
'\"

1\1

0 d tJ ;] i
;.:; ·--ot

;) ~. I ,,) ,:)

LBL-7978
UC-32 e. I

A COMPARISON OF BKY-FTN4 AND VAX-FORTRAN IV-PLUS

Christopher Horne and Barrie Pardoe r-.:ECEIVED
U\WRENCE

\sER!(fil£'f t.Af3QRATORY

August 1978 1978

-.'

UBRARY AND
~O()GUME.NTS SECTION

~

Prepared for the U. S. Department of Energy
under Contract W-7405-ENG-48

For Reference

Not to be taken from this room

•....

--"......,....,."""'=..,......."....................--- I::EGAI::--NeTleE----------...-----~------­

This report was prepared as an account of work sponsored by the
United States .Government. Neither the United States nor the Depart.:.
ment of Energy, nor any of their employees, nor any of their con-
tractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness or usefulness of any information, appa-
ratus, product or process disclosed, or represents that its use would
nUl . i 18t:: fJnvatelyowneangms:

Printed in the United States of America
Available from

National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield , VA 22161
Price: Printed Copy, $ 5.25 Domestic; $10.50 Foreign

Microfiche, $ 3.00 Domestic; $ 4.50 Foreign

'.")l ,)

A COMPARISON OF BKY-FTN4 AND VAX-FORTRAN IV-PLUS

Christopher Horne
Summer Student

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

University of Arizona
Tucson, Arizona

Barrie Pardoe
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

August 1978

Work supported by the Department of Energy

LBL-7978

(.)

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Section 8

Section 9

Section 10

',)

CONTENTS

Introduction

Notation for Description of FTN4

Description of FTN4

Notation for Description of FORTRAN IV-Plus

Description of FORTRAN IV-Plus

Comparison of Basic FORTRAN Features

Semantic Differences

Library Routines

Summary of VAX/VMS Operating System Commands

Transferring Programs via Magnetic Tape

1

3

5

12

14

21

26

39

45

49

I

1.0 INTRODUCTION

This note serves as a guide for those who intend to transfer
(port) FORTRAN IV programs between the CDC machines at LBL and
the VAX. For those porting existing code, this gUide should
prove helpful by pointing out language constructs which will
cause trouble. It should also aid in the development of new
software intended to be run on eit4er computer by alerting the
programmer to incompatible language constructs, and presenting
him with a "minimal language" which requires only minor altera­
tion to run on either machine.

In particular, this note compares the FORTRAN IV dialect
FTN4 as implemented On the BKY system at LBL, and FORTRAN IV-PLUS
on the VAX. FTN4 and FORTRAN IV-PLUS are dialects of ANSI FOR­
TRAN (X3. 9-66) ,both of which offer features far in excess of the
standard -- making FORTRAN a more pleasant language to program
in. Although some of these extended features are compatible,
others cause considerable problems in porting programs from one
machine to' the other. A trade-off exists: using incompatible
language constructs reduces the initial. programming time (and
generaly the execution time) but increases the time and effort
required to port programs.

Selecting a language construct from one dialect and compar­
ing it with its counterpart in the other dialect yields three
possible results.

o The construct is available in one dialect
but not the other.

o The construct is present in both dialects
but has d~fferent interpretations.

o The construct is available in both dialects
with the same interpretation.

In the latter case the construct is said to be compatible and is
thus a member of the minimal language.

Sections 3 and 5 describe, ·in the style of a foreign
language dictionary, the dialects FTN4 and FORTRAN IV-Plus res­
pectively, with sections 2 and 4 serving as an introduction to
notation. The non-shaded areas in these sections describe the
minimal language; sections 2 and 3 are for those familar with
FTN4 and sections 4 and 5 are for the FORTRAN IV-Plus user. In
section 3 and 5 FORTRAN statements are categorized. Examples and
references are given. The reference number is the page in the
appropriate FORTRAN dialect reference manual:

o ~KY-FORTRAN Extended Version 4 Reference manual
(LBL-2 11/76).

2

a VAX-II FORTRAN IV-Plus Language Reference Manual
(Base Level 5 Release Note).

Section 6 is a table comparing some basic features of the
languages. Section 7 concentrates on more subtle semantic
difference$ between the dialects while again pointing out some
syntatic differences. Section 8 is a comparison of the libraries
provided by the two dialects. A s~mary of the VAX-VMS operating
system control language is presented in section 9. Section 10
explains a procedure for transferring programs via magnetic tape
between the BKY system and the VAX.

The numbering system used in this note allows quick access
to related information. For example, section 3.2.3 describes the
syntax of FTN4's DO loop, section 5.~ describeS1the syntax of
FORTRAN IV-PIus's DO loop, and section 7.2.3 contains a discus­
sion of the different interpretations of DO loop constructs with­
in the two dialects.

The information presented in this note was extracted from
the manuals cited above with short test programs being construct­
ed for clarification. The papers mentioned in the bibliography
provided direction by indicating where to look in the dialects
for trouble spots.

o 0
BKY-FTN4

2.0 Description of FTN4

2.1 Notation

LJ
3

q
yJ'

BKY-FTN4

A Meta-symbol identifies a syntatic category without
enumerate all possible members of that category. The
Meta-symbols are used in the description of FTN4 statements.

having to
following

Symbol

v

vn

iv

Iv

ipvc

exp

expi

ariexp

mskexp

relexp

logexp

m

name

Interpretation

a variable, array element, or array name.

a variable or array name.

an integer variable.

a logical variable.

a positive integer variable or constant

an expression. NOTE -- a constant,
variable, array name, function reference or
an array element constitute the trivial cases of
of an expression.

an expression which evaluates to an
integer. If it does not evaluate to
an integer~ its value is truncated and
converted to an integer.

arithmatic expression. Operators +,-,*,j,**.

relational expression. Operators .EQ.,.NE.,
•GT • , •GE. , •LT., and •LE. •

logical expression. Operators .AND.,.OR.,
.NOT.,.TRUE., and •FALSE.

an integer variable, or an integer or
octal constant.

a symbolic name of length 7 or less,
beginning with a letter, containing only
alphanumeric characters.

BKY-FTN4

sn

4

a statement label.

BKY-FTN4

sne

estat

fn

type

u

list

the label of an executable statement. This
excludes FORMAT statement labels.

any executable statement except a DO
loop header or a logical IF statement.

statement label ofa format statement.

INTEGER, REAL, LOGICAL, COMPLEX,
DOUBLE PRECISION ,j!~~~~I;!!i!liTIi!

input/output unit: 1 or 2 digit integer
constant, integer variable with value in
range [1-99],

A series or variable names, array names,
array elements, or implied do lists,
separated by commas.

Upper case words, as well as punctuation marks, are written as shown.
Meta-symbols are written in lower case. An ellipsis (•••) indicates that
the preceding item may be repeated •

.Reference numbers given in the right margin are to the
BKY-FORTRAN Extended Version 4 Reference Manual (LBL-2 11/76).

D
BKY-FTN4

3.1 ASSIGNMENT STATEMENTS

v = ariexp

lv = logexp or relexp

v = mskexp

ASSIGN sne TO iv

5
BKY-FTN4

i-4-1

i-4-1

i;....4-1

i-5....4

3.2 CONTROL STATEMENTS

3.2.1 GOTO statements

GOTO sne i-5-2

GOTO (sne , sne) , expi i-5-2

GOTO (sne , sne) expi i-5-2

GOTO iv , (sne ... sne) i-5-5

GOTO iv (sne , sne) i-5 5

3.2.2 IF statements

IF (ariexp or mskexp) sne ,sne ,sne i-5-6

IF (logexp or relexp) estat i-5-7

3.2.3 DO loops

DO sne iv ipvc ipvc ipvc i-5-8

DO sne iv ipvc ipvc i-5-8

3.2.4 CONTINUE statements

CONTINUE i-5-14

3.2.5 Subroutine CALL statements

CALL name i-7-14

CALL name (exp , , exp) i-7-14

BKY-FTN4 6 BKY-FTN4

3.2.6 RETURN statements

RETURN i-5-15

3.2.7 PAUSE statements

PAUSE

PAUSE i

PAUSE *text*

3.2.8 STOP statements

STOP

STOP i

STOP *text*

3.3 TYPE DECLARATIONS

INTEGER name, •• " name

i-5-14

i-5-14

i-5-15

i-5-15

i-5-15

i-6-2

REAL name,

COMPLEX name ,

, name

, name

i-6-2

i-6-2

DOUBLE PRECISION name , , name i-6-3

LOGICAL name , , name i-6-3

IMPLICIT type (ac) , type (ac) i-6-3

BKY-FTN4

(J U Uj

7 BKY-FTN4

ac is a list of single alphabetic characters
or a (range which is represented by the
first and last characters separated by a
minus sign) •

3.4 EXTERNAL DECLARATIONS

EXTERNAL name ,

3.5 STORAGE ALLOCATION

, name i-6-16

3.5.1 ARRAY storage declaration

DIMENSION name (d) , , name (d) i-6-5

type name (d) , ••• , name (d) i-6-1

d array declarator. 1-3 integer constants
separated by commas; or if name is a
dummy argument in a subprogram, 1-3
integer variables or integer constants.

