 
49.0 ° = W 

X 10-3 10-2 DIS 1.10 85 1.1 1.2 X 

CS .513 54 2.1 X 10-3 1.8 X 10-2 
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5.0 ECONOMIES OF SCALE IN STORAGE 

The discussion of storage needs has focused on capacity requirements, 

i.e., GW, rather than energy requirements, GWh the amount of energy to 

be stored. This limitation results from our incomplete knowledge about 

the future time structure of demand. Other than annual load factor, we 

have specified nothing about diurnal and seasonaf load variations. Indeed 

our estimates on the resource side are limlted to aummer afternoons only, 

since this is the forecasted peak period. Therefore, we have neither the 

detailed demand nor supply variations necessary to model the typical 

cycles of a storage system. A recent study of the marginal problem for 

a single intermittent resource shows the detailed data requirements and 

the varying integration assumptions which characterize a fully adequate 

storage assessment (14). Since this level of detail has been suppressed 

from our analysis for lack of data, what then is the appropriate use and 

interpretation of ·our results? The answer to this question will come after 

a brief digression on the physical nature of the main bulk storage tech­
nology available in California, hydrologic reservoirs. 

There are two kinds of hydro electric resources, the run-of-river 

type which essentially cannot be controlled, and storage or reservoir 

hydro. Although this distinction is not absolute, it is useful (30). The 

integration of hydro resources with thermal resources is done in the most 

sophisticated cases by a constrained optimization technique which minimizes 

expected system production cost, subject to engineering and water resource 

constraints (30). This amounts to a scheduling problem. The calculations 

include the reliability aspect of cost minimization in a limited and static 

framework. Storage hydro is represented by its turbine capacity and energy 

stored. When the thermal system experiences a significant forced outage, 

hydro capacity can fill in the gap. An outage duration is necessary to 

evaluate how much energy must be supplied by the hydro back-up. The optimal 

design of a hydro system is a function of all these parameters. 

Let us consider the following examples. The long duration outages 

(on the order of weeks) of central station units are replaced by short 

duration outages from intermittent resources (on the order of days). Then 

the hydro system might need re-optimization. We will argue that this is 

exactly what is likely to happen and that the consequences of this change 
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argue for a change in the existing hydro system toward bigger units at 

given sites. In essence there is a relationship between risk and storage 

capacity that suggests there is an economy of scale in storage capacity. 

Since these economies of scale will affect the number of storage reservoirs 

needed for a fixed capacity requirement, we may find a significant oppor­

tunity to reduce storage costs and actually limit the impact of hydro-electric 

facility requirements on the land resources of a region. To proceed with 

the argument we must abstract the problem. 

5.1 Sharkey's Theorem 

The hydro design optimization problem we have sketched is more 

complex than the scheduling problem. In fact it is a special case of 

the more general question of production economics with uncertain demand. 

In our case the demand for storage hydro is the demand to back up either 

the central station or the intermittent output technologies. There is a 

formulation of the general problem and a stylized solution to it that is 

particularly applicable to our question. The results we will quote are 

due to Sharkey (25). 

Let us introduce a little notation. We are interested in the situation 

where productive capacity is fixed ex ante and there is random demand. 

For a plant of size q the operating cost is assumed to be linear, varying 

h liIiiEs per unit outpuC-We caricallh-the avoidable cost. It is the -

cost we avoid by shutting down the plant in question. We will denote 

by b the benefit, per unit production. One way to think of b in our 

setting is that it represents the marginal fossil fuel cost that would 

be incurred if there were no hydro production. That is, b is a cost which 

is deferred or displaced. We let g represent the fixed costs per unit 

product (assumed the same for all units). Finally let q. be the size of 
th 1 

the i plant), n the number of plants, and R a measure of demand 

uncertainty. Sharkey proves the following distribution of plant 

size maximizes net expected consumer surplus considering both fixed and 

avoidable costs. 

