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The possibility of radiation-induced degassing of cryopumps is important in 

connection with fusion reactors utilizing neutral-beam injectors. Calculations 1 

in the case of TFTR, based on 20 MW of D-T fusion power and thermally isolated , -
cryopanels made of copper, considered 2 important cases: No streaming radiation 

visible to the cryopane1, giving a (combined neutron and gamma) heat load of 

4.6 x 10-4 W/cm3 in the panel; and streaming radiation visible to the cryopanel 

at a further distance from the torus, giving a heat load of 1.7 x 10-3 W/cm3 

in the panel. In the former case, the transient temperature rise was estimated 

as 1 K/s, and in the latter case, as 7.3 K/s. The latter-case result predicts 

that the portion of the cryopump affected would be degassed during a 0.5-s pulse, 

since the va_por pressure of deuterium at 8 K is 8 x 10-4 Torr. More recent cal

culations2 employing continuously-cooled stainless-steel cryopanels of the type 

actually used in TFTR, and assuming a heat load of 1.34 x 10-2 W/cm3 , predicted 

that the temperature rise in the panel would only be 0.029 K during a 0.5-second 

pulse. Neither of the calculations at tempted to evaluate the possible effects 

of individual neutron or gamma-ray interactions. 

A. small test cryopump3,4 has been constructed at LLL. One purpose to which 

\oj the test cryopump has been put is to investigate a possible radiation-induced 

degassing effect. No satisfactory simulator exists for the radiation pulse char-

ac teristic of a magnetic-confinement fusion reactor, and so a conveniently available 

pulsed source of neutrons and gamma rays has been used for the initial study. 

This source is the TRIGA Mark III Reactor at the University of California, Berkeley. 
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A dry exposure room, measuring about 3.5 m on a side, allows the irradiation 

of large objects either in a pulsed or a continuous mode. Figure 1 shows the 

cryopump installed in the Exposure Room of the Reactor. 

The pulses produced by the reactor had a half width of about 12 mS. The 

maximum fast-neutron fluence on the cryopump was about 2 x lOll cm-2 , the thermal

neutron fluence 3 x 109 cm:-2 , and the gamma-ray dose 6 x 103 rad. The tests 

were usually performed by supplying 2 TRIGA pulses to the cyropump. The first 

, 
pulse was fired with the cryopump unloaded with deuterium. Then, the cryopump 

was filled with the administrative limit4 of deuterium. With the loading completed, 

the second pulse was then fired. The cryopump was instrumented with both a 

nude and a glass-enclosed vacuum gauge. Each was powered from a special power 

supply capable of alms response time. Additional instrumentation consisted of 

temperature measuring devices on the liquid-ni trogen-cooled and liquid-helium-

cooled surfaces of the cryopump. 

The pressure-gauge response of the system to the TRIGA pulses is shown in Fig. 2. 

With an unloaded cryopump, an apparent pressure pulse is produced which is only 

slightly longer than the reactor pulse itself. In separate experiments, it was 

found that a similarly appearing pulse is produced by a completely sealed~off 

vacuum gauge. However, as can be seen from the Figure, with a deuterium-loaded 

cryopump, a very much larger pressure pulse was produced, which had a long exponential 

tail, characteristic of a re-pumpdown of the system. The pumping speed, as computed 

from the exponential, is about half that observed previously when the cryopump was 

subjected to D2-gas pulses, in the absense of radiation. Additional experiments 

were run wi th the core of the reac tor ret rac ted somewhat into the pool, in order 

to change the mix of gamma rays, thermal neutrons, and fast neutrons so as to pre-

ferentially depress the lat ter. Progressive retraction of the core caused the 

·degassing effect to be reduced, and finally to disappear entirely. Monitoring 
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of the neutron and gamma fluences was accomplished by exposing high-purity foils 

and TLDs, respectively. Data on neutron and gamma fluences for the various core 

positions will be presented, as well as an explanation of the possible outgassing 

mechanism. 
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CAPTIONS 

Figure 1: Cryopump in Reactor Exposure Room 

Figure 2: Cryopump Response to a Reactor Pulse 

This work was done with support from the U. S. Department of Energy. 
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