3.5.2 COMMON statements

COMt-WN vn , , vn i-6-8

COMt-l0N Ibnamel vn , ••• ,vn Ibn~mel vn , ••• , vn

COMMON II vn , ••• , vn

i-6-8

..... i-6...8--

bname
II

symbolic name or a 1-7 digit number
blank common

3.5.3 DATA statements

DATA vlist Idlist I , , vlist Idlist I i-6-10

vlist

dlist

list of
variables,
by commas.
one or more of the following forms
separated by commas

constant

f*constant

BKY-FTN4 8 BKY-FTN4

where f is a repetition factor.

3.5.4 EQUIVALANCE statements

EQUIVALANCE (v, ••• , v) , , (v , v) i-6-10

3.6 PROGRAM MODULES

3.6.1 MAIN programs

PROGRAM name

3.6.2 FUNCTION subprograms

FUNCTION name (vn

type FUNCTION name (vn

3.6.3 SUBROUTINE subprograms

,vn)

vn)

i-7-1

i-7-6

i-7-6

SUBROUTINEname (VB,

SUBROUTINE name

.. _.. vn) i u712

3.6.4 BLOCK DATA subprograms

BLOCK DATA i-6-25

BLOCK DATA name i-6-25

3.6.5 ENTRY point

ENTRY name i-7-20

3.7 STATEMENT FUNCTIONS

name(vn , , vn) = exp i-7-9

o
BKY-FTN4

3.8 INPUT/OUTPUT STATEMENTS

3.8.1 PRINT statements

PRINT fn, lis t

PRINT fn

PRINT * , list

3.8.2 PUNCH statements

3.8.3 WRITE statements

WRITE u, fn) list

WRITE (u, fn)

WRITE (u) list

WRITE (u)

WRITE * , list

3.8.4 READ statements

READ (u, fn)

READ (u, fn) list

9 BKY-FTN4

i-9-3

i-9-4

i-9-5

i-9-7

BKY-FTN4

READ fn, list

READ (u) list

READ (u)

READ (u, *) list

READ * , list

3.8.5 BUFFERING

10 BKY-FTN4

3.8.6 NAMELIST statements

3.8.7 ENCODE/DECODE statements

ENCODE (m, fn, v) list

DECODE (m, fn, v) list

3.8.8 FILE MANIPULATION

REWIND u

BACKSPACE u

ENDFILE u

3.9 FORMAT STATEMENTS

i-9-22

i-9-23

----- .. -i-9-12-­

i-9-12

i-9-12

sn FORMAT (fs ,

Field

Iw

,fs)

Translation

Integer

Ow Octal

BKY-FTN4

(] D

Zw

Fw.d

Ew.d

.,
~~} ,.-J - .,:

11 BKY-FTN4

Hexadecimal

Single precision, no exponer

Single precision, Exponent

Dw.d

Gw.d

Lw

Aw

Double precision, with expor

Single precision general

Logical

Alphanumeric (left justif.•)

nH

nX

Tn

nP

Hollerith

Space over n columns

Tab over to column n

Scale factor { for F,G,D,E)

/ Separator, skip a line-

Separator

VAX-FORTRAN IV-Plus 12 VAX-FORTRAN IV-Plus

4.0 Description ~ FORTRAN IV-Plus

4.1 Notation

A Meta-symbol identifies a syntatic category without having to
enumerate all possible members of that category. The following
Meta-symbols are used in the description of FORTRAN IV-Plus statements.

Symbol

v

vn

iv

Iv

Interpretation

a variable, array element, or array name.

a variable or array name.

an integer variable.

a logical variable.

exp

expi

ariexp

relexp

logexp

an expression. NOTE -- a constant,
variable, array name, function reference or
an array element constitute the trivial cases
of an expression.

an expression which evaluates to an
integer. If it doesuuot evaluateuto
an integer, i~s value is truncated and
converted to an integer.

arithmetic expression. Operators +,-,*,/,**.

relational expression. Operators .EQ.,.NE.,
.GT., .GE., .LT., and .LE••

logical expression. Operators .AND.,.OR.,
.NOT.,.EQV.,.XOR.,.TRUE., and •FALSE.

m

name

block

sn

an integer variable, or an integer or
octal constant.

a symbolic name of length
beginning with a letter,
alphanumeric characters,

a self contained group of executable
s!:atements.

a statement label.

VAX-FORTRAN IV-Plus

~
lJ

13
'L~

VAX-FORTRAN IV-Plus

sne

estat

fn

type

u

list

the label of an executable statement. This
excludes FORMAT statement labels.

any executable statement except a DO loop
header or a logical IF statement.

statement label of a format statement.

INTEGER, REAL, COMPLEX, DOUBLE PRECISION,
LOGICAL

input/output unit: 1 or 2 digit integer
constant, integer variable with value in
range [1-99].

A series or variable names, array names,
array elements, or implied do lists,
separated by commas.

Upper case words, as well as punctuation marks, are written as shown.
Meta-symbols are written in lower case. An ellipsis (•••) indicates that
the preceding item may be repeated.

Reference numbers in the right margin refer to the VAX-II FORTRAN
IV-Plus Language Reference Manual, Base level 5 release note.

VAX-FOR4+

5.1 ASSIGNMENT STATEMENTS

v = ariexp

Iv = logexp or relexp

14 VAX-FOR4+

ASSIGN sne TO iv

, sne)

, sne)

5.2 CONTROL STATEMENTS

5.2.1 GOTO statements

GOTO sne

GOTO (sne

GOTO (sne

GOTO iv , (sne ,

GOTO iv (sne ,

, sne

,sne)

...

, expi

expi

4-1-1

4-1-1

4-1-2

4-1-3

4-1-3

5.2.2 IF statements

IF (ar~expor mskexp) . sne ,sne ,sneu

IF (logexp or relexp') estat

4-2-1

4-2-2

DO sne v = ariexp

DO sne v = ariexp

ariexp , ariexp

ariexp

4-3

4-3

'1L
VAX-FOR4+

,,j J ',,1
15

VAX-l!'OR4+

5.2.4 CONTINUE statements

CONTINUE

5.2.5 Subroutine CALL statements

CALL name

4-4

4-5

CALL name (exp ,

5~2.6 RETURN statements

RETURN

5.2.7 PAUSE statements

PAUSE

PAUSE i

PAUSE 'text'

5.2.8 STOP statements

STOP

STOP i

STOP 'text'

5.3 TYPE DECLARATIONS

INTEGER name ,

, exp)

, name

4-5

4-7

4-7

4-8

4-8

4-8

8-2

REAL name, ... , name 8-2

COMPLEX name , , name 8-2

DOUBLE PRECISION name , , name 8-2

VAX-FOR4+

LOGICAL name ,

16

, name

VAX-FOR4+

8-2

IMPLICIT type (ac) , type (ac) 8.1

ac is a list of single alphabetic characters
or a range (which is represented by the
first and last characters separated by a
minus sign)

5.4 EXTERNAL DECLARATIONS

EXTERNAL name , , name 8-6

5.5 STORAGE ALLOCATION

5.5.1 ARRAY storage declaration

.DIMENSION name .. (d-)-,----...-,-name--(d) ··----8-3

type name (d) , e •• , name (d) 8-2

d array declarator. 1-7 integer constants
separated by commas; or if name is a
dummy argument in a subprogram, 1-7
integer variables or integer constants.

5.5.2 COMMON statements

COMMON vn , vn 8-4

COMMON Inamel vn , ••• ,vn Inamel vn "'" vn 8-4

COMMON II vn, ••• , vn 8-4

o 0
VAX-FOR4+

II

IJ ., 'I
17

blank common

VAX-FOR4+

5.5.3 DATA statements

DATA v1ist Id1ist I , , vlist Idlist I 8-7

v1ist

dlist

list of array names, array elements,
or variables, separated by commas.
one or more of the following forms
separated by commas

constant
f*constant

where f is a repetition factor.

