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In the first section of this work we present the theory and
experimental applications to analysis of molecular motion of chemical
shielding lineshapes obtained with high resolution double resonance NMR
techniques. Analysis of l3C powder lineshapes in hexamethylbenzene (HMB)
and decamethylferrocene (DMFe) show that these molecules reorient in a
jumpipg manner about the symmetry axis. In DMFe it is shown that jumps
of 21/5 radians occur most often. l3C powder lineshapes in pentamethyl-
benzene show that the motion present above the crystallographic phase
transition at 24°C is a nonuniform rotational motion about the pseudo six-
fold axis. Several models for this motion are discussed. Analysis of
proton chemical shielding lineshapes of residual protons in heavy ice
(D20) show that protons are exchanged among the tetrahedral positions of
neighboring oxygen atoms, consistent with motion expected from defect
migration.

The second section of this work describes the application of
Fourier Transform Double Quantum NMR to measurement of chemical shield-
ing of deuterium in powder samples. Studies of partially deuterated
benzene and ferrocene give equal shielding anisotropies, AC = -6.5 PPH.

Theoretical predictions and experimental measurements of dipolar

couplings between deuterons using FIDQ WMR are presented. Crystals of
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BaCl0 0, a,8 d-2 HMB and q,8,y d-3 HMB were studied, as were powders

3702
of d-2 HMB and anisic acid.

The third section of this work discusses general multiple quantum
spectroscopy in dipolar coupled spin systems. Theoretical description
is made for creation and detection of coherences between states without
quantum number selection rules Am = *1. Descriptions of techniques for
partial selectivity of order in preparation and detection of multiple
quantum coherences are made. The effects on selectivity and resolution
of echo pulses during multiple quantum experiments are discussed.
Experimental observation of coherences up to order 6 have been made in

a sample of benzene dissolved in a liquid crystal. Experimental

verifications of order selection and echo generation have been made.
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I. BASIC FORMALISM

A. Introduction

The development of NMR techniques has often been aided by the
simplicity of theoretical description of magnetic spin systems. This
simplicity arises since there is a finite number of energy levels to be
considered and since the energies involved are much smaller than thermal
energies under virtually all experimental conditions. In this chapter
we briefly present the basic formalism to be used in understanding exper-
iments in the later parts. The Hamiltonian is composed of several parts
since for many of the experiments several couplings must be considered.
However, in this section we describe terms only in the presence of the
Zeeman interaction, and postpone description of effects arising from the
simultaneous presence of several couplings until necessary to describe
specific experiments. Three general classes of couplings will be
treated; spins coupling to external fields (static and radio frequency),

spins coupling to surroundings (quadrupolar and chemical shielding),
spins coupling to other spins (homonuclear and heteronuclear dipolar

couplings), each in turn.

B. Density Matrix
In general the Hamiltonian of a spin system for NMR studies may

be written as a sum of several terms:

H=H +H .+ H +H +X (I-1)
z r cs D

f Q



The dynamical evolution of the system may be described through the den-
sity matrix. In its most general form, the full equilibrium density

matrix pE is given by

op = e BX / Tr(e_gx) where B=1/kT. (1-2)

However, if one notes that kT >> {|Hl , (hwoﬁiﬁ 0.01K for protons in a
42 kG field), then the exponential may be expanded and only the first

terms kept to give the high temperature approximation

1-BX _
Pg * TreD) (1-3)

Since the constant operator 1 will not enter into the calculation of any

observables we may alternately use the reduced density matrix
pp = B (I-4)

The expectation value of any operator Q may then be calculated

(@) = Tr(eQ). (1-5)

The time evolution of the density matrix may be calculated from the

Von Neumann equation (h = 1):

= 0(t) =4l p(£) J(] (1-6)



The formal solution to this equation for a time-independent Hamiltonian

is

o(t) = e Pt S0y oI, (1-7)

More general solutions including explicit time dependence in ¥ and relax-

1,2,3 but will be added only as needed. Frequent-

ation effects are known

ly we will express 0 for a spin I as an expansion in a complete operator
, 2 L , .

basis ((2I+1)~ operators), and calculate coefficients of particular basis

operators as a function of time. Explicit examples of this will appear

in Chapter III.

C. Hamiltonians

The Hamiltonians for magnetic resonance experiments may be writ-
ten in terms of the angular momentum operators Ix’ Iy, IZ which form a
spin vector. The coupling of this spin vector to applied or intrinsic
local fields may be described through coupling tensors. Such second
rank tensors é may be described in a Cartesian basis as 3%3 matrices,
Aij' The coupling Hamiltonian between two vectors X and Y is

3
=X-+A-Y = Z XA, .Y,. (1-8)
~ 1743 3

It is generally convenient to express the Hamiltonian in units of fre-

quency (V) or angular frequency (w) rather than energy.



1. Zeeman, rf
First we will describe the interaction of the spin with exter-

nally applied fields. For a static field this is termed the Zeeman

coupling and may be written:

J( - * L] —
L =H 21 (1-9)
where Z = - Y1 L1, 1 is the identity matrix and EO = (0, O, HO), defin-

ing the field to be in the z direction. This can be written in simpler

form

ﬂ; = - YIHOIZ = - wOIz. (I-10)

The spin may also couple to a radio-frequency oscillating magnetic field,
which we will term the rf part of the Hamiltonian. Such a coupling is

given by

M}f =H-Z2°1 (I-11)

where Hl = 2 (Hx’ Hy, 0) coswt, assuming we apply the rf field only in
the x-y plane. Frequently we will take the rf field to define the

direction of the x~axis. In such a case the Hamiltonian may be written

more simply as

K¥f=-— ZYIH1 coswt Ix. (1I-12)

For many experiments it is convenient to go into an interaction

picture defined by the transformation operator

-iwl t
T =-¢e z (I-13)



This picture is called the rotating frame, and corresponds to observing
the spin from a frame which rotates at angular velocity w about the z -

axis. In this frame
JC = - : = - -
. AwIz Aw Wy=w (1-14)
and the rf term becomes time independent

rf lIx'

The density matrix above (I-4) may also be transformed into the rotating

frame,

p =e p e (1-16)

and the Hamiltonians in (I-7) are taken in their rotating frame form.
Henceforth the density matrix will always be used in this form and the

asterisk will be dropped.

2. Chemical Shielding

The Zeeman coupling may be altered somewhat through the screen-
ing of the nucleus by the surrounding electrons. This effect is termed
chemical shielding and may be described in a manner similar to the Zeeman

coupling

i H o+g-1 (I-17)

where g 1is the shielding tensor given as



g g (0]
XX Xy Xz
= a g a
g 1 yx vy yz .
g g g
ZX  zy zz

Since this coupling is much smaller than the Zeeman, we need only consider

the secular part, that is the part which commutes with ﬂ;. It is then

ﬂ;s - YI HO 0zz Iz' (I-18)

We may take this tensor to be symmetric (antisymmetric parts can only con-
tribute a second order termz). There is then a coordinate system in which
g is diagonal, which we call the principle axis frame. In this frame we

i i < < .
will term the diagonal elements Oll’ 022 and 033 where Oll 622 033
Since these terms are generally very small we will measure them in parts

per million (PPM) of the applied field. Ao =0,_, - 1/2(011+022) is de-

33
fined to be the anisotropy of the shielding tensor,n==cll—622 the asym-
metry, andOiSO =1/3 Tr(g) = 1/3(011+(524-033) the isotropic shift. The

angular dependence of anisotropic coupling terms is discussed below,

Section ID.

3. Quadrupolar Coupling

While the Zeeman coupling comes from the interaction of the
magnetic dipole of the nucleus with the external magnetic field, an addi-
tional coupling may exist between the nuclear quadrupole moment and elec~-

from the surrounding electrons and nuciei. The



Hamiltonian for this interaction is

eQv
_ 22 2 1 2 2
"= e Elz L(I+L)+ E”Q%”-J (1-19)
where Q is the nuclear quadrupole moment, nQ==(Vyy—VXX)/sz,
|V__|>|v.__|>|v__| are the principle values of the electric field gradient
zz vy XX

tensor. In the presence of a large magnetic field (Ilﬂ;l|>2>l|ﬂb|l, a
criterion met for all experiments described herein), we keep only the

secular part

eQ sz 2
ﬂb = —ZEZET:IT [}Iz-I(I+1{]. (1I-20)

For a spin with I = 1/2, <31§-I(I+l)> = 0, so the quadrupole
interaction will only be observed for spins with I >1. It is also worth
noting that this Hamiltonian is bilinear in I, the full implications of
which will be described in Chapter III. The transformation properties of
the field gradient tensor are the same as for the shielding tensor.
However, Laplace's equation requires that the field gradient tensor be

traceless,that is V + Vv +V =0.
XX vy zz

4. Dipolar Coupling

The energy of a spin is also effected by the local fields gen-
erated by its neighbors. Such effects may either be through space coup-
lings, termed dipolar or direct couplings, or transmitted through bonds,
termed spin-~spin or J couplings. Since, in general, for the systems of
interest here the former are many times larger than the latter, we will
only treat dipolar couplings. These are of two types, between like spins

or homonuclear, and between unlike spins or heteronuclear. For either



type of coupling the full coupling Hamiltonian may be written between

spins I and S as

}CD=~I~'2'~S' (I-21)
'1's
D = _ cos o
where 1 r 3 (613 3eiej) 1,] X, ¥s 2Z, 61_]
IS
is the Kronecker delta function, e = (ex, ey, ez) is a unit vector from

spin I to spin S, and Tlg is the distance between them. From the defini-
tion it is clear that this coupling tensor is symmetric and traceless.
As in the case of the quadrupolar Hamiltonian we keep only the secular

part of ﬂb in the presence of the Zeeman coupling. If the coupling is

homonuclear and the I-S internuclear vector is along the field direction

-YIZ
= 3

T1s

(3IZSZ - I-9). (1-22)

However, if the dipolar coupling is heteronuclear the last term becomes

nonsecular so

YoY
_ 1's
ﬂb = - 3 321232. (1-23)
1S

If many spins are present the dipolar Hamiltonian is simply a sum of

terms, as in (I-22) or (I-23), over all pairs of spins.

D. Rotations
We have described the Hamiltonians above in a single axis sys-
tem, with HO along the z axis. To relate the laboratory frame and the

principle axis frames and parameters of each coupling, then we must also



describe the orientation dependence of each coupling tensor. Fortunately
this dependence may be described for a general tensor, then applied to

each case as needed.

1. Cartesian Basis

The tensors above have been described in Cartesian form. These
may be transformed from one frame of reference to another through appli-
cation of an Euler transformation matrix. The orientation of the new
frame with respect to a previous one is defined by a set of Euler angles
Q= a,B8,Y (using the convention of Rose4). Such a transformation is
described by a rotation of o about the z axis to give x',y',z?', directions
followed by a rotation of B about the y' axis to give x'", y", 2" direc-
tions, then finally a rotation of Yy about z'" to give the final frame
z" , y", 2" (Figure 1). Mathematically this may be described by a

transformation matrix R applied to the coupling tensor to give the coupling

in the new frame,

R +
A "R AR (I-24)
where
cosd cosfB cosy sin® cosB cosy -sinB cosy
-sina siny +cosa siny
R = | —cosa cosB siny -sina cosf siny sinf siny (I-25)
-sina cosy +cosa cosy
cosa sinf sino sinf cosfB

This form is also useful for describing motion about one axis. The av-
erage tensor may be calculated by averaging, with an appropriate weight-

ing function, over one of the transformation coordinates. The process
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may be repeated to transform to yet another frame, however for two
transformations the spherical tensor form below is often more convenient.
The most common transformation is from a principle axis frame to the lab

frame, explicit examples of which are given in (3) below.

2. Spherical Basis

The orientation dependence of the Hamiltonian may also be de-

scribed through use of spherical tensors. Spherical tensors are formed
. 2 (2)

for the coupling tensor, AU’ and for the vector components, Tm (see
Appendix A for details). These spherical tensors are linear combinations
of the Cartesian components which transform as representations of the
rotation group. The coordinate transformation { is generated by summa-
tion of A tensor elements with elements of the Wigner rotation matrix

D(R2)
ARG Z p &)y A%, (1-26)
m Hm M
u
The full Hamiltonian is then written as a contraction of the A and T

tensors

2
i = Z Z (-1)® \L Dsi) () Asz) M (1-27)
2=0 m=-% u

A second transformation Q' is generated simply by repeating the procedure

of (I-26)
R'(L) () o\ R(D) R) ore (2) jor (2 i
A p ) @)ak -5 S ot @ p{2@alt. (1-28)
m' m' u
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Again the effect of motion may be introduced as an average over one of

the transformation coordinates.

3. Orientation Dependent Tensors

We noﬁ apply these transformation operations to the tensor
couplings described in C above. In each case we transfer the coupling
Hamiltonian from its principle axis system to the lab frame defined by the
magnetic field direction. The transformations will be given by sets of
Euler angles (o, B, Y) subscripted to signify that in general this trans-
formation is different for each coupling. The chemical shielding may

thus be written as either

2 2 2 2 2
K’ = (cos"a__sin"B_ oy +sin"a sin"B 0, +cos” B 0, )y HyT, (I-29)

or in terms of spherical components

_[1 2 N g in2 R _
ﬂ;s-{;30150+ 3A0P2(cos%ﬁg+231n BCSCOSZQCi}YIHOIZ. (1-30)

The quadrupole coupling may be written in an exactly analogous fashion,

remembering that the tensor is traceless

1 2 2
e = —— i — I_
JCQ 4 wQ {PZ(COSBQ) +nQ51n BQCOSZOL(; <BIZ I(I+l)> (I-31)
3e299 Vxx_sz
where “o T R2tercn) %97 Vi Mg T v

The dipolar coupling is also traceless and must be axially symmetric

(n = 0) and may then be written as
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YYgh 1 '
JCD = + _r—3 P, cosB, <IZSZ— 615 Z(I+s_ +1.5) (1-32)

where SIS = 1 for homonuclear couplings and SIS = 0 for heteronuclear

couplings.
The angular dependence described in this section is also useful

to describe the behavior of the spectrum of a single crystal as it is

rotated in a magnetic field.
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IT1. EFFECTS OF MOTION

A, Introduction

In the 1ast chapter we have seen that many of the couplings
which determine the NMR spectrum of a solid are anisotropic. Motion of
the spins may then cause averaging of various parts of the Hamiltonian,
inducing a change in the observed spectrum. Averaging of dipole-dipole
couplings, observed as a narrowing of the resonance line, has been used
extensively since the early days of NMR to detect motion in a wide variety

>” most containing either protons or fluorine. Several reviews

7,8,9

of solids,
have been written describing such work. Since many coupled spins are
present, the resonance line consists of one broad line with little, if any,
structure. Characterization of the motion is achieved through calculation
of the linewidth or second moment to be compared with experiment. Although
useful information may be obtained in this way, the characterization of the

motion is not unique, and requires a knowledge of the crystal structure for

calculation of the second moment and linewidth. In addition, while sensi-

rt

ive to the presence of motion, this approach cannot provide any information
about the microscopic dynamics of the motion. Linewidth studies are often
supplemented with studies of relaxation times Tl’ Tlp’ and TlD' These relax-
ation times are more sensitive to the dynamics of the motion than to the geo-
metry and hence are very useful for measurements of correlation times and

activation energies. However, again determination of the nature of the

motion is achieved through model calculations where often more than one model
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is consistent with experimental data. In this chapter we present examples
of a new high resolution approach to the study of molecular motion in
solids, which gives more information than was previously obtainable with
any technique. By studying the details of the chemical shielding lineshape
as a function of'temperature we obtain information about both the symmetry

and dynamics of the motion. Several examples are presented in later sections.

B. Decoupling: Approach to High Resolution

To use the chemical shielding tensor for studies of dynamics we
must be able to remove any other couplings which could degrade resolution.
By observing only spin 1/2 nuclei we assure that quadrupole couplings
do not interfere. Dipolar couplings are removed through use of dilute
spin NMR as pioneered by Pines, Gibby and Waugh.13 We will observe a
spin species which occurs at very low concentrations in the sample. In
this case the average distance between observed spins is large whence
from Eq. I-22 we see that the homonuclear dipolar coupling becomes very

small. The spins to be observed may be naturally dilute (as l.lZl3C in

12C) or may be intentionally diluted in another isotope (1% lH in 2H).
While dilution eliminates homonuclear couplings, heteronuclear dipolar
coupling to an abundant spin species (1H or 2H) may still be present.
By strongly irradiating these spins near their Larmor frequency the
broadening from the heteronuclear couplings may be removed. Such '"di-

11,12,13

polar coupling" is well known for spin 1/2 nuclei. The accepted

criterion for achieving decoupling is that the strength of the rf field,
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in frequency units YHl, be greater than the width of the abundant spin
line or undecoupled dilute spin line, whichever is larger. If the
abundant spins have I=1, their resonance line may be severely broadened
by quadrupole cqupling to a width WwQ, apparently requiring that

YHl >> wQ. Since wQ is generally quite large (~ 100 kHz for 2H) this is
very difficult to achieve experimentally. However Meiboom and co-
workers14 realized that in such a quadrupolar system rapid double quantum
transitions between the m = #1 levels could also provide decoupling since
the m = 0 level does not affect the observed spins. Although their work
was in a liquid crystal system, the technique has been extended to gen-

15,16

eral solids by Pines, Vega and Mehring. To compare the criteria for

decoupling through single and double quantum transitions we will apply

3,15,16

coherent averaging theory to each, treating the dipolar part of

the Hamiltonian as a perturbation.

1. Single Quantum

For coupled spin 1/2 nuclei, the rotating frame Hamiltonian is

(S spins observed, I spins decoupled, Ip = E: ij;P = X,V,Z).

H=- Al =-wI +K (11-1)
z X

where ﬂis is the appropriately tuncated dipolar Hamiltonian

—
K = - -
s =/ bjSZIjz compare (I~ 32) (I1-2)

A

and couplings among I spins have been ignored.
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To calculate the effect of the first two terms of (II-1) on the third, which
is responsible for broadening the S spin resonance, we first tilt the
Hamiltonian to be along the effective field direction defined by the
combination of Ix and Iz terms. This is done with a tilt operator along

the y direction.
T =e J (11-3)

where 6 is the angle between the z axis and the direction of the effec-

tive field
B = tan 11 w, = V/wi+-AuF. (11-4)
In this frame the Hamiltonian becomes

= -weIz + Ez:bjSZ(COSG Ijz+ sinf Ijx). (I1I-5)
]

The first term then induces a cyclic and periodic time dependence in the

second.
-iwéIzt +iweIzt
Is (t) = e Is © (1I-6)
= E: b.S I, cose+-<7.b.S sinB(cosw t I, +sinw t I, ).
j 'z jz [l 73z e Tjx e jy
j J
To calculate the effect of this over one cycle of time tC = %ﬂ- we use
e

the average Hamiltonians defined by Waughl6 (keeping only enough terms to

guarantee one nonzero term):



17

=)
|
rt
;“\
o
o)
B
Y
Z
a
rt

t t -
FD = iy [ e [ ac Ry, Fien (11-7)
7 = ( ic) t 1 270 1
t t
7(2) _ (gr )7L ¢ dt ’ de ? de ([7(t,), (96e,), H(e )]
= ( tC) 0 3 0 2 0 1 3 s 270 1

+ 13,3 (e,) ], H(e)) ]) :

For the case at hand f}vC(t) = J(:;s(t) giving

H = >__bj cosb Sszz (11-8)
J
b2
71 _ N i 2 1 _
N /. ™ sinf Sz(cos@IjX > sinf Ijz) (I11-9)
h|
3
—(2) b, 3
¥ = Z—l ST (P,(cosB)I, - sinB cosHB I, ). (I1I-10)
wZ z 2 jx jz
j e

The S spin free induction decay is given by

-ilC t +if( t
G(t) =Tr (S e 5 5 e Y. (II-11)

Therefore only terms which do not commute with Sx must be considered.

Since [Si, S 1= 0 the 37(1) term will have no effect on the S spin resonancs.
Decoupling is achieved as the remaining terms, ¥ and 3?(2), become small.

For the leading term this means cos ~ 0, and for a fixed value of Aw

that wy >>Aw. If the I spins are irradiated on resonance (Aw=0,8 =9C )

3—5(2) is the leading nonzero term. This becomes small for Wy = Wy >>D, wher: J

characterizes the average dipolar coupling and may be written as the square
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root of the second moment of the operator part of (II—lO),l5
1/2
Tr[S2 I b1, ,S_1°
3 1 z 5 i ix’Tx
D == 5 . (I1-12)
Tr S
X

Thus, the rough criterion that rf strength be greater than the width of
the line to induce decoupling is valid. However we will now show that

for double quantum decoupling a less stringent condition must be met.

2, Double Quantum

To describe decoupling in a spin system of quadrupole coupled
nuclei we will use the fictitious spin 1/2 operators of Vega and Pines.18’19
These operators are very useful for description of spin 1 systems and
further use of them will be made in Chapter III to describe coherent ef-

fects, and many more details are presented there. Nine fictitious spin

operators Ipl are defined in terms of the spin angular momentum operators

I as:
P
_ 1
172 %
I -1 (I I +1I.1) (I1-13)
p2 2 qr rq
I 4 =—% a? - Ii) P,q,r = X,y,z or cyclic
p ! permutation.

with commutation relations:
(I1-14)
j,k,& = 1,2,3 or cyelic
permutation.

[1 ., I =1l
Pj pk]
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Each set of three operators with given p form a spin - 1/2 subspace
which, under certain conditions, may evolve independently of the other
have matrix elements only between the *1

subspaces. I and Iz

I
z1’ “z2 3

levels and will be used to describe double quantum effects. The I spin

Hamiltonian is, in the rotating frame,

_ 1 2
K= = M, = oI+ B =I(TH))+TC o (II-15)

This may be rewritten in terms of the fictitious spin operators as:

2
+=w. (I 1 )+J€IS (1I-16)

Ho= = 200] 4= 2001 0 #3504 (Tys=Tg

and again ignoring couplings among I spins

g = Zij S,Liz1" (I1-17)
h

We now tilt to a new frame in a fashion analogous to (II-3) with the tilt

operator
i¢l
_ x2
TX2 = e (I1-18)
where
1 2w
¢ = tan = —— . (11-19)
w
Q
When wy << wQ, ¢ ~ 0 and the tilted Hamiltonian may be written:
2
“1 2
= - - = - H_ . I1-2
2AUUIzl w I23 * 3 wQ(IXB Iy3) + IS ( 0
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Since Ix3 - Iy3 commutes with all other terms of the Hamiltonian, it

may be ignored. Then the effective part of the Hamiltonian is

=N

IZ3 + JCIS. (I11-21)

EIE

O

H = - 20w Izl -

At this point the Hamiltonian is exactly analogous to the single quantum
Hamiltonian of (II-1), now with all operators in the z, or double quan-
tum fictitious space. We then proceed in exactly the same manner as
above. First we tilt so that the z,l axis is along the effective field
direction defined by the combination of terms Izl and Iz3’ which is ac-

complished by a tilt with Iz

2
i0IL (II~-22)
T = e z2
22
with
2
- Wy
6 = tan TR (11-23)
Q
In analogy to (II-5) this gives
& = - weIzl+-§:bjSz(coseljzl+ sinteZB) (II-24)
J
where
2, 2
@y
w = 2Mw) +\ — (II-25)
e wQ
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Following (II-6) and (II-7) above we obtain for the average Hamiltonians

T o= _
Z b, 2cos8 S T, ) (1I-26)
j
. 2
b,
(1) y i 2 1 .
H = - = -
) we 4sinb S (cosGI 23 2 Slneljzl) (II-27)
]
3
=(2) b
¥ = 5— —%—851n9 S (P (cos@)I -8inf cosBI, .). (11-28)
o w z3 jzl
j e
Again i(l) is ineffective so we want to make X a i‘z) small. Then
cosh ~ 0 requires that for fixed Aw we have wi >> 2Awa If the spins

o . =(2
are irradiated on resonance (Aw=0,8=90 ) then the leading term is K( ).
As for single quantum we then require that wg >> D, in this case giving

wi
= _>> D or w. >> v/ w.D (11-29)
wQ 1 Q

where D is defined in direct analogy to (II-12). In many cases this

criterion is much less severe than the wy >>w. = Aw which would apply

Q
for single quantum decoupling. In deuterium-proton systems where
VQ = 100 kHz and D = 5 kHz are reasonable couplings, the requirement

Vl >>22kHz can easily be met where Vl>>lOO kHz- cannot. However

for double quantum decoupling, the adjustment of decoupling frequency is
much more critical since it enters as a product with wQ, which may be
very large. In the above analysis we have left out the effect of cou-

plings among the I spins. For deuterium, and most other quadrupolar

nuclei, the homonuclear dipolar couplings are much smaller than the
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quadrupole couplings and hence may be ignored without serious effect.

For decoupling spin 1/2 nuclei with large gyromagnetic ratios (lH,lgF,BlP)
the homonuclear couplings may be larger than the heteronuclear couplings.
In this case, of course, the I-I couplings must not be ignored. If the
spins to be decoupled occur as strongly coupled groups of n spins, weakly
coupled to other spins, their behavior may be similar to a single spin

n/2 nucleus, and multiple quantum effects may again become important.

Such effects will be discussed further in Chapter IV. As n becomes large
the requirement for achieving decoupling is once again that the decoupling
field in frequency units be larger than the width of both the I and S spin
resonances. In the work presented here double quantum effects are very
important in decoupling 2H from lH, but probably less important in decou-
pling lH from 13C. From these arguments we may conclude that decoupling

is feasible both for spin 1/2 and spin 1 nuclei to give high resolution

chemical shielding powder patterns.

C. Sensitivity Considerations

While dilution is necessary to reduce homonuclear dipolar cou-
plings, it also substantially reduces sensitivity. This loss may be at
least partially offset through use of signal averaging and cross polar-
ization enhancement techniques. All experiments described here have been
done using pulse-Fourier Transform methods.20 Through use of high speed
computers, many transient responses may be digitized and averaged to im-
prove signal-to-noise ratio before Fourier Transformation to give the
spectrum. A description of the spectrometer and experimental setup is

presented in Chapter V. While in theory, some of the experiments
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(those in Chap. II) described here could be done with conventional CW
methods, the high decoupling power usually required makes this approach
practically unfeasible. In addition, the techniques of Chapter III and
Chapter 1V degepd on nonlinear responses of the system, and require
coherence transfer methods for detection requiring that they be dome with
the pulsed approach. For experiments where 13C was observed ~ Proton
Enhanced Nuclear Induction Spectroscopy13 (PENIS) was used. This tech-

21,13 hence we will present

nique has been described in detail elsewhere,
only the aspects important to the present experiments. Polarization is
transferred from the abundant spins (lH) to the dilute spins (13C) by
matching Zeeman energy of the two spin systems in the rotating frame.2
Fluctuations in the dipolar couplings of the abundant spins from the
flip-flop part of the dipolar Hamiltonian (second part of (I-32)) cause
exchange of energy between the two spin systems. If the abundant spin
species was prepared at very low temperature in the rotating frame, as
by spin locking, then the dilute spin system will be cooled, yielding a
large polarization. Thermodynamic considerations show that for 13C we
expect the maximum poliarization attainable in this manner to be four
times the polarization attained by equilibration in the static magnetic
field.13 When contact is made between the two spin system, it takes
some time to reach equilibrium. In many cases the approach to equilib-
rium may be approximated by an exponential growth of carbon magnetiza-

tion, with a time constant T Transient oscillations have been noted

ISs°

23,24 (and in fact exploitedzs), but are not

during cross polarization,
important for the present analysis. 1In addition to transfer of magneti-

zation to carbon, the proton system is heated through spin lattice
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If T is the same order as T or

rocesses with a time constant T
P 1p Is

1p°
shorter then the carbon magnetization will never reach its equilibrium
value. The magnetization as a function of cross polarization time can
be calculated,2 and is shown in Figure 2. It is clear that for given

values of TIS and Tlp there exists an optimum cross polarization time

for maximizing signal to noise. In many rigid solids Tlp is very long
and any cross polarization time longer than TIS will give good results.

