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ABSTRACT 

Using completely fixed axial-like gauges, I construct the 

unique inversion A( F) for the potential A in terms of the field

strength F. A change of variable to F results in a field

strength formulation of gauge theory. F is constrained to satisfy 

the Bianchi "identities" a'f - eA(F)'f = O. Dual potentials 1 

may also be introduced as functional Fourier conjugate to the Bianchi 

forms. For quantum electrodynamics in four dimensions, duality 

[F -+- 'f, A -+- 11 is a perfect symmetr,y. Residuals of the symmetry 

persist in all theories however: E. g., Gauss' Law is an identity; 

1 is canonical to the magnetic fields, and closely related to 

't Hooft's disorder operators. 
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1. Introduction 

Let A be a generic potential for a generic gauge the or,y , 

and F(A) its field-strength. It is generally believed that the_ 

inversion A( F) mUst be non-unique: for Abelian theories there is 
-

the certainty of gauge ambiguity, and for non-Abelian theories, 

there is the problem of field-strength coPies. l 

. t. ,2 However, in a recent publlca lon, I noted that field-

strength copy is not a gaUge-invariant concept, and I proved that 

there are no such copies in completely-fixed axial gauges. 3 Such 

gauge choice resolves the Abelian ambiguity as well of course, and 

so, in these gauges, A(F) is unique for all gauge theories. 

I recently announced the explicit, construction of the inver

sion A(F) in a letter,4 along with a brief discussion of some 

immediate applications: unambiguous reformulations of gauge theor,y 

in terms of field-strength and/or dual variables. The development 

is uniform for any number of dimensions and arbitrary gauge group. 

The purpose of this paper is to provide further details and discus-

sion of the reformulations. 

The basic idea is as follows: (1) Obtain the unique 

inversion A(F), with the constraint on allowed F's, a'f - e1(F)'f ~ 0 

(Bianchi "identities"). (2) Change variables to F. The result 

is an unambiguous field-strength formulation for any gauge theory . 

F is integrated over ,the Bianchi identities. (3) Dual potentials 

1 are introduced as functional Fourier corijug'ate to the Bianchi 

forms. (4) Integrate out the electric fields to obtain the 

"dual Hamiltonian", a function of B, the magnetic fields, and 1, 

canonical to B. 
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I offer the following reasons why field-strengths and dual 

-variables may be the natural language in which to study current 

problems in gauge theory. 

(1) In ordinary formulations, with residual gauge freedom, 

physical states must be selected by requiring gauge-invariance. In 

a completely fixed gauge, no further gauge constraint on the state is 

necessary, and the generators of gauge transformations should vanish 

identically. With dual variables, this is realized elegantly as an 

aspect of duality: Gauss' Law is an identity - 'just as the Bianchi 

identities are identities in the usual formulation. 

(2) In the field formulation, Wilson integrals can be 

expressed as ~ integrals over the field-strength. This may be 

an aid in seeking area effects in the confinement problem. 

(3) In a Hamiltonian approach to confinement, one is 

interested in Wilson integrals over spatial (fixed-time) paths. In 

the field formulation, these are area integrals over the magnetic 

fields B. It may therefore be advantageous to have B as a funda-

mental variable. Indeed, as I will discuss below, it is easy to 

construct confining states using the dual variables. 

(4) The dual potentials ~,being canonical to B, generate 

local disturbances in the magnetic field. ~ is therefore closely 

"related to the disorder operators defined implicitly by 't_Hooft.5 

Confinement tends to be found .in disordered states (spread in B, 

sharp in 1:.). 
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(5) The dual potentials enter the non-Abelian theories 

with Higgs-like couplings, and silhouette the question of Meissner

like effects in non-Abelian gauge theory. 

(6) In general, the dual variables may be extremely useful 

in developing the continuum analogue (especially for the non-Abelian 

case-) of recent progress in dual-lattice theory. 
6 

(7) Formulation of monopole theories in terms of dual 

potentials appears extremely natural. Dual potentials couple locally 

to quantum monopole currents, just as ordinary potentials couple 

locally to ordinary charge. 

An outline of the paper is as follows. In Section 2, 

I briefly remind the reader of the field-strength copy problem, 

and its solution in fixed axial-like gauges. I obtain the inversion 

formulae A(F) for various theories, as well as the Bianchi identity 

constraints on allowed F·' s. In Section 3, I brieflY apply A(F) 

to express Wilson integrals in terms of field-strengths. In 

Section 4, I make a quantum variable change from A to F, obtaining 

the field-strength formulation. F is integrated over the Bianchi 

identities with no further functional measure. Section 5 is a 

brief, and I belie~e quite pretty, application of the field-formu

lation to monopole quantization. I introduce dual potentialS 1:. 

in Section 6. After interpreting 1:. as those fields which couple 

locally to monopoles, I discuss saddle point equations, then a 

formulation entirely in terms of dual potentials, and, finally, 

duality. In Section 7, I eliminate the electric fields to find 

the "dual Hamiltonia." 

.. 
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Section S is reserved for remarks, including the ease of 

constructing confining states in the 'dual formulation. I include 

also four Appendices dealing with technical matters. 

2. The Inversion A(F) 

The simplest case is quantum chromodynamics 7 in one space 

and one time dimension (QCD2 ). Consider ordinary axial gauge: 

A3 = 0, Foi A) = -alo (suppressing obvious color indices). All 

configurations have field-strength copies of the form 

~(tz) ( 2.1) 

where ~(t) is essentially arbitrary. (The theory is non-Abelian, 
, 

so AO' AO are not in general gauge-equivalent.) The inversion 

A( F) cannot be unique in ordinary axial gauge. 

There is, however, a residual gauge freedom in such gauges, 

which I use here to choose the completely-fixed axial gaugeS 

(2.2 ) 

where zo is a particular point in z. Now it is trivial to see 

that 

A3 0 

AO(tz) -{ dz' F (tz') 
03 (2.3) 
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is the unique inversion. A(F). In such gauges, all field-copies 

have become local action copies. 2 This inversion, Eq. (2.3), is " 

also correct for the Abelian theory (QED2 ) in this gauge. 