Theorem: If b > h+g, then a unique maximum of net expected consumer 

surplus exists for the following distribution of plant size: 



where 

q1 

q. 
J 

b = 
h ::: 
qi= 
g ::: 
R 
n = 

= 

= 
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~b-h-gJ~ 

(b-h) [2n-1)b+hJ 

2q. 1 
j-1 j 2, ::: 2 q1' = ... , n. 

J-

benefit, per unit, of production 
avoidable cos

th capacity of i plant 
fixed costs per unit product 
measure of demand uncertainty 
number of plants 

(13) 

(14) 

This interesting result requires discussion. First, it is assumed 

that n, the number of plants, is fixed. Although Sharkey proves a further 

result on the optimal number n, the more limited result has interesting 

implications. Hydro resources are limited; the constraint is geologic. 

Indeed for our application we might want to consider our "plants", q., to 
1 

be hydrologic basins, since storage is really a function of the entire 

basin. Second, equations (13) and (14) imply that the largest plant, q , 
n 

will have capacity equal to one-half the capacity of the entire system. 

This can easily be seen by the following calculation: 

A quick look at Californi3.'s hydroelectric system, with total capacity 

of around 9 GW shows that its largest dam, at Lake Oroville, has less 

than 1 GW of capacity. This suggests that some re-optimization will 

be desirable in any future evolution of the electricity system. 

From our perspective it is important to understand the dependence of 

total capacity on the risk measure $. It is to this subject that we now 

turn. 

5.2 Ana~omy ot KiSK 

Sharkey's model postulates demand behaving as if it were a real number 

drawn at random from the interval [O,R]. By this he means that each demand 

level z has probability l/R of occurring. This is the uniform distribution. 

It is not a good model for our problem w~ere we have argued for a normally 

distributed available supply margin. Our model incorporates a normally 

distributed demand. It also syas that risk is normally distributed. To 

apply Sharkey's Theorem in our setting we must see how to replace the 
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measure R by parameters of our model. 

Essentially R in equation (13) is just the inverse of the probability 

density function of demand. If we assume that (13) and (14) generalize to 

the case of normally· (H!5tributed risk, then R would be replaced by the inverse 

of normal density function, f(x); where 

2 
f (x) = _1_ exp- (x- ll ) 

am 0'12 

for II = the expectation of x 

a = the standard deviation of x. 

(15) 

In the base case of LOLP = 8.5 X 10-3 , the exponential term will be the 

same for both supply systems. The constant I/O' will differ between 

systems and its inverse, a, will take the place of R in (13). As we have 

argued previously, a in the distributed system will always be larger 

than 0 inthe central station system. This implies that hydro capacity 

optimized for the former will be larger and have larger units than for 

the latter. 

The story gets more subtle when we consider other loci on the risk 

curves. Then Figure 2 tells us that the exponential term in (15) will 

differ between the two supply systems. Roughly speaking we may think 
--

of the equivalent to R in the normal version of Sharkey's Theorem aS2 
b 2 b ae Then looking at Figure 2 we conclude that above W = 70.0, oe 

will always be greater for the distributed system than for the central 

station system. This follows, since both 0 and b are greater for the former 

system in this region. The situation will reverse between \'1 == 68.0 and 

W = 69.0. For loads less than W == 68.0 the exponential term will dominate 

for the central station system. Only in this region would the central 

station system require a larger hydro capacity than the distributed system. 

We might finally ask what the situation would be if we choose a 

less stringent LOLP criterion, say, LOLP = 0.10. As argued in section 4.1, 

we would remove roughly 2.0 GW of storage from the central system and 

4.5 GW from the distributed system. The curves in Figure 2 would then 
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intersect at W = 70.0, LOLP = 0.10. Their relative positions wouldn't 

change. What would change is the cross-over point discussed in the 

previous paragraph. 