However, when motion of the spins is present, as for cases of interest

here, T may be very short and the cross polarization time must be ad-

1p
justed accordingly. Optimum parameters are described in Appendix B.
When Tlp becomes very short the maximum polarization obtainable for 13C

becomes smaller, eventually dropping below the equilibrium Zeeman value.
Even at this point, however, there may be an advantage of cross polariza-
tion over free induction decay experiments. This advantage stems from the
fact that the spin lattice relaxation time, Tl’ for carbon is generally
much longer than for protons. In a free induction decay experiment one

3C) before repeating the experiment,

must wait a time of the order Tl(l
while for cross polarization the optimum waiting period is 1.26 Tl(lH)

(see Appendix C). The pulse sequences used for both cross polarization
and free induction decay experiments are shown in Figure 3. Through use
of signal averaging, and where applicable cross polarization, very good
signal to noise may be obtained for even very broad powder spectra. As

we will see, good signal to noise is necessary for the lineshape analysis

to be performed.
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While it is often useful to study samples which are single
crystals, making possible systematic variation of the relative orienta-
tions of molecular and laboratory axis systems, it is often desirable
and sometimes necessary to work on powdered samples. A powder sample
will be taken to mean a collection of crystallites of some material pre-
pared such that there is a uniform distribution of crystal axis orienta-
tions relative to the laboratory axes. Unlike a glass, which is disordered
on a molecular scale, the samples are locally crystalline, with well de-
fined crystal structure. The lineshape for a tensor coupling in a
powder sample (we will consider chemical shielding) was derived by
Bloembergen and Rowland.26 For rigid solids the basic lineshape for
these couplings depends on the symmetry at the nucleus. If the symmetry
is sufficiently high, tetrahedral or octahedral, then a tensor descrip-
tion is really not necessary. The position of the resonance line will
have no angular dependence, and may be characterized simply by an iso-
tropic chemical shift Oi° The line shape for a powder of such molecules
will consists of a single sharp line at Oio An excellent example of this
is the 13C spectrum of a sample of powdered diamonds obtained by Van der
Hart.27 The carbons are located on sites of tetrahedral symmetry and the
spectrum is a single sharp line. If the site of the spin has Cilsymme—
try, where n =3, then the chemical shift must be equal everywhere in the
plane perpendicular to the Cn axis. This is termed axially symmetric with

angular dependence (from (I-29)):
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o] = sinzB qL+ cosZB OI (II1-30)

ZZ

where 0, and ¢

i are respectively the chemical shifts perpendicular to

I
and along the C_ axis, and B is the angle between the Cn axis and the
applied field, or laboratory z axis. To describe the lineshape for a
powder of such molecules, single spin spectra must be added for all

possible orientations, with appropriate weights. More formally, for an

orientation ) with spectrum I(w,R) a powder gives

I(w) = J I(w,R) dQ . (I1-31)
§
For an axial shielding tensor this gives

/2

I(w) ~ (Oi— w)_l for o, N O”
(I1-32)
~ (w-Oi) 1/2 for O” w > g -

An example of this type of lineshape is given in Figure 4a, showing the
characteristic sharp spike on one side of the spectrum. For a spin in
a site with lower symmetry than discussed above, the full angular depen-

dence from (I-29) must be used. The resulting lineshape26 is

-1/2

C.,,~0 m/2 (G ,~0..) (O, —w)

1(w)~«/ 33 11 f 1- 2% 11033 © 402 dy (0,, <w<0y;)
w=97 (03370,,) (W=-0))

0 (1I-33)
m/2 -1/2
[ 93379110 (9337055) (=0, )(9457055)

L) (0 ,-w) (0,,-0 )J l-(o ~w) (@, -0, )Y dy (Gll< ws 022)'

33 227911 33 227911

0
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These are complete elliptical integrals of the first kind, which are
tabulated in Abramowitz and Steegun.28 An example of this type of line-
shape is given in Figure 4b, showing the characteristic sharp spike in
central part of the line. It is worth noting that if 0,17 0y, OT 05p= T34
accidentally for a site of low symmetry, an axial tensor as described above
will be obtained. 1In real spectra the lineshapes described above are
broadened by residual dipolar couplings, relaxation etc., so that the dis-
continuities (spikes) are made finite. Even with broadening, however, the
relatively sharp edges at Oland oy or Gll’ 622 and 033 make possible

quite accurate determinations of the principle valves of the shielding
tensor directly from the powder spectrum. If several chemically differ-
ent sites are present, the resulting lineshape is simply a sum of the
powder patterns described above. In some cases it is possible to deter-

mine principle valves of four or five partially overlapping tensors from

a single powder spectrum.

2. Rapid Motion

When rapid (the definition of this will be made precise shortly)
molecular motions occur, the shielding tensors are averaged to give new
tensors, for which site symmetry is replaced by the symmetry of the mo-
tion. The extreme limit of this is a liquid where both rotational and
translational motions are rapid and isotropic, and only the trace of the
shielding tensor may be observed. 1In plastic crystals molecules also
undergo isotropic reorientation, though translational motion is quite
restricted. The tumbling motion alone is enough to average the tensor

so that only the trace may be observed. An illustrative spectrum for a
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molecule in a plastic phase is shown in Figure 5. Many other molecules
undergo a more restricted motion in the solid state, Particularly com-
mon are molecules which reorient about one axis. If a free rotation
occurs about this axis the resulting shielding tensor will be axially
symmetric, with the unique direction along the rotation axis. The re-
sulting tensor may be calculated from (I-24), by taking the new z axis
along the rotation axis and averaging over the third Euler angle, Y.

We thus obtain

R _R _1, 2 2 2 1, .2 2 2 1.2

Oll-Ozz-z(cos ocos B+sin a)01i+2(sin acos B+cos a)02i+231n 8033
(II-34)

R . 2 .2, 2

033-cos asin™fB oll+51n a51n8022+-cos 8033

showing the expected axial symmetry (Figure 6). If two rotational motions
are present, both rapid but one much more than the other, the spectrum
may be obtained by sequential application of this single axis calculation,
first taking the static tensor to the fastest motion axis system, then
transforming to the second motion frame, giving the observed tensor.

Such an approach has been used to interpret phosphorous shielding tensors

in phospholipid bilayers.31

E. Slow Motions
While study of shielding tensors in the static and rapid motion
limits can provide information about the motion occurring, it has recently

32,33,34 33,35 that much more

been shown theoretically and experimentally
information may be obtained through detailed studies of the powder line-

shape in the slow motion regime. Often it is possible (when phase
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transitions dc not interfere) to vary the motion from static to rapid
continuously, by variation of sample temperature.

To relate physically interesting parametersto the experimental
lineshapes, models for the motion must be developed. 1In the present
work two models are considered and the lineshapes generated with their
assumptions are used to extract meaningful information through comparison

with experiment.

1. Random Rotations

We first consider two models which are very similar, rotational
Brownian motion and rotational random jumps. Rotational Brownian motion
may be described as a random walk through angle, characterized average
angle and frequency of jumps. Two cases are of interest, rotational dif-
fusion (Brownian motion) about a fixed axis and general isotropic rota-
tional diffusion. The choice between these for a particular system de-
pends on geometrical constraints from crystal structure and may be deter-
mined from the lineshape in the rapid motion (high temperature) limit.
Whether rotations occur about a fixed axis or a random axis, we may
specify the average time TR between jumps. This rotational diffusion is
in principle identical to translational Brownian motion, both are station-
ary Markov processes. This motion contributes to the evolution of the
density matrix (from which the lineshape may be calculated) in a simple

32
way:
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08 - i3, @1+ T 0@
Q

where (1II-35)

r = ve
Q TR 0

is the contribution from rotational diffusion and () describes the orienta-
tion of the molecular axis system. In the high temperature approximation,
ignoring saturation, and assuming steady state, (II-35) may be Fourier

Transformed to give (AB = [A,B})

[w+H +H (Q+1T 1p{@)=-cI (II-36)
0 cs = -
Q
where w is the observation frequency, ﬂb is the Zeeman Hamiltonian (I-10)

and M;s is the orientation dependent chemical shift (I-30). The solu-
tion of this equation for p, as a function of w may be used to calculate

the spectrum

I (w) =Tr (s, p (D). (11-37)

f
A model of this type, in which all orientations of a molecule are equally
probable seems most reasonable in a material lacking local structure,
such as a glass, or on a surface.

The rotational random jumps model is in principle very similar
to rotational diffusion, but jumps occur through random angles, with all
angles equally probable, as an activated process, with a rate constant
X. This model yields lineshapes very much like those for rotational dif-
fusion32a and will not be discussed further. This model is sometimes

referred to as "hard collision" and is similar to the model used for
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some of our calculations, Section II-F.

2. Symmetry Related Jumps

In a crystalline material we expect only a few allowed molec-
ular orientatidns. Motions which occur might then be restricted to
jumps which correspond to symmetry operations for the molecule. We may
specify the basic molecular orientation by a set of angles Q. For such
an orientation a spin may experience different chemical shifts in each
of n symmetry related positions with the same Q. We then distinguish
among the symmetry related orientations by a further set of angles,

Qi @ =1,2,...,n). The spin essentially occupies different sites in the
molecule and henceforth we use the term sites to refer to the various
symmetry related orientations. The exchange due to jumping is then spec-
ified by the rate constants wij for a spin jumping from site i to site j.
The contribution of this motion to the evolution of the density matrix

may be calculated with operator Ai’ defined by

Moy @D =) W [0@R) - p@,D (11-38)
J
in a fashion similar to rotational diffusion 32
3p(Q2,,0) _ _

In fact both rotational diffusion and jumping may simultaneously occur

and the effects may be added to give

e a a ) -
a @0 =L (6p@pDI+ L p@,) + 4y p@,D. (1160
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In some cases inclusion of both terms is necessary, however for cases of
interest here each model will be considered separately.

Now we wish to find the steady state solution to this set of
coupled equations (II-39). 1In the high temperature approximation ignor-
ing saturation effects, we set (II-40) equal to zero, then Fourier

transform to give the frequency domain equation: (XB = [A,B])

[w+ ﬂb-&ﬂ;s (Qi,Q)-+ iAi] p(Qi,Q) =-CI_. (II-41)

We now define the magnetization for site i as

g, = Tr (I 0(2,,8))= Tr(I, p,) (11-42)

where for convenience we have dropped the parametric parameter { and
subscripted g and p to indicate site. We may then derive from (II-41)

by taking a trace with I+, and using (II-38):

L(uw,) g, + Z (8, -8 W, =1C; (11-43)
J

where wy is the frequency at the ith site and C;is a constant propor-
tional to the population of the ith site. Since the exchange of magne-
tization among the different sites is achieved by molecular rotation,
the wij must transform according to the local sywmetry at the molecular
level, specified by a point group G. Then each wij may be associated
with a specific group element Ra which takes site i into site j. All wij
which belong to symmetry operations in the same class must take on the
same value, so we may replace the sum over sites in (IIf&B) by a sum over

classes C of G:
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Vg \ : - AN ! EERY - N
7 . = \ - -
W.. (g.— g.) > WC ) \Ra 1) g;- (I1-44)

To use the symmetry to the fullest extent we now expand &5 in a complete

set of basis functions of G:

o =8 i
&8 T /_ % B
AU A

=N -
=) (I1-45)

Eix

where A labels the irreducible representation and p indexes the row in a

multidimensional representation of G. Group theory tells us that
Xé 46
Z RU. g)\u = nC o g}\u > (II" )
aec

>

. . A
where n_ is the number of elements in class c, and ¥ and Vv, are the

character and dimension of the A representation. Combining (II-44, 45,

46) we find
W.. (g.-g. =-sz 1 =_Z‘ -
:E: ij gJ gl) by aAu gAu WA Y (11-47)
ij A u A
where we have defined the rate for the A representation:
A
X
= - £ -
Wy = 2: nWo {1 5 ) (1T-48)

If we define ai = i(w—wi) then we may write (II-43) (using (II-47)) as:

- > W,oggy = 1Cs. (1I-49)
A

8y il i

i1
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Our goal is to calculate the observable NMR spectrum, which is propor-
tional to 8a1" Solving (II-49) for 8a1 is complicated by the fact that
the g; are not in general diagonal in terms of the irreducible represen-
tations of G, requiring that we know which of the equations for magneti-
zations are coupled together. aigi has a symmetry lower than G; in fact
its important symmetry elements are the operations of G which leave the
frequency of the ith site unchanged. These operations form a subgroup

S of G. When we expand 8y in terms of irreducible representations A of
G we need only consider those A which when taken as irreducible repre-
sentations of S contain the totally symmetric S representation, since
these alone have the correct symmetry to contribute to N Then in
(I1I-45), (IT-47) and (II-49) we need only include these "rel-

evant" representations in the sums. Often the restriction to relevant
representations simplifies considerably the calculation. If S contains
just the identity then no simplification occurs. I1f, on the other hand,
S =G, then the spectrum is totally invariant to the motion, and no param-

eters are needed (note WA

In the case that there is only one relevant representation,

1~ 0 always from (II-48)).

beyond A (I1-49) may be solved in a simple way. The expansion (II-45)

l!

may be written

We may then solve for 81x and insert
a8y = Wy(gy =844 =1 Gy (T1-51)
or
ic, - W, g
I A IAL (I1-52)

g8; < —
i ai WA
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:ay be summed to give the total magnetization:

i
ic, - W,g
_ _ _ i~ "A°%m1
glw) = Zgi—ngAl = Z e W’ (I1-53)
; . i A
i i
which may be rearranged to give
C
PP
i ai+wk
glw) = —; . (II-54)
-2y 1
n “14'wx

The absorption lineshape 1s just the real part of the complex magnetiza-

tion g(w) for the particular orientation Q, and symmetry has con-

% Bpye
siderably reduced the work that most be done. Even in the more complex
cases where several representations must be considered, group theory has
provided a simple way to count and classify the exchange rates which must
be considered. This solution is compared with a direct matrix solution
in Appendix C.

In the calculations above, the lineshapes were for a particular
orientation . However the experiments to be compared were performed
on powder samples. Thus we must include one further step, the integra-

tion of single orientation lineshapes over all possible orientations with

appropriate weighting factors:

I (w) = JIQ (w) dR (LI-55)
Q

to give the final powder lineshape.
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We will see that lineshapes resulting from rotational diffusion
are very different from the jumping model in the slow motion regime, thus

allowing us to experimentally distinguish between the two models.

F. Computatioﬁal Approach

Alexander, Baram and Luz33 have calculated lineshapes for sev-
eral cases of interests using (II-40), by expanding p(Qi,ﬁb in a complete
set of angular functions. While they achieved considerable simplifica-
tion when only one time parameter was necessary, their methods have no
particular advantages in other cases. The approach we have used for cal-
culation of model lineshapes is based on well known theories of chemical
exchange, applied in a straightforward numerical approach. In the jumping
model the orientations of the molecule are related by symmetry so the
probability of the spin occupying any of the allowed sites must be equal.
In matrix form the Bloch equations including chemical exchange (II-43)

may be written:

{5

g =~ dwM 1 (II-56)

where 8) is the complex magnetization for the kg‘-kl site, A is the coupling

matrix described further below, w, is the r.f. field strength and MO the

1

equilibrium magnetization. The diagonal elements of A contain the infor-

mation about the different sites:

1

1
=i (w=-w) +-= + (IT-57)
Akk k T2k Tk
where w, 1is the chemically shifted frequency of the kEll site (calculated

k
from (I-30) or (I-28) for a particular molecular orientation), T2k is the
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spin-spin relaxation time of the kg— site and (Tk)_l =7 T?i. The time
i 3
. . . .th th .
Tjk is the inverse rate of jumps from the j— to the k= site. The off

diagonal elements of A are the couplings among magnetizations from the

o~
=~

motion,

-1

Ajk = - Tjk . (11-58)

The lineshape for the exchanging molecule is then given by g(w) which is
proportional to the imaginary part of the total magnetization, g(w)= ng.
k

Formally we may solve (II-56) for g:

g = - iw M a1 (1I-59)

then

g(w) =Im E: gJ u<§i - iw M A—i>
J
= - wM, Re <Z AJT%() .

ik

(1I1-60)

It is then the work of the computer to invert the matrix é for each w
and given input jump parameters Tjk’ and average over all possible orien-
tations, to give the final powder lineshape. If only one time constant
is necessary to completely describe the motion, that is Tjk==T2m for all

j,» k, £ and m, it is possible to analytically invert A and sum the

elements, (Appendix C). The result is

_ nTy
glw) = Re<nT-—Y> (II-61)

where = ~_l/A.. and T =nT,
Yz_JJ jk
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and n is the number of sites with distinct chemical shifts which are
being exchanged. This removes the matrix inversion step in the calcula-
tion and reduces the time necessary for calculation.

The rotational diffusion model may not be calculated exactly
with the exchanée matrix formation. However we may approximate it
rather closely by taking a very large number of discrete sites, spaced
with appropriate symmetry for the axial or isotropic case. Exchange is
then taken in the hard collision limit, the probability of going from
any site to any other is equal. The calculated spectra thus generated
are virtually identical to those generated by the expansion methods of
Alexander, Baram and Luz.

The programs used for calculation of one time constant (MTHEX)
and multiple time constant (SEXCH) calculations are given in Appendix E.
A program for generating rigid and extreme narrowing powder patterns

(PPGEN) is also given.

G. Hexamethylbenzene (HMB)

The first observation of motion about the sixfold symmetry
axis in hexamethylbenzene was made by Andrew,36 using wide line proton
NMR. He observed a decrease in the linewidth from about 7.5 Gauss at
135K to about 3 Gauss at 210K. The second moment from liquid nitrogen
temperature up to 135K could be explained only if rapid methyl group
rotation were already occurring at liquid nitrogen temperature, so he
attributed the further narrowing to rotation about the sixfold axis.

The crystal structure of HMB at room temperature had been determined§7’38

and showed well defined positions for the carbon atoms, ruling out



rotational diffusion. Thus Andrew concluded that the motion must be a
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"sixfold tunneling on nonuniform rotation of the molecule about the six-
fold axis.'" Further characterization of this motion has been carried out

4
through proton T139 and Tlp g measurements as a function of temperature.

While such measurements cannot provide information about the symmetry of
the motion, they can provide rather accurate determinations of activation
energies. This motion has also been detected through its effect on the

13C lineshape.29 The spectra at room temperature and 123K are shown in

Fig. 7. Since the methyl peak obscures the 044 element of the ring carbon
tensor, only 011 and 0y, may be obtained directly from the spectra, but
044 may be calculated if the isotropic shift is also measured. At 123K
for the ring carbons we obtain values 011 = -~ 98+2 PPM and Opp = = 23%2 PPM
relative to an external liquid benzene reference. For an isotropic ghift
of ~4 PPM, Oq5 = 109+4 PPM, in good agreement with values previously
measured.29 At room temperature we see that the tensor has become axially
symmetric, with g = - 59+1 PPM and we calculate gy = 107+3 PPM. Note that
OI = %(011+022) and ou=033 within experimental error. From (II-34) we
conclude that B =-0°, the rotation occurs about the O34 axis. From early
single crystal work41 033 for aromatic carbons was found to be perpendicular
to the aromatic plane. This was confirmed for HMB in a later single
crystal study.42

From the arguments presented in Section II-E, using the group
C = D6 for the molecule and S = D, for the chemical shift, we find only
two relevant representations Al and Ez. This means that only one time

constant is necessary to describe the effect of motion on the line shape.

While from a theoretical standpoint the specification that E2 is the
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only relevant representation supplied all of the information necessary

to calculate the spectrum, we desire a physical understanding of the time
constant. Figure 8 shows all rotations which the molecule may undergo,
and the rates at which they occur. The chemical shielding tensor has
inversion symmeﬁry so that the chemical shifts for pairs of sites across
the ring (i.e., 1 and 4) must be the same. Thus for a collection of
molecules with the same molecular orientation, the spectrum will consist
of three lines, as in the lower part of Fig. 8. Since the chemical shift
does not change in a jump from orientation A to D, the spectrum will be
invariant to the rate W14’ and it need not be included at all. We also
note that orientations B and F (similarly C and E) are reached by the
same rotation, differing only in sense, hence the rates le and wl6

(similarly W and wlS) must be equal. At this point it seems that two

13

rates, wlz and Wl3 must be used to describe the motion. However we now

note that jumps of the W type transfer magnetization between lines A

12
and B, B and C, and C and A; and jumps of the Wl3 type transfer magneti-
zation between A and C, B and D(A), and C and E(B). Since the two types
of jumps achieve the same exchange of magnetization, they cannot be in-
dependently detected, instead theilr sum le + W13 = T_l determines the
lineshape.
In both rotational diffusion and jumping models, the rapid

motion limit must be an axially symmetric tensor with Ol= %(0114 022) and
7 933

with 0©'s in frequency units, the powder pattern will not be described

. . -1
In the slow motion range of time constants T 'Vlozz-clll,

by a simple shielding tensor. In the rotational diffusion model, the
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sharp features of the powder pattern will broaden, and as the rotational
frequency increases slowly merge to form the axial tensor. This happens
because the spins exchange among a wide range of frequencies, yielding
sharp features iny when the rate of exchange far exceeds the range of
frequencies sampled.

For the jumping model the situation is quite different. As the
molecule jumps a spin is exchanged among sites with only three different
frequencies. For a few particular orientations of the molecule, two of
the three frequencies are very close together. In this case these two
lines will coalesce at low jump frequencies moving intensity into two
particular regions of the powder pattern. Figure 9 (a) and (c¢) show two
orientations which give rise to degenerate line positions, and one gener-
al orientation. Spectra for collections of molecules with orientation
(b) and close to orientation (c¢) are shown in Fig. 10. The rapid averag-
ing for the two lines close together is evident in the right hand spectra,
while on the left hand side the spectra get increasingly broad for low
jump rates. Figure 11 shows the powder averages for rotational diffusion
and jumping models, as a function of jump frequency. Such spectra have
also been calculated by Alexander, Baram and Luz33 using an approximate
expansion method. These compare well with our calculations. The extra-
features or bumps in the jump model are quite obvious and indicative of
this model.

Experimental 13C spectra were obtained for HMB with the spec-
trometer described in Chapter V. A sample of commercial HMB (Eastman

Kodak, used without further purification) was compressed into a pellet of
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weight ~ 200 mg. All spectra were taken using the single contact cross
polarization technique, optimizing mixing time empirically at each tem-
perature, over a range of 0.5 to 5 msec. Recycle delays were also em-
pirically adjusted, and ranged from 2 to 5 sec. Several hundred decays
were averaged ateach temperature before Fourier Transformation to give
the final spectra.

The experimental spectra are presented in Fig. 12, along with
theoretical spectra for the jump model. The extra features in the spectra
at ~ -40 and -80 PPM are quite evident. An expanded spectrum at -135.8"C
is shown in Fig. 13, where these features are particularly pronounced.

The presence of these features and the overall shape of the powder pat-
terns are consistent only with a jumping model, as expected from the
previous NMR and x-~ray experiments. The jump frequency at each temper-
ature may be estimated by comparison with theoretical spectra. A plot of
the logarithm of approximate jump rate against inverse temperature is
presented in Fig. 14. From this, using a linear least squares fit we
obtain an activation energy of ~ 5.5 kcal/mole for the jumping, in rea-
sonable agreement with values obtained from relaxation studies.3o’40
Some caution should be exercised in comparing jump rates from this study
and those determined from relaxation, since the rate w14 is not included
in our measurements, but would be included for relaxation measurements,

however evidence will be presented in the next section that the rates

Wl4 and Wl3 are probably small.
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H. Decamethylferrocene (DMFe)

Although DMFe has not been previously studied by either x-ray
or NMR techniques, its close relative ferrocene has been extensively
studied. For ferrocene the room temperature crystal structure shows well

. L 43 .
defined carbon atom positioms, but NMR shows a strong decrease in pro-

44,45,46 As for HMB this

ton linewidth in the 55-75K temperature range.
implies that motion occurs as jumps about the C5 axis of the molecule.
However since no information is available about DMFe, our conclusions
must be reached solely from the powder lineshape.

13C powder spectra for DMFe at room temperature and -180°C are
shown in Fig. 15. At low temperature we find an asymmetric pattern with
tensor elements Gll = 1.0+1 PPM, 022 = 42.5+1 PPM and, calculated from the

isotropic shift, 033==105.l:t3 PPM.* At room temperature the tensor be-
comes axial, with elements g = 27.3*1 PPM and O" =94.0+1 PPM giving an
isotropic shift of 49.5+2 PPM. In HMB the orientation of the shielding
principle axis system relative to the molecular frame was determined
entirely from symmetry (although assignment of particular tensor elements
to specific directions requires single crystal studies). For DMFe the
plane of ring carbon atoms is no longer a symmetry plane, as for HMB, due
to the iron atom. However, the vertical symmetry plane through the iron
and dividing the ring remains defining one principle axis uniquely, per-
pendicular to this plane, and requiring the other two elements lie in the

plane. If we assume that the motion leading to axialization of the

shielding tensor is rotation about the C5 axis, and assign tensor elements

*
All 13C tensor elements reported in PPM relative to external liquid
benzene.
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to direction in analogy to HMB, Tn9 out of the symmetry plane and 033
closest to along the rotation axis, then we may solve for the angle be-
tween 033 and the rotation axis. This is done by transforming from prin-
ciple axis system to rotation axis system as in (II-34). In this case a=0,
8 = variable, Y = averaged, so that using the observed rigid and aver-
aged tensor values above we obtain

2 cos?8 (1.0) + 3 (42.5) + = sin’8 (105.1) = 27.3.

We find from this B =+19°, the angle between the 033 and rotation axes.
Although the sign of B may not be determined from (II-34), it seems phys-
ically reasonable to have a positive value, the 033 axis shifting to pass
closer to the iron atom. This orientation is represented schematically
in Fig. 16. It is not surprising that a strong covalent bond, such as
that between the metal and ring, should rotate the shielding tensor.

The effect of the metal is also manifested in the dramatic re-
duction in width of the shielding tensor relative to HMB (033—Gll==104
PPM in DMFe but 207 PPM in HMB), although both have six pi electrons.
Previous correlations of isotropic chemical shifts with pi electron den-
sities have been made.47 On this basis it appears that about half of the
pi density resides on the metal. It is expected that a more jionic metal-
locene would have both a downfield isotropic shift and wider shielding
tensor. This has been partially confirmed by measurements of isotropic
shifts, and widths of motionally narrowed shielding tensors in ferrocene,

ruthenocene and magnesocene. The bonding in ferrocene and ruthenocene is

expected to be very similar since they are in the same column of the
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pericdic table. The chemical shifts measured are 5% PPM and 55 PPM for
ferrocene and ruthenocene respectively with anisotropies (OW'ol) 75%2
PPM and 78+2 PPM. On the other hand magnesocene, expected to be much
more ionic has a chemical shift of 20 PPM and anisotropy 132 *4 PPM.48’49
Although part of the difference could be from rotation of the tensor in
analogy to DMFe, it is expected that the electron densities plays a more
important role.,

To analyze the motion of the rings in DMFe, we again follow the
arguments in Section II-E, using the group D5 to describe the molecular
symmetry. Whether the rings take on the expected staggered or eclipsed
confirmation, and whether motion occurs as overall molecular rotation,
or rotation of one ring relative to the other cannot be determined from

these studies and will not affect the arguments presented. Among the repre-

53 Al’ El and E2 are relevant, so two rates are necessary

sentations of D
to completely specify the motion. The allowed jumps for one of the rings
are shown in Fig. 17. For a general orientation of the ring we expect a
five line spectrum. The orientations B and E (and similarly C and D) are

reached from A by the same rotation in different senses, so rates le and

must be equal (similarly W. . and W., must also be equal). In this

¥is 13 14

case there is no further symmetry to consider, and the rates le and W13
are independent, and both must be specified to calculate the powder line-
shape, for the jumping model.

The lineshape for rotation diffusion will be almost identical
to those for HMB (Fig. 11), the only difference occurring in the slight

downfield movement of 043 (105 PPM) to o, (94 PPM), which does not happen

fl
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for HMB. Since the lineshapes are so similar, calculations were not
repeated for DMFe.

To specify the two parameters for the jump model we will use
the ratio of the two types of jumps wlZ/W13’ and the total jump rate

le + W13' It is instructive to first examine two iimiting cases,

Wi/Wi3 =

4m/5 allowed). As for HMB, there are certain molecular orientations,

o (only jumps of 27/5 allowed) and WlZ/W13 = 0 (only jumps of

relative to the fleld, which give rise to degeneracies in site frequen-
cies. Two of these orientation3 are shown in Figs. 18 and 19, together
with spectra for nearby orientations. The spectra for each orientation
are shown for a variety of total jump rates W, for both limiting cases.
From these it i3 clear that lines directly exchanged by the jumps sharpen
quickly and remain sharper than those lines which are only indirectly ex-
changed. Therefore the two types of jumps, 27/5 and 47m/5, give rise to
extra features, or bumps, in different parts of the powder spectrum, the
downfield portions of which are also shown in Figs. 18 and 19.