The next simplest example is the case of the Abelian theory 

in three dimensions (QED 3). The problem here is, of course, 

only ordinary gauge-fixing. I choose the fixed axial gauge, 

o 
( 2.4) 

Using the forms F
31

(A), F
23

(A) and the gauge-conditions on AI' 

A
2

, I have immediately 

(2. 5a) 

+ 6{xy) (2.5b) 

o. (2. 5c) 

The function ~ must be determined consistently from the 

+ (2.6) 
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I break this equation into its form at z = Zo and the derivative 

- with respect to z: 

(2.7a) 

o (2.7b) 

Equation (2.7a) can be uniquely solved for ~ with the boundary 

condition (2.5c). The final result is 

<{ I 

~( xyz) dz F 31 ( xyz I ) (2.8a) 

A2(xyz) -[ dz ' F 2i xyz I ) { I (' zo) (2.8b) dx F12 x Y 

0 

A3 0 (2.8c) 

I 0, F< -!E F 
]J 2 l.lVP vp' (2.8d) 

where is completely anti-symmetric and E123 = +1. 

Equations (2.8a, b, c) form the unique inversion A(F). Equation 

(2.8d) is the necessary and sufficient consistency condition on 

• the field-strengths. It is recognized as the Bianchi "identities" 

in three dimensions. In general, for, dimension greater than two, 

the Bianchi identities will emerge as consistency conditions on 

the fields. 
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For higher dimensions and/or non-Abelian theories, the 

algebra is more complicated, but the idea remains the same. I 

give the details for QCD
4 

in Appendix A. Here I will only state 

the results. 

QCD] 

Here 

[A
3
( xyz) ~(xy zo) = A2(xoY zO) oJ: 

~ (xyz) { d,' F 31 (xyz' ) ( 2.9a) 

Zo 

{ I I 

+J~ I I 

A2( xyz) dz F23(xyz ) dx F12( x y zO) 

I a 

o 

A b ( F) is precisely the form A( F) 
]J 

(2.9b) 

(2. 9c) 

( 2.9d) 

given in Eqs. (2.9a,b ,c). 

Note that the form A(F) continues to be the same for Abelian and 

non-Abelian theories' (in the same dimension). The only difference 

is the complexity of the consistency conditions (Bianchi identities). 

A' 
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QED4 [A
3
( txyz) ~(txy zO) = A2(t~y zO) AO (txoyozO) 0] 

!~z 

J 

dz'F
31

(txyZ' ) ~ = I (2 .10a) 
)zO 

(z , , (x , 
A2 -/ dz F2} txyz ) +Jx

o 

dx' F12(tx y zO) 

)zo 
(2.10b) 

·-z :J:' '"'F01(t,'y '0) Aa -j dZ'F
03

(txyz') 

Zo xo 

( 2.10c) 

o (2.10d) 

1.( txyz) 
1 

a 1:< = 0 
]1 111 

(i=0,1,2) (2.10e) 

o (2.10f) 

E:Oi23 = 1. Notice that the consistency 

conditions are not the full set of Bianchi identities. This happens 

as well for QCD4, and I will refer to this as the phenomenon of 

"3.1 Bianchi identities". It is trivial to show however that the 

"3.1" Bianchi identities imply the other ".9" 

O. (2.11) 
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I make the same gauge choice as in QED
4

. The resulting 

A(F) is the same as Eqs. (2.10 a, b, c, d). The consistency 

conditions are 

I.a(txyz) - a 1:<. eE:abcA]1b(F)~]1c1' = 0 (i = 0,1,2) 
1 II ]11 

{a ~a - eE: b A~(F)~3} ]1 ]13 a c ~ ]1 z=zO 
o 

I show in Appendix B that, in analogy to QED
4

, these "3.1" 

Bianchi identities imply the last ".9", 

(2.12 ) 

(2.13 ) 

I summarize what has been shown thus far. In fixed axial 

gauges (1) the inversion A(F) is unique for all gauge theories. 

( 2) A( F) is linear in F. Its form is the same for Abelian and 

non-Abelian theories. (3) the consistency conditions are the 

Bianchi identities. ( 4) the Bianchi identities are at most quad-

ratic in F. 

3. Wilson Integrals as Field-Strength Functionals 

BY Wilson integrals, I refer to the generic forms, 

wIc] - eXP{-ie~A • dX} 
C 

~ Tr P exp{-ie~A • dx} 

(3.1 ) 

W [C] -
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in the Abelian and non-Abelian cases respectively. Here Tr and P 

are trace and path-· ordering. In our gauges we can express W [C] 

directly in terms of the field-strengths, simply by replacing 

A ~ A(F). This is old hat for the Abelian case, but new for the 

non-Abelian. I will mention explicitly two theories which illustrate 

the general structure for all gauge theories . 

Consider the three paths shown in Fig. 1. Using A(F) in 

Eq. (2.8), it is trivial to compute for the three cases 

(
Xl ,rZl , 

dx dz 

Jo j 0 

- J}~~. ~ 
yz 

~!(F) 1" f ' , , 
• dx J dy dx F12(x y zO) 

xy o 0 

+J:' d"{~dX' I I , I 

[F
31

(x 0 z ) - F 31 (x Y z )] 

Zo v 0 

( 3.2) 
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To simplify the xy-loop form, integrate the Bianchi identity over 

the area in question 

(~ rYl ~" 
o =! dX'JI dy' "].ffl(x y z) 

":0 0 

(3.3) 

This implies immediately that 

( 3.4) 

and hence that 

(
1 lXl I , t t 

I dy dx F12(x y z) 

)0 0 

0.5 ) 

as expected. The explicit manipulations above will however be 

useful in Sect. 5. In general, for Abelian theories, one finds 

the expected result (dS flV = ~EflVpodxpdXa) 

r 
PA(F) • dx (3.6 ) 

C 

The Wilson integral corresponding to Fig. 2 is 
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with T, T* are time-ordering and time-reversed-ordering, and I 

have used the A(F) given in Eq. (2.3). An interesting gauge 

choice for any loop with one side at z = 21 would be to pick 

(3.8) 

in close analogy to the Abelian form. The reader can easily 

convince himself that, with appropriate gauge choice, any loop in 

any non-Abelian theory can be put in this "Abelian" form. 

