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Abstract

DAVID EARL WEMMER
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Lawrence Berkeley Laboratory
University of California
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In the first section of this work we present the theory and

experimental applications to analysis of molecular motion of chemical

shielding lineshapes obtained with high resolution double resonance NMR

techniques. Analysis of l3C powder lineshapes in hexamethylbenzene (ID~)

and decamethylferrocene (DMFe) show that these molecules reorient in a

jumping manner about the symmetry axis. In DMFe it is shown that jumps

of 2rr/5 radians occur most often.
13C powder lineshapes in pentamethyl-

benzene show that the motion present above the crystallographic phase

transition at 24°C is a nonuniform rotational motion about the pseudo six-

fold axis. Several models for this motion are discussed. Analysis of

proton chemical shielding lineshapes of residual protons in heav~j ice

(D
2

0) show that protons are exchanged among the tetrahedral positions of

neighboring oxygen atoms, consistent with motion expected from defect

migration.

The second section of this work describes the application of

Fourier Transform Double Quantum NMR to measurement of chemical shield-

ing of deuterium in powder sa~ples. Studies of partially deuterated

benzene and ferrocene give equal shielding anisotropies, 60 = -6.5 PPM.

Theoretical predictions and experimental measurements of dipolar

couplings between deuterons using FTDQ l~ are presented. Crystals of
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BaC£03·DZO, a,S d-2 HMB and a,S,y d-3 HMB were studied, as were powders

of d-2 liMB and anisic acid.

The third section of this work discusses general multiple quantum

spectroscopy in dipolar coupled spin systems. Theoretical description

is made for creation and detection of coherences between states without

quantum number selection rules 6m = ±l. Descriptions of techniques for

partial selectivity of order in preparation and detection of multiple

quantum coherences are made. The effects on selectivity and resolution

of echo pulses during multiple quantum experiments are discussed.

Experimental observation of coherences up to order 6 have been made in

a sample of benzene dissolved in a liquid crystal. Experimental

verifications of order selection and echo generation have been made.
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I. BASIC FORMALISM

A. Introduction

The development of NMR techniques has often been aided by the

simplicity of theoretical description of magnetic spin systems. This

simplicity arises since there is a finite number of energy levels to be

considered and since the energies involved are much smaller than thermal

energies under virtually all experimental conditions. In this chapter

we briefly present the basic formalism to be used in understanding exper-

iments in the later parts. The Hamiltonian is composed of several parts

since for many of the experiments several couplings must be considered.

However, in this section we describe terms only in the presence of the

Zeeman interaction, and postpone description of effects arising from the

simultaneous presence of several couplings until necessary to describe

specific experiments. Three general classes of couplings will be

treated; spins coupling to external fields (static and radio frequency),

spins coupling to surroundings (quadrupolar and chemical shielding),

spins coupling to other spins (homonuclear and he~eronuclear dipolar

couplings), each in turn.

B. Density Matrix

In general the Hamiltonian of a spin system for NMR studies may

be written as a sum of several terms:

'J{ = 'J{ + 'J{ f+ JC + 'J{ +J{
z r cs Q D

(1-1)
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The dynamical evolution of the system may be described through the den-

sity matrix. In its most general form, the full equilibrium density

matrix P
E

is given by

where B= l/kT. (1-2)

However, if one notes that kT » II JQI, (hw !k~ O. 01 K for protons in a
o

42 kG field), then the exponential may be expanded and only the first

terms kept to give the high temperature approximation

1- BJC
PE ~ Tr(l) . (1-3)

Since the constant operator 1 will not enter into the calculation of any

observables we may alternately use the reduced density matrix

The expectation value of any operator Q may then be calculated

Tr(pQ).

The time evolution of the density matrix may be calculated from the

Von Neumann equation (h = 1):

(1-4)

(1-5)

ddt p (t) = i[ P (t) ,J{] (1-6)
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The formal solution to this equation for a time-independent Hamiltonian

is

pet)
-:iJ{'t

= e p (0)
:iJ{'t

e (1-7)

ten in terms of the angular momentum operators

More general solutions including explicit time dependence in X and relax

ation effects are known
l ,2,3 but will be added only as needed. Frequent-

ly we will express p for a spin I as an expansion in a complete operator

basis ((21+1)2 operators), and calculate coefficients of particular basis

operators as a function of time. Explicit examples of this will appear

in Chapter III.

C. Hamiltonians

The Hamiltonians for magnetic resonance experiments may be writ-

I , I , I which form ax y z

spin vector. The coupling of this spin vector to applied or intrinsic

local fields may be described through coupling tensors. Such second

rank tensors ~ may be described in a Cartesian basis as 3x3 matrices,

A... The coupling Hamiltonian between two vectors ~ and X is
1J

X.A .. Y .•
1 1J J

(1-8)

i,j=l

It is generally convenient to express the Hamiltonian in units of fre-

quency (v) or angular frequency (w) rather than energy.
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1. Zeeman, rf

First we will describe the interaction of the spin with exter-

nally applied fields. For a static field this is termed the Zeeman

coupljng and may be written:

(1-9)

where ~ = - YI k, 1 is the identity matrix and EO = (0, 0, HO)' defin-

ing the field to be in the z direction. This can be written in simpler

form

Jf
z

(1-10)

The spin may also couple to a radio-frequency oscillating magnetic field,

which we will term the rf part of the Hamiltonian. Such a coupling is

given by

J( =HoZoI
rf -1 - -

(I-II)

where HI = 2 (H , H , 0) coswt, assuming we apply the rf field only inx y

the x-y plane. Frequently we will take the rf field to define the

direction of the x-axis. In such a case the Hamiltonian may be written

more simply as

(1-12)

For many experiments it is convenient to go into an interaction

picture defined by the transformation operator

T = e
-iwI t

z (1-13)
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This picture is called the rotating frame, and corresponds to observing

the spin from a frame which rotates at angular velocity w about the z -

axis. In this frame

J(
z

L1wI
z

L1w =w -wo (1-14)

and the rf term becomes time independent

(1-15)

The density matrix above (1-4) may also be transformed into the rotating

frame,

*p = e
-iwI t

z
p e

iwI t
z

(1-16)

and the Hamiltonians in (1-7) are taken in their rotating frame form.

Henceforth the density matrix will always be used in this form and the

asterisk will be dropped.

2. Chemical Shielding

The Zeeman coupling may be altered somewhat through the screen-

ing of the nucleus by the surrounding electrons. This effect is termed

chemical shielding and may be described in a manner similar to the Zeeman

coupling

J{
cs

H • Q • .1
~O ~

(1-17)

where 2 is the shielding tensor given as
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° °xx xy

Q =Y ° °~ I yx yy

° °zx zy

Since this coupling is much smaller than the Zeeman, we need only consider

the secular part, that is the part which commutes with X. It is then
z

X
cs

(1-18)

We may take this tensor to be symmetric (antisymmetric parts can only con-

2
tribute a second order term). There is then a coordinate system in which

~ is diagonal, which we call the principle axis frame. In this frame we

will term the diagonal elements 011' 022 and 033 where 011 ~ 022 ~ 033'

Since these terms are generally very small we will measure them in parts

per million (PPM) of the applied field. !J.0 =033 - 1/2(011+022) is de-

fined to be the anisotropy of the shielding tensor, 11 = 011-022 the asym-

metry, and 0
iso = 1/3 Tr(g) = 1/3(011+022+033) the isotropic shift. The

angular dependence of anisotropic coupling terms is discussed below,

Section ID.

3. Quadrupolar Coupling

While the Zeeman coupling comes from the interaction of the

magnetic dipole of the nucleus with the external magnetic field, an addi-

tional coupling may exist between the nuclear quadrupole moment and elec-

tric field gradients from the surrounding electrons and nuclei. The
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Hamiltonian for this interaction is

eQV ~ ~:K = zz 312 _ 1(1+1)+ 1 (I2 + 1 2 )
Q 41 (21-1) z rQ + - (1-19)

Tilhere Q is the nuclear quadrupole moment, llQ = (V - V ) Iv ,
yy xx zz

Iv 1~lv 1~lv I are the principle values of the electric field gradient
zz yy xx

tensor. In the presence of a large magnetic field (/I X z " > > " :K
Q
", a

criterion met for all experiments described herein), we keep only the

secular part

eQ V [ ~
XQ = 4I(2~~1) 31; - I(I+l~. (1-20)

For a spin with I = 1/2, (31; - 1(1+1) 0, so the quadrupole

interaction will only be observed for spins with I ~l. It is also worth

noting that this Hamiltonian is bilinear in I, the full implications of

which will be described in Chapter III. The transformation properties of

the field gradient tensor are the same as for the shielding tensor.

However, Laplace's equation requires that the field gradient tensor be

traceless,that is V + V + V =0.
xx yy zz

4. Dipolar Coupling

The energy of a spin is also effected by the local fields gen-

erated by its neighbors. Such effects may either be through space coup-

lings, termed dipolar or direct couplings, or transmitted through bonds,

termed spin-spin or J couplings. Since, in general, for the systems of

interest here the former are many times larger than the latter, we will

only treat dipolar couplings. These are of two types, between like spins

or homonuclear, and between unlike spins or heteronuclear. For either



8

type of coupling the full coupling Hamiltonian may be written between

spins I and Sas

where D••
~J

(o .. -3e.e.)
~J ~ J

i,j x, y, z, o..
~J

(1-21)

is the Kronecker delta function, e = (e , e , e ) is a unit vector from
x y z

spin I to spin S, and r
IS

is the distance between them. From the defini-

tion it is clear that this coupling tensor is symmetric and traceless.

As in the case of the quadrupolar Hamiltonian we keep only the secular

part of X
D

in the presence of the Zeeman coupling. If the coupling is

homonuclear and the I-S internuclear vector is along the field direction

(3r S - I· S) •
z z

(1-22)

However, if the dipolar coupling is heteronuclear the last term becomes

nonsecular so

= -
y y
~ 21 S •

3 z z
rrS

(1-23)

If many spins are present the dipolar Hamiltonian is simply a sum of

terms, as in (1-22) or (1-23), over all pairs of spins.

D. Rotations

We have described the Hamiltonians above in a single axis sys-

tern, with H along the z ~xis. To relate the laboratorj frame and theo

principle axis frames and parameters of each coupling, then we must also
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describe the orientation dependence of each coupling tensor. Fortunately

this dependence may be described for a general tensor, then applied to

each case as needed.

1. Cartesian Basis

The tensors above have been described in Cartesian form. These

may be transformed from one frame of reference to another through appli-

cation of an Euler transformation matrix. The orientation of the new

frame with respect to a previous one is defined by a set of Euler angles

st = a, B, y
4(using the convention of Rose ). Such a transformation is

described by a rotation of a about the z axis to give x' ,y' ,z!, ~irections

followed by a rotation of B about the y' axis to give x", y", z" direc-

tions, then finally a rotation of y about z" to give the final frame

z '" , y"', z '" (Figure 1). Mathematically this may be described by a

transformation matrix ~ applied to the coupling tensor to give the coupling

in the new frame,

~R ~+ ~ S

\"here

cosa cOI:d3 cosy sina cosB cosy
-sina siny +cosa siny

~ -cosa cosB siny -sina cosB siny
-sina cosy +cosa cosy

cosa sinB sina sinB

-sinB cosy

sinB siny

cosB

(1-24)

(1-25)

This form is also useful for describing motion about one axis. The av-

erage tensor may be calculated by averaging, with an appropriate weight-

ing function, over one of the transformation coordinates. The process
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may be repeated to transform to yet another frame, however for two

transformations the spherical tensor form below is often more convenient.

The most common transformation is from a principle axis frame to the lab

frame, explicit examples of which are given in (3) below.

2. Spherical Basis

The orientation dependence of the Hamiltonian may also be de-

scribed through use of spherical tensors. Spherical tensors are formed

~ (~)
for the coupling tensor, A~, and for the vector components, T

m
(see

Appendix A for details). These spherical tensors are linear combinations

of the Cartesian components which transform as representations of the

rotation group. The coordinate transformation ~ is generated by summa-

tion of A tensor elements with elements of the Wigner rotation matrix

D(n)

(1-26)

The full Hamiltonian is then written as a contraction of the A and T

tensors

J(

2 ~

L L
9.=0 m=-9.

(1-27)

A second transformation ~' is generated simply by repeating the procedure

of (1-26)

(1-28)
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Again the effect of motion may be introduced as an average over one of

the transformation coordinates.

3. Orientation Dependent Tensors

We now apply these transformation operations to the tensor

couplings described in C above. In each case we transfer the coupling

Hamiltonian from its principle axis system to the lab frame defined by the

magnetic field direction. The transformations will be given by sets of

Euler angles (a, S, y) subscripted to signify that in general this trans-

formation is different for each coupling. The chemical shielding may

thus be written as either

or in terms of spherical components

{
l 2 T) 2 ")

J( = -3 a. + -3 lIa P2 (cosS )+-2 sin S cos 2 a ~ >YIHOI .
cs ~so cs cs c:; z

(1-29)

(1-30)

The quadrupole coupling may be written in an exactly analogous fashion,

remembering that the tensor is traceless

_{ 1
J Q = "4 wQ

(1-31)

3e
2 V -V

where gO V
xx yyw

Q
eq n =h 21 (21-1) zz Q V

zz

The dipolar coupling is also traceless and must be axially symmetric

(n = 0) and may then be written as
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(1-32)

where 0IS

couplings.

1 for homonuclear couplings and 0
1S

= 0 for heteronuclear

The angular dependence described in this section is also useful

to describe the behavior of the spectrum of a single crystal as it is

rotated in a magnetic field.



13

II. EFFECTS OF MOTION

A. Introduction

In the last chapter we have seen that many of the couplings

which determine the NMR spectrum of a solid are anisotropic. Motion of

the spins may then cause averaging of various parts of the Hamiltonian,

inducing a change in the observed spectrum. Averaging of dipole-dipole

couplings, observed as a narrowing of the resonance line, has been used

extensively since the early days of NMR to detect motion in a wide variety

f 1 · d 5,6 ... h fl .a so l s, most contalnlng elt er protons or uorlne. Several reviews

These relax-

have been written describing such work. 7 ,8,9 Since many coupled spins are

present, the resonance line consists of one broad line with little, if any,

structure. Characterization of the motion is achieved through calculation

of the linewidth or second moment to be compared with experiment. Although

useful information may be obtained in this way, the characterization of the

motion is not unique, and requires a knowledge of the crystal structure for

calculation of the second moment and linewidth. In addition, while sensi-

tive to the presence of motion, this approach cannot provide any information

about the microscopic dynamics of the motion. Linewidth studies are often

supplemented with studies of relaxation times TI , TIP' and TID'

ation times are more sensitive to the dynamics of the motion than to the geo-

metry and hence are very useful for measurements of correlation times and

activation energies. However, again determination of the nature of the

motion is achieved through model calculations where often more than one model
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is consistent with experimental data. In this chapter we present examples

of a new high resolution approach to the study of molecular motion in

solids, which gives more information than was previously obtainable with

any technique. By studying the details of the chemical shielding lineshape

as a function of temperature we obtain information about both the symmetry

and dynamics of the motion. Several examples are presented in later sections.

B. Decoupling: Approach to High Resolution

To use the chemical shielding tensor for studies of dynamics we

must be able to remove any other couplings which could degrade resolution.

By observing only spin 1/2 nuclei we assure that quadrupole couplings

do not interfere. Dipolar couplings are removed through use of dilute

spin NMR as pioneered by Pines, Gibby and Waugh.
13

We will observe a

spin species which occurs at very low concentrations in the sample. In

this case the average distance between observed spins is large whence

from Eq. 1-22 we see that the homonuclear dipolar coupling becomes very

small. The spins to be observed may be naturally dilute (as 1.1%13C in

l2 C) or may be intentionally diluted in another isotope (1% lH in 2H).

While dilution eliminates homonuclear couplings, heteronuclear dipolar

coupling to an abundant spin species elR or 2H) may still be present.

By strongly irradiating these spins near their Larmor frequency the

broadening from the heteronuclear couplings may be removed. Such "di

polar coupling" is well known for spin 1/2 nuclei. ll ,12,13 The accepted

criterion for achieving decoupling is that the strength of the rf field,
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in frequency units yH
l

, be greater than the width of the abundant spin

line or undecoupled dilute spin line, whichever is larger. If the

abundant spins have 1=1, their resonance line may be severely broadened

by quadrupole coupling to a width ~Q' apparently requiring that

yH
l

> > w
Q

• Since w
Q

is generally quite large (- 100 kHz for 2H) this is

very difficult to achieve experimentally. However Meiboom and co

workers
14

realized that in such a quadrupolar system rapid double quantum

transitions between the m = ±l levels could also provide decoupling since

the m = a level does not affect the observed spins. Although their work

was in a liquid crystal system, the technique has been extended to gen

eral solids by Pines, Vega and Mehring. 15 ,16 To compare the criteria for

decoupling through single and double quantum transitions we will apply

h . h 3,15,16 h . h d . 1 fco erent averaglng t eory to eac , treatlng t e lpO ar part 0

the Hamiltonian as a perturbation.

1. Single Quantum

For coupled spin 1/2 nuclei, the rotating frame Hamiltonian is

(S spins observed, I spins decoupled, I
p L

j

I .p = x,y,z).
jp'

(II-l)

where K
IS

is the appropriately tuncated dipolar Hamiltonian

\
L b.S I.

J z J Z

j

compare (I - 32) (II-2)

and couplings among I spins have been ignored.
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To calculate the eff~ct of the first two terms of UI-l) on the third, which

is responsible for broadening the S spin resonance, we first tilt the

Hamiltonian to be along the effective field direction defined by the

combination of I and I terms. This is done with a tilt operator along,x Z

the y direction.

T
y

= e
i8I

y (II-3)

where 8 is the angle between the z axis and the direction of the effec-

tive field

-1
8 = tan (II-4)

In this frame the Hamiltonian becomes

if = -w 1+ '\b.S (cos8 1. + sine 1.).
e z 1- J Z JZ JX

j

(II-5)

The first term then induces a cycl~c and periodic time dependence in the

second.

~S (t) = e
-iwI t

e Z
+iw I t__T e Z

Jtrs e (II-6)

'\ b.S I. cos8+ \/ b.S sin8(cosw t 1. +sinw t1. ).L J Z J Z _ J Z e JX e JY
j J

we use
2TTTo calculate the effect of this over one cycle of time t

c
16

the average Hamiltonians defined by Waugh (keeping only enough terms to

guarantee one nonzero term):
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t

Jt -1

fo

C

Je (t) dtt
c

t
;;;:;(1) _1 f

o
cJL (2it ) ~ dt

2c

t
-(2) (6t )-1 fo

C

dt
3

Je
c

For the case at hand Je(t) = ~s(t) giving

') b. case S I.
'-- J Z JZ
j

(11-1)

(II-8)

b
2

..i sine
we

-(2)
J(

j
3

~~
. w
J e

2 1
S (coseI. - -2 sine I. )

Z JX J Z

3
S (P2(cose)I. - sine cose I. ).

Z JX JZ

The S spin free induction decay is given by

-iJe t
s

G(t) = Tr (S e
x sx

+iJC t
s

e ) . (II-II.)

Therefore only terms which do not commute with S must be considered.
x

2 -(1)
Since [S , S J= 0 the J( term will have no effect on the S spin resonance.

z x

Decoupling is achieved as the remaining terms, Jt andjf(2), become small.

For the leading term this means cose ~ 0, and for a fixed value of 6w

that wI > > 6w. If the I spins are irradiated on resonance (6w =0, e = 90°)

X(2) is the leading nonzero term. This becomes small for we = wI > > D, wherc:

characterizes the average dipolar coupling and may be written as the square
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15root of the second moment of the operator part of (11-10),

(II-12)

3 3 2 1/2
Tr [S L: D. I. , S ]

z j J JX x

Thus, the rough criterion that rf strength be greater than the width of

the line to induce decoupling is valid. However we will now show that

for double quantum decoupling a less stringent condition must be met.

2. Double Quantum

To describe decoupling in a spin system of quadrupole coupled

. 18 19nuclei we will use the fictitious spin 1/2 operators of Vega and Plnes. '

These operators are very useful for description of spin 1 systems and

further use of them will be made in Chapter III to describe coherent ef-

fects, and many more details are presented there. Nine fictitious spin

operators I p£ are defined in terms of the spin angular momentum operators

I as:
p

I = 1:. I
pI 2 p

I
1

(I I + I I )=p2 2 q r r q

I
1 (1 2 12) x,y,z or cyclic=-- p,q,r =p3 2 q r permutation.

(II-l3)

with commutation relations:

[1.,l
k

]
PJ p

j ,k, £ 1,2,3 or cyclic
permutation.

(II-14)
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Each set of three operators with given p form a spin - 1/2 subspace

which, under certain conditions, may evolve independently of the other

subspaceso 1
zl

' I Z2 and I
z3

have matrix elements only between the ±l

levels and will. be used to describe double quantum effects. The I spin

Hamiltonian is, in the rotating frame,

J( = - &01
z

(II-IS)

This may be rewritten in terms of the fictitious spin operators as:

and again ignoring couplings among I spins

JeIS = L. 2b j Szljz1 °

j

(II-l6)

(II-l7)

We now tilt to a new frame in a fashion analogous to (11-3) with the tilt

operator

where

(II-18)

(II-19)

When w «w ,j,~O
1 Q' 'f'

-1 2wltan -wQ

d 01 0 b 0 19and the ti1te Haml tonlan may e wrltten:

2
wI

JC = -2&01 -
zl wQ

(II-20)
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Since I
x3

- I
Y3

commutes with all other terms of the Hamiltonian, it

may be ignored. Then the effective part of the Hamiltonian is

(II-2l)

At this point the Hamiltonian is exactly analogous to the single quantum

Hamiltonian of (II-I), now with all operators in the z, or double quan-

tum fictitious space. We then proceed in exactly the same manner as

above. First we tilt so that the z,l axis is along the effective field

direction defined by the combination of terms I
Zl

and I
z3

' which is ac-

complished by a tilt with I
Z2

i8I
Z2

= e

with

(II-22)

8 (II-23)

In analogy to (II-5) this gives

;0' = - w I 1+ \ b.sz(coseI. 1+ siner. 3)
e z L J JZ JZ

j

where

(II-24)

w
e

(II-25)
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Following (11-6) and (11-7) above we obtain for the average Hamiltonians

x ~ b. 2cose S I. 1
J Z J Z

j

-(1) =)
b~ 2 -t sineljzl)J( ~ 4sine S (coseI. 3
W Z JZ

j
e

-(2) =)
b~

S3 (p2 (case) 1. 3 - sine case I. 1)·Jf ~ 8sine
2 Z JZ JZ

W
j e

(II-26)

(II-27)

(II-28)

Again X(l) is ineffective so we want to make J( and Jf(2) small. Then

cose - a requires that for fixed !Jw we have wi > > 26ww
Q

• If the spins

. d . d ( ",. a e 9 0°) h hId' . ;u;( 2 )are 1.rra 1.ate on resonance OIJJ = ,= t en t e ea 1.ng term 1.S cJ\. •

As for single quantum we then require that w > > D, in this case giving
e

> > D or w > > VWI>
1 Q

(II-29)

where D is defined in direct analogy to (11-12). In many cases this

criterion is much less severe than the wI > > w
Q

= 6w which would apply

for single quantum decoupling. In deuterium-proton systems where

V
Q

= 100 kHz and D = 5 kHz are reasonable couplings, the requirement

VI »22kHz can easily be met where Vl»lOO kHz cannot. However

for double quantum decoupling, the adjustment of decoupling frequency is

much more critical since it enters as a product with wQ' which may be

very large. In the above analysis we have left out the effect of cou-

plings among the I spins. For deuterium, and most other quadrupolar

nuclei, the homonuclear dipolar couplings are much smaller than the
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quadrupole couplings and hence may be ignored without serious effect.

For decoupling spin 1/2 nuclei with large gyromagnetic ratios Cl H,19F ,3lp )

the homonuclear couplings may be larger than the heteronuclear couplings.

In this case, of course, the I-I couplings must not be ignored. If the

spins to be decoupled occur as strongly coupled groups of n spins, weakly

coupled to other spins, their behavior may be similar to a single spin

n/2 nucleus, and multiple quantum effects may again become important.

Such effects will be discussed further in Chapter IV. As n becomes large

the requirement for achieving decoup1ing is once again that the decoupling

field in frequency units be larger than the width of both the I and S spin

resonances. In the work presented here double quantum effects are very

important in decoup1ing 2H from 1H, but probably less important in decou

pIing 1H from l3C. From these arguments we may conclude that decoup1ing

is feasible both for spin 1/2 and spin 1 nuclei to give high resolution

chemical shielding powder patterns.

C. Sensitivity Considerations

While dilution is necessary to reduce homonuclear dipolar cou

plings, it also substantially reduces sensitivity. This loss may be at

least partially offset through use of signal averaging and cross polar

ization enhancement techniques. All experiments described here have been

done using pulse-Fourier Transform methods.
20

Through use of high speed

computers, many transient responses may be digitized and averaged to im

prove signal-to-noise ratio before Fourier Transformation to give the

spectrum. A description of the spectrometer and experimental setup is

presented in Chapter V. While in theory, some of the experiments
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(those in Chap. II) described here could be done with conventional CW

methods, the high decoupling power usually required makes this approach

practically unfeasible. In addition, the techniques of Chapter III and

Chapter IV depend on nonlinear responses of the system, and require

coherence transfer methods for detection requiring that they be done with

h 1 d h F 0 h l3C b dt e pu se approac. or exper~ments were was 0 serve Proton

Enhanced Nuclear Induction Spectroscopyl3 (PENIS) was used. This tech

nique has been described in detail elsewhere,2l,l3 hence we will present

only the aspects important to the present experiments. Polarization is

transferred from the abundant spins (lH) to the dilute spins (l3C) by

h 0 Z f h 0 "h "f 22matc ~ng eeman energy 0 t e two sp~n systems ~n t e rotat~ng rame.

Fluctuations in the dipolar couplings of the abundant spins from the

flip-flop part of the dipolar Hamiltonian (second part of (1-32)) cause

exchange of energy between the two spin systems. If the abundant spin

species was prepared at very low temperature in the rotating frame, as

by spin locking, then the dilute spin system will be cooled, yielding a

1 l " t" Th d" °d t" show that for l3C wearge po ar~za ~on. ermo ynam~c cons~ era ~ons

expect the maximum polarization attainable in this manner to be four

times the polarization attained by equilibration in the static magnetic

field.
l3

When contact is made between the two spin system, it takes

some time to reach equilibrium. In many cases the approach to equilib-

rium may be approximated by an exponential growth of carbon magnetiza-

tion, with a time constant TIS.

d " l"· 23,24
ur~ng cross po ar~zat~on,

Transient oscillations have been noted

(and in fact exploited
25

), but are not

important for the present analysis. In addition to transfer of magneti-

zation to carbon, the proton system is heated through spin lattice
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processes with a time constant TIp. If TIP is the same order as TIS or

shorter then the carbon magnetization will never reach its equilibrium

value. The magnetization as a function of cross polarization time can

2
be calculated, and is shown in Figure 2. It is clear that for given

values of TIS and TIP there exists an optimum cross polarization time

for maximizing signal to noise. In many rigid solids TIp is very long

and any cross polarization time longer than TIS will give good results.

However, when motion of the spins is present, as for cases of interest

here, TIP may be very short and the cross polarization time must be ad

justed accordingly. Optimum parameters are described in Appendix B.

When TIP becomes very short the maximum polarization obtainable for 13C

becomes smaller, eventually dropping below the equilibrium Zeeman value.

Even at this point, however, there may be an advantage of cross polariza-

tion over free induction decay experiments. This advantage stems from the

fact that the spin lattice relaxation time, T
I

, for carbon is generally

much longer than for protons. In a free induction decay experiment one

must wait a time of the order T
I

(13C) before repeating the experiment,

Iwhile for cross polarization the optimum waiting period is 1.26 TI ( H)

(see Appendix C). The pulse sequences used for both cross polarization

and free induction decay experiments are shown in Figure 3. Through use

of signal averaging, and where applicable cross polarization, very good

signal to noise may be obtained for even very broad powder spectra. As

we will see, good signal to noise is necessary for the lineshape analysis

to be performed.
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D. Limiting Cases for Powder Lineshapes

1. Rigid

While it is often useful to study samples which are single

crystals, making possible systematic variation of the relative orienta-

tions of molecular and laboratory axis systems, it is often desirable

and sometimes necessary to work on powdered srouples. A powder sample

will be taken to mean a collection of crystallites of some material pre-

pared such that there is a uniform distribution of crystal axis orienta-

tions relative to the laboratory axes. Unlike a glass, which is disordered

on a molecular scale, the samples are locally crystalline, with well de-

fined crystal structure. The lineshape for a tensor coupling in a

powder sample (we will consider chemical shielding) was derived by

26
Bloembergen and Rowland. For rigid solids the basic lineshape for

these couplings depends on the symmetry at the nucleus. If the symmetry

is sufficiently high, tetrahedral or octahedral, then a tensor descrip-

tion is really not necessary. The position of the resonance line will

have no angular dependence, and may be characterized simply by an iso-

tropic chemical shift 0 .. The line shape for a powder of such molecules
1.

will consists of a single sharp line at 0 ..
1.

An excellent example of this

13
is the C spectrum of a sample of powdered diamonds obtained by Van der

27
Hart. The carbons are located on sites of tetrahedral sYmmetry and the

spectrum is a single sharp line. If the site of the spin has G symme
n

try, where n ~3, then the chemical shift must be equal everywhere in the

plane perpendicular to the C axis. This is termed axially symmetric with
n

angular dependence (from (1-29)):
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(11-30)

where al and all are respectively the chemical shifts perpendicular to

and along the Gn axis, and S is the angle between the Gn axis and the

applied field, or laboratory z axis. To describe the lineshape for a

powder of such molecules, single spin spectra must be added for all

possible orientations, with appropriate weights. More formally, for an

orientation ~ with spectrum l(w,~) a powder gives

l(w) J~ l(w,~) d~ (11-31)

For an axial shielding tensor this gives

1 (w) - (a
l

- w) -1/2

( ) -1/2
w - a

1

for

for
(11-32)

An example of this type of lineshape is given in Figure 4a, showing the

characteristic sharp spike on one side of the spectrum. For a spin in

a site with lower symmetry than discussed above, the full angular depen-

dence from (1-29) must be used.

J° -oI(w) - 33 11
W-0

11

26
The resulting lineshape is

(11-33)
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These are complete elliptical integrals of the first kind, which are

28
tabulated in Abramowitz and Steegun. An example of this type of line-

shape is given in Figure 4b, showing the characteristic sharp spike in

central part of the line. It is worth noting that if 011= 022 or 022= 033

accidentally for a site of low sYmmetry, an axial tensor as described above

will be obtained. In real spectra the lineshapes described above are

broadened by residual dipolar couplings, relaxation etc., so that the dis-

continuities (spikes) are made finite. Even with broadening, however, the

relatively sharp edges at Oland On or °11,°22 and 033 make possible

quite accurate determinations of the principle valves of the shielding

tensor directly from the powder spectrum. If several chemically differ-

ent sites are present, the resulting lineshape is simply a sum of the

powder patterns described above. In some cases it is possible to deter-

mine principle valves of four or five partially overlapping tensors from

. 1 d 30a slng e power spectrum.

2. Rapid Motion

When rapid (the definition of this will be made precise shortly)

molecular motions occur, the shielding tensors are averaged to give new

tensors, for which site sYmmetry is replaced by the symmetry of the mo-

tion. The extreme limit of this is a liquid where both rotational and

translational motions are rapid and isotropic, and only the trace of the

shielding tensor may be observed. In plastic crystals molecules also

undergo isotropic reorientation, though ,translational motion is quite

restricted. The tumbling motion alone is enough to average the tensor

so that only the trace may be observed. An illustrative spectrum for a
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molecule in a plastic phase is shown in Figure 5. Many other molecules

undergo a more restricted motion in the solid state. Particularly com-

mon are molecules which reorient about one axis. If a free rotation

occurs about this axis the resulting shielding tensor will be axially

symmetric, with the unique direction along the rotation axis. The re-

suIting tensor may be calculated from (1-24), by taking the new z axis

along the rotation axis and averaging over the third Euler angle, y.