5.5.4 EQUIVALENCE statements

EQUIVALENCE (v , ... , v) ,

5.6 PROGRAM MODULES

5.6.1 MAIN programs

PROGRAH name

5.6.2 FUNCTION subprograms

FUNCTION n!:Ulle (vn , Vn)

(v , v) 8-5

8-9

9-2-2

type FUNCTION name (vn ,vn) 9-2-2

5.6.3 SUBROUTINE sUbprograms

SUBROUTINE name (vn ,

SUBROUTINE name

5.6.4 BLOCK DATA sUbprograms

BLOCK DATA

BLOCK DATA name

5.6.5 ENTRY point

, vn) 9-2-3

9-2-3

9-2-5

9-2-5

VAX-FOR4+

ENTRY name

18 VAX-FOR4+

9-2-4

5.7 STATEMENT FUNCTIONS

name(vn , , vn) exp 9-2-1

5.8 INPUT/OUTPUT STATEMENTS

5.8.1 PRINT statem.ents

PRINT fn, list

PRINT fn

PRINT *, list

5.8.2 PUNCH statements not available ..Q.g VAX.

5.8.3 WRITE statements

5-4-2

5-4-2

5-4-2

WRITE (u, fn) list 5-4-2

. WRITE (u, fn) 5-4-2

WRITE (u) list 5-6-2
-------- - -------- - ------- - - --

WRITE (u) 5-6-2

WRITE (u, *) list 5-5-2

5.8.4 READ statements

READ (u, fn)

READ (u, fn) list

READ fn, list

READ (u) list

5-4-1

5-4-1

5-4-1

5-6-1

o
VAX-FOR4+

READ (u)

READ (u, *) list

READ *, list

U
19

VAX-FOR4+

5-6-1

5-5-1

5-5-1

READ (u' expi , fn) list

5.8.5 BUFFERING =: feature E£! available.

5.8.6 NAMELIST statements == not available

5.8.7 ENCODE/DECODE statements

ENCODE (m, fn, v) list

DECODE (m, fn, v) list

5.8.8 FILE MANIPULATION

REWIND u

BACKSPACE u

ENDFILE u

5-8-1

5-9

5-9

6-3

6-4

6-6

5.9 FORMAT STATEMENTS

sn FORMAT (fs ,

Iw

Ow

Zw

Fw.d

Ow.d

Gw.d

,fs)

Integer

Octal

Hexadecimal

Single precision floating point

Single precision floating point with
exponent
Double precision with exponent

General floating point

VAX-FOR4+ 20 VAX-FOR4+

Lw Logical

Aw Alphanumeric

nH Hollerith

nX Space over n collumns

Tn Tab over to collumn n

nP Scale factor

/ Separator, skip line

Separator

-- ----------- ----------------- - -- ----------------- --------------------- -- - -- - --- -------------

iJ
21

6.0 BASIC FEATURES

The following table compares some of the basic characteristics
of FTN4 and VAX FORTRAN 4-Plus.

CATEGORY

CHARACTER SETS

FTN4 FORTRAN IV-Plus Compatible

alphabetic
numeric
special

collating seq

STATEMENT FIELDS

A-Z
0-9
blank,=+-*/
().$#
display code

A-Z,a-z
0-9
blank,=+-*/
(). '''$_:<>%
ASCII

A Z
0-9
blank,=+~*/

(). $

Comments
delimiters C,*,$ in colIC or c in colIC in colI

! anywhere

Labels
columns
characters
leading zeros

. '-.LUll"

column
any character but
max number
comments in between
blank cards

in between

Statement Field
columns

Max Length of Input

Multiple Statements
per line

VARIABLE NAMES

leading character
remaining chars
length

1-5
numeric
ignored

6
0, blank
19
allowed

not allowed

7-72

80

allowed

alphabetic
alphanumeric
7

1-5
numeric
ignored

6
0, blank
variable
allowed

not allowed

7-72

88

not allowed

alphabetic
alphanumeric; $_
no limit,
unique to 15

1-5
numeric
ignored

6
0, blank
19
allowed

not allowed

7-72

80

not allowed

alphabetic
alphanumeric
7

...

22

CATEGORY FTN4 FORTRAN IV-Plus Compatible

ARRAYS

Subscripts
max number of
lower bounds
negative indexing

3
not allowed
not allowed

7
allowed
allowed

3
not allowed
not allowed

Elements
omission of

subscripts allowed not allowed
except in
EQUIVALENCE

not allowed

Max array size 2**17-1 no realistic
limit

2**17-1

Storage sequence first fastest
(by columns)

first fastest
(by columns)

first fastest
(by columns)

CONSTANTS

Integer
range
representation

+.- 60 bit l's camp 32 bit 2's camp ---

Floating Point
range
representation

single precision
mantisa

exponent

If decimal digit
sign bit

48 bit l' scamp

~1 bit excess
2000(8)
14
bit 59

hidden normal
24 bit 2' scamp
8 bit excess
200(8)
7
bit 31

96 bit l' scamp 56 bit 2' scamp
11 bits 8 bits

digit 29 16

double preC1S1on
mantisa
exponent
If decimal

Complex same as F.P. same as F.P.

Hollerith
forms:justify/fill

char/word
bits/char

nH ••• :lef t/l'S
nL ••• :left/O
nR ••• :right/O
'/: ••• .,:left/l'S
10
6

nH ••• :lef t/l'S

Radix-50
, ••• ' :left)l'S
4
8

nR ••• :left/l'S

4

o u ,
.,:1 '. ,J iJ 'l ,~ I:.J

23

CATEGORY FTN4 FORTRAN IV-Plus Compatible

CONSTANTS(cont.)
Logical

forms •TRUE., •FALSE., •TRUE. ,. FALSE. •TRUE. ,. FALSE •
, •T.,.F.

representaion
true -1 (777 ••• 776) -1 (377••• 777) --
false +0 (000 ••• 000) a (000 ••• 000) ---

test
true bit 59 :;:: 1 bit a :=; 1
false bit 59 :;:: 0 bit a :;:: a

Character
data type no yes no

Octal 11••• lIB '11••• 11'0 ---
"11••• 11

Hex not allowed 'll••• 11'X ---
MISC.

Max embedded DO 50 20 20
Max arguments to

subroutine 63 60 60
Max number of COMMON. 1 I ,... r--e'" 1 ; ",10; ,. 12')... L..J

limit
Max literal

length 70 255 ... 70

Max FOro1AT smatement
paren depth 20 8 8

Max number of files
open 50 no realistic 50

limit

24

CHARACTER CODES

,..h"''''''~~+-n 1>. n char A D char A D I char A D

NUL 0 SF' 40 5~) @ 100 74 ,
t40

SHO 1 ! 4:1. 66 A 101 1 a :1.41
STX 2 • 42 64 B 102 2 b 142 ,

ETX 3 =U: 4:~ 60 C 103 3 c 143
EDT 4 !Ii 44 53 D 104 4 d 144
ENQ 5 I. 4"' 63 E 105 5 ~'-! :1.45~,

Act, 6 &. 46 70 F 106 6 f l46
BEL 7 I 47 70 G 107 7 S 147
BS 10 (50 51 H 110 10 h 1~jO

HT 11) 51 52 r lU. 11 i l~jl

LF 12 * 52 47 J :1.12 12 ,j 152
VT 13 + 53 45 1\ 113 13 k 153
FF 14 , :;'j4 56 L 114 14 1 154
CR 15 - 55 46 11 115 15 ITI 155
SO 16 • 56 57 N 1:1.6 16 n 1~j6

SI 17 / 57 50 0 117 17 (J l~i7

DLE 20 0 60 33 F' 120 20 p 160
DCl 21 1 61 34 Q 121 21 G 161
[IC2 22 2 62 35 Fo: 122 '")'") T' 11.>2#!- ...

DC3 '")- 3 63' 36 S :I. 2:~ 23 C' 163..:..~ -,
DC4 24 4 64 37 T 124 24 t 164
Nt-il\ 25 5 65 40 U 125 25 IJ 165
qVN 26 6 66 41 V 126 26 y 166
ETB 27 7 67 "l2 \jJ T.:7 .:!.7 Ij.J ·-.!;(rl

C(.IN 30 8 70 43 X 130 30 ;< l70
-EOI1 . 3L_

- ---- --- ------ 9 71 44 Y 1:31 31 ~ 17l
.- - ----- - - - -

132-
-- --------SlJB 32 + 72 0 7 ---~2- -1.72--- --------- _.-

+ ... ~.:

ESC 33 ; 73 77 [133 61. { 173
FS 34 <: 74 72 \ 1.34 75 I 174I

GS 35 = 75 54 :I 135 62 }- 1-'~/-J

Fo'C' 36). 76 73 '"' :1.36 76 N 176,~)

US 37 l' 77 71 -.. 137 65 DEL. 177

A;:::ASCII (octal) D=DISPLAY CODE (octal)

,)

Internal representation of numbers

,:j

25
,j

{ S=sign bit, exp=exponent, frac n=n'th part of fraction}

CDC 60-bit floating point

59 58

! !

s exp

48 47

fraction

o

VAX 32-bit floating point { REAL*4 }
31 16 14 7 6 0

! !

frac2 S exp frac1

VAX Double precision floating point { REAL*8 }
63 4847 3231 16

! !