Qualitatively we may conclude from this discussion that the kind 

of risk seen in a distributed/intermittent resource system requires a 

bigger back-up capacity than the central station system. The wind lulls 

are likely to be considerably shorter than central station forced 

outages. However, the magnitude of lulls is likely to be greater 

than outages of a central station system. This result accounts for 

correlations. For example, Justus and Hargraves found that a wind lull 

on their Pacific Coast array which reduced power to about 1/3 the summer 

mean would last for 15 hours with 95% probability (10). For 99% 

availability of only 1/6 the summer mean, the lull would last about 

10 hours. For comparison, however, major outages of LWR generators 

have an average duration of 300 hours (38). The LWR outages can 

be expected to be independent of one another. Hence the expected capacity 

deficit of anyone time is likely to be less than for the wind system. 

If we can assume that back-up energy requirements are the same 

in the two systems, then we should have more hydro capacity run at 

lower capacity factor in the distributed case compared to the Central 

station case. This kind of hydro optimization has been called "over­

machining" since it is based on the installation of turbines designed 

to run at lower than historical capacity factors. This makes the hydro 

system more of a peaking system. Where base load excess is expected, 

such hydro re-optimization is required. This strategy is currently 

being pursued by the Bonneville Power Administration. 

It is still premature to assess adequately the role of hydro storage 

in the integration of future power systems. A parametric representation 

of systematic load variation is necessary to do the job properly. Better 

data on the correlation of risk and resource is also needed. The tools 

for analysis of these factors can be developed. They must be tempered 

in their application by the other constraints on the hydro system. Such 

a research agenda should be cast in the generic framework we have tried 

to adopt here. Only then will the long run choices available for planning 

become sufficiently clear for informed choice. 
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6.0 CONCLUSIONS 

We have found significant differences in reliability planning require­

ments (and therefore costs) for systems dominated by central station plants 

as opposed to those dominated by intermittent resource technologies. Although 

storage requirements in the base case are greater for the intermittents than 

the central station system, the uncertainties in capacity factor make this 

conclusion sensitive to actual performance. 

More robust differences emerge in other areas. The shape of the risk 

curves differ significantly between the two systems. The central station 

system has a steeper curve than the intermittent system. Several conse­

quences follow from this. First, risk is more concentrated in the central 

station system. This means that there is no diffusion of risk which would 

make for a resilient response to exogenous uncertainties or disturbances. 

The flatter risk curve for the intermittent system also means that less 

storage is needed compared to the central station case if the LOLP criterion 

is relaxed. This benefit survives even when risk accumulation in the 

intermittent system is accounted for. 

Looking more carefully at the impact of uncertainties we also find 

that central station plants occupy an intermediate position between the 

small variance technologies and the large variance intermittents. Central 

station plants have neither the reliability benefit of the former, nor the 

resilience benefit of the latter. 

Finally we argue that existing hydro-electric facilities need re-opti­

mization. These plants provide the only currently existing bulk power 

storage in electric energy systems. Using this storage as back-up to 

either central station or intermittent generations requires sizing that 

considers both magnitude and duration of outages. Preliminary data suggests 

that intermittents would require greater back-up capacity for shorter 

duration than central station plants. This suggests that more of the 

intermittent back-up requirement could come from re-optimized existing 

hydro compared to central station back-up demand. 

v 
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Appendix l--Normal Parameters for California Wind Arrays 

Data on the mean power and standard deviation for California wind arrays 

is developed in (11) based on analysis in (10). The probability distribution 

used in these models is the Weibull. The Weibull distribution is characterized 

by two parameters conventionally denoted by k for the shape parameter and 

c for the scale parameter. The mean and variance are expressed in terms of 

c and k. For our purposes we need to know if the normal distribution is a rea­

sonable approximation to the Weibull for our given parameters c and k. 

The first question to address is which of the many distributions 

developed in (11) should form the data for assessing the accuracy of the 

normal approximation. Since our purpose is to provide input to LOLP 

analysis we should concentrate on those distributions which are co-incident 

with peak demand. Our assumptions about the structure of future load shape 

and its determinants are contained in Appendix 3. The main conclusion of 

interest is that summer afternoons remain the peak period. -The argument of 

(11) also shows how wind power output distributi.on varies over geographical 

area. For simplicity we will choose an array representing the summer 

afternoon wind power distribution for the whole state of California. This 

array has the least relative variance of the various configurations within 

the state, but more than a P(~c.ific Coast :reg~oI1_al arra)'. 