Although the aone models are instructive, a model which allows
only jumps of 47m/5 seems physically very unreasonable, although jumps of
2m/5 only seems plausible. We will call the 27/5 jump only model a "'soft'
collision model. The other physically reasonable case is a 'hard" col-
lision model for which le/w13 = 1, all types of jumps equally probable.
These models really differ only in time scale for occurrence of collisioms
which exchange enough energy with an "activated" molecule (one with enough
rotational energy to overcome the rotational potential barrier) to prevent
it from continuing to rotate. In the soft collision model the deactivat-
ing collisions are very frequent, while in the hard collision case rota-

tions of 2mn/5 are equally probable, for small interger n (we still assume
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the time during rotation is short relative to time between rotations)
corresponding to "infrequent" deactivation. The complete powder line-
shapes for these two models are shown in Fig. 20. The most striking
difference in these spectra is the weakening of the bump near 35 PP°M, in
the hard collision case. This feature arises from 2m/5 jumps (see Fig.
19) and as they become less probable this feature weakens, to be replacad
by a bump not clearly resolved from the peak at 022 (see Fig. 18), as
4m/5 jumps become more probable.

Experimental 13C spectra for DMFe were obtained with the spec-
trometer described in Chapter V. The sample of DMFe was prepared in
Professor G. Whiteside's laboratory at MIT, and was generously given to us.
The sample was a yellow powder, estimated to be greater than 987 pure.
Above 200 mg of this powder was compressed into a pellet, and was used io
obtain all spectra shown here. Spectra were recorded using single con-
tact cross polarization, optimizing mixing time and recycle delay empir-
ically at each temperature. Several hundred decays were averaged before
Fourier Transformation to give final spectra.

The experimental spectra are shown in Fig. 21, for a variety of
temperatures. The features at approximately 15 and 35 PPM are quite pro-
nounced at low temperatures, as is the shoulder shape at slightly higher
temperatures. These features certainly rule out a rotational diffusion
model. In Fig. 22 we show an expanded plot of one experimental spectrum
with several theoretical plots for varying wlz/wl3 ratios. It is clear
that the experimental spectrum corresponds to a fairly large le/wl3

ratio (we estimate > 10, but the lineshape essentially converges to the
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"soft" model for le/Wl ~ 10 making improvement of the estimate beyond

3
this point impossible). To our knowledge this is the first time it has
been possible to even estimate this type of ratio for reorientation in
the solid statef

As for HMB we may estimate the jump frequency from the line-
shape. A plot of the log of the estimated jump rate versus inverse tem~
perature is shown in Fig. 23. A linear least squares fit to a straight
line gijves an activation energy of 3.2 kcal/mole. This is a bit higher
than the activation energy measured for rotation in ferrocene, 2.3 kcal/
mole,45 which seems quite reasonable.

Although this is the first case for which a soft collision
model has been vgrified, it seems likely that there is nothing magical in
the structure of DMFe, and that similar rotational motion in other solids
(including HMB) also occur in a "soft" collision manner. It would cer-

tainly be interesting to verify this in a nonmethylated ferrocene or

ferrocene analog, for which the symmetry arguments above still apply.

I. Ice

The importance of water in the world around us has prompted
study of all its forms. Although simple in chemical composition, and ex-
tensively studied there is still much controversy about many aspects of
the structure and dynamics of the liquid state, and many aspects of dy-
namics in the solid state. High resolution proton NMR studies in highly
deuterated ice now give us a detailed picture of proton motioms.

NMR has played an important role in the study of ice for many

years. However most previous work has provided only indirect information
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; . 5
about dynamics, through studies of moments of the proton resonance line,

and measurements of relaxation times T T and T .Sl Additional stud-

1’ "1p 1D
52,53 a

ies have been made of the quadrupole couplings in deuterated nd

oxygen—l754 enriched ice, which can give useful information about the
structure of icé, but due to the large spittings involved can only put
upper limits on rates for any motions occurring.

The techniques listed above are all relatively limited in
achievable resolution. The first measurement of the chemical shielding
tensor for protons in ice did not come until it was realized decoupling
of deuterium could be achieved with reasonable r.f. fields (see Section
II-C), allowing application of the dilute spin approachil6 The rigid
molecule tensor was found to be axially symmetric with principle values

g, = 15% 2 PPM and <jL=—l9:t2 PPM (relative to external TMS), Fig. 24.

I
There was a shift of 21 PPM of the trace of the tensor in the solid
relative to the isotropic liquid. This tensor has also been measured
subsequently using multiple pulse techniques, with reasonable agreement.
However, when motion of the spins is present it is not clear that multiple
pulse sequences could provide sufficient narrowing to resolve the fine
structure of interest in the present study.

In ice I the ordinary form of ice at low pressure and reason-

h’
able temperature, the oxygen atoms occupy an hexagonal lattice, each

oxygen having a regular tetrahedron of others surrounding it. The pro-
tons lie between oxygens, normally one between each pair of oxygens. It
is known from measurements of entropy at low temperature56 that there is

no long range ordering of proton positions. An ordered structure for ice,

as described above, does not allow for any motion of spins, except
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vibrational motion from phonons. However, many dynamic phenomena, i.e.
mechanical and dielectric relaxation and electrical conduction,57 have
been observed even in very pure samples of ice. These have been attrib-
uted to defects occurring in the Ih structure. The most widely accepted
form for defects which allow molecular rotation are Bjexrrum faults. There
are two types of these faults, D and L, which correspond to having either
two protons (D type) or no protons (L type) between a given pair of ox-
ygens. These are thought to be formed in a slow step (high activation
energy) then migrate rapidly (low activation energy) through molecular
rotations, as shown in Fig. 25 for a D type fault.

The migration of Bjerrum defects throughout the lattice randomly
reorients individual water molecules among the six equivalent positions
at a given lattice site, Fig. 26. While the proton chemical shielding
tensor is not required by local symmetry to be axially symmetric (as it
would be if only the oxygens were considered), to experimental accuracy
it is symmetric, so the unique direction certainly lies along the O-H
vector. Motion exchanges the tensor symmetry axis between the four cor-
ners of a tetrahedron. For the analysis of Section II-E we take the
"molecular" group G to be Td. Then the relevant representations are Al
and T2, so we need only one jump rate to describe the spectrum. This is
clear physically in that jumps from any orientation to any other differ
only in the direction of the axis of rotation. The alternate model, for
rotational diffusion, will no longer be restricted to rotation about a
fixed axis. Rather it will consist of random rotations about random

axes. In either case, because of the high symmetry, the fast motion

limit will be a single line.
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gh we have lifted the restriction of uniaxiality in the
rotation, the lineshapes are similar in character to those previously
described. In the rotational diffusion model, the sharp features of the
powder pattern broaden and lose shape with increasing jump rate, eventu-
ally merging to a single line. In the jumping model we again predict an
extra bump in the powder pattern, due to an orientation producing degen~
eracies in line positions. However, in previous cases, only two of three
(HMB) or five (DMFe) lines were degenerate, leading to broadening of all
lines for high jump rates. In ice, however, when the field is along one

of the C, axes, all four lines are degenerate, and fall at the isotropic

2
value (half of the tetrahedral angle is the magic angle). In this case
the lines never broaden for any jump rate, resulting in a much sharper
"bump", limited in width only by other broadening mechanisms, Fig. 27.
The lineshapes for a variety of jump rates for jumping and rotational
diffusion models are shown in Fig. 28. As for the other cases discussed,
the structure in the "bump" region is quite distinctive for the jump
model. The lineshapes for a jumping tetrahedron were also calculated by
Speiss,34 for analysis of motion in solid P4.35 Our lineshapes are
quite similar to his, although there are small quantitative differences.

P, has tetrahedral molecular symmetry and was shown to reorient in a

4
jumping manner.

0f the dynamic phenomena observed in ice, dielectric relaxation,
electrical conduction and diffusion, only dielectric relaxation is well

explained by migration of Bjerrum faults. To explain conduction and dif-

fusion other types of defects have been postulated and we must consider
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molecules and Bjerrum defects have also been discussed. Theoretical
estimates show that these alone should be a factor of five too slow to
explain observed diffusion rates. Their effect would be indistinguish-
able from those above.

Experimental proton spectra were taken as a function of temper-
ature with the spectrometer described in Chapter V. The sample was
Bio-Rad Laboratories DZO (specified 99.8 mole 7% pure, HZO’ HOD < 0.25%)
with ~0.57 distilled HZO added. The sample was frozen and sealed under
vacuum in a 6mm pyrex tube. Data were taken as free induction decays
following a 90° pulse with high power deuterium decoupling (Hl= 60G) ,
and a 1 minute recycle delay. Several hundred decays were averaged be-
fore Fourier Transformation to give final spectra.

The experimental spectra for a variety of temperatures are
shown in Fig. 29, along with theoretical spectra for the jump model.
Although the resolution in the experimental spectra is somewhat limited
(probably by residual homonuclear dipolar coupling) the features of the
jumping model are certainly present. We may then conclude that the
rapid motions of protons in heavy ice, exchange the proton shielding
tensor among the corners of a tetrahedron. In light of the previous dis-
cussion this is not surprising.

Again we may estimate jump rates by matching experimental and
theoretical spectra as a function of temperature. A logarithmic plot of
jump rate versus inverse temperature is shown in Fig. 30. A linear
least square fit gives an activation energy of 3.5 kcal/mole. This is
far less than the 13.4 kcal/mole activation energy measured for dielec-

tric relaxation and the 15 kcal/mole measured for diffusion, in very
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their contributions to averaging of the NMR lineshape. Ionic de
have been invoked to explain electrical conduction. Ions are generated

in a high activation energy step by transfer of a proton from one water
molecule to anqther, giving one H3O+ and one OH . These then migrate in
successive low activation energy steps by further proton transfers which
conserve the number of ions present. We note that all proton motions

are jumps along a single 0-0 vector,. Such jumps leave the shielding
tensors of all protons unchanged, and hence do nmot contribute to the
averaging of the NMR lineshape. Shieldiné tensors for the ions them~
selves will be different than for water, but they exist in such low con-
centrations that they may be ignored completely. Both Bjerrum and ionic
defects are the result of proton mispositioning and cannot explain mass
transport or diffusion. Diffuéion coefficient measurements have shown that
oxygen and hydrogen diffuse through crystals of ice at approximately the
same rate. This suggests that defects in the oxygen lattice are inter-
stitial water molecules, and molecular vacancies. Migration of intersti-
tial molecules does not provide a mechanism for reorientational relaxation
(dielectric) in the bulk, since a molecule jumping into an interstitial
space leaves a record of its orientation in the positions of protons

which surrounded it. Another molecule entering this site must take the
same orientation or create a Bjerrum defect. However if diffusing mol-
ecules exchange rapidly between interstitial and lattice sites then in-
dividual molecules may change their orientation and hence contribute to
the averaging of the NMR lineshape, in the same fashion discussed for

Bjerrum defects. Composite defects consisting of "bound" interstitial
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pure ice samples.57 However, since these have been measured for pure
samples, they should represent the energy of formation for the defect
giving rise to particular dynamic effects. Our sample was not carefully
purified (and water is notorious for being difficult to purify), hence
the barrier we measure may be for migration of intrinsic defects in our
sample, rather than for their creation. This barrier is thought to be
Vo5 kcal/mole.58 In addition, the comparison with dielectric relaxation
and diffusion data is complicated since both contribute to the motional
narrowing of chemical shielding. Further studies using this approach
on carefully purified and doped samples may be very useful in separating
activation energies for the creation and migration of various defects in
heavy ice. Similar studies might be useful in other proton containing

solids, for example metal hydrides.

J. Pentamethylbenzene (PMB)

We have seen that a great deal of information about the dynamics
of molecular motion may be obtained by study of the powder lineshape as
a function of temperature. These lineshapes are particularly informative
in the slow motion regime. However there are some cases where motion sets
in at a phase transition, going directly from a rigid solid to the motion-
ally narrowed limit. Pentamethylbenzene provides an example of this type
of behavior. While the information that may then be obtained through
powder lineshape studies is limited, when coupled with other techniques

it may be possible to fully characterize the motion.
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Crystallographic phase transitions in PMB were first cbserved
by calorimetric methods.91 NMR measurements of proton Tl and linewidthsg2
showed that above the transition at 24°C some molecular motion in addition
to methyl rotation occurs. The crystal structure of PMB is not known, so
that accurate second moment calculations could not be done. From geomet-
rical constraints it was presumed that motion was about the axis perpen-
dicular to the molecular plane and hence was similar to that of hexa-
methylbenzene.

The sample used for present studies was commercial PMB
(Aldrich > 98% purity) used as was. Approximately 200 mg was compressed
into a 6 mm diameter pellet, and spectra were taken with the spectrometer
described in Chapter V, using cross polarization techniques. Temperature
was maintained to *0.5°C. |

Figure 30a shows the carbon spectra for PMB above and below the
phase transition at 24°C. The spectra are superpositions of spectra from
tensors for the four types of ring carbon, plus the methyls at the high
field edge. At the lower temperature the width of the spectra are exactly
what one would expect in analogy to those for the closely related com-
pounds, durene and hexamethylbenzene.42 Above the transition the tensors
are partially averaged, to the values found by Waugh %E_%E:’ in their
study of shielding tensors in PMB. It is immediately clear that the mo-
tion is not as simple as in HMB since the tensors are not axially sym-

metric in the high temperature phase. No further narrowing of the powder

pattern occurs up to the melting point at 54°C.
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The remaining asymmetry in the high temperature phase must be
interpreted as a biasing of motion in some way. There are two distinct
models which will fit the NMR data and hence cannot be distinguished by
our experiments alone. The first is a rocking motion by the molecule or
jumping between two orientations not related by symmetry. If we assume
that all time is spent at the endpoints of the rocking or jumping motion
(I-29) may be averaged to calculate the new tensor. The angular depen-—

dence of the Oll and 959 elements for such a planar motion is simple,

2 . 2 .
O——oll cos o + 022 sin"a, and the averaged Oll value for two positions
o= _ 1 2 L2 2
separated by angle 2a is Ull- 5 (Gll cos o + 022 sin o + Ollcos (-a)
, 2 . — . .
+ 022 sin"(-a)). Since Oll’ 022 and Oll are known from the combination

of high and low temperature phases this is easily solved to give ¢ =22,
corresponding to jumps between positions separated by 44° ., If the mol-
ecule is allowed to spend time between the endpoints of its oscillations,
then the potential function must be specified to calculate the shielding
tensor. If one assumes a square well potential for example, then we may

calculate the average tensor element

a o

11

Q

2 . 2
= I ollcos +02251n a doc/j do .

-0 -0
The integrals are easy to evaluate analytically and may be solved to give
a = 39° corresponding to oscillations through an angle of 78°. Potential
functions with central minima would predict oscillations through , larger

angle.
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An alternate model for the motion is jumps between symmetry
related positions, as for HMB but with unequal populations (equivalently
energies) for the different possible orientations. In this case the
model is underdetermined, that is, there are an infinite number of dif-
ferent populatiéns which give rise to the proper averaged tensor. How-
ever, if we assume that lattice sites have C2 symmetry, and that the two
orientations for which the molecular C2 axis is not along the crystal C2
axis have equal populations, then there is only one independent parameter
in the problem. The chemical shift of the three different possible sites
are easily calculated. Since we know Pl + 2P2= 1, c = Pl 014-P2 024-P203

may be solved for any orientation (6; Ol’ 02 and 63 all are known) to

give P, =0.812, P2 = 0.094.

1
In either model the "missing' methyl group is undoubtedly cru-
cial in changing the motion from simple six-fold jumping as was observed
in HMB. While it is not possible to distinguish between the models above
with NMR alone, these studies provide information which 1s complementary
to that which may be obtained by x-ray crystallograpic techniques. When

x-ray studies are done on the high temperature phase, the combined infor-

mation may make complete characterization of the motion possible.

K. Discussion

The studies presented in this Chapter demonstrate that high
resolution NMR techniques applied to ordered phases can provide an ex-
tremely sensitive probe of molecular motions. While they are applicable
to single crystals (see theoretical spectra in Sections G and H), they

are equally applicable to powder samples. This is particularly important
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in extension of studies of noncrystalline samples, i.e., glasses, poly-

mers and molecules adsorbed on surfaces, where single crystals are im-
possible to obtain. The sensitivity of NMR lineshapes to the micro-
scopic dynamics of reorientation processes is unique, and has allowed

us to get a cleérer picture of the correlation function for molecular
rotation. From these studies it is clear that the symmetry of the poten-
tial function imposed upon a molecule by its neighbors controls the
nature of the reorientation process, and from high temperature x-ray data
it is clear that the shape of the potential is maintained even when jumps

occur very often.



III. DOUBLE QUANTUM NMR

A. Introduction

Most of the recent advances in solid state NMR have come
through the development of techniques for obtaining high resolution spec-
tra in complex systems. In the previous chapter we have discussed one
approach to high resolution in some systems and have demonstrated the
type of information made available through such studies. 1In this chapter
we will discuss the application of a new technique, Fourier Transform

18,19 to measurements of chemical shielding in pow-

Double Quantum NMR,
ders of quadrupolar coupled nuclei and to measurement of dipolar cou-
plings in both single crystals and powders in the presence of quadrupole
couplings. Figure 31 represents schematically the reasons why a new type
of spectroscopy was necessary. Quite simply, the quadrupole coupling is
so much larger than chemical shifts or dipolar couplings, that in a pow-
der it is quite impossible to see the smaller couplings. In favorable
cases single crystals may be studied to yield both the quadrupole cou-
pling and chemical shifts or dipolar couplings, but even in single crys-
tals FIDQ NMR may be used to reduce linewidths.

For the studies presented here we will restrict ourselves to
observation of deuterium, for which quadrupole couplings are fairly small
F‘lOSHz) relative to the Zeeman coupling (2.8 XlO7 Hz), but large com-
pared to chemical shifts (~ 6 ><lO2 Hz) and dipolar couplings ('”103 Hz) ,

although in principle this restriction is not necessary.
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The initial motiviation for FTDQ NMR came from the observation
that the quadrupole coupling shifts the m=+1 and -1 levels by the same
amount, in the same direction, Fig. 32. Thus the two photon absorption
comes at a frequency Wy » independent of the quadrupole coupling constant.
Such two photon absorptions have been discussed for C.W. NMR,59 as have
general multiple quantum absorptions,60 but do not provide a method for
high resolution spectroscopy in solids since heteronuclear dipolar broad-
ening and power broadening cannot be avoided. These problems have been
overcome through application of pulsed NMR methods, very similar in many
respects to those described in Chapter II. Selective dilution is used
to reduce homonuclear dipolar couplings among deuterons, while high power
decoupling may be applied to remove heteronuclear dipolar couplings with-
out severe sample heating. In order to describe the experimental approach
completely, the next section will present the formalism developed for gen-
eral multiquantum NMR. Experimental measurements of chemical shielding
in powders will be discussed in Section C, along with the measurement of
deuterium - deuterium dipolar couplings, using FTDQ NMR for both single

crystals and powders.

B. Theory

1. Fictitious Spins - 1/2

In NMR of spin ¥/2 nuclei, the rotating frame vector representa-
tion of magnetization has played an important role in understanding and
. . 16,18,61
developing pulsed NMR experiments. However recent experiments

have shown that such a three dimensional vector is not sufficient to

; . 1
describe the dynamics of some systems, in particular spins with I > > in
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the presence of an electric field gradient. 1In this section we will
describe an operator formalism with which such experiments may be
described.

The general approach to description of pulsed NMR experiments
was mentioned in Chapter 1. For a system of I spins in a magnetic field,
the state of the system is described by the density matrix p, with
dimension (2I+1) X (2I+1). This matrix may be expanded in a set of
N = (2I+l)2—l traceless, linearly independent Hermitian operators, An’

plus the identity operator
N

p(t) = 2 an(t) A+ a i . (III-1)
n=1
The coefficient a, may be calculated from initial conditions and the

equation of motion (I-6). If we start with the system in thermal

equilibrium, in the high temperature approximation we may write

w

-1 _o _
b0 ot G ) - (111-2)

If the Hamiltonian contains only interactions linear in spin
variables, Zeeman, chemical shift and r.f. irradiation, the closed
cyclic permutation relations of IX, Iy and IZ allow us to restrict the

sum in (III-1) to only the angular momentum operators IX, Iy and Iz:

p = Z ap(t)Ip + aol . (1II-3)

pzx,y’z

It is then the three coefficients a , ay, and az which are the vector
X

description of the state. However when the Hamiltonian contains
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interactions which are bilinear in spin variables, quadrupole, dipole
and scalar or spin-spin, the description of p must contain more operators
than just Ix’ Iy and I . In the expansion of p (III-1), any complete set
z
of operators An may be used. However with judicious choice, some valuable
aspects of a vector representation may be preserved when bilinear
. . 19
couplings are present. The first set of operators chosen were found
to be particularly useful in description of pure nuclear quadrupole res-
. 62 .
onance experiments, but as will be shown are also very useful for NMR.
This set was chosen because of convenient commutation relations between
the individual operators. For reasons of convenience and symmetry, nine
operators were defined rather than the required eight. 1In terms of

Ix’ Iy and Iz these operators are given by

le T2 Ix Iyl T2 Iy Izl 2 Iz

I =—l-(II + I 1) I =l(II + 1 1) I =i(II + 1 1)

x2 2 vy z z'y y2 2 z'x X z z2 2 X'y ¥y x
_ 1 2 2 1 2 2 1 .2 2

Ix3 ) (Iz - Iy) Iy3 T2 (Ix - Iz) IzB 2 (Iy - Ix) :

(I11-4)
The definition of the extra operators causes the linear dependence

I +1I + I = 0. Each set of operators I I

x3 v3 z3

same commutation relations as the Cartesian angular momentum operators,

, and Ip have the

pl’ “p2 3

[Ipl, Ip2] = i Ip3 (III-5)

or cyclic permutation of 1,2,3. These commutation relations are also

sufficient to give simple rotation behavior,

-ifI i6T
pl
e I e
p2

pl _ , _
Ip2 cosb + Ip3 sin6 . (ITI-6)
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Since these operators behave exactly as those for a spin 1
have been called fictitious spin-1/2 operators, in analogy to Feynmann63
and Abragam,l and with each set of operators Ipl’ Ip2 and Ip3 we can
assoclate a state vector in a three dimensional Cartesian space. The
complete statevof the system is the specified by three vectors in three
spaces. Although such a description seems complex at first sight we
will see that for many experiments of interest only one space will have
a nonzero vector and its evolution will be restricted to that single
space. Further commutation relations and rotations which will prove
useful for later computations are presented in Table I. A complete
table of commutators and anticommutators may be found in Appendix F.

If these operators are represented in matrix form in the eigenbasis of

Ii, Table II, their form is related to the spin-1/2 Pauli matrices.

2. Hamiltonians

To calculate the expected results of experiments it will now
be convenient to express the Hamiltonian, as well as the density matrix,
in terms of the operators defined above. For the present we will in-
clude off resonance (chemical shift), r.f. field and quadrupole terms,
adding dipolar couplings later. From Chapter I we write the Hamiltoni-

an:

1 2 .
H = —wOIZ - Zwllx coswt + §-wQ[BIz-I(I+l)I, (I11-7)

As done previously this may be transformed to the frame rotating at w,

the irradiation frequency:

* 1 2
H =-ALuIz—w Ix+ T w [31z - I(I+41)] (I11-8)

1 3 %q



Table I

COMMUTATORS
-i
I = i - =
[ pi’ ij] le,k [Ip2’ IQ2] 2 Irl
(1., 1.] =221 [T, I I.1=0
pl’ g2 2 "r2 1’ g3 r3
-i
(1550 Tal =3 Ipy
ROTATIONS
exp(-if6I .,) I , exp(ifI .) = cosH I . + sinf I
P pi PJ P pi PJ pk
exp(-i6I .) I exp(ifI_.) = cosg I + sinz I
pl ql pl 2 ql 2 rl
exp(-i61 ) I (161 .) = cose I . - sinZ I
xp(-1i ol q2 exp pl cosy Q2 sin; 2
exp(-1i68I ,) I exp(i6I ) = cosg I - sing- I
p2 ql p2 2 ql 2 r2
(-i61_,) I (ie6r ) = 9 I - ig I
exp 02 q2 exp p2) = coss Q2 sin 1
where P, 9, T = X, ¥V, Z or cyclic permutation

1, 2, 3 or cyclic permutation.

and i, j, k
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=1,2,3 or cyclic
permutation

ok, 2

Table II1
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vhere Aw = wo - w. Since all further calculations will he in the rotat-

ing frame we drop the asterisk henceforth. Using the operators defined

above this may be written:

2
== : - + = - . -
2AwIzl Zwlle 3 wQ(Ix3 Iy3) (I11-3)
For a variety of values of Aw, w and wQ we will see that the behavior
under this Hamiltonian is quite simple. Since these have been derived

19,64 we will only discuss the form and

in considerable detail elsewhere
experimental implications of the Hamiltonian, in these cases. To sim-
plify the calculations of density matrix evolution, the Hamiltonians
will be written wherever possible as a sum of terms, all of which com-
mute.

To do this we will try to write the Hamiltonian in terms of
the diagonal operators Ix3’ Iy3 and IzB’ This is accomplished by rotat-
ing the Hamiltonian into a new "tilted" frame, so that the vector repre-
sentation of the Hamiltonian has components only along the Ip3 axes.
The tilt operators are defined as Upi(¢) = exp(i¢Ipi) meaning a rotation

of angle ¢ about the p,i (p = X,¥,2 and i = 1,2,3) axis. These are ap-

. +
plied to operators X as Upi(¢) X Upi(¢).

Case 1.

Aw = 0, w, = 0; no irradiation, with rotating frame at frequency wo on

1

resonance, no tilt necessary.

H =+ 3 wQ(IX3 - Iy3)
- _ 1 _ _
= wQIx3 3 wQ(Iy3 123) (II11-10)
_ 1 _
Wolys =3 Wl 37 Ixs) -
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These three forms are equivalent and hence may be freely interchanged.
Under this Hamiltonian an initial density matrix p(0) = IX evolves very

simply:

_ o, —iMt iHe
p(t) = 2e I e = 2(lecosw

sinw_ t). (IT1I-11)
x1

t+I, Q

Q

We see that the evolution is restricted to the fictitious IX space.

Case 2
Ao # 03 wl = 0; no irradiation with rotating frame off resonance.
2
H =~ 2AwIzl + an(IX3— Iy3). (I11-12)
To rewrite this as a sum of commuting operators we apply a tilt
of U . (m/2) = e:”r/2 Izz,
z2
W= 20wl .+ 20 (I -1 ). (I1I-13)
z3 3 °Q x3 yv3
Case 3
A = 0, wl #0; irradiation on resonance.
1
H =- + - = - . -
Zwlle wQIx3 3wQ(Iy3 123) (III-14)
i0Ix2

Again to write as the sum of commuting parts we tilt with UX2(6)==e

where 6 = tarl'-l(Zwl/u)Q),

W = 0Ly = Wgllyg = I,3) (I1I-15)

-_1 2,01 _ -
== 0T F5ugty (0 =0l (1,41 3)

where we define an effective frequency
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1/2

2) . (1III-16)

Q

2
we (4wl + w

If Wy << wQ then (III-15) approximately goes to the the simpler form

wem (o + 2 I.). (1I1-17)

Case 4

Aw # 0, wy # 0 ; general off resonance irradiation. 1In this case all
terms in the Hamiltonian must be comnsidered, and in general there is no
simple transformation to generate the Hamiltonian as a sum of commuting
terms. Solutions for this case may be calculated numerically by com-
puter. However for important cases for which wl<< wQ, approximate

analytical forms may be generated.

Case 4a
Aw ~ wQ, wl << wQ; irradiation near the low quadrupole satellite.
Writing Aw = wQ + Sw
2
= - —_ - . II-

¥ Z(wQ+6w) Izl4-3(nQ(Ix3 Iy3)4-2w11xl (II1-18)

Tilting this with U_,(7/2),
2
- £ - — -
I = 2(ugH) T+ T (1, Iy =2 (I,mT )
(11I-19)

_ 4 - o _
--6w1x3-(3 wQ+w&u)(Iy3 123) v@wl(lxl Iyz).



69

Using the approximation w, << w_ the last term VZuﬁ;yz may be neglected

+ Sw)(I ,-1I (I11-20)

=-wIl ,-VZw 3 z3).

4
3 111~ G @g
Since the last term is commutative with the others it may be disregarded

in most cases and the behavior of the system will be like that of an

ordinary spin-1/2 system, off resonance by 6w and with a modified Y.

Case 4b

Aw ~ - w,, W, << w irradiation near the upper quadrupole satellite.

Q’ “1 7" “o?
By a procedure exactly analogous to case %a, with Aw==—wQ + dw we obtain
I == 8wl . +VZw, I -(iw —-8w)(I ., -I.). (I1I-21)
v3 17y2 37Q z3 x3

The form and behavior are exactly analogous to Case 4a.