We thus obtain

R R 122 2 122 2 1.2
011 = 022 = Z(cos acos S+sin a)ollz(sin acos S+cos a)022+Zs~n Sa33

(II-34)

R 2. 2
S

. 2 . S 2
S033 = cos a s~n °ll+s~n as~n 022+ cos 033

showing the expected axial symmetry (Figure 6). If two rotational motions

are present, both rapid but one much more than the other, the spectrum

may be obtained by sequential application of this single axis calculation,

first taking the static tensor to the fastest motion axis system, then

transforming to the second motion frame, giving the observed tensor.

Such an approach has been used to interpret phosphorous shielding tensors

in phospholipid bilayers.
3l

E. Slow Motions

While study of shielding tensors in the static and rapid motion

limits can provide information about the motion occurring, it has recently

32 33 34 . 33 35been shown theoretically , , and exper~mentally , that much more

information may be obtained through detailed studies of the powder line-

shape in the slow motion regime. Often it is possible (when phase
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transitions do not interfere) to vary the motion from static to rapid

continuously, by variation of sample temperature.

To relate physically interesting parametersto the experimental

lineshapes, models for the motion must be developed. In the present

work two models are considered and the lineshapes generated with their

assumptions are used to extract meaningful information through comparison

with experiment.

1. Random Rotations

We first consider two models which are very similar, rotational

Brownian motion and rotational random jumps. Rotational Brownian motion

may be described as a random walk through angle, characterized average

angle and frequency of jumps. Two cases are of interest, rotational dif

fusion (Brownian motion) about a fixed axis and general isotropic rota

tional diffusion. The choice between these for a particular system de

pends on geometrical constraints from crystal structure and may be deter

mined from the lineshape in the rapid motion (high temperature) limit.

Whether rotations occur about a fixed axis or a random axis, we may

specify the average time T
R

between jumps. This rotational diffusion is

in principle identical to translational Brownian motion, both are station

ary Markov processes. This motion contributes to the evolution of the

density matrix (from which the lineshape may be calculated) in a simple

32
way:



where

dp(r2)
dt

=-i [Je,p(r2)l + r
~

30

(11-35)

r =
~

(11-36)

is the contribution from rotational diffusion and ~ describes the orienta-

tion of the molecular axis system. In the high temperature approximation,

ignoring saturation, and assuming steady state, (11-35) may be Fourier

Transformed to give (AB =[A,B])

[w + JeD + Je (r2) + i r 1p (r2) = - Cl
cs ~

where w is the observation frequency, JeD is the Zeeman Hamiltonian (1-10)

and JC is the orientation dependent chemical shift (I-3D). The solu-
cs

tion of this equation for p, as a function of w may be used to calculate

the spectrum

I (w)
~

(11-37)

A model of this type, in which all orientations of a molecule are equally

probable seems most reasonable in a material lacking local structure,

such as a glass, or on a surface.

The rotational random jumps model is in principle very similar

to rotational diffusion, but jumps occur through random angles, with all

angles equally probable, as an activated process, with a rate constant

X. This model yields lineshapes very much like those for rotational dif

32a
fusion and will not be discussed further. This model is sometimes

referred to as "hard collision" and is similar to the model used for
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some of our calculations, Section II.,..F.

2. Symmetry Related Jumps

In a crystalline material we expect only a few allowed molec-

ular orientations. Motions which occur might then be restricted to

jumps which correspond to sYmmetry operations for the molecule. We may

specify the basic molecular orientation by a set of angles Q. For such

an orientation a spin may experience different chemical shifts in each

of n sYmmetry related positions with the same Q. We then distinguish

among the sYmmetry related orientations by a further set of angles,

Q. ~ = 1,2, ... ,n). The spin essentially occupies different sites in the
1

molecule and henceforth we use the term sites to refer to the various

sYmmetry related orientations. The exchange due to jumping is then spec-

ified by the rate constants W.. for a spin jumping from site i to site j.
1J

The contribution of this motion to the evolution of the density matrix

may be calculated with operator A., defined by
1

AiPi(Qi'S'I) = ~ Wij [p(Qj'S'I) - PCQi,Q)],

j

in a fashion similar to rotational diffusion 32

(Il-38)

(II-39)

In fact both rotational diffusion and jumping may simultaneously occur

and the effects may be added to give

~ddt (Q. ,TI) = -i [X,pCQ. ,IT)] + r p(Q. ,IT) + Ai p(Q. ,IT).
1 1 S'I 1 1

(II-40)
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In some cases inclusion of both terms is necessary, however for cases of

interest here each model will be considered separately.

Now we wish to find the steady state solution to this set of

coupled equations (11-39). In the high temperature approximation ignor-

ing saturation effects, we set (11-40) equal to zero, then Fourier

transform to give the frequency domain equation: (AB =(A,B])

C1 (II-41)

We now define the magnetization for site i as

where for convenience we have dropped the parametric parameter Q and

subscripted g and p to indicate site. We may then derive from (11-41)

by taking a trace with 1+, and using (11-38):

(gJ. - g1·) W•• = iC.
1J 1

(II-43)

level, specified by a point group G.

where Wi is the frequency at the ith site and Cils a constant propor

tional to the population of the ith site. Since the exchange of magne-

tization among the different sites is achieved by molecular rotation,

the W.. must transform according to the local symmetry at the molecular
lJ

Then each W.. may be associated
1J

with a specific group element R which takes site i into site j. All W..
a lJ

which belong to symmetry operations in the same class must take on the

same value, so we may replace the sum over sites in (11-43) by a sum over

classes C of G:
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'\ "1 / g. )
,

\-l \ (R -1) (II-44)) \.g.- L
\ g ..w.. LL 1J J 1 C Ci 1

j c aE:c

To use the symmetry to the fullest extent we now expand g. in a complete
1

set of basis functions of G:

(II-45)

where A labels the irreducible representation and ~ indexes the row in a

multidimensional representation of G. Group theory tells us that

(II-46)

A
where n

c
is the number of elements in class c, and X and VA are the

character and dimension of the A representation. Combining (11-44, 45,

46) we find

L:>.Jij
ij

(g.-g.)
J 1

(II-47)

where we have defined the rate for the A representation:

(II-48)

If we define a.
1

i(w-w.) then we may write (11-43) (using (11-47» as:
1

i C ••
1

(II-49 )
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Our goal is to calculate the observable NMR spectrum, which is propor-

tional to gAl. Solving (11-49) for gAl is complicated by the fact that

the g. are not in general diagonal in terms of the irreducible represen
1

tations of G, requiring that we know which of the equations for magneti-

zations are coupled together. aig
i

has a symmetry lower than G; in fact

its important symmetry elements are the operations of G which leave the

frequency of the i
th

site unchanged. These operations form a subgroup

S of G. When we expand gi in terms of irreducible representations A of

G we need only consider those A which when taken as irreducible repre-

sentations of S contain the totally symmetric S representation, since

these alone have the correct symmetry to contribute to gAl. Then in

(II-45), (II-47) and (II-49) we need only include these "rel-

evant" representations in the sums. Often the restriction to relevant

representations simplifies considerably the calculation. If S contains

just the identity then no simplification occurs. If, on the other hand,

S = G, then the spectrum is totally invariant to the motion, and no param-

eters are needed (note W
AI

= 0 always from (11-48)).

In the case that there is only one relevant representation,

beyond AI' (11-49) may be solved in a simple way. The expansion (11-45)

may be written

(II-50)

We may then solve for giA and insert

or

iei - WA giAl

a
i

- WA

(II-5r)

(II-52)
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g(w)
iCi - WAgAl

a i - WI..
(II-53)

which may be rearranged to give

r c.
i

1

ai+wA
g(w)

i
(II-54)

WAr 1
1-0- a

i
+W

A
i

The absorption lineshape is just the real part of the complex magnetiza-

tion g(w) a gAl' for the particular orientation D, and symmetry has con-

siderably reduced the work that most be done. Even in the more complex

cases where several representations must be considered, group theory has

provided a simple way to count and classify the exchange rates which must

be considered. This solution is compared with a direct matrix solution

in Appendix C.

In the calculations above, the lineshapes were for a particular

orientation r2 • However the experiments to be compared were performed

on powder samples. Thus we must include one further step, the integra-

tion of single orientation lineshapes over all possible orientations with

appropriate weighting factors:

I (w) (II-55)

to give the final powder lineshape.
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We will see that lineshapes resulting from rotational diffusion

are very different from the jumping model in the slow motion regime, thus

allowing us to experimentally distinguish between the two models.

F. Computational Approach

33
Alexander, Baram and Luz have calculated lineshapes for sev-

eral cases of interests using (11-40), by expanding p(Q.,IT) in a complete
1.

set of angular functions. While they achieved considerable simplifica-

tion when only one time parameter was necessary, their methods have no

particular advantages in other cases. The approach we have used for cal-

culation of model lineshapes is based on well known theories of chemical

exchange, applied in a straightforward numerical approach. In the jumping

model the orientations of the molecule are related by symmetry so the

probability of the spin occupying any of the allowed sites must be equal.

In matrix form the Bloch equations including chemical exchange (11-43)

b . I
may e wr1.tten:

A liZ = - iw M 1
:=:::~ 10-

(II-56)

(11-57)

where gk is the complex magnetization for the k~ site, ~ is the coupling

matrix described further below, wI is the r.f. field strength and M
O

the

equilibrium magnetization. The diagonal elements of A contain the infor-
:=:::

mation about the different sites:

A. = i (w - w ) + --l + .!-
-Kk k T

Zk
L

k

where w
k

is the chemically shifted frequency of the k~ site (calculated

from (1-30) or (I-Z8) for a particular molecular orientation), TZk is the
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spin-spin relaxation time of the kt:E and
-1

2::
-1

site (-r ) = 'T" The time, L

k j L jk .

T
jk

is the inverse rate of jumps from the .th to the kt:!:! site. The offJ-

diagonal elements of A are the couplings among magnetizations from the
;:::::;

motion,

(II-58)

The lineshape for the exchanging molecule is then given by g(w) which is

proportional to the imaginary part of the total magnetization, g(w)= 2::gk .
k

Formally we may solve (II-56) for ~:

-1
g = - iw MAl
~ 1 0;:::::; ~

then

g(w) "Im (~gj) "I'~ -iWIMO~ Aj~)

w1MORe (~ Aj~)

(II-59)

(II-60)

It is then the work of the computer to invert the matrix A for each w
;:::::;

and given input jump parameters T
jk

, and average over all possible orien

tations, to give the final powder lineshape. If only one time constant

is necessary to completely describe the motion, that is T jk = T 9,m for all

j, k, 9, and m, it is possible to analytically invert A and sum the
;:::::;

elements. (Appendix C). The result is

where

g(w) = Re(nry
)nT-y

y \ l/A .. and
L JJ
j

T = n T jk

(II-6l)
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and n is the number of sites with distinct chemical shifts which are

being exchanged. This removes the matrix inversion step in the calcula-

tion and reduces the time necessary for calculation.

The rotational diffusion model may not be calculated exactly

with the exchange matrix formation. However we may approximate it

rather closely by taking a very large number of discrete sites, spaced

with appropriate symmetry for the axial or isotropic case. Exchange is

then taken in the hard collision limit, the probability of going from

any site to any other is equal. The calculated spectra thus generated

are virtually identical to those generated by the expansion methods of

Alexander, Baram and Luz.

The programs used for calculation of one time constant (MTHEX)

and multiple time constant (SEXCH) calculations are given in Appendix E.

A program for generating rigid and extreme narrowing powder patterns

(PPGEN) is also given.

G. Hexamethylbenzene (HMB)

The first observation of motion about the sixfold symmetry

36
axis in hexamethylbenzene was made by Andrew, using wide line proton

NMR. He observed a decrease in the linewidth from about 7.5 Gauss at

135K to about 3 Gauss at 210K. The second moment from liquid nitrogen

temperature up to 135K could be explained only if rapid methyl group

rotation were already occurring at liquid nitrogen temperature, so he

attributed the further narrowing to rotation about the sixfold axis.

37 38
The crystal structure of HMB at room temperature had been determined, '

and showed well defined positions for the carbon atoms, ruling out



39

rotational diffusion. Thus Andrew concluded th~t the motion must be a

"sixfold tunneling on nonuniform rotation of the molecule about the six-

fold axis." Further characterization of this motion has been carried out

through proton T
1

39
and T 40 measurements as a function of temperature.

lp

While such measurements cannot provide information about the symmetry of

the motion, they can provide rather accurate determinations of activation

energies. This motion has also been detected through its effect on the

l3C 1" h 29l.nes ape. The spectra at room temperature and l23K are shown in

Fig. 7. Since the methyl peak obscures the a
33

element of the ring carbon

tensor, only all and a22 may be obtained directly from the spectra, but

a33 may be calculated if the isotropic shift is also measured. At l23K

for the ring carbons we obtain values all = - 98±2 PPM and a22 23±2 PPM

relative to an external liquid benzene reference. For an isotropic shift

of -4 PPM, a33 = 109±4 PPM, in good agreement with values previously

29
measured. At room temperature we see that the tensor has become axially

symmetric, with a...L= - 59±1 PPM and we calculate all = 107±3 PPM. Note that

From (II-34) weerror.
1

a1 = ICan -KJ 22 ) and all =a33 within experimental

conclude that S =.0 0
, the rotation occurs about the a

33
axis. From early

41
single crystal work a33 for aromatic carbons was found to be perpendicular

to the aromatic plane. This was confirmed for HMB in a later single

42
crystal study.

From the arguments presented in Section II-E, using the group

C = D6 for the molecule and S = D
2

for the chemical shift, we find only

two relevant representations A
l

and E
2

. This means tnat only one time

constant is necessary to describe the effect of motion on the line snape.

While from a theoretical standpoint the specification that E
2

is the
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only relevant representation supplied all of the information necessary

to calculate the spectrum, we desire a physical understanding of the time

constant. Figure 8 shows all rotations which the molecule may undergo,

and the rates at which they occur. The chemical shielding tensor has

inversion symmetry so that the chemical shifts for pairs of sites across

the ring (i.e., 1 and 4) must be the same. Thus for a collection of

molecules with the same molecular orientation, the spectrum will consist

of three lines, as in the lower part of Fig. 8. Since the chemical shift

does not change in a jump from orientation A to D, the spectrum will be

invariant to the rate W
14

, and it need not be included at all. We also

note that orientations Band F (similarly C and E) are reached by the

same rotation, differing only in sense, hence the rates W
IZ

and W
16

(similarly W
13

and W
lS

) must be equal. At this point it seems that two

rates, W
IZ

and W
13

must be used to describe the motion. However we now

note that jumps of the W
IZ

type transfer magnetization between lines A

and B, Band C, and C and A; and jumps of the W
13

type transfer magneti

zation between A and C, Band D(A), and C and E(B). Since the two types

of jumps achieve the same exchange of magnetization, they cannot be in-

-1
dependently detected, instead their sum W

IZ
+ W

13
= T determines the

lineshape.

In both rotational diffusion and jumping models, the rapid

motion limit must be an axially symmetric tensor with a1 = t(all~ aZZ) and

all = a33 • In the slow motion range of time constants T-l-Iazz - alII,

with a's in frequency units, the powder pattern will not be described

by a simple shielding tensor. In the rotational diffusion model, the
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sharp features of the powder pattern will broaden, and as the rotational

frequency increases slowly merge to form the axial tensor. This happens

because the spins exchange among a wide range of frequencies, yielding

sharp features only when the rate of exchange far exceeds the range of

frequencies sampled.

For the jumping model the situation is quite different. As the

molecule jumps a spin is exchanged among sites with only three different

frequencies. For a few particular orientations of the molecule, two of

the three frequencies are very close together. In this case these two

lines will coalesce at low jump frequencies moving intensity into two

particular regions of the powder pattern. Figure 9 (a) and (c) show two

orientations which give rise to degenerate line positions, and one gener-

al orientation. Spectra for collections of molecules with orientation

(b) and close to orientation (c) are shown in Fig. 10. The rapid averag-

ing for the two lines close together is evident in the right hand spectra,

while on the left hand side the spectra get increasingly broad for low

jump rates. Figure 11 shows the powder averages for rotational diffusion

and jumping models, as a function of jump frequency. Such spectra have

also been calculated by Alexander, Baram and Luz
33

using an approximate

expansion method. These compare well with our calculations. The extra-

features or bumps in the jump model are quite obvious and indicative of

this model.

13
Experimental C spectra were obtained for HMB with the spec-

trometer described in Chapter V. A sample of commercial HMB (Eastman

Kodak, used without further purification) was compressed into a pellet of
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weight -200 mg. All spectra were taken using the single contact cross

polarization technique, optimizing mixing time empirically at each tem

perature, over a range of 0.5 to 5 msec. Recycle delays were also em

pirically adjusted, and ranged from 2 to 5 sec. Several hundred decays

were averaged ateach temperature before Fourier Transformation to give

the final spectra.

The experimental spectra are presented in Fig. 12, along with

theoretical spectra for the jump model. The extra features in the spectra

at - -40 and -SO PPM are quite evident. An expanded spectrum at -135.SoC

is shown in Fig. 13, where these features are particularly pronounced.

The presence of these features and the overall shape of the powder pat

terns are consistent only with a jumping model, as expected from the

previous NMR and x-ray experiments. The jump frequency at each temper

ature may be estimated by comparison with theoretical spectra. A plot of

the logarithm of approximate jump rate against inverse temperature is

presented in Fig. 14. From this, using a linear least squares fit we

obtain an activation energy of - 5.5 kcal/mole for the jumping, in rea

sonable agreement with values obtained from relaxation studies. 30 ,40

Some caution should be exercised in comparing jump rates from this study

and those determined from relaxation, since the rate W
l4

is not included

in our measurements, but would be included for relaxation measurements,

however evidence will be presented in the next section that the rates

W
l4

and W
l3

are probably small.
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H. Decamethylferrocene (Dh7e)

Although DMFe has not been previously studied by either x-ray

or NMR techniques, its close relative ferrocene has been extensively

studied. For ferrocene the room temperature crystal structure shows well

defined carbon atom positions,43 but NMR shows a strong decrease in pro

ton linewidth in the SS-7SK temperature range. 44 ,4S,46 As for HMB this

implies that motion occurs as jumps about the Cs axis of the molecule.

However since no information is available about DMFe, our conclusions

must be reached solely from the powder lineshape.

l3C powder spectra for DMFe at room temperature and -lSO°C are

shown in Fig. IS. At low temperature we find an asymmetric pattern with

tensor elements 011 = 1.0±1 PPM, 022 = 42.S±1 PPM and, calculated from the

*isotropic shift, °33 = lOS. 1 ± 3 PPM. At room temperature the tensor be-

comes axial, wi th elements 01 = 27.3 ±1 PPM and 011 = 94. a ±1 PPM giving an

isotropic shift of 49. S ± 2 PPM. In HMB the orientation of the shielding

principle axis system relative to the molecular frame was determined

entirely from symmetry (although assignment of particular tensor elements

to specific directions requires single crystal studies). For DMFe the

plane of ring carbon atoms is no longer a symmetry plane, as for HMB, due

to the iron atom. However, the vertical symmetry plane through the iron

and dividing the ring remains defining one principle axis uniquely, per-

pendicular to this plane, and requiring the other two elements lie in the

plane. If we assume that the motion leading to axialization of the

shielding tensor is rotation about the Cs axis, and assign tensor elements

* 13All C tensor elements reported in PPM relative to external liquid
benzene.
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to direction in analogy to HMB, 022 out of the symmetry plane and 033

closest to along the rotation axis, then we may solve for the angle be-

tween 033 and the rotation axis. This is done by transforming from prin

ciple axis system to rotation axis system as in (11-34), In this case a=O,

B = variable, y = averaged, so that using the observed rigid and aver-

aged tensor values above we obtain

1 2 1 1 . 2"2 cos B (1.0) +"2 (42.5) +"2 S1n B (105.1) 27.3.

We find from this B =± 19°, the angle between the 033 and rotation axes.

Although the sign of B may not be determined from (11-34), it seems phys-

ically reasonable to have a positive value, the 033 axis shifting to pass

closer to the iron atom. This orientation is represented schematically

in Fig. 16. It is not surprising that a strong covalent bond, such as

that between the metal and ring, should rotate the shielding tensor.

The effect of the metal is also manifested in the dramatic re-

duction in width of the shielding tensor relative to HMB (033-011 = 104

PPM in DMFe but 207 PPM in HMB), although both have six pi electrons.

Previous correlations of isotropic chemical shifts with pi electron den

sities have been made.
47

On this basis it appears that about half of the

pi density resides on the metal. It is expected that a more ionic metal-

locene would have both a downfield isotropic shift and wider shielding

tensor. This has been partially confirmed by measurements of isotropic

shifts, and widths of motionally narrowed shielding tensors in ferrocene,

ruthenocene and magnesocene. The bonding in ferrocene and ruthenocene is

expected to be very similar since they are in the same column of the
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periodic table. The chemical shifts measured are 59 PPM and 55 PPM for

ferrocene and ruthenocene respectively with anisotropies (~I-~) 7S±2

PPM and 78±2 PPM. On the other hand magnesocene, expected to be much

more ionic has a chemical shift of 20 PPM and anisotropy 132 ±4 PPM.4~49

Although part of the difference could be from rotation of the tensor in

analogy to DMFe, it is expected that the electron densities plays a more

important role.

To analyze the motion of the rings in DMFe, we again follow the

arguments in Section II-E, using the group D
S

to describe the molecular

symmetry. Whether the rings take on the expected staggered or eclipsed

confirmation, and whether motion occurs as overall molecular rotation,

or rotation of one ring relative to the other cannot be determined from

these studies and will not affect the arguments presented. Among the repre

sentations of D
S

' AI' E
l

and E
2

are relevant, so two rates are necessary

to completely specify the motion. The allowed jumps for one of the rings

are shown in Fig. 17. For a general orientation of the ring we expect a

five line spectrum. The orientations Band E (and similarly C and D) are

reached from A by the same rotation in different senses, so rates W12 and

W
lS

must be equal (similarly W
13

and W
14

must also be equal). In this

case there is no further symmetry to consider, and the rates W
12

and W
13

are independent, and both must be specified to calculate the powder line

shape, for the jumping model.

The lineshape for rotation diffusion will be almost identical

to those for HMB (Fig. 11), the only difference occurring in the slight

downfield movement of 033 (105 PPM) to 0" (94 PPM), which does not happen
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for HMB. Since the lineshapes are so similar, calculations were not

repeated for DMFe.

To specify the two parameters for the jump model we will use

the ratio of the two types of jumps W
lZ

/W
13

, and the total jump rate

WlZ + W
13

. It is instructive to first examine two limiting cases,

W
lZ

/W
13

a 00 (only jumps of 2~/5 allowed) and W
lZ

/W
13

= 0 (only jumps of

4~/5 allowed). As for liMB, there are certain molecular orientations,

relative to the field, which give rise to degeneracies in site frequen

cies. Two of these orientation3 are shown in Figs. 18 and 19, together

with spectra for nearby orientations. The spectra for each orientation

are shawn for a variety of total jump rates W, for both limiting cases.

From these it is clear that lines directly exchanged by the jumps sharpen

quickly and ~emain sharper than those lines which are only indirectly ex

changed. Therefore the two types of jumps, Z~/5 and 4~/5, give rise to

extra featnres, or bUI!lps, in different parts of the powder spectrum, the

downfield portions of which are also shown in Figs. 18 and 19.

Although the above models are instructive, a model which allows

only jumps of 4~/5 seems physically very unreasonable, although jumps of

2~/5 only seems plausible. We will call the 2~/5 jump only model a "soft"

collision model. The other physically reasonable case is a "hard" col

lision model for which WlZ /W
13

3 1, all types of jumps equally probable.

These models really differ only in time scale for occurrence of collisions

which exchange enough energy with an "activated" molecule (one with enough

rotational energy to overcome the rotational potential barrier) to prevent

it from continuing to rotate. In the soft collision model the deactivat

ing collisions are very frequent, while in the hard collision case rota

tions of Z~n/5 are equally probable, for small interger n (we still assume
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the time during rotation is short relative to time between rotations)

corresponding to "infrequent" deactivation. The complete powder line-

shapes for these two models are shown in Fig. 20. The most striking

difference in these spectra is the weakening of the bump near 35 PPM, in

the hard collision case. This feature arises from 2rr/5 jumps (see Fig.

19) and as they become less probable this feature weakens, to be replaced

by a bump not clearly resolved from the peak at 022 (see Fig. 18), as

4rr/5 jumps become more probable.

13
Experimental C spectra for DMFe were obtained with the s~ec-

trometer described in Chapter V. The sample of DMFe was pcep3.red in

Professor G. \{hiteside's laboratory at HIT, and was generously given to us.

The sample was a yellow powder, estimated to be greater than 98% pure.

Above 200 mg of this powder was compressed into a pellet, and was used to

obtain all spectra shown here. Spectra were recorded using single con-

tact cross polarization, optimizing mixing time and recycle delay empir-

ically at each temperature. Several hundred decays were averaged before

Fourier Transformation to give final spectra.

The experimental spectra are sho~~ in Fig. 21, for a variety of

temperatures. The features at approximately 15 and 35 PPM are quite pro-

nounced at low temperatures, as is the shoulder shape at slightly higher

temperatures. These features certainly rule out a rotational diffusion

model. In Fig. 22 we show an expanded plot of one experimental spectrum

with several theoretical plots for varying W
12

/W
13

ratios. It is clear

that the experimental spectrum corresponds to a fairly large W
12

/W
13

ratio (we estimate >10, but the lineshape essentially converges to the
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"soft" model for W
IZ

/W
13

".... 10 making improvement of the estimate beyond

this point impossible). To our knowledge this is the first time it has

been possible to even estimate this type of ratio for reorientation in

the solid state.

As for HMB we may estimate the jump frequency from the line-

shape. A plot of the log of the estimated jump rate versus inverse tem-

perature is shown in Fig. 23. A linear least squares fit to a straight

line gives an activation energy of 3.2 kcal/mole. This is a bit higher

than the activation energy measured for rotation in ferrocene, 2.3 kcal/

mole,45 which seems quite reasonable.

Although this is the first case for which a soft collision

model has been verified, it seems likely that there is nothing magical in

the structure of DMFe, and that similar rotational motion in other solids

(including HMB) also occur in a "soft" collision manner. It would cer-

tainly be interesting to verify this in a nonmethylated ferrocene or

ferrocene analog, for which the symmetry arguments above still apply.

I. Ice

The importance of water in the world around us has prompted

study of all its forms. Although simple in chemical composition, and ex-

tensively studied there is still much controversy about many aspects of

the structure and dynamics of the liquid state, and many aspects of dy

namics in the solid state. High resolution proton NMR studies in highly

deuterated ice now give us a detailed picture of proton motions.

NMR has played an important role in the study of ice for many

years. However most previous work has provided only indirect information
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about dynamics, through studies of moments of the proton resonance line?O

and measurements of relaxation times

ies have been made of the quadrupole

51
Tl , TIp and TID. Additional stud-

. 52 53
couplings ln deuterated ' and

54
oxygen-I? enriched ice, which can give useful information about the

structure of ice, but due to the large spittings involved can only put

upper limits on rates for any motions occurring.

The techniques listed above are all relatively limited in

achievable resolution. The first measurement of the chemical shielding

tensor for protons in ice did not come until it was realized decoupling

of deuterium could be achieved with reasonable r.f. fields (see Section

16
II-C), allowing application of the dilute spin approach. The rigid

molecule tensor was found to be axially symmetric with principle values

0Il = l5±2 PPM and 01 =-19±2 PPM (relative to external TMS), Fig. 24.

There was a shift of 2±1 PPM of the trace of the tensor in the solid

relative to the isotropic liquid. This tensor has also been measured

55
subsequently using multiple pulse techniques, with reasonable agreement.

However, when motion of the spins is present it is not clear that multiple

pulse sequences could provide sufficient narrowing to resolve the fine

structure of interest in the present study.

In ice I
h

, the ordinary form of ice at low pressure and reason-

able temperature, the oxygen atoms occupy an hexagonal lattice, each

oxygen having a regular tetrahedron of others surrounding it. The pro-

tons lie between oxygens, normally one between each pair of oxygens. It

56
is known from measurements of entropy at low temperature that there is

no long range ordering of proton positions. An ordered structure for ice,

as described above, does not allow for any motion of spins, except
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vibrational motion from phonons. However, many dynamic phenomena, i.e.

mechanical and dielectric relaxation and electrical conduction,5? have

been observed even in very pure samples of ice. These have been attrib~

uted to defects occurring in the I
h

structure. The most widely accepted

form for defects which allow molecular rotation aTB B1:errumfaults. There

are two types of these faults, D and L, which correspond to having either

two protons (D type) or no protons (L type) between a given pair of ox

ygens. These are thought to be formed in a slow step (high activation

energy) then migrate rapidly (low activation energy) through molecular

rotations, as shown in Fig. 25 for a D type fault.

The migration of Bjerrum defects throughout the lattice randomly

reorients individual water molecules among the six equivalent positions

at a given lattice site, Fig. 26. While the proton chemical shielding

tensor is not required by local symmetry to be axially symmetric (as it

would be if only the oxygens were considered), to experimental accuracy

it is symmetric, so the unique direction certainly lies along the 0- H

vector. Motion exchanges the tensor symmetry axis between the four cor

ners of a tetrahedron. For the analysis of Section II-E we take the

"molecular" group G to be T
d

. Then the relevant representations are Al

and T
2

, so we need only one jump rate to describe the spectrum. This is

clear physically in that jumps from any orientation to any other differ

only in the direction of the axis of rotation. The alternate model, for

rotational diffusion, will no longer be restricted to rotation about a

fixed axis. Rather it will consist of random rotations about random

axes. In either case, because of the high symmetry, the fast motion

limit will be a single line.
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Although we have lifted the restriction of uniaxiality in the

rotation, the lineshapes are similar in character to those previously

described. In the rotational diffusion model, the sharp features of the

powder pattern broaden and lose shape with increasing jump rate, eventu

ally merging to a single line. In the jumping model we again predict an

extra bump in the powder pattern, due to an orientation producing degen

eracies in line positions. However, in previous cases, only two of three

(HMB) or five (DMFe) lines were degenerate, leading to broadening of all

lines for high jump rates. In ice, however, when the field is along one

of the C
2

axes, all four lines are degenerate, and fall at the isotropic

value (half of the tetrahedral angle is the magic angle). In this case

the lines never broaden for any jump rate, resulting in a much sharper

"bump", limited in width only by other broadening mechanisms, Fig. 27.

The lineshapes for a variety of jump rates for jumping and rotational

diffusion models are shown in Fig. 28. As for the other cases discussed,

the structure in the "bump" region is quite distinctive for the jump

model. The lineshapes for a jumping tetrahedron were also calculated bv

Speiss,34 for analysis of motion in solid P4.
35

Our lineshapes are

quite similar to his, although there are small quantitative differences.

P
4

has tetrahedral molecular sYmmetry and was shown to reorient in a

jumping manner.

Of the dynamic phenomena observed in ice, dielectric relaxation,

electrical conduction and diffusion, only dielectric relaxation is well

explained by migration of Bjerrum faults. To explain conduction and dif

fusion other types of defects have been postulated and we must consider
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molecules and Bjerrum defects have also been discussed. Theoretical

estimates show that these alone should be a factor of five too slow to

explain observed diffusion rates. Their effect would be indistinguish

able from those above.

Experimental proton spectra were taken as a function of temper

ature with the spectrometer described in Chapter V. The sample was

Bio-Rad Laboratories D
2

0 (specified 99.8mole % pure, E20, HOD < 0.25%)

with ~0.5% distilled H
2

0 added. The sample was frozen and sealed under

vacuum in a 6mm pyrex tube. Data were taken as free induction decays

following a 90° pulse with high power deuterium decoupling (Hl~ 60G).

and a 1 minute recycle delay. Several hundred decays were averaged be

fore Fourier Transformation to give final spectra.

The experimental spectra for a variety of temperatures are

shown in Fig. 29, along with theoretical spectra for the jump model.

Although the resolution in the experimental spectra is somewhat limited

(probably by residual homonuclear dipolar coupling) the features of the

jumping model are certainly present. We may then conclude that the

rapid motions of protons in heavy ice, exchange the proton shielding

tensor among the corners of a tetrahedron. In light of the previous dis

cussion this is not surprising.