I emphasize also that when the path in the Wilson integral 

is spatial, then the area integral is over the magnetic fields 

(not the electric). This is immediate on inspection of, say, Eq. 

'" (2.10). It is, of course, just these Wilson integrals that are 

of interest in a Hamiltonian formulation. 

4. Field-Strength Formulation of Gauge Theory 

I begin with the vacuum generating functional for a 

generic gauge theory 

Here 6 [CGF] is a product of functional a-functions for the 

complete gauge-fixing. The form of 0 [CGFj for QCD
4 

is given 

in Appendix C. 9 The unique inversion A( F) makes it possible to 
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change variables to the field-strengths themselves. The crucial 

identity is, up to multiplicative constants, 

a[I(G)] 

valid for all gauge theories. Here I (G) aG' - eA( G)d' are the 

Bianchi forms as a function of G (which "is" F). The proof of 

Eq. (4.2) is given in Appendix C for the case of QCD
4

• The proof 

is simpler for other theories. In four dimensions (QED
4 

and QCD
4

), 

the right hand side of Eq. (4.2) actually comes out as a-functionals 

for the "3.1" Bianchi identities only. However, as the last ".9" 

are redundant (Appendix B), I have chosen, for the sake of symmetry, 

to restore all four Bianchi identities on the right of Eq. (4.2). 

(F'ormally this is an extra constant factor a b] .) 

The field-strength formulation is now immediate. Start 

with Z, and insert unity in the form 

1 juG 6 [G -F(A)]. ( 4.3) 

Interchanging integration order and doing the A integration via 

Eq. (4.2), I obtain 

Z fWG 6 [I(G)] exp {- ~ r G2}. (4.4) 
). 

The form Eq. (4.4) proVides an unambiguous field-strength 

formulationll for any gauge theory. The field strengths are inte-

grated over the Bianchi identities. There is no further functional 
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measure. I will continue to use G instead of F when it is a 

fundamental variable. 

Any function of A in the original formulation translates 

~ immediately to that function of A + A(F) + A(G) in the field-

strength formulation. In particular, the forms of the Wilson inte-

grals discussed in Section 3 are now appropriate. In general, the 

formulation is local in time-except in fixed AO gauges. 

5. A Simple Application: MOnopole Quantization 

Consider QED3 in the field-strength formulation, 

(5.1 ) 

"-
where I have re-named Gi = Bi (Bl = F23 , B2 = F31' B3 F12 )· 

The expectation value of a Wilson integral is 

<W[C]? z-lJB~ exp {- !Jd3xB
2} 0[17 • ~]W[C] 

(exp' {-ie P !(B) • d~ }) 
C 

(5.2 ) 

• Here A(B) is that A(F) given in Eq. (2.8). I will refer to the 

first form as the "path-form", the second form as the "surface-

form" . The proof that the two forms are equivalent is the demonstra-

tion in Section 3. Thus, the surface-form is sUrface-independent. 
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In fact, of course, the surface-independence of the surface-form can 

be seen directly (without mentioning A( B) from the Bianchi 

identity. 

I will now introduce a monopole source PM(~) into the 

theory·by violating the Bianchi identity, 

I demand that I can still find a "Wilson integral" such that 

(5.3 ) 

is gauge-invariant and a function of C alone. Which of the two 

forms in Eq. (5.2) is a viable candidate? I will show that, when 

PM to, ( a) the path-form is in general not gauge-invariant, while 

(b) the surface-form is in general surface-dependent. Moreover, I 

will show that the following conditions are all equivalent: (1 ) 

The condition that the path-form is gauge-invariant. (2) The 

condition that the surface-form is surface-independent. (3) 

The condition that the path- and surface-forms are equal. ( 4) 

Magnetic monopoles are quantized in the usual manner. 

Consider first the .path-form. Repeating the steps of 

Section 3 for the three loops considered there, one finds 

f !( B) • dx = JJd~' ~ for the zx and y z loops (the 

Bianchi identity is not involved in these computations). The 

xY loop computation does involve the Bianchi identity however, 

and now 



., 

<j !(B) • dx 

xy 
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But Zo is a gauge-parameter, so the path-form is not in general 

gauge-invariant. 

The surface-dependence of the surface-form is standard: 

the difference of two surfaces involves a closed surface integral 

If d§. • ~ = Jd3
X V • ~ J d3

XPM ' according to the (violated) 

Bianchi identity. 

It is immediately clear that the unique cure for either 

problem solves them both: 

~xp{-ie ~d3xPM} 
V 

Jd3
X PM = 

V 

1 

e 

where V is an arbitrary volume and n is an integer. This is the 

usual monopole quantization, and it is also the condition that 

the path- and surface-forms are equal again. 

Point magnetic charge at u would then be of· the form 

g03(!. - ~). For ~ on the boundary of a volume V, 

then 

g 

This follows because 

quanti'zation . 

41Tn 
e (5.7) 

and is the Schwinger 
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The reader will notice that I have never mentioned Dirac 

strings in this discussion. Indeed, in the field-strength formulation, 

such need not appear, and do not. Nevertheless, I can excavate the 

strings for pedantic purposes: starting from a monopole field at the 

origin B = gr 
"2 , I evaluate !( B), Eq. (2.8). The result for 
r 

~(B), e. g., is 

~(B) 

Near the z-axis then, 

2 
P 

2 2 
x + y . 

(5.8) 

(5.9 ) 

So !( B) does have the Dirac string: the string is down if zo. > 0 

and up if Zo < O. (One might have anticipated that the strings 

were all in the z-direction from our "trouble" above with Wilson 

integrals in the xy plane). Note that, if Zo = 0, then near 

the z-axis, 

(5.10) 

This is Schwinger's double-string. It is not hard to verify that, 

in general, monopoles placed at Zo will always carry Schwinger

strings, and hence the Schwinger quantization. 