Case 4c

Ay ~0, w, << w_.; irradiation near the center of the spectrum. This is

1 Q

where we expect the interesting double quantum effects to occur. We let
Aw = dw,

- 2 - -
= =281, - 20T g+ Fug (T g =T 5). (TI1-22)

ifr
To get this to the desired form we tilt with Ux2(6) = e x2 where

- -1 Ny
8 = tan (Zwl/wQ) giving

- 0 9 1 - -
ﬂI-——ZGw (cos2 Izl+ sins Iy2)+-we1x3 3 wQ(Iy3 IZB)' (I1I-23)
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Since 26ww1 <.'<wQ2 the sin%— term may be ignored giving

3 =1 . - (W )T +2 ) (I1I-24)

z1~ 2 Q" z3 3 wQ(Ix3 -Iy3

and w, ~Ww, may be further approximated by wlz/w Again the third term

Q Q

commutes with the others, so that the behavior is exactly like a spin-~1/2.

3. Density Matrix

Up to this point we have found Hamiltonians in a simple form,
but in a tilted space. It is important to remember that for calculations
of density matrix evolution, we must also tilt the density matrix, with
the same operator used to tilt the Hamiltonian. This results in the
following tilted operators for observables: Case 4a. Aw = wQ-FGw,

The tilt operator is Uzz(g) giving

T _ T _ -
I = V2 (le Iyz) and Iy V2 (Iyl +1I,). (I1I-25)

Case 4b

A =086w, Sw and w, << w

1 Q
The tilt operator is UXZ(G), tan9==2w1/wQ giving

. T _ 6 . 0
l-51n6 Ix3 ) and Iy-—2(cos I sinz I .). (I1I-26)

T
Ix-2(wseIx 2 7yl 2 "z2

Case 4c
Ao = -w., + Sw Swand w << w

Q ’ Q
The tilt operator is U (E) giving

z2°2

T _ T _ —
I = V2 (1, Iyz) and Iy =2 (1yl +I,). (I1I-27)
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Any other operators needed in the density matrix calculations may be
tilted in the same manner.

Now that Hamiltonians have been defined for the cases of prac-
tical interest here, we may proceed with theoretical calculations of ex-
periments. These calculations break up logically into three parts,
preparation of a desired density matrix, its evolution under some partic-
ular Hamiltonian, and then detection of some signal representative of the
state of the system. In some instances this is then a special form of

65

two dimensional NMR. We will write the density matrix expanded in

terms of the fictitious operators

3
p(t) = Z Z api(t)Ipi (I11-28)
i=1 p=x,y,z
where
o(t) = e P 50y oTE, (IT1-29)

At thermal equilibrium the initial density matrix is

Py = bIz with b = T - (I11-30)

This initial density matrix must also be tilted when tilted Hamiltonians

are used in the calculation.
For irradiation near one satellite, Case 4a (or 4b) the tilt

T s . Lo
=). In this frame the initial density matrix is

operator was U (2

z2

T _ - _ _
po = --ZbI23 bIX3 + b(Iy3 Izy (I11-31)
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and applying (III-29), and ﬂm (ITI-20) with Sw = 0;

T .
p (t) =b (Ix3 cosv?2 wlt4-12251nV§ wlt)+-b(Iy3-Iz3). (I11~32)

The first term is from rotation about x1 in the fictitious x space. The
second term comes from the quadrupole coupling; it does not yield a signal,
and thus may be ignored for the present, although it is crucial for cross
polarization experiments.64 After a pulse we may calculate the signals
which may be observed, (Ix(t)) and (Iy(t))from (I-5). We define signals

in the x and y directions at time t

Sx(t) = vy <Ix(t}> = yTr(p(t) Ix) = YTr(DT(t) Ii) (111-32)
_ _ - T T
S,(8) = <1y<t)> YTz (p(t) 1) YTz (o™ (8) T.).

Using the tilted forms for p(t), Ix and Iy we find for t = pulse width:

Sx(t) 0

V2 by sinv2 w,t Tr(I 2) = —l—-S sim/2 w, t (I1I-33)
1 X 0 1
1 2 V2
S0 4™ 7@ T 3 M

Sy(t)

where N is the number of spins in the sample. For this rotation in the
x-space, the magnetogyric ratio is effectively vﬁiY. Dropping the Iy2

term in the tilted Hamiltonian eliminates any response from the distant
quadrupole satellite. Exactly analogous equations may also be derived
for the upper satellite.

When the off resonance term is included in the above calculation

I = - 6wl -VZw I (I1I-34)
x3 1 x1
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S (t) = ———-S0 sind cosdp(l - coswst)
22
(II1-35)
1 ,
S (t) = —— S_ cos¢ sinw t
y N s
where
1/2
w = (Gwz + 2w1) and ¢ = tan_l Su
V2 W,

Thus a small off resonance term only induces a slight mixing of the y
signal into x.

For irradiation near the center of the spectrum, Case 4c, we
proceed in an analogous fashion. The tilt operator used was UXZ(G),

giving a tilted initial density matrix

T _ ) . 0 _
p"(0) = 2b (cosi Izl4-31n2 Iy2)' (I1I-36)

T
Applying (II1I-29) with ¥ (III-24)

T _ 8 1 .1
p (t) = 2b cosi-[Izlcosz(we—wQ)t - I22 31n2(we wQ)t]
(I1I-37)
+ 2b sing-[I cosl(w -w )t + I sinl(w -w.ot].
2 y2 27e Q vl 2 e TQ
For wy <<(uQ this may be simplified to
w2 wz
pT(t) =2b [1I cos—l—t -1 sin—l—t . (III-38)
z1 wQ z2 wQ

The second term in (III-38) is of great importance to us. The operator

Iz2 has matrix elements only between ]+> and I—) levels (see Table II) and

hence represents in the density matrix a coherence between these levels,
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which are coupled together directly only by a double quantum transition.
In this case the behavior is again that of a fictitious spin-1/2 (the z

space), and where the state rotates about the effective field I23 with
W
an effective magnetogyric ration al Y, behavior previously observed by

Q

Hatanaka gE_al.Gl The signals after the pulse may be calculated using

the tilted IX and Iy operators.

Iz = 2(cosb le - sinb ng
(III-39)
Ii = 2(cos% Iyl - sin% Izz).
Then
s (t) =0 (I1I-40)
5,(6) = 3 Sy sind [sing(u -u))t+sing(w uyt] = 0

where Sy(t) = 0 since sin6 = 0. After such a weak pulse in the center of
the quadrupole split spectrum we predict no signal, i.e., the double
quantum state has no ordinary magnetization associated with it. We will
call a weak pulse of this sort a double quantum pulse. As for usual r.f.
pulses we may adjust the length to give a g-rotation simply by adjusting
2

1 °

The most general case, where wl, w

t = wQ/Zw
Q and Aw maybe of the same
size cannot be easily solved analytically. When such cases are of inter-
est, a computer must be used to follow the complex motions of the state
vectors .

Once some particular state of the system has been prepared,

usually by application of r.f. pulses, we wish to calculate its evclution

under the Hamiltonian without any r.f. irradiation,
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ar _ a - 2. \
H 248w Lzl+ ng(IXB Iy3). (I11-40)
This is again done by calculating (III-29) where p(0) is now the non-

equilibrium density matrix prepared by some r.f. pulse or pulses, though

it may still be specified by
p(0) = Z Z a; (0) Ipi (11I-41)
i p

We will ignore relaxation effects in our calculations, although it may be
added phenomenologically as a damping with time of any coherence, with
time constant Tz. If we assume that ap3 (0) =0 for all p,

then the coefficients of operators in (III-28) for any time may be easily

calculated and are shown in Table III. In the particular case Aw = 0 the

behavior is simpler and

axl(t) = aXI(O) costt - ax2(0) siant
axz(t) = axl(O) siant + axz(O) costt
(I11-42)
ayl(t) = ayl(O) costt + ayz(O) siant
ay2(t) = —ayl(O) siant + ayz(O) costt.

Comparison of (III-42) and Table III makes clear that under the quadrupole
coupling alone the x and y spaces evolve independently, but when a res-
onance offset is present these spaces are mixed. As was predicted from
the energy levels in Fig. 32, the double quantum z space evolves only with

resonance offset, completely independent of quadrupole coupling.
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x1

x2

y2

z1l

z2

x3

(t)

(t)

(t)

(v)

()

(t)

(t)

(t)

+

i

%[aXl(0)+ay2(O)]cos(wQ—Aw)t -% [a,,(0)+a; (O] sin(wy-bw)t
3 (2,102, @] sin(ugtit-3 [a,(0)=a 5 O) cos(-uy-tw)t
%-[ax2(0)+ay1(0)]cos(wQ—Aw)tih% [axl(0)+ay2(0H sin(wQ—Am)t

% L2, (0)-a_,(0)] cos (-wQ-Aw)u% [a,5(0)-a,; (O] sin(-w,-tw)t

% [a,,(0)-a,(0)] cos(—wQ—Aw)t—-]z; [a,,(0)-a, ()] sin(-u,-dw)t

% (2,1 (0)+a_, (0)] sin(uy-Mo)t +% [a,,(0)+a 1 (0)] cos(u, - dw)e
% [a,,(0)-a,, ()] cos(—wQ—Aw)t:+% (2, (0)-a,,(0)] sin(-wy-tw)t

% (2,1 ()+a_, (0)] cos (-t -% [a,,(0)*a; (0] sin(uy - o)t

€1))

azl
azz(O) cos2Awt

azz(O) sin2Awt

ay3(t) = Q.
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Using the results of Table III the signals observed may be

calculated.
S (&) =v Tr(p(t) I) = a_ (£)¥(t)
* * xl (III-43)
S (t) =v T t) I) = v (t
y( ) = v Tr(p(t) y) ayl( Yy ()

where Y (t) takes care of normalization and any damping terms. We may also
define a double quantum coherence, through not directly observable,

Qt) = a_, () ¥(©) (I1T-44)

whose decay, monitored in a fashion described below, gives a high res-
olution NMR spectrum, the basis of Fourier Transform Double Quantum NMR.
The calculation above of preparation and evolution of particular
states gives us all the information of interest, from a theoretical view-
point. However, in any experiment all information about the system must
derive from measurement of the observables, SX and Sy. If we irradiate
near one of the quadrupole satellites, then an observable signal is ob-
tained (III-35), its evolution may be directly observed and followed,
Table III, and Fourier Transformation of this signal allows measurement
of wQ, Aw and Y(t). The intent of this chapter is to gain further high
resolution information from the double quantum decay Q(t), (ITII-44).
Since this coherence evolves without detectable signal, after preparing
it and letting it evolve for time T, we must transfer the coherence into
an observable. This may be achieved by application of a strong r.f. pulse,
wl >>(uq, and ml >> Aw. In this case the only important: term in the

Hamiltonian is the r.f.,

H = - 2w (I11-45)

lle

which will induce only single quantum transitions. The effect of this
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Hamiltonian on any initial density matrix is easily calculated. Table
IV lists the effect of a strong pulse on different initial density
matrices. From the table it is easily seen that a pulse such that
wt = m/2 rotates a density matrix I,

r.f. free Hamiltonian (III-40) to give a signal. Figure 33 shows the

into Iy2’ which evolves under the

pulse sequence used for FTDQ NMR. Starting with an equilibrium density
. - 2 _ .

matrix pi = Izl’ a double quantum pulse wl'/thpl = m/2 is applied to

give

p (tpl) = Izz. (I1I-46)

This evolves for a time T, Table III, to give

p(tpl + 1) =~ I, cos2MwT + 9N sin2AwT. (I11-47)

A strong (single quantum) pulse wltp2 = 7/2 is applied to probe the

coherence giving

) = T . cos20wT + = [1 .- (I

p(tpl + T+t v2 2

-Iz3)L (I1I-48)

p2 x3 y3

This then evolves for a time t during which signal is observed,

Sx(t) SO cos2AwT siant sinAwt

(I1I-49)

S (t) S. cos2AwT sinw.t cosAwt.
y 0 Q

It is sometimes convenient to Fourier Transform the observed signal
Sx+-iSy, and plot the peak intensities against T to give the double quan-
tum free induction decay. A second Fourier Transform yields the double
quantum spectrum, free of quadrupole couplings. In another approach

S {0) and Sy(O) are used to generate the double quantum free induction

X

decay.



Table IV

oi (before pulse) Pe (after P pulse)

Ipl Ipl

Ip2 Ip2 cosZwlt - Ip3 51n2wlt

Ip3 Ip3 cos2wlt + Ip2 sianlt

Iq1 Iql coswlt - Irl 31nmlt

qu qu coswlt + Ir2 51nwlt

I - l(I cos2w, t + I sin2w,t) + L (I ,-1_.)
q3 2 7 p3 1 p2 1 2 g3 "r3

Irl Irl coswlt + Iql 51nw1t

Ir2 Ir2 coswlt - qu 51nw1t

I —-L(I cos2w,t + I sin2w,t) - l-(I -1
r3 2°7p3 1 p2 1 2 q3 r

p’ q’ r = x’ y’ Z or Y’ z’ X
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4. Real Responses

In the previous section we have derived the response of a spin 1
system to ideal pulses. However when doing experiments real pulses are
used which often differ considerably from ideality. For double quantum
pulses we assumed wy <'<wq, so that r.f. effects on the single quantum
transitions could be ignored. For a real pulse of reasonable strength,

a significant amplitude for the single quantum coefficient may be gener-
ated in addition to double quantum, Fig. 34 and Fig. 35. The response
to an arbitrary pulse can be calculated, and the constraints that a,,
be maximized and that there is no observable signal after the pulse leads

. 19
to two requirements 64

N = 2m-1

pl wQ T (I11-50)

k, m=1,2... k2n

2 1/2
=1 2k _ -
W, =5 [kZm—l {] mq. (III-51)

A pulse meeting these requirements for any k,m will create a density

matrix of Iz Even if these requirements are not fulfilled some Iz2

2°
may be created and observed, but analysis is more complex.

For the probing single quantum pulse we assumed that wy >>’wQ,

a requirement often difficult to meet in practice. The result after an

19,64

arbitrary pulse may be calculated also giving signal

t + ¢) (I11-52)

S (t) = S. a cos2AwT sin(w
y 0y

Q
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where
1/2
_ 2 2
ay = (ayl(T) + ayZ(T) )
1 (I1II-53)
¢ = tan (a ) (D/a, (M)
T = tpl + 1 + tp2 .

The effect of wQ on ay and ¢ are shown in Fig. 36. While this effect

introduces a scaling of efficiency in a particular experiment, as long

as w, and w. are constant through an experiment it causes no problems.

1 Q

5. Polycrystalline Samples

In all of the analysis of double quantum calculations just per-
formed it was implicitly assumed that there was only one value of wQ to
be considered, and for a single crystal sample this may be true (more

often there are a small number of w., values, each of which may be treated

Q

separately). However in a powder sample the values of wQ range from

- %—eQsz to + %—eQsz continuously (see (I-20)). Since the effects of

pulses are dependent on the size of w this greatly complicates analysis.

Q’
Since many approximations will break down for at least some Wy values, the
responses to pulses henceforth will be predicted exactly by computer.

It will be valuable to see the efficiency of each pulse as a function of
wq, since each value of wQ will correspond to some specific chemical
shift. This means that the chemical shift (or dipolar) powder pattern
must be multiplied by a transfer function representing the efficiency

with which double quantum coherence for each mQ was prepared and probed

by the pulses applied. The first step in an experiment, the preparation

of double quantum coherence is shown in Fig. 37. For each experiment the
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pulse amplitude, Wy and lenéth may be optimized to give the best possi-
ble response for the range of wQ values involved, through use of computer
simulations. Figure 38 then shows the overall transfer function for prep-
aration and detection of a, immediately after the probe pulse. While
there is some loss in sensitivity compared to ideality the response is
fairly uniform over a wide range of wQ values. For wQ = 0 (no quadrupole
coupling) double quantum coherence cannot be prepared and for any pulse
sequence the transfer function must drop to zero there. In a real exper-
iment, however, signal cannot be detected immediately after a pulse due
to a finite recovery time from the pulse overload for electronic compo-
nents in the spectrometer. This delays measurement of signal for ~ 30
usec after the last pulse. Since the density matrix still evolves during
this time, the transfer function is changed to that in Fig. 39. Since
this changes sign many times any broadening will average the response to
zero. To alleviate this problem a quadrupole echo may be used. Such
echoes are well known in quadrupolar systems,l and the expected response

is easily calculated with the fictitious spin formalism. An initial state

oy = Izl is subjected to two single quantum (wl >>wq, Aw) m/2 pulses
spaced by a time T, the first pulse being in the X direction, the second

in the y. Then from Tables III and IV

(c,) =1 and a(21) = cos 2 AwT ¥ (2T) (TTI-54)

ayl tpl

axl(ZT) = cosAwT sinAwt Y(2T).
If Aw = 0 or T is kept short then the refocusing by the second pulse is
very good. Figure 40 shows the exact response to a pair of strong pulses,

and we see that there is better than 807 refocusing even for values of wQ
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not much less than wy and the echo amplitude is a good measure of Izl
before the pulses. We may then combine these echo pulses with a pair of
weak pulses. The first weak pulse creates IZ2 coherence, it evolves for
a variable time, then the second pulse '"stores'" the magnitude of double

quantum coherence along Iz which is probed by the echoing pair after a

1
time T2’ which allows single quantum coherence to decay. Figure 41 shows
the overall transfer function for such a pulse sequence. While the re-
sponse is far from the ideal straight line at unit efficiency, such a
pulse sequence should give a measurable intensity even at large wQ, and
hence the corresponding chemical shielding (or dipolar) powder pattern
should have its proper width. If we assume that the quadrupole and
chemical shielding tensors are both axial, with their symmetry axes in
the same direction we can easily calculate the shape of the unbroadened
powder pattern from the transfer function, Fig. 42.

The response to two strong pulses suggests an alternate method
for preparation of double quantum coherence. If two strong pulses are
applied as above for generating an echo, but both are of x phase, then
with proper timing the density matrix may be made proportional to Izzl

Before the first pulse p, = I Application of a m/2 x pulse yields

z1l°®

o(tpl) =1 .. (ITII-55)

Free evolution for a time T gives (Table I1II)

axl(T) = sin(AwT) cos(wQT)

a (1) = sin(AwT) sin(w.T)

x2 Q (I11-56)
ayl(T) = cos (AwT) cos(wQT)

ayz(T) = cos (AwT) sin(wQT).
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~

If w,>> Aw then we may choose T so that w. T =7m/2 and AwT ~ 0 so that

Q

a_, ~ 1. The second /2 x-pulse then rotates a_, into a_,, Table IV.
y2 y2 z2
For a polycrystalline sample then the transfer function will be approx-

imately sinw.T, the coefficient of I Since this transfer function

Q y2*

may be changed by varying T, a Fourier series approximation to a square
wave may be generated. Figure 43 shows the first three transfer func-
tions that would be summed with appropriate weighting to give the total
transfer function also shown. Although sensitivity is lost in such an
experiment, in principle an arbitrarily good transfer function may be
generated. Figure 44 shows the actual result of a three term square
wave approximation, with imperfect pulses, by computer simulation.

For many powder samples obtaining good signal to noise ratio
can be a problem. If the four pulse sequence of Fig. 41 is used then the
signal is sampled at only one point. Since separate experiments must be
performed for each value of T, experiments become very long if much aver-
aging must be done at each T. This may be reduced somewhat by noticing
that at the echo point the density matrix is Iyl’ exactly the same as
after the strong x pulse. Hence 1f at a time T after the echo another
y pulse is applied a second echo should occur. In fact this may be re-
peated several times before off resonance and broadening damp the echo
amplitude. Figure 45 shows the response to a simple echo sequence, the
third echo response and the average of four sequential echoes. By co-
adding the signals from each echo the signal to noise ratio at each T
may be increased considerably. Of course this average echo transfer

function must be multiplied by that for the preparation sequence to give

the overall efficiency for the experiment.
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6. Dipolar Couplings

a) Hamiltonians

Up to this point we have ignored the possibility of dipolar
couplings among deuterons. If a sample contains small groups of spins
close together, relatively separated from other groups the resonance
line may show structure from the dipolar couplings. Since dipolar cou-
plings contain information about orientations and distances (I-32), their
measurement may provide useful information. This was realized long ago
by Pake, who used fine structure in proton resonance lines for analysis
of the structure of water in hydrated crystals.66 However applicationms
of this approach are limited to simple systems. Measurements of hetero-
nuclear dipolar couplings have been made using variations of dilute spin

67,68,69 . 70,71,72,73
and single crystals. In some cases

NMR in powders
multiple pulse sequences were used to suppress couplings among abundant
spins, however most of these techniques are applicable only to small systems.
A few measurements have been made of homonuclear couplings between
13C69’74’75 for determinations of distances and relative orientations

of chemical shielding and dipolar coupling tensors. Working with
naturally dilute spins has the advantage that two specific sites may be
enriched in the observed spin so that their relative positions may be
determined without excessive interference from other sites. Deuterium
labelling allows the possibility of determining hydrogen positions in a
similar manner. This is very attractive since hydrogens are particularly
difficult to find in x-ray structure determinations. However, unlike the

other systems mentioned which were studied by NMR, deuterium has quad-

rupole couplings which broaden both single crystal and powder lines, often
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to the point that dipolar couplings are unobservable. Since FTDQ NMR
removes quadrupole couplings from the spectrum its use should make such
studies feasible.

The Hamiltonian for two spins I and S which have quadrupole

couplings and are dipolar coupled to each other is

_ L 2 1 2 _
X = -wOIz-wOSz + 3 wQI [BIZ-I(I+1)]+ 3 wQS [3Sz S(S+1)]
(I1I-57)
-dpg (IS -TIS - IySy),
where
= .Y———
drg 3 Py(cosBrg)

contains all of the structural information, and assuming that differences
in chemical shift are small compared to both dipolar and quadrupolar
terms, we drop them completely. This Hamiltonian may easily be rewritten

in the fictitious spin operator formalism to give:

- 2 - 2 -
= -280T ) - 208 1+ T wo, [T, Iy3]+ 3 Yos (s, sy3]
(I11-58)
~ A L2008, TS - Iylsyl]'

In Chapter I we discussed the truncation of the dipolar and quadrupolar
terms in the Hamiltonian by the much larger Zeeman coupling. In the
present case since the quadrupole coupling is generally much larger than
the dipolar coupling we must truncate the dipolar coupling with respect
to the quadrupolar coupling. Two limiting cases arise which we will con-
sider: equivalent deuterons, w -w = (0 and nonequivalent deuterons

Qr ~ “gs

!wQI - wQSI >>4dIS. To calculate the secular contribution of the dipolar

term in the Hamiltonian we first find the time dependence in it induced
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by the quadrupole term. In the equivalent case we find

—ﬂﬂbt ﬂﬂbt (I11-59)
ﬂb(t) = e ﬂb e
- B . ¥+ si
4dIS [gIzlSZl (costt le+ 51ant IXZ)(costtfil 31ant sz)
(I11-60)
- (cosw.t I .- sinw_t I cosw. .t S . -sinw.t S )]
Q" Tyr™ STt Typ) (costgt Sy = stnugt Sy
where wQ = wQI = wQS' If we then average over one cycle of th to ex-

tract the time average part we find

r
1
x = - = -
l‘dIs [ZIzlsZl 2 (lesXl + IxzsX2 + Iylsyl + IyZSyZ)] . (1II1I-61)

In the nonequivalent case an analogous procedure gives:

Mb(t)==4dls[21 S .- (cosw

21551 tIx +sinw __t Ixz)(cosw t S _ +sinw__t Sx2)

QI "x1 QI Qs- “x1 Qs

- (costIt I -sianIt Iyz)(costSt Syl— sianSt SyZ)]' (111-62)
vl

The time average is then just

1

H, = AdIS (2IzlSz

D ). (I11-63)

1

These are the expected results and are exactly analogous to the quenching
of flip-flop terms in the dipolar Hamiltonian for heteronuclear couplings
as opposed to homonuclear, in which they are pseudo secular. In the most

general case - wQS‘ ~ AdIS all terms must be kept.

|0gr
We wish to compare the single quantum and double quantum spectra

expected for these systems. The single quantum transitions may be calcu-

lated from the Fourier Transform of (Ix(t) + i Iy(t)) through calculation
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of (using ¥ of (III-58) with appropriately truncated Hb)

(1,0)
(5,0

It is often easier to calculate the transition frequencies and moments

~-ift iHt
Tr(e Zle e lel)

(I1I-64)

-ift it
Tr (e ZIXl e ZIyl).

as done in conventional cw absorption experiments. To do this we first
find the eigenfunctions, then calculate the matrix elements of Ix + Sx'
This is quitebeasily done for two deuterons since only the dipolar flip-
flop term is nonsecular in the eigenbasis of Iz. Tables V and VI list
the eigenfunctions, energies and allowed single quantum transitions for
two equivalent and nonequivalent deuterons, respectively. These eigen-
functions and energies may of course be calculated for the general case,96
however such generality is not necessary here.

The double quantum spectrum may be calculated in an analogous

If the two deuterons are

fashion, from the evolution of Iz and Sz

2 2°

equivalent then the detected signals from I22 and Sz2 are inseparable and
we calculate the evolution of the sum. For two inequivalent deuterons
the single quantum signals are separated by the difference in quadrupole

couplings and hence Izz and Sz may be detected separately. This separa-

2

tion is important in analysis of signals in more complex systems.
Assuming that the double quantum coherence can be prepared and detected
(to be discussed shortly), the evolution we wish to calculate is:

Q(t) = Tr(e Pt (1,+S_,) emt(Izz+Sz » (111-65)

2



Table V

1)
2)
3)
4)
5)
6)
7)
8)

9)

7)
1)
2)
2)
3)
5)
6)

4)

Eigenfunctions, energies and transitions for two equivalent

deuterons, dipolar coupled (Aw. = 0).

Q

Eigenfunction |I S)

|11
12 (|10 + |oD )
142 (|10~ |oD)
lo o)
1AV2 (|1-D +]-1D)
12 (|1-0 -|-1D)
1N2 (|o-1> +]-10>)
12 (Jo-v -|-10)

|-1-D

Transition Frequencies

9) Wy + wQ + 3d
+ 2) Wy wQ - 3d
+> 4) Wy = wQ + d
+ 5) Wy + wQ -d
+ 6) wg + wQ -3d
>~ 7) Wy ~ g + d
+ 8) Wy = wQ +3d
+7) Wy + wQ ~-d

Energy (frequency units)

2w, + g—w + 2d

0 3°Q
Wy = %-wQ - d
Wy = l-w +d
0 3°Q
_by,
3°Q
%—wQ - 24
%-wQ - 2d
Wy —-% wQ -d
wy = %—wQ +d
—2w0+ %—wQ + d
Intensity
2
2
2
1
1
1
1
2




Table VI

Eigenfunctions, energies and transitions for two inequivalent
deuterons dipolar coupled (Aw. >>D).

Q

Eigenfunction |I S) Energy (frequency units)

1)
2)
3)
4)
5)
6)
7)
8)

9)

1) ~

4) >

7) *

8) >

2) ™~

4) >

5) »

6) >

1 1) ~2w, + %‘“QI+% QS+2d
[10) —Wg + %'wQI - %—wQS
|1 -1) %wQI+%mQS—2d
o 1) -0y - %-wQI + %'wQS
[0 0) - %'wQI + %-MQS
[0 -1) Wy - %—wQI + %'wQS
-1 1) %wQI+%‘—wQS—2d
-1 0) wy + %'wQI - %'MQS
-1 -1 Zmo + %'wQI + %.wQS + 2d
Transition frequencies Intensity

23 Wy = Yos 2d 1

3) Wy + Yog 2d 1

5) Wy = wQS 1

6) wy + wQS 1

8) wy = wQS 2d 1

9) wy + wQS 2d 1

4) W9 T W1 _ 29 !

5) wg = wQI 1

6) Wy = wQI 2d 1

7) wy + Wop — 2d 1

8) Wy + wQI 1

9) wy + Yot 2d 1




91

For equivalent deuterons

2

H=-2M(I ,+S ) +Zw (I ~-I +S =S .)
zl z1 3 7°Q7x3 "vy3 x3 y3 (I11I-66)
1 1
- b 2 - = f + S \__/I H 1
”dIS [2 Izl Szl 2 \lesxl Ix2 x2’ 2% ylsyl+ yZSyZJ

To simplify the calculation of (III-65) we now note that many parts of

the Hamiltonian commute with each other and with IZ2 + Sz2' For the

Hamiltonian
' '
[ﬂ;, ﬂb] = [Mz, ﬂb ] = [Mb, ﬂb ] =0 (I11-68)
and [ﬂbz’ ﬂbx] - [Hbz’ J(‘Dy] - [ﬂbx’ ﬂby]= 0,

may be derived from tables of commutators and anticommutators, Appendix
F. This allows us to break up the exponential in (III-65) into separate

exponentials for each part of the Hamiltonian. In addition,

]I =1[%

[H I
z Dx

+
Q’ S,

= JC = —_
o I+ S 1= by* Lzat 5_,1 =0 (II1-69)

2 2

so that the terms ﬂb, ﬂbx and ﬂby may be dropped completely leaving

[+1i2Aw (X ,+S )+ i8d_..I .S ]t
Q(t) = Tr'[% z1l "z1 IS z17z1 (IZZ+SZZ)

(I11-70)
[—iZAw(Izl+Szl)—iSdISIZlSZl]t
X e (I +S .) |.
z2 z2

The traces over IZ and S22 parts are identical and may be calculated

2

separately, and IZZS22 terms vanish. Then the Iz2 portion gives
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e I e

z2

—1(-8d5 e o o
) - 1 [e i( 10 1(-200)T 1(-200)1 el( 8dSzl)Ile ]
z2

1(—8dSzl)Ile '1

ZZ‘J

-1(-8dS .)I
Tr [e z1’ "z1

(cos2Awt Iz -sin2Awt Iz3) e

2

t) I

t) 123} I, (I1I1-71)

Tr [cosZAmt{cos(8dS
z 1

-sin(8dS
z

1 z2

- 51n2Awt{cos(8dSzlt) 123- sin(8dSzlt)Izz} 122].