Again we may estimate jump rates by matching experimental and

theoretical spectra as a function of temperature. A logarithmic plot of

jump rate versus inverse temperature is shown in Fig. 30. A linear

least square fit gives an activation energy of 3.5 kcal/mole. This is

far less than the 13.4 kcal/mole activation energy measured for dielec

tric relaxation and the 15 kcal/mole measured for diffusion, in very
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-,-OillC defects
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have been invoked to explain electrical conduction. Ions are generated

in a high activation energy step by transfer of a proton from one water

+molecule to another, giving one H
3

0 and one OH. These then migrate in

successive low activation energy steps by further proton transfers which

conserve the number of ions present. We note that all proton motions

are jumps along a single a - a vector. Such jumps leave the shielding

tensors of all protons unchanged, and hence do not contribute to the

averaging of the NMR lineshape. Shielding tensors for the ions them-

selves will be different than for water, but they exist in such low con-

centrations that they may be ignored completely. Both Bjerrum and ionic

defects are the result of proton mispositioning and cannot explain mass

transport or diffusion. Diffusion coefficient measurements have shown that

oxygen and hydrogen diffuse through crystals of ice at approximately the

same rate. This suggests that defects in the oxygen lattice are inter-

stitial water molecules, and molecular vacancies. Migration of intersti-

tial molecules does not provide a mechanism for reorientational relaxation

(dielectric) in the bulk, since a molecule jumping into an interstitial

space leaves a record of its orientation in the positions of protons

which surrounded it. Another molecule entering this site must take the

same orientation or create a Bjerrum defect. However if diffusing mol-

ecules exchange rapidly between interstitial and lattice sites then in-

dividual molecules may change their orientation and hence contribute to

the averaging of the NMR lineshape, in the same fashion discussed for

Bjerrum defects. Composite defects consisting of "bound" interstitial
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54

samples, they should represent the energy of formation for the defect

giving rise to particular dynamic effects. Our sample was not carefully

purified (and water is notorious for being difficult to purify), hence

the barrier we measure may be for migration of intrinsic defects in our

sample. rather than for their creation. This barrier is thought to be

~ 5 kcal/mole.
58

In addition. the comparison with dielectric relaxation

and diffusion data is complicated since both contribute to the motional

narrowing of chemical shielding. Further studies using this approach

on carefully purified and doped samples may be very useful in separating

activation energies for the creation and migration of various defects in

heavy ice. Similar studies might be useful in other proton containing

solids. for example metal hydrides.

J. Pentamethylbenzene (PMB)

We have seen that a great deal of information about the dynamics

of molecular motion may be obtained by study of the powder lineshape as

a function of temperature. These lineshapes are particularly informative

in the slow motion regime. However there are some cases where motion sets

in at a phase transition. going directly from a rigid solid to the motion-

ally narrowed limit. Pentamethylbenzene provides an example of this type

of behavior. While the information that may then be obtained through

powder lineshape studies is limited. when coupled with other techniques

it may be possible to fully characterize the motion.



55

Crystallographic phase transitions in ~~ were first observed

b 1 · . h d 91y ca orlmetrlc met 0 s. NMR measurements of proton T
l

and linewidths
92

showed that above the transition at 24°C some molecular motion in addition

to methyl rotation occurs. The crystal structure of PMB is not known, so

that accurate second moment calculations could not be done. From geomet-

rical constraints it was presumed that motion was about the axis perpen-

dicular to the molecular plane and hence was similar to that of hexa-

methylbenzene.

The sample used for present studies was commercial PMB

(Aldrich> 98% purity) used as was. Approximately 200 mg was compressed

into a 6 mm diameter pellet, and spectra were taken with the spectrometer

described in Chapter V, using cross polarization techniques. Temperature

was maintained to ± O. 5 ° C.

Figure 30a shows the carbon spectra for PMB above and below the

phase transition at 24°c. The spectra are superpositions of spectra from

tensors for the four types of ring carbon, plus the methyls at the high

field edge. At the lower temperature the width of the spectra are exactly

what one would expect in analogy to those for the closely related com

42
pounds, durene and hexamethylbenzene. Above the transition the tensors

are partially averaged, to the values found by Waugh et al., in their

study of shielding tensors in PMB. It is immediately clear that the mo-

tion is not as simple as in HMB since the tensors are not axially sym-

metric in the high temperature phase. No further narrowing of the powder

pattern occurs up to the melting point at 54°C.
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The remaining asymmetry in the high temperature phase must be

interpreted as a biasing of motion in some way. There are two distinct

models which will fit the NMR data and hence cannot be distinguished by

our experiments alone. The first is a rocking motion by the molecule or

jumping between two orientations not related by symmetry. If we assume

that all time is spent at the endpoints of the rocking or jumping motion

(I-29) may be averaged to calculate the new tensor. The angular depen-

dence of the all and a
22

elements for such a planar motion is simple,

a = 011 cos
2

o. + a
22

sin
2

o., and the averaged all value for two positions

d b 1 2 · 1 C 2 . 2 + 2()separate yang e a 1.S all = "2 all cos a + a 22 Sln a all cos -a

+ a22 sin
2

C-o.». Since all' a22 and all are known from the combination

of high and low temperature phases this is easily solved to give ~ =22° •

corresponding to jumps between positions separated by 44°. If the mol-

ecule is allowed to spend time between the endpoints of its oscillations,

then the potential function must be specified to calculate the shielding

tensor. If one assumes a square well potential for example, then we may

calculate the average tensor element

a

0 U = J
-a

do. .

The integrals are easy to evaluate analytically and may be solved to give

0.=39° corresponding to oscillations through an angle of 78°. Potential

functions with central minima would predict oscillations through a larger

angle.
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An alternate model for the motion is iumos between svrometrvoJ" .. .t. - -.I

related positions, as for HMB but with unequal populations (equivalently

energies) for the different possible orientations. In this case the

model is underdetermined, that is, there are an infinite number of dif-

ferent populations which give rise to the proper averaged tensor. How-

eve~ if we assume that lattice sites have C
z

symmetry, and that the two

orientations for which the molecular C
z

axis is not along the crystal C
z

axis have equal populations,then there is only one independent parameter

in the problem. The chemical shift of the three different possible sites

are easily calculated. Since we know PI + ZPz=l, a = PIal +Pz a Z +P
Z

a
3

may be solved for any orientation (a, aI' a
Z

and 0'3 all are known) to

give PI = 0.81Z, P
z

= 0.094.

In either model the "missing" methyl group is unrloubtedly cru-

cial in changing the motion from simple six-fold jumping as was observed

in HMB. While it is not possible to distinguish between the models above

with NMR alone, these studies provide information which is complementary

to that which may be obtained by x-ray crystallograpic techniques. When

x-ray studies are done on the high temperature phase, the combined infor-

mation may make complete characterization of the motion possible.

K. Discussion

The studies presented in this Chapter demonstrate that high

resolution NMR techniques applied to ordered phases can provide an ex-

tremely sensitive probe of molecular motions. While they are applicable

to single crystals (see theoretical spectra in Sections G and H), they

are equally applicable to powder samples. This is particularly important
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in extension of studies of noncrystalline samples, i.e., glasses, poly

mers and molecules adsorbed on surfaces, where single crystals are im-

possible to obtain. The sensitivity of NMR lineshapes to the micro

scopic dynamics of reorientation processes is unique, and has allowed

us to get a clearer picture of the correlation function for molecular

rotation. From these studies it is clear that the symmetry of the poten

tial function imposed upon a molecule by its neighbors controls the

nature of the reorientation process, and from high temperature x-ray data

it is clear that the shape of the potential is maintained even when jumps

occur very often.
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III. DOUBLE QUANTUM NMR

A. Introduction

Most of the recent advances in solid state NMR have come

through the development of techniques for obtaining high resolution spec

tra in complex systems. In the previous chapter we have discussed one

approach to high resolution in some systems and have demonstrated the

type of information made available through such studies. In this chapter

we will discuss the application of a new technique, Fourier Transform

Double Quantum NMR,18,19 to measurements of chemical shielding in pow

ders of quadrupolar coupled nuclei and to measurement of dipolar cou

plings in both single crystals and powders in the presence of quadrupole

couplings. Figure 31 represents schematically the reasons why a new type

of spectroscopy was necessary. Quite simply, the quadrupole coupling is

so much larger than chemical shifts or dipolar couplings, that in a pow

der it is quite impossible to see the smaller couplings. In favorable

cases single crystals may be studied to yield both the quadrupole cou

pling and chemical shifts or dipolar couplings, but even in single crys-

tals FTDQ NMR may be used to reduce linewidths.

For the studies presented here we will restrict ourselves to

observation of deuterium, for which quadrupole couplings are fairly small

(~ 105 Hz) relative to the Zeeman coupling (2.8 x 107 Hz), but large com

pared to chemical shifts (~ 6 xI0
2

Hz) and dipolar couplings (-10 3 Hz),

although in principle this restriction is not necessary.
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The initial motiviation for FTDQ NMR came from the observation

that the quadrupole coupling shifts the m = + 1 and -1 levels by the same

amount, in the same direction, Fig. 32. Thus the two photon absorption

comes at a frequency wo' independent of the quadrupole coupling constant.

Such two photon absorptions have been discussed for C.W. NMR,59 as have

general multiple quantum absorptions,60 but do not provide a method for

high resolution spectroscopy in solids since heteronuclear dipolar broad-

ening and power broadening cannot be avoided. These problems have been

overcome through application of pulsed NMR methods, very similar in many

respects to those described in Chapter II. Selective dilution is used

to reduce homonuclear dipolar couplings among deuterons, while high power

decoupling may be applied to remove heteronuclear dipolar couplings with-

out severe sample heating. In order to describe the experimental approach

completely, the next section will present the formalism developed for gen-

eral multiquantum NMR. Experimental measurements of chemical shielding

in powders will be discussed in Section C, along with the measurement of

deuterium - deuterium dipolar couplings, using FTDQ NMR for both single

crystals and powders.

B. Theory

1. Fictitious Spins - 1/2

In NMR of spin V2 nuclei, the rotating frame vector representa-

tion of magnetization has played an important role in understanding and

developing pulsed NMR experiments.
. 16 18 61However recent exper1ments ' ,

have shown that such a three dimensional vector is not sufficient to

describe the dynamics of some systems, in particular spins with I > t in
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the presence of an electric field gradient. In this section we will

describe an operator formalism with which such experiments may be

described.

The general approach to description of pulsed NMR experiments

was mentioned in Chapter 1. For a system of I spins in a magnetic field,

the state of the system is described by the density matrix p, with

dimension (21+1) x (21+1). This matrix may be expanded in a set of

N = (21+1)2_1 traceless, linearly independent Hermitian operators, A ,
n

plus the identity operator

pet)

N

2
n=l

a (t) A + a I
n n 0 ~

(III-I)

The coefficient a may be calculated from initial conditions and the
n

equation of motion (1-6). If we start with the system in thermal

equilibrium, in the high temperature approximation we may write

(III-2)

If the Hamiltonian contains only interactions linear in spin

variables, Zeeman, chemical shift and r.f. irradiation, the closed

cyclic permutation relations of I ,I and I allow us to restrict the
x y z

sum in (III-I) to only the angular momentum operators I ,I and Ix y z

p

p=x,y,z

a (t)I + a I
p p 0

(III-3)

It is then the three coefficients a , a , and a which are the vector
x y z

description of the state. However when the Hamiltonian contains
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interactions which are bilinear in spin variables, quadrupole, dipole

and scalar or spin-spin, the description of p must contain more operators

than just I , I and I. In the expansion of p (III-I), any complete set
x y Z

of operators A may be used. However with judicious choice, some valuable
n

aspects of a vector representation may be preserved when bilinear

couplings are present.
19

The first set of operators chosen were found

to be particularly useful in description of pure nuclear quadrupole res-

. 62
onance exper~ments, but as will be shown are also very useful for NMR.

This set was chosen because of convenient commutation relations between

the individual operators. For reasons of convenience and symmetry, nine

operators were defined rather than the required eight. In terms of

I ,I and I these operators are given byx y Z

I XI
1 I I

Yl
1

I I
ZI

1
I2 x 2 y 2 Z

I x2
1

(I I + I I ) I y2
1

(I I + I I ) I
Z2

1. (I I + I I )=
2 y Z Z Y 2 Z x x Z 2 x y Y x

I x3
1

(1
2

1
2

) I y3
1

(1
2

1
2

)
1

(1
2

1
2

)= I z32 Z Y 2 x Z 2 y x

(III-4)

The definition of the extra operators causes the linear dependence

o. Each set of operators I pl ' I p2 ' and I p3 have the

same commutation relations as the Cartesian angular momentum operators,

(III-S)

or cyclic permutation of 1,2,3. These commutation relations are also

sufficient to give simple rotation behavior,

-ieI ieI
pI e pIe I

p2 I
p2

cose + I
p3

sine (III-6)
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.L I 4.., these
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we can

I 63have been called fictitious spin-l 2 operators, in analogy to Feynmann

I
and Abragam, and with each set of operators I

pl
' I

p2
and I

p3

associate a state vector in a three dimensional Cartesian space. The

complete state of the system is the specified by three vectors in three

spaces. Although such a description seems complex at first sight we

will see that for many experiments of interest only one space will have

a nonzero vector and its evolution will be restricted to that single

space. Further commutation relations and rotations which will prove

useful for later computations are presented in Table I. A complete

table of commutators and anticommutators may be found in Appendix F.

If these operators are represented in matrix form in the eigenbasis of

1
2

Table II, their form is related to the spin-1/2 Pauli matrices.z'

2. Hamiltonians

To calculate the expected results of experiments it will now

be convenient to express the Hamiltonian, as well as the density matrix,

in terms of the operators defined above. For the present we will in-

elude off resonance (chemical shift), r.f. field and quadrupole terms,

adding dipolar couplings later. From Chapter I we write the Hamiltoni-

an:

As done previously this may be transformed to the frame rotating at w,

the irradiation frequency:

(III-B)



Table I

COMMUTATORS

iI kp,

64

ROTATIONS

a

exp(-i81 .) I exp (i8I
pi

) = cos8 I + sin8 I
pkp1 pj pj

exp (-i8I
pl

) I ql exp (i8I
pl

)
8

I ql
8

I
rl= coSZ + 8 in-

2

exp (-i8Ipl) I q2 exp(i8Ipl )
8

I q2
8

I
r2= cos2" 8 in-2

exp(-i8Ip2 ) I ql exp (i8Ip2 )
8 I ql

8
I r2= cosz sin-2

exp (-i8Ip2 ) I q2 exp (i8Ip2 )
8

I q2
8 I rl= cos2" sin-2

where p, q, r = x, y, z or cyclic permutation

and i, j , k 1, 2, 3 or cyclic permutation.
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T 1 (T I L T I ' I( g-?)= - 0·x 2 2 \.Lo y Z I J. z yJ
2 0,

i 0

_ 1.(12 _ r 2) 1(° ° 0)I X ,3 = - 0 1 02 Y z 2 0 o -I

I 1(0 0 g)Iy,1 = 2 1 y - 0 0
2 1 0

I 1(0 0 g)I y,2 = 2 (IzIx + 1xlz ) - 0 02 .
-I 0

_1 (!2 _ r 2) (' 0

~)I y,3 = 1 0 02 z x 2 0 0

1(3
.

g)I
I

I Z, 1 = 2" I z 0
2 0 0

I 1(° 1 g)I Z '" = 2 (IxIy + I y Ix) - 1 0
,c::; 2 0 0

_1-(12 _ r2 ) Ie 0 g)I 3 = - 0 -Iz, 2 x Y 2 0 0

I[Ip,j ,Ip,k] = iIp,ll

p = x,y,z
j,k,,2 = 1,2,3 or cyclic

permutation
XBL 7611-9877 a.

Table II

65



66

wrrere 6w =Wo - w. Since all ~urther calculations will be in the rotat

ing frame we drop the asterisk henceforth. Using the operators defined

above this may be written:

(III-3)

axes.

For a variety of values of 6w, wand wQ we will see that the behavior

under this Hamiltonian is quite simple. Since these have been derived

in considerable detail elsewhere19 ,64 we will only discuss the form and

experimental implications of the Hamiltonian, in these cases. To sim-

plify the calculations of density matrix evolution, the Hamiltonians

will be written whRrever possible as a sum of terms, all of which com-

mute.

To do this we will try to write the Hamiltonian in terms of

the diagonal operators I
x3

' I y3 and I
z3

• This is accomplished by rotat

ing the Hamiltonian into a new "tilted" frame, so that the vector repre-

sentation of the Hamiltonian has components only along the I p3

The tilt operators are defined as U .(¢) = exp(i¢I .) meaning a rotation
p1 p1

of angle ¢ about the p,i (p = x,y,z and i = 1,2,3) axis. These are ap-

plied to operators X as U;i(¢) X Upi (¢).

Case 1.

6w = 0, wI = 0; no irradiation, with rotating frame at frequency Wo on

resonance, no tilt necessary.

(III-IO)
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These three forms are equivalent and hence may be freely interchanged.

Under this Hamiltonian an initial density matrix p(O) = I evolves very
x

simply:

pet) (III-II)

We see that the evolution is restricted to the fictitious I space.
x

Case 2

0; no irradiation with rotating frame off resonance.

(III-12)

To rewrite this as a sum of commuting operators we apply a tilt

iTT/2 I z 2
e •

(III-l3)

Case 3

irradiation on resonance.

(III-14)

i8Ix 2
Again to write as the sum of connnuting parts we tilt with Ux2 (8) = e

where 8

(III-IS)

where we define an effective frequency



W =
e
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(III-l6)

If wI « wQ then (111-15) approximately goes to the the simpler form

Case 4

xr =- (III-17)

6w "I 0, wI "I 0; general off resonance irradiation. In this case all

terms in the Hamiltonian must be considered, and in general there is no

simple transformation to generate the Hamiltonian as a sum of commuting

terms. Solutions for this case may be calculated numerically by com-

puter. However for important cases for which wl « WQ' approximate

analytical forms may be generated.

Case 4a

6w - wQ' wl « wQ; irradiation near the low quadrupole satellite.

Writing 6w = wQ + ow

(III-IS)

Tilting this with uzZ(rr/Z),

(III-l9)
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Using the approximation wI « w
Q

the last term Y2Wfy2 may be neglected

giving

xr = -ow I - 72 w I - (i w + Xw)" (I - I ).x3 VL. I xl 3 Q U y3 z3· (III-20)

Since the last term is commutative with the others it may be disregarded

in most cases and the behavior of the system will be like that of an

ordinary spin-1/2 system, off resonance by ow and with a modified y.

Case 4b

6w - w
Q

' wI « W
Q

; irradiation near the upper quadrupole satellite.

By a procedure exactly analogous to case 4a, with &.JJ = -w + ow we obtain
Q

JeT = - OWly3 +V2 wI Iy2 - (~WQ - ow) (lz3 - Ix3). (III-21)

The form and behavior are exactly analogous to Case 4a.

Case 4c

This is6w -0, wI « W
Q

; irradiation near the center of the spectrum.

where we expect the interesting double quantum effects to occur.

6w = ow,

We let

(111-22)

To get this to the desired form we tilt with Ux2 (8)

8 = tan-
I (2W

l
/w

Q
) giving

i8lx2
e where

(III-23)
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xr = - ZowI _1:. (w -w)I +l W
Q

(I
x3

-I
y3

)
zl 2 e Q z3 3 (III-Z4)

and we -w
Q

may be further approximated by w1Z/w
Q

. Again the third term

commutes with the others, so that the behavior is exactly like a spin-liZ.

3. Density Matrix

Up to this point we have found Hamiltonians in a simple form,

but in a tilted space. It is important to remember that for calculations

of density matrix evolution, we must also tilt the density matrix, with

the same operator used to tilt the Hamiltonian. This results in the

following tilted operators for observables: Case 4a. 6w = WQ+OW,

The tilt operator is UZ2(~) giving

Case 4b

IT = .j2 (I - I ) and
x xl y2 IT =.j2 (I 1 + I 2).

y' y x
(III-Z5)

6w = ow, ow and

The tilt operator is UxZ (8), tan8 = 2w1lwQ giving

IT =Z(ws8 I 1- sin8 I J) and IT = 2(cos~ I - sin.5Z. I zZ )'
x x x y 2 yl Z

Case 4c

6w = - W + ow, ow and w < < w
Q Q

7T
The tilt operator is UzZ(Z) giving

(III-Z6)

(III-27)
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Any other operators needed in the density matrix calculations may be

tilted in the same manner.

Now that Hamiltonians have been defined for the cases of prac-

tical interest here, we may proceed with theoretical calculations of ex-

periments. These calculations break up logically into three parts,

preparation of a desired density matrix, its evolution under some partic-

ular Hamiltonian, and then detection of some signal representative of the

state of the system.

d · . 1 NMR. 65two lmenSl0na •

In some instances this is then a special form of

We will write the density matrix expanded in

terms of the fictitious operators

where

p (t)

3

~ ~
i=l p=X,y,z

a i(t)I .p pl
(III-28)

- :i.J(t :i.J(t
p(t) = e p(O) e

At thermal equilibrium the initial density matrix is

(III-29)

bI with
z

(III-30)

This initial density matrix must also be tilted when tilted Hamiltonians

are used in the calculation.

For irradiation near one satellite, Case 4a (or 4b) the tilt

'IT
operator was Uz2 (1)' In this frame the initial density matrix is

(III-31)
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and applying (111-29), and ~ (111-20) with ow = 0;

(III-32)

The first term is from rotation about xl in the fictitious x space. The

second term comes from the quadrupole coupling; it does not yield a signal,

and thus may be ignored for the present, although it is crucial for cross

1 .. . 64 f I I I h Ipo ar1zat10n exper1ments. A ter a pu se we may ca cu ate t e signa s

which may be observed, (I (t) and (I (t) from (1-5). We define signalsx y

in the x and y directions at time t

S (t) y (Ix(t) yTr(p(t) I ) T IT)= = yTr(p (t)x x x (III-32)
Y (Iy(t)

T IT).S (t) = = yTr(p(t) I ) = yTr(p (t)y y y

Using the tilted forms for pet) , I and I we find for t pulse width:x y

S (t) = 0
x

S (t) = v'2 by sinV2 wIt Tr(I 2)
y x

So =:= 4Nhy 2 (2i+]) = %Nyb

=-l S sinV2 wIt
zVi°

(III-33)

where N is the number of spins in the sample. For this rotation in the

x-space, the magnetogyric ratio is effectively ~ y. Dropping the I y2

term in the tilted Hamiltonian eliminates any response from the distant

quadrupole satellite. Exactly analogous equations may also be derived

for the upper satellite.

When the off resonance term is included in the above calculation

(III-34)
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and the signals are

S (t) = ~ S sin¢ cos¢(l - cosw t)
x ZV2 0 s

(III-35)

S (t) = __1_ S cos¢ sinw t
y Zv1 0 s

where

w
s

=
-lowand ¢ = tan

v2 wI

Thus a small off resonance term only induces a slight mixing of the y

signal into x.

For irradiation near the center of the spectrum, Case 4c, we

proceed in an analogous fashion. The tilt operator used was U
xZ

(8),

giving a tilted initial density matrix

(III-36)

T
Applying (111-Z9) with X (111-Z4)

T
P (t)

(III-37)

For wI < < w
Q

this may be simplified to

T
P (t) = Zb wi )- I sin-t.zZ w

Q
(III-38)

The second term in (111-38) is of great importance to us. The operator

I
zZ

has matrix elements only between !+} and I-} levels (see Table II) and

hence represents in the density matrix a coherence between these levels,
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which are coupled together directly only by a double quantum transition.

In this case the behavior is again that of a fictitious spin-liZ (the z

space), and where the state rotates about the effective field I
Z3

with
W

an effective magnetogyric ration -l y, behavior previously observed bywQ61Hatanaka et ale The signals after the pulse may be calculated using

the tilted I and I operators.
x y

IT = Z(cose I - sine 1xix xl

IT e sin~ 1zZ).= Z(co~ I yly

Then

S (t) = 0
x

S (t)
1

So sine [ Si~(We-w
Q

) t + Si~(We-w
Q

) t] ~ 0= -yy 2

(III-39)

(III-40)

where S (t) = 0 since sine ~ O. After such a weak pulse in the center of
y

the quadrupole split spectrum we predict no signal, i.e., the double

quantum state has no ordinary magnetization associated with it. We will

call a weak pulse of this sort a double quantum pulse. As for usual r.f.

pulses we may adjust the length to give a ; rotation simply by adjusting

2
t = 7T W

Q
/2W

l
.

The most general case, where wI' wQ and 6w maybe of the same

size cannot be easily solved analytically. When such cases are of inter-

est, a computer must be used to follow the complex motions of the state

vectors.

Once some particular state of the system has been prepared,

usually by application of r=f= pulses; we wish to calculate its evolution

under the Hamiltonian without any r.f. irradiation,
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(III-40)

This is again done by calculating (111-29) where p(O) is now the non-

equilibri1Iffi density matrix prepared by some r.f. pulse or pulses, though

it may still be. specified by

p(O) = 2: L
i P

a . (0) I .
pl pl

(III-41)

We will ignore relaxation effects in our calculations, although it may be

added phenomenologically as a damping with time of any coherence, with

time constant T
2

. If we assume that a
p3

(0) = 0 for all p,

then the coefficients of operators in (111-28) for any time may be easily

calculated and are shown in Table III. In the particular case ~w = 0 the

behavior is simpler and

axl(t) = axl (0) coswQt ax2 (O) sinwQt

ax2 (t) = axl(O) sinwQt + a x2 (0) coswQt

(III-42)

a
y1

(0) coswQt + ay2 (0) sinwQt

-ayl (0) sinwQt + ay2 (O) coswQt.

Comparison of (111-42) and Table III makes clear that under the quadrupole

coupling alone the x and y spaces evolve independently, but when a res-

onance offset is present these spaces are mixed. As was predicted from

the energy levels in Fig. 32, the double quantum z space evolves only with

resonance offset, completely independent of quadrupole coupling.



Table III

- 1. [a (0) -a (0)] sin (-w -llw) t _1. [ ay2 (0)- ax1(0)] cos (-wQ-llw) t2 yl x2 Q 2

azl(t) = a zl (0)

a z2 (t) = a z2 (0) cos2llwt

a
x3

(t) = a z2 (0) sin2llwt

a
x3

(t) ay3 (t) = O.

76



77

Using the results of Table III the signals observed may be

calculated.

S (t)
y

y Tr(p(t) I )
x

y Tr(p(t) I )
Y

axl (t)</J(t)

a
yl

(t)</J(t)
(III-43)

where </J(t) takes care of normalization and any damping terms. We may also

define a double quantum coherence, through not directly observable,

(III-44)

whose decay, monitored in a fashion described below, gives a high res-

olution NMR spectrum, the basis of Fourier Transform Double Quantum NMR.

The calculation above of preparation and evolution of particular

states gives us all the information of interest, from a theoretical view-

point. However, in any experiment all information about the system must

If we irradiatederive from measurement of the observables, Sand S .
x y

near one of the quadrupole satellites, then an observable signal is ob-

tained (111-35), its evolution may be directly observed and followed,

Table III, and Fourier Transformation of this signal allows measurement

of w
Q

' ~ and </J(t). The intent of this chapter is to gain further high

resolution information from the double quantum decay Q(t), (111-44).

Since this coherence evolves without detectable signal, after preparing

it and letting it evolve for time T, we must transfer the coherence into

an observable. This may be achieved by application of a strong r.f. pulse,

WI > > w
Q

' and WI >>~. In this case the only important: term in the

Hamiltonian is the r.f.,

which will induce only single quantum transitions. The effect of this
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Hamiltonian on any initial density matrix is easily calculated. Table

IV lists the effect of a strong pulse on different initial density

matrices. From the table it is easily seen that a pulse such that

wIt = ~/2 rotates a density matrix l
z2

into l
y2

' which evolves under the

r.f. free Hamiltonian (111-40) to give a signaL Figure 33 shows the

pulse sequence used for FTDQ NMR. Starting with an equilibrium density

2
matrix Pi = l zl ' a double quantum pulse wI / wQtpl = ~/2 is applied to

give

This evolves for a time T, Table III, to give

p(tpl + T) = - l z2 COS2~T + l
z3

sin2~wT.

(111-46)

(111-47)

A strong (single quantum) pulse w
l

t p2 = ~/2 is applied to probe the

coherence giving

This then evolves for a time t during which signal is observed,

(III-49)

It is sometimes convenient to Fourier Transform the observed signal

S + is , and plot the peak intensities against T to give the double quan
x y

tum free induction decay. A second Fourier Transform yields the double

quantum spectrum, free of quadrupole couplings. In another approach

S (0) and S '0' are used to generate the double quantum free inductionx y" )

decay.



Table IV

D. (before pulse) Df
(after P pulse)

1

I pl I pl

I p2 I p2 cos2w
l

t I
p3

sin2wl t

I p3 1p3 cos2wlt + I p2 sin2w1 t

I I q1 coswlt I r1 sinw1tql

I q2 I q2 coswlt + I
r2 sinwlt

1
cos2wlt sin2w

1
t) +! (Iq3-I r3 )I q3 - -(I + I

p22 p3 2

I
rl 1r1 coswl t + I

ql siuwlt

I r2 I r2 cosw
lt

I q2 siuwlt

1
cos2wlt sin2w

l
t) 1 (Iq3 - I r3 )I r3 - -(I + I p2 22 p3
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p, q, r = x, y, z or y, z, x
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4. Real Responses

In the previous section we have derived the response of a spin 1

system to ideal pulses. However when doing experiments real pulses are

used which often differ considerably from ideality. For double quantum

pulses we assumed wI < < W
Q

' so that r. f. effects on the single quantum

transitions could be ignored. For a real pulse of reasonable strength,

a significant amplitude for the single quantum coefficient may be gener-

ated in addition to double quantum, Fig. 34 and Fig. 35. The response

to an arbitrary pulse can be calculated, and the constraints that az2

be maximized and that there is no observable signal after the pulse leads

. 19 64to two requlrements '

2m-l
--IT

wQ
k, m

(III-50)

=1,2 ... k;;;:'m

(III-51)

A pulse meeting these requirements for any k,m will create a density

matrix of I
z2

• Even if these requirements are not fulfilled some I z2

may be created and observed, but analysis is more complex.

For the probing single quantum pulse we assumed that WI > > w
Q

'

a requirement often difficult to meet in practice. The result after an

b " 1 b 1 1 d 1 19,64 "" i 1ar ~trary pu se may e ca cu ate a so glvlng s gna

S (t)
y

(III-52)
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where

a
y

T

2 2 1/2
(a

yl
(T) + a

y2
(T) )

-1
tan

(III-53)

While this effectThe effect of w
Q

on a
y

and ¢ are shown in Fig. 36.

introduces a scaling of efficiency in a particular experiment, as long

as wI and w
Q

are constant through an experiment it causes no problems.

5. Polycrystalline Samples

In all of the analysis of double quantum calculations just per-

formed it was implicitly assumed that there was only one value of w
Q

to

be considered, and for a single crystal sample this may be true (more

often there are a small number of w
Q

values, each of which may be treated

separately). However in a powder sample the values of w
Q

range from

- -43 eQV to + -43 eQV continuously (see (1-20». Since the effects of
zz zz

pulses are dependent on the size of w
Q

' this greatly complicates analysis.

Since many approximations will break down for at least some wn values, the
~

responses to pulses henceforth will be predicted exactly by computer.

It will be valuable to see the efficiency of each pulse as a function of

W
Q

' since each value of w
Q

will correspond to some specific chemical

shift. This means that the chemical shift (or dipolar) powder pattern

must be multiplied by a transfer function representing the efficiency

with which double quantum coherence for each w
Q

was prepared and probed

by the pulses applied. The first step in an experiment, the preparation

of double quantum coherence is shown in Fig. 37. For each experiment the
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pulse amplitude, wI' and length may be optimized to give the best possi

ble response for the range of wQ values involved, through use of computer

simulations. Figure 38 then shows the overall transfer function for prep~

aration and detection of a
z2

immediately after the probe pulse. While

there is some loss in sensitivity compared to ideality the response is

fairly uniform over a wide range of w
Q

values. For w
Q

= 0 (no quadrupole

coupling) double quantum coherence cannot be prepared and for any pulse

sequence the transfer function must drop to zero there. In a real exper-

iment, however, signal cannot be detected immediately after a pulse due

to a finite recovery time from the pulse overload for electronic compo-

nents in the spectrometer. This delays measurement of signal for - 30

~sec after the last pulse. Since the density matrix still evolves during

this time, the transfer function is changed to that in Fig. 39. Since

this changes sign many times any broadening will average the response to

zero. To alleviate this problem a quadrupole echo may be used. Such

1
echoes are well known in quadrupolar systems, and the expected response

is easily calculated with the fictitious spin formalism. An initial state

Pi = I zl is subjected to two single quantum (WI »wQ' 6w) rr/2 pulses

spaced by a time T, the first pulse being in the x direction, the second

in the y. Then from Tables III and IV

and (III-54)

a
xl

(2T) = COS6WT sin6wT ~(2T).