14 7 6 o

frac4 frac3 frac2 s exp fracl

26

7.0 Section VII:

This section describes differences between the two dialects FORTRAN
IV-Plus and FTN4 not captured in previous sections. The order in which
material is presented in this section parallels that of section 3 and 5.
While those sections emphasized syntatic differences, this focuses on
differences in interpretation and semantic differences.

For portable programs, the following order of statements should be
observed. Horizontal lines separate statement classes which may not be
intermixed. Vertical sections may occur anywhere indicated.

PROGRAM,FUNCTION,SUBROUTINE, or BLOCK DATA IC
o
M
M
E
N
T
S

F
o
R
M
A
T

IMPLICIT

type, DnlENSIO~, COMMON, EQUIVALENCE,
EXTERNAL

D statement function definitions
A
T ENTRY
A and executable statements

-- -- -- -------------------
END statement

7.1 Assignment statements:

Assignment statements containing arithmetic, logical, or masking
expressions should port with little difficu~ty. There are, however,
som-e---d-i f fererrc"es - in inte rpr-e-t-a-t-i-o-n-o--Ig-rt-or-in~r-(.tf"ffer-efic es·c-ause-d--by---wo r-d ----- --- --------------

length and rounding errors, the following points should be considered.

o Exponentiation: A**B**C is interpreted by FORTRAN IV-Plus as
A**(B**C), and as (A**B)**C by FTN4. Also, the permissible types
of base and exponents are more restrictive on the VAX as indicat­
ed by the following table.

o
27

I EXPONENT
I
IBASE integer real double precision complex
I
Iinteger I BV B B B
Ireal I BV BV+ BV+ B
Idouble I BV BV+ BV+ B
Icomplex I BV B
I

B=OK for FTN4, V=OK for FORTRAN IV-Plus,
V+=OK for VAX if base is positive.

o Specification of Constants: The syntax for specifying oc"i:al
constants is incompatible. See the table in section 6 for their
syntatic representation. Also, hexadecimal constants are not ac­
ceptable to FTN4.

o Evaluation of Logical Expressions: FORTRAN IV-Plus will evalu­
ate logical expressions until the result is known. This does not
always require complete evaluation: Consider X=A.OR.B(I), where
A, B, and X are of type logical. If A is true, independent of
the value of B(I), X will be true. FORTRAN IV-Plus will, in
cases like this, not evaluate B(I). If B(I) is a logical func­
tion call, the function call will not be made and any
side-effects (alteration 6f global or common variables) caused by
function B will not be produced. FTN4 evaluates all elements of
all expression to determine----the--restllt. ~E FORTRAN IV Plus's
evaluation is always complete when ope,rands are non-logical, so
masking expressions may be used with confidence.

o Masking .vs. Logical Expressions: Although logical and masking
expressions use the same operators, FTN4 will not allow a mixture
of operand types. Thus, a masking expression looks the same as a
logical expression except that none of the operands may be of
type logical. FORTRAN IV-Plus does not provide masking expres­
sions as such; logical operators and operands may be inter­
spersed with other arithmetic operators and operands.

o Logical testing: Although FTN4 tries to prohibit assignment of
values other than true and false to a logical variable, such as­
signments can occur. For example a function call, declared logi­
cal in the calling routine, may return some other type of result.
As an example, if (via a function call) -the integer 3 is as­

-signed to a logical variable and that variable is subsequently
used in a logical test (such as a logical IF), FORTRAN IV-Plus
will perceive the value as being true (it tests the low order bit
), while FTN4 will perceive the value as being false (it tests

28

the high order, sign bit).
\

!---------------------------~----~--------------~---------------!
DEFINED ! TEST !

!---!
!FTN4! true -1 (777 ••• 776)! negative value !
! false a (000••• OOO)! positive value !
!---!
! FOR4+! true -1 (777 ••• 777)! 1 in bit zero !
! ! false a (000••• OOO)! a in bit zero
1---1

In summary, avoid assigning values other than TRUE and FALSE to
logical variables.

o Array references: The abbreviated form of a multi-dimensional
array reference allowed by FTN4 (e.g. if A is a three dimen­
sional array then referencing A(2) is the same as referencing
A(2, 1,1)) is not permitted by FORTRAN IV-Plus (except in EQUI­
VALENCE statements).

Type conversions for mixed mode expressions differ only in the excep­
tions noted above concerning logical variables. The use of the PARAME­
TER statement, as well as CHARACTER expressions and assignment state­
ments should be avoided -- they are unavailable with FTN4, and thus will
not port. Multiple assignment statements (A=B $ B=C) and cascading
assignment statements (A=B=C), permitted by FTN4, should not be used.

7.2 Control statements:

Control-statements--interrupt-the--normal- sequent-ial--f-low-of-- -a-pro-- ------­
gram and, conditionally, transfer control to some other portion of the
program.

7.2.1 GOTO statements: The error handling of assigned and computed
GOTO's differs between FORTRAN IV-Plus and FTN4. For computed
GOTO's, when the index value into the statement label list is out
of range for the list given, FORTRAN IV-Plus will branch to the
first label, while FTN4 will give a fatal run time error. For
assigned GOTO's, if the label indicated by the control variable
does not correspond to one of the elements in the list of state­
ment labels, FTN4 will produce unpredictable results, FORTRAN
IV-Plus will branch to the label anyway, if it exists. With FOR­
TRAN IV-Plus, the list of statement labels for the computed GOTO
is optional. Rules:

I.Do not use assigned GOTO's without a statement label list.
2.With both computed and assigned GOTO's, insure a 1-1 corres­

pondence between the label indicated by the control variable

o U
29

and the statement label list.

7.2.2 IF statements: Both FTN4 and FORTRAN IV-PJ"us provide one form of
an IF statement which the other lacks: FTN4 has the two branch
IF, and FORTRAN IV-Plus provides a block IF-THEN-ELSE-ENDIF con­
struct. Neither of these should be used if code is to be ported.

The cautions concerning the evaluation of logical exssions
given in section 7.1 ,apply to logical IF statements.

7.2.3 DO loops: FORTRAN IV-Plus offers a more flexible form of the DO
loop than does FTN4. FTN4 requires that the parameters (inital,
final, and increment) of a DO loop be simple variables or con­
stants and, furthermore, must all be positive. FORTRAN IV-Plus
has none of these restrictions -- all parameters may be arbitrari­
ly complicated arithmetic expressions and have any sign. The par­
ameters are converted (using standard type conversions) to the
type of the control variable which may be integer, real, or double
precision -- FTN4 requires the control variable to be of type in­
teger.

Although the control variable assumes a meaningful value with
both FTN4 and FORTRAN IV-Plus when a DO loop is exited by a jump
outside its range, with FTN4 the value is (possibly) undefined
after the loop is exited by a natural fall through the bottom. In
order to port programs the following rules should be followed:

1. Use only integer control variables.
2. Use simple variables or constants

for parameters.
3. Do no L allow any 0 f the par-ame-te-r-srlt:eo~~===================~

assume negative values (an incre~ent of zero will
not produce an~infinite loop with FORTRAN IV-Plus)

4. Do not redefine the control variable or any
parameter within the extent of the loop.

5. Do not rely on the control variable having
a meaningful value if the loop is exited by
dropping through (as opposed to jumping out).

7.2.4 CONTINUE statements: No known problems.

7.2.5 Subroutine CALL statements: FTN4's unwieldy CALL RETURNS
construct, which allows automatic branching upon return from a su­
broutine, should not be used.

FORTRAN IV-Plus offers two data types for manipulation of
characters: Hollerith and CHARACTER. Constants for both are en­
closed i~ single quotes. FORTRAN IV-Plus is able to determine
which interpretation is intended (they have different internal
representations) by examining the data type of the variable it is
being associated with. When a quoted constant is used as an argu-

variable is specified FORTRAN
while FTN4 will print it in octal.
implications on the BKY-7600, and

30

ment to a subprogram, however, the data type of the variable it is
associated with is unknown and FORTRAN IV-Plus assumes CHARACTER.
This will cause problems because of the difference in internal re­
presentation and the fact that CHARACTER variables must be de­
clared. The solution -- always pass Hollerith constants to sub­
programs in the nH form, not the quoted (or !'ed) form. (DEC
plans to eliminate this problem some time in the future).

7.2.6 RETURN statements: Do not use FTN4's RETURN i (in conjunction
with a RETURNS list) feature. With both dialects a RETURN state­
ment is implied before the END statement in a subprogram, and may
be ommited.

7.2.7 PAUSE statements: If an integer
IV-Plus prints it in decimal,
The PAUSE statement has further
its use is not recomended.