The wind speed distribution parameters characterizing the California array 

are listed in Table 1-1 below. 

Table 1-1: California Wind Array: Summer Afternoon 

Weibull parameters 

k == 3.45 

c == 10.40 

Mean Wind Speed, V == 9.17 mls 

Standard Deviation == 2.93 mls 

Bury(3) shows that the normal model is a reasonable approximation to the 

Weibull distribution when k is between 2 and 6. The symmetry property of 

the normal distribution holds for the Weibull when k == 3.6. Thus, although 
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wind speed distribution at individual sites is not well modelled by the 

normal (13), when the lange array data is analyzed it does resemble the 

normal model reasonably well. 

The final step in developing normal parameters for our hypothetical 

wind turbine array involves the transformation from wind speed distribution 

to power output. Although theoretically the power law for this relation 

is cubic, wind turbine designs with low rated speeds nanrow the effective 

range of this effect. The DOE wind energy program is based on such a design 

philosophy and the modelling underlying our data assumes rated wind speeds 

of under 11 mls (10). Therefore Justus, for example, has found that a 

linear approximation to the power curve is reasonable for such machines. 

We write down Justus' linearization below: 

P. = (a + b v./V ) P where 
J J r r 

P. = power at velocity V. 
J J 

V. = velocity of interest 
J 

v = rated wind speed of generator 
r 

P = rated power of generator. 
r 

(1) 

For our data the rated (i.e. maximum) wind speed is 10.6 m/s; at this speed 

P = 2000 kW/machine. The constants a and b are estimated by Justus to be r 
a = -0.42, b = 1.14 for our data (10). 

To calculate the variance on power availability we square the standard 

deviation of wind speed 0 = 2.93 and use the squared velocity (= 8.58) as V. 
J 

in (1). This yields a variance on power of 1000 per 2000 kW machine. Using 

the mean wind speed from Table 1-1 in equation (1) is likely to give an 

overly optimistic mean power. The reason is that there is one particularly 

good wind site out of six which is considerably above the average of the re­

maining five sites. To scale this average including the good site may be 

unrealistic for a large array of many machines which must necessarily 

include many poor sites. Therefore we will use a lower mean wind speed, one 

which characterizes the Pacific Coast regional array at this time, namely 
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8.8 m/s. This corresponds to a mean power of 1050 kW per 2000 kW machine. 
2 

Our technique finally reduces to assuming that these ratios, Os = .50 

rated power, S = .525 rated power yield the normal parameters for our wind 

array. Once we have a total rated capacity, the ratios give normal parameters 

for the LOLP model. 
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Appendix 2-~Insolation Statistics 

1. Coefficient of Variation 

We first develop estimates of the coefficient of variation, 0/~, at 

individual sites. We do this in two independent ways. First we tabulate 

data on Santa Maria and Inyokern California that is presented in (1). From 

this we will derive the mean and standard deviation by the following 

relations: 

and 

where 

Table 2-1: 

Cumulative 
Frequency (5) 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 

1 n 
x = - L: xi, 

n i=l 

x = samp'le mean 
.th sample value x. = l. 

l. 

n = number of values 
S2 = sample variance 
x 

f. = frequency of x .. 
l. l. 

Percent of Time that 
(Normalized to 

Santa Maria 

90 
80 
78 
75 
70 
67 
58 
46 
27 
10 
0 

(1) 

(2) 

Insolation is Greater than x. 
Peak = 100) 

l. 

Inyokern 

90 
82 
80 
80 
78 
73 
68 
62 
55 
40 

0 
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Normalizing the data in Table 1 so that the cumulative frequency is 100% 

and assigning frequencies to each insolation value, we find that all 

states except 90 have frequency = 0.1. From this we calculate x and 

1ST for each site. These are x = 54.6 for Santa Maria and x = 64.4 
x 

for Inyokern, and 1ST = 8.84 for Santa Maria and 1ST = 7.68, therefore 
x x 

the coefficient of variation is .16 for Santa Maria and .12 for Inyokern. 