If !::J.JJ = 0 or T is kept short then the refocusing by the second pulse is

very good. Figure 40 shows the exact response to a pair of strong pulses,

and we see that there is better than 80% refocusing even for values of wQ
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zl
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before the pulses. We may then combine these echo pulses with a pair of

weak pulses. The first weak pulse creates I ? coherence, it evolves forz_

a variable time, then the second pulse "stores" the magnitude of double

quantum coherence along I
Z1

which is probed by the echoing pair after a

time TZ' which allows single quantum coherence to decay. Figure 41 shows

the overall transfer function for such a pulse sequence. While the re-

sponse is far from the ideal straight line at unit efficiency, such a

pulse sequence should give a measurable intensity even at large wQ' and

hence the corresponding chemical shielding (or dipolar) powder pattern

should have its proper width. If we assume that the quadrupole and

chemical shielding tensors are both axial, with their symmetry axes in

the same direction we can easily calculate the shape of the unbroadened

powder pattern from the transfer function, Fig. 4Z.

The response to two strong pulses suggests an alternate method

for preparation of double quantum coherence. If two strong pulses are

applied as above for generating an echo, but both are of x phase, then

with proper timing the density matrix may be made proportional to 1z2 '

Before the first pulse P.
l

I
zl

' Application of a n/2 x pulse yields

(III-55 )

Free evolution for a time T gives (Table III)

a
x1

(T) sin(l:IwT) cos (WQT)

ax2 (T) sin (l:IwT) sin (WQT)

ayl(T) = cos (i:lwT) cos (WQT)

ayZ(T) cos (6WT) sin(wQT).

(III-56)
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If w
Q

» 6w tnen we may choose T so that WQT=Tr/Z and LlWT ~ 0 so that

a
yZ

~ 1. The second TrjZ x-pulse then rotates a
yZ

into a
zZ

' Table IV.

For a polycrystalline sample then the transfer function will be approx

imately siuwQT, the coefficient of I
yZ

' Since this transfer function

may be changed by varying T, a Fourier series approximation to a square

wave may be generated. Figure 43 shows the first three transfer func

tions that would be summed with appropriate weighting to give the total

transfer function also shown. Although sensitivity is lost in such an

experiment, in principle an arbitrarily good transfer function may be

generated. Figure 44 shows the actual result of a three term square

wave approximation, with imperfect pulses, by computer simulation.

For many powder samples obtaining good signal to noise ratio

can be a problem. If the four pulse sequence of Fig. 41 is used then the

signal is sampled at only one point. Since separate experiments must be

performed for each value of T, experiments become very long if much aver

aging must be done at each T. This may be reduced somewhat by noticing

that at the echo point the density matrix is I
yl

' exactly the same as

after the strong x pulse. Hence if at a time T after the echo another

y pulse is applied a second echo should occur. In fact this may be re

peated several times before off resonance and broadening damp the echo

amplitude. Figure 45 shows the response to a simple echo sequence, the

third echo response and the average of four sequential echoes. By co

adding the signals from each echo the signal to noise ratio at each T

may be increased considerably. Of course this average echo transfer

function must be multiplied by that for the preparation sequence to give

the overall efficiency for the experiment.
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6. Dipolar Couplings

a) Hamiltonians

Up to this point we have ignored the possibility of dipolar

couplings among deuterons. If a sample contains small groups of spins

close together, relatively separated from other groups the resonance

line may show structure from the dipolar couplings. Since dipolar cou-

plings contain information about orientations and distances (1-32), their

measurement may provide useful information. This was realized long ago

by Pake, who used fine structure in proton resonance lines for analysis

66
of the structure of water in hydrated crystals. However applications

of this approach are limited to simple systems. Measurements of hetero-

nuclear dipolar couplings have been made using variations of dilute spin

d 67,68,69 I 1 70,71,72,73
NMR in powers and sing e crysta s. In some cases

multiple pulse sequences were used to suppress couplings among abundant

spins, however most of these techniques are applicable only to small systems.

A few measurements have been made of homonuclear couplings between

l3 C69,74,75 for determinations of distances and relative orientations

of chemical shielding and dipolar coupling tensors. Working with

naturally dilute spins has the advantage that two specific sites may be

enriched in the observed spin so that their relative positions may be

determined without excessive interference from other sites. Deuterium

labelling allows the possibility of determining hydrogen positions in a

similar manner. This is very attractive since hydrogens are particularly

difficult to find in x-ray structure determinations. However, unlike the

other systems mentioned which were studied by NMR, deuterium has quad-

rupole couplings which broaden both single crystal and powder lines, often
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to the point that dipolar couplings are unobservable. Since FTDQ NMR

removes quadrupole couplings from the spectrum its use should make such

studies feasible.

The Hamiltonian for two spins I and S which have quadrupole

couplings and are dipolar coupled to each other is

(III-57)
- d (2I S - I S - IS)IS z z x x y y ,

where

contains all of the structural information, and assuming that differences

in chemical shift are small compared to both dipolar and quadrupolar

terms, we drop them completely. This Hamiltonian may easily be rewritten

in the fictitious spin operator formalism to give:

(III-58)

In Chapter I we discussed the truncation of the dipolar and quadrupolar

terms in the Hamiltonian by the much larger Zeeman coupling. In the

present case since the quadrupole coupling is generally much larger than

the dipolar coupling we must truncate the dipolar coupling with respect

to the quadrupolar coupling. Two limiting cases arise which we will con-

equivalent deuterons, w
QI

- w
QS

= 0 and nonequivalent deuterons

!W
Q1

- {tl I» 4d . To calculate the secular contribution of the dipolar
-QS IS

term in the Hamiltonian we first find the time dependence in it induced
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by the quadrupole term. In the equivalent case we find

J( (t)
D

-iX t
e Q

(III-59)

= 4d IS [ZIzIS zI - (COSwQt I xl+ sinwQt I xZ ) (COSwQt Sxl+ sinwQt SxZ)

(III-60)

where If we then average over one cycle of wQt to ex-

tract the time average part we find

(III-61)

In the nonequivalent case an analogous procedure gives:

The time average is then just

,
J(D = 4dIS (ZIzISzI)'

(III-62)

(III-63)

These are the expected results and are exactly analogous to the quenching

of flip-flop terms in the dipolar Hamiltonian for heteronuclear couplings

as opposed to homonuclear, in which they are pseudo secular. In the most

general case IWQI - WQS ' ~ 4dIS all terms must be kept.

We wish to compare the single quantum and double quantum spectra

expected for these systems. The single quantum transitions may be calcu-

lated from the Fourier Transform of (I (t) + i I (t» through calculation
x y
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of (using 'J{ of (III-58) with appropriately truncated JeD)

(Ix(t)
-iJCt iJCt 2Ixl )= Tr(e 2IxI e

(III-64)

(Iy(t)
~iJCt iXt= Tr(e 2I

xI e 2Iyl ).

It is often easier to calculate the transition frequencies and moments

as done in conventional cw absorption experiments. To do this we first

find the eigenfunctions, then calculate the matrix elements of I + S .
x x

This is quite easily done for two deuterons since only the dipolar flip-

flop term is nonsecular in the eigenbasis of I. Tables V and VI list
z

the eigenfunctions, energies and allowed single quantum transitions for

two equivalent and nonequivalent deuterons, respectively. These eigen-

96functions and energies may of course be calculated for the general case,

however such generality is not necessary here.

The double quantum spectrum may be calculated in an analogous

fashion, from the evolution of I zZ and SzZ. If the two deuterons are

equivalent then the detected signals from I z2 and Sz2 are inseparable and

we calculate the evolution of the sum. For two inequivalent deuterons

the single quantum signals are separated by the difference in quadrupole

couplings and hence I Z2 and Sz2 may be detected separately. This separa

76tion is important in analysis of signals in more complex systems.

Assuming that the double quantum coherence can be prepared and detected

(to be discussed shortly), the evolution we wish to calculate is:

(III-65)



Table V

Eigenfunctions, energies and transitions for two equivalent
deuterons, dipolar coupled (6w

Q
= 0).

EigenfUnction ~ Energy (frequency units)

1) Ill} 2
-2wO + 3" w

Q
+ 2d

2) 1/-/i (110 ) + 101» 1
-Wo - - W - d

3 Q

3) l/.../i (110 ) - I01> ) 1
-Wo - - W + d

3 Q

4) 10 a} 4--w
3 Q

5) 1/.../i (11-1> +1-11> ) 2 2d- W -
3 Q

6) 1/V2 (11-1> -1-11> ) 2
- W - 2d
3 Q

7) 1/.../i (10-1> +1-10»
1

Wo - - W - d
3 Q

8) 1/V2 (10-1> -1-10> ) 1
Wo - "3 WQ + d

9) I-I-I} 2-2w + - W + do 3 Q

Transition Frequencies Intensity

7) -+ 9) Wo + wQ + 3d 2

1) -+ 2) W - W - 3d 2o Q

2) -+ 4) Wo - wQ + d 2

2) -+ 5) Wo + w
Q - d 1

3) -+ 6) Wo + wQ -3d 1

5) -+7) Wo - wQ + d 1

6) -+ 8) Wo - wQ +3d 1

4) -+7) Wo + WQ - d 2

89



Table vr

Eigenfunctions, energies and transitions for two inequivalent
deuterons dipolar cot:pled (&u

Q
> > D) •

Eigenfunction Irs) Energy (frequency units)

1) 11 1 ) -2w + 1 1 + 2d
0 3" wQr + 3" wQS

2) 11 o ) + 1 2
-w "3 WQr - "3 wQS0

3) 11 -1 ) 1 1 - 2d"3 wQr + "3 LuQS

4) 10 1 ) -Wo - 2 + 13" LuQr "3 wQS

5) 10 o ) 2 2- "3 WQr + "3 wQs

6) 10 -1 ) 2 1
LuO - "3 wQr + "3 LuQS

7) 1-1 1 ) 1 1 - 2d"3 wQr + "3 wQS

8) 1-1 o ) + 1 2
LuO "3 wQr - "3 wQS

9) 1-1 -1 ) 2wO + 1 1"3 wQr + "3 wQS + 2d

Transition frequencies rntensity

1) -+ 2) Wo - LuQS - 2d 1

2) -+ 3) Wo + LuQS - 2d 1

4) -+ 5) Lu
O - LuQS 1

5) -+ 6) LuO + LuQS 1

7)-+ 8) LuO - LuQS + 2d 1

8) -+ 9) Wo + wQS + 2d 1

1) -+ 4) LuO
- Lu

Qr
_

2d 1

2) -+ 5) LuO - LuQr 1

3) -+ 6) Lu
O

- LuQr + 2d 1

4) -+ 7) LuO + LuQr - 2d 1

5) -+ 8) Wo + W"T 1
,<.L.

6) -+ 9) LuO + LuQr + 2d 1

90



91

For equivalent deuterons

2
JC = - 2t6.W(lz1+ Szl) + "3 WQ(lx3-1y3+

1
- 4d 1S [ 2 1z1 Szl - 2" (lxlSxl+

which we will write for convenience

(III-66)

I C' \ .lIT S + T S ) 1
x2 LJx2/ - 2 \"'yl yl "'y2 y2 J

JC=JC +JCQ+X +X +JCD .
z Dz Dx Y

(III-67)

To simplify the calculation of (111-65) we now note that many parts of

the Hamiltonian commute with each other and with 1z2 + Sz2. For the

Hamiltonian

= =
(III-68)

and

may be derived from tables of commutators and anticommutators, Appendix

F. This allows us to break up the exponential in (111-65) into separate

exponentials for each part of the Hamiltonian. In addition,

[JCQ, I 2+ S 2] = [JC , I 2+ S 2]= [JCD ,I 2+ S 2] =0 (III-69)z z Dx z z Y z z

so that the terms JC
Q

, X
Dx

and JC
Dy

may be dropped completely leaving

x

Q(t)
= Tr ~[+i2Llw(1Z1+SZ1)+ i8d1S1 Z1Sz11 t(1

z2
+S

z2
)

[-i2t6.w(1 l+S 1)-i8d1S1 IS lJ t ]
e Z Z z z (l

z2
+S

z2
) .

(III-70)

The traces over 1
z2

and Sz2 parts are identical and may be calculated

separately, and 1
z2

S
z2

terms vanish. Then the 1
z2

portion gives



Q(t)
Tr [.-i(-8dSZI )lZI

[
-i(-8dSzl)1zl

= Tr e (cos2~wt
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= Tr [COSZ6wt{COS(8dSzIt) l zZ-sin(8dS zIt) l z3 ) l Z2

- sinZbwt{cos(8dSzIt) l z3- sin(8dSzIt)lzZ ) lz~'

(1II-71)

The fictitious spin operators h~ve been defined so that they are ortho-

gonal, hence terms like Tr(1
z2

1
z3

) must vanish. The trigonometric func

tions of the operator may be expanded as shown in Appendix G. Applying

these reduces (111-71) to:

Q(t) = Tr [CosZbwt {l - (Z5zl) Z + (Z5zI) Z cos4dtl 1;2

+ sinZbwt {Z5zl sin4dtl l;ZJ •

Straight forward evaluation of traces gives

Q(t) a cos2~t + cos(2~w + 4d)t + cos(2~w - 4d)t.

(II1-72)

(II1-73)

The Fourier transform of this gives three lines of equal intensity at

frequencies 2~w-4d, 2~w, 2~4d. This is a local field spectrum, i.e.,

the dipolar flip-flop terms do not contribute to the spectrum. For two

inequivalent deuterons the K
Dx

and K
Dy

terms are not in the secular

Hamiltonian, but all other arguments above hold, so the double quantum

spectrum for inequivalent deuterons is the same as that for equivalent

ones. These are shown in Fig. 46 together with the single quantum spectra.
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While the calculation above is simple to perform for two deu-

terons, it may be very difficult for general arrangments of several spins.

In such cases it may be easier to calculate the double quantum spectrum

by the method analogous to that used for the single quantum spectra above,

using (I~ + (S~) rather than 1+ + S+o The equivalence may be seen by

calculating Q(t) in the Hamiltonian eigenbasis Ii > and Ij > 0

Q(t)

Q(t)

Q(t)

( -iXt iXt I )= Tr e 1z2 e z2. (III-74)

(III-75)

(III-76)

We now note that

I = 1
2

(I I + I I ) = I I - I 1
z2 x y y x + +

(III-77)

2 12Since 1
z2

and 1+, have matrix elements between the same eigenstates,

2
the absorption spectrum calculated from 1+ will be the same as that cal-

culated from the Fourier Transform of the evolution of I
z2

0 In cases

where the single quantum resonances are separated by differences in quad-

rupole coupling, the double quantum spectr~m of each spin may be obtained

separately by double Fourier Transformation in the region of each spin r s s i~~:.;':'",

quantum lines, tremendously simplifying the analysis of complex systemso

The analysis of a three spin system follows exactly that for

two spinso For three equivalent deuterons (a deuterated methyl group is

a good example) the Hamiltonian, with all terms appropriately truncated

for spins I, J and S, is:
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+ 4d pelS + XIS + XIs] + 4d [XIJ + XIJ + XIJ ]
Dz Dx Dy Dz Dx Dy

+ 4d [;0s + ;0s + ;0s ]
Dz Dx Dy

where crll-66) and crII-G 7) define the dipolar terms.

The single quantum sLructure is a bit more complex than for tW0 Q2uterons

but is still easily cal~ulated.76 To calculate the double quantum struc-

ture we will again make use of commutation relations. As for two deu-

terons, X
z

and XQ commute with each other and with the dipolar Hamiltonian.

If we call the z dipolar terms XDz and the x and y dipolar te~ms X
Dxy

'

then as for two spins we may easily show that [JfD ' jeD ] = 0 andz xy

[XDxy ' 1z2+ Sz2+ J z2] = O. Since [XQ' I z2+ Sz2+ J z2] = 0 the double quan-

tum evolution then reduces to

[

-it[-2~w(I 1+5 I+J 1)-8d I IS _-8d I I J 1-8dS lJ 1]
Q(t) T

z z z Z Z.L Z Z Z z
r e (111-79)

ic[-2~w(1 1+8 I+J 1)-8d I IS l-8d I I J I-Sd S I J 1] ]
I . z z z zz zz zZI

z2 e z2 •

Since this is again a local field effective Hc>miltonian we need not

repeat the calculation (111-71) but predict a five line spectrum centered

at 2~, with lines of intensity 1:2:3:2:1 spaced by 4d. This is shown in

Fig. 47 together with the single quantum spectrum.

The analysis of more complex systems, for example three deu-

terons with different quadrupole and dipole couplings, becomes very dif-

ficult in the manner used above. In such cases the z and xy parts of the

dipolar Hamiltonian will not commute, so a simple local field spectrum is
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The calculation of the transitions of 1
2

is quite straight+

is also satisfied.

76forward with a computer or by hand.

b) Preparation and Detection

In the above analysis we have assumed that we could create

and detect a density matrix proportional to I
z2

' exactly as we had done

when no dipolar couplings were present. This may be justified for the

2
case assumed, wQ » d, if during weak pulses WI/WQ »d

In this case the dipolar Hamiltonian is a minor perturbation upon the evo-

lution of the system and for reasonably short pulses its effect can be

ignored. We will see in the next chapter that if the dipolar Hamiltonian

is sufficiently strong, relative to other terms in the full Hamiltonian,

that it may also induce multiple quantum transitions. For example in the

two deuteron case just discussed double quantum transitions of the type

1+5+ could be induced, as well as triple and quadrupole quantum transi-

tions which are not allowed in a purely quadrupolar system. Figure 48

shows the possible transitions of all orders for a system of two equiva-

lent deuterons. When WI > wQ (small quadrupole values) is not met we

have already seen that double quantum coherence cannot be prepared e££i-

ciently, and here the dipolar part of the Hamiltonian may have a signif-

icant effect relative to the other terms. In a powder the double quantum

preparation pulse is optimized for the regions of maximum intensity, which

generally have large wQ values. In this case the pulses are rather short

and we do not expect the dipolar Hamiltonian to have significant effect

during this short time. During the probing pulses in any of the double

quantum sequences we strive to have WI » WQ' hence the dipolar terms

may certainly be ignored.
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If the analysis of double quantum coherence is performed with

the double Fourier Transform technique (often preferable so that just one

spin is observed) then the amplitude of all dipolar lines corresponding

to the spin of interest must be included to faithfully represent the

total duuble qUililtum operator. In some cases it is of interest to ob

serve single quantum lines which correspond to one particular double quan

tum transition,77 for example the double quantum transition in the asym-

metric manifold of Fig. 48 may be isolated by oGserving transitions

3) + 6) and 6) + 8) of Table V.

c) Powd2r Lineshape

As discussed above, the preparation and detection of double quan-

tum transitions in a powder with dipolar coupling presents no new prob-

lems. For two deuterons we have seen that each orientation gives a three

line spectrum. If we assume that the spins hav~ no anisotropic chemical

shift, then this is exactly analogous to the quadrupole coupled spectrum

of a spin 3/2. Since the dipolar coupling has axial sYmmetry, depending

only on the relative orientation of the internuclear vector and the field,

a powder of paired spins-l will give the same spectrum as a powder of

spins 3/2 with an axial field gradient tensor. l This is identical to the

pattern of pairs of spins-liZ of Pake66 with an additional sharp line in

the center.

If the spins have anisotropic chemical shifts as well as di

polar coupling, the powder pattern becomes quite complex. It can be cal-

culated analytically easily only if the shielding tensor has axial syrn-

metry and its sYmmetry axis is aligned with the dipolar axis. Other
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cases may be calculated with use of a computer.

If three equivalent spins are dipolar coupled, then the powder

pattern will be like two overlapping spin-l quadrupole patterns, one

twice the width and half the intensity of the other, plus a line in the

center. This is already quite a complex powder pattern, and requires

quite good resolution experimentally to observe. While powder patterns for

other arrangements of spins are easily generated, they will be very com-

plex and hence require exceptional resolution to observe experimenta11y.

d) Echoes

Since it is ~ather unusual to find spins without any chemica~

shielding anisotropy, it would be nice to have a method for removing it,

without eliminating the dipolar structure of interest, to simplify di-

polar powder patterns. It is possible to achieve this through use of am

78
echo of the Haan type, since the chemical shift is linear in I while

z

the dipolar coupling is bilinear. It is well known that a IT pulse fo1-

lowing a IT/2 pulse causes refocusing of chemical shifts (and of course

off resonance and magnetic field inhomogeneity terms which have the

identical form) while it does not change scalar or dipolar couplings. A

mathematical analysis of this phenomenon and a discussion of its limita-

tions is postponed until the next chapter. From the above argument we

expect a single quantum IT pulse in the center of the double quantum

evolution period to remove all evolution from off resonance, shielding

anisotropy and magnetic field inhomogeneity terms while leaving dipolar

and scalar contributions to the evolution unchanged. Such echoes would

also be of use for removal of magnetic field inhomogeneity contributions
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to the linewidth in studie$ of relaxation in single crystals or liquid

crystals.

7. Broadening Mechanisms

In deuterium NMR there are several broadening mechanisms in

addition to those for high resolution NMR of spin-liZ nuclei in solids.

In usual dilute spin NMR the only sources of broadening (excluding motion

as studied in the first chapter) are magnetic field inhomogeneity and

dipole-dipole couplings among the observed nuclei, or other magnetic

nuclei which are not decoupled. Both of these may be minimized by the

spectroscopist, the first by shimming the magnetic field to high homo-

geneity and the second by diluting the magnetic nuclei in a host of non-

13 12
magnetic ones ( C in C).

Of course these also apply to deuterium NMR, but in addition

one must consider other sources of broadening. In single crystal samples,

defects in the lattice structure cause different parts of the crystal to

have slightly different orientation with respect to the magnetic field.

Since the large quadrupole couplings change rapidly with orientation, a

small defect may cause linewidth large enough to obscure chemical shifts

or dipolar couplings of interest. Since double quantum NMR removes the

effect of quadrupole couplings, crystal imperfections will no longer be

important. Similar broadening is observed in liquid crystal samples due

to imperfect alignment of the molecules with the field, and has been suc-

76
cessfully removed with double quantum NMR.
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The quadrupole coupling as presented in Chapter I was calcu-

lated to first order. In fact if the energy is calculated to second or

der a correction term is necessary.l For an axial field gradient tensor

this correction for the m magnetic quantum number level is

( 3 2e . 2e . 4e)2" cos Sln + Sln . (III-80)

where WQM = 3e
2

qQ/2h is the maximum quadrupole splitting. This correction

term moves the ±l levels in opposite directions by an equal amount. This

preserves the center of gravity of the single quantum spectrum, so that

chemical shifts determined by single quantum single crystal rotations

will be unaffected. However this does shift the double quantum transition

position and hence will complicate analysis of double quantum measurements,

in single crystals and powders. In a single crystal the quadrupole tensor

orientation and magnitude may be known and the position of the double quan-

tum line may be corrected to determine accurately the chemical shift. In

a powder, however, many different orientations contribute to the same

chemical shift, so it is not simple to correct the powder pattern line-

shape. If the relative orientation of the quadrupole and chemical shield-

ing tensors is known, then a correction for the anisotropy may be esti

mated. For w
QM

3xl0
5

Hz and Wo = 2.8xl0
7

Hz (appropriate for many rigid

solids in a field of 42 kG), the second order shift contributes -100 Hz

(3.5 PPM) to the width. While not a severe problem, one must be aware

of this for studies of small chemical shifts. Motional averaging, of

course, reduces the second order shift as well as the first order.
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The last broadening we consider is lifetime broadening due to

very short spin lattice relaxation times. The large quadrupole coupling

of deuterium provides a very efficient relaxation mechanism when motion

occurs with a frequency near the Larmor frequency of deuterium. If T
l

is

reduced to 10 msec (much shorter TI's have been observed) then this will

contribute - 1 PPM to the homogenous linewidth of both single and double

quantum transitions. This cannot be eliminated except by changing

the sample temperature to move the frequency of motion away from the

Larmor frequency, lengthening the relaxation time.

C. Experimental

1. d-l Benzene

The first measurement of deuterium chemical shielding aniso-

tropy in a powder was made on a sample of d-l benzene. Chemical shield-

ing in benzene is of considerable interest both theoretically and prac-

tically as the simplest compound which can exhibit ring current induced

chemical shifts. 79 At the temperature of the experiments (-40°C) it is

11 k h b b i . f ld . 1,80 .we nown t at enzene rotates a out ts S1X 0 ax1S 1n a manner

exactly analogous to hexamethylbenzene. Therefore we expect the quad-

rupole coupling tensor and chemical shielding tensor to be axial with

the unique axis out of the plane of the ring. The chemical shift in the

unique direction should be downfield from the perpendicular direction,

due to the ring current.

The sample used was 10% d-l benzene (Merck, 98% d-l) doped into

ordinary benzene, sealed under vacuum in a 6 rom diameter pyrex tube. This

dilution was used to reduce deuterium-deuterium dipolar couplings and
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hence their contribution to the homogeneous linewidth. The liquid was

frozen quickly to produce a polycrystalline sample, then maintained at

-40±3 C. The single quantum spectrum showed a quadrupole powder pattern

of almost axial symmetry, giving a value for eQV = 96 kHz. The valueszz
81

for nonrotating benzene have been previously measured as eQV = 181
zz

kHz,n = 0.041. If we assign v
33

(using the convention that v
ll

,v22 and

v33 represent the three discont~nuitiesin a powder spectrum and

IV331~lv221~lvl~) to be along the C-D bond and v22 to be out of the plane

of the ring we would predict eQV = 94 kHz, quite reasonable agreement.
zz

T
l

for the deuterium was estimated to be 10 msec and hence relaxation

could contribute significantly to the homogeneous linewidth.

Figure 49 summarizes pulse sequences used in FTDQ NMR. For the

present sample pulse sequence B was used with PI y phase, 20 kHz amplitude

and 25 ~sec length, P
2

x phase, 50 kHz amplitude and 3 ~sec length, and

P
3

x phase, 50 kHz amplitude and 4.5 ~sec length. The double quantum

evolution time T was incremented in units of 100 ~sec, and T' was fixed

at 100 ~sec. High power proton decoupling was applied throughout prep-

aration and detection periods. The experiment was performed 500 Hz off

resonance from the liquid line PQsition. Figure 50 shows the double

quantum free induction decay obtained by taking the echo amplitude for

each T value. The Fourier Transform of this is shown in Figure 51.

From this powder pattern we have determined 6o = - 6.5±1 PPM (6o =°
11
-(1 ).

The homogeneous contribution to the linewidth is 3PPM and is probably

a combination of residual dipolar, relaxation and second order quadrupole

contributions. The ~I element is as we expected downfield from 01 •

Recently this anisotropy has been measured using multiple pulse
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and a value of ~q in good agreement with ours was obtained.

Figure 52 shows the theoretical prediction for the powder lineshape, in-

cluding transfer functions for all pulses, convoluted with Gaussians of

varying widths. The agreement of C with experiment is good, although at

this degree of broadening all fine details are lost.

2. Ferrocene

To verify the reliability of FTDQ results we wished to compare

shielding anisotropy for a compound which had been carefully studied with

multiple pulse techniques. Ferrocene was a convenient choice since it is

easily made, is a solid at room temperature and has been carefully studied

with multiple pulse NMR. 3 It is very similar to benzene in many ways in-

cluding motion and we expect it to have similar shielding characteristics.

The sample of 5% .randomly deuterated ferrocene was prepared

using the method of Fritz and Schaefer,83 exchanging with deuterophos-

phoric acid in dioxane. The isotopic label was assumed to be randomly

distributed and was quantified by mass spectral analysis. Approximately

200 mg of finely ground labelled ferrocene, compressed into a 6 rom diam-

eter pellet, was used for the present experiments, done at room temper-

ature 20±3°C.

The single quantum spectrum Fig. 53, shows an axial quadrupole

powder pattern with eQV = 96.8l±0.Ol kHz and T) < 0.002. This is aszz

expected very similar to the values for benzene.

Pulse sequence D of Figure 49 was used for the double quantum

measurements. P, and P~ were 20 kHz amplitude anft 25 ~sec length, of
J. L.

arbitrary phase. P
3

and P
4

were x and y phase respectively - 75 kHz
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amplitude and 3.5 ~sec width. 1 was varied in units of 50 ~sec and T~
~

and T' were fixed at 1 msec and 40 ~sec respectively. High power proton

decoupling was applied during all times except T
Z

' Figure 54 shows the

double quantum free induction decay generated by taking the amplitude of

the echo at each T value. The Fourier Transform of this is shown in

Figure 55. The asymmetric line observed is consistent with an axial

powder pattern with ~a = - 6.5±l PPM as for benzene. The homogeneous

linewidth is somewhat greater than for benzene and is probably due to

deuterium dipolar couplings. The deuterium concentration of 5% is con-

siderably higher than in the benzene sample. T
I

was estimated to be

longer than 50 msec and hence should contribute to the broadening. The

3
agreement of our value for ~a with that of Haeberlen, ~a=-6.5±0.1 PPM

from single crystal multiple pulse studies, is gratifying. The single

crystal value has been determined on a spherical crystal with corrections

for bulk susceptibility anisotropy, and hence is far more accurate than

our estimate. In a powder sample our resolution appears somewhat better

3
than is achieved by multiple pulse method& FTDQ measurement at higher

dilution should yield even better resolution.

Hydrated salt crystals provide a convenient source of paired

deuterons in which to study dipolar couplings. Deuterated barium chlorate

monohydrate has been previously studied using cw NMR.
84

These studies

showed that at room temperature the water molecules make jumps of 180 0

about their Cz axes. Similar behavior has been observed in other

85 86
hydrated crystals.' This motion assures that the deuterons in any
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water molecule will have the same quadrupole couplings, and the same

chemical shift. Chiba
84

observed that the short deuteron-deuteron dis

tance of 1.6 A led to resolved dipolar structure in the single quantum

spectrum, in spite of rather large linewidths. Since there is only one

type of water, crystallographically, the single quantum spectrum is a

single pair of quadrupole satellites consisting of dipolar multiplets,

and provides a convenient system for comparison of single and double

quantum dipolar structure.

The sample was a single crystal of barium chlorate monohydrate

grown by slow evaporation of nearly saturated DZO solutions. Commercial

BaCl0
3

"HZO was dissolved in 98% DZO (Biorad Laboratories) then evaporated

to dryness. This procedure was repeated, and the resulting 'powder was

again dissolved in DZO. This solution was allowed to evaporate in a

closed box over a period of approximately two weeks. When crystals of

sufficient size (5 mm x 3 rom x 1 rom) had grown they were removed from the

solution. The crystals were clear and had well developed faces. They

were mounted on the end of a Kel-F plastic rod which was then mounted in

a goniometer, so that the crystal could be rotated about an axis perpen

dicular to the magnetic field. The orientation of the crystal was not

determined, rotations were performed only to adjust the quadrupole and

dipole couplings to convenient size.

A single quantum spectrum of the crystal in the orientation

studied is shown in Figure 56, obtained without proton decoupling. The

splitting between the satellites is 138.3 kHz. The dipolar structure

shown in the expansion is a center pattern of three lines (one incom-

pletely resolved) as expected from two dipole coupled deuterons (Fig. 46),
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for which wn and d have opposite signs. In addition there are two weak
~

outer lines which come from HOD molecules. The H-D coupling is three

times the D-D coupling, as expected. The H impurity is a result of ex-

change of water in the air with the D
2

0 solution. Crystals grown more

slowly showed an even higher concentration of H. That these extra lines

are from HOD molecules and not crystal imperfections was confirmed by

comparison of proton coupled and decoupled spectra. From this spectrum

we determine d = 350 Hz.