The fictitious spin operators hzave been defined so that they are ortho-
gonal, hence terms like Tr(IzZIz3) must vanish. The trigonometric func-
tions of the operator may be expanded as shown in Appendix G. Applying

these reduces (III-71) to:

Q(t) = Tr | cos2Mwt {1 - (2S )2 + (28 )2 cos4dt} 12
z1 z1 z2
(I11-72)
+ sin2Mwt {25 . sin4dt} I° ]
zl z2
Straight forward evaluation of traces gives
Q(t) oo cos2Mwt + cos(2Mw + 4d)t + cos(2Aw - 4d)t. (III-73)

The Fourier transform of this gives three lines of equal intensity at
frequencies 2Aw-4d, 240w, 2Awt4d. This is a local field spectrum, i.e.,
the dipolar flip-flop terms do not contribute to the spectrum. For two
inequivalent deuterons the ﬂbx and ﬂby terms are not in the secular
Hamiltonian, but all other arguments above hold, so the double quantum

spectrum for inequivalent deuterons is the same as that for equivalent

ones, These are shown in Fig. 46 together with the single quantum spectra.
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While the calculation above is simple to perform for two deu-
terons, it may be very difficult for general arrangments of several spins.
In such cases it may be easier to calculate the double quantum spectrum
by the method analogous to that used for the single quantum spectra above,
using (Ii) + (Si) rather than I, + S,. The equivalence may be seen by

calculating Q(t) in the Hamiltonian eigenbasis |i ) and |j ).

_ -i¥t I
Q(t) = Tr (e I22 e I22 ). (I11-74)
Q(t) = EI §:<ije'iﬂt|i )(iIIZZIj)(jIeiﬂt,j>(jllzzli ). (I11-75)
i3
i(E.~E.))t 9
aw = ) Y e 3 Kl 2 ari-76)
i3]

We now note that

(N

I =

z2

(Iny + IyIX) =I1I, -I7I_. (I1I-77)

2 2
and I+, I have matrix elements between the same eigenstates,

2

the absorption spectrum calculated from Ii will be the same as that cal-

Since I
z

culated from the Fourier Transform of the evolution of IzZ' In cases
where the single quantum resonances are separated by differences in quad-
rupole coupling, the double quantum spectrum of each spin may be obtained
separately by double Fourier Transformation in the region of each spin's single
quantum lines, tremendously simplifying the analysis of complex systems.
The analysis of a three spin system follows exactly that for
two spins. For three equivalent deuterons (a deuterated methyl group is
a good example) the Hamiltonian, with all terms appropriately truncated

for spins I, J and S, is:
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2
+ — - - —
S, T390 (Iygm Tygt Jyg= Jog* S 57 5.9

(III-78)

= - +
¥ 2Mw (Izl le

S S S J J J

S . .JS S
+ 4d [ﬂgz + ng + xgy]

where (ITI-66) and (I11-67) define the dipolar terms.

The single quantum siructure is a bit more complex than for two dsuterons
but is still easily calculated.76 To calculate the double quantum struc-
ture we will again make use of commutation relations. As for two deu-
terons, H; and ﬂb commute with each other and with the dipolar Hamiltonian.
If we call the z dipolar terms Hbz and the x and y dipolar teims ﬂbxy’

then as for two spins we may easily show that [ﬂbz, ﬂbxy]==0 and

[ﬂbxy, Iz2+ SzZ+ Jz = 0. Since [¥_, Iz

2] Q

tum evolution then reduces to

+ S +J .]= 0 the double quan-
z z2

2 2

—it[—ZAw(Izl+Szl+le)—8d Iziszl_Sd Izlle—Sdszlle]

Q(t) =Tr | e (III-79)

ic{-ZAw(szSzl+le)-8d IzlSZl—Bd Izlle—Sd Szlle]
Izz e I22 .

Since this 1s again a local field effective Hesmiltonian we need not
repeat the calculation (III-71) but predict a five line spectrum centered
at 2Mw, with lines of intensity 1:2:3:2:1 spaced by 4d. This is shown in
Fig. 47 together with the single quantum spectrum.

The analysis of more complex systems, for example three deu-
terons with different quadrupole and dipole couplings, becomes very dif-
ficult in the manner used above. 1In such cases the z and xy parts of the

dipolar Hamiltonian will not commute, so a simple local field spectrum is
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) - 2 .
not expected. The calculation of the transitions of I+ is quite straight-

forward with a computer or by hand.76

b) Preparation and Detection

In the above analysis we have assumed that we could create

and detect a density matrix proportional to 122’ exactly as we had done
when no dipolar couplings were present. This may be justified for the
case assumed, wQ >> d, if during weak pulses wi/wQ >>d 1is also satisfied.
In this case the dipolar Hamiltonian is a minor perturbation upon the evo-
lution of the system and for reasonably short pulses its effect can be
ignored. We will see in the next chapter that if the dipolar Hamiltonian
is sufficiently strong, relative to other terms in the full Hamiltonian,
that it may also induce multiple quantum transitions. For example in the
two deuteron case just discussed double quantum transitions of the type
I+S+ could be induced, as well as triple and quadrupole quantum transi-
tions which are not allowed in a purely quadrupolar system. Figure 48
shows the possible transitions of all orders for a system of two equiva-

lent deuterons. When w, > (small quadrupole values) is not met we

1~ Y
have already seen that double quantum coherence cannot be prepared effi-
ciently, and here the dipolar part of the Hamiltonian may have a signif-
icant effect relative to the other terms. In a powder the double quantum
preparation pulse is optimized for the regions of maximum intensity, which
generally have large mQ values. In this case the pulses are rather short
and we do not expect the dipolar Hamiltonian to have significant effect
during this short time. During the probing pulses in any of the double

quantum sequences we strive to have wy >> wq, hence the dipolar terms

may certainly be ignored.
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If the analysis of double quantum coherence is performed with
the double Fourier Transform technique (often preferable so that just one
spin is observed) then the amplitude of all dipolar lines corresponding
to the spin of interest must be included to faithfully represent the
total double quantum operator. In some cases it is of interest to ob-
serve single quantum lines which correspond to onme particular double quan-
tum transition,77 for example the double quantum transition in the asym-
metric manifold of Fig. 48 may be isolated by otserving transitions

3) - 6) and 6) > 8) of Table V.

c) Powdar Lineshape

As discussed zbove,the preparation and detection of double quam—
tum transitions in a powder with dipolar coupling presents no new prob-
lems. TFor two deuterons we have seen that each orientation gives a three
line spectrum. If we assume that the spins have no anisotropic chemical
shift, then this is exactly analogous to the quadrupole coupled spectrum
of a spin 3/2. Since the dipolar coupling has axial symmetry, depending
only on the relative orientation of the internuclear vector and the field,
a powder of paired spins-1 will give the same spectrum as a powder of
spins 3/2 with an axial field gradient tensor.1 This is identical to the
pattern of pairs of spins-1/2 of Pake66 with an additional sharp line in
the center.

If the spins have anisotropic chemical shifts as well as di-

polar coupling, the powder pattern becomes quite complex. It can be cal-

only if the shielding tensor has axial sym-

metry and its symmetry axis 1is aligned with the dipolar axis. Other
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cases may be calculated with use of a computer.

If three equivalent spins are dipolar coupled, then the powder
pattern will be like two overlapping spin-1 quadrupole patterns, one
twice the width and half the intensity of the other, plus a line in the
center. This is already quite a complex powder pattern, and requires
quite good resolution experimentally to observe. While powder patterms for
other arrangements of spins are easily generated, they will be very com—

plex and hence require exceptional resolution to observe experimentally.

d) Echoes

Since it is rather unusual to find spins without any chemical
shielding anisotropy, it would be nice to have a method for removing it,
without eliminating the dipolar structure of interest, to simplify di-
polar powder patterns. It is possible to achieve this through use of am
echo of the Haan type,78 since the chemical shift is linear in Iz while
the dipolar coupling is bilinear. It is well known that a 7 pulse fol-
lowing a m/2 pulse causes refocusing of chemical shifts (and of course
off resonance and magnetic field inhomogeneity terms which have the
identical form) while it does not change scalar or dipolar couplings. A
mathematical analysis of this phenomenon and a discussion of its limita-—
tions is postponed until the next chapter. From the above argument we
expect a single quantum T pulse in the center of the double quantum
evolution period to remove all evolution from off resonance, shielding
anisotropy and magnetic field inhomogeneity terms while leaving dipolar
and scalar contributions to the evolution unchanged. Such echoes would

also be of use for removal of magnetic field inhomogeneity contributions
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to the linewidth in studies of relaxation in single crystals or liquid

crystals.

7. Broadening Mechanisms

In deuterium NMR there are several broadening mechanisms in
addition to those for high resolution NMR of spin-1/2 nuclei in solids.
In usual dilute spin NMR the only sources of broadening (excluding motion
as studied in the first chapter) are magnetic field inhomogeneity and
dipole-dipole couplings among the observed nuclei, or other magnetic
nuclei which are not decoupled. Both of these may be minimized by the
spectroscopist, the first by shimming the magnetic field to high homo-
geneity and the second by diluting the magnetic nuclei in a host of non-

12y,

magnetic ones (13C in
Of course these also apply to deuterium NMR, but in addition
one must consider other sources of broadening. In single crystal samples,
defects in the lattice structure cause different parts of the crystal to
have slightly different orientation with respect to the magnetic field.
Since the large quadrupole couplings change rapidly with orientation, a
small defect may cause linewidth large enough to obscure chemical shifts
or dipolar couplings of interest. Since double quantum NMR removes the
effect of quadrupole couplings, crystal imperfections will no longer be
important. Similar broadening is observed 1n liquid crystal samples due
to imperfect alignment of the molecules with the field, and has been suc-

cessfully removed with double quantum NMR.76



The quadrupole coupling as presented in Chapter I was calcu-
lated to first order. In fact if the energy is calculated to second or-
der a correction term is necessary. For an axial field gradient tensor

this correction for the m magnetic quantum number level is

2
w
E(2)= - mh M Cé coszesin26+-sin46). (II1-80)
m lZwO 2
where (w. = 3e2qQ/2h is the maximum quadrupole splitting. This correction

QM

term moves the *1 levels in opposite directions by an equal amount. This
preserves the center of gravity of the single quantum spectrum, so that
chemical shifts determined by single quantum single crystal rotations

will be unaffected. However this does shift the double quantum transition
position and hence will complicate analysis of double quantum measurements,
in single crystals and powders. In a single crystal the quadrupole tensor
orientation and magnitude may be known and the position of the double quan-
tum line may be corrected to determine accurately the chemical shift. 1In
a powder, however, many different orientations contribute to the same
chemical shift, so it is not simple to correct the powder pattern line-
shape. If the relative orientation of the quadrupole and chemical shield-
ing tensors is known, then a correction for the anisotropy may be esti-
mated. For wQM = 3XlO5 Hz and mo = 2.8><107 Hz (appropriate for many rigid
solids in a field of 42 kG), the second order shift contributes ~100 Hz
(3.5 PPM) to the width. While not a severe problem, one must be aware

of this for studies of small chemical shifts. Motional averaging, of

course, reduces the second order shift as well as the first order.
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The last broadening we consider is lifetime broadening due to
very short spin lattice relaxation times. The large quadrupole coupling
of deuterium provides a very efficient relaxation mechanism when motion
occurs with a frequency near the Larmor frequency of deuterium. If Tl is
reduced to 10 msec (much shorter Tl's have been observed) then this will
contribute ~ 1 PPM to the homogenous linewidth of both single and double
quantum transitions. This cannot be eliminated except by changing

the sample temperature to move the frequency of motion away from the

Larmor frequency, lengthening the relaxation time.

C. Experimental
1. d-1 Benzene
The first measurement of deuterium chemical shielding aniso-
tropy in a powder was made on a sample of d-1 benzene. Chemical shield-
ing in benzene is of considerable interest both theoretically and prac-
tically as the simplest compound which can exhibit ring current induced
79

chemical shifts. At the temperature of the experiments (-40°C) it is

,80 .
in a manner

well known that benzene rotates about its sixfold axis
exactly analogous to hexamethylbenzene. Therefore we expect the quad-
rupole coupling tensor and chemical shielding tensor to be axial with
the unique axis out of the plane of the ring. The chemical shift in the
unique direction should be downfield from the perpendicular direction,
due to the ring current.

The sample used was 10% d-1 benzene (Merck, 98% d-1) doped into

H
cr

enzene, sealed under vacuum in a & mm diameter pyrex tube. This

dilution was used to reduce deuterium—=deuterium dipolar couplings and
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hence their contribution to the homogeneous linewidth. The liquid was
frozen quickly to produce a polycrystalline sample, then maintained at
-40+3 C. The single quantum spectrum showed a quadrupole powder pattern
of almost axial symmetry, giving a value for eQVZz = 96 kHz. The values
for nonrotating benzene have been previously measured8l as eQVZZ = 181

kHz, n = 0.041. If we assign Vv (using the convention that vll’v22 and

33

Y] represent the three discontdnuities in a powder spectrum and

33
Iv33]>[v22l>[vlﬂ) to be along the C-D bond and Vv,, to be out of the plane
of the ring we would predict eQsz = 94 kHz, quite reasonable agreement.
Tl for the deuterium was estimated to be 10 msec and hence relaxationm
could contribute significantly to the homogeneous linewidth.

Figure 49 summarizes pulse sequences used in FTDQ NMR. For the
present sample pulse sequence B was used with Pl y phase, 20 kHz amplitude

and 25 ysec length, P_ x phase, 50 kHz amplitude and 3 usec length, and

2
P, x phase, 50 kHz amplitude and 4.5 usec length. The double quantum

3
evolution time T was incremented in units of 100 usec, and T' was fixed
at 100 usec. High power proton decoupling was applied throughout prep-
aration and detection periods. The experiment was performed 500 Hz off
resonance from the liquid line pgsition. Figure 50 shows the double
quantum free induction decay obtained by taking the echo amplitude for
each T value. The Fourier Transform of this is shown in Figure 51.
From this powder pattern we have determined Ao = - 6.5%1 PPM (Ao‘=0“—0i).
The homogeneous contribution to the linewidth is ~ 3PPM and is probably
a combination of residual dipolar, relaxation and second order quadrupole
contributions. The 0, element is as we expected downfield from g .

Recently this anisotropy has been measured using multiple pulse
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techniques,s2 and a value of A0 in good agreement with ours was obtained.
Figure 52 shows the theoretical prediction for the powder lineshape, in-
cluding transfer functions for all pulses, convoluted with Gaussians of
varying widths. The agreement of C with experiment is good, although at

this degree of broadening all fine details are lost.

2, Ferrocene

To verify the reliability of FIDQ results we wished to compare
shielding anisotropy for a compound which had been carefully studied with
multiple pulse techniques. Ferrocene was a convenient choice since it is
easily made, is a solid at room temperature and has been carefully studied
with multiple pulse NMR.3 It is very similar to benzene in many ways in-
¢luding motion and we expect it to have similar shielding characteristics.

The sample of 57 randomly deuterated ferrocene was prepared
using the method of Fritz and Schaefer,83 exchanging with deuterophos-
phoric acid in dioxane. The isotopic label was assumed to be randomly
distributed and was quantified by mass spectral analysis. Approximately
200 mg of finely ground labelled ferrocene, compressed into a 6 mm diam-
eter pellet, was used for the present experiments, done at room temper-
ature 20*3°C.

The single quantum spectrum Fig. 53, shows an axial quadrupole
powder pattern with eQsz = 96.81+0.01 kHz and n < 0.002. This is as
expected very similar to the values for benzene.

Pulse sequence D of Figure 49 was used for the double quantum
measurements. Pl and P2 were 20 kHz amplitude and 25 usec length, of

arbitrary phase. P3 and P4 were x and y phase respectively ~ 75 kHz
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amplitude and 3.5 psec width. T was varied in units of 50 uysec and T2
and T' were fixed at 1 msec and 40 usec respectively. High power proton
decoupling was applied during all times except TZ' Figure 54 shows the
double quantum free induction decay generated by taking the amplitude of
the echo at each T value. The Fourier Transform of this is shown in
Figure 55. The asymmetric line observed is consistent with an axial
powder pattern with Ao = - 6.5%1 PPM as for benzene. The homogeneous
linewidth is somewhat greater than for benzene and is probably due to
deuterium dipolar couplings. The deuterium concentration of 57 is con-
siderably higher than in the benzene sample. Tl was estimated to be
longer than 50 msec and hence should contribute to the broadening. The
agreement of our value for Ao with that of Haeberlen.,'3 Ao=-6.5%0.1 PPM
from single crystal multiple pulse studies, is gratifying. The single
crystal value has been determined on a spherical crystal with corrections
for bulk susceptibility anisotropy, and hence is far more accurate than
our estimate. In a powder sample our resolution appears somewhat better

3
than is achieved by multiple pulse methods. FTDQ measurement at higher

dilution should yield even better resolution.

3. BaClO3°D20

Hydrated salt crystals provide a convenient source of paired

deuterons in which to study dipolar couplings. Deuterated barium chlorate

monohydrate has been previously studied using cw NMR.84 These studies

showed that at room temperature the water molecules make jumps of 180°

about their C, axes. Similar behavior has been observed in other

2
85,86

hydrated crystals. This motion assures that the deuterons in any
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water molecule will have the same quadrupole couplings, and the same
chemical shift. Chiba84 observed that the short deuteron-deuteron dis-
tance of 1.6 A led to resolved dipolar structure in the single quantum
spectrum, in spite of rather large linewidths. Since there is only one
type of water, crystallographically, the single quantum spectrum is a
single pair of quadrupole satellites consisting of dipolar multiplets,
and provides a convenient system for comparison of single and double
quantum dipolar structure.

The sample was a single crystal of barium chlorate monohydrate
grown by slow evaporation of nearly saturated DZO solutions. Commercial
0 (Biorad Laboratories) then evaporated

BaCl0 0 was dissolved in 98% D

3'H 2
to dryness. This procedure was repeated, and the resulting "powder was
again dissolved in DZO' This solution was allowed to evaporate in a
closed box over a period of approximately two weeks. When crystals of
sufficient size (5 mm X 3 mm X 1 mm) had grown they were removed from the
solution. The crystals were clear and had well developed faces. They
were mounted on the end of a Kel-F plastic rod which was then mounted in
a goniometer, so that the crystal could be rotated about an axis perpen-
dicular to the magnetic field. The orientation of the crystal was not
determined, rotations were performed only to adjust the quadrupole and
dipole couplings to convenient size.

A single quantum spectrum of the crystal in the orientation
studied is shown in Figure 56, obtained without proton decoupling. The
splitting between the satellites is 138.3 kHz. The dipolar structure

shown in the expansion is a center pattern of three lines (one incom-

pletely resolved) as expected from two dipole coupled deuterons (Fig. 46),
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for which wQ and d have opposite signs. In addition there are two weak
outer lines which come from HOD molecules. The H-D coupling is three
times the D-D coupling, as expected. The H impurity is a result of ex-
change of water in the air with the D20 solution. Crystals grown more
slowly showed ah even higher concentration of H. That these extra lines
are from HOD molecules and not crystal imperfections was confirmed by
comparison of proton coupled and decoupled spectra. From this spectrum
we determine d = 350 Hz.

Double quantum measurements were made employing pulse sequence
A of Figure 49. The first pulse was arbitrary phase, 55 kHz amplitude
and 9 usec length. The second pulse was 80 kHz amplitude and 3 usec
length. T was incremented in units of 25 usec. Figure 57 shows Fourier
Transforms of proton coupled and decoupled double quantum decays. In the
proton coupled spectrum the HOD lines are not observed, and the spectrum
is the predicted symmetric 1:1:1 triplet. When the protons are decoupled
the HOD lines are collapsed and contribute to the center line. The split-
ting between lines is 1340 Hz giving a value of d = 335 Hz, in good agree-
ment with the single quantum values. There is apparently a small differ-
ence in width among the three lines which is not understood. Tl was mea-
sured on this crystal in an orientation with small quadrupole coupling
and was found to be ~ 2 msec. This implies a contribution of 160 Hz to
the homogeneous linewidth. The linewidths in the spectra of Figure 57
are approximately 750 Hz, and are probably determined by unresolved di-
polar couplings to distant water molecules. It is clear from the spectra

that the simplification of dipolar structure in the double quantum exper-

iment leads to a practical improvement of resolution, and a somewhat more
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accurate determination of the dipolar coupling.

4. Hexamethylbenzenes, d-1, a,B d4-2, o,B,y d-3, d-18

In the development of new techniques (to help define conditions
for their optimal application) it often valuable to study a related series
of compounds. To this end a series of partially deuterated hexamethyl-
benzene samples was studied. The molecular motion of this compound at
room temperature reduces the quadrupole coupling, greatly reducing the
requirements for ideal single quantum pulses. The molecular motion also
greatly reduces the chemical shielaing anisotropy, so that simple dipolar
structure could be observed in powders. The simple crystal structure and
reasonable relaxation time make it practical to study single crystals as well.

The partially deuterated hexamethylbenzenes were synthesized
from pentamethylbenzene and paraformaldehyde by the procedure described
in Appendix H. They were characterized by high resolution NMR and mass
spectroscopy. d-18 Hexamethylbenzene (98% deuterated) was purchased from
Merck and used without further purification. Diluted samples were pre-
pared by melting together desired weights of labelled and unlabelled
material., Single crystals were grown by slow evaporation of saturated
carbon tetrachloride solutions, yielding platelike crystals rather than
the usual needles. These crystals were fragile but could be glued to
goniometer mounts without difficulty. The crystals were clear and had

well developed faces.
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a) Powder Spectra - Single Quantum

Since there is a great deal of molecular motion in HMB, the
quadrupole coupling is greatly reduced from the large values for rigid
methylene deuterons (eQVZz = 174 kHz in cyclohexane8l and 166 kHz in
glycine87), and‘hence it is easy to obtain very good spectra for these
compounds. Figures 58, 59 and 60 show the single quantum spectra of neat
d-1, ao,8 d-2 and o,B,Y d-3 HMB camples. The results are summarized in
Tabl2 VII. These are rather startling in several ivespects. To begin,
we know that at room temperature HMB undergoes rapid rotation about its
sixfold axis. This would lead us to expect that n would be zero, as ob-
served for ferrocene, which also undergoes rapid uniaxial rotation. From

the crystal structure of HMB37’38

(space group le’ one molecule per unit
cell) we know that molecules are stacked in planes with each molecule
tilted 5° out of the plane. Thus a particular methyl group may have two
environments, lying in the plane (1/3 of its possible orientatiomns) or
slightly out of plane (2/3 of its orientations). The nonzero asymmetry
parameter could come about in two ways. rirst, that the deuterated methyi
spends less time in one type of site than the other, or second, that while
in one typc of site it has a different quadcupole coupling constant from
the other. The first possibility is ruled out by natural abundance 13C
measurements on the d-1 HMB sample. A biased rotation of this sort would
cause the ring carbon tensor to be nonaxial with the same asymmetry param—
eter as the deuteron. Figure 61 shows carbon spectra for undeuterated HME
and d-1 HMB, with a theoretical spectrum for the biased rotation case.

From these we conclude that the source of asymmetry must be different

quadrupole coupling tensors for different sites.
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Table VIIL
COMPOUND eQV’zz n
d-1 HMB 18.95 kHz 0.096+0.002
o,B d-2 HMB 20.9 kHz 0.08 x0.01
a By d-3 HMB 22.2 kHz 0.07 *0.01
d-18 HMB 22.0 kHz 0.07 £0.02
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The increase in magnitude of the quadrupole coupling in going
from d-1 to d-2 to d-3 is also rather surprising. This could come either
from a change in the static electric field gradient upon successive deu-
terations, or from a change in the vibrational and rotational averaging.
Since the field gradient is greatly averaged by motion the change in
static field gradient would have to be quite large to explain the change
observed. However the averaging which occurs from methyl group rotation
is very sensitive to the C-C-D bond angle. A static change of ~1.2° in
this angle upon going from d-1 to d-2, and 0.8° upon going from d-2 to
d-3 would explain the observed spectral changes. Such a static argument
is certainly not a complete description; dynamic averaging should be con-
sidered. It does, however, make a change in averaging seem a reasonable
explanation. Measurements on a number of other deuterated aromatic methyl
groups have been made. The quadrupole coupling constants, eQsz’ for
toluene, p-xylene and o-xylene are all 52 kHz.88 Methyl rotation gener-
ates an average quadrupole tensor, with the VZz direction along the rota-
tion axis. The directions of V%x and V&y must be perpendicular to this,
but cannot be determined further. The sixfold rotation in HMB will av-
erage Véz with a value between V%x and V&y. The coupling along the six-
‘fold rotation axis will become the new VZz value. From the data of
o—xylene88 (n = 0.094), we would predict HMB to have an averaged sz
between 17.6 and 21.3 kHz. However in the HMB samples the values range

from 14.2 (d-1) to 16.7 (d-3). The reason for this discrepancy is not

understood.
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It is apparent from the powder spectra that the dipolar line-
width has increased in going from d-1 to d-3 HMB. For high resolution
studies we must limit this contribution to the homogeneous linewidth if
we are to accurately measure other couplings. The quadrupolar echo pro-
vides a convenient way to directly observe the broadening by these cou-
plings. We have seen that at the echo point all evolution due to the
quadrupole coupling has been removed, (III-54). The spectrometer res-
onance frequency may be adjusted so that Aw = 0, so that the damping
function Y(t) may be observed. The damping will come from two sources,
dipolar couplings and chemical shift anisotropy. Their contributions
may be separated by dilution, since dipolar couplings are concentration
dependent but shielding anisotropy is not. Figure 62 shows the echo
amplitude vs. time for several HMB samples with different deuterium con-
centrations. The decay time for the echo amplitude steadily increases
with decreasing concentration. Even in this motionally averaged solid
there is a significant change upon dilution from d-1 (5.5% total deuterium
concentration) to 10% d-1 (0.5% d) at which point chemical shielding prob-
ably dominates the linewidth. A very similar approach has been used for
measurement of the intermolecular contribution to dipolar linewidths in
systems with strongly coupled pairs of spins - 1/2,89 (these pairs of
spins behave very much like a spin—lgo). Figure 63 shows the expected
modulation of echo amplitude when the same experiment is performed off

resonance. Equation (III-54) may be rewritten as:

It

axl(ZT)
(I1I-81)

ayl(ZT)
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This is exactly the behavior one would expect of a signal evolving with-
out quadrupole couplings with an added on-resonance component. This
might be used to measure shielding anisotropy in very dilute systems
(if shielding and dipolar terms are of comparable size the evolution

under echo sequences may be very complex, see Chapter IV).

b) Single Crystals a,B d-2, ao,B,y d-3

The dipolar couplings within a methyl group are much larger
than the linewidth determined by intermolecular couplings and, as for
DZO in hydrates, then yield resolved dipolar structure. The d-2 and d4-3
HMB crystals were goniometer mounted so that they could be rotated to
give nearly the maximum possible quadrupole splitting. Figure 64 shows
the single quantum spectrum of the d-2 HMB crystal. The resolution is
considerably better than in the DZO spectrum and we are not bothered by

extra proton split lines. The quadrupole coupling v = 29.9 kHz, the

Q
dipolar coupling d = 104 Hz, and the linewidth is ~ 160 Hz. The double
quantum spectrum shown in Figure 65 was obtained with the two pulse

sequence, A of Figure 49, with P, arbitrary phase, 12.6 kHz amplitude

1
and 33 usec length. Again it is the expected 1:1:1 triplet, with split-
tings of 430 Hz giving d = 107 Hz in good agreement with single quantum.
The linewidth of the center double quantum line is 250 Hz, somewhat
greater than the single quantum value. The increase in linewidth is an
indication that field homogeneity may be important in determining the

linewidth in this sample. The difference in linewidths among the double

quantum lines is not understood.