7.2.8 STOP statements: As with PAUSE statements, if an integer variable
is specified FORTRAN IV-Plus prints it in decimal, while FTN4 will
display the value in octal.

7.3 Type Declarations

The compatible data types are:

INTEGER
REAL
COMPLEX
DOUBLE PRECISION
LOGICAL

With FORTRAN-I-V-F-lus-c-LNTEGER,-REAL,-and-LOGICAL~-at"e-the--same---as---------­
INTEGER * 4, REAL * 4, and LOGICAL * 4; DOUBLE PRECISION is the
same as REAL * 8 (assuming programs are compiled with the de-
fault /14 switch).

FTN4 allows only one IMPLICIT statement per module.

7.4 EXTERNAL declarations

When the name of a user supplied function is the same (lexically
and in data type) as the name of a FORTRAN intrinsic (library)
function the FTN4 user must declare the name EXTERNAL in each mo­
dule in which it is to supersede the library function. In the
same situation, FORTRAN IV-Plus users must prefix the name with
an asterisk in an EXTERNAL statement.

FTN4 does not require intrinsic functions to be declared
EXTERNAL if they are to be passed as arguments. FORTRAN IV-Plus
requires all functions passed as arguments to be declared exter-

() ;)
<J {.. "J

31

nal including intrinsic functions.
functions, see section 8.

For a list of library

1.Declare as EXTERNAL all functions passed as arguments •
2.Do not use either FTN4 or FORTRAN IV-Plus library function

names as subprogram names.

7.5 Storage Allocation

7.5.1 Array storage declarations: The data type used in array declara­
tions should be one of the compatible data types mentioned above.
For compatibility with FTN4, a maximum of three dimensions should
be used. For arrays with variable dimensions, the array and its
size must be dummy parameters (FORTRAN IV-Plus allows the size to
be passed in COMMON). The VIRTUAL statement in FORTRAN IV-Plus
is equivalent to the DIMENSION statement.

7.5.2 COMMON statement: With both FTN4 and FORTRAN'IV-Plus, when two
or more modules initialize the same COMMON variable, the initial­
ization by the last module loaded holds. FORTRAN IV-Plus allows
extension of a COMMON block's length by any module, FTN4 requires
that the longest occurrence be the first in the load (link) se­
quence. FORTRAN IV-Plus ,but not FTN4, allows initialization of
blank COMMON by a DATA statement.

Although not a good practice, both dialects allow CO~fMON

block names to be used also as subprogram names. The following
list of pointers should be followed to improve portability:

1.Do not initialize blank COMMON with a DATA statement.
----,-~~~~==~~~~~~~29-;;-.A~vl1'o~J:+·drl-nu~s.-f-in-ng-€6MMON-b-loek---nsuwhieh are also 'used as su­

broutine names, and do not use yTN4 numbered COMMON blocks.
3.11ake all COMMON blocks with the same name the same length.

If different lengths are used for the-sameblock,-load the
longest first.

4.If one COMMON statement declares multiple COMMON blocks, do
not separate the blocks with a comma.

7.5.3 DATA statements: When a variable in a DATA' statement and the
constant to which it is being initialized differ in type, the two
dialects may produce different results. FTN4 will assign the
constant to the variable with no type conversion, while FORTRAN
IV-Plus will convert the constant to the type of the variable.

FORTRAN IV-Plus requires that the number of elements to be
initialized equals the number of constants provided. FTN4 will
disregard excess constants and set excess variables to an
'uninitialized' value. With both dialects, if a variable is ini­
tialized by a DATA statement more than once, the last definition
holds. Neither dialect allows single literal spillover into mul­
tiple elements, as some FORTRAN dialects do.

32

On the VAX, memory is preset to zero, so uninitialized vari­
ables assume the value zero. This is not so with the BKY system
(unless the SETCORE,ZERO control card is used).

1.Do not use implied DO loops in DATA statements (FTN4 allows
this)

2.Use only simple repetition factors such as
'integer*constant'.

3. Insure an exact match between the number of elements to be
initialized and the number of constants.

4.The variable being initialized and its corresponding con­
stant should agree in type.

S.Do not use the parenthesized form of the DATA statement pro­
vided by FTN4.

6. Do not initialize variables in blank COMMON wi.th a DATA
statement.

7.Do not rely on memory being preset to any particular value.

7.5.4 EQUIVALENCE statements: Both dialects allow the extension of a
COMMON block beyond its last element due to EQUIVALENCE rela­
tions. Remember, however, that with FTN4 the longest occurrence
of a block must be loaded first.

The EQUIVALENCE statement is the only construct in
FORTRAN IV-Plus allows multiple subscripts to be ommited.
EQUIVALENCE statement, multiple subscripts may be replaced
single subscript.

7.6 Program Modules

which
In the
by a

7.6.1 PROGRAM statement: FTN4 requires the first statement
than comments) in every mainline be a PROGRAM statement.
PROGRAM-statement is-not-found-,-the--statement-:-

PROGRAM START. (INPUT,OUTPUT)

(other
If the

is assumed. FORTRAN IV-Plus has the PROGRAM statement, but it is
not necessary to use it. FTN4's PROGRAM statement also contains
file association information which is not found in VAX's FORTRAN.
See section 7.8 for more information on how file associations are
made in the two 4ialects.

7.6.2 FUNCTION subprograms: FORTRAN IV-Plus allows parameterless func­
tions a feature which FTN4 lacks. To avoid problems, all
functions should have at least one parameter. For information on
functions with multiple entry points see section 7.6.5. For
information concerning conflicts between intrinsic (library)
functions and user defined functions see section 7.4 •

7.6.3 SUBROUTINE subprograms: Again, do not use FTN4's CALL
RETURNS construct.

LiD -·l ..) 'i 'i ,,) ,j;J

33

END

7.6.4 BLOCK DATA subprogram: Within a BLOCK DATA subprogram all COMMON
blocks present should be defined with the maximum length they
will assume. This is required by FORTRAN IV-Plus.

7.6.5 ENTRY points: The ENTRY statement supported by FORTRAN IV-Plus
allows the specification of parameters in addition to those used
by the module containing the ENTRY point. The following diagram
illustrates this point:

SUBROUTINE baz(a,b) PROGRAM example
! t\-_~ --,!~", ~

ENTRY fO~(~) CALL foo~aa,bb,~c'1d)

END

To avoid conflicts with FTN4, ENTRY points with parameters should
not be used.

ENTRY points in FUNCTION subprograms pose another problem.
With FTN4 all function values, independent of the ENTRY point
into the FUNCTION, are returned by assigning values to the FUNC­
TION name. As a consequence, the data type returned by all entry
points is the same. With FORTRAN IV-Plus, if a FUNCTION is en­
tered at a given ENTRY point, the return value must be assigned
to that ENTRY point name. This scheme allows different entry po­
ints to return results of different data types. Porting between
the VAX and the BKY system is made easier if there is only one
exit point per module.

-----~-~~-----+1::-.-Dfion-rrnrroi't-rld~eT'c+l~a1"r'-l"e~ENTRYpoints with parameters •
2. Within one module, all ENTRY. points should be of the same

type.

7.7 Statement Functions

The expansion of code for statement functions is done inline by
FTN4. FORTRAN IV-Plus constructs a small function subprogram.

7.8 Input / Output Statements

Before getting involved in I/O statements, it is useful to investi­
gate the environment in which the I/O is to take place. The following
description attempts to outline the file environment in which each dia­
lect exists. Some detail has been sacrificed to preserve brevity and
simplicity.

The concept of a file is basic, and both the VAX and the BKY system
provide services which incorporate this concept. In both systems, the
file serves as an identifier with which to reference a group of logicaly

34

associated bits. Unfortunatly the specifics vary as to of how this is
incorporated into FORTRAN dialects (FTN4 and FORTRAN IV-Plus) and the
operating systems (BKY and VMS). To some extent the approach taken
by each system is a consequence of the one machine being designed for
time-sharing and the other for batch processing.