Double quantum measurements were made employing pulse sequence

A of Figure 49. The first pulse was arbitrary phase, 55 kHz amplitude

and 9 ~sec length. The second pulse was 80 kHz amplitude and 3 ~sec

length. T was incremented in units of 25 ~sec. Figure 57 shows Fourier

Transforms of proton coupled and decoupled double quantum decays. In the

proton coupled spectrum the HOD lines are not observed, and the spectrum

is the predicted symmetric 1:1:1 triplet. When the protons are decoupled

the HOD lines are collapsed and contribute to the center line. The split-

ting between lines is 1340 Hz giving a value of d = 335 Hz, in good agree-

ment with the single quantum values. There is apparently a small differ-

ence in width among the three lines which is not understood. T
l

was mea-

sured on this crystal in an orientation with small quadrupole coupling

and was found to be - 2 msec. This implies a contribution of 160 Hz to

the homogeneous linewidth. The linewidths in the spectra of Figure 57

are approximately 750 Hz, and are probably determined by unresolved di-

polar couplings to distant water molecules. It is clear from the spectra

that the simplification of dipolar structure in the double quantum exper-

iment leads to a practical improvement of resolution, and a somewhat more
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accurate determination of the dipolar coupling.

4. Hexamethylbenzenes, d-l, a,S d-2, a,S,y d-3, d-18

In the development of new techniques (to help define conditi8ns

for their optimal application) it often valuable to study a related series

of compounds. To this end a series of partially deuterated hexamethyl

benzene samples was studied. The molecular motion of this compound at

room temperature reduces the quadrupole coupling, greatly reducing the

requirements for ideal single qua~tum pulses. The molecular motion also

greatly reduces the chemical shieloing anisotropy, so that simple dipolar

structure could be observed in po\!ders. Ihe simple crystal structure and

reasonable relaxation time make it practical to study single crystals as well.

The partially deuterated hexamethylbenzenes were synthesized

from pentamethylbenzene and parafnrmaldehyde by the procedure described

in Appendix H. They were characterized by high resolution NMR and mass

spectroscopy. d-18 Hexamethylbenzene (98% deuterated) was purchased from

Merck and used without further purification. Diluted samples were pre

pared by melting together desired weights of labelled and unlabelled

material. Single crystals were grown by slow evaporation of saturated

carbon tetrachloride solutions, yielding platelike crystals rather than

the usual needles. These crystals were fragile but could be glued to

goniometer mounts without difficulty. The crystals were clear and had

well developed faces.
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a) Powder Spectra - Single Quantum

Since there is a great deal of molecular motion in HMB, the

quadrupole coupling is greatly reduced from the large values for rigid

81
methylene deuterons (eQV = 174 kHz in cyclohexane and 166 kHz in

zz

1 . 87) d h .. bid f hg YC1ne , an ence 1t 1S easy to 0 ta n very goo spectra or t ese

compounds. Figures 58. 59 and 60 show the single quantum spectra of neat

d-l, a,S d-2 and a,S,Y d-3 HMB Eamples. The results are summarized in

Tabl~ VII. These are rather startling in several ~espects. To begin,

we know that at room temperature HMB undergoes ra~id rotation about its

sixfold axis. This would lead us to expect that n would be zero, as ob-

served for ferrocene, which also undergoes rapid uniaxial rotation. FroD

37 38
the crystal structure of HMB' (space gr~up P21 , one molecule per unit

cell) we know that molecules are stacked i~ planes with each molecule

tilted 5° out of the plane. Thus a particular methyl group may have two

environments, lying in the plane (1/3 of its possible orientations) or

slightly out of plane (2/3 of its orientations). The nonzero asymmetry

parameter could come about in tHO ways. First, that the deuterated methyl

spends less time in one type of site than the other, or second, that whiLe

in one type of site it has a different quad~upole coupling constant from

the other. The first possibility is ruled out by natural abundance l3C

measurements on the d-l HMB sample. A biased rotation of this sort would

cause the ring carbon tensor to be nonaxial with the same asymmetry param~

eter as the deuteron. Figure 61 shows carbon spectra for undeuterated HME

and d-l HMB, with a theoretical spectrum for the biased rotation case.

From these we conclude that the source of asymmetry must be different

quadrupole coupling tensors for different sites.



Table VII

COMPOUND eQV nzz

d-l HMB 18.95 kHz 0.096±0.002

a,S d-2 HMB 20.9 kHz 0.08 ±0.01

a S y d-3 HMB 22.2 kHz 0.07 ±0.01

d-18 lIMB 22.0 kHz 0.07 ±0.02

108
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The increase in magnitude of the quadrupole coupling in going

from d-l to d-2 to d-3 is also rather surprising. This could come either

from a change in the static electric field gradient upon successive deu-

terations, or from a change in the vibrational and rotational averaging.

Since the field gradient is greatly averaged by motion the change in

static field gradient would have to be quite large to explain the change

observed. However the averaging which occurs from methyl group rotation

is very sensitive to the C-C-D bond angle. A static change of -1.2 0 in

this angle upon going from d-l to d-2, and 0.8 0 upon going from d-2 to

d-3 would explain the observed spectral changes. Such a static argument

is certainly not a complete description; dynamic averaging should be con-

sidered. It does, however, make a change in averaging seem a reasonable

explanation. Measurements on a number of other deuterated aromatic methyl

groups have been made. The quadrupole coupling constants, eQV ,for
zz

toluene, p-xylene and o-xylene are all 52 kHz.
88

Methyl rotation gener-

ates an average quadrupole tensor, with the V direction along the rota
zz

tion axis. The directions of V and V must be perpendicular to this,
xx yy

but cannot be determined further. The sixfold rotation in HMB will av-

The coupling along the six-erage V with a value between V and V
zz xx yy

fold rotation axis will become the new V value. From the data ofzz
88

o-xylene (n = 0.094), we would predict HMB to have an averaged Vzz

between 17.6 and 21.3 kHz. However in the HMB samples the values range

from 14.2 (d-l) to 16.7 (d-3). The reason for this discrepancy is not

understood.
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It is apparent from the powder spectra that the dipolar line-

width has increased in going from d-l to d-3 HMB. For high resolution

studies we must limit this contribution to the homogeneous linewidth if

we are to accurately measure other couplings. The quadrupolar echo pro-

vides a convenient way to directly observe the broadening by these cou-

plings. We have seen that at the echo point all evolution due to the

quadrupole coupling has been removed, (III-54). The spectrometer res-

onance frequency may be adjusted so that ~w = 0, so that the damping

function ~(t) may be observed. The damping will come from two sources,

dipolar couplings and chemical shift anisotropy. Their contributions

may be separated by dilution, since dipolar couplings are concentration

dependent but shielding anisotropy is not. Figure 62 shows the echo

amplitude vs. time for several HMB samples with different deuterium con-

centrations. The decay time for the echo amplitude steadily increases

with decreasing concentration. Even in this motionally averaged solid

there is a significant change upon dilution from d-l (5.5% total deuterium

concentration) to 10% d-l (0.5% d) at which point chemical shielding prob-

ably dominates the linewidth. A very similar approach has been used for

measurement of the intermolecular contribution to dipolar linewidths in

systems with strongly coupled pairs of spins - 1/2,89 (these pairs of

. b h h lik . 190)splns e ave very muc e a spln- . Figure 63 shows the expected

modulation of echo amplitude when the same experiment is performed off

resonance. Equation (III-54) may be rewritten as:

axl (2T) = ; sin2~wT

~ (1 + COS2~WT)
(111-81)
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This is exactly the behavior one would expect ot a signal evolving with

out quadrupole couplings with an added on-resonance component. This

might be used to measure shielding anisotropy in very dilute systems

(if shielding and dipolar terms are of comparable size the evolution

under echo sequences may be very complex, see Chapter IV).

b) Single Crystals a,S d-2, a,S,y d-3

The dipolar couplings within a methyl group are much larger

than the linewidth determined by intermolecular couplings and, as for

D20 in hydrates, then yield resolved dipolar structure. The d-2 and d-3

HMB crystals were goniometer mounted so that they could be rotated to

give nearly the maximum possible quadrupole splitting. Figure 64 shows

the single quantum spectrum of the d-2 HMB crystal. The resolution is

considerably better than in the D20 spectrum and we are not bothered by

extra proton split lines. The quadrupole coupling V
Q

= 29.9 kHz, the

dipolar coupling d = 104 Hz, and the linewidth is - 160 Hz. The double

quantum spectrum shown in Figure 65 was obtained with the two pulse

sequence, A of Figure 49, with PI arbitrary phase, 12.6 kHz amplitude

and 33 ~sec length. Again it is the expected 1:1:1 triplet, with sp1it

tings of 430 Hz giving d = 107 Hz in good agreement with single quantum.

The linewidth of the center double quantum line is 250 Hz, somewhat

greater than the single quantum value. The increase in linewidth is an

indication that field homogeneity may be important in determining the

linewidth in this sample. The difference in linewidths among the double

quantum lines is not understood.
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Figure 66 shows the single quantum spectrum of the d-3 HMB

crystal. Again considerable structure is resolved, yielding values

V
Q

= 16.0 kHz and d ~ 119 Hz. The double quantum spectrum in Figure 67

was generated with the same pulse sequence used for the d-2 crystal. The

structure, as predicted, is a sYmmetric five line pattern with intensities

1:2:3:2:1. The dipolar splitting obtained from this is 115 Hz, and is

probably more accurate than the single quantum value. The higher deu-

terium concentration (17%) has broadened the lines considerably, and more

accurate dipolar couplings could be obtained in a diluted sample, espe-

cially with the simple local field structure in the double quantum spec-

trum.

c) Double Quantum Powder Spectra d-l, d-2

While the single crystals of HMB showed structure from the

dipolar couplings in the single quantum spectrum, the powder spectra do

not. Then to gain any information about dipolar couplings in a powder

we must use the Double Quantum approach, exactly as used in chemical

shielding studies.

The chemical shielding anisotropy in HMB is expected to be

rather small. If the shielding tensor in a rigid methyl group were axial

and aligned. along the C-D bond with 6a = - 6 PPM (in analogy with the

protons C-H in malonic acid)), the molecular motion should reduce 6a by

about the same amount as the quadrupole coupling (as we have seen, a

factor of about 10) so that 6a observed should be less than 1 PPM. How-

ever there may be a component of shielding from a ring current in analogy

to benzene, which would not be averaged by the methyl or ring rotation.
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It is difficult to estimate the magnitude of such shielding, but from

the data of benzene it seems quite possible that it could be 1-2 PPM.

A sample of 20% d-l HMB was compressed into a 6 rom x 1 cm

pellet. The double quantum spectrum of this sample taken with pulse

sequence D of Figure 49 is shown in Figure 68. Pulses PI and P
2

were

each 30 kHz amplitude and 48 ~sec respectively. Pulses P
3

and P
4

were

x and y phase, 80 kHz amplitude and 3 ~sec long. The double quantum

free induction decay was generated by taking the amplitude of the echo

for T values incremented in 200 ~sec units. The spectrum is a single,

almost symmetric line of width ~ 200 Hz. The lack of resolved structure

indicates that the broadening is at least comparable in size to the

shielding anisotropy, perhaps larger. T
l

was measured to be - 70 ~sec,

indicating that lifetime is not contributing significantly to the line

width. The observed linewidth must then come from homonuclear dipolar

couplings, other T
2

relaxation processes, and magnetic field inhomogeneity.

From this spectrum it is not possible to accurately determine the shield

ing anisotropy.

Double quantum spectra were also taken for samples of 100% d-2

and 10% d-2 HMB, prepared in the same way as the d-l sample, using the

same pulse sequence as described above except sampling double quantum

coherence in 100 ~sec units. These are shown in Figure 69. In the 100%

d-2 HMB sample dipolar structure is present, but poorly resolved. The

distance between the shoulders is 435 Hz yielding a dipolar coupling

d = 109 Hz. The spectrum obtained by diluting the d-2 H}ffi to 10% shows

a considerable improvement in resolution, due to reduction of intermolec

ular dipolar couplings. The splitting between peaks is - 425 Hz giving
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d = 106 Hz, in good agreement with the value expected, from the single

crystal results.

As for chemical shielding, theoretical lineshapes are the ideal

shapes multiplied by the transfer function for the pulse sequence used to

generate and probe double quantum coherence. The transfer function for

the sequence used for these experiments is shown in Figure 70. For small

small quadrupole couplings the efficiency is not very good in preparation,

but the echoing pulses have greater than 95% efficiency over the entire

range for HMB. The theoretical spectra generated with this transfer func

tion ~ssuming no shielding anisotropy) are shown in Figure 71, with

Gaussian broadening of several values. The broadened lineshapes agree

very well with the experimental for both 100% and 10% samples. Good

agreement could not be obtained with theoretical spectra not including the

transfer function. The agreement of the single crystal and powder values

for d and the fact that the center line in the powder spectrum is centered

between the other peaks and is quite symmetric argues against any large

contribution from chemical shielding anisotropy in this spectrum.

The broadening used to simulate thelOO% sample's spectrum was

- 220 Hz, very similar to that observed in the crystal of the same mate

rial. For the diluted powder the broadening was reduced to 140 Hz. This

demonstrates the importance of work~ng in dilute spin systems if very high

resolution is to be obtained.
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J. Anisic Acid

In all of the powders studied to this point, the quadrupole,

us

and hence all other couplings, have been averaged by motion. Anisic

acid (p-methoxybenzoic acid) deuterated at the acid position provides a

system with no motion. As one would expect the quadrupole coupling is

quite large and hence the requirements for good single quantum pulses

are proportionately increased. However such pulses are still quite with~

in the capabilities of spectrometers with modest r.f. power amplifiers.

The sample was prepared by dissolving commercial anisic acid

(Aldrich) in 98% DZO, evaporating solvent and repeating. Finally, trapped

DZO in the crystals was removed by sublimation at reduced pressure. The

resulting powder was compressed into a 6 rom x 1 cm cylinder, and used with-

out other treatment.

The single quantum spectrum of anisic aci~ Figure 72, was

obtained by Fourier Transforming half a quadrupolar echo, generated by

using 100 kHz, Z.Z5 ~sec pulses separated by 30 ~sec. The transfer func-

tion for this sequence has already been presented in Figure 45, and dis-

tort ions are quite evident in the spectrum. From this we obtain eQV
zz

Although the carboxyl

169.0±1.0 kHz and n = 0.13Z±0.004. These values are somewhat larger than

h . 1 d . b 1· . d 64,86t ose preVl0US y measure ln car oxy lC aCl s.

93
region is quite rigid, rotating methyl groups quite near the deuterons

provide a relaxation mechanism so that T
l

is only a few seconds.

The double quantum spectrum was taken using the four pulse

sequence, D of Figure 49, with PI = Pz 37 kHz and 13.5 ~sec long, TZ and

T' fixed at 1 msec and 40 ~sec respectively. P
3

and P
4

were 80 kHz and

30 ~sec. T was incremented in units of 50 ~sec and 50 points were taken
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in the double quantum FID. The free induction decay obtained from the

echo amplitude and its Fourier Transform are shown in Figure 73. The

spectrum shows considerable structure, however analysis is quite diffi

cult because of the simultaneous presence of chemical shielding and di

polar couplings. Anisic acid, as most carboxylic acids, crystallizes as

dimers, bringing pairs of deuterons quite close together. From the crystal

structure data93 we can estimate the distance between deuterons in the

dimer at 2.3 A, which indicates a maximum dipolar splitting of - 930 Hz.

Chemical shielding has been studied in a number of simple acids,3 from

which an estimate of 25 PPM seems reasonable for 60, or in the double quantum

spectrum - 1400 Hz. The chemical shielding tensor axis is probably

aligned along the O-D bond and the dipolar tensor axis will make an angle

of about 72 0 to this, so we expect complex structure. With the somewhat

limited resolution in the present spectrum no detailed analysis was at

tempted. The deuterium concentration is probably too high to obtain very

good resolution, and studies of the chemical shielding could be performed

on a 10% deuterated sample, for which dipolar couplings would not be a

problem.

D. Discussion

In this chapter we have discussed the principles of FTDQ NMR in

single crystal and powder samples. The spectroscopy in single crystals is

quite simple both in principle and in practice. Powder samples pose some

problems due to the presence of a wide range of quadrupole couplings, and

perfect double quantum powder patterns cannot be obtained. However, the

distortions incurred in powders are predictable and do not generally degrade
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the information content of spectra. The influence of dipolar couplings

on double quantum spectra is also quite simple and is simply predictable.

The experimental feasibility of these techniques has been demonstrated by

measurements of chemical shielding in powders and dipolar couplings in

both single crystals and powders.

These techniques provide an important supplement to multiple

pulse NMR for determination of couplings of interest in simple systems.

In addition they provide the opportunity for labeling studies. One or a

small number of sites in a large molecular system may be deuterated, and

thus selectively observed when multiple pulse spectra would be far too

complicated for analysis, due to presence of many different proton types.

Chemical shielding can provide information about the electronic environ

ment of the spin and double labeling can give dipolar couplings to provide

structural information. This expands greatly the number of systems which

may be gainfully studied with NMR of hydrogen isotopes.
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IV. MULTI QUANTUM NMR IN DIPOLAR SYSTEMS

A. Introduction

In the last chapter w~ have investigated the use of quadrupole

couplings in generating double ~uantum coherences. To observe such a

nonlinear efiect it was necessary to have a Hamiltonian which had terms

bilinear in th,: spin operators, such as quadrupole coupling. Ernst, et

al., have used scalar couplings, also bilinear, to induce mul tipL~

.. . 1· "d 65quantum trans~t~ons ~ll ~qu~ s. In this chapter we investigate the use

of dipolar couplings among spjns ~ for gEnerating multiple quantu~

coherences. We will see that in large spin systems the high order

multiple quan':um spectra are simple, and should be easier to interpret

than the single quantum spectra.

The principles of multiple quantum spectroscopy in dipolar

coupled systems are the same as discussed in the last chapter. Ho~?ver

the operators introduced for calculations in the quadrupolar system are

not well suited for larger systems, so a new set will be used. As the

number of spins becomes large the calculations get quite complex, and

hence feasible to do exactly only with a computer. However, we will see

that many aspects of the experiments can be predict~d using arguments

of symmetry and statistics alone.

B. Fictitious Spin - i Formalism

The operator basis defi~ed in the last chapter was used

initially for calculations in pure nuclear quadrupole resonance, making

use of the eigenfunctions of I 2. In dipolar or scalar coupled systems
z



there is no natural extension of this basis set.
.. 90 ,~ 94vega ana ",",rnst

11'9

have independently proposed a new formalism, an extension of Abragam's

fictitious spin - i,WhiCh can be used in description of any spin system,

since it is defined in terms of the eigenfunctions of the Hamiltonian.

As in the last chapter calculations are performed by writing the Hamil-

tonian and density matrix in terms of these operators, then taking

advantage of their simple commutation relations to predict evolution.

In any spin system with n eigenfunctions which are labeled

simply by number Ii> i = 1,2, ..• n, we define three operators for each

pair of states Ii> and /j> (or for each generalized transition Ii> ~ Ij»

1 h · 1 P I" ."ana ogous to t e spln 2 au 1 matrlcles:

<ilI
ij

Ij> <j Ir ij
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1
= -

x x 2

<i/r
ij

Ij> <j Ir
ij Ii> i

Y Y 2

<i Ir
ij

Ii> <"II
ij

,">
1

z J z J 2

<k/ r
ij

1£> 0 for all k,£ of i,j (IV-I)a

This set has linear dependence among the z operators

a (IV-2)

These operators have been defined so that they have commutation relations

1 "1ana ogous to spln - 2 for a single transition:

p,q,r = x,y,Z or

cyclic permutation

(IV-3)
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[1
ik

1
jk

] [r ik
1
jk

]
i

1
ij= -

x ' x y , y 2 y

[ ik 1
jk

] i
1
ij

I , =x y 2 x

[1
ik

1
jk

] _ i 1ik
x ' z 2 Y

[J
ik

, 1
jk

]
i r ik

y z 2 x

[1
ik

1
jk

] 0 (1V-4)
z ' z

Operators [or transitions without a level i~ common commute. Because

of the commutation relations (1V-3) we may again call this a fictitious

. 1 f l'sp1n - 2 orma 1sm. The 1
ij

and 1
ij

operators represent a coherencex y

between levels i and j, regardless of the difference in quantum number

between the levels, which we will call n quantum coherence where n is

the difference in magnetic quantum number between i and j.

c. Comparison for Spin-l

Of course these operators, as a complete basis set, may also

be used for description of a spin-l system. For a spin-1 we may write

the observables as a sum of fictitious operators

F
Ci.

F
z

L: Jcij 1~j
ij

ex = x,y

(1V-S)

where C
ij

1(1+1) - M.M .. For comparison, we may write the fictitious
1. J
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where i and j are eigenstates

1,2,3 of the Hamiltonian with quadrupole coupling and without r.f.:

I
xl

= !. (1
12

+ 1
13

)J2 x x

I
x2

= 1: (112
113 ) I zl 1

13
.j2 y y z

1
(1

12
1

12
1

23
) 1

13
Ix3

- + I Z22 x z z Y

I yl
1

(112 + 123 ) I z3
113

2 y y x

I y2
= 1: (112 _ 1

23
)/2 x x

1
(113

1
12

1
23 ) (IV-6)I y3 2 +x z z

While the operators I have matrix elements hetween more than two of
p,q

the states 1, 2 and 3, both are complete basis sets and hence may be

interchanged by a formal change of basis set. Of course the operators

I and I
ij will have physically different meanings.

p,q ex

The Hamiltonian for the spin-l system in the rotating frame,

JC

may then be rewritten

-6wl z + t wQ (3I~ - 1(1+1» (IV-7)

JC (IV-8)

To calculate the effect of radiation near one sattelite, as done in

Chapter III B.2., we let 6w = -wQ + ow and include r.f. to give
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jC = (-W
Q

+ ow) (1;2 + I~3 + 1;3) + ~ W
Q

cr;2 - I~3) + 2 wI (1;2 + 1;3)

(IV-9)

As we ignored the I
y2

term in the r.f. part previously, we now ignore

1
23

since the energy differences of levels connected with off
x '

diagonal elements are much larger than wI. The Hamiltonian may then be

rewritten as:

J( = ow 112 + j2 W 1
12

- (!t. w - ow) (1 23 + 113
) (IV-IO)

z 1 x 3 Q z z

This may be tilt~d to give an effective Hamiltonian along the z axis,

with

J{' = W 1
12

T e z
4(3 wQ (IV-II)

The equilibrium density matrix may be written with the new operators:

p(O) (IV-12)

Tilting this with the opera~or used above

For a pulse of time t applied to p(O) we find

(IV-lJ )
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p (t)

_ sinw t sine 112 + (123 + 113)]
e x z z

(IV-l4)

Of course with e = 90° this produces the same evolution as calculated

in Chapter III. The methods of calculating double quantum processes

. 90 94
follows exactly that already descrlbed, , and will not be repeated

here.

In general the density matrix may be written as

p (t) a +
o

a=x,y,z
(IV-IS)

With these operators the evolution is quite simple, and applying the

commutation relations (IV-4)we find

a
ij

(t) a
ij

(0) cosw .. t a
ij

(0) sinw .. t
x X lJ Y lJ

a ij (t) a ij (0) sinw .. t + a
ij

(0) cosw .. t
Y X lJ Y lJ

a ij (t) a ij (0) with w.. w.-w. <i Ixl i> - <j Ixl j>z z lJ l J

(IV-l6)

All evolution of ij operators is restricted to the ij space and occurs

as a rotation about the z axis! This is very convenient and simple for

calculation of evolution.

D. Preparation and Detection

As for the last chapter it is clear that the multiple quantum
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coherences evolve without observable signals, so we again must break up

the experiment into three parts: preparation, evolution and detection.

This is shown schematically in Figure 74a. The preparation (P) and

detection (D) operations are combinations of pulses and delays which we

will specify shortly. We start in thermal equilibrium with density

matrix p (0) = b I and detect the amplitude of I at the end of the experi-z z

ment. Then for an evolution time t we find
e

Tr[D e<I (t ) >z e

-iXt iXt
e P I p+ e e D+ I ]

z z (IV-l7)

If we evaluate this in terms of the eigenfunctions of X, the Hamiltonian

for free evolution (X + X + XD)
z cs

<I (t ) >
z e

-iw. t
e J e <j Ip I P+/i>

Z

+iw.t
1. e

e

(IV-18)

The multiquantum evolution is given by the oscillation of w.. ,the energy
Jl.

difference between any two levels of the system. It is the matrix elements

+ +
of DID and PI P which determine the amplitudes of the various multi-z z

quantum lines.

The approach we have applied to preparation and detection is

similar to that of Chapter III B.S. and also to the approach of Ernst,

65
et al. Two strong (single quantum) pulses are applied spaced by a

time T, represented schematically in Figure 74b. We note that some

selectivity may be achieved through careful choice of pulse phases and
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experimental conditions, as will be discussed shortly.

To calculate the effect of the preparation and detection operators

we write them out explicitly:

p e
i81 :iJ( T i81

PeP p e q (IV-l9)

where 8 = w
l
~, p and q specify the phase of the r.f. pulses and X

p
is

the Hamiltonian during the preparation period. The detection sequence

has the same form. This may be simplified considerably in several cases

of practical interest, which we examine below.

Case 1. p = -x, q = x, 8 = TI/2 and X
p

In this case we may write:

X
D

the secular dipolar Hamiltonian.

P = e

iJe T
D

xx
p • TI I

-~ -
2 x

e'
+i ~ I

2 x
e (IV-20)

JeD may be interpreted as the dipolar Hamiltonian after a rotation of
xx

n/2 about the x-axis. The effect of this rotation is most conveniently

calculated using the dipolar Hamiltonian in its spherical form (see Appendix)

with

Aij -d
ij

20
C

20

ij
±d ij

A2±1 C2±1

ij
-d

ij
A2±2 C2±2

d
gy2h

3
r ..
lJ

[~]1/2
2k+l Ykq
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T
ij =! (3 I .1 .-1.·1.)
20 -16 21 2J 1 J

T
ij

+(1 .1+.+1+.1 .)
2±1 21 -J -1 ZJ

(IV-2l)

The zeroth and first rank parts vanish because the tensor is traceless

and symmetric. The effect of rotation may now be calculated with the

Wigner rotation matrix. The secular part of (IV-27) is just

Aij Tij
20 20

2h
~3 P2(cos8) (31 .1 .-1.·1.)

Zl ZJ 1 J
r ..

1J

(IV-22)

as noted in Chapter I. To rotate this we calculate

2

L
p=-2

(IV-23)

where a = -~/2, B

this we find

~/2 and y n/2 for the rotation of (IV-2l). Evaluating

2 1£6 (31 .1 .-1. ·1.) - 12 ~8 (1+.1+.+1 .1 .)
V u Z 1 Z J 1 J VP. 1 J -1 - J

(IV-24)

We note that these terms have matrix elements with 6m = 0, ± 2, and that

these parts commute. Thus the operator exp(LKD T ) will only induce
xx p

coherences between levels separated by an even number of quanta, what

we term even quantum transitions, when operating on the initial density

matrix I .
Z
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Case 2. p = x, q = y, e = TI/2 and X = X
P D·

This may be calculated in a fashion very similar to Case 1 if we insert

a "virtual" pulse which has no real effect but simplifies computation.

Immediately after the first x pulse the density matrix is I and we
-i 7T I Y

insert a pulse e 7 y, which has no effect. However for the calcula-

tion we now have

p
-iX T

e Dyy p
• TI I
~ 2" x

e = e

-i TI I
2 y

i 2!:. I
e 2 y (1V-25)

has exactly the same properties

on

Of course J(D
.yy

I (= - ~ (I -I » instead
y 2 +-

as X
Dxx

and hence only odd

but now operates

quantum transi-

tions will be observed.

p = -x,Case 3. q = x, e = TI /2, X = -6w I + XD•
P z

We note that the two parts of X commute. As above we may simply predict
p

the effect of this preparation sequence, by inserting an identity operator:

i TI
I i(-6wI +J(D)T -i TI I

2 x 2" xp = e e Z p e

i 7T
I iXDT -i 7T

I i TI
I -illwI -i 7T

I
2 2 2

T
2x x x z p x

= e e p e e e e

e
-illwI T

Y p (IV-26)

The order of transitions observed depend on the matrix elements



128

P+/j>
:iJ{' T -il!.wI T il!.wI T -iJ( T

<ilp I <i/ e Dxx p e
y p

I e
y p e Dxx PI j>

z Z

iJ{ T -iJ( T
= COS~WT <il e Dxx p I Dxx P Ij>ep z

+iJt~ T -iJf T
xx p Dxx P

- sinliwT <il e I e Ij > (IV-27)p x

It is clear that this is simply a weighted mixture of Case 1 and Case 2

above, and that for an arbitrary ~WT both odd and even quantum transi
p

tions will be induced. We note that a spread of ~w values for a sample,

due to magnetic field inhomogeneity, makes use of ~WT for selecting
p

odd or even quantum transitions unattractive.

The principles of the detection period are identical to those

presented above. However we note that since we are, on paper, detecting

I , but real observables are I and I , we may omit Py in the experimentsz x y

rather than putting in a fifth pulse to probe the amplitude of I. For
z

example the detection sequence

would detect even quantum transitions, and is equivalent to

since, of course, the -x,x sequence is an identity operator and may

be dropped. Similarly
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will detect odd quantum transitions, but may be replaced by

P (TT) P (TT) p (..'!.!.) detect <I >
x 2 L d Y 2 y 2 x

An off resonance term in the Hamiltonian will mix even and odd orders in

detection just as it did in preparation.

angle other than TT/2 (IV-20) the resulting

It is also worth noting that if Xo is rotated through some

,
T

20
will have ~m = ±l terms

in addition to ~m = O,±2, so that for all pulse sequences both even and

odd orders would be observed. We will see shortly that some detection

schemes can avoid this problem.

To this point we have only discussed strong pulse preparation

sequences. Weak pulses, with wI values somewhat less than average

dipolar couplings, should also generate multiple quantum coherences,

in analogy to the deuterium weak pulse preparation. In deuterium systems,

where only the r.f. term and a quadrupole term had to be considered,

we could obtain an explicit, if only approximate, form for the operator

generating double quantum coherence. In systems of many coupled spins

there is no simple single operator which drives multiple quantum

transitions, so the combined effect of the r.f. and dipolar Hamiltonian

would have to be calculated by computer. However with long weak pulses

we intuitively feel that many orders of coherences would be generated.

The same pulse could be used for detection, just as we use the same

two pulse sequence for preparation and detection.

E. Echos

78
Echos of the Hahn type can be of considerable use in multiple
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quantum experiments of dipolar coupled systems. There are two types of

echos which we will examine: single quantum and multiple quantum. These

are very similar in principle, and some aspects of single quantum echos

have been discussed in Chapter III. The simplest case possible is that

all spins have the same chemical shift. Then the Hamiltonian for free

evolution may be written:

-.6.wI +
z

L: d .. P2(cos8)(31 .1 .-1.·1.)
i<j 1.J Z1. zJ 1. J

(IV-28)

where .6.w includes off resonance, chemical shift and magnetic field

inhomogeneity contributions. It is important to note that in this

case [I z ' X
D

] = O. The ordinary single quantum evolution after a TI/2

pulse is given by:

S (t)
x

Tr[e-iJCt I
x

iJCt
e I]

x
(IV-29)

If we now put a TI y-pulse halfway through the evolution period, to

create an echo we find:

eS (t)
x

'X t-1. 2"
Tr[e

-iTII -iJC !.
y e 2 I

x

'-u' t
1.<11. -

2
e e

iTII
Y

iJC-!
e 2 I ]

x

Inserting some identity operators this becomes

where

S (t)
x

-iX i -:L0!. iKR.!. iX i
Tr[e 2 e 2 (-I ) e 2 e 2 I ]

x x
(IV-30)

+.6.wI +
z

L: d .. P
2

(cos8)(3I .1 .-1.·1.)
i<j 1.J Z1. zJ 1. J
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Since the two parts of the Hamiltonian commute, the evolution from off

resonance portions cancel, but the bilinear dipolar term remains unchanged,

giving

S (t)
x

-iJ( t
_ Tr [e D I

x

'J( t
l D

e I ]
x

(IV-3l)

as though the experiment had been performed exactly on resonance in a

very homogeneous magnetic field. This is useful for preparation of even

and odd multiple quantum transitions when combined with appropriate

phase pulses as shown in Figure 74 e and g, since 6WT = a effectively
p

for all spins in the sample, to a very high accuracy. This approach is

also useful for obtaining very high resolution spectra in inhomogeneous

magnets.