An alternate estimate can be developed from attempts to collapse 

frequency data into the representation of forced outage rates (FOR). 

One such effort is a study done by Southern California Edison (26) which 

also looks at Inyokern. Using equations (1) and (2) from section 2.1, 

we can write the coefficient of variation as follows: 

o 
11 

= 
la?(l-L.)L. 
111 

a. (l-L.) 
1 1 

_ 1 ~ 
.. 
l-L. 

1 

(3) 

At the time of peak demand, the total forced outage rate is estimated to 

be 2.3%, adding partial outages would bring this to 2.7%. For these 

values, eq. (3) gives 0/11 = .15 and .17. 

2. Estimation of Solar Output Correlations 

The following discussion is designed to provide support for the prop­

osition that the correlation of solar output across regions in California 

is high. We will perform a stylized calculation to support an estimate of 

roughly p= .8. The argument is indirect. We will use the normal model 

of LOLP to fit results calculated by the Aerospace EPRI study (1). In 

Table 1 we list the parameters of the system studied. 

Table 2-2 

Base System: 18 units, 1.0 GW/unit, FOR = .07 

20 units, .5 GW/unit, FOR = .05 

42 units, .2 GW/unit, FOR = .03 

LOLP, peak month .456 hrs/mo. 

'V 8.3 X 10-4 = 
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Geographical Dispersal Results: 

3000 MlV of Solar displaces 6 units of .5 GW each 

Back-Up Capacity Required 

Santa Maria 

Inyokern 

950 MW 

550 MW 

1/3 Santa Maria, 
2/3 Inyokern 390 MW 

Abstracting from several complications, we can use the normal model 

of LOLP to account for the changes in back-up requirements as we go from one 

site to another and finally to the 2-site pattern. Attributing the changes 

in back-up to changes in output variance reduces the problem to calculating 

changes in the term b/20§. To make such calculations we must estimate 

the power availability variance due to the base system, and the solar 

siting pattern. We also need the value of b corresponding to LOLP = 8.3 

X 10-4. The last task is simple. Since LOLP = ~ erfc (b), we just search 

the normal probability table for the appropriate value. 1t is b = 2.2. 

Equation (2) from section 2.1 applied to the base system of Table 2-2 

(with 6 units of .5 GW each displaced) yields the following variances: 

number of units 

18 

14 

42 

units of size (GW) 

1.0 

.5 

.2 

FOR 

.07 

.05 

.03 

2 
Os 

1.172 

.166 

.050 

1.388 

Finally, the sample standard deviations calculated in Part 1 above allows 

us to estimate power variances for the individual sites as follows: 

Santa Maria 30 (8.8)2/1000 

2.323 

Inyokern = 30 (7.7)2/1000 

= 1. 778. 

The difference between Santa Maria and Inyokern can now be calculated. 
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Santa Maria 

bha§ = 2.212(1.388 + 2.323) 

= 5.99 

Inyokern 

b/20f = 2.212(1.388 + 1. 788) 

= 5.54 

f'.. = 5.99-5.54 

= .45 or 450 MW. 

This is close to the simulation result of f'..= 400 MW. 

Next we scale the Inyokern standard deviation down using equation (3) 

of section 2.2. Here we are really looking for the correlation coefficient 

p. It is easiest to assume a value, then check if that reduces back-up by 

the required amount, namely 160 MW (= 550-390). We show that p = .8 does 

this. From eq. (3) section 2.2, 

a /0' A Inyokern 
11 + .8 

2 

= .949, 

where a Ais the standard deviation of the array consisting 

of Inyokern_and Santa Maria. 

Since 0'1 k = 7.7, aA = 7.3; therefore the array variance nyo ern 30/ (7.3) 2/ 1000 

= 1.60. 