The development for monopoles in QED 4 is parallel. The 

monopoles are coupled to the theory via 0 [0 ~ ] + 0 [0 ~ - ":J ] • 
J.lllV J.l J.N \) 

The final results-are 
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(w[cJ>'\i = (exp{-ie ,r.. A (G)dx }>} 
J Yc ~ ~ 

(5.11) 
when 

2mT ( 5.12) -e 

6. Dual Potentials 

By "dual potential", I refer to variables like the "magnetic 

scalar potential", familiar in elementary physics. In QED
4

, 

dual potentials ~ would be to ~ v what A is to F 
~ ~. ~ W 

~ (A) 
~v 

( 6.1) 

Such variables may be extremely useful in finding the continuum 

analogue, and non-Abelian extension, of recent studies in "dual-
6 'V 

lattice" theory. A is also closely related to the local disorder 

operators It Hooft 5 defines implicitly. 

Having the field-strength formulation, a path to dual 

variables is clear. In the vacuum functional, Eq. (4.4), write 

o[I(G)] JAf~ exp{ -iJ ~( G)} 
( 6.2) 

Z JAJGiJk exp {- ~JG2} exp{ -iJ~I(G)} 

The variables 1 have the indices of the Bianchi forms I( G) -

so, ~~ for QCD
4

, ~a (magnetic scalar potential) for QCD
3

, and 

so on - and are identifiable as dual potentials. I will discuss 

various theories individually. 
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QED
3

· 

The vacuum functional is 

fAf~.lf~ exp{- ~ Jd3
X B2} exp{-ij d3x 17~ • ~} 

(6.3) 

The saddle-point equations are 

0, B + il7~ o. 

As expected in Euclidean space,12 the saddles are at imaginary ~. 

Thus, ~ -i~ is precisely the magnetic scalar potential 

(~ 17~ ). 

Consider summing 4> emissions at u with strength g. 

In a simple line of algebra, it is seen that 

< exp {-ig 4>c~)} > = z-l [PM = 0] Z £IV!.) 

(6.5 ) 

Such emissions are then precisely equivalent to a monopole of 

strength g at u. One might then call the exponential of the 

dual potential «~) = exp {-ig~ (~)} a "monopole-field". 

More precisely, 

(6.6 ) 

in general, therefore: Quantized monopole matter fields couple 

locally to the dual potentials. 

.. 

. :. 



-21-

The vacuum functional is 

z 

'V 
F)lv(A) a)l~ a))l (6.7) 

The saddle-point equations are 

a})lV 0, 
'V 
C\Jv= 

. 'V 
lF )lv(A). ( 6.8) 

Thus, A)l ~ i~)l are precisely the dual potentials for QED
4

· 

Z is invariant under Abeli~ gauge transformations on ~)l' This 

has crept in because I chose to ignore multiplicative constants 

in Eq. (4.2). 
'V 
~ gauges may be fixed in the usual ways. 

A particularly interesting quantity is the gauge-

invariant "dual-Wilson integral" 

(6.9 ) 

As in QED]' it is simple to see that <Vi [e'] ') corresponds to a 
I 

monopole-anti-monopole annihilation around the closed path e. 

Also, quantized monopole matter fields should couple locally to ~ . )l 
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Because the Bianchi identities are (even for non-Abelian 

theories) at most quadratic in G, I can always integrate out the 

field-strengths, to obtain a formulation entirely in terms of 

dual potentials. For QED
4

, the resulting action density is 

particularly elegant, 

£ 

In this sense, QED 4 is perfectly dual. 

QeD3· 

The vacuum functional is 

(6.10 ) 

c 
exp{ -iJd3xB.a [a.~a_ e£abcA~(B)~]} 

111 

(6.11) 

where A.a(B) is given in Eq. (2.9). 
1 

The saddle-point equations 

are 

a.B.a e£abc A.b (B )B.c = O. 
1 1 1 1 

(6.12) 

B.a + i(a.q;a. _ e£abcA.b(B)41c ) + b.a O. 
1 1 1 1 

where 

b.a -ie abc { , -,i'd,') 1 £ .. {8( z - Zo Z dz - 8( Zo 

r b'VC] I 
l£ijB j cP (xyz) (6.13) 

for i 1,2 ( £ij antisymmetric, £12 = +1), and 
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b
a 

] 
i, ,'ba,( z - zO)(,(, - '0 i" dx' - '("0 - xrx Ox') 

• J"dzhrrHx'Y;).· ~ (6.14) 

_co 

A number of remarks are relevant here. (1) ~a = _i~a are the 

color-magnetic scalar potentials. (2) The non-localities are 

essentially the non-localities of the inversion forms A(B). 

(J) Notice the singularity in b]a at z = zO' This can be 

traced immediately to the fact that only F~i XYzO) = B]a (XYzO) 

appears in the inversion A(B), Eq. (2.9) This singularity tells 

us immediately that, for configurations Bt not singular at zo' . 

then the corresponding ~a is discontinuous at z = z00 I will 

mention this again in Section 7. 

Notice also the Higgs-like coupling of the magnetic 

scalar potential. This raises the· question of a Meissner effect 

for QCD], and focusses attention on regions where ~a is a 

constant. In such regions, the ~gnetic field is a zero-ei~n-.ralue 

eigenvector of the operator MC'¥):; 1 + ieJ~ = 1 - eJ~ defined 

by recasting the field equations in the form 

o = iil.~a + {[ 1 + i/'¥ }B}.a . 
~ J ~ 

(6.15) 
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'V 
The operator MC <1» appears again in the pure dual 

potential formulation: Integrating out the field-strengths in 

Eq. (6.11), I obtain the action densityl] 

£ ( 6.16) 

with a measure {det[ 1 + ieJ ~ }-~. At large coupling, the 

zeroes of M(~) approach the real axis, and may be enhanced. This 

subject deserves further investigation. 