112

Figure 66 shows the single quantum spectrum of the d-3 HMB
crystal. Again considerable structure is resolved, yielding values
vQ = 16.0 kHz and d ® 119 Hz. The double quantum spectrum in Figure 67
was generated with the same pulse sequence used for the d-2 crystal. The
structure, as predicted, is a symmetric five line pattern with intensities
1:2:3:2:1. The dipolar splitting obtained from this is 115 Hz, and is
probably more accurate than the single quantum value. The higher deu-
terium concentration (177%) has broadened the lines considerably, and more
accurate dipolar couplings could be obtained in a diluted sample, espe-

cially with the simple local field structure in the double quantum spec-

trum.

c) Double Quantum Powder Spectra d-1, d-2

While the single crystals of HMB showed structure from the
dipolar couplings in the single quantum spectrum, the powder spectra do
not. Then to gain any information about dipolar couplings in a powder
we must use the Double Quantum approach, exactly as used in chemical
shielding studies.

The chemical shielding anisotropy in HMB is expected to be
rather small. If the shielding tensor in a rigid methyl group were axial
and aligned along the C-D bond with A0 = - 6 PPM (in analogy with the
protons C-H in malon&c acid3), the molecular motion should reduce A0 by
about the same amount as the quadrupole coupling (as we have seen, a
factor of about 10) so that Ac observed should be less than 1 PPM. How-
ever there may be a component of shielding f;om a ring current in analogy

to benzene, which would not be averaged by the methyl or ring rotation.
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It is difficult to estimate the magnitude of such shielding, but from
the data of benzene it seems quite possible that it could be 1-2 PPM.

A sample of 207 d-1 HMB was compressed into a 6 mm X 1 cm
pellet. The double quantum spectrum of this sample taken with pulse
sequence D of Figure 49 is shown in Figure 68. Pulses Pl and P2 were
each 30 kHz amplitude and 48 usec respectively. Pulses P3 and P4 were
x and y phase, 80 kHz amplitude and 3 usec long. The double quantum
free induction decay was generated by taking the amplitude of the echo
for T values incremented in 200 psec units. The spectrum is a single,
almost symmetric line of width =~ 200 Hz. The lack of resolved structure
indicates that the broadening is at least comparable in size to the
shielding anisotropy, perhaps larger. T1 was measured to be ~ 70 usec,
indicating that lifetime is not contributing significantly to the line-
width. The observed linewidth must then come from homonuclear dipolar
couplings, other T2 relaxation processes, and magnetic field inhomogeneity.
From this spectrum it is not possible to accurately determine the shield-
ing anisotropy.

Double quantum spectra were also taken for samples of 100% d-2
and 10%7 d-2 HMB, prepared in the same way as the d-1 sample, using the
same pulse sequence as described above except sampling double quantum
coherence in 100 usec units. These are shown in Figure 69. In the 1007
d-2 HMB sample dipolar structure is present, but poorly resolved. The
distance between the shoulders is 435 Hz yielding a dipolar coupling
d = 109 Hz. The spectrum obtained by diluting the d-2 HMB to 107 shows
a considerable improvement in resolution, due to reduction of intermolec-

ular dipolar couplings. The splitting between peaks is ~ 425 Hz giving
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d = 106 Hz, in good agreement with the value expected, from the single
crystal results.

As for chemical shielding, theoretical lineshapes are the ideal
shapes multiplied by the transfer function for the pulse sequence used to
generate and probe double quantum coherence. The transfer function for
the sequence used for these experiments is shown in Figure 70. For small
small quadrupole couplings the efficiency is not very good in preparation,
but the echoing pulses have greater than 957 efficiency over the entire
range for HMB. The theoretical spectra generated with this transfer func-
tion @ssuming no shielding anisotropy) are shown in Figure 71, with
Gaussian broadening of several values. The broadened lineshapes agree
very well with the experimental for both 100% and 10% samples. Good
agreement could not‘be obtained with theoretical spectra not including the
transfer function. The agreement of the single crystal and powder values
for d and the fact that the center line in the powder spectrum is centered
between the other peaks and is quite symmetric argues against any large
contribution from chemical shielding anisotropy in this spectrum.

The broadening used to simulate the 1007 sample's spectrum was
~ 220 Hz, very similar to that observed in the crystal of the same mate-
rial. For the diluted powder the broadening was reduced to 140 Hz. This
demonstrates the importance of working in dilute spin systems if very high

resolution is to be obtained.
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In all of the powders studied to this point, the quadrupole,
and hence all other couplings, have been averaged by motion. Anisic
acid (p-methoxybenzoic acid) deuterated at the acid position provides a
system with no motion. As one would expect the quadrupole coupling is
quite large and hence the requirements for good single quantum pulses
are proportionately increased. However such pulses are still quite with-
in the capabilities of spectrometers with modest r.f. power amplifiers.
The sample was prepared by dissolving commercial anisic acid

(Aldrich) in 98% D,0, evaporating solvent and repeating. Finally trapped

2

D20 in the crystals was removed by sublimation at reduced pressure. The

resulting powder was compressed into a 6 mm X 1 cm cylinder, and used with-
out other treatment.

The single quantum spectrum of anisic acid, Figure 72, was
obtained by Fourier Transforming half a quadrupolar echo, generated by
using 100 kHz, 2.25 uysec pulses separated by 30 usec. The transfer func-
tion for this sequence has already been presented in Figure 45, and dis-
tortions are quite evident in the spectrum. From this we obtain eQsz=

169.0+1.0 kHz and n = 0.132+0.004. These values are somewhat larger than

64,86

those previously measured in carboxylic acids. Although the carboxyl

: . . . . . . 9
region is quite rigid, rotating methyl groups quite near the deuterons

provide a relaxation mechanism so that T, is only a few seconds.

1

The double quantum spectrum was taken using the four pulse

sequence, D of Figure 49, with P, = P2 37 kHz and 13.5 usec long, T, and

1 2

7' fixed at 1 msec and 40 usec respectively. P3 and P4 were 80 kHz and

30 ysec. T was incremented in units of 50 usec and 50 points were taken
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in the double quantum FID. The free induction decay obtained from the
echo amplitude and its Fourier Transform are shown in Figure 73. The
spectrum shows considerable structure, however analysis is quite diffi-
cult because of the simultaneous presence of chemical shielding and di-
polar couplings. Anisic acid, as most carboxylic acids, crystallizes as
dimers, bringing pairs of deuterons quite close together. From the crystal
structure data93 we can estimate the distance between deuterons in the
dimer at 2.3 A, which indicates a maximum dipolar splitting of ~ 930 Hz.
Chemical shielding has been studied in a number of simple acids,3 from
which an estimate of 25 PPM seems reasonable for Ao, or in the double quantum
spectrum ~ 1400 Hz. The chemical shielding tensor axis is probably
aligned along the 0-D bond and the dipolar tensor axis will make an angle
of about 72° to this, so we expect complex structure. With the somewhat
limited resolution in the present spectrum no detailed analysis was at-
tempted. The deuterium concentration is probably too high to obtain very
good resolution, and studies of the chemical shielding could be performed
on a 10% deuterated sample, for which dipolar couplings would not be a

problem.

D. Discussion

In this chapter we have discussed the principles of FTDQ NMR in
single crystal and powder samples. The spectroscopy in single crystals is
quite simple both in principle and in practice. Powder samples pose some
problems due to the presence of a wide range of quadrupole couplings, and
perfect double quantum powder patterns cannot be obtained. However, the

distortions incurred in powders are predictable and do not generally degrade
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the information content of spectra. The influence of dipolar couplings
on double quantum spectra is also quite simple and is simply predictable.
The experimental feasibility of these techniques has been demonstrated by
measurements of chemical shielding in powders and dipolar couplings in
both single crystals and powders.

These techniques provide an important supplement to multiple
pulse NMR for determination of couplings of interest in simple systems.
In addition they provide the opportunity for labeling studies. One or a
small number of sites in a large molecular system may be deuterated, and
thus selectively observed when multiple pulse spectra would be far too
complicated for analysis, due to presence of many different proton types.
Chemical shielding can provide information about the electronic environ-
ment of the-spin and double labeling can give dipolar couplings to provide
structural information. This expands greatly the number of systems which

may be gainfully studied with NMR of hydrogen isotopes.
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IV. MULTI QUANTUM NMR IN DIPOLAR SYSTEMS

A. Introduction

In the last chapter w= have investigated the use of quadrupole
couplings in generating double juantum coherences. To observe such a
nonlinear efiect it was necessary to have a Hamiltonian which had terms
bilinear in th:» spin operators, such as quadrupole coupling. Ernst, et
al., have used scalar couplings, also bilinear, to induce multipl.
quantum transitions iu liquids.65 In this chapter we investigate the use
of dipolar couplings among spins %-for generating multiple quantum
coherences. We will see that in large spin systems the high order
multiple quantum spectra are simple, and should be easier to interpret
than the single quantum spectra.

The principles of multiple quantum spectroscopy in dipolar
coupled systems are the same as discussed in the last chapter. Howzver
the operators introduced for calculations in the quadrupolar system are
not well suited for larger systems, so a new set will be used. As the
number of spins becomes large the calculations get quite complex, and
hence feasible to do exactly only with a computer. However, we will see
that many aspects of the experiments can be predictad using arguments

of symmetry and statistics alone.

B. Fictitious Spin - %-Formalism
The operator basis defired in the last chapter was used
initially for calculations in pure nuclear quadrupole resonance, making

use of the eigenfunctions of Izz. In dipolar or scalar coupled systems
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there is no natural extension of this basis set. Vega 0 and Ernst
have independently proposed a new formalism, an extension of Abragam's
s . 1 . . s .

fictitious spin - E;whlch can be used in description of any spin system,
since it is defined in terms of the eigenfunctions of the Hamiltonian.
As in the lastlchapter calculations are performed by writing the Hamil-
tonian and density matrix in terms of these operators, then taking
advantage of their simple commutation relations to predict evolution.

In any spin system with n eigenfunctions which are labeled
simply by number ]i> i=1,2, ... n, we define three operators for each
pair of states ]i> and ]j> (or for each generalized transition li> > lj>)

.1 , ..
analogous to the spin §'P8u11 matricies:

reddgae _ oo didgay o 1
<i|r 3> = gl = 3
TS Ry g OO §
<A1 5> = - gl = - 5
1.1 LT 1
<1[Iz [i> = - <J|Iz [3> = 3
<k|13[2> = 0 for all k,& # i,j (1v-1)

This set has linear dependence among the z operators

i 4 op3h g M ) (1V-2)
zZ Z VA

These operators have been defined so that they have commutation relations

. 1 . o
analogous to spin -3 for a single transition:

g N
(1, 1y =11 p,q,r = x,v,z or (1V-3)

cyclic permutation
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We must also have commutators for connected transitions

(s, Iik] - [I;'k, ng] =% I}i’j

[I}i{k, ng] = % Iij

[I}i(k, ng] = - % Ij;k

[I)i,k, ¥y - 2 f

(1, 1,1 = 0 (TV-4)

Operators for transitions without a level irn common commute. Because

of the commutation relations (IV-3) we may again call this a fictitious
) 1 . ij ij

spin - E-formallsm. The IX and Iy operators represent a coherence

between levels i and j, regardless of the difference in quantum number

between the levels, which we will call n quantum coherence where n is

the difference in magnetic quantum number between i and j.

C. Comparison for Spin-1
Of course these operators, as a complete basis set, may also
be used for description of a spin-1 system. For a spin-I1 we may write

the observables as a sum of fictitious operators

F = Z ;VClJ IlJ o = X,y
a e a
1]
= Z ij (4]
FZ a C IZ (1Iv-5)
1]

i3
where C I = I(I+1) - MiM" For comparison, we may write the fictitious
J
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le - \/1_5(1}1(2 + I>l<3)

T L=t

Lyt &) R

I, =ﬁ(1}l{2 - 1)

I, -2 @ -t 1P (1V-6)
While the operators 1 have matrix elements hetween more than two of

b

the states 1, 2 and 3, both are complete basis sets and hence may be
interchanged by a formal change of basis set. Of course the operators
I and I;J will have physically different meanings.

Psq

The Hamiltonian for the spin-1 system in the rotating frame,

1 2
i = —AwIz + S-wQ (31Z - I(I+1)) s (Iv-7.)
may then be rewritten
12 23 13 2 12 23
H = —Au)(Iz + Iz + IZ ) + 3 wQ (IZ - Iz ) (1Iv-8)

To calculate the effect of radiation near one sattelite, as done in

Chapter III B.2., we let Aw = —wQ + 6w and include r.f. to give
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- 12 23 13 2 12 23 12 23
JC: - —_ -
( wQ-+6w)(Iz + Iz + I ) + 3 wQ(Iz IZ ) + Zwl(IX + Ix )
(Iv-9)

As we ignored the I term in the r.f. part previously, we now ignore

y2

2
2 wy Ix3’ since the energy differences of levels connected with off

diagonal elements are much larger than wl. The Hamiltonian may then be

rewritten as:

13

X = 8w Iiz +-vﬂztu I12 - (ﬁ w, - 6w)(I§3 + Iz ) (IV-10)

1 "x 3°Q

This may be tilted to give an effective Hamiltonian along the z axis,

with UlZ(y) = exp(-1ib6 Iiz) and 8 = arctan 2 wl/éw:

_ 12 4 23 | 13
ﬂi = w, Iz - (3 wQ (Sw)(Iz + I, ) (Iv-11)
with
w, = (2 wlz + Gwz)l/z

The equilibrium density matrix may be written with the new operators:

p(0) = b(Ii2 + 153 + 13 (IV-12)
Tilting this with the operator used above
13

0 (0) = b[(cosd Iiz - sind Iiz) s+ )] (I¥-13)

For a pulse of time t applied to p(0) we find
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2 , 2 12 1 . 12
p(t) = b[(cos 6 + sin © coswet)IZ + 2(l~coswet)31n6 IX
. 2 23 1
- sinw t sinB Il" + (I77 + 1‘3)] (IV-14)
e X z z
Of course with 6 = 90° this produces the same evolution as calculated

in Chapter III. The methods of calculating double quantum processes
follows exactly that already described,go’94 and will not be repeated

here.

In general the density matrix may be written as

p(t) = a_ + Z [aiz(t) Itz+ a§3(c) 123+ aé?)(t) I§3] (1V-15)

o
A=X,¥,Z

With these operators the evolution is quite simple, and applying the

commutation relations (IV-4) we find

1500y - i _ Aty s

a (t) ay (0) coswijt ay (0) Slnwijt

alJ(t) = alJ(O) sinw..t + alJ(O) cosw, .t

y X 1] y 1]

ad(e) = ad() with w,, = w.~w, = <i|#]i> -<jlx|5>
z z ij i

(IV-16)

All evolution of ij operators is restricted to the ij space and occurs
as a rotation about the z axis! This is very convenient and simple for

calculation of evolution.

D. Preparation and Detection

As for the last chapter it is clear that the multiple quantum
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coherences evolve without observable signals, so we again must break up
the experiment into three parts: preparation, evolution and detection.
This is shown schematically in Figure 74a. The preparation (P) and
detection (D) operations are combinations of pulses and delays which we
will specify shortly. We start in thermal equilibrium with density
matrix p(0) =l)Iz and detect the amplitude of IZ at the end of the experi-

ment. Then for an evolution time te we find

<I_(t)>=Tr[De °P IZP+ e ot 1] (IV-17)

If we evaluate this in terms of the eigenfunctions of #, the Hamiltonian

for free evolution (I + ¥ + ¥ )
z cs D

iw. t

+ —1w, + +iw,te
:Z::z: <i[p” 1 p[j> e T <i[p IR i e
i 3

<Iz(te)>

+ + -iw, .t
<i|p" 1.D|j><j|P TP |i> e It °© (IV-18)
n J Z Z

The multiquantum evolution is given by the oscillation of wji,the energy
difference between any two levels of the system. It is the matrix elements
of D+IZD and PIZP+ which determine the amplitudes of the various multi-
quantum lines.

The approach we have applied to preparation and detection is
similar to that of Chapter III B.5. and also to the approach of Ernst,
et al. Two strong (single quantum) pulses are applied spaced by a
time T, represented schematically in Figure 74b. We note that some

selectivity may be achieved through careful choice of pulse phases and
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experimental conditions, as will be discussed shortly.
To calculate the effect of the preparation and detection operators

we write them out explicitly:

i6T
4 (IV-19)

where 6 = w, t , p and q specify the phase of the r.f. pulses and ﬂb is

1lp

the Hamiltonian during the preparation period. The detection sequence

has the same form. This may be simplified considerably in several cases

of practical

bl
D
XX

m/2 about the x- axis.

interest, which we examine below.

Case 1. p=-x, q=Xx, 68 = 7/2 and ﬂb = Hb the secular dipolar Hamiltonian.
In this case we may write:
13C
' Dxpr -i'g Ix +i-g Ix
P =e JCDXX== e ﬂb e (1Iv-20)

may be interpreted as the dipolar Hamiltonian after a rotation of

The effect of this rotation is most conveniently

calculated using the dipolar Hamiltonian in its spherical form (see Appendix)

2 . .
K o= D 1% a1
D &5 :g;z 2,-9 2,4
with
. .. fj 2
AN = g cH g =Yoxh
20 20 3
ij
13 | L4 ol
Age1= 4 Coig
1j ij 4 11/2
=—d — —————
Axia Cot2 kg = Gt kq
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ij _ 1
Tyy=5 I, 1, (Iv-21)

The zeroth and first rank parts vanish because the tensor is traceless
and symmetric. The effect of rotation may now be calculated with the

Wigner rotation matrix. The secular part of (IV-27) is just

P e 2
oo Aid p13 _yh -1 . _
I A20 T20 3 3 Pz(cose)(3IziIzj Ii Ij) (Iv-22)
ij

as noted in Chapter I. To rotate this we calculate

2
' 2
T = pz_é szDpo(asy) (IV-23)

where oo = -7m/2, B = /2 and vy = 7/2 for the rotation of (IV-21). Evaluating

this we find

0= 7.8 L
TZO - 2\/6' (BIZiIZj_Ii IJ) AL (I+iI+j+I-—iI-—j) (IV-24)

We note that these terms have matrix elements with Am = 0, * 2, and that

these parts commute. Thus the operator exp(iﬂb T ) will only induce
xx P
coherences between levels separated by an even number of quanta, what

we term even quantum transitions, when operating on the initial density

matrix IZ.
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Case 2. p=x,q =1y, 8 =m/2 and Hé = Hb.
This may be calculated in a fashion very similar to Case 1 if we insert
a "virtual" pulse which has no real effect but simplifies computation.
Immediately after'tgelfirst x pulse the density matrix is Iy and we

~-i

insert a pulse e y, which has no effect. However for the calcula-

tion we now have

—LKb T 1-% IX -i E—I 1-% I
P=e yy P e ; W, =e nyDe Y (1v-25)
yy
0f course X has exactly the same properties as ﬂb but now operates
LYY _ XX
onI (= - %—(I+-I_)) instead of I, and hence only odd quantum transi-

tions will be observed.

= - = = = - + J'C -
Case 3. p X, q=x, 6 m/2, ﬂﬁ AwIz D
We note that the two parts of ﬂ% commute. As above we may simply predict

the effect of this preparation sequence, by inserting an identity operator:

. T , . T
. i 3 I 1(—AwszKb)rp ) IX
P =ce e e
T . . T
1-5 IX LKpr -i = IX 1-5 I —1AwIzT -1i > Ix
= e e e e e e
LHb T —-iAwI T
= e xx P 4 yp (IV-26)

The order of transitions observed depend on the matrix elements
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+ iJCD T -iAwl_ T iAwI T - T
<i|p 1 P7|j> = <ife DX P oo YP 1 e TP o Txx Py

v -G T
= cosAu)Tp <ile “xx P I, e xx P I3>

o Y
+idy Tp 1ﬂb Tp
- sinApr <ile I_e |3> . (Iv-27)

It is clear that this is simply a weighted mixture of Case 1 and Case 2
above, and that for an arbitrary Apr both odd and even quantum transi-
tions will be induced. We note that a spread of Aw values for a sample,
due to magnetic field inhomogeneity, makes use of Apr for selecting
odd or even quantum transitions unattractive.

The principles of the detection period are identical to those
presented above. However we note that since we are, on paper, detecting
Iz, but real observables are Ix and Iy’ we may omit Py in the experiments
rather than putting in a fifth pulse to probe the amplitude of Iz. For

example the detection sequence
v m
P G) T4 P_ (G) detect <I >
would detect even quantum transitions, and is equivalent to
i v m m
— —_— — < > = —_— < >
Px(Z) Td P—x(2) Px(Z) detect Iy Px(Z) Td detect Iy

since, of course, the -x,x sequence is an identity operator and may

be dropped. Similarly

T T
Px(Z) Td Py(z) detect <IZ>
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will detect odd quantum transitiomns, but may be replaced by
i m Li§ m
PX(Z) T4 Py(g) Py(Z) detect <IX> = PX(Z) T4 detect <IX>

An off resonance term in the Hamiltonian will mix even and odd orders in
detection just as it did in preparation.
It is also worth noting that if ﬂb is rotated through some

|

angle other than m/2 (IV-20) the resulting T20 will have Am = *1 terms
in addition to Am = 0,*2, so that for all pulse sequences both even and
odd orders would be observed. We will see shortly that some detection
schemes can avoid this problem.

To this point we have only discussed strong pulse preparation

sequences. Weak pulses, with w, values somewhat less than average

1
dipolar couplings, should also generate multiple quantum coherences,

in analogy to the deuterium weak pulse preparation. In deuterium systems,
where only the r.f. term and a quadrupole term had to be considered,

we could obtain an explicit, if only approximate, form for the operator
generating double quantum coherence. In systems of many coupled spins
there is no simple single operator which drives multiple quantum
transitions, so the combined effect of the r.f. and dipolar Hamiltonian
would have to be calculated by computer. However with long weak pulses
we intuitively feel that many orders of coherences would be generated.

The same pulse could be used for detection, just as we use the same

two pulse sequence for preparation and detection.

E. Echos

Echos of the Hahn type78 can be of considerable use in multiple
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quantum experiments of dipolar coupled systems. There are two types of
echos which we will examine: single quantum and multiple quantum. These
are very similar in principle, and some aspects of single quantum echos
have been discussed in Chapter III. The simplest case possible is that
all spins have the same chemical shift. Then the Hamiltonian for free

evolution may be written:

H=-MI + 3 d

] Pz(cose)(31 I -1..1,) (IV-28)
. z
i<j

i3 izj 1 3

where Aw includes off resonance, chemical shift and magnetic field
inhomogeneity contributions. It is important to note that in this
case [Iz’ ﬂb] = 0. The ordinary single quantum evolution after a m/2

pulse is given by:

- 1K} 13
5.(t) = Tr[e t I e t Il (IV-29)

If we now put a T y-pulse halfway through the evolution period, to

create an echo we find:

—ﬂK-% -iml —ﬂK-% ﬁK‘% inl ﬁK-g
S (t) = Trle e Y e I e e Y e I ]
X X X
Inserting some identity operators this becomes
- £ -t L uc S oL
Sx(t) = Trfe e (—IX) e e Ix] (IV-30)

AAAAAA

JCR - + —_ .
+Hiwl Z dij P, (cosG)(3IziIzj I Ij)



131

Since the two parts of the Hamiltonian commute, the evolution from off
resonance portions cancel, but the bilinear dipolar term remains unchanged,

giving

—iJCDt iZICDt
S (t) = - Tr [e I e I 1 (IV-31)
X X x

as though the experiment had been performed exactly on resonance in a
very homogeneous magnetic field. This is useful for preparation of even
and odd multiple quantum transitions when combined with appropriate
phase pulses as shown in Figure 74 e and g, since AwTP = 0 effectively
for all spins in the sample, to a very high accuracy. This approach is
also useful for obtaining very high resolution spectra in inhomogeneous
magnets.

If an echo pulse is put into the center of the multiple quantum
evolution period, exactly the same principles apply. The effect is
particularly easy to calculate if a T pulse of x phase is used with
T/2 x pulses in the preparation and detection periods. The preparation
and detection operators consist of only x pulses and bilinear spin terms

both of which are invariant to an x T pulse. Then we may write

. t . t . t . t
i = dinI_ 1K = i = inI_ 1+
S(t) = Tr(pe 2e Xeo 2 PIZP+ e ‘e Xeo Zpt L]
iJCR% l:fc% . iJC% JﬂRg .
= Tr[De e PIZP e e D (—IZ)] (Iv-32)

where ¥ and ﬂR are defined as above (IV-28) and (IV-30). Again all off
resonance, chemical shift and field inhomogeneity terms cancel, so the

evolution is solely dipolar. A y m-pulse has the same effect but is a bit
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messier to calculate, and inverts the sign of signal.
To this point we have been quite restrictive by specifying
that all chemical shifts must be identical. If they are not, the

Hamiltonian is

= }_ijmzi + 12(3 atd Px(cose)(BIziIzj—Ii-Ij) (IV-33)
The chemical shift and dipolar parts of the Hamiltonian no longer
commute and the evolution under a single echo pulse sequence is
complicated. This is very similar to the problems of T2 measure-

ment in liquids with coupled spins. These have been analyzed in

95,96 We note that under an echo train, if spaced

detail elsewhere.
sufficiently close together, the chemical shifts will average to zero.
In a scalar coupled spin system, all information about the couplings
then vanishes. However in a dipolar coupled system, all dipolar
couplings should remain, with all chemical shifts removed. A train

of echos may be applied in either single quantum or multiple quantum

experiments.

F. Off Resonance and Phase Behavior

The evolution of multiple quantum coherences under an off
resonance Hamiltonian is of practical importance for separation of
various orders of transitions. We have already formally written out
the evolution of the density matrix for multiple quantum operators
(IV-16), but we wish to examine evolution of multiple quantum operators

under simple rotations
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161 .. —-16T
_ 1] PN
e J.X (LV—34)
. .. ij ij
To find the coefficients of IX and Iy we calculate
ij ieIz ij —ieIz ij
ct = Trle 1 e 197 ) (IV-35)
X X X

Using the definitions of multiple quantum operators we evaluate this in

the eigenbasis of the Hamiltonian:

ifm, -i6m, —-iBm, i6m,
i i

Cij = %(e e J +e e 3y
1 i6(m,-m.) -i6(m,-m,) 1
= (e ) 4. 1y = 5 cos[(mi—mj)e] (1V-36)

where m, =<i|Iz|i>, the magnetic quantum number of the ith state. We

may similarly calculate C;J by replacing the second I;J by I;J, giving

ij _ 1 . _ .
Cy =5 s1n[(mi mj)G] (IV-37)

We see that the rotation angle (or rate if 6 is time dependent) is
multiplied by the number of quanta between the i-Eh and jﬁb-levels.

Thus if we have a resonance offset of Aw in the single quantum spectrum,
it will be nAw in the n quantum spectrum. This provides a simple way
of distinguishing the various orders of transition. We note that an
echo during the multiple quantum evolution will remove all resonance
offset effects and we must use some other method to distinguish the
various orders of transitions. Similarly, if the linewidth due to

magnetic field inhomogeneity is 8w in the single quantum spectrum, then
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it will be ndw for the n quantum spectrum. For high order transitions

such broadening becomes quite severe unless the magnet is very good or

echo techniques are applied. It is interesting to note that the line-

width of a zero quantum transition (between levels of the same magnetic
quantum number) should be independent of magnetic field homogeneity,

its width determined by T2. This effect has also been noted by Ernst,

This rotational behavior also provides a method for separation
of transitions of various orders. If instead of the x Tp X T X Ty
pulse sequence described above (Figure 71c), we change the phase of the
preparation pulses, keeping them 180° apart, but leave the detection
sequence fixed, an extra order dependent phase factor is added. A pulse

in the ¢ direction given by

=
1}

+ i -
Ixcos¢ Iysln¢ (1v-38)
may also be written as
z
I, = e I e (IV-39)

Rotating the pulses is equivalent to rotating the entire preparation

sequence, so that the evolution (IV-17) may be rewritten

—ﬁKte -i¢I + 1¢Iz +

z
< = —
Iz(te)> Tr[De e PIZP e D IZ] (IV-40)

Evaluation of this as (IV-18) gives

+ N —lw, .ty i¢p(m,-m )
<L (e )> =20 20<i|D'I D[j><jlPL P [i> e T %e I T (1v-41)
i3]
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exactly the previous result except for the order dependent phase shift
term. If a number of experiments are performed with different phases,
linear combinations of them may be taken to generate spectra of specific
orders, in effect a Fourier analysis over phase. If the highest order
possible is N then N+1 different phase experiments must be performed to
separate all orders. This method of order separation has also been
discussed by Ernst97 et al. Considerable selectivity may be achieved
through a few experiments properly chosen. If the preparation is done

on resonance or with an echo we have seen that only even transitions

will be observed. 1If two such experiments are done with preparation
sequences 90° apart (i.e., x Tp -x and -x Tp x) the sum of the resulting
spectra will show only 0,4,8 ... quantum spectra and the difference only
2,6,10 ..; Such selection works whether the evolution period has an echo
or not and provides an alternate method for separation of multiple quantum

orders to the nAw dependence discussed above.