To contrast basic differences between the file structures some
characteristics of files on each system are compared below.

o Operations done to files -- The BKY system can perform the follow­
ing operations on files - CREATE, READ, WRITE, LOAD, EXECUTE, REPO­
SITION, and RELEASE. The VAX is capable of all these operations
except REPOSITION. A file on the BKY system may be repositioned to
many different places, corresponding to different markers within
the file. Files also retain their position from one operation (
control card) to the next. After each operation on the VAX, all
files are 'closed', which effectivily repositions the file to the
begining (BOI mark).

o Lifetime of a file -- The BKY file system allows the programmer to
store files which are frequently referenced on devices which have
fast access times. To do this efficiently files become more vola­
tile as the time required to access them decreases. The fastest
access occurs when a file is buffered in from disk. Most disk
files remain intact for the duration of the run but are destroyed
by the operating system after that. CACHE files on the BKY-7600,
and COMMON files on the 7600 and the 6000's, provide less volatile
file storage while still taking advantage of the speed of the disk

files will generaly remain a few days after a run (reference)
before being deleted by the operating s;ystem. There are no user
owned permanent disk files on the BKY system. For permanent file
storage on the BKY-system, PSS or anot~er form of mass storage is
used .---All--f-i-le -- stor-ageon-the-VAXis-permanent-unti-l-deleted-by
the user.

o File identification -- All files on the BKY system are identified
by name, not device or function. A file name consists of a maximum
of seven characters. Files on the VAX are uniquely identified by a
device name, a directory, a file name, an extension (file type) ,
and a version number. For a definition of these terms see section
9.1. On the VAX, a logical name may be used to refer to files or
devices by other than their specific names. When a reference is
made to a logical name, the system translates the logical name into
its defined equivalent name. A logical name must not contain a
period, colon, semicolon, or square bracket. Logical names may be
defined by the system at login time, or by the user through the use
of the ASSIGN command. To display the value of currently defined
logical names the command SHOW LOGICAL is used.

o Default devices -- All files on the BKY-7600 are disk files, on the
6000's all files are disk files unless otherwise specified (for

(] U

35

example by REQUESTing a tape) • On the VAX, if no device name or
directory is given, the users default disk and directory are as­
sumed.

FTN4 provides an integrated mechanism to interface with files on
the BKY system, namely the PROGRAM statement. The PROGRAM statement

1. Associates a file with the logical unit number n via the
file=TAPEn construct.

2. Defines a positional dependence between file names, allowing
files to be changed by the control card which causes execution
of the program.

3. Communicates pertinent information such as buffer size.

FORTRAN IV-Plus associates each logical unit number n with the log­
ical name FOROOn. If this name is present in the logical name transla­
tion table at run time, its defined equivalent name is used. If FOROOn
is not in the logical name translation table at run time, it defaults to
the users disk file named FOROOn.DAT •

The FORTRAN IV-Plus OPEN statement is capable of associating, at
run time, a logical unit number with any file on the system. The basic
format of the OPEN statement is:

OPEN(UNIT=n,NAME='fi1e_name')

For more information on the OPEN statement see section 6-1 of the FOR­
TRAN IV-Plus Language Reference Manual.

The following example illustrates some of the points made above.
The first program fragment" is a BKY-7600 job and the second is its VAX
equivalent.

76 OO-fr agment

FTN4.
STAGE,TAPE5,<ree1 number>.
LINK, F=LGO, X.
STAGE,TAPE6,W,<ree1 number>.

7/8/9

{compile program}
{stage in tape5 to disk}
{link and execute}
{stage out tape6 to tape}

PROGRAM FOO(INPUT,OUTPUT,TAPE5,TAPE6)

READ 1000,LISTI
PRINT 1000,LIST2

{read from 'INPUT'}
{write to 'OUTPUT'}

36

READ(S) LIST3
WRITE (6) LIST4

7/8/9

VAX-fragment...

$ TYPE FOO>FOR
PROGRAH FOO

OPEN(UNIT=6, NAHE='DillOO')

READ lOOO,LISTl

PRINT lOOO,LIST2

READ (S) LIST3

\\TRITE (6), LIS T4

{read TAPES}
{write TAPE6}

{print FORTRAN source }

{associate unit 6 with
logical name DUM~IT }

{read from device associated
with logical name SYS $INPUT}
{write to device associated
with logical name SYS$OUTPUT}
{read from file associated
with logical name FOROOS}
{write to file associated
with logical name FOR006}

$ ASSIGN TAPE6.DAT DUMHY

$ RUN FOO
$ DISHOUNT MTAO:
$ INITIALIZE HTAO: TAPE6

$ MOUNT MTAO: TAPE6 TAPE 6

$ COPY TAPE6.DAT TAPE6
$ DISMOUNT HTAO:
$ DEALLOCATE HTAO:

END
$ FORTRAN FOO {compile program}

___LLINK_ EOD {link_program}-----.
$ ALLOCATE MTAO: {reserve tape drive}
$ HOUNT MTAO: TAPES FOROOS {mount tape with label TAPES

and associate logical name
FOROOS with that volume }
{associate logical name
Dm~IT with disk file TAPE6.DAT }
{execute program }
{remove tapeS from drive}
{declar new volume TAPE6
on device MTAO: }
{mount that volume and
associate logical name TAPE6 with i
{copy file from disk to tape}
{remove tape from drive}
{release tape drive so others
may use it }

o u
37

7.8.1 PRINT,
7.8.2 PUNCH {not available with FORTRAN IV-Plus },
7.8.3 WRITE, and
7.8.4 READ statements: I/O statements may be classified by the type of

I/O to be performed (formated, unformated, or list directed) and
by whether the unit number is specified by the statement or im­
plied. List directed I/O is similar to formated I/O except the
format statement is constructed automatically according to the
data type of the elements in the I/O list. The following table
gives examples of compatible constructs in each class.

READ WRITE PRINT

Unit specified
formated READ (u ,fn) list WRITE (u,fn) list
unformated READ(u) list WRITE(u) list
list directed READ(u,*) list WRITE(u,*) list

I

Unit implied
formated READ fn,list PRINT fn,list
unformated
list directed READ *,list PRINT *,list

READ statements with implied unit numbers cause a---f-ilenamed
'INPUT' to be read on the BKY-system and cause the file associat­
ed with the logical name SYS$INPUT to be read on the VAX. PRINT
statements cause output to an implied unit number associated with
with the file 'OUTPUT' on the BKY-system and to the file associ­
ated with the logical name SYS$OUTPUT on the VAX.

7.8.5 BUFFER IN, BUFFER OUT statements: FTN4's BUFFER IN and BUFFER
OUT statements offer a facility to perform asynchronous I/O (on
the 7600 they are equivalent to unformated READ and WRITE state­
ments). FORTRAN IV-Plus on the VAX offers no special statements
for performing asynchronous I/O. Rather, asynchronous I/O is
performed by calling ~system service' routines. See the VAX/VMS
System Service Reference Manual for details.

7.8.6 NAMELIST I/O: The NAMELIST facility is completely absent from
FORTRAN IV-Plus. If programs are to port, this feature of FTN4
should not be used.

PAGE 13
38

7.8.7 ENCODE DECODE statements: Aside from the problems concerning
the number of characters stored per word, ENCODE / DECODE state­
ments should port. See section 7.9 for more information.

7.8.8 File Manipulation Statements: REWIND, BACKSPACE, and ENDFILE
statements should port. An ENDFILE writes a CTRL-Z to the file
associated with the unit on the VAX, and an EOF mark on the
BKY-system. On the VAX, a file OPENed in append mode may not be
BACKSPACEd. A REWIND repositions a file at its begining. On the
VAX, files are effectively rewound after every operating system
command.

For information on the OPEN and CLOSE statement see section
9 of the FORTRAN IV-Plus Language Reference Manual.

7.9 Format Statements: FTN4 allows considerable variation in permissible
format specifications. For instance:

FORMAT(X2HX/FI0.4/XI3) is the same as
FORMAT(IX,2HX/,FI0.4,/,IX,I3) •

To insure portability, the following guidelines should be followed.

1. All field specifiers should be seperated by a comma or a
slash.

2. Do not use the defailit field width facility provided by FOR­
TRAN IV-Plus. (FORMAT(I,F,I) is legal on the VAX).

3. Use only the compatible field specifiers listed below

nlw
nOw

.-nZw.
nLw
nAw

Tn

Fw.d nH
Ew.d nX

.. Dw. d---uP----------.--.-----.-.-------.---..---.-
Gw.d /

good luck

) ,.)

8.0 Libraries

The libraries provided with the two dialects contain all functions
required to be in accordance with the ANSI '66 standard. These func­
tions are listed in alphabetical order below. Functions in this list
which are suffixed with an asteriks (*) are not mentioned in the ANSI
standard, but are provided (in a compatible form) by both dialects.
For all arithmetic functions, loss of precision should be expected in
going from the 60 bit BKY machines to the 32 bit VAX.

ABS CEXP DLOG ISIGN
ACOS* CLOG DLOGIO MAXO
AlMAG CMPLX DMAXI MAXI
AINT CONJG DMINI MINO
ALOG COS DMOD MINI
ALOGIO COSH* DSIGN MOD
MfAXO CSIN DSIN REAL
AMAXI CSQRT DSQRT SIGN
AMINO DABS DTANH* SIN
AMINI DATAN EXP SNGL
AMOD DATAN2 FLOAT SQRT
ASIN* DBLE lABS TAN*
ATAN DCOS IDIM TANH
ATAN2 DCOSH* IDINT
CABS DEXP IFIX
CGOS DIM INT

FORTRAN IV-Plus allows most of these functions to be referenced with a
generic name. As an example, if A is of type COMPLEX, then EXP(A) may
be used instead of as CEXP(A). The compiJer,bycbeck;ng the tYRe of
arguments used, is able to distinguish which function name to substitute
for the name of a generic function reference. Because the FTN4 compiler
does not have this capability, the function specifically designed for
the type of argument being passed should be used.