QCD4· 

The vacuum functional is 

z 
(6.17) 

The saddle points are located at 

o ( 6.18) 

where 

(6.19) 

'V. 

dz I Eabc [~~aA~ ( tx I yz I ) 

(Equation (6.19) continued on next page) 
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-ie {a(, - '0 ( d,' - a( '0 - ')[ d, ' It abo r~:'J':,J( t,y, ' ) 

.ie'(, - 'oHa( x - "0) [ dx' - 6("0 - xi: dx'} 

.J'~ d",aborCf>aA;) (tx'y,') 

rvw previous remarks about QCD
3 

are compounded here. Notice 

in particular that each component of ~a has Higgs-like couplings. -- . ~ 

The field equations may be cast in the form 

( 6.20) 
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For small coupling, then 

(6.21 ) 

·as in the.Abelian case. In general, however, as in QCD3i .attention 

is drawn to configurations for which F( O)a (Ii) = 0 in some .. ~v 

region, and hence to the zeroes of the operator The 

pure dual potential formulation of QCD
4 

has the form 

(6.22) 

wi th measure {det [1 + ie IkJ }-t . 

7. "Dual II Hamiltonian Formulation 

In this Section, I work in Minkowski space.14 The"generic 

vacuum functional 

contains time derivatives only in the factor 

( 7.2a) 
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in three dimensions, or 

(7 .2b) 

'\, 
in four dimensions. Thus in general, A is canonically conjugate 

to the magnetic fields. I can pass simply to the canonical form then 

by integrating out the electric fields GOi = Ei' leaving only ~ 

and B, the magnetic fields. The resulting II dual II Hamiltonian 

system has the generic form 

H = ~ J fB2 + E
2
(tB») (7.3) 

[B,~ i 

I will briefly discuss each theory in detail, giving the appropriate 

E . in terms of ~ and B. 

QED). 

In the previous Sections, I worked in a manifestly Euclidean 

form for three dimensions. If I identify ) + 0 (time), I am in a 

fixed Aa-gauge, and there is z + t(time)non-locality. I do not 

know how to achieve a Hamiltonian formulation for these gauges. I 

convert trivially to an axial-gauge with the re-identification 

'1 + 1, 2 + 0,3 + 2. This is now a fixed A2 = 0 gauge: 

{Y dy'8(,,-') 

Yo 

l
y 

dy' E
2
( xy' ) 

- yO 

\ 
-28-

where I have used Ei = GOi ' B = G12 , ~~ 

£012=1. Notice that the spatial potential (1\) is a function of 

B alone; hence fixed-time Wilson integrals are area integrals 

over the magnetic field. This persists generically. 

The action density is 

£ - l G G~v + $dll~~ . 
4 ~v ... 

Integrating GOi ' I obtain the dual Hamiltonian, Eq. (7.) with 

( 7.6) 

Notice that Gauss ' Law I/·E = 0 is an identity in the dual formu-

lation, just as the Bianchi identities are identities in the usual 

formulation. This also persists generically. 

Consider the local operator 

(7.7) 

Since $ and B are canonical, ~ generates local dis-

turbances in the magnetic field, 

(7.8) 
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The "disturbance" is a "string" with magnetic flux g. The Wilson 

integrals at fixed time are area integrals over the magnetic field, 

and hence 

¢C.~)W[c] = W[C]¢(x) exp{ieg Jf 0(2)(r - ~d2y} 
S(C) 

If I choose 1 2 Dirac unit of magnetic flux, 

¢;l( x) 
2 -

exp{-i 2!. ~(x)} 
e -

(7.10 ) 

then ¢t(!) connnutes with W[ C] when x is outside C, and 

anticommutes when x is inside C. Evidently, ¢,(X) is the ,,-
Abelian analogue of the [ SUe 2) in three dimensions] disorder operator 

defined implicitly by 't Hooft. 5 

QED4' 

1 
In four dimensions, IIW notation is Ei = GOi ' Bi = Z'ijkGjk 

1 po 2tvdt ' £0123 +1. The inversion Eq. (2.10) is then 

[ 
o 

I
x y 

E (xyz') - dx'E (x'yz ) -1 dy'E ex y'z ). 3 1 0 2 0 0 
Xo 0 
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Again the spatial components of A are f1.lllCtions of B alone, and ]l 

hence fixed-time Wilson integrals are area integrals over B. 

The action density is 

£ (7.12) 

But the momentum conjugate to \ is zero. I choose therefore 

not to introduce ~, leaving ofO}]lO] o[ V • m = 000 (G)] 

as a constraint. Integrating out GOi ' I obtain the dual Hamiltonian 

Eq. (7.3) with 

E 

[ B.(x),](.(y)] 
~ - J-

vx'X 

io .. 0(3)(x - y) 
~J --

This Hamiltonian must be taken wi thtm constraint 10 =V • B 

= O. Note that 10 = V • B is the generator of 'Xi gauge trans

formations, so duality 

V • E V • ~ 

( 7.14) 

is quite perfect. Gauss' Law V· E - 0 is again an identity. -
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, 
Consider the dual Wilson integral as an operator, with C 

a fixed-time path 

VI[ C '] exp{ -ig ~ 'X. dxJ 

C 

(7.15 ) 

The fixed-time Wilson integrals. are area integrals over the magnetic 

fields, and so 

'\, , 
W[C J W[ CJ 

'\, , 
W[ C]W [C J exp{iegN} 

N = J d§..(!.)A...d!.'o(J)(x-x') 
S(C] 'f -- (7.16) 

, 
N is the number of directed crossings of C thru C. With 
1· 'Ii , 
2" Dirac lIDi t of flux, WI: C ] is the Abelian analogue of the disorder 

operator [SU(2) in four dimensions] 't Hooft(5) defines implicitly. 
'Ii 

There is a final comment that I wish to make here about A 

gauge fixing. At the level of QED
4

, the remark is essentially 

pedantic - but it will be helpful in our discussion of QCD
4

• 

The 'X gauge may be fixed in the usual Faddeev-Popov fashion, 

but a certain bizarre gauge choice has particular significance. 