If an echo pulse is put into the center of the multiple quantum

evolution period, exactly the same principles apply. The effect is

particularly easy to calculate if a rr pulse of x phase is used with

rr/2 x pulses in the preparation and detection periods. The preparation

and detection operators consist of only x pulses and bilinear spin terms

both of which are invariant to an x rr pulse. Then we may write

S (t)

'"U' t
l"'- -

2
Tr(De e

irrI
x

e
irrI

x
ill.!

e 2 D+ I ]
z

iJ
R t t t ._R t

Tr[De C 2 e iJC 2" PI p+ e
iJf2

e iJt 2 D+ (-I )]
z z (IV-32)

where J( and xR are defined as above (IV-28) and (IV-30). Again all off

resonance, chemical shift and field inhomogeneity terms cancel, so the

evolution is solely dipolar. A y rr-pulse has the same effect but is a bit
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messier to calculate, and inverts the sign of signal.

To this point we have been quite restrictive by specifying

that all chemical shifts must be identical. If they are not, the

Hamiltonian is

L: L1wI . +
. Zl
1

L
i<j

d
ij

P (cos8)(31 .1 .-1. ·1.)
x Zl ZJ 1 J

(IV-33)

The chemical shift and dipolar parts of the Hamiltonian no longer

commute and the evolution under a single echo pulse sequence is

complicated. This is very similar to the problems of T
Z

measure

ment in liquids with coupled spins. These have been analyzed in

. 95 96
detall elsewhere.' We note that under an echo train, if spaced

sufficiently close together, the chemical shifts will average to zero.

In a scalar coupled spin system, all information about the couplings

then vanishes. However in a dipolar coupled system, all dipolar

couplings should remain, with all chemical shifts removed. A train

of echos may be applied in either single quantum or multiple quantum

experiments.

F. Off Resonance and Phase Behavior

The evolution of multiple quantum coherences under an off

resonance Hamiltonian is of practical importance for separation of

various orders of transitions. We have already formally written out

the evolution of the density matrix for multiple quantum operators

(IV-16), but we wish to examine evolution of multiple quantum operators

under simple rotations
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i81 -i81

z Tij z
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(IV-34)

To find the coefficients of I
ij

and I
ij

we calculate
x y

(IV-35)

Using the definitions of multiple quantum operators we evaluate this in

the eigenbasis of the Hamiltonian:

I i8m
i

-i8m -iBm i8m.
-(e e j + e i e J)
4

I i8(m.-m.) -i8(m.-m.) I
-(e 1. J + e 1. J ) = -2 cos[(m.-m.)8] (IV-36)
4 1. J

where m. =<i/I Ii>, the magnetic quantum number of the i th state. We
1. z

may similarly calculate c~j by replacing the second I;j by I~j, giving

-2
1

sin [ (m. -m . ) 8 ]
1. J

(IV-37)

We see that the rotation angle (or rate if 8 is time dependent) is

multiplied by the number of quanta between the i th and jth levels.

Thus if we have a resonance offset of 6w in the single quantum spectrum,

it will be n6w in the n quantum spectrum. This provides a simple way

of distinguishing the various orders of transition. We note that an

echo during the multiple quantum evolution will remove all resonance

offset effects and we must use some other method to distinguish the

various orders of transitions. Similarly, if the linewidth due to

magnetic field inhomogeneity is ow in the single quantum spectrum, then
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it will be nOw for the n quantum spectrum. For high order transitions

such broadening becomes quite severe unless the magnet is very good or

echo techniques are applied. It is interesting to note that the line-

width of a zero quantum transition (between levels of the same magnetic

quantum number) should be independent of magnetic field homogene~ty,

its width determined by T
2

. This effect has also been noted by Ernst,

65
et al.

This rotational behavior also provides a method for separation

If instead of the x T
p

-x T
e

x T
d

pulse sequence described above (Figure 71c), we change the phase of the

preparation pulses, keeping them 180 0 apart, but leave the detection

sequence fixed, an extra order dependent phase factor is added. A pulse

in the ¢ direction given by

may also be written as

I~ = I cos¢ + I sin¢
'I' x Y

(IV-38)

-i¢I
e Z I

x

i¢I
Z

e (IV-39)

Rotating the pulses is equivalent to rotating the entire preparation

sequence, so that the evolution (IV-17) may be rewritten

<I (t ) >
z e

-i,,"l(t -i¢I i¢I
Tr[De e e z PI p+ e z D+ I ]

z z (IV-40)

Evaluation of this as (IV-18) gives

-iw .. t i¢(m.-m.)
<I (t»=L:L:<iID+IDlj><jlpIP+li>e Jlee J l (IV-41)

z e .. z Z
l J
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exactly the previous result except for the order dependent phase shift

term. If a number of experiments are performed with different phases,

linear combinations of them may be taken to generate spectra of specific

orders, in effect a Fourier analysis over phase. If the highest order

possible is N then N+l different phase experiments must be performed to

separate all orders. This method of order separation has also been

97
discussed by Ernst ~ al. Considerable selectivity may be achieved

through a few experiments properly chosen. If the preparation is done

on resonance or with an echo we have seen that only even transitions

will be observed. If two such experiments are done with preparation

sequences 90° apart (i.e., x T -x and -x T x) the sum of the resultingp p

spectra will show only 0,4,8 ... quantum spectra and the difference only

2,6,10 Such selection works whether the evolution period has an echo

or not and provides an alternate method for separation of multiple quantum

orders to the n6w dependence discussed above.

G. Amplitudes, SYIDmetry and Simplification

In principle, for a given experiment, (IV-18) allows us to

calculate the amplitudes «iID+I Dlj> and <j IpI P+ji» as well asz z

frequencies (w .. ) of lines in the multiquantum spectra. To calculate the
Jl

amplitudes, one must already know all parameters in the dipolar Hamiltonian.

However, in most cases the determination of these parameters is the object

of the experiment. + +In addition the operators DID and PI P are complex
z z

and difficult to handle. In many cases it will be sufficient to determine

line positions (frequencies) and ignore the amplitude. Since the dipolar

Hamiltonian is driving the multiple quantum transitions, we expect that
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t " "d ~ (dij)-l (dija prepara 10n perlo T is some sort of average dipolarp

coupling in frequency units) should be sufficient to generate many

multiple quantum coherences. If we average over some range of T
p

values, we expect all multiple quantum lines to have non-zero amplitudes

for some T value, so that the average should be a complete spectrum withp

some average amplitudes. Phases will be essentially random in these

spectra so the average must be of magnitude spectra.

In all of the analysis above we have assumed no symmetry in the

set of eigenfunctions of X. This is often not the case, and use of symmetry

may simplify things considerably. In particular, the preparation and

detection operators have A symmetry so that they induce transitions only

among wavefunctions of the same symmetry. Such symmetry factoring

reduces the number of possible transitions greatly as well as simplifying

calculations.

We have stated that one reason for doing multiple quantum

spectroscopy is to obtain spectral simplification in high quantum transi-

tions. NIn an N spin system (with no symmetry) there are 2 eigenfunctions.

Th h . I (N) 2N- m .. Iere are t en approxlmate y m-quantum transltions, uS1ng simp e
m

counting arguments. Thus of course there is one N quantum transition (all

spins go from S to a) and 2N transitions of order N-I. This is a

N-Itremendous reduction over the N2 single quantum transitions. The

assignment of lines should be much simpler, and the smaller number of

lines makes resolution requirements less stringent. The multiple quantum

spectra are also much simpler in cases of high symmetry, as we will see.



137

H. Experimental, Benzene in EBBA

In order to obtain tractable spectra in dipolar coupled systems,

the number of coupled spins must be kept relatively small. As we have

discussed in previous chapters this may be achieved in solids through

dilution. However, small molecules dissolved in liquid crystals provide

a convenient system to test various aspects of multiquantum NMR. Liquid

crystal solvents provide an anisotropic medium and when aligned in an

external magnetic field cause small molecules dissolved in them to have

a preferential orientation with respect to the field. Since these

molecules no longer reorient isotropically, as in an ordinary liquid,

the intramolecular dipolar couplings no longer average to zero. However

there is still very rapid translational diffusion so that intermolecular

couplings are averaged to zero and well resolved spectra are observed

from the dissolved molecules. This has been known for quite some time

and analysis of the dipolar structure has become a popular method for

determination of structure and conformation of the dissolved molecules. 98

The number of spins on the liquid crystal molecules themselves is so large

that no structure from them is resolved, though they contribute large

uneven baselines to the spectra.

For the present experiments benzene was chosen since it is

simple, of fairly high symmetry and has a reasonable number of spins.

Approximately 15% (by mole) benzene was dissolved in EBBA (p-ethoxy

benzylidine n-butylaniline) so that the solution was nematic at room

temperature (20°C), and sealed in a 6 mm glass tube after freezing and

pumping. This sample was used for all experiments described. All

experiments were performed on the spectrometer described in Chapter V.
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Benzene oriented in a liquid crystal has been studied many times

99
before. The D

6h
symmetry of the molecule breaks the wavefunctions up

into 6 classes A, B, 2~ and ZE
Z

' The energy levels are shown schematically

in Figure 75. With hexagonal symmetry assumed (convenient, not necessary)

the spectrum is entirely determined by one dipolar coupling, and three

spin-spin couplings, assuming no anisotropic component of spin-spin

coupling. From the single quantum spectra, Figure 76, these may be

determined Zd
lZ

= -778.2 Hz, J
IZ

8.0 Hz, J
13

=Z.O Hz, J
14

= 0.5 Hz;

in good agreement with previously determined values (d
12

scales with

order parameter and r.my not be directly compared). The linewidths in

the ordinary single quantum spectrum, top Figure 76, are completely

determined by magnetic field homogeniety at ~ 120 Hz. The spectrum

obtained using the echo sequence, Figure 74h, shows much better resolution,

and was used for determination of the parameters above. The echos were

generated at multiples of 300 ~sec. Although Z048 echos were used (~ 600

msec maximum), the amplitude was still substantial for the longest times

and the linewidth o0served, ~ 4 Hz, was limited by truncation of the

free induction decay. The ultimate linewidth in these experiments will

be limited only by TZ '

Multiple quantum experiments measurements using pulse sequence c

of Figure 74 were made for a variety of T
p

= T
d

values. These were

performed with a resonance offset of 5.97 kHz and hence were not selective

in orders of transitions. Spectra were taken for 11 T values between

9.6 msec and 10.7 msec spaced by 0.1 msec. The spectra were qualitatively

similar, but had great variations of intensity in individual m-quantum

lines. Due to the complex selection rules for multiple quantum transitions,
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the phases of lines in the spectrum vary with L
p

. For this reason all

plots and averages were performed on magnitude (or power) spectra. Figure

77 shows the average of the multiple quantum spectra. The theoretical

spectra, also shown in Figure 77, we generated using the parameters

determined in the single quantum echo experiment, with the assumption

that each possible line in any order would appear with equal intensity.

Each order was broadened by the appropriate amount for magnetic field

inhomogeneity in that order. It is immediately clear that virtually

all possible lines appear in the multiple quantum spectrum, though the

intensities are not equal. Also, the resonance offset and linewidth

are multiplied by the order as expected. With further averaging over

preparation and detection periods, more equal intensities for all lines

should be observed. In all of these experiments just the amplitude of

the signal at the end of the detection sequence was used. If use is

made of all signal after the detection sequence, through some type of

two dimensional analysis, substantial improvements in signal to noise

ratio should be achievable. In such an analysis coherence transfer

100
echos as discussed by Ernst, may enhance signal from high quantum

transitions.

The selection experiments described in Section F were also

tested on benzene in EBBA. Using T
p

Td = 10 msec in pulse sequence e

Figure 74, with x, -x and x 90° pulses and y 180° pulses, the off resonance,

even quantum only spectrum in Figure 78(B) was obtained. The same

experiment was performed with y, -y and x 90° pulses and gave the same

magnitude spectrum. However when the sum and difference of the phase

sensitive multiple quantum free induction decays were taken and Fourier
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transformed the spectra of 78 (C) and 78 (D) were obtained, showing the

increased selectivity, a and 4 quantum only, and 2 and 6 quantum only.

The very small intensities in other orders are due to imperfections in

pulse phases and amplitudes.

The a and 4 quantum selection experiment was also repeated with

a much slower sampling rate, to determine the linewidth of the a-quantum

lines. The resulting decay and spectrum are shown in Figure 79. It is

clear from the decay that the linewidth of 4 Hz for the zero quantum lines

(no echo in the evolution period) was limited by truncation of the FID

and the true linewidth is much less.

Since multiple quantum echos remove the evolution from off

resonance, they were combined with the phase selection experiments

described above, to generate very sharp line spectra without losing the

separation of the various multiple quantum orders. Pulse sequence f

of Figure 74 was used with 6w carefully adjusted to zero so that only

even order transitions would be observed, and T
p

= T
d

= 10 msec. Figure

80 shows the spectrum resulting from a single such experiment, containing

lines from all even orders. Taking the sum and difference of experiments

with both preparation pulses phase shifted by 90° gave the spectra

shown in Figures 81 and 82.

The separation of orders is quite good. The resolution is

clearly greatly improved over that in the previous multiple quantum

experiment, Figure 77. In addition the linewidth is the same for all

orders, ~ 3 Hz, and was, as for the single quantum, limited by truncation

of the free induction decay. These experiments were performed for only

one particular T value and hence many possible multiple quantum lines
p



141

are not observed. Averaging of a number of T values, as done for the
p

echoless spectrum, would remedy this. Some small single quantum lines

were observed, probably because of magnetic field inhomogeneity (some

parts of the sample are slightly off resonance even when the average 6w

is zero) and pulse imperfections. The rejection of odd orders could be

improved by using an echo in the preparation and detection periods as

well as in evolution.

I. Discussion

We have demonstrated that multiple quantum coherences, generated

through the dipolar coupling, may be observed even for high orders. The

dependences of the multiple quantum orders upon off resonance and phase

shifts allow separation of the various orders. Echos may be used to

improve linewidths in both single and multiple quantum experiments.

These techniques should prove most valuable in more complex

systems. As the number of spins increases the single quantum spectrum

rapidly becomes very complex, to the point that lines are no longer

separated. In such cases the number of lines in the high order multiple

quantum spectra should be much smaller, and hence well resolved and

interpretable. Such experiments may prove to be easier and more informative

than labeling studies, particularly in liquid crystal and perhaps lipid

systems. These techniques are also applicable to solid samples in which

relatively isolated groups of spins exist. As such they should be

complementary to existing deuterium double quantum, various dilute spin

and separated local field techniques for determining relative positions

of spins in solids. Studies of relaxation of the various multiquantum
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V. THE SPECTROMETER

The spectrometer used for all of the experiments described in

the previous chapters was designed primarily for solid state work, but is

quite conventional in many respects. It was homebuilt but includes many

commercial components.

A. Magnet

The magnet is a persistent superconducting solenoid made by

Bruker Instruments, operating at 42.5 kG. Its dewar has a 3.5 inch diam-

eter room temperature bore and can be easily shimmed, with x, y and z

3superconducting coils, to less than 1 PPM over a 1 cm region. The oper-

ating frequencies for nuclei discussed here are:

IH 185.02 MHz

l3C 46.522 MHz

2H 28.403 MHz

The field is extremely stable so that no field/frequency lock is necessary.

B. Frequency Generation

A block schematic of the spectrometer's radio frequency section

is shown in Figure 33.

The proton frequency is based upon the output of a General Radio

Model 1042 frequency synthesizer (0.1 - 160 MHz), at 142.5 MHz. This is

doubled to give a local oscillator (t.o.) frequency of 285 MHz, then mixed

with the 100 MHz intermediate frequency (i.f.) and filtered to give 185 MHz.
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The i.f. is generated by multiplying the G. R. synthesizer's 10 MHz refer

ence by 10. The continuous 185 MHz is passed through connnercial quadra

ture hybrids and switches to give two (or four at times) 90° out of phase

channels. The amplitude of the switched r.f. is adjusted in ldB units

with an attenuator and is switched again to insure good isolation. The

final switched ouq.ut goes to the high power transmitters.

Tlie low frequency is generated simultaneously for double res

onance, and is based upon the output of a Hewlett-Packard Model 3320A

synthesizer. This is doubled for carbon and used directly for deuterium.

Switching and quadrature generation is done at the nuclear frequency as

for proton. It is mixed with a 30 MHz i.f. to give an £.0. frequency for

use in the receive~. The 30 MHz i.f. is generated by tripling the 10 MHz

reference from the G. R. synthesizer.

c. Receivers

The proton and low frequency receiver s operate in a very similar

manner. The first stage is a low noise preamplifier with approximately

25 dB of gain. The signal from this is mixed with the t.o and filtered

to give an i.f. signal. This signal is amplified with a variable gain

i.f. strip amplifier (up to 70 dB gain). This signal then goes to the

phase detector. The overall recovery time from complete saturation

(during pulses) is about 20 ~sec.

D. Phase Detector

This spectrometer employs dual phase detectors. The i.f. sig

nal from the receiver is passed through a power splitter. The i.f.
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reference is passed through a variable delay time, to adjust the relative

phase of signal and detector. It is then split by a quadrature hybrid,

and each phase is mixed with the signal to give quadrature audio fre

quency signals, which pass through a variable low pass filter and then

are digitized. The signal to noise improvement by having dual detectors

is valuable and being able to determine signs of frequency offsets is

convenient.

E. Digitizers

In solid state NMR lines may be very broad, and hence it is

necessary to have fast sample and holds and analog-digital converters.

This spectrometer uses Datel Model SHM2 SIH s with - 10 nsec windows,

and Datel Model ADCElOBA/D s, 10 bits and 1.25 ~sec conversion time.

The digitized signal is passed to a NOVA 820 computer, with an overall

maximum rate of 333 kHz for complex points. This is sufficiently fast

for all work described here, even deuterium quadrupole powder patterns.

F. Probes

The double resonance probes used for this work have crossed

coil configurations, and were home built. The lower frequency coil was

a solenoid 6 rom in diameter, placed inside an 8 rom outer diameter glass

tube. The proton coil was of the Helmholtz type, consisting of two turns

on each side, each - 1 cm in diameter. These were mounted on the outside

of the glass tube. These coils were part of a tuned circuit consisting

of homemade series tuning capacitors and parallel commercial silver mica

matching capacitors. With 200 watts of r.f. power, rotating fields of
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10 G for protons, 60 G for carbon and greater than 100 G for deuterium

could be generated. The coils were orthogonal to minimize receiver pick

up of decoupling frequency and the isolation was 30-40 dB. Additional

isolation was provided by a low pass or bandpass filter to block the

decoupler frequency. The receiver was protected from r.f. pulses at the

observed frequency by placifig diodes to ground at one quarter wavelength

from the probe junction. Series diodes were used to block transmitter

noise during observation. The overall probe configuration is shown

schematically in Figure 84.

For single resorance experiments on protons (multiple quantum)

the Helmholtz coils were replaced with a 6 rom solenoid. This gave a fac

tor of four improvement in signal and r.f. field due to the better filling

factor and higher Q of a solenoid.

The coil~mounted above the plastic disk holding the capacitors,

are covered with a glass dewar to provide thermal isolation. The temper

ature is measured with a thermocouple placed near the sample. Temperature

control is provided in two stages, by passing heated or cooled gas into

the probe dewar through vacuum jacketed tubes. NZ gas is heated by a

resistive heater at the end of the probe. Crude control is provided by

the gas flow rate and power delivered to the heater. Cold gas is gener

ated by boiling liquid N
Z

from a 50£ dewar with a resistive heater. Flow

rate is controlled by variation of heater power. Fine control for both

heating and cooling is provided by a feedback system. The output of a

thermocouple indicator is digitally compared with a settable desired

temperature. If the observed temperature is less than the desired a

small auxiliary heater in the transfer line into the probe is turned on.
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Set and observed temperature are compared several times per second, pro-

viding temperature control of ± 0.2°C over a range -190 to + 150°C.

G. Transmitters

Transmitters (high power final stage amplifiers). at all fre-

quencies were class C, tuned tube type. For carbon and deuterium they

were Millen design using 3E829 tubes. The proton transmitter was a cav-

i d b d 220 MH d . f d' 101ty tune output type ase on a z eS1gn or ra 10 amateurs,

using a 4CX250B tube. All were run with 2.5 kV plate, 130 V bias and

250 - 500 V screen voltage. All are capable of generating 200 watts of

pulsed r.f. power. They are driven by commerciAl solid state amplifiers

at - 10 watts. Adjustment of r.f. field strength was made by changing

screen voltage.

H. Pulse Programmer

The timing of all r.f. pulses and data acquisition is controlled

by a pulse programmer. In order to put out the variety of pulse sequences

described in this work with very accurate timing, a very flexible program-

mer was designed and built. The pulse program consists of 16 words of

36 bits which are interpreted in hardware to generate delays and open

gates. Twelve bits specify gate outputs for controlling r.f. switches,

triggering of the data system,etc. Twelve bits are used to specify a

delay, as a number from 0 to 210_1 and a multiplier of 250 nsec, ~sec,

msec or sec. The delays are digitally counted from an internal 4 MHz

clock. Each program word may also be flagged as the beginning or end of a

loop. There are four loops which may be specified, each with a counter
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so that all words between the beginning and end of the loop are executed

from 1- 10000 times before continuing beyond the loop. The programmer

may also transfer timing control to anyone of four external devices for

synchronization with other spectrometer functions.

The pulse programmer can operate as a stand-alone device, with

pulse programs directly loaded from front panel switches. Delays and

loops are also settable with front panel controls. However the program

mer is also interfaced to the systems computer (Section V-I), which can

control all operations of the programmer, including loading of previously

defined pulse programs, setting loop values and starting or stopping

execut~on of the program. lilis system provides remarkable flexibility in

application and is capable of e~ecuting very complex pulse sequencies.

T~e compute~ control allows execution of repetitive experiments, such as

T
I

measurement and collection of multiple quantum free induction decays,

automatically, greatly imprcving effIciency over a strictly operator

controlled system.

I. Computer and Software

This spectrometer uses a NOVA 820 computer as an on line data

processing unit. The computer is interfaced to a CRT terminal for use

as a console device. a 5 Mbyte dual disc for program and data storage. a

CRT x-y display for data observation. or digital plotter, and the AID con

verters for data acquisition.

A large program for operation of the spectrometer was written

in a series of overlays residing on the disc so that only a small part is

resident in the memory at a time. This allows room for 4k complex data
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points in the 16 k word memory in addition to the program. Commands for

usual manipulations of free induction decays, performing Fourier Trans

formation, phase corrections etc., are subroutines in this program. In

addition there are routines for manipulation of two dimensional arrays of

data, necessary for some double quantum and multiple quantum experiments.

A powerful supercommand structure, termed macrocommands, has also been

included. These macros are definable sequences of any commands in the

operating program. Execution of the macro causes sequential execution of

the commands defining it, cyclically, any number of times desired. Up to

100 macros may be defined, and they may be nested (one macro calling

another) in any way desired. Such commands provide a rapid and efficient

way of collecting and processing data, particularly in two dimensional

experiments.

J. Discussion

In many respects the spectrometer described here is typical of

pulse-Fourier Transform NMR equipment. There are a few distinguishing

features which allow it to perform a wide variety of experiments in

ordered phases. The relatively high field and good homogeneity provide

good sensitivity ffild resolution. In dilute spin NMR sensitivity is often

a problem which high fields and signal averaging together can overcome.

The final r.·f. stages of the spectrometer must be capable of generating

high power pulses, to cover a wide spectral range and insure complete

decoupling. The probes must be designed to withstand the high power

(and hence high voltage) pulses and yet retain high sensitivity. A very

versatile pulse programmer is necessary for generation of complex pulse
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sequences with controllable delays. The data acquisition must be fast

enough to faithfully digitize over the wide spectral width found in solids.

A computer for data manipulation and storage is necessary. The software

should be quite general, with modifications easily made for adaptation

to new experiments.



Appendix A Spherical Form For Tensors

Rose gives for multiplication of two tensors:

Multiplication of two first rank tensors gives us:

zero rank:

0
1/vf3 [T:l (1)Ti(2) - T~Cl)T~C2) + TiCl)~ic2)]TOCl,2) =

first rank:

1 -l/ji- [T:l (1)T~(2) T~(l)T:l (2)]T_l (1,2)

1
-1/12 [T:l Cl)TiC2) Ti(l) T:l (2)]TOCl,2) =

1
-1/v!:2 [T~(1)T~(2) Ti(1)T~(2)]Tl Cl,2) =

second rank:

2 Tl Tl (2)T_ 2Cl,2) = -1 -1

2
1/v2 [T~1 (I)T~(2) + T; Cl)T~1 (2)]T_1 (1,2)

2
1/.;6 [T~1 (1) T.i (2) + 2 T~(l)T~(2) + Ti (l)T':1 (2) JTO(I,2)

2
1/vf:2 [T~Cl)Ti(2) + Ti Cl ) T~(2)]Tl C1,2) =

2
Ti (l)Ti (2)T2(1,2)
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Given a cartesian vector B = (B ,B ,B ) we can form linear combinations
- x y z

which transform as first order spherical harmonics, giving a spherical

vector

B = B - iB
-1 x y

BO = B
z

B+l
B + iB

x Y

If we multiply this spherical vector by itself we find (from previous page)

TO

O
(1,2) = -l/J) [B (l)B (2) + B (l)B (2) + B (l)B (2)J

x x y y z z

Tl
l

(1,2)= -1/vf2 [(B (l)B (2) - B (l)B (2) - i(B (1)B z (2) - B (l)B (2»J
- x z z x y z y

T
0
1 (1,2) = i/~[B (l)B (2) - B (l)B (2)Jx y y x

1Tl (1,2) = -1/2 [B (l)B (2) - B (l)B (2) + i(B (l)B (2) - B (l)B (2»Jx z z x y z z y

T:2(1,2)= 1/2 [B (l)B (2) - B (l)B (2) - i(B (l)B (2) + B (l)B (2»J
x x y y x y y x

T: l (1,2)= 1/2 [B (l)B (2) - B (l)B (2) - i(B (l)B (2) + B (l)B (2»Jx z z x y z z y

2
T

l
(1,2)

l/,~ [2B (l)B (2) - B (l)B (2) - B (1)By (2)J\IV z z x x y

1/2 [-(B (l)B (2) + B (l)B (2» - i(B (l)B (2) + B (l)B (2»]x z z x y z z y

T2
2 (1,2) = 1/2 [B (l)B (2) - B (l)B (2) + i(B (l)B (2) + B (l)B (2»Jx x y y x y y x

This gives us the combinations which transform according to the various

spherical harmonics.



Now putting in X = (O.O.X ) and I (I ,I ,I ), , z' . x y z

TO = -1/.j3 J{ I T2
00 z z -2

T
1

1/2 X I 2
1//2 X IT_1-1 z - z -

T
1

0 2
2/16 X ITO0 z z

1
1/2 Xz1+ T

2
l/fi Xz 1+T1 1

T2
= 02

And for shielding tensor, diagonal in p.a. system

AO = -1//3 (°11+022+033 ) A2 = 1/2 (°11-°22)0 2

Al = 0 A2 = 0-1 -1

Al = 0 A2
= 1/j6 (2033-011-022)0 0

Al = 0 A
2

= 01 1

A2 1/2 (°11-°22)2
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Appendix B Optimization of Cross Polarization Time

To a good approximation, for the single contact cross polarization

experiments used for this work, heating of the proton (I spin) reservoir

by contact with dilute spins (S spins) is small compared to heating by

the lattice, occuring with time constant TIP

the inverse temperatures of the two systems follow differential equations:

1
= - - 13 (t)

TIP I

with initial conditions SS(O)

easily found to be

o and 13
1

(0) = 13
10

. The solutions are

Sro -tiT -t/T
TS

Ss (t) = (e Ip - e )
TIS

(1 - -)
TIP

-tiT
Sr (t) = SID

lpe

We wish to maximize SS(t), and hence the S polarization. SS(t)

reaches its maximum at time

t
m

or

for
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t is then the optimum contact time for the cross polarization. Since it
m

is very time consuming to measure TIp and TIS' most often the adjustment

of cross polarization time will be made empirically. However it is worth

noting that for short TIP (on the order of usual TIS values ~ 200 wsec)

the mixing time must be much less than the usual few milliseconds.
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Appendix C Optimization of Recycle Delay

We wish to optimize signal to noise in a "saturating" experiment,

for a fixed total aquisition time T. The spin lattice relaxation time

for relevant spins = T
I

, and recycle delay (to be optimized) = T.

The magnetization at time T after saturation is

M(t)

The number of experiments that can be done in time T is

N = TIT

The signal to noise goes up linearly with signal (magnetization) and as

square root of number of experiments averaged

To maximize in T

S/N(T,T)
-TIT

M (l-e l)(T/T)1/2o

-TIT
e 1

2T

-T/T
Irequiring that e

2T
I +~' The zero found numerically is at

1

T = 1. 2564 T
l

and represents the optimum recycle delay for· maximization of SiN. This

is, however, a rather weak maximum, so values near it are almost as good.
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Appendix D Matrix Solution for Exchange

This appendix describes an analytical inversion for the exchange

matrix ~ to derive the lineshape for spins undergoing hard collision

exchange. We wish to calculate

I(w) -1
Re{P·A . I}

where P is a population vector, A is the exchange matrix and I is the unit
",.

vector. For an exchange problem with n sites, where probabilities for going

from any site to any other are equal, the rate of jumps between any two

sites will be l/(n-l)T where T is the average lifetime of a state. If

we assume that the T2 values for all sites are equal then the exchange

1
matrix is defined by:

A..
JJ

1 1= i(w.-w) + -- + -
J T2 T

1
(n-lh j 1: k

The inversion of A may be done simply if it can be written in the form

A B + uv

where B is easily ~nverted. In the case at hand we can make B diagonal,
'"

and hence trivially invertable by taking

u = I
-cn

-1v = ----
(n-l)T

I
-rn

where I and I are respectively n dimensional column and row identity_cn -rn
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uv = -1 I I
(n-l)T -cn -rn
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where I I has ones everywhere. This leaves
-cn -rn

B.. = i (w. -w) + T
l

+ ( ~)]] ] 2 n- T

= 0 j -; k

-1 -1We define y. = B.. which are the diagonal elements of B which has all
] ]] ~

off diagonal elements zero. With A written this way

where

-1
y = B u

In the case at hand,

-1
z = v B and ..\

1=--
l+zu

z.
]

and

(1 - 1 (Y1 + Y2 + ... + yn»-l(n-1)T

Then

yz.
--]k
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'r"' -1
The final result we desire is L P·A -

j - ...

We define

Now

(n-l)T z:
= (n-lh-f

and

I(w) ~ Re {(n-l)T S}
(n-l)T-f

This result is equivalent to that derived in the text (II-54), arrived at

from a very different approach.

To see this we compare II-54

g(w)

c.
i L: ~

. ct.+W.
~ ~ ~

where the symbols have their previously defined meanings and c. is propor
~

tional to the population of the i th state. In the matrix solution we

have eliminated jumps of 2rr whereas they have been included in the solution

of Chapter II. To compare the solutions then we replace n-l of the

Appendix solution by n. Then
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A.

1
E 1
. a. .+w,
11/\

f
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k~ with k a proportionality constant.and
c.L 1

. a..+W,
11/\

g(w)

,
nk ~

nT -f
A

We may then write

the same as the matrix solution.
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..., .-, r I r-"",. ;~ ',.' ;:, t:

c
....
,...
\..