Those library function names ~nique to one system are listed in the
following table. When two functions are the same(or similar) they are
listed on one line. A brief description of each function is also given.
Some of the functions in the fo10wing table are not part of the standard
FTN4 library, these are suffixed with a plus sign. For further informa­
tion and specifics see:

For the VAX:
a VAX FORTRAN IV-Plus Language Reference Man~a1, Apendix B
a VAX FORTRAN IV-Plus User's Guide, Apendix C
a VAX Common Runtime Procedure Library Reference Manual
a VAX System Services Reference Hanua1

And for the BKY-system:

40

o BKY FTN4 Reference Mahua~, Section 1-8
o WRITEUPS, subset FTN4LIB
o WRITEUPS, subset FTN4LST
o WRITEUPS, subset F~N4

n .
>.J U

41

.. __ . - ···1 .

type

R->R
D->D
D->D
l->D
D->D
R,R->D

siD->D
D->D
D->I
R->I

(0.,1.)

product
hyperbolic
tangent

arc-cosine
arc-sin
float

description

CHARACTER*l of ASCII value
ASCII value of CHARACTER*l
index of substring
length of string '-

right ~hift, end off, zero fill
see left
left shift, end off, zero fill
logical and
exclusive or
logical or
shift
complement

nearest integer
double precision
double precision
double precision
nearest integer
double precision
double precision
double precision
nearest integer
nearset integer
random number generator
get seed from RANF
set seed for RANF
another generator (0.0,1.0)
set seed for RGEN
get seed from RGEN
hyperbolic sin

coo r;aht

FORTRAN IV-Plus FTN4

) Mathmatical Functions

ANINT
DACOS
DASIN
DFLOAT
DNINT
DPROD
DSINH
DTAN
IDNINT
NINT
RAN RANF

RANGET
RANSET
RGEN
STOGEN
LODGEN

SINH

Logical Functions

TP T(!]:l'P../.

RIGHT+
ILEFT+
LEFT+

lAND AND
IEOR XOR
lOR OR
ISHFT SHIFT
NOT COMPL

CHARACTER Functions

CHAR
ICHAR
INDEX
LEN

FORTRAN IV-Plus FTN4

Day of Year

42

description

DATE

IDATE

Time of Day

SECNDS
TIME

I/O Subprograms

DATE
DATE6+
DATE 7+
JDATE+

SECONDS
TIME
HOUR+

date of year
in different forms

seconds (real)
time of day hh.mm.ss

close mass storage
connect terminal /6000's
delete file
disconnect terminal /6000's
dispose file to queue
check unit status
check unit status
set tape label attributes

END=

CLOSMS
CONNECT+
DELETE+
DISCONN+
DISPOSE+
EOF
IOCHEC
LABEL
LENGTH
LENGTX

'..l. "., .1 t- .; 1" t-., "

READEC
READMS
RETURNS+
REWUL
RQTAPE

STATUS
STINDX
T9TTYOP+
UNIT
UNPACK+
WRITEC
WRITMS

OPENMS open file on mass storage
PACK+ place infp into buffer

----SYS $••• ----- ---- Q.9 ••-••---- -- -general--IIO-:r-outi-nes------ - ---- -- --- --- - -- -- -- -­
read from extended core
read from mass storage
return a file
rewind and unload file
request a tape to be mounted
acco~nting information
use subindex for random file
perform a terminal action
test status of a unit
get info from buffer
write to extended core
write to mass storage

Error Handeling

LIB$ •••
ERRSNS

ERR=

DUHP
ERRSET
PDUMP
STRACE
SYSTEM
SYSTEMC
WARN+

perform a dump
"
"
trace routines
special error handling facility

o
43

FORTRAN IV-Plus FTN4 description

Miscellaneous
I

Subprograms

DISPLA message to dayfile
IF76+ true if 7600
JOBCARD+ get jobcard image
LEGVAR test to see if variable is legal

%LOC LOCF return location of variable
NARG+ number of arguments
OVERLAY overlay directives
SLITE set light
SLITET sense light
SETFLL+ change memory requirements
SETFLS+
SSWTCH sense switch

44

The ERR= and END= specifications given for the VAX are not realy li­
brary functions, but are listed in the table because their action is
similar to some of FTN4's library routines. The ERR= specification
may occur in any OPEN, CLOSE, READ, or WRITE statement. If an error
occurs during that operation (that of OPENing a file, etc •••), and
the ERR= is present, control is transferred to the statement label
indicated by the integer constant following the equal sign. The END=
may occur in READ statements only. In this case, when an end of file
is encountered control is transferred to the label follo~nng the
equal sign. As an example, the statement

READ(5,100, END= 200, ERR= 300) LIST

would transfer control to label 200 if an end of file were encoun­
tered during the read, and to label 300 if there were an input
conversion error. The FTN4 code fragment

READ(5,9000) LIST
IF(EOF(5» 200,100,200

100 CONTINUE

C----EOF ON UNIT 5
200 CONTINUE

is eqnivalent to the FORTRAN IV-Plus fragment

READ(5,9000, END=200) LIST

C----EOF ON UNIT 5
200 CONTINUE

o U
45

(,J

9.0 Summary of VAX-11/laO Control Language (DCL)

9.1 Notation: The folowing notation is used to identify devices and
files on the VAX.

device name the name of a physical or logical device. Physical
device names are of the form:

xxln:
where

xx is the device identifier. {LP - line printer, DB ­
disk drive, TT - teletype, MT - mag tape drive }

I is a single letter indicating the controler to which
the device is attached.

n is the line number of the controler to which the
device is attached.

A logical_device is any logical name which is associated with
a physical device. Some of the logical devices defined by the
system are:

TT: - users terminal
MT: - a mag tape drive
DISK: - users disk
SYS$INPUT - where system reads are done
SYS$OUTPUT - where system writes are directed
SYS$ERROR - where error messages are directed
SYS$CONTROL - initial login value of SYS$OUTPUT

volume When information resides on a m~dium which is separable
from a device (such as a diskpack_Qr reel of taRe) the med-
ium is called a volume and is. identified, during mounting op­
erations, 'by a volume label.

directory is a name used to reference particular partitions with­
in a volume. Each user has two directory names, both associ­
ated with the same partition. One consists of "[name]", and
the other "[project num, prog num]". The default directory is
the one which the user is logged in under.

file_spec A file_spec specifies one or more files. All files re­
side within some directory on a volume. A volume must be
mounted to access a file. A complete file specification con­
sists of:

device_name: [directory]file_name.ext;version

the defaults are:

device_name - users default disk, automaticaly assigned
at login time.

46

directory - users default directory, automatically as­
signed at login time

file_name - none { FORTRAN I/O with logical unit n de­
faults to a file in users default disk area named
FOROOn.DAT } A file name may be a maximun 9 char­
acters long. The legal characters are
(A-Z,a-z,$,_), the case of the characters is not
significant.

extension - maximum of three letters long, no default.
The legal characters are the same as for file names.

version - most recient

A file extension may not be given without a file name. A *,
called a wildcard, may be used in any field except the device
field to indicate all possible field values. Thus

[*]*.FOR;*

refers to all versions of all files in all directories on the
users default device with the extension .FOR. Because one
volume may contain files belonging to many users, protection
schemes prevent unpriviledged users from damaging any files
outside his directory partition.

u ."'!'.47

9.2 Basic Commands: In the list of basic commands below the full command
followed by its minimal abbrevation and its basic parameters. Text in­
closed in curly brackets is optional. For a complete description of the
commands see:

o VAX/VMS Command Language User's Guide, or
o use the HELP command, specifing as a topic the command about

which information is desired.

ALLOCATE AL device_name{:} {logical_name{:}}
reserve a device, and establish a logical name for it.

ASSIGN AS device_name{:} logical_name{:}
equate a logical name with a device name or another logical
name.

COpy COP input file, ••• output_file
copy input file(s) to output file(s).

DEALLOCATE DEAL device_name{:}
return reserved device to system pool.

DEASSIGN DEAS logical_name{:}
cancel a logical name assignment

DELETE DEL file_spec, •••
delete files or queue entries

DIRECTORY DIR file_spec, •••
display information about indicated files.

DISMOUNT DIS device_name{:}
release previously mounted volumes on indicated device. The
device still remains reserved.