Remember that, in four dimensions, I chose to complete the identity 

Eq. (4.2) to all four Bianchi identities. If I had left only the 

J.l Bianchi identities, I could have exponentiated the third Bianchi 
'\, 

identity with an AJ(txy) only. I leave it as an exercise for the 

-J2-

reader to show that, in our more symmetric formulation, this corres
'\, 

ponds to the bizarre A gauge choice 

(7.17) 

that is, gauging away the z-dependence of 1:
J

, except at zO. The 

most direct way to use this gauge is to solve the Bianchi identity: 

'\" 
keeping only A

J 
(xy), B J( xyzO ) as canoni cal variables. 

I use the same fixed A2 = 0 gauge as for QEDJ. 

inversion is still Eq. (7.4), and the action density is 

£ 

Integrating G~l' I obtain the Hamiltonian with 

-(aJa 
- eEabc~(B)r:) - e{e(y - yJf

oody
' 

y 

. ~ab .,( 2 )( ) 
~u u !. - l. . 

(7.18) 

The 

(7.20) 

• 



• 
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Here 1).( B) is given in Eq. (7.4) and IJa;: E:abcBb~ is a 

rotation operator for ~ and Ba . Observe the persistence of the 

Higgs-coupling of the dual potential. The singular term o(y - yO)' 

seen in the equations of motion, also persists.15 

Note that 

(7.21 ) 

is a constant of the motion. Qa generates a global gauge transfor-

mation, and this freedom reflects the fact that my gauges are not 

fixed up to such a trivial transformation. Physical states can easily 

be chosen to satisfy Qa = O. 

From the definition of it is easy to compute that 

(7.22) 

so on physical states (Qa = 0), Gauss' Law will be an identity. 

I also repeat that Wilson integrals over spatial paths 

are functionals of B only (because ~ = ~(B)). Having B 

as a fundamental variable may then be advantageous in studying the 

confinement problem. 

I have not yet found the exact expression of 't Hooft's 

operators for QCD
3

• Although operators like exp{_ig~a}, 

Tr exp{_ig~a ~} have the correct effect on the magnetic field, they 

generate non-localized changes in E. This deserves further 

investigation. 
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QCD4· 

The inversion is given, as for QED
4

, in Eq. (7.11). Th~ 

action density is 

£ 

(7.23) 

However, as in QED 4' I choose to leave o( Ioa( B) ) as a constraint, 

'Va a 
keeping only Ai Integrating GOi ' I obtain the dual Hamiltonian 

Eq. (7.3) with 

a 'Vb [B. (x), A. (v)] 
1 - J "-

E a 
i 

a -9= 
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This Hamiltonian must be taken with the constraint 

I
a 
o C).B.a 

J. J. o. (7.26 ) 

As with QCD
3

, note 

the dual potentials. 

the persistence of the Higgs-like couplings of 

Qa ~~d3x,~a is a constant of the motion, and 

can be set to zero on physical states. Wilson integrals with 

spatial contours are all functions of Bt. Forms like 
J "':a Ta 

Tr P exp{-ig~ A. :2 dx.} are candidates for 't Hooft operators. 
C J. J. 

I wish to discuss in some detail the structure of this 

constrained Hamiltonian, system, and its parallels with QED
4

. In 

QED
4

, the constraint 10 = V • ~ generates Abelian gauge transfor
'\, 

mations on Ai' and a symmetry of the Hamiltonian. In Appendix D, 

I show a similar property for the QCD 4 constraints IOa( B) : 

Modulo ordering problems, 

d I a 
dt 0 

abc eE 

Thus, if one starts with a state at time to with loa = 0, it 

will stay zero. Put another way, loa (B) generates a change in the 

- Hamiltonian which vanishes in the presence of the constraint. There~ 

fore, if desired, gauges may be fixed a la Faddeev-Popov. 

What are the transformations generated by Ioa( B)? They 

are Abelian, and act only on just as in QED
4

. A simple 

computation results in 
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a 'Vb I I I 

[10 (xyz) ,Ai (x Y z '] 

(7.28 ) 

. abc ( ') ( ') ( I ) c( ) - J.eE odS y - y 0 Zo - z e xx ~ B2 xyz 

where 

I I 

z )8( z - z) 

I I 

8( z- zO) - 8( z - z) . 
(7.29) 

The feature of note in Eq. (7.28) is that 

(7.30) 

Thus, as long as one stays away from the (gauge) point z = zo' 

the gauge transformation on ~ is the usual Abelian form. As a 

result, the gauge choice Eq. (7.17) can be made here for QCD
4

, 

with constant measure. 

This brings u~ full circle for QCD
4

; as explained in 

QED
4

, this is the form I would have obtained if I had not 

completed to all four Bianchi identities in Eq. (4.2). The 

Abelian invariance in QCD 4 is a direct, resul t of completing the 

Bianchi identities. As in QED
4

, the most direct way to use this 

gauge is to solve 10 = 0: 

• 

• 



• 
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thus eliminating B; in favor of B3a (xyzO), which is canonical to 

'U a ' 
A3 (xy) . 

Finally, I remark on Gauss' Law. It is straightforward to 

compute that16 

(7.32) 
b b 

When the solution (7.31) is used, F12(A(B)) = B3 , so, on 

states with Qa = 0, Gauss' Law is again an identity. 

8. Remarks 

There are a number of remarks that properly belong with 

this piece of work. Perhaps the most important is what I promised 

in the Introduction: Confining states are easy to construct in 

the dual formulation. Just as an example, consider the states 

Here IB') 
'V' , ·of the Gaussian in ~ 

(8.1 ) 

is an eigenstate of B; ¢o is the center 

eigenvalues of the dual potential. 

Because the Wilson integral is an area integral of B, one 

trivially computes 
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< ct'~olW[ c]lct,~ > 
< ct'~olct,~o > ( 8.2) 

where A is the area of the Wilson loop. Note that confinement 

is stronger for small ct: This is the "disordered" state, 

characterized by a broad spread in B' [or ¢' peaked fairly 

sharply at ¢o]. Similar states can be constructed in the non

Abelian case as well. The problem, of course, is finding a meaningful 

minimum of the Hamiltonian in such confining states. 