G. Amplitudes, Symmetry and Simplification

In principle, for a given experiment, (IV-18) allows us to
calculate the amplitudes (<i,D+IzD,j> and <j[PIzP+,i>) as well as
frequencies (wji) of lines in the multiquantum spectra. To calculate the
amplitudes, one must already know all parameters in the dipolar Hamiltonian.
However, in most cases the determination of these parameters is the object
of the experiment. In addition the operators D+IZD and PIZP+ are complex
and difficult to handle. 1In many cases it will be sufficient to determine
line positions (frequencies) and ignore the amplitude. Since the dipolar

Hamiltonian is driving the multiple quantum transitions, we expect that
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a preparation period Tp v (dij)-l (dij is some sort of average dipolar
coupling in frequency units) should be sufficient to generate many
multiple quantum coherences. If we average over some range of Tp

values, we expect all multiple quantum lines to have non-zero amplitudes
for some T valué, so that the average should be a complete spectrum with
some average amplitudes. Phases will be essentially random in these
spectra so the average must be of magnitude spectra.

In all of the analysis above we have assumed no symmetry in the
set of eigenfunctions of H. This is often not the case, and use of symmetry
may simplify things considerably. In particular, the preparation and
detection operators have A symmetry so that they induce transitions only
among wavefunctions of the same symmetry. Such symmetry factoring
reduces the number of possible transitions greatly as well as simplifying
calculations.

We have stated that one reason for doing multiple quantum
spectroscopy is to obtain spectral simplification in high quantum transi-
tions. In an N spin system (with no symmetry) there are ZN eigenfunctions.
There are then approximately (E)ZN—m m—-quantum transitions, using simple
counting arguments. Thus of course there is one N quantum transition (all
spins go from B to a) and 2N transitions of order N-1. This is a
tremendous reduction over the NZN_l single quantum transitions. The
assignment of lines should be much simpler, and the smaller number of
lines makes resolution requirements less stringent. The multiple quantum

spectra are also much simpler in cases of high symmetry, as we will see.
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H. Experimental, Benzene in EBBA

In order to obtain tractable spectra in dipolar coupled systems,
the number of coupled spins must be kept relatively small. As we have
discussed in previous chapters this may be achieved in solids through
dilution. However, small molecules dissolved in liquid crystals provide
a convenient system to test various aspects of multiquantum NMR. Liquid
crystal solvents provide an anisotropic medium and when aligned in an
external magnetic field cause small molecules dissolved in them to have
a preferential orientation with respect to the field. Since these
molecules no longer reorient isotropically, as in an ordinary liquid,
the intramolecular dipolar couplings no longer average to zero. However
there is still very rapid translational diffusion so that intermolecular
couplings are averaged to zero and well resolved spectra are observed
from the dissolved molecules. This has been known for quite some time
and analysis of the dipolar structure has become a popular method for
determination of structure and conformation of the dissolved molecules.
The number of spins on the liquid crystal molecules themselves is so large
that no structure from them is resolved, though they contribute large
uneven baselines to the spectra.

For the present experiments benzene was chosen since it is
simple, of fairly high symmetry and has a reasonable number of spins.
Approximately 157 (by mole) benzene was dissolved in EBBA (p-ethoxy-
benzylidine n-butylaniline) so that the solution was nematic at room
temperature (20°C), and sealed in a 6 mm glass tube after freezing and
pumping. This sample was used for all experiments described. All

experiments were performed on the spectrometer described in Chapter V.
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Benzene oriented in a liquid crystal has been studied many times

before.99 The D6h symmetry of the molecule breaks the wavefunctions up

into 6 classes A, B, 231 and 2E The energy levels are shown schematically

2
in Figure 75. With hexagonal symmetry assumed (convenient, not necessary)
the spectrum is éntirely determined by one dipolar coupling, and three
spin-spin couplings, assuming no anisotropic component of spin-spin
coupling. From the single quantum spectra, Figure 76, these may be

determined 2d = -778.2 Hz, J = 8.0 Hz, J =2.0Hz, J = 0.5 Hz;

12

in good agreement with previously determined values (d12 scales with

12 13 14

order parameter and may not be directly compared). The linewidths in

the ordinary single quantum spectrum, top Figure 76, are completely
determined by magnetic field homogeniety at v 120 Hz. The spectrum
obtained using the echo sequence, Figure 74h, shows much better resolution,
and was used for determination of the parameters above. The echos were
generated at multiples of 300 pusec. Although 2048 echos were used (Vv 600
msec maximum), the amplitude was still substantial for the longest times
and the linewidth observed, v 4 Hz, was limited by truncation of the

free induction decay. The ultimate linewidth in these experiments will

be limited only by T2.

Multiple quantum experiments measurements using pulse sequence ¢
of Figure 74 were made for a variety of Tp =Ty values. These were
performed with a resonance offset of 5.97 kHz and hence were not selective
in orders of transitions. Spectra were taken for 11 T values between
9.6 msec and 10.7 msec spaced by 0.1 msec. The spectra were qualitatively

similar, but had great variationsof intensity in individual m—-quantum

lines. Due to the complex selection rules for multiple quantum transitions,
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the phases of lines in the spectrum vary with Tp; For this reason all
plots and averages were performed on magnitude (or power) spectra. Figure
77 shows the average of the multiple quantum spectra. The theoretical
spectra, also shown in Figure 77, we generated using the parameters
determined in thé single quantum echo experiment, with the assumption
that each possible line in any order would appear with equal intensity.
Each order was broadened by the appropriate amount for magnetic field
inhomogeneity in that order. It is immediately clear that virtually
all possible lines appear in the multiple quantum spectrum, though the
intensities are not equal. Also, the resonance offset and linewidth
are multiplied by the order as expected. With further averaging over
preparation and detection periods, more equal intensities for all lines
should be observed. 1In all of these experiments just the amplitude of
the signal at the end of the detection sequence was used. If use is
made of all signal after the detection sequence, through some type of
two dimensional analysis, substantial improvements in signal to noise
ratio should be achievable. In such an analysis coherence transfer
echos as discussed by Ernst,loo may enhance signal from high quantum
transitions.

The selection experiments described in Section F were also
tested on benzene in EBBA. Using Tp =Tq = 10 msec in pulse sequence e
Figure 74, with x, -x and x 90° pulses and y 180° pulses, the off resonance,
even quantum only spectrum in Figure 78(B) was obtained. The same
experiment was performed with y, -y and x 90° pulses and gave the same
magnitude spectrum. However when the sum and difference of the phase

sensitive multiple quantum free induction decays were taken and Fourier
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transformed the spectra of 78 (C) and 78 (D) were obtained, showing the
increased selectivity, 0 and 4 quantum only, and 2 and 6 quantum only.

The very small intensities in other orders are due to imperfections in

pulse phases and amplitudes.

The 0 and 4 quantum selection experiment was also repeated with
a much slower sampling rate, to determine the linewidth of the O-quantum
lines. The resulting decay and spectrum are shown in Figure 79. 1t is
clear from the decay that the linewidth of 4 Hz for the zero quantum lines
(no echo in the evolution period) was limited by truncation of the FID
and the true linewidth is much less.

Since multiple quantum echos remove the evolution from off
resonance, they were combined with the phase selection experiments
described above, to generate very sharp line spectra without losing the
separation of the various multiple quantum orders. Pulse sequence f
of Figure 74 was used with Aw carefully adjusted to zero so that only
even order transitions would be observed, and Tp =Tq = 10 msec. Figure
80 shows the spectrum resulting from a single such experiment, containing
lines from all even orders. Taking the sum and difference of experiments
with both preparation pulses phase shifted by 90° gave the spectra
shown in Figures 81 and 82.

The separation of orders is quite good. The resolution is
clearly greatly improved over that in the previous multiple quantum
experiment, Figure 77. In addition the linewidth is the same for all
orders, v 3 Hz, and was, as for the single quantum, limited by truncation
of the free induction decay. These experiments were performed for only

one particular Tp value and hence many possible multiple quantum lines
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are not observed. Averaging of a number of Tp values, as done for the
echoless spectrum, would remedy this. Some small single quantum lines
were observed, probably because of magnetic field inhomogeneity (some
parts of the sample are slightly off resonance even when the average Aw
is zero) and pulée imperfections. The rejection of odd orders could be
improved by using an echo in the preparation and detection periods as

well as in evolution.

I. Discussion

We have demonstrated that multiple quantum coherences, generated
through the dipolar coupling, may be observed even for high orders. The
dependences of the multiple quantum orders upon off resonance and phase
shifts allow separation of the various orders. Echos may be used to
improve linewidths in both single and multiple quantum experiments.

These techniques should prove most valuable in more complex
systems. As the number of spins increases the single quantum spectrum
rapidly becomes very complex, to the point that lines are no longer
separated. In such cases the number of lines in the high order multiple
quantum spectra should be much smaller, and hence well resolved and
interpretable. Such experiments may prove to be easier and more informative
than labeling studies, particularly in liquid crystal and perhaps 1lipid
systems. These techniques are also applicable to solid samples in which
relatively isolated groups of spins exist. As such they should be
complementary to existing deuterium double quantum, various dilute spin
and separated local field techniques for determining relative positions

of spins in solids. Studies of relaxation of the various multiquantum
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coherences may also provide additional dynamic information.
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V. THE SPECTROMETER

The spectrometer used for all of the experiments described in
the previous chapters was designed primarily for solid state work, but is
quite conventional in many respects. It was homebuilt but includes many

commercial components.

A. Magnet

The magnet is a persistent superconducting solenoid made by
Bruker Instruments, operating at 42.5 kG. 1Its dewar has a 3.5 inch diam-
eter room temperature bore and can be easily shimmed, with X, y and z
superconducting coils, to less than 1 PPM over a 1 cm3 region. The oper-

ating frequencies for nuclei discussed here are:

lH 185.02 MH=z
13. 46.522 Miz
2
H 28.403 MHz

The field is extremely stable so that no field/frequency lock is necessary.

B. Frequency Generation

A block schematic of the spectrometer's radio frequency section
is shown in Figure 83.

The proton frequency 1s based upon the output of a General Radio
Model 1042 frequency synthesizer (0.1 - 160 MHz), at 142.5 MHz. This is
doubled to give a local oscillator (L.0.) frequency of 285 MHz, then mixed

with the 100 MHz intermediate frequency (i.f.) and filtered to give 185 MHz.
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The i.f. is generated by multiplying the G. R. synthesizer's 10 MHz refer-
ence by 10. The continuous 185 MHz is passed through commercial quadra-
ture hybrids and switches to give two (or four at times) 90° out of phase
channels. The amplitude of the switched r.f. is adjusted in 1dB units
with an attenuaﬁor and is switched again to insure good isolation. The
final switched output gces to the high power transmitters.

Tlie low frequency is generated simultaneously for double res-
onance, and is based upon the output of a Hewlett-Packard Model 3320A
synthesizer. This 1is doubled for carbon and used directly for deuterium.
Switching and quadrature generation is done at the nuclear frequency as
for proton. It is mixed with a 30 MHz i.f. to give an f.o. frequency for
use in the receiver. The 30 MHz i.f. is generated by tripling the 10 MHz

reference from the G. R. synthesizer.

C. Receivers

The proton and low frequency receiver s operate in a very similar
manner. The first stage is a low noise preamplifier with approximately
25 dB of gain. The signal from this 1s mixed with the 2.0 and filtered
to give an i.f. signal. This signal is amplified with a variable gain
i.f. strip amplifier (up to 70 dB gain). This signal then goes to the
phase detector. The overall recovery time from complete saturation

(during pulses) is about 20 usec.

D. Phase Detector

This spectrometer employs dual phase detectors. The i.f. sig-

nal from the receiver is passed through a power splitter. The i.f.
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reference is passed through a variable delay time, to adjust the relative
phase of signal and detector. It is then split by a quadrature hybrid,
and each phase is mixed with the signal to give quadrature audio fre-
quency signals, which pass through a variable low pass filter and then
are digitized. The signal to noise improvement by having dual detectors
is valuable and being able to determine signs of frequency offsets is

convenient.

E. Digitizers

In solid state NMR lines may be very broad, and hence it is
necessary to have fast sample and holds and analog-digital converters.
This spectrometer uses Datel Model SHM2 S/H s with ~ 10 nsec windows,
and Datel Model ADCE10B ‘A/D s, 10 bits and 1.25 usec conversion time.
The digitized signal is passed to a NOVA 820 computer, with an overall
maximum rate of 333 kHz for complex points. This is sufficiently fast

for all work described here, even deuterium quadrupole powder patterms.

F. Probes
The double resonance probes used for this work have crossed

coil configurations, and were home built. The lower frequency coil was
a solenoid 6 mm in diameter, placed inside an 8 mm outer diameter glass
tube. The proton coil was of the Helmholtz type, consisting of two turns
on each side, each ~ 1 cm in diameter. These were mounted on the outside
of the glass tube. These coils were part of a tuned circuit consisting
of homemade series tuning capacitors and parallel commercial silver mica

matching capacitors. With 200 watts of r.f. power, rotating fields of
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10 G for protons, 60 G for carbon and greater than 100 G for deuterium
could be generated. The coils were orthogonal to minimize receiver pick-
up of decoupling frequency and the isolation was 30-40 dB. Additional
isolation was provided by a low pass or bandpass filter to block the
decoupler frequehcy. The receiver was protected from r.f. pulses at the
observed frequency by placing diodes to ground at one quarter wavelength
from the probe junction. Series diodes were used to block transmitter
noise during observation. The overall probe configuration is shown
schematically in Figure 84.

For single resorance experiments on protons (multiple quantum)
the Helmholtz coils were replaced with a 6 mm solenoid. This gave a fac-
tor of four improvement in signal and r.f. field due to the better filling
factor and higher Q of a solenoid. |

The coils, mounted above the plastic disk holding the capacitors,
are covered with a glass dewar to provide thermal isolation. The temper-
ature is measured with a thermocouple placed near the sample. Temperature
control is provided in two stages, by passing heated or cooled gas into
the probe dewar through vacuum jacketed tubes. N2 gas is heated by a
resistive heater at the end of the probe. Crude control is provided by
the gas flow rate and power delivered to the heater. Cold gas is gener-
ated by boiling liquid N2 from a 508 dewar with a resistive heater. Flow
rate is controlled by variation of heater power. Fine control for both
heating and cooling is provided by a feedback system. The output of a
thermocouple indicator is digitally compared with a settable desired
temperature. ILf the observed temperature is less than the desired a

small auxiliary heater in the transfer line into the probe is turned on.
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Set and observed temperature are compared several times per second, pro-

viding temperature control of * 0.2°C over a range -190 to + 150°C.

G. Transmitters

Transmitters (high power final stage amplifiers) at all fre-—
quencies were class C, tuned tube type. For carbon and deuterium they
were Millen design using 3E829 tubes. The proton transmitter was a cav-
ity tuned output type based on a 220 MHz design for radio amateurs,101
using a 4CX250B tube. All were run with 2.5 kV plate, 130 V bias and
250 - 500 V screen voltage. All are capable of generating 200 watts of
pulsed r.f. power. They are driven by commercial solid state amplifiers

at ~ 10 watts. Adjustment of r.f. field strength was made by changing

screen voltage.

H. Pulse Programmer

The timing of all r.f. pulses and data acquisition is controlled
by a pulse programmer. In order to put out the variety of pulse sequences
described in this work with very accurate timing, a very flexible program-
mer was designed and built. The pulse program consists of 16 words of
36 bits which are interpreted in hardware to generate delays and open
gates. Twelve bits specify gate outputs for controlling r.f. switches,
triggering of the data system, etc. Twelve bits are used to specify a
delay, as a number from 0 to 210-1 and a multiplier of 250 nsec, usec,
msec or sec. The delays are digitally counted from an internal 4 MHz
clock. Each program word may also be flagged as the beginning or end of a

loop. There are four loops which may be specified, each with a counter
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so that all words between the beginning and end of the loop are executed
from 1- 10000 times before continuing beyond the loop. The programmer
may also transfer timing control to any one of four external devices for
synchronization with other spectrometer functions.

The pulse programmer can operate as a stand-alone device, with
pulse programs directly loaded from front panel switches. Delays and
loops are also settable with front panel controls. However the program-
mer is also interfaced to the systems computer (Section V-I), which can
control all operations of the programmer, including loading of previously
defined pulse programs, setting loop values and starting or stopping
executlon of the program. 7This system provides rewarkable flexibility in
application and 1s capable of executing very complex pulse sequencies.
Tt.e computer control allows execution of repetitive experiments, such as
T1 measurement and collection of multiple quantum free induction decays,

automatically, greatly imprcving efficiency over a strictly operator

controlled system.

I. Computer and Software

This spectrometer uses a NOVA 820 computer as an on line data
processing unit. The computer is interfaced to a CRT terminal for use
as a console device, a 5 Mbyte dual disc for program and data storage, a
CRT x-y display for data observation, or digital plotter, and the A/D con-
verters for data acquisition.

A large program for operation of the spectrometer was written
in a series of overlays residing on the disc so that only a small part is

resident in the memory at a time. This allows room for 4k complex data
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points in the 16 k word memory in addition to the program. Commands for
usual manipulations of free induction decays, performing Fourier Trans-
formation, phase corrections etc., are subroutines in this program. In
addition there are routines for manipulation of two dimensional arrays of
data, necessary for some double quantum and multiple quantum experiments.
A powerful supercommand structure, termed macrocommands, has also been
included. These macros are definable sequences of any commands in the
operating program. Execution of the macro causes sequential execution of
the commands defining it, cyclically, any number of times desired. Up to
100 macros may be defined, and they may be nested (one macro calling
another) in any way desired. Such commands provide a rapid and efficient
way of collecting and processing data, particularly in two dimensional

experiments.

J. Discussion

In many respects the spectrometer described here is typical of
pulse-Fourier Transform NMR equipment. There are a few distinguishing
features which allow it to perform a wide variety of experiments in
ordered phases, The relatively high field and good homogeneity provide
good sensitivity aud resolution. In dilute spin NMR sensitivity is often
a problem which high fields and signal averaging together can overcome.
The final r.f. stages of the spectrometer must be capable of generating
high power pulses, to cover a wide spectral range and insure complete
decoupling. The probes must be designed to withstand the high power
(and hence high voltage) pulses and yet retain high sensitivity. A very

versatile pulse programmer is necessary for generation of complex pulse
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sequences with controllable delays. The data acquisition must be fast
enough to faithfully digitize over the wide spectral width found in solids.
A computer for data manipulation and storage is necessary. The software
should be quite general, with modifications easily made for adaptation

to new experiments.
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Appendix A Spherical Form For Tensors

Rose gives for multiplication of two tensors:

Lop ! %)
T (A54,) = 3 C(L 2. 0,m,mmmy) T "(A)) T " (A))
m, 1 1

where C(lllzﬁ,m m—ml) are Clebsch~Gordon coefficients.

l,
Multiplication of two first rank tensors gives us:
zero rank:

15(1,2) = 143 [T} (DT[(2) - ToTH2) + THAITH(2)]

first rank:

Tfl(1,2>A= SN2 (T (DTER) - ToMWTE ()]
T5(1,2) = -14/2 [To (D) - T71) ! (2)]
T1(1,2) = -1A2 [TTI(2) = TH(DT(2)]
second rank:
17,(1,2) = - Tt (2)
2 (1,2) = IMV2 [TH (TE@ + 1ot (@)
T5(1,2) = A6 [TH (DTI@) + 2 TRWTE@) + T T ()
17(1,2) = 142 [Th ()T (2) ; T (1) To(2)]

2 1 1
T5(1,2) = T, ()T} (2)
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Given a cartesian vector B = (BX,By,Bz) we can form linear combinations
which transform as first order spherical harmonics, giving a spherical

vector

-1 X y
BO = Bz
B+l = Bx + iB

If we multiply this spherical vector by itself we find (from previous page)

0
T,(1,2) = 143 (B, (1)B, (2) + B (1)B (2) + B (1)B_(2)]

1 - ' ,
T, (L,2)= -1A2 [(8, (1)B,(2) - B,()B(2) - i(B (1)B;(2) - B,(1)B (2))]

T5(1,2) = 1M2 [B(1)B (2) - B (LB (2)]

1
Tl(l,Z)

]

-1/2 [Bx(l)Bz(Z) - Bz(l)BX(Z) + i(By(l)BZ(Z) - Bz(l)By(Z))]
2 )
T_2(1,2)= 1/2 [Bx(l)Bx(Z) - By(l)By(Z) - 1(Bx(l)By(2) + By(l)Bx(Z))]

T2 (1,2)= 1/2 [B,(1)B,(2) - B,(DB,(2) - 1(B (1)B,(2) + B,(1)B ()]

2

To(1,2) = 14/6 [28,(1)B,(2) - B (1)B,(2) - B (1)By(2)]

T3(1,2) = 1/2 [~(3,(1)B,(2) + B,(1)B,(2)) - (8 (1)B,(2) + B,(1)E ()]
2 .

T,(1,2) = 1/2 [Bx(l)Bx(Z) - By(l)By(Z) + 1(Bx(l)By(2) + By(l)BX(Z))]

This gives us the combinations which transform according to the various

spherical harmonics.
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Now putting in # = (O,O,JCZ) and I = (IX,I ,I)

0 2
Ty = -LAB3 T T2, =0
1 _ 2
T, = 1/2%71_ T = M2 30T
1 2
TO =0 TO = 2//6 £ 1
Tl-l/2JCI Tz—l/ZJCI
1 z 7+ 1 +
2
T2 =0
And for shielding tensor, diagonal in p.a. system
A0 = -1/ﬁ (0,,+0,.,+0,.,) A2, =1/2 (0,,-0,.,)
0 11 722 733 2 11 ~22
1 2 _
AZ, =0 A =0
1 2 _
Ay =0 Ay = 1/¢€'(2033—oll-022)
1 _ 2
Al = O Al = O
a2 =172 (0. -0,
2 - 11 22
0.0 2.2
i = AOTO + AOTO

1 1
[3(011%095+033) + 5(20433-01,-0,,)1 ,1_ = O33H, I,
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Appendix B Optimization of Cross Polarization Time

To a good approximation, for the single contact cross polarization

experiments used for this work,
by contact with dilute spins (S
the lattice, occuring with time

the inverse temperatures of the

dBS(t)
dt

a8, (v)
dt

with initial conditions BS(O)

easily found to be

heating of the proton (I spin) reservoir
spins) is small compared to heating by

constant T In this approximation

1p°

two systems follow differential equations:

= (B (£)=-B_(t))
T,y S I

1

T

B.(t)
1p I

0 and BI(O) = BIO' The solutions are

B -t/T -t/T
0 1
B.(t) =—2 — (¢ oo TS
S T
IS
1 -5
1p
-t/T
= 1p
BI(t) BIo e
We wish to maximize Bs(t), and hence the S polarization. Bs(t)

reaches its maximum at time

or

for T

1p IS
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t 1s then the optimum contact time for the cross polarization. Since it

is very time consuming to measure Tlp and TIS’ most often the adjustment

of cross polarization time will be made empirically. However it is worth
noting that for short Tlp (on the order of usual TIS values v 200 usec)

the mixing time must be much less than the usual few milliseconds.
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Appendix C Optimization of Recycle Delay

We wish to optimize signal to noise in a "saturating' experiment,
for a fixed total aquisition time T. The spin lattice relaxation time
for relevant spins = Tl’ and recycle delay (to be optimized) = T.

The magnetization at time T after saturation is

-t/T

M(t) = My(l-e L

The number of experiments that can be done in time T is
N =T/1 .

The signal to noise goes up linearly with signal (magnetization) and as

square root of number of experiments averaged

-T/T

S/N(T,1) = My (1-e Ly pypy /2

To maximize in T

—T/Tl
Cé_giﬂﬁlel) =0=2L 4+ 1 _&
aT T,T1 2T Tl 2T
-T/T 21
requiring that e =1+ T The zero found numerically is at
1
= 1. 4
T 1.256 Tl

and represents the optimum recycle delay for -maximization of S/N. This

is, however, a rather weak maximum, so values near it are almost as good.
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Appendix D Matrix Solution for Exchange

This appendix describes an analytical inversion for the exchange

matrix A to derive the lineshape for spins undergoing hard collision

~

exchange. We wish to calculate

l-I}

~

I(w) = Re{P-A

where E is a population vector, 2 is the exchange matrix and E is the unit
vector. For an exchange problem with n sites, where probabilities for going
from any site to any other are equal, the rate of jumps between any two
sites will be 1/(n-1)T where T is the average lifetime of a state. If

we assume that the T2 values for all sites are equal then the exchange

matrix is defined by:l

11
L. o= l(w.,~w) + 7/ + =
Apy = iloymw) T, T
1 .

Ak T T @eDt itk

The inversion of A may be done simply if it can be written in the form

where B is easily inverted. In the case at hand we can make B diagonal,
x ¥

and hence trivially invertable by taking

u=1 v

where I and Irn are respectively n dimensional column and row identity
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vectors. Then

-1
=——=1 I
w (n-1)T ~cn ~rn

~

where Ic I n has ones everywhere. This leaves

. 1 n
B, = i(w,-w) + 7+ + ———
i3 1 j ) T, (=Dt
Bjk = 0 i #k

We define Yj = B}; which are the diagonal elements of B—l which has all

~

off diagonal elements zero. With A written this way

A7 =B" - AXyz
where
_ -1 _ -1 1
y=B w . z-yBo andd-gg
In the case at hand,
=y z = -1
Y i i -t '
_ 1 -1
A= (1 SO vy ¥y, F + )
and
yz., = ot Y.y
~~jk (n-Dt "3k
Then



e B . R -1
The final result we desire 1is 2 P-A
7

We define

c = PlYl + P2Y2 ce. + PnYn
F=yl+y2+ + v,
Now
A (n-1)T ¢
z:g 2 (n-1)7t-T
J
and

I(w) = Re {ﬁﬂi%%%}%J

This result is equivalent to that derived in the text (II-54),

from a very different approach.
To see this we compare II-54

W l

Q

i

_A
n

g(w) =

+w
1
Ny
-i-

where the symbols have their previously defined meanings and ¢y
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arrived at

is propor-

tional to the population of the i—EE state. In the matrix solution we

have eliminated jumps of 27 whereas they have been included in the solution

of Chapter II. To compare the solutions then we replace n-1 of the

Appendix solution by n. Then
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c,

i
and Zoc o
i i A

= ki with k a proportionality constant. We may then write

t
_nk'c
g(U)) - HTA"F ’

the same as the matrix solution.
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GET INTENSITY

ITHTENCIOMGY=IHTENCIOMGI +REAL (CMPLXCTAUN, 4.

CCMPLXCTRUN, 8. 8)-GARMMAD D
COMTINUE
CONTINUE
CONTINUE

HORMALIZE INTENSITIEL:
LARGE=H. 9

OO 44 I=1, MOMG

IF CIMTENSIY (O 4GT7. LARGED
CONTINUE

DO 42 I=1, NOMG
INTENCSIO=INTEN I /LARGE
COMTINUE

FRUSE

PLOT

poS3 I=1, NOMG
PPM=LFRFM+L1~10 +DFFM
FRM=FFEM+SIGNCG, SE-a1, PPMD
oOoS1 J=1, IRMAN
FLGT. ) =BLANK

TONTINUE
SELGT=TRMAKFINTENCDD

BE=TNTEN{ 1)

I IELaT .'-”. TEMAKY IFLOT=1FLaT+1

PLOTOIFRLOT =5 'L'F?'.
NRITE 18,820 T. I
FORMAT L, "FRE "- Y.
CONTINUE

QUTRUT DATA INTO FILE FOR

WRITE (IZLOT. 712 CINTENCID:

FN'I'-
1. INTEN=",F7. 4,

SRLOTOTD.