EDIT ED file_spec
Enter SOS editor

FORTRAN F file_spec, •••
Compile files indicated by file_spec with FORTRAN compiler.
The default extension is .FOR. The compiler produces an ob­
ject file of the same name, with the extension .OBJ •

HELP H topic
gives information describing the use of the system routine
'topic' •

INITIALIZE INIT device_name{:} volume_label
write a label to initialize a mass storage volume.

LINK LIN ...

48

link compiled or assembeled files, to produce an executable
immage. The default extension is .OBJ. LINK produces an imm­
age file of the same name, with the extension .EXE as
input, but with extension .EXE •

LOGOUT LO
log off a terminal

MACRO MA file_spec, •••
invoke MACRO assembler on specified files. The default exten­
sion is.MAR. The assembler produces a file with same name,
with the extension .OBJ •

MOUNT MO device name {volume_label} {logical_name{:}}
requests a volume to be mounted on the specified device.

PRINT PR file_spec,
Queues specified files to a line printer.

PURGE PU file_spec
delete all but the most recent version of the specified files.

RUN R

SET SE

SHOW SH

TYPE T

file name
loads and begins execution of an executable image produced by
the LINK command. Default extension is .EXE •

sets various attributes, see HELP SET for information.

displays various attributes, see HELP SHOW for information.

file_spec,
~isp~Cl.y_i~~!<::(3.te<:L!i~es_at:t:b:~users term:i,l!'!L._ _

,J

10.0 Transfering Programs

J
49

10.1 Transferring programs from the BKY System to the VAX

The two utilities used in transferring programs (character data)
from the BKY system to the VAX are ENCODE and MTREAD.

ENCODE runs on the 6000's at BKY. It accepts as input a packed
display code local file and produces its ASCII (or EBCDIC) equivalent on
a nine track tape. The tape is written unlabeled, with fixed length
logical records (lines). The ENCODE control card has the form:

ENCODE, I=infile, B=outfile, L=listfile, RL=record length,
BF=blocking factor, NF=number of files, NR=number of
records, M=character set.

The defaults are:

I=TAPE1
B=TAPE2

L=OUTPUT
RL=80

BF=45
NF={all}

NR=99999999
M=EBCDIC

The only parameter that must be specified when preparing a tape for the
VAX is M=ASCII.

A typical control card sequence for writing FORTRAN programs (re­
cord length 80) out to tape would be:

REQUEST,TAPEN,<reel #>,D9,~T,TR,W,NN.

FETCHPS,BKYLGOB,ENCODE,ENCODE.

LIBCOPY,<my library>,FTN4PGM,<my subset>.

ENCODE,I=FTN4PGM,B=TAPEN,L=VAXTAPE,M=ASCII.

RETURN,TAPEN.
DISPOSE, VAXTAPE=PR, DT=I,R= [info] ,M=DP.

The list file (VAXTAPE) should be kept with the tape -- it contains a
record of the files on the tape and information about the tape format.
For more information about the use of ENCODE see BKYlibrary HANDBOOKS,

50

subset UTILITY.

To gain insight into how non-standard a particular FTN4 program is
it may be compiled by the FTN4 compiler with the parameter EL=A. This
will list all non-ANSII constructs used in the program. One possibility
for cleaning up FTN4 before porting is to run it through the BKY utility
CLEAN. For more information on CLEAN see BKY library HANDBOOKS, subset
CLEAN.

To read a tape written by ENCODE on the VAX the utility MTREAD is
used. MTREAD will handle a variety of tape formats. For our purpose,
the parameters to MTREAD must specify the same tape format used by EN­
CODE -- i.e. a fixed record length ASCII tape.

Before running MTREAD the tape drive is reserved with the ALLOCATE
command, and the tape is mounted with the MOUNT command. MTREAD asks
for various parameters, all responses must be in UPPER case. The fol­
lowing is a typical command sequence, underlined portions are typed by
the VAX. A;t represents a carriage return •

.tALLOCATE MTAO: /)
MTAO: allocated

$ MOUNT/DENSITY: 1600/FOREIGN HTAO: "2
~RUN [SYSEXE]MTREAD ~

MAGTAPE UNIT TO ASSIGN : MTAO:~

ASCII DATA OR BINARY ? [A/B] ASCII 2
LOGICAL RECORD SIZE IN BYTES: 80;?
FILE POSITION : 1 i2
DISK FII..E NAME: FTN4PGI'I.F,DR ;;

III RECORDS TRANSFERED
FILE POSITION: 0;;

$ DISMOUNT MTAO: ;)
$ DEALLOCATE MTAO: i2

The record length (size) should be the same as the RL parameter used
with ENCODE. If no RL parameter was used with ENCODE, the record length
for MTREAD should be 80. The file position is the number of files from
the beginning of the tape to, and including, the file you wish to
transfer. A file position of zero terminates MTREAD. The DISMOUNT and
DEALLOCATE commands return the tape drive to the device pool so someone
else can use it. Further information on MTREAD is contained in the VAX
file [SYSDOC]MTREAD.DOC.

10.2 Transferring programs from the VAX to the BKY system

,1

51

The utilities used in transferring programs (character data) from
the VAX to the BKY system are MTWRITE and CODE9. A tape written with
either MTWRITE or ENCODE may be read with either MTREAD or CODE9. In
transferring programs from the VAX to the BKY system, MTWRITE ,on the
VAX, writes the tape and CODE9 on the 6000's reads the tape.

MTWRITE produces an unlabeled ASCII tape with fixed length records.
As with MTREAD, the tape drive must first be reserved and mounted with
the ALLOCATE and MOUNT commands. Again, all responses to MTWRITE must
be in UPPER case. MTWRITE produces a log file containing a synopsis of
what was transferred to tape. A typical command sequence to write a
FORTRAN IV-Plus program on tape with MTWRITE follows:

1. ALLOCATE MTAO: "2
MTAO: Allocated

$ MOUNT/FOREIGN/DENSITY: 1600 MTAO: J
'$RUN [SYSEXE]MTWRITE IJ
LOg file name : log .lis '2
Tape unit to assign: MTAO: '2
Logical Record Length: 80t
Blocking Factor: 45;;
First disk file to be written: mypgm.for 2
Next disk file to be written: ;]
$ DISMOUNT MTAO: ~

$ DEALLOCATE MTAO: 'J

As a precaution, before writing a tape, convert.
spaces This can be done by using DETAB.
about MTWRITE see [SYSDOC]MTWRITE.DOC.

all tabs to multiple
For further information

To read tapes written by MTWRITE on the 6000's the utility CODE9 is
used., CODE9 converts 9 track ASCII tape files to 6-bit packed display
code local files. The control card has the form:

CODE9,I=infile,B=outfile,L=listfile,RL=record length,
BF=blocking factor,NF=number of files,M=character
set,NB=number blocks/file,PE=number of parity errors,
BS=buffer size,LE=number of length errors.

The defaults are

I=TAPE1
B=TAPE2
PE=O

L=OUTPUT BF=l
RL=80 NF=l
BS={dont use}

NB=999999
M=EBCDIC
LE=10

52

PE=O BS={dont use} LE=lO

As with ENCODE, the only parameter which must be specified is M=ASCII.

To read the first file off a tape written with MTWRITE using a re­
cord length of 80 and a blocking factor of 45, the following sequence of
control cards might be used.

REQUEST,MTVAX,<reel #>,D9,NT,PD,NN.

FETCHPS,BKYLGOB,CODE9,CODE9.

CODE9,I=MTVAX,B=FORPGM,L=LIST,BF=45,RL=80,M=ASCII.

LIBRITE, <my library>, FORPGM, <my subset>, <group>,
G=<group name>.

See HANDBOOKS, subset UTILITY for further information on CODE9.

U \J ,;
.;.£,

53

BIBLIOGRAPHY

1. American National Standard FORTRAN. American National Standards Insti­
tute (ANSI) X3.9-1966 •

2. Garner, W.R. Characteristics of FORTRAN. NASA tech brief 73-10322
/ LAR-11177 Jan 77 •

3. Messerli, R., Metcalf, M., Ranjard, F.
FORTRAN. CERN April 76 •

Basic Coding Standards in

4. Ripley,G.D., White,J.Wm., A Survey and Analysis of Mini-Computer FORTRAN
Dialects. University of Arizona, CS-tech report. May 77 •

5. Stevens,D. A Comparison of FTN and FORTRAN H Extended.
June 76.

CERN /DD/US/3

6. White,J.W., Ripley,G.D. How Portable are Mini-Computer FORTRAN Pro-
grams ? DATAl~TION July, 77.

)

o u

J'

This report was done with support from the Department of Energy.
Any conclusions or opinions expressed in this report represent solely
thmp of thp ~ll1thor(s) and not llf~cessarilv those of The Regents of the
University of California,· the Lawrel1ceBerkeleyLihoratory or~'the
Department of Energy.

-~

.•~_c.'""':'

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

::--.,.. ,~.:, ; ..~;