MY second remark concerns the manifestation of the old 

field-strength copies, now in the field-strength formulation. As 

discussed in Ref. 2, the field-copies from every gauge have become 

local-action copies in the fixed gauges. In the field-strength 

description, local-action copies are sets of field-strengths, all 

satisfying I(G) = 0, related to each other by local rotations. 

I will call such rotations "pseudo'!..gauge-transformations, as they 

are not related to ordinary gauge transformations. [MY gauges are 

fixed, and the local-action copies are not gauge equivalent] . 

In QCD2, for example, 

(8.3) 

and every configuration is a member of a continuous family of local-

action copies. In higher dimension, the sets of local-action 

copies can be characterized as little "pockets" of pseudo-gauge-

equivalence. This is, of course, the possible "enhancemep.t" I 

discussed in Ref. 2, and deserves further investigation. 
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My third remark is on the possibility of "other" dual poten-

tials, besides my choice. In particular it would be interesting to 

find an 'X)la for QCD 4 

tially only rotates). 

that transforms as a gauge field (my 'X a essen)l 

Such an 'X a might be one satisfying )l 

~ (A) 
)lV (8.4 ) 

Unfortunately, it is easy to show that this k cannot exist for all 

A: The form -Fa ('X) implies the "Bianchi identity" atf('X.) - ei&('X) )lV 

= 0, and hence, using Eq. (8.4), aF(A) - ekF(A) = O. This is to be 

compared with the saddle point equations aF(A) - eAF(A) = O. For 

configurations with det F(A) i 0,12 one easily shows that A =- 'X 

and hence, from Eq. (8.4) again, that F is self-dual. This is a 

contradiction for configurations like the anti-instanton. 

I mention two other candidates for 'X)la whose merit is 

_ existence for all A. (1) l defined-by aF(A) - e'XF(A) = O. l is 

dual to A in the sense that its defining equation is dual to the 

Bianchi identity. For det F i 0?2 l = e -IF-laF. At saddle points 

with det Fi 0, A = l. This object was discussed in Ref. 12. (2) 

In the main development of the text, I computed A(F). One can define 

-k = A(tf). The utility of either of these two definitions remains to 

be studied. 

I remark finally that the path-dependent formalism17 

may be quite useful in studying general features of my reformulations. 
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Appendix A: A(F) and 3;1 Bianchi identities for QCD
4 

I work in the fixed axial gauge 0 = A
3
(txyz) = ~(txyzO) 

= A2( t~yZO) = AO( txoY OzO), and I list for reference in this gauge, 

a 
ao~a a abc~bAc FOI CA) alAo - e£ l' 

F~iA) a 
aOA2 

a abc~ A c a2AO - e£ 2 

a 
Foi A) 

a 
-a!o' 

a F3l(A) a 
a!l ' 

a 
F2lA) -a!2

a 

F~2CA) a a2~a abc ~b A c 
(A.l) 

al A2 - e£ 2 

From the form F 31 (A) and the boundary condition on ~, 

I have immediately 

z 

~(F) =~ dZ'F
31

(txyz') 

Zo 

(A.2) 

From the form F
2
lA) and the boundary condition on A2, I have 

z 

-~ dz' F 23( txyz' ) + 112( txy), 112( txoY) 

Zo 

o 

(A.3) 

Substituting ~(F) and this form for A2 into the form FliA) 

at z = zo' I obtain . 
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~(F) is the most difficult. From F
03

(A) and the boundary 

condition on~, I have 

_ ~z dZ'F
03

(txyz') + ~O(txy), ~O(txoYO) = 0 

Zo 

Using this and ~ (F) in results in 

(A. 5) 

x -J dx' F 01 {tx'~zO) + KO ( ty ) 
~ 

o. (A.6) 

This result and A2( F) substi tuted into the form F 02( A) at 

z = zO' x = ~ allows the completion of A(F), 

~(F) 

JY dy' F 02( txoyzO) 
Yo 

x J dx' FO£tx'~zO) 
~ 

(A.7) 
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I must next explore the consistency conditions, 

F{A(F)} = F; we systematically substitute each A(F) into the 

form F(A) and require it is F. There is no difficulty verifying 

F03 {A(F)} = -F03 ' F3l {A(F)} = F3l' F23 {A(F)} = F23 · Already 

for F12 however, we obtain the restriction on the" allowed 

field-strengths, 

+ 
abc eE, Jz dz"Fc (txyz") 

23 
Zo 

(A.B) 

This equation is manifestly true at z = Zo (I required it at that 

point in the derivation of A(F», so I lose no information by 

differentiating with respect to z. With simple algebra, the dif-

ferentiated form may be written 

(A.9 ) 
~ = k F 1 VV 2 ~vpa pa' E0123 = , 

which i~ recognized as the temporal Bianchi identity. 

is just our inversion A( F) (and A
3
( F) = 0). I continue to use the 

notation I a(F) = d ~~,,.. eEabcAb~c for the Bianchi forms. 
v ~ ~v ~ ~v 
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Turning now to F01 ' one obtains a similar condition manifestly 

true at Z = z00 Differentiating with respect to Z results this 

time in the second Bianchi identity 

O. (1'.10) 

Finally, substituting into F 02' I obtain 

+ 1 x dx' [dOF~2( tx' yzO) + d2F~1 ( tx 'YZo)] + Fgi txoYz
O

) 

xa 

, oc
ab

, i Zd
,' F~ltx¥z ') ,LX Ox' F~,( tx 'Y"rJ i dy ~~t tv ~)J 

Zo xo Yo 
x 

3 [- {dZ"F~3(txyZ") + J dx"F12(tx"YZ
o
l]. 

o Xo 
(A.ll ) 

As above, the derivative with respect to z of Eq. (A.ll) results 

in another Bianchi identity 

I~(F) = o. (A.12) 

However, Eq. (A.ll) is not manifestly true at z = z00 I must 

therefore reqUire it explicitly. Substituting the· restriction 

"Eq. (A.12) into Eq. (A.II) at z = zo' and doing some simple 

algebra (all terms inVOlving z-integrations cancel) results in 

o 

abc 
+ e£ 
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r- dx'F (tx'yz ) + 
[

X b 

\ 01 0 

This is manifestly true at x = xO' 

(A.13) 

so I can differentiate with 

respect to x. This results in the last ".1" Bianchi identity 

(A.14) 

I have demonstrated that the form A( F) [Eq. (2.10) in the text] 

together with the "3.1" Bianchi identities (as restrictions on 

allowed field-strengths) constitute the completely unique inversion 

.for QCD
4

. 