Finally, we compute bha~ for the array configuration. This is just 

bl2at = 2.2/2 (1. 60 + 1. 39) 

= 5.38 

5.54 5.38 

= .16 or 160 MW as required. 

This calculation neglects several factors that could be important. The 

back-up capacity itself contributes variance. This has been neglected on 

the grounds that it is small (back-up is typically peaking units which come 

in small sizes and are reliable). More significantly perhaps we have not 

used data on mean outputs from sites. The data in Table 2-1 is averaged 

over all times of the day. For LOLP purposes we want mean power co-incident 
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with peak. A priori the Table 2-1 data says nothing about this. By 

assuming that all dispersed benefits is due to changes in array v.ariance 

we are really estimating a lower bound for p, the correlation coefficient. 

If dispersal also increased mean array power co-incident with the peak, 

then our estimate of p = 0.8 would have to be higher. For the purpose 

of our argument a lower bound on p is sufficient. 
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Appendix 5 

Long-Range Electric Utility Peak Load Estimation 

In this appendix we discuss procedures for estimating peak loads 

of electric utilities. The effort is simplified for California utili­

ties because the California Energy Commission has done work in this 

area. (19) Their forecast is based on regressions which separate peak 

demand into weather-sensitive and non-weather-sensitive components. 

The form of the relations is as follows (we consider the case of the 

Pacific Gas and Electric Company): 

PEAK 

NWD 

TOTTAU 

8 

J 

TEMP 

AC 

NWD + 8TOTTAU 

non-weather-sensitive demand 
3 

E [(TEMP
J

> 75°) x AC
j

] 
J=l 

weather-sensitive coefficient 

each weather station 

dry-bulb, maximum temperature 

number of air conditioning units 

(1) 

A separate estimate is made for NWD which correlates this part of the 

load with projected energy (kWh) consumption. The results of the ERCDC 

regression for this part of the PG&Epeak are: 

NWD 1120 + (.1316) EST (2) 

EST total sales in millions of kWh 

The ERCDC estimates of the PG&E peak are developed for the period 

1975-1995. We tabulate the results below. 

NWD 
Weather- Total 

Year (MW) 
Sensitive Demand 

Demand (WSD) (MW) 

1975 9,245 3615 MW 12,860 

1980 11,111 4215 MW 15,326 

1985 12,868 4853 MW 17,721 

1990 14,699 5353 MW 20,052 

1995 16,657 5774 MW 22,431 
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To examine a 2025 PG&E area peak we will use (1) and (2) with 

suitable modifications and the scenario developed by the Distributed 

Energy Systems Study Group~5) The data required to make this calculation 

are the number of ' air conditioning units (AC), millions of kilowatt-hours 

used (EST) and a projected value for G, the weather-sensitive coefficient. 

For EST we use the values given in (5) allocated from a California basis 

down to the PG&E area. 

109 kWh for California. 

We use the scenario from (5) which assumes 410 X 

This corresponds to an average annual growth rate 

of 2.0% from 1975. PG&E constitutes about 45% of the California total 

electricity consumption today. Projecting this fraction to 2025, we 

allocate 184 X 109 kWh to PG&E for this scenario. Using eq. (2), this 

yields 2025 NWD of 25,340 MW. 

A little more ingenuity is required to estimate the number of air 

conditioners in 2025. Using ERCDC projections out to 1995, we can fit 

them to a logistic curve and extend out to 2025. Recall the equations 

of a logistic growth curve. 

dx _ x 
dt - rx(l - K) 

where 

x the growing variable 

r = rate of growth 

K = resource or saturation limit. 