"t..·

OBTA1NS L~NESHRPE FOR HARD COLLISION EXCHANGE OF SEVERAL
5 1 TES ~~ J TH C' 1F FE ~: E t·~ ., CHEj'11 CRL ::: ~1 1EL D .r UG ::~ ~-~ D
C' I FF EREr~T POL ULAT I Cir·~ 5

I NTE Ci E f;: BL f11i ~;:., STAR., P:. 0 T .: ~L 0 (1 :>
REALEUL ER '::L 10:>, l.. F'~' t1:- L Dt'H}., ,_~ F r.: EG! J :r ~n EN': :2 i);), Dt'H3 ( 1 (1 ::0, L Fi f~: Ci E
~~ ERL ~; 1 Ci 11 <1 !2! ).1 5 1G:2 2 <1 0 ).r ::.] Ci J::: I~ 1 ~:i ).' S 1G:r sCi <l [1 ).l Ci j'1 GI ::: D<1 (t )

REAL OMG11(10),OMG22':10).OMG33<10). ETAH(10), POPV(10::O
COMPLEX GAMMA. ZE1A
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c OPEr~ FILE For;: LFrfEf;: ?LOTT HIG
(.RLL -~:GTFS <ISLDT;":EF:R)
IF .: :!ERR . EC!. 0) CiD TD :~

WRITE <18,1) IERR
1 FOR i1 AT': 1 ~<: J " ERR 0R C(I DE =", 0 I 1. )

GO TO 100
2 CAL L F (I P F L C' CCo C : DA" ) I SLOT., 1ERR)

IF': 1 ERR . EQ. 0) GO TO 7
WRITE (10J1) IERR
GO TO 100

c
C !NITIALIZE
7 8 L ArH< =" "

STAR=" >!<"

I P t1 Ai~ =4 ~)

PI =4. ~)*ATArH1. '3)
c

13

:>t

; ~:

.•.J

OBTAIN INVARIANT PARAMETERS
t,jR I TE .: 1 0., 11)
FORMAT(lX. 'ENTER SPECTROMETER FREQ IN MHZ: /)
READ (11) ::<:rwo
! F .: i~ NU0 . LE. 0 :> CJ 0 TO 100
Dt·1GO=2. O*P I :-+:~c:rHJ0

t~ R! T E ': 10 J 12)
FORMAT(1X)'ENTER NUMBER OF SITES: ')
REf1D (11) NS1TE
DO 16 J=1> NSITE
J.J R I TE ': 10.. 1 J ) .J
FOR t1 RT 0: 1 ;~ I " EN TEF: 5 1G11) ~:' I G2 2 I :~:r G]: :: F (I R SITE".. I 3:) ..' IN F' F'!'1: "::'
READ (11) SIG11<J)JSIG22(J»SIGJJ<J)
SIGISO<J)=(SIG11(J)+SIG22<J)+SlG33(J»/3.0
OMGISO(J)=51GISO(J)*OMGO
OMG11(J)=(5IG1~(J)-5IGISO(J»)*OMGO

OMG220:J)=(SlG22(J)-5IGlSO(J»*OMG0
OMG33(J)=(SIG33(J)-SlGlSO(J»*OMGO
E T f~ H 0: ,J ) =0: 011 G11 0: .J :' .- I) t1 G22 .: J :> :> /2. (j

~.j R1 TE <:1(3.. 1 4-) .J
F 0 Fr1AT 0: 1;< •.' [::tHEF: EULE F: RNGLE 5 For;: lW CU::U 5 ,', I::. " 1 j'~ ~)E CiF.: E E:=-, :'

F: EIi C' .: 11) .: EUL E? .: I .. ,J), l::::L.. ::)

EULEF: -: 1.. ,J:;;= [ ULE S: 0: 1 .. J )fcF' I ". t :::: O. ~3

.: ':'5 FDfU1iiT': :~::. :::?H:'::? r;"~IPUl.i~·i I Gr·\ '·:'ECTOR: " >
F: Efi C' <, 11) : F 0 f=' 1/ <I ). I:::L. :: ':; l T E )
:·w I -i:: ':.L CL 1;:-)

•• 1 ;:;JF.:r,1~iT<l:::: .. E:NTER i...O~,j fWD hIGH ?OLAF~ Ar'H3LES 1!~ S':GF:EE':::.
READ 0: LL:> Pt1 HL Pt1Ai';
PMIN=COS(PMIN*PI/180.0)



20

22

c
c
25
26

" ..,
.-~ I"

PMAX=COS(PMAX*PI/1S0. QJ
~-m rTE CL [1., 1 :::: )
FORMAT<lX,/ENTER NUM8ER OF POLAR ANGLES: ";
i\ EIi D .: 1:L > t·~ P (I Lfi F:
C' F' 0 Li~ R"" I~ F' f1 Ii ;,,; .- P111 t·l ) / r~ P (I LIi f;:
lH<:1 TE <1 ij., :19) ..
FORMAT<lX./ENTER LOW AND HIGH AZIMUTHAL ~NGLES IN DEGREES:
F.: EA[) <11) Ii t11 t-J.- Ii t-1 Fi ;:<
11 t1I N:= f1 t11 ti :f: PI'" 1 :::: I). ,3
AMAX=AMAX*PI/180. (1

~mITE <:H~, 20)
FOR f1fH (:LC '" Ern EF.: NUr18 ER 0 F }1 ZJT1 Lt-T HPL - AtH~ L ES: ..,:;.
RERD e1.1) NAZH1
DRZIM=(AMAX-AMIN)/NAZIM
lm I TE <1 >3 J 21)
FORt1AT<1>:.- ... E~nER LCn~ fiND HIGH PLOT LlilITS IN PPt1: ")
READ (11) LPPMJHPPM
L 0 t1 G=L F' Pt1 *0 t1 G0
H0 t1 G== HPPt1 *0 t1 G0
~-JR I TEO: 1 13 J 2 2 :>
FORMRT<lXJ/ENTER NUMBER OF FREQUENCY POINTS: '")
RERC' eLl) NOt1G
DPPM=(HPPM-LPPM)!(NOMG-l)
DOMG=(HOMG-LOMG)/(NOMG-l)

OBTAIN VARYING .PARAMETERS
l-JRITE <10J 26)
FORMRT(1XJ'"ENTER JUMP FREQUENCY IN HZ: ')
READ (11) JFREQ
IF <JFF.:EQ . LE. ~). 0) GO TO 10
TiiU=l. 0/ JFf':EG
TRUt·l =.; N5 I TE--1. (1:> *Tfi U
~m I TE <1 (1 J 27)
FORMAT(lXJ '"ENTER T2 IN SEC: ')
PEI"iD (11) T2
F.:PAR T==t~S I TE*JFRE Q/': t~S I TE -:t. 0) +l. 0/ T2

163

c
C INITIALIZE INTENSITIES

C· 0 ]: :1 1=1 J NI) t1 G
1NTEr~ .: 1 ) =(I. (1

]1 COUT lIWE
C
C LOOP l)'·/ER OR 1ENTfH 1Of6

DO 28 IPOLAR=l. NPOLAR
CTH==PMIN+IPOLAR*DPOLAR
CSQ TH == CTH :1: CTH
SSQTH==:l. O-C::G!TH
5 TH== S G1 fn 0: SSOT H )
P2CTH=1. 5+:CSC!TH-o... 5
DO ]7 IRZIM==l,NAZIM
AZIM=AMIN+IAZ:M*DAZIM

c
C OBTAIN SITE FREQUENCIES

ALPHA=EULER<lJJ)
BETi"i:=EULEfl:': 2J J:>
13 Ii t1 == EUL ES: 0: ::.' J)

PHI == Ii Z 1 t1 + G11 i1
C8 == COS ': 8 ET 1"1 )
CSQ8=C8*CB



55Q8=1. (1-CSQE:
SE::=SG!~:T<::;SG!B:>

164

15
C

1
]6
77
., I

-:-,::'
.,;,. '..

c
c

P2CB=1. 5*CSQ8-0. 5
C8H=(05': BETA/2)
CSQBH=C8H:f:CE:H
SSG!8H==i. 0-C:;QBH
C48H =C5Gl8H*C5 QBH
54 E: H==5 SOB H:f:5~)G!8H

01'1 G.; J :> =() /1 Ci I 5 I] .: J :> + .; P2 CTH :t: P2 C8 -I- (~. 7 5:t: S5 G! TH:k 5 5 G1 E: of: C[! S .: 2. (1 :-!: F' HI) -
1 ::. 0 >I: 5 TH>I: CTH>I: 5 8 *C8 :.~ COS': F' HI:> :> :I: (I i'1 Ci J: J: .: ,J :> +
2 .; S 5 QT H*C4 8 H ,t: CI) 5 .: 2. (1 >/: .: PHI + ALP H t"1:> :> + 5 5 QTHoi' 5 4 E: Hof: C(I S <;:2. ':1 :of: .; PHI _. AL F' HFl) :> -I-

i STH:f:C Hl*S8:1:': .: C8+1. ~:n :·I:COS.: PH I -F'"...::0*ALPHA:> +
4 .; C8 - 1. ~.3) :.f; C(I S .: F' H I - 2. \3 *AL F' HA ) ) + F' 2 c: TH :.1; S5 C! E: :I: COS .: 2. (I of: AL F' HA:> :> '*' f~ Tr:\ i1 .: J )

CONTINUE

c
C LOOP OVER OMEGA

DO 26 IOMG=1.NOMG
OMEGA=LOMG+':IOMG-1:>*DOMG

C GET GAMMA. ZETA
CiAI1t1A=0. (1

ZETA=0. \3
C'O 25 I=L NSITE
GA11 11 A=C:i R11t1 A-I- C11 PU~ .: 1. 0. ~.3. (D / Ct1 PU~ <RP AFt:T.. I] 11 EGA - 0 11 G<I :> )
2 ETA == Z ETA + C11 P U<: <POP '.1< I :>.. \3. \3:>,.' C11 P L::~ < r.: P f1 F: T.. 0 t" EGA - 0 t'1 G.: 1 ) :>

COIHI HUE
GET I wrENS I T'7'
I NT EN': I 011 G :> == 1H TEN ': I 011 G :> + F.: E AL .: C11 PL ~~ .: TAU N.. 0. .3:>:f: Z ETA /
.; C r1 PU~ .: Tt1 UN.. 0. \3:> - GAt1 11 A :> :>
corH I HUE
CONTINUE
C01HINUE

NORMALIZE INTENSITIES
LAPGE==13. (1
D0 41 I == 1.. NI] 11 G
IF ':INTEN<I) . GT. LARGE) LARGE=IHTEN.:I:>

-.+1 CONTINUE
DO 4 2 I ==:L NO 11 G
IHTEN':IJ=IHTEN<I:>/LARGE

42 corH I NUE
C

c

'51

F'AUSE
PLOT
Nj 5 :: 1==:L r·j 0 r1 Ci
PPM==LPPM+(1-1:>*DPF'M
r:o P r1 :: F' ::. r1 + S 113 N .: >3. 5 E -- 01.. PP r1 )
C' 0 51 ,J =::1.. :r F' r1 ii >:
F' L DT .: .j ) :: f3 L11 r~ f::
.:: Ci ri T 1NUE
: F'L DT == 1P t1 A>: .f: :r nTEN ( 1 )
=;~ -: l F' L DT . L ~.: ;:' :1 A~O[ F I.JI T ::[ ~:o L [I T + 1
? L Ci T .; :r P l_O T :> :: ST iW
~~ r.~ 1 T E .: 1 0.. 52) F' P t~.. 1 N T E rJ -: I ). -: P LOT': ,J). ,J ==:1, 1 F' t'1 A~o
F iJ F.: ~~I fn .; :L ~< .... ;~ r;: E C! =" .' f= 7. 1., .. ' .~ IH EII :: ", F7 4, " ] ". 'Uj (1 f~ :1. )
CUNTIrJUE

(~ f?l T E .; I ::. LOT, (1) 0: nn EN': 1 ).. I == 1.. rw 11 G :>



71
c

FORMAT(F7.4)

GO TO 25

165

C
180 CALL FRSFL

CALL FENUS(O)
END



166c
c

c

1

,...
lo·

e,,-

c
C
10
11

13

15

OBTAINS LINESHAPE FOR 50FT COLLISION EXCHANGE

INTEGER BLANK.STAR.PLOT<:100J
F.: Ef~ t. EUL ER CL i (I )., l.? P:'1, L 0 11 CL J F r.: EC!. :unEI·! <20 (1 :: J Ci :'1 G<:: 10 ) -' U; F: 13 E
REA L F: F.: EL .; 1 D. :1 0 J J P'::1 0 [1 ::-

CI] 11 P LE>: :1 Cl (1 \1 ) J DET ...
INTEGER LWORK<10J.MWORK(10)

OPEN FILE FOP LATER PLOTTING
CfiLL FGTFS <ISU)TJ 1ERR)
IF <JERF.: . EG. 0) GO TO ::2
WRITE <10.1) IERR
F 0 f': t1 AT <1 :":., .., E:< F: 0 F: COD E :: " J 0 LD
GO ':0 100
Ci'1 LL FOP F L .: " CDC : Cr W' • I SLOT. I ERr. )
I;:' .: I EF.:R . ED. en GO TO 7
WRITE (10.1) IERR
GO TO 100

INITIALIZE
BLAtH::== " "
STAR::" ;.f:"

1 P i1 fI ~< ::5 0
Pl=4. O:-t:ATAN<:1. 0)

OBTAIN INVARIANT PARAMETERS
~~ R1 TEO: :1 O. 11)
FORMAT<lX.~ENTER SPECTROMETER FREQ IN MHZ: ~)

RE fI [) <11) ~~ rw 0
IF <XNU0 . LE. 0) GO TO 100
0;'1GO=2.0*PI*::<:tlUI)
~m I TE <10, 12)
F (: r.: 11 AT <1 ~<:, " E~n E f~ S I G11. S I G22. 5 I GJ: ]: I N PP11: ")
READ (1:1) SlG:11.SIG22.SIG33
SIGISO::(SIG11+SIG22+SIGJ:3J/3. [1

OMGISO=SIGISO*OMGO
[111 Ci 11 =': S 1 G11-5 1 i] 1 SO ) '1= 011 G(I

OMG22=(SIG22-SIGISO)*OMGO
[lMG1J:=(SIG31-S1GISO)*OMG0
ET RH:: ( 011 G11- 0 11 G22 ) ,I 2. (1

wnTE (10,13)
FORMRT(:1X, ~ENTER NUMBER OF SITES: /)
s: E AD (11 ) ~.~ SITE
r-l 5 5 0 :: N5 1 T E·/: N5 J T E
;)0 16 .j:=:L, rlS I Tt::
t·1F:.~ TE ,; 10, l'~) .J
f~Op.r1fn<1:;:,· Dn:::? EULER ;1tH3LES FOR rWCLEUS··· .. 1::, " Hl C'EG?EES: .)
eEAD <11) <EULER< 1.. ·n. 1=1, J:)
e,o 1:5 1::1.::
:: UU:: F: <1.. .;):= EULc F: < I. J) *PI"" :1 :;:: (1. (1

':: DIJTr tI UE
CCiUT:r~IUE

.J F: 1T f:: <1 0, 1 7 :>
:L ? F' I) P 11 AT': 1>:, ' =: In ER L(! (.J Arw HI GH PO LiW At~ GLESIN [I EC:i P. EE::: :

F' E: PD .: 11 ) Ptll N.. P t1 A ~~

PM1N=C05<PMIN*PI/180. OJ
f:' ~1 fi :< :: C0 5 0: F' 11 A:":-+= F' I ,.,. 18 8. 0:>
~.Ji~ I TE I~ 1 (1, 18:>

:~ 3 FORI1FtT <1::<' " ENTEf( rwr18ER OF POLAR ANGLES: ':>
f~ EAD <11:> rw I) LAR
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c
c

DPOLAR=(PMAX-PMIH)/NPOLAR 167
tH~: rr E .; 10, 19:>

:L 9 FOR 11 fi T ( 1 i';, " ENTER l_ 0 H 9 ND HI GH r1 Z I r1 UTHt1 L f1 r·J (j L ES 1 r·~ C· EGF: EES : )
READ (11) AMIN,AMAX
A11 I r·J =A11 :1 N:1= P I ,/ 1 :3 (1. 0
AMAX=AMAX*PI,/180.0
l~ R1 TE (1 {}., 20)

28 FORMRT(1X, ~ENTER NUMBER POF AZIMUTHAL ANGLES: ~)

REA [) (LL) tH1 :~ :it1
Co f~ Z1 r1 =.; A11 f~ ;< -- i; r11 r~ :> ,.. tJ AZ I r1
loJR I TE (10, 21)

,:; :l F (I F: 11 AT ( :U';, " EN TER L 0 l~ AND HI Gff-p u:n . L I r'1 :1 TSIN P ;:' j1: ,.)
READ (11) LPPM,HPPM
L (I t1 G=LP P 11 '" 0 i1 G(3

HI) i'l G=H PP t1 *0 t1 G0
~.JR ] TE <1>3, :::: 2 )
F 0 fH1 fn CU':, " Ein E f~ lHJ t'W E f<: I] F F rt: E G! UENe '1' P[I nns: ,.)
REilD ell:> NOr1G
DPPM=(HPPM-LPPM)/<NOMG-1)
DOMG=';HOMG-LOMG)!(NOMG-l)
HRITE (10,2])
FORMAT(1X,'-ENTER RELATIVE RELAXATON MATRIX: ,./)
READ (11) «RREL<L ,T), ,]=1, W;ITE), 1=1., NSITE)

OBTAIN VARYING PARAMETERS
l,mITE (10,26)
FORMAT(lX,"ENTER JUMP FREQUENCY IN HZ: ')
F:~::AD .; 11:> .]FREQ
IF ';JFr.:EQ . LE. 0.0) GO TO 10
TRU=l. O/,JFREQ
[,m 1TE (:10, 2?)

27 FORMAT(1X, 'ENTER T2 IN SEC: ')
r,:EAC' 0: 11) T2

,'.
[) (I THE IW Rf(

[;. (I 25< :r::1, 1~ 5 I TE
[)O 28 .J=:L W:::TE
INDX=(.]-1)*N51TE+!
fU HWiO =fHi:EL 0: r.o .]) /TAU
1 F -: I . EI}. ,J) r-: 0: I ND~o :: R0: HlD ~o + 1. 0,/ T2
corn] IWE
'=:O:1T:r nUE

c .r N] T I f1L] ZE IrHENS:1 T I E5
DO::: 1 I :-= 1., tW 11 C3

~_ ;::1 jj P '::i Ii ER Ci F: I E t~ T Fi T :r [i t. 5
e, 0 ::: :3 I f-' 1) L fi G: := :L.. t. POL fi F:
crH:=Fr1 I N+ I ~:·OU~P·I:DF'OlJif~

:; :; ;~! T H:= 1. D-- C;:. G: TH
::'TH==SQPT 0: 55GTH)
?::::C:TH:=l. t:;·~CSC!TH--i3. 5
r;. [t ::: (' 1012 1 r1 == 1, iHi:: It1
:1 Z 1 i1 := (i f1 ] N+ I fi 2 I i~ :1: 0 fi Z 1 t1

c
c a8 TfH rl 5 I TE FREQUE NC1 E5

DO 12 J=1J NSITE



ALPHA::EULER (1.. ,J) 168
8ETFI==EULER 0: 2, ,n
GAi1=EULER C~, ,J)

F' HI =r1 Z1 i1 + (J A:'1
C8=C05<8£T8) .
CSG!r::~CE::f:C8

5 5 Q8 :: :~. 0 - C5 G! 8
58::S0F.:T': SSG!!::)
P2C8=1. 5*CSQ8-0. 5
C8H=CO;,) 0: 8ETA/2)
C5 08 H:: C:8 H*C8H
55Q8H::l. 0-C5G!8H
C48H::CSGl8H*C;;OBH
S4 BH =~:: 50 8 H*5SQ 8H
[I r1 G<J ) = I) r1 GIS (I -I- .: F' :2 CTH 'f. P2C8 + (1. 75 *;; 5 Q TH*5 5 G! 8:-t: COS <2. (1 :t: F' HI) -

1 ]:. >] >1: 5 TH*CTH*5 E: *C8 *C0 5 .: PHI ) ) *' 0 r1 G]: J: .~

2 0: 5 5 [] T H>+: C4 8 H,~ C0 5 0: 2. {3 * 0:: F' HI +ALP HA :> ) +SSG! T H:-+: 54 E: H:t: C[I ::: ,; 2. [1:-+:': F' HI - ALP ~:=i ) ::0 +
:: S TH*C TH*58*': 0: C8+1. 0) *COS <PH I + 2. 0*ALPHA) +
4 (C8-1. O)*COS<PHI-2. 0*ALPHA»+P2CTH*5SQ8*COS<2. 0*ALPHA»*ETAH

32 CONTINUE
c
C

c

c

16
., ..,
..:, f
., r'\

.:..u

LOOP OVER Ot1EGA
DO 36 IOMG=1,NOMG
OMEGA=LOM(J+(10MG-1)*DOMG
GET FI t1fH R I ~~

DO 34 I=1,N51TE.
DO 33 J::L N5 I TE
INDX=(J-1:>*N5ITE+I
AR=R ( INDiO
AI::~3. 0
I F <! . EQ . J:> AI :: 0 r1 EGA - 0 t1 G.: 1 )
A(lNDX)=CMPLX<AR,Al)
COIHIt-WE
COIHI NUE
(JET 1NTENS I T'I
CALL CMINV<A,N5ITE,OET,LWORK,MWORK)
sur1=0: \3
DO "15 I =:L t-l5SQ
SUM=SUM+REAL<A(I»
CONTINUE
INTEN(IOMG)=lNTENCIOMG)+SUM
cornlNUE
CONTINUE
CONTIHUE

C ~ iO Rr1 AL ] ;: E 1 NTE ~-15 I TIE;;
Lf~ r.: GE:: ~}. [1

r) 0 4 1 1=:L rIO 11 G
!F (]NTEN(]) _GT. LARGE) LARGE~lNTEN<l)

'11 corn 1NUE
[, 'J 4 '2 1:= L rw rllJ
rri T f:: N .: :r ) :: I NT E:: >J <I ) / LAP (J E

i+ ~2 corn HlU E
,-
'....

PAUSE
C F'LOT

C' i) '':: :: :r:: 1.. u(I 11 G
PP11 :: L P F' r1 + 0: 1 - 1 ) :-f:[) F' P 11
PPM=PPM+SIGH<O.5E-\31,PPM)
D0 5 1 J ::1, ] P 11 A~<



5 :L
PLOT': J ) =8LAN f(

CONTINUE
IPLOT=lPMAX*INTEH(I)
I F <:r PLOT . LT. I P t'1 A~O I Pl. (I T:: H'L I] T+ i
PLOT': IPLOT)=5Ti1R
~~ R I TE .: 10 I 52) F' P t1 J I NTE01 .: 1 ), <P LOT <.n., ,J =L 1 F' t1 AiO
FORMAT(lX,~FREQ=~,F7.1,? INTEN=~,F7. 41~ ]~, 100Ai)

169

53 CONTINUE

C OUTPUT DATA INTO FILE FOR PLOT
c

~~ r.~ 1TE (I 5 LOT, (1) .: J NTEN': J ), 1::1 J tW tH3 )
? 1 F0 ft: t1 AT': F7. 4)
c

GO TO 25
C
180 CALL FRSFL

CALL FEHUS(0)
END



SUBROU1INE CMINV(A,N,D,L,M)
,~

~ 170
C INVERTS A MATRIX
C

DIr1 ENS I 0 t-l R': 1), L ': 1 :> , :1 CD
COMPLEX A.D,8IGA.HOLD

c
Ct=1. 0
NK=-N
DO 80 K=1, N
NK==Nt::+N
LO() :=f(

tH fCi ==fC
f(1C=tHC+fC
BIG A:: A( f( f( :i
DO 20 ,J::I::. N
I Z=r~ * .: J - 1 )
I/O 28 1 :=fC, N
IJ==IZ+I,
IF(CA8S':8]GA:>-Cf~8S<A<IJ:»:>15,20,20

15 SIGA=A(IJ)
L <f():: I
t1<l() =J

20 COrnItWE
c

J=L 0(:>
IF(J-K:> 35.35.25

25 KI=K-N
DO 3(3 I :=t, r..
K1 =f( I +N
H0 L D==.- A .: f(] :>
JI=KI-K+J
AO( I :> = A.: J 1 :>

38 A<JI)=HOLD
c
25 !=t1<f(:>

I F <I - f( :> 4 5 J 4 5, :?:;::
38 JP::N*<I-1)

DO 40 J==1,N
J!(:=NI( +J
J I =,JP +,J
H0 L C' =- 11 .: .Jf( :>
A(.J 10 = f1 ( J I )

40 A<JI:>=HOLD
C
.~ j J F .: CA8 5 ': 8 ] G'-1) . NE. G_ 8:> GOT 0 4 :3

D=8. >3
f;:ETURN

48 DO 55 ]=lJ N
! F .: I - f(:> 5 (3. 5~.5, 5 (3

~3 D lI( :: W( + I
R 0: 1 K) := FI 0: I IC ) ,.: .; -- E: I GR :>

'5 ~~ C0 t~ T I r·! UE

DO 65 I:=:L N
lI(=tHC-d
HOU>=t"1O: 1 f(:>
1']:=I-N
:;;'0 65 ,J::1, N
IJ==IJ+N



60
62

65
C

1 F 0: 1 .- f< ) 6 0, 6 5, G(3

KJ :: I J - I -I- f::
FI 0: J J ) :: H(I LD>+: t1 <f(.J) ...

COrHINUE

f( J:: f:: -/.~
DO 7~) J=L /.(

ii<]J)

171

f( J :: KJ + /.(
:r F .: ,T - fe) ? (), ? 5., ? 0

78 A(KJ)::AO:KJ)/BIGA
75 CGlnn-WE

Fi (fO(:> ::1. 0/8] Gt"1
SOC: I] r,( TIN UE

K=N
100 f(::I(-1

IFO:K) 150,150,105
105 I =L 00

IF': 1- 10 120, 120J 108
188 JQ::N*<K-1)

J R=/.j ,~ ( :r -1 )
DO :t10 ..T:=1. N
,He := ,J Q ... ,T
H0 L D ::~"1 ': ,H( ::.
J l::J f~ +J
fi 0: ,J f( ) :: .• fi ( J :r )

110 A':JI)=HOLD
1 2 0 .J := t'l <I:: )

l~<J-K) 10B,100,125
1 2 5 fCI :: I( - N

COO :U8 1 :=:1., n
!( :r :: f< 1 ... 1·(

HCi L r> := ii .; I( :r )
,; :[ :: rn -. f< + J
Fl <f' :! :i := - h -: J I )

.L 5;) ;~: ETUF.: r~

~: ~1 Co



"r NT ~ Gt: t~ :~ NS" ':; ;"1 f~ L L., :r s :r f3 '1 l~ 2 ~5), I::: 1 !:~:::: .. :~:::~: ) ,r :r~;:[ ~3 :~: <~~ :5 ).' :-~ ;i! ;:: <:: 0 ~~ ::: ) ,~ ~: E =:! ~3 ?~'~ { '-~ 5
r( E r1 L ~~: I ~.~ T <2. 5 >.' -r 1 ~ -.: 1 <1 8 ;~ ::~ ).1 ;.::~ >~ -r <1 a :2 4 ~,

D1;1 EN:; I 0 r·~ ~; ~ G1 <~2 j )., ~)] ;:tz l~ ~2 5 :::.' ~:::L ::J :;: < ~~ 5 :~

GO TO ::90
c

:LO
11

., '1
.• c..

Ii .,.

... ->

14

Ti C=.•..J

151
16

161

17

18

19

;20

'1 'I
i:" ....

GET P Ft r.: fH~ E: TE ~: S
~.Jf~ I TE <: 1 (L 11)
F0 f~ :1 RT <:n: J .•' UlT ERN Ut'18 EP 0 ;= [) I F' FE f~ E1n TE :~ :; (I G: ~-:': ,.,:::.j
REHD (11) NPP
~.J R I T r: <1 (1) :12)
FOR r1 in <:1 :'C " ARE: TEN SO!? S 1N P F'11 0 R P T 5: ..,} z)
;~EA[) <:l:l, 13) FlW~

FOfH1RT <f~2)

IF <ANS ,EQ. 'PT') GO TO 19
:~ RI TE <10 I :1 4 :>
FORMAT <lX, ?ENTER NUMBEP O~ PPM/PT ON SCALE: '} ZJ
REA [) <11 ) COWl
~~ RI TE <1 (), 15)
FOR t1 AT': l ~~} ,. En1 ER POI NT P os I T ION 0 F ~~ EF EPEN CE C0 rl'~ F' 0 Ur\lt> ': /.' Z ::.
READ <L1.) f;:EFP f
[) 0 18 I:: 1, N;-' P
~~ R I TEo: 1 (3, 1 (5) I
F GR11 RT 0::1 ::,;, . [: In E f~ ItH ENS I PI' A'W D1AGO NF! L EL Et'1 E to! T5 0 F T (1-J S0 G~

REA [) 0: 11 ) f~ 1 t·l T ': 1 ), S }'31 <1 ).. S I G~~ <1), 5 I G:;~ .: :i )
! F <<::. 1G1': 1) . L E. S I G2': 1 ) . Fl ND. <5 I Ci 2': 1 ) L. E. ~; 1GJ: <1 :' » GCi TO :~'

~~ fn TEd, (3, 161)
FORMAT <lX, ~CHECK SIZE AND ORDER OF TENSOR ELEMENTS. ')
GO TO 151
151G1<I)=SIG1(I)/CONV+REFPT
ISIG2(])=S]G2<I)/CONV+REFPT
ISIG3<I)=SIG3(I)/CONV+REFPT
CONTINUE
GO TO 27
DO 28 1=1, tlPP
l~ R I TE <1 0, 1 6 ) :r
RE RD 0: 1 :l) f< I tIT <[ :>} :I 5 I G1 ( I ), lSI 13 2 0: I ) ,[ 5 I G: 0: I )
CO tl T 1 r~ UE
~H~ IT E 0: 10, 21)
FOP r1 n T O::l ::<, " () fj '-IOU I'l Ii t1 TIt: [) EPEN DE t·1 T 5 t'l 0 0 TH I l-J li ';, ", Z)
f~ E F! D <1 L 12) f;: E :;
IF'; r. E ~;; EQ, ":l (I ") G0 'f 0 :>~

[) 0 :2 3 I:: :r.. t1 P P
~.jfn TE .: 1 ~L :~ 2 :> :{

:2 2 FOP i1 t1 T -: l;C " Etn ER ~; r1 0 0 TH1 W3 F ACT 0 R FOr.: TEN 5 0 ~: " I::, ' :', :)
r.: E11 [) <11) ~.; t1 0: I )

'~ -:-. con TIn UE
c
C DETERMINE WIDTH, SHIFT LEFT
24 LARGE=IS1G3<1:>

5 11 ALL:: I 5 I G1 <1 )
DO 25 1=1, NPP
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:~ 5 CDNil UUf:
D0 ~~ 6 1:: ~t 0' i~ PP
I S I (3 :1. ,e I ) :: ] S :r G:L <:r ::- -- ~:. t'1 Ii LL-I- ~l

ISIG2(])=]SIG2<1)-SMALL-I- 1
ISIG3<:)::ISIG3<!)-SMALL+ 1
CONTINUf:
I I: I T 1 ii L; Z~ :r N-f:: t·/ SIT If
r) (j ~:.~ 8 1:= ~L) ~L [1 ~-~ 4
F I l-J T<I ) ::: ;~. (1

:2 E: Corn] lW E
f'

;1 S :::' I Ci rl C0 rl :::' T 8 tJ T S F (I R C. ALe UL 11 T 1 0 t~ 0 F C01'1 F' LET EEL L 1 F' TIC AL
i rn EGRfi L5 () F THE FIR 5T f( I1W
AO=:L.3862944
fi1=0. t119723
:~2~Oo D?2529f.
80==(3. ~50

~:l=O. 12:1.2473
B2;:~j. 0288729
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c
C CALCULATE POWDER PATTERNS

D;) ::: 0 I:: ~L.. ~'I P P
DO 29 ,.J:::L 1024
T1 rn ( J ::- :: O. (3

:: 3 corn I rlU E
IF (IS1Gl(I) NE. ISIG2(1) . AND. 151G2(1) . HE_ 15IG1<IJJ GU TO 50

c
C DO AXIAL PATTERN

IF (ISIG2(!) . EQ. 151G3(1)) GO TO 40
:=. ut1 :: [I. >3
[;;'::15Ei1(I)
IB::ISIG1<:I)
DO 20 ,J::15 .. 18
T1NT<~j::'::1. O/SQF:T(J+1. 0-15)
5 Ur'1 =5 Ur1 + T :r ~~ T .: ,J )

:0 CONTINUE
I ,: '~F: :: 5 .:: G ':W") Ci 0 T 0 :n
s t'1 0 :: ::; :~ .: I )
I F <S i1 0 . E C! . 0) :::i 0 T 0 25
T E i'l P1 :: O. 0
-r Er1 P ~2 :: 0 ;3
D() :: .;. L f=' :: L ;; f1 0
DO::: !~ <2) 1:) 2 :~

-r E i1 P :L =.~ '1 tl T -: f~ ::-
1 ] ;n -: f~ ) :: ': TE11 P2 -1';2·H r rn -: f( ) -I- TI rn <f( -I- :1 ) -;- 1. 0 E- ::;j ) / -+
-r E: ,1 P :~ :: TE 11 P :l
COilTlrlUE

·4 COrnI?WE
r:._'

.•"1:'

": 1 ~.~ l' <,j :j ;:: ~~: I nT .: or :! :'~: T ] t ~ "J <,J ) ,/ SUf1
~: :: :IT -: J :' :: ,= [ UT ' J' -I- T: II T .; ,r :)
:: J tl T[ i~ :_' E
Ij 0 "; D 80

ot(3 :::Ul'1:=O l)

, ,
•. i..