Appendix B: Redundancy of last .9 Bianchi Identity for QCD
4 

In four space-time dimensions, the consistency conditions on 

the field-strengths are only "3.1 Bianchi identities" - the Bianchi 

identity in the "gauge-direction" llG (for our case llG = 3) being 

reqUired only at one point in the llG-direction (for our case 

z = zo). In' this Appendix, I want to demonstrate that these 3.1 

Bianchi identities imply the full set of four. The result is gauge

independent, so, for notational simplicity, I will work as if I 

had performed the inversion in the Aa = 0 (temporal gauge). 

., 
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I begin with A(F) in the temporal gauge, and the 3.1 

Bianchi identities It = 0 (i = 1,2,3), Ioa(toXYz) = O. I will 

not need the explicit form of A(F) - two properties will suffice: 

(1) Aa(F) = 0 and (2) F{A(F)} = F (because of the 3.1 Bianchi 

dOIoa = 0 follows. identities). I want to show that then 

Consider doIoa = dO( di~~O - abc A b (F)~c ) where i eE i iO 

is summed from 1 to 3. Noting that dOAib (F) = F~i and using It = 0 

(i = 1,2,3) to eliminate all other time derivatives, I compute 

Of course d
i 

d l~j = 0 (this would complete the proof trivially for 

the Abelian case). Because Fij(A(F» = Fij , 

~asily rearranged to 

abc b ~c 
eE FOi 1<·10 

the other terms are 

O. (B.2) 

This completes the proof that the last .9 Bianchi identity is 

redundant in four space-time dimensions. 
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Appendix C: The Crucial Identity in the Quantum Variable Change A + F 

I will sketch the computation for QCD
4

• I begin with 

(I suppress products 7T. over color indices) 
a 

3 a [Ga _ (d A a _ d ~ a _ eE abc ~ b A c )] 
12 1 2 2-""}. -""}. 2 . 

The integration strategy is a slavish imitation of the steps I 

followed during the inversion (see Appendix A). 

(C.l) 

The ~ integration is easily done, using the gauge-fixing 

Al a-functional and a [G;l - a3~a]. The value of ~ selected is 

~ = ~(G) = ~~ dz'G;l(txyz')' Ignoring multiplicative constants 

one can read M [a] as the rest of the integrand wi th ~+ ~ ( G). 

To do the A2 integration, first change variables to 

f:.. a via the shift: A a -lz 
dz'Ga (txyz') + f:..~(txyz). In 

2 2 zo 23 
terms of the new integration var1ables, I have 



-47-

M[G] 

z 
3 a [G~2 + JdZ I {dl G~3 + d2G;1}( txyz I) - dl'2

a 

Zo 
Z 

+ e£abC~b(G){ -1 dZIG~3(txyz') + /':,2a }]. 

Zo 

(C.2) 

"Spli ii' the last a at z Zo (into the constraint at Zo times the 

z-derivative constraint) 

a a [G
12 

+ •• J ( C.3a) 

(C.3b) 

3 a [a3G~2 + dlG~3 + d2G3l + e£abcG~l{_ J:ZIG~3(tXYZI)+/':,~} 
Zo 

The /':,2
a 

integrations can now be done, using the first and fourth 

a-functional in Eq. (C.2), 

value selected is /':,a 
2 

and the first factor of Eq. 

l xdxl G~2(txlyZo). Thus 

~ 

(C.3b ). The 
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M[G] 

3 a [G~l + ... ] a lG~2 + ... ]. (C.4 ) 

where IOa(G) is the temporal Bianchi form. 

To do the ~a integrations, the most economical shift 

- rz dzIG~3(txyzl) - rXdXIG~l(txlyz) - j(Y dyIG~2(txOyIZO) 
Jzo JxO YO 

+ /':,Oa , with /':,Oa the new variables of integration. One must split 

a [G~l + ... ] at zo' and a [G~2 + ... J at zOo Then resplit 

a[{G~2 + ... }zo] at ~. I leave the algebra as an exercise for 

the interested reader. 

and the final result is 

- a ["3.1"] 

The value of /':,a 
o selected is /':, a = 0, o 

(C.5) 

wi th no further functional measure. As might be anticipated from 

previous discussion, only 3.1 Bianchi identities emerge in four 

dimens ions. (The same is true for QED 4.) By Appendix B, however, 

the last.9 Bianchi identity is redundant, so 

a [I( G)] 1Ta [I a( G)J 
l.l ]J 

a ["3.1"] a [0] (C.6 ) 
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Up to multiplicative constants then,I have shown 

I,fIA IS [CGF} IS [G - F(A)J IS [I( G)] (C.7) 

I~ 

as stated in the text. The form Eq. (C.7) is uniform for all gauge 

theories in any number of dimensions. 
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Without the fourth Bianchi identity, I must evaluate F~2[A(B)] 

directly from ACB), Eq. (7.11). The final result is 

d I a 
dt 0 

," as .quoted in the text. 

'~ 

Appendix D: Time Dependence of. I~ 

I need to compute 

(D.l) 

I shall ignore ordering problems here, though this may need further 

investigation. I begin by noting that the other three Bianchi 

identities follow from the Hamiltonian 

(D.2 ) 

I can use these to do the time derivatives of B.a in Eq. (D.l). 
1 

After some algebra, I arrive at 

(D.3) 

(D.4) 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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FIGURE CAPTIONS 

Fig. 1: Three Wilson Integral Paths. 

Fig. 2: A Wilson Path in a non-Abelian Theory. 
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