The solution to (1) is given by 

x(t) = __ K_-:-
1 _ ce-rt , c = 

K-x 
o 

x 
o 

(3) 

(4) 

For our purposes we interpret x as the saturation of air conditioners, 

that is, the ratio of air conditioners to households. Therefore, K = .95 

in equations (3) and (4) is a reasonable limit based on (4). We take the 

following data from the PG&E CFM submissions~2l) This shows a 1977 satura­

tion of 27.7% and a projected 1998 saturation of 32.5%. We let x = set ) 
o 

.277 to determine c in equation (4). This gives c = 2.43. Then the 2025 
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saturation, which is 48 years after 1977, can be found once we know r, 

the growth rate, just by solving for x(48). We determine r by calculating 

the compound growth rate between 1977 and 1998; we get r = 0.76%. The 

unit growth rate is faster than this. So 

2025 saturation = x(48) 

= .95/1 + 2.43e-· 367 

= .95/2.68 = .354. 

From (3) we have an estimate of total California households in 2025, 

namely, 16 million. This estimate is based on the same population pro­

jections as the ERCDC residential forecasting model. Allocating 45% of 

these households to PG&E area we get 7.2 million. Multiplying by the 

estimated .354 saturation gives 2,548,000 air conditioning units in 2025. 

It remains to make adjustments for temperature diversity and increased 

efficiency of air-conditioners. In eq. (1) the variable TOTTAU is summed 

over three weather stations. For practical purposes the average maximum 

temperature is 1050 F. We can use a diversity factor to avoid disaggre­

gating air conditioners by weather station. Therefore the ratio of WSD 

in 1995 to W$D in 1975 should be equal to the ratio of the number of 1995 

air conditioners to the number of 1975 air conditioners multiplied by a 

diversity factor. The ratio of AC units is 1380/735 = 1.88, whereas the 

ratio of WSD 95 to WSD
75 

rs-57? 4 /3615 ;'. i .60 . Therefore the divers hy 

factor is 1.60/1.88 = .85. 

The fi:i:lal adjustment is for improved end-use efficiency. We measure 

this by EER. 

at 6.5~18) 
The average EER for an air conditioner has been estimated 

An energy intensity (the reciprocal of efficiency) of .55 for 

new air conditioners in 2000 is estimated in (5). This would correspond 

to an average EER of 11.8. This value is considerably higher than the mini­

mum EER of 8.7 that will soon be required in California. Since air conditioners 

have a lifetime much less than 25 years, we can use the energy intensity 

from (5) to correct the weather-sensitive coefficient 8 in eq. (1). From 

(19) the value of 8 = .2175 GW. We calculate WSD as follows: 
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o (efficiency factor) (2025 # of air conditioners) 

(30) (diversity factor) 

.2175(.55) (2.55 X 10
6

) (30) (.85) 

= 7.78 GW 

Therefore, peak = 25.34 + 7.78 = 33.12 GW. 

Because it is difficult to make intuitive sense of any long-range 

projection, it is useful to translate these calculations into a more 

common index of load shape, the load factor. Load factor is defined as 

the ratio of average to peak demand. Our estimate of annual electric 

energy is 184 X 109 kWh or 21.00 GW on the average (= 184 X 109 kWh/8760 

hrs.). For a peak demand of 33.12 GW, the load factor is 63.4%. For 

comparison, the 1975 PG&E load factor was 54% (62.6 X 109 kWh and peak 

13.3 GW). It is plausible to find load factor increasing in this scenario 

because base10ad and off-peak uses grow faster in the scenarios from (5) 

than residential and commercial demands. 
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Appendix 4 

Derivatives of LOLP 

Equations (4)-(6), the normal model of LOLP, can be differentiated 

explicitly to examine the sensitivity of risk to the various parameters, 

The partial derivative of LOLP with respect to some variable x can be 

written as follows: 

aLOLP a 
(~ erfc (b)) = ax ax 

~ (~ erfc (b)) ab 
= 

db 2 ax 
-b ab -e 

= 
lIT ax 

We are interested in the cases where the variable x is the load Wand the 

variance 02, We compute ab/aW and ab/a02 below: 

= -1/120, and 

ab a (s - W) aa:z= -2 
ao f20T 

-b/20 2 = 
The resulting partials are: 

aLOLP 
_b2 

e 
aw om 

and 

aLOLP be 
_b2 

ao 2 i2iJ1 

I.'~ 
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