~> I] .• :1 ) ::: ;;.. 1:3
T: rH .; ,) :' :.:: :~. D,/ SC! PT -: 1 B-I- 1. 0 - ,J :'
::' Ur~ :: ~:: u r1 -I- "II ~I T ': .J :i
;~: 0 r"4 T 1 ~1 UE
1 F .; RE5 . EQ _ " tl 0 ") GOT 0 ·t 5
S tlO = 5 f1 -: 1 )
rF '::: iH} (::;~ . J) Ci 0 T I] 4 5



) 0 'f ,1 l_ ? :::~.' ~; t'1 :J
DI] 4 :~: t.:: ;: ~~} ~L 0 2:?
-r t: r1 P 1 :.: TIN T <f~ )
-r I t-l T<f< ) := .-: -; E 1'1 F' :2 .;. :2 >f: TIN T <f~: ) .;. TIN T<f::: ." 'L ::: -I- :L. ;:1 E- J: 0 ::: ..... 4
TE1'1 P2 := TE1'1 P1
COt-lTIIIUE
conTINUE
DO 46 ,J==1,1024
TINT<J)=RIHT<IJ*TIHT<J)/SUM
FINT(J)=FINT(J)+TINT(J)
cor~TIHUE

GO TO SD

DO NONAXIAL PATTERN
;'; Ui1== 8. 0
15::151(3:L<I)
18::15IG20:I)
IT=I5IClZ<I)
OIFl:=IT'-IS
C'IF2=IT-IS
DIFJ==IB-IS
I Bt11 == I [3 .- 1
D0 5 5 I( == I :), I 8 r'11
PM==SQRT(DIF1*DIF2/<'-:IT-K)*DIFJ))
PAR=«(-IS)*DIF2/«IT-KJ*DIFJ)
'./ == 1. @.- Pti R
EIt-lT==AO+Al*V~A2*V**2+(80+81*V+82*V**2):+:ALOG'-:1. 0/V)
T I 1·1 T .-: f( :> == P 11 :+: E I tl T
;'; Ui1 == 5 Ui1 + TIN T.-: fe )

55 corHHlUE
18Pl==::B+l
DI] 6 0 f(:: [ BP:., 1T
f) i1 == 5 C! RT ( D1 F1 ". 0: f( .- I :::; :' )
? Fl R== [) I F 3 * .-: I T - f( ) " 0: DI F 2 >I: ( f( - I 5 ) )
'./ == 1. 0 -- PAR
E 1 i·j T == Fl {3 + Fi :l ,~ 1/ + f12 :~ './ :+: :+: 2 + .-: B(3 +B1 >I< Ii +8 ~: )\ ',,I ,f: '''2 ,) >I: AL (! G.; 1. J,/ ',,I )

'; I 1-1 T ( f( ::: == P i1 :+: E I i·l T
:3 Ut'1 == 5 Ui'l + T :l II T ( Ie )

.; 1:1 CON T I r·l UE
I 5 Cl 1·/:: 1
IF (TlnT<IB-1) . LT. TINT(IB~l) ISGH=-1.0
TINT'-:!8J==6*TINT(I8-ISGN:>-5~TIHT(IB-ISGN*2)

SUi'l :: 5 U11 + T :r II T .; I 8 )
I F .-: f;: E S .;;: Q. " :10") GOT 0 G}
5 11 0 := S i1 0: I )
I F <5 r'1D E (1 . i)) G(I T I] ;;; :;

T E1'1f' 1 == (). [)
TE 11 P 2 := G. 0
S' 0 62 U' := 1 .. ~; l'iO
CI (j 6 1 ~~::= 2: ~L D2 :?
-: E t'l P L:: T :r tl T .; !( :>
'r I ~1-1 0: f: ::: :: I .,.. E11 P2 -I- :~'i: T III T ' f: :' + T[ 11 T <;(.;. 1:" r1. ij E --:~ 0 ::: ,: 4
.. ~:: :'! F' :2 :: TEi1 Pi

, :~ iJ HTIt j UE
:' ,~ ;~ 'J tl T I tllJ E

:>:j .; '-I ,;:: :C,' J 0 ;2 ..
" I tl T ' oJ' =PI : ITO: '[ )r. T 1 rJ-f 0: .J) .. ' S Ij 11
,:, t-j T I ,J :; :: f:[ ~ I T ( ,J :.. ... T I rl T .: ,.I'

;4 C:ONTItlUE
c.,):;j1I'i 1:1 iJ E

::: I G:: i3 _ 0
:'0 :31 I :::l, 10;24
IF'; F I rl T 0: 1) _ GT_ [3 1 G::' 8 I G== F I r-l T .-: I :>

31 ':OtlT·[tIUE
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c

PlJ T [) AT A :rtn 0 0 UTrUT F 0 F 1~ AT
D0 9 [1 t'l == L :L [3 2 4
A11 P .:: 2 'f: j'l--l ) == F :r ~l T .; 1'1 ) :+: j:2;7 6? [1"" B :r Ci
CO t·1 T :r tllJ E
OUTPUT ~)R'rr1

CFi L L l,j F [3 L i~~ <:L J 0, Ii ['1 p. HE: L f(, 1E F: F.: >
IF .: lERfd . Uf:. [1) GO T(j .1.00
51'1 Ii L L =-5 11 Fl L L .- 2 :L
[,j PIT r:: <1 0, 9:L:l 5 11 ALL

? :L F (I RI'un .: :U<.. ,. :; H:: FT --'.. I 4.." POI Wi :; F I] F.: CO F: RECT F' 0 5 I T 1 DW' )
c
:LOO CALL RESET

END
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COM~ruTATORS I I X1 lx2 I
x3 I 1 I 2 I 3 I

Z1 I z2 I z3y y y

I
1 I 1 I I II X1 0 I x3 -I 2" I ZI -- I "2 I x2 -- I 2" I y2 2" I x2x2 2 z2 2 yl

I 0 1 1 1 1 1 1I X2 I X1 -- I -- I -- I 2" I y2 2" I y1 -- I2 z2 2 zl 2 xl 2 xl

I 0
1 1

0
1 1

0Ix3 -- I "2 I y1 -- I 2" I Z12 y2 2 z2

I 0 - I
I I 1I

Y1
I y3 2" I XI -- I 2' I y2y2 2 x2

0
1 1 1 ~I

Y2 I y1 -- I -- I -- I '"d2 x2 2 xl 2 y1 In::s
A I l:l.

I I ~

I y3 0 -- I "2 I Z1 0 :<
2 z2 I"%j

Szl 0 I Z3 - I z2

Sz2 0 I Z1

Sz3 0

1-
[B.A] = -[A.B]

......

'".0\



Appendix f

A:ITICO:·NUT:\TORS I S:d

l~l+Sy]-SZ])

:X2!
0

0
x]

:-i 1Y

,\ Is y2

SyJ

\1

s ?z_

S
z3

I-
f II. BI,I = Ill.,\j ,\

S ? Sx3 ~1x_

0
1

0 '25
z2

1 0
1

3(1+S y3-5 z3 ) 2Sz1

1 _ls0 3(l+Sy1-Sz3) 2 y1

13(1+s z3-5 x3)

S 2 5 3 5z1 Sz1 Sz3y y

1 1 1 I 1
"2Sz1 '2 Sx1 '2Sy2 '2\1 -'2Sx~

_ls 1 5 1 1 1
2 z2 2 ,<2 '2Syl -ZSy2 -f'x2

_ls 1 I k 1 II'-(- -+5 -S )
'2\2 3(- '2 Sz3-Sx3)2 y2 3 2 x3 y3 2 z1

0 0 !S I 1
2 x2 '2Sxl '2

S
y l

t°-fSZ3-SX3 0 .!.S _.!.S 1
2'5 ?. 2 xl 2 x2 y~

1 _15 _ls I 1
}(l+Sz3-5x3 2 z1 2 z2 3(-"2+ Sy3- 5z3)

1
'3(1+Sx3- 5y3} 0 0

1
0 3(1+S x3-5)'3 0

1
0 0 3(l+Sx3- Sy3

1 = unit matrix.

f-'
'-J
---J
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Appendix G Trigonometric Functions of Operators

In the course of human events it sometimes becomes necessary to

evaluate trigonometric functions of operators. To do this we make use of

the power series expansion of the function

2 4 6
1

x x x
cosx = - 2T+4T 61+

3 5 7
sinx

x x x
x - 3T+5T 7T+

For the fictitious spin i operators we must then evaluate the various

powers of operators. It is particularly easy to see from the ~atrix

representation of these operators, Table II, that

(2 I )2m+l = 2 I
p,n p,n

(2 I ) 2m =
p,n

(2 I ) 2
p,n

for p = x,y,z,n = 1,2,3 and all m ~ 1. These identities make it possible

to factor the operator out of the series to give

and

cos (wI t)
p,n

sin (wI t)
p,n

cos( w
2

21 t)
p,n

sin(~2 21 t)
p,n

= 1 - (21 )2 + (21 )2 cos(w2t )
p,n p,n

21 sin(~2t)
p,n

Of course this also allows us to express an exponential operator in terms

of nonexponential ones

e
iwI t

p,n
cos (wI t) + i sin (wI t)

p,n p,n

1 - (21 )2 + (21 )2 cos(w2t ) + i
p,n p,n

21 sin (w2t )
p,n



It is sometimes convenient to use the identity
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(21 )2
p,n

l(l + I -I )
3 q,3 r,3

where p,q,r x,y,z or cyclic permutation for n 1,2,3.
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Appendix H

Synthesis of various deuterated hexamethyl benzenes was performed

by Herbert Zimmermann. They were prepared by reaction of pentamethylbenzene

(Aldrich) with paraformaldehyde and sodium bromide in acetic acid.

For d-l HMB 37g of PMB, 19.5g para formaldehyde and 72g NaBr were

dissolved in 140 ml glacial acetic acid at 80°C, and 65.5mlconc. H2S04 and

65 ml glacial acetic acid were dripped in over 4 hours, with good stirring.

The mixture was heated at 90°C for 7 hours, then was put into 2 liters of

ice water. After standing overnight it was filtered and well dried

under vacuum. The pentamethyl benzylbromide was purified by vacuum

distillation. 15 grams of pentamethyl benzylbromide was then dissolved

in dry diethylether and was added over 30 minutes to a suspension of 5.2g

LiAID4 (Stohler) in dry diethylether. This mixture was stirred 5 hours.

Water then 15% H2S04 was carefully added the ether phase removed and the

water phase extracted with other and the combination dried over K2C03/

Na2S04 overnight. Then evaporated to dryness. Crude product of 10.8g

was recrystalized from ethanol.

For d2 HMB 98% deuterated paraformaldehyde and LiAIH4 were used

with same procedure.

For d3 HMB 98% deuterated paraformaldehyde and LiAID4 were used

in the same procedure.
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FIGURE CAPTIONS

Figure 1. The sequential rotations, through Euler angles a, S, Y.

used for transformations of tensors from one axis system to another.

The frame x, y, z is the initial axis system and x"', y"', z'" is

the final. The single and double prime systems are intermediate.

Figure 2. The behavior of various magnetizations during a cross

polarization experiment. Curve a is the decay of proton magnetization

due to spin lattice relaxation in the rotating frame, TIp = 10 units.

Curve b is the growth of carbon magnetization with time constant

TIS = 15 units which would be observed if proton relaxation were not

present. Curve c is the actual growth of carbon magnetization

including effects of proton relaxation.

Fi~ure 3. Schematic pulse sequences for (a) free induction decay and

(b) cross polarization experiments with proton decoupling.

Figure 4. Powder patterns for anisotropic chemical shielding, (a) in

the case of axial symmetry and (b) for the general case.

Figure 5. 13C spectrum of adamantane in the plastic phase, showing

lines averaged by isotropic reorientation. This spectrum is the

result of a single shot, single contact (4 msec) cross polarization

experiment.

Figure 6. Chemical shielding powder patterns for nonrotating and

rotating molecules. The case shown is for flourine in a model fluoro

methyl group with the a
33

element along the C-F bond and all in the

CCF plane for the rigid molecule. Rapid rotation of the methyl yields

the axially symmetric pattern.
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Figure 7.
13

C powder spectra for hexamethylbenzene in the high and low

189

temperature limits. The wide peaks are from the ring carbons and the

sharp peaks, which have been truncated, are from the methyl carbons.

Figure 8. Possible jumps for a molecule of HMB in a sixfold sYmmetric

site. In a general orientations there are three different chemical

shifts for these sites, represented by lines A, Band C. The rate of

jumps from orientation i to j a~e given by the rate constant W...
1J

Figure 9. (a) and (c) are orientations of the HMB molecule with

respect to the magnetic field which give rise to degeneracies of

line positions. In (a) 1 and 3 are degenerate and in (c) 1 and 2 are

degenerate. (b) is an orientation for which the positions of 1, 2

and 3 are nondegenerate.

Figure 10. Spectra for exchanging HMB molecules in orientation (b)

of Figure 9 and near orientation (c) of Figure 9. The exchange causes

rapid coalescence of the two lines close together in the right hand

spectra.

Figure 11. The low field part of theoretical powder lineshapes for

exchanging HMB, the left side spectra for the rotational random jump

model and the right side for sixfold jumps. Numbers above spectra are

total jump rates in Hz.

Figure 12. The low field part of experimental and theoretical spectra

f h 1 f . 1 13 f b fo HMB. On tee tare exper1menta C spectra or a num er 0

temperatures noted above the spectra. The right side shows again the

theoretical spectra for sixfold jump model. The extra features present



in the jump model are clearly present in the experimental spectra.

Figure 13. Experimental l3C spectrum of HMB at -135.80 C. The extra

features at ~80 PPM and -40 PPM are particularly prominant in this

spectrum. The t+uncated peak at the high field side is from the

methyl carbons.

Figure 14. A plot of the log of estimated jump rate against liT for

HMB. From this we determine an activation energy of 5.5 kcallmole

for ring jumps.
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Figure 15. 13
Theoretical and experimental spectra for C in DMFe in

the rigid and rapid motion limits. The high field lines in the

experimental spectra are from the methyl carbons. Unlike HMB, the

a
33

element of DMFe moves downfield when motion occurs.

Figure 16. Schematic representation of the shielding tensor orienta-

tion in DMFe. The angle between a
33

and the Z axis (rotation axis)

is about 200
• Methyl carbons are not shown and the relative orienta-

tion of the rings cannot be determined, staggered conformation is

assumed for illustration only.

Figure 17. The possible jumps for the rings of DMFe in a fivefold

potential. For general orientations all five sites have different

chemical shifts, schematically represented in the lower portion.

Figure 18. Theoretical spectra for DMFe in the two limits WlZ /W13
= (J()

and Wl /W13 = O. Spectra are shown for the single orientation CI. = 0
0

B = 0
0 0 a number of total jump rates for each limit, andy = 2 at

for a powder average at 600 Hz total jump rate (at top). Note that



jumps of 2n/5 (W
12

/W
13

= 00) exchange magnetization directly between

lines 3 and 4 and these lines remain somewhat sharper than others for

slow exchange rates. Jumps of 4TI/5 (W
12

/W
13

= 0), on the other hand,

exchange magnetization between lines 2 and 5 so that a different

region remains sharp. The contribution of these "sharp" regions to

the powder lineshapes can be seen as "bumps" at the top.

Figure 19. As Figure 18, but for the orientation a = 0°, S = 0°,

oY = 16. Now 2TI/5 jumps exchange magnetization directly between lines

2 and 3, and 4TI/5 jumps directly exchange lines 1 and 4. The "sharp"

regions contribute to other "bumps" in the powder spectra. It is

rapid averaging in molecules with orientations near these (a = 0
0

S = 0° Y= 0° and a = a S = a y = ISo) that give rise to the "bumps"

in the powder spectra.

Figure 20. Theoretical powder spectra for the two cases W12 /W13 = 00

and W
12

/W
13

= 1 for several total jump rates, with appropriate

shielding parameters for ring carbons of DMFe. The "bumps" are quite

evident in both sets, though the feature near 35 PPM is weaker in the

hard collision (W
1Z

/W
13

= 1) case.

13
Figure Zl. Experimental C spectra of DMFe at a number of tempera-

tures. The "bumps" in the slow exchange region and axialization at

higher jump rates are quite evident. The upfield peaks, which are

truncated, are from the methyl carbons.

Figure ZZ. The experimental spectrum of DMFe at -17Z.5
0

C is compared

with theoretical spectra for a number of jump ratios W1Z/W13 , for a

total jump rate of 600 Hz. The experimental spectrum is in agreement
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with a large W
12

/W
13

ratio.

Figure 23. A plot of the log of estimated jump rate against liT for

DMFe. From this we determine an activation energy of 3.2 kcal/mole for

ring jumps.

Figure 24. Deuterium coupled and decoupled spectra of residual protons

in heavy ice (D
2
0), at -90oe. H concentration was ~.5% and the

decoupling field was ~60 G. From this we obtain ~I = 15 PPM and

(}l = -19 PPM.

Figure 25. Symbolic representation of the migration of aD-type

Bjerrum defect through the ice lattice. Oxygen atoms occupy the

tetrahedral positions and hydrogens are represented by black dots.

This migration exchanges water molecules among the six tetrahedral

orientations, of Figure 26.

Figure 26. The six equivalent orientations for a water molecule in a

tetrahedral environment. Water molecules are exchanged among these

orientations by defect migration in ice.

Figure 27. Exchanging lineshapes for water in a tetrahedral environ

ment, showing the dependence of "sharpness" of the isotropic spike

on T2 . Total jump rate in both cases is 5000 Hz, with T2 = 0.001 sec

(top) and T2 = 0.01 sec (bottom).

Figure 28. Theoretical powder spectra for protons in heavy ice under

going exchange. On the left are lineshapes for the symmetry

related jump model and on the right for hard collision random

jumps, each at a variety of total jump rates. T2 was 0.001 sec in
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both cases.

Figure 29. Experimental lineshapes for protons in heavy ice at several

temperatures, to be compared with the symmetry related jump model on

the right. The extra bump of the symmetry related jump model is quite

evident in these spectra.

Figure 30. A plot of the logarithm of estimated jump rate vs. 1fT for

heavy ice. From this we determine an activation energy of 3.5 kcal

per mole for the reorientational motion.

13 0
Figure 30a. C powder spectra of pentamethylbenzene above (28 C) and

below (20
o

C) the crystallographic transition (24oC). The narrowing

above the transition is an indication of restricted motion (marks show

approximate all and a22 below the transition).

Figure 31. Schematic representation of quadrupolar (top) and chemical

shielding (bottom) powder patterns in a solid. Quadrupole couplings

are generally about 100 times larger than chemical shifts.

Figure 32. Energy levels for a spin-l with and without quadrupole

couplings. With a quadrupole coupling the +1 ~ 0 and 0 ~ -1 transi

tions are no longer degenerate (bottom). However the +1 and -1 levels

shift equal amounts in the same direction, making possible high reso-

lution FTDQ NMR.

Figure 33. Schematic pulse sequence for FTDQ NMR showing preparation

pulse, evolution, and probing pulse. The evolution during T is

independent of the quadrupole coupling.

Figure 34. Comparison of exact computed response (solid curve) and
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The solid curve

approximate response (dashed curve) of initial density matrix I to a
zl

double quantum pulse as a function of time. Although the response is

not ideal, the density matrix desired, a
z2

~ -1.0, may be prepared

through proper selection of pulse length.

Figure 35. Coefficient of single quantum coherence for the pulse of

Figure 34. It is desirable to have single quantum response minimized

as well as double quantum response maximized in FTDQ NMR.

Figure 36. The distribution of coherence in the y-space after a

single pulse on initial density matrix I z2 ' as a function of w
Q

(marked

in kHz along curve). The ideal response for a o-rr/2 pulse is a
y2

= -1.

Figure 37. Efficiency of preparation of double quantum choerence for

initial density matrix I
zl

' for a single weak pulse, as a function of

V
Q

• The change of sign at V
Q

= a is not important.

is the exact calculated response and the dashed curve is the approxi-

Figure 38. Overall efficiency of preparation and detection of double

quantum coherence for pulse sequence shown if: detection is immedi-

ately after probing pulse (top), or detection is delayed for 30 ~sec

by spectrometer dead time (bottom).

Figure 39. (bottom part of 38)

Figure 40. Response of initial density matrix I zl to a pair of strong

pulses (quadrupolar echo sequence) as a function of V
Q

" This sequence

may be used to avoid distortion due to dead time as ShVWll in Figure

38, 39.
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Figure 41. Response functions for pulse sequences with two weak

pulses. The response in (b) is practically as good as (a) since small

amplitude oscillations will be obscured by broadening. The sequence

shown in (b) is best suited for experimental application in powder

samples since it overcomes the problem of spectrometer dead time.

Fi~ure 42. Response functions for two pulse sequences as a function

of VQ, multiplied by the intensity function for an axial quadrupole

powder pattern (upper curves). These predict the lineshape for

chemical shielding if the quadrupolar and shielding tensors are

axial, with unique axes aligned.

Figure 43. Ideal response functions for two strong pulse preparation

of double quantum coherence, as a function of VQ, for three delays

between pulses, (a) VQT =~, (b) VQT = 3~, (c) VQT = 5~ where vQ is

the maximum quadrupole splitting. At the bottom is the sum of these

three with appropriate weights for a Fourier approximation to a square

wave.

Figure 44. Calculated response function for realistic parameters,

with pulse widths and delays adjusted to give the best possible

response. The response functions shown are for a maximum quadrupole

splitting (separation between sattelites) of 260 kHz, r.f. pulses

with VI = 100 kHz and ~v = O. Shown are responses to the following

sequences: (a) 1.75 ~sec pulse, 2.25 ~sec delay and 2.50 ~sec pulse,

(b) 1.75 ~sec pulse, 10.00 ~sec delay and 2.50 ~sec pulse, (c) 1.75

~sec pulse, 17.75 ~sec delay and 2.50 ~sec pulse. At the bottom is

the appropriately weighted sum of these showing the very small
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deviation from ideal response. A ninety degree pulse on resonance

would be 2.50 ~sec and the delays VQT of rr, 3rr and 5rr rotations for

the maximum splitting are 3.85 ~sec, 11.54 ~sec and 19.23 ~sec

respectively.

Figure 45. Response functions for first and third echos in a multiple

quadrupole echo sequence as a function of V
Q

. Also shown is the

average of response functi9n for the first four echos, showing that

averaging of several echos does not degrade response. Pulses were

100 kHz in amplitude and 2.25 ~sec in length, andTwas 30 ~sec.

Figure 46. Stick spectra for two equivalent and inequivalent deuter

ons which are dipolar coupled. At top and bottom are single quantum

spectra and in the center is the double quantum spectrum, which is the

same for equivalent and inequivalent cases, and shows no quadrupole

splitting.

Figure 47. Single and double quantum stick spectra for three equiva

lent deuterons which are dipolar coupled. The double quantum spectrum

has no quadrupole splitting.

Figure 48. Energy levels for two equivalent deuterons which are

dipolar coupled. Arrows represent all possible transitions. Solid

arrows are allowed single quantum transitions and single spin double

quantum transitions which would be observed in FTDQ NMR experiments.

Dashed lines are zero, two, three and four quantum transitions which

could be induced by the dipolar coupling (Ch. IV). The two sets of

levels are symemtric (left) and antisymmetric (right) with respect to
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exchange of the spins.

Figure 49. Pulse sequences for FTDQ NMR. Experiments on single

crystals commonly use A, while D is most often used for powder samples.

Data are collected as a function of variable time T.

Figure 50. Double Quantum free induction decay for d-l benzene doped

o
10% into normal benzene, taken at -40 C. Points are spaced by 100

~sec.

Figure 51. Fourier Transform of decay in Figure 50 showing chemical

shielding anisotropy for the aromatic deuterons. ~0 = -6.5 PPM. The

position of liquid benzene is shown.

Figure 52. Theoretical powder patterns for the d-1 benzene experiment,

generated by a computer for the pulse sequence used.

Figure 53. Single quantum deuterium spectrum of 5% deuterated

ferrocene showing axially symmetric quadrupole powder pattern with

eqV = 96.8 kHz n ~ o.zz

Figure 54. Double quantum free induction decay for 5% deuterated

ferrocene, taken with pulse sequence D of Figure 49. Points are

spaced by 50 ~sec.

Figure 55. Fourier Transform of the decay in Figure 54. From the

width we estimate the chemical shielding anisotropy to be -6.5 PPM,

as for benzene. The position of the line was not measured relative

to a reference, and the scale has been reduced a factor of two to

compensate for double quantum scaling.
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Figure 56. Single quantum spectra for a crystal of BaC10
3

'D
2
0 in an

arbitrary orientation. The inserts show the resolved dipolar splitting

between deuterons (inner lines). and the extra lines for HOD impurities

(outer lines). In this orientation the separation between sattlites is

138.3 kHz.

Figure 57. Proton decoupled (left) and coupled (right) double quantum

spectra of BaC10
3

·D
2
0. taken for the orientation of Figure 56. These

spectra were taken with pulse sequence A of Figure 49. with double

quantum decays of 50 points spaced by 25 ~sec.

Figure 58. Single quantum powder spectrum of d-l hexamethylbenzene.

showing the nonaxial quadrupole coupling tensor. From this we obtain

eqV = 18.95 kHz and n = 0.096.zz

Figure 59. Single quantum powder spectrum of a.S d-2 hexamethylbenzene.

198

as Figure 58. eqV = 20.9 kHz n = 0.08.zz

Figure 60. Single quantum powder spectrum of a. S. y d-3 hexamethyl-

benzene. as Figure 58. eqV = 22.2 kHz n = 0.07.
zz

Figure 61. Carbon spectra for ordinary HMB (bottom) and d-1 HMB

(center) showing axial symmetry from rapid rotation about the sixfold

axis. The theoretical spectrum (top) shows the lineshape expected if

the carbon tensor had the same asymmetry as the deuterium (n ~ 0.10).

Slight broadening from deuterium is evident for d-1 HMB, but there is

no evidence for a nonzero asymmetry parameter.

Figure 62. On-resonance decay of echo amplitude with time between

pulses for some deuterated hexamethylbenzene samples. The rate of



decay is clearly associated with deuterium concentration~ and hence

the strength of deuterium-deuterium dipolar couplings. All curves

were obtained while decoupling protons.

Figure 63. Oscillation of echo amplitude with time for d-l HMB, 500

Hz off resonance. These oscillations clearly demonstrate the behavior

predicted by (111-81). The decay of the constant term (top) comes

only from TZ while the oscillations are damped by chemical shielding

anisotropy as well.

Figure 64. Single quantum spectrum of a single crystal of d-Z HMB

showing quadrupolar and dipolar structure. The quadrupole splitting

was nearly the maximum possible for d-Z HMB.

Figure 65. Theoretical (bottom) and experimental double quantum

spectra for the d-Z HMB crystal shown in Figure 64. The spectrum

was taken with pulse sequence A of Figure 49 for 100 points spaced

by 50 ~sec.

Figure 66. Single quantum spectrum for a single crystal of d-3 HMB,

showing quadrupolar and dipolar structure. As for the d-Z HMB

crystal, this crystal was oriented to give nearly the maximum possible

dipolar and quadrupolar splittings.

Figure 67. Theoretical (left) and experimental (right) double quantum

spectra for d-3 HMB. The spectrum was taken using pulse sequence A of

Figure 49 for 100 points spaced by 50 ~sec.

Figure 68. Experimental double quantum spectrum of ZO% d-l HMB in

ordinary HMB. The linewidth is ~100 Hz or 3.5 PPM. This spectrum was
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obtained using pulse sequence D of Figure 49, for 50 points spaced by

200 ]..lsec.

Figure 69. Experimental double quantum powder spectra for d-2 HMB

(top) and d-2 HMB 10% in normal HMB (bottom). The dipolar powder

patterns are clearly evident in both. The pulse sequence was the same

as for Figure 68.
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Figure 70. Response function for the pulse sequence used in Figures

68 and 69. Although response is quite poor near vQ = 0, it is quite

good near the peaks of the powder pattern, the most intense regions

of the spectrum.

Figure 71. Theoretical double quantum powder spectra (compare Figure

69) for dipolar coupled pairs of deuterons, with no shielding

anisotropy, generated using the experimental parameters for HMB,

including weighting by the transfer function, Figure 71. The width of

the Gaussian broadening used is noted to the right.

Figure 72. Experimental single quantum deuterium spectrum of d-l

p-methoxybenzoic acid (anisic acid) obtained by Fourier Transforming the

second half of a quadrupolar echo. From this spectLum we obtain

eqV = 169.0 ± 1.0 kHz and n = 0.132 ± 0.003. The high intensity
zz

at the center and oscillations in amplitude arise from pulse imperfec-

tions. Pulses were ~80 kHz in amplitude and the time between x and y

pulses was 40 ]..lsec.

Figure 73. Double quantum FID (bottom) and spectrum (top) of deuterons

in d-l anisic acid. The structure comes from a combination of dipolar



coupling and chemical shielding anisotropy. FID was taken with pulse

sequence D of Figure 49, 50 points with a spacing of 50 ~sec.

Figure 74. Pulse sequences used in FT Multiple Quantum NMR. The parts

of the experiments are labeled at top, (a) and (b), P, preparation, E,

evolution, and D, detection. Other pulse sequences for particular

experiments are below: (c) and (d) nonselective multiple quantum,

(e) selection of even or odd quantum, (f) nonselective with multiple

quantum echo for resolution enhancement, (g) even or odd selective

with m.q. echo for resolution enhancement, (h) single quantum echo

for resolution enhancement.

Figure 75. Energy levels for oriented benzene. These are labeled

with total magnetic quantum number (left) and symmetry (top). All

transitions, single quantum and multiple quantum, occur within a

single symmetry.

Figure 76. Experimental (top and center) and theoretical (bottom)

single quantum spectra of protons in oriented benzene. The top

spectrum is the Fourier Transform of an ordinary FID, showing lines

broadened by inhomogeniety of H
O

. The linewidth is ~lOO Hz. The

center spectrum was obtained by Fourier Transform of a single quantum

echo FID, Figure 73 (h), showing greatly improved resolution. The

lidewidth is ~3 Hz.

Figure 77. Experimental (top) and theoretical multiple quantum

spectra for oriented benzene. The pulse sequence and theoretical

parameters used are discussed in the text.
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Figure 78. Order selective spectra of oriented benzene. At the top,

A, is the nonselective spectrum of Figure 76. B is the even quantum

only spectrum obtained with pulse sequence (e) of Figure 73. C and

D.show respectively, 0 and 4 quantum selection and 2 and 6 quantum

selection obtained by adding and subtracting multiple quantum FIDs with

opreparation pulses phase shifted by 90 but the same phase detection

pulses.

Figure 79. Zero quantum FID and spectrum showing extremely sharp

lines, limited in width for the present case by truncation of the

FID.

Figure 80. Even quantum selective multiple quantum spectrum with an

echo in the evolution period. The full spectral width is one 6w in

Figure 75. The linewidths in this spectrum are ~3 Hz, independent of

order. The spectrum is completely symmetric since only a single phase

FID was transformed.

Fiiure 81. 2 and 6 quantum selection in a multiple quantum spectrum

obtained with an echo during the evolution period. Just the upper half

of the symmetric spectrum is shown. Linewidth was limited by trunca-

tion of the multiple quantum FID.

Figure 82. 0 and 4 quantum selection in a multiple quantum spectrum

obtained w~th an echo during the evolution period, as Figure 80.

The degree of separation of orders can be seen by observing that the

strongest line in this spectrum has less than 3% of this intensity in

the 2 and 6 quantum spectrum. Degeneracies in line positions occur
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for various orders so that some lines (as that near 2500 Hz) appear in

several selective spectra.

Figure 83. Block schematic of the spectrometer used for the experi

ments described here. Various components are further described in

the text.

Figure 84. Detailed schematic of the transmitter and probe configura

tion.
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