FLOT

I:=1, HOMGS

OMEGA-OMGCI )
G /CHMPLECRPRRT, OMEGAR-0MGAI

Br+ZETHS



[ B

G TO ZA

CALL FRSFL
CRLL FENUSIG)
EHND
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1a
11

LJ

-3

JBETRING LINESHARE FOR

¥

BLANK.: STRE,

]
£ r'
3

INTEGER
RERL EULERNZ, 183
REAL =REL
COMPLEY A18R5, DET

i
im
'ii-lsi;F‘¢JU,

S50FT COLLISION EXCHAN

PLOT (139D

L LOMG, JERER, TN

-

INTEGER LWORKLL18), MUDRK (LD

ORPEN FILE FOR LRTER
CRLL FOTFE CIZ0a7, 1
IF CIERRE D EG. 80 GD
HWEITE (48.17 IEER
FOrEHMAT E‘fGF
GO TG 1GH

CHlLL FORFL < CDC DR
TF ¢IERR CEQ @) G0
MERITE «<48.4) IzZRR

50 TQ 41688

INITIALIZE
BLANK=" -
STRR="%"
IFMAK=50

I=d4, BATANCL. @0

OBTAIN INMARIANT
WRITE <144, 11>)
FORMATC ALY, "ENTER
READ <4473 XNUG
IF «<xNUe . LE. 9) GO
DHMGEB=2. P IxxNIG
WRITE <48, 1423
FORMATILE, "TENTER
REALD 44 1614, 5
SIGISN=SInL1+31Gk22r
OMGIS0=51G150+0MGB0
IMG1d=rsIGl1-53131500:
IMGR2=¢S1622-51G150):
UMP?“"ubIGSZ—bIPIJDI
TAH=OMG1L-0NMGZ20 /2.
uhITn (418, 1432
FORMAT AKX, "ENTER
eEAD (413 NSITE
HSSA=NSITE+NZITE
D oe J=4, HEITE
WEITE (10,143 J
FORMAT Ln, "ENTZR EUL
PEAD c41) CEULEERELSIL T
DO s I=1,Z
CIHLERCT, Jo=RLERCI, Jd
TONTIHUE
CONTINUE
GREITE a, AV
FORMAT LM, "ERTER LOW
RERD PHIN, PMAY
&

NUM

MINSCOSOPMINAF /180,
(WH““‘USAFMRH$PIJ13q

WRITE (4@, 130
FORMATC 1%, “ENTER

REARD <410 NFOLAR

Nun

SPECT

51G14, 51
SI1C22, 51622

PLOTTING
RR
o 2

CODE =7, 0130

, ISLOT, IERKD
TG ?

ARAMETERS

ROMETER FREQ IN MHZ:

TC 169

SIGEZHNZ2. B

kMG

kOMFG

*(MGH
]

BER OF SITES: 7O

ER ANGLES FOR NUCLEWE.
l

2, 1=4, =z

RIE o g B

AND HIGH POLAR HNGLES

[y _,n C'

)
)

BER 0OF POLAR ANGLEZ: 70

GE

:':)

IH

DEGREES: 7
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DRFOLAR={PMRE-PHMIND /NPDLAR

WREITE (18,420

FORMARTCAK, “EMTER (LQM 8MD HIGH RIIMUTHARL RNGLES
REARD <44) AMIN, AMAK

AMIH=AMIN*F I 128 4

AMAX=AMAX+FI 130 8

WRITE <48, 242

FORMAT A, “ENMTER HUMEBER POF AZIMUTHAL ANGLEZS: 73
READ <14 HAZIM

GRAZIM=CAMAX-FMINI AHRIIN

MRITE <48, 242

FOQRMATOLY, "EMTER LOW AND HIGH PLOT LIMITS IM FE:
RESD <11y LPPM, HPPH

LOMG=LFPM:0GH

HOMG=HFPHM+OMGH

WMRITE (19, 227

FORMRT LY, "ENTER MUMBER 0OF FREGUENCY POINTS: 73
READ <41y NOMG

CPPH={HPFM-LFPMI ACHOMG-10
DOMG="HOMG~-LOMGY AIHOMG-1 2

WRITE 1@, 221

FORMRT 4K, "ENTER RELATIVE RELRXATON MHTRI%: i
REAL <441y <CCRRELCIL I, J=4, NSITE?, I=1, HZIT

11 ¥
—
—

|

GETAIN YARYING PRRAMETERS

MRITE <416, 280

FORMAT Ax, “ENTER JUMP FREQUENCY IN HI:
REARD (110 JFREQR

IF JFREQ . LE. 8.8 G0 TO 1@

TAU=1. B/JFREQ

HRITE 418,272

FORMAT LK, "ERTER T2 IN SEC: 72

REARD 244) T2

DO THE MORK

GO 2% I=4, NSITE

Do 28 J=1,M5ITR

INDH= - 171H31TEF’

EOINDHI=RRELCI. JO/TAU

1IF 21 CEG. I RAIHDHJ“R(IHDK)+1.E/T2
CONTINUE

TONTIMUE

ITHITIALIZE INTEMSITIES
Tl E4 I=ids HOMG
INTENC =38

CONTINUE

LODP GYER ORIENTHRTIONS
oI IFOLRR=L hrULHr
T*”-fM*H»I'HLHF»Drﬂl
CEATRELTHALTH

: THad G-0SRTH
STH=SQRT{SEGTH
FR0TH= GRNERTH-3. 3

'U :T ;f:]ﬂ i;vh IM

OBTRIN SITE FREQUENCIES
DO 22 J=14, NSITE
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ALPHA=EULERL, J2
EPTH-hHLFD'J,Tv
GAM=EULER{Z, J2
FHI=AZIM+GAM
CE=COSYEETAY
SAR=CExCE
"aasi.ﬁ ~C50E
'FT' SRGED

=1, SxSEE-4. 3
COS{BETAAZD
-IBH*IBH

L B-CSGEH
DEH*ESUEH
FH*“CﬂbH*S:KSH

r;r‘,a
[ I vt Bbet il o B 1]
I mm || m‘ﬂ
I
}_

_;_,..,..mmr;.";.un:lu
PJ

A S THHCTHASE#CECOSIPHT Y i 0OMGI I+

HACTH+SB+{ (CB+ 1 vacoc‘PHI+2 BxALPHAD+
B 1.8)*60 (PHI-
HTINUE

3o Ul ,—., 1 N I T N IR Uy B B B s B Xy U

LO0P OYER OMEGAH

DO 26 I0MG=1, NOMG
OMEGA=LOMG+CIOMG-12+D0OMG

GET A MATRIX

0o 24 I=1,NSITE.

DO 22 J=1, NSITE
INDE=J-10«NSITE+]

AR=R{INDRED

RI=a. @

IF ¢1 EQ. J» AI=NMEGA-OMGIID
ACINDE=CMPLX AR, RID

CONTIHNUE

CONTINUE

GET INTENSITY

CALL CHMINY<A.NSITE, GET, LHORK, MWORK)
SUM=3.8

OO 25 I=14, M550
SUM=SUM+REALCACTIND

CONTINUE
INTENCIONMG
CONTINUE
CONTINUE
CONTINHUE

P=INTENSTOMG3+SUN

NDRMHLIZE INTEMSITIES

LARGE=A.

ooodr Is= L HIMG

TFOCINTENC Ty 48T, LRRGED LARGE=INTENCID
CONTINUE

OO oG T=1, NOMIG

THTENC T =TNTENCTI D /LARGE

CONTINUE

FRUSE

Lo

O =T I=1, HONMG
PPM=LFPM+I-10+DFPPM
FRM=PFM+SIGNG. SE-O41, PPM)
DO 541 J=4, IFMAX

SSOTH*CH4BH*COS (2, % CPHI+ALPHAD 3 +S50THHSSBHAL0OZ (2,

. B*ALPHAY D+FP2CTH#SSRE*COS(Z.

Mi3CJ ) =0MGI1S0+ FP2CTH+#PZCE+A. 7I+5SQTH4ASSOB«COZ (2, B+FHT I~

A+ALFHAY I:ETHH

Gl PHI-ALFHS
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PLOTLJD=BLANK : 169
al CONTINUE

IFLOT=IPMAXKTINTENCID

IF CIPLOT LT, IPMAKY IPLOT=IFLOT+4

FLOTCIFLOTO=STHR

WRITE <48, 520 FPM, INTERCID, (PLOTCID, J=1, IFMAK]
9 FORMAT(2W, "FREQ=",F7. 4,7 IHTEN=",F7. 4,7 1I7.188A1)

3 CONTINUE

£ OUTRUT DATA INTO FILE FOR PLOT

WRITE <ISLOT.VA) CINTEMCID. I=4, HOMG?
it FORMATIF?. 42

\J

G0 TQ 29

10@ CRLL FREFL
CALL FEHUSC(@)
END
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SUBRQUTINE CHINYCR, M. D, L0
' 170
INYERTS A HMATRIX

DIMEHSIOQN ACLY, Lidd, LD
COMPLEX A. D, BIGR, HOLD

p=1. 2

NK=~N

00 88 H=1, N
HE=NK+N
LuKD=K

MeK =K

KR =NE+K
BIGA=RCKK
DO 28 J=K. N
IZ=N#0d~10
BO 28 I=H, N
1J=12+1 ,
IF({CABS{BIGAY~CABSYACIIIID 15,20, 20
BIGA=ALIJSY
LiKD=1

MK =J
CONTINUE

J=L(KD

IFCJ-K) 35G,25,20
HI=K-HN

O 2@ =1L N
KI=KI+N
HOLG=-[R<K12
JI=KI-K+J
ACKII=ALIID
ATJI2=HOLD

T=M 400

IFCI-H) 43, 45, 28
JP=H4({I~-13

00 48 J=4, N
JH=HK+J

JI=JP+]
HOLD=~-RCJKD
ACJKI=ACIID
RCJII=HOLD

IF “CABSYRIGAY . NE. 6.8) 50 TO 42
D=0a_14

FETURN

Lo 535 I=

IFCI-KD 'U;dJasg

I =HE+]

SOTKI=ACIKI AC-BTGRD

CONTINUE

N &3 1=1, N
IK=NK+1
HOLD=HRCTKD
J.-J = .I"?(

00 83 J=14,H
IJ=1J+N
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IFCI-EY &8, &5, 60

IFCT-KY 82,685, 82 -
KJ=TJ-1+K

ACTJa=HOLO=+AKTIDY + ACIID

CONTINUE

KJ=k~N

D0 FE J=1 N
KJ=KJ+H

IFCJ-K 7Fd, V5. 70
ACKI =AY ABTIGA
CONTINUE

D=0+ 10GAR

ACKKDY=1. 8/81GA
CONRTINUE

K=H

K=K-1

IFCKD 456,158, 148!
I=L (KD

IFCI-Ki 120,120, 188
JA=HN+K-13
JR=M*xT-10

oo 118 J=1,H
JK=J0G-+J

HOLD=A{JK?

Ji=JR+J

SR O IR S

oI a=HaLD

BEII R

IFCJ-Hy 41646, 188, 125
M I=K~-N

DO A2 I=1, K
HI=KT+H

HGLD=HOR T2
Ji=i-H+d

R lr==-R4TI0

E I IEES L R I

GOOTD LG
mETURN
=M
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vh

50 Ta 21040

GET PHRAMETZES
MRITE <48, 142
FORMAT $, TEMTER NUMBER 0OF DIFFERENT TENZORS:

READ <4
MRITE <18.,123

FORMAT <1, “ARE TENS0RS IN PFM DR PTG
READ w14, 135 ANz

FORMAT CH2D

1F (RHS . EQ. "FT7% G0 TO 13
WRITE (18, 140

FORMAT CAX, "ENTER HUMBER 2F PPM/PT ON SCHLE:
RERD id) CONY

NRITE <18, 150

FORMAT <4, "EHNTER POINT P0OS5ITION OF REFERENCE
RERD 143 REFPT

DO 48 I=1, HFP

WRITE ¢18.163 1

]

FORMAT <1, "ENTER INTENSITY AND OIAGOMAL ELEMENTS
READ (142 RINTCID, SIG52410, 5162410, SIGEL1D
IF ¢0{51G4K1» . LE. SIGad<TIrr AND. <8Ihexlr  La

WRITE «id, 4617

FORMAT 74, "CHECK SIZE AND ORDER OF TENSOR ELEMENT:.

G0 TO 151

161G I»=51GAX 10 /CONY+REFPT
151G2415=51G2 1) /CONY+REFPT
ISIG3C10=5IG3CI)/CONY+REFPT
CONTINUE

GO0 TD 27

00 29 I=1, NPP

HRITE 18,1863 1

RERD <440 RINTCIL), 1516441, ISIGECTY, 15162010
COHTINUE

MRITE <18, 217

FORMAT <1, ~02 20U WANT INCEPENDENT SHMOOGTHINGTY”

RERD 14,423 RES

iF CRES CEQ. SO (G0 TO 24

DO 23 I=1.NFP

WREITE <19, 220 1

FORMAT <4, "ENTER SHMOOTHING FACTOR FOR TENSOR
READ <d44s 5M <10

CORTIRUE

DETERMINE WIDTH, SHIFT LEFT
LARGE=1SIG3C1)
SHALL=I51G1<1>
00 285 I=1, HPP

.

e B
o
S

-

>

L

LA
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GO
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pat
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LIS

[#9)

ASSIGH CONSTANTS FOR
INTEGRALS OF THE FIRST
AR=1, 3862944
Ai=0. 1413723

5. Q728236
Ro=d. 50
Bl=0. 1212478
22=5. G288723

L

{2 S L WER IR 4

i =
]
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;1824
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(USRS ow

Pt r‘* r"'

[
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N SN
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L
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om

bz

=T - O

e]

wi

D0 AXIAL PATTERN
IF CISIhaCiy | EQ
SUM=8. 8

MO L EG. 8y G0 T0
TEHP1=0. B
TENP2=0. 3
OO Te LP=4, SN0
D0 2T =D, 1923

- e L

TEMPRLI=TINTK?
TINTIH

T
TEMFR2=TEMPL
CONTIMUE
CONTINUE
L"J ZiogE

IHTCI0

O e=E T

Sro=smiIn
IFoCEHe R d) 50 70

£ FOMEDER PRTTERNS

1% O HE. ISIG2CI3

MATION

30 TQ

4
LE¥]

-

aF

Gl TEMP2AEH TINT ORI TINTOK+43+1,

I}

)
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=Y

Do 43
TEMPL=T
TINTH R 3=
TEMP2=T
COMTINUL
CONTIHUE
D0 d4e J=d,
TIHTOJ =R
FINTC I =F

-~
-
. x"
i st
-
i
—
—

CONTIMUE
50 T &8

DO HOMAXIAL PATTERN
SUM=1.

1S=151G4%10
1B=15162010
1T=151G2410

DIFL:

i
bed

IT-
T

iR Eainry]

e

: 3 '“ﬁiﬁIT“K)*DIFZ?)
PHR=(K—IS)*DIF2/((IT*K)*DIF33

’fNr—Huvﬂ'ﬂV4n Hy ok 2 BALELEYFED
TIMTOKY=PM+EINT
SUM=SUM+TINTIH?

COMTINUE

18Pp1=I8+1

oD SA M={gp4L, 1T
PH=SORTIOIFL/CK-T200

FAR=DIF 2w I T =Ko/ dDIF2wlE-2522
V=1, @-PAR

R D Y RLOGO L, BN

ETNT=AB+ALEY +AZ k24 BOFBI* Y +BRw e wZ wALOGIL, 3040

TINT K 3=PHsEINT
SUR=SUM+TINTCKS
CONTINUE

IZGN=4

IF CTINTZIB=-13 LT, TIWTLIG+Li0
TINTCIB =& TIRTOIE-I5GM~S+«TINTY
SUM=SUM+TINTCIB

[F CRES _ZQ. 7HNO7Y G0 T0 83

JOG0 T B3

CUHF-HUL
FUWn‘HH{

ST TINTOI 2 2SUN
CIHTINT LG

31 I“L 102
VFTNT 12 .GT. BIG: BIG=FINTII

FTIHT O -+ TINTO L

PhLRE-TE0 04

)
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TA INTO CUTPUT FORMAT
=1, 1824

~A =R INT O ZETET. 88106
COMTIHUE

SUTRUT DATA

CRLL WRBLI <L, & AMP
IF CIERRL . HRE. 83 G0
SMALL=8MALL-21
MRITEZ <48, 9142 SHALL
FORMAT <d¥. "S5HIFT -7 14,7 POINTS

CARLL RESET
END

FOR

Cik

RECT

FOSITION D
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COMMUTATORS B <1 IX2 IX3 Iyl Iyz Iy3 Izl Izz IZB
La Ly Lo  31n -3 1,2 3 2 '% I % L2 % Ty
L 0 Ly 752 “3ln “3la 3 I % I -3 La
I3 0 ‘% Ioo % I 0 -3 1, ’;‘ Ia 0
I 0 I3 - I % La '% L li" I
Iya 0 Lo 72 Ik '% La '% I
) Iy3 0 ‘%‘ L2 % Ia 0
Szl 0 Iz3 - IzZ
822 0 Izl
S, 0
(B,A] = -[A,B]

Jd XTpuaddy

9LT




ANTICOMMUTATORS

[A,BF, = [B,A],
I\ A
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Appendix G Trigonometric Functions of Operators

In the course of human events it sometimes becomes necessary to
evaluate trigonometric functions of operators. To do this we make use of

the power series expansion of the function

cosx = 1 - rHgp Tt ...
sinx=x-—§+—5—!——7—!+ ces

For the fictitious spin-% operators we must then evaluate the various
powers of operators. It is particularly easy to see from the matrix

representation of these operators, Table II, that

(2 Ip,n) =2 IPsn & IPan) =@ Ip,n)

for p = x,y,z,n = 1,2,3 and all m > 1. These identities make it possible

to factor the operator out of the series to give

2
n) + (21P

w 2 W
cos(wIp nt) = cos/( 5 ZIp nt) n) cos(zt)

b b

1 - (21
p

> b

and

it
1

sin(wIl t)
P,0

’

W W
81n(2 ZIp nt:) ZIp a 31n(2t)

b ’

Of course this also allows us to express an exponential operator in terms

of nonexponential ones

17
1

cos(wIp nt) + i 31n(wIp nt:)

3 b

2
n) + (2Ip

sin (%t )

bl

2 w .
1 - (ZIp n) coscit) + i ZIp n

> b4
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It is sometimes convenient to use the identity

(21 )2

=21+1 -1
pP,D 3

q,3 r,3

where p,q,r = x,y,2 or cyclic permutation for n = 1,2,3.
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Appendix H

Synthesis of various deuterated hexamethyl benzenes was performed
by Herbert Zimmermanmn. The? were prepared by reaction of pentamethylbenzene
(Aldrich) with paraformaldehyde and sodium bromide in acetic acid.

For d-1 HMB 37g of PMB, 19.5g paraformaldehyde and 72g NaBr were
dissolved in 140 ml glacial acetic acid at 80°C, and 65.5ml conc. HZSO4 and
65 ml glacial acetic acid were dripped in over 4 hours, with good stirring.
The mixture was heated at 90°C for 7 hours, then was put into 2 liters of
ice water. After standing overnight it was filtered and well dried
under vacuum. The pentamethyl benzylbromide was purified by vacuum
distillation. 15 grams of pentamethyl benzylbromide was then dissolved
in dry diethylether and was added over 30 minutes to a suspension of 5.2g
LiAlDA (Stohler) in dry diethylether. This mixture was stirred 5 hours.
Water then 15% H2304 was carefully added the ether phase removed and the
water phase extracted with other and the combination dried over K2CO3/
NaZSO4 overnight. Then evaporated to dryness. Crude product of 10.8g

was recrystalized from ethanol.

For d2 HMB 98% deuterated paraformaldehyde and LiAlH4 were used

with same procedure.

For d3 HMB 987 deuterated paraformaldehyde and LiAlD4 were used

in the same procedure.
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FIGURE CAPTIONS
Figure 1. The sequential rotatioms, through Euler angles o, B, Y,
used for transformations of tensors from one axis system to another.

T

The frame x, y, z is the initial axis system and x''', v , z'"!

is
the final. The éingle and double prime systems are intermediate.
Figure 2. The behavior of various magnetizations during a cross
polarization experiment. Curve a is the decay of proton magnetization
due to spin lattice relaxation in the rotating frame, Tlp = 10 units.
Curve b is the growth of carbon magnetization with time constant

TIS = 15 units which would be observed if proton relaxation were not

present. Curve c is the actual growth of carbon magnetization

including effects of proton relaxation.

Figure 3. Schematic pulse sequences for (a) free induction decay and

(b) cross polarization experiments with proton decoupling.

Figure 4. Powder patterns for anisotropic chemical shielding, (a) in

the case of axial symmetry and (b) for the general case.

Figure 3. 13C spectrum of adamantane in the plastic phase, showing
lines averaged by isotropic reorientation. This spectrum is the
result of a single shot, single contact (4 msec) cross polarization

experiment.

Figure 6. Chemical shielding powder patterns for nonrotating and
rotating molecules. The case shown is for flourine in a model fluoro-
methyl group with the 033 element along the C-F bond and 011 in the
CCF plane for the rigid molecule. Rapid rotation of the methyl yields

the axially symmetric pattern.
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Figure 7. C powder spectra for hexamethylbenzene in the high and low
temperature limits. The wide peaks are from the ring carbons and the

sharp peaks, which have been truncated, are from the methyl carbons.

Figure 8. Possible jumps for a molecule of HMB in a sixfold symmetric
site. In a general orientations there are three different chemical
shifts for these sites, represented by lines A, B and C. The rate of

jumps from orientation i to j are given by the rate constant wij'

Figure 9. (a) and (c) are orientations of the HMB molecule with
respect to the magnetic field which give rise to degeneracies of

line positions. In (a) 1 and 3 are degenerate and in (¢) 1 and 2 are
degenerate. (b) is an orientation for which the positions of 1, 2

and 3 are nondegenerate.

Figure 10. Spectra for exchanging HMB molecules in orientation (b)
of Figure 9 and near orientation (c) of Figure 9. The exchange causes
rapid coalescence of the two lines close together in the right hand

spectra.

Figure 11. The low field part of theoretical powder lineshapes for
exchanging HMB, the left side spectra for the rotational random jump
model and the right side for sixfold jumps. Numbers above spectra are

total jump rates in Hz.

Figure 12. The low field part of experimental and theoretical spectra
1

of HMB. On the left are experimental 3Cspectra for a number of

temperatures noted above the spectra. The right side shows again the

theoretical spectra for sixfold jump model. The extra features present
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in the jump model are clearly present in the experimental spectra.

Figure 13. Experimental 13C spectrum of HMB at -135.8°C. The extra
features at =80 PPM and -40 PPM are particularly prominant in this
spectrum. The truncated peak at the high field side is from the

methyl carbons.

Figure 14. A plot of the log of estimated jump rate against 1/T for
HMB. From this we determine an activation energy of 5.5 kcal/mole

for ring jumps.

Figure 15. Theoretical and experimental spectra for 13C in DMFe in
the rigid and rapid motion limits. The high field lines in the
experimental spectra are from the methyl carbons. Unlike HMB, the

033 element of DMFe moves downfield when motion occurs.

Figure 16. Schematic representation of the shielding tensor orienta-
tion in DMFe. The angle between 033 and the Z axis (rotation axis)
is about 20°. Methyl carbons are not shown and the relative orienta-

tion of the rings cannot be determined, staggered conformation is

assumed for illustration only.

Figure 17. The possible jumps for the rings of DMFe in a fivefold
potential. For general orientations all five sites have different

chemical shifts, schematically represented in the lower portion.

Fipure 18. Theoretical spectra for DMFe in the two limits le/w13 = ©

o

and le/w13 = 0. Spectra are shown for the single orientation a = 0
B =0° Y = 2° at a number of total jump rates for each limit, and

for a powder average at 600 Hz total jump rate (at top). Note that
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jumps of 2m/5 (W, /W, ., = ©) exchange magnetization directly between
lines 3 and 4 and these lines remain somewhat sharper than others for
/W

slow exchange rates. Jumps of 4m/5 (W 0), on the other hand,

12'713 7
exchange magnetization between lines 2 and 5 so that a different

region remains sharp. The contribution of these "sharp" regions to

the powder lineshapes can be seen as "bumps" at the top.

Figure 19. As Figure 18, but for the orientation oo =0 , B = 0,
Y = 16°. Now 21m/5 jumps exchange magnetization directly between lines
2 and 3, and 47/5 jumps directly exchange lines 1 and 4. The '"sharp"
regions contribute to other "bumps'" in the powder spectra. It is

. . . (o]
rapid averaging in molecules with orientations near these (o = 0

o

B =0 v= 0°anda =0B =0 Y = 180) that give rise to the "bumps"

in the powder spectra.

Figure 20. Theoretical powder spectra for the two cases le/w13 =
and wiZ/WlB = 1 for several total jump rates, with appropriate
shielding parameters for ring carbons of DMFe. The 'bumps'" are quite

evident in both sets, though the feature near 35 PPM is weaker in the

hard collision (le/w13 = 1) case.

Figure 21. Experimental 13C spectra of DMFe at a number of tempera-
tures. The "bumps" in the slow exchange region and axialization at
higher jump rates are quite evident. The upfield peaks, which are

truncated, are from the methyl carbons.

Figure 22. The experimental spectrum of DMFe at -172.5°C is compared
with theoretical spectra for a number of jump ratios le/W13, for a

total jump rate of 600 Hz. The experimental spectrum is in agreement



with a large le/W13 ratio.

Figure 23. A plot of the log of estimated jump rate against 1/T for

DMFe. From this we determine an activation energy of 3.2 kcal/mole for

ring jumps.

Figure 24. Deuterium coupled and decoupled spectra of residual protons

in heavy ice (DZO)’ at -90°C. H concentration was "0.5% and the
decoupling field was 60 G. From this we obtain 0" = 15 PPM and

o, = -19 PPM.

Figure 25. Symbolic representation of the migration of a D-type
Bjerrum defect through the ice lattice. Oxygen atoms occupy the
tetrahedral positions and hydrogens are represented by black dots.
This migration exchanges water molecules among the six tetrahedral

orientations, of Figure 26.

Figure 26. The six equivalent orientations for a water molecule in a
tetrahedral environment. Water molecules are exchanged among these

orientations by defect migration in ice.

Figure 27. Exchanging lineshapes for water in a tetrahedral environ-
ment, showing the dependence of 'sharpness' of the isotropic spike

on Tz. Total jump rate in both cases is 5000 Hz, with T2 = 0.001 sec
(top) and T2 = 0.01 sec (bottom).

Figure 28. Theoretical powder spectra for protons in heavy ice under-
going exchange. On the left are lineshapes for the symmetry

related jump model and on the right for hard collision random

jumps, each at a variety of total jump rates. T2 was 0.001 sec in
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both cases.

Figure 29. Experimental lineshapes for protons in heavy ice at several
temperatures, to be compared with the symmetry related jump model on
the right. The extra bump of the symmetry related jump model is quite

evident in these spectra.

Figure 30. A plot of the logarithm of estimated jump rate vs. 1/T for
heavy ice. From this we determine an activation energy of 3.5 kcal

per mole for the reorientational motion.

Figure 30a. 130 powder spectra of pentamethylbenzene above (280C) and
below (ZOOC) the crystallographic transition (240C). The narrowing
above the transition is an indication of restricted motion (marks show

approximate o and © below the transition).

11 22
Figure 31. Schematic representation of quadrupolar (top) and chemical
shielding (bottom) powder patterns in a solid. Quadrupole couplings

are generally about 100 times larger than chemical shifts.

Figure 32. Energy levels for a spin-1 with and without quadrupole
couplings. With a quadrupole coupling the +1 + 0 and 0 =+ -1 transi-
tions are no longer degenerate (bottom). However the +1 and -1 levels
shift equal amounts in the same direction, making possible high reso-

lution FTDQ NMR.

Figure 33. Schematic pulse sequence for FTDQ NMR showing preparation
pulse, evolution, and probing pulse. The evolution during T is

independent of the quadrupole coupling.

Figure 34. Comparison of exact computed response (solid curve) and



approximate response (dashed curve) of initial density matrix Izl to a
double quantum pulse as a function of time. Although the response is

not ideal, the density matrix desired, a_, = -1,0, may be prepared

through proper selection of pulse length.

Figure 35. Coefficient of single quantum coherence for the pulse of
Figure 34. It is desirable to have single quantum response minimized

as well as double quantum response maximized in FTDQ NMR.

Figure 36. The distribution of coherence in the y-space after a

single pulse on initial density matrix I as a function of wQ (marked

z2’

in kHz along curve). The ideal response for a §-m/2 pulse is ay2 = -1,

Figure 37. Efficiency of preparation of double quantum choerence for

initial density matrix Izl’ for a single weak pulse, as a function of

V.. The change of sign at v_ = 0 is not important. The solid curve

Q Q

is the exact calculated response and the dashed curve is the approxi-

mate cosﬂulz/w t).

Q
Figure 38. Overall efficiency of preparation and detection of double
quantum coherence for pulse sequence shown if: detection is immedi--
ately after probing pulse (top), or detection is delayed for 30 usec

by spectrometer dead time (bottom).
Figure 39. (bottom part of 38)

Figure 40. Response of initial density matrix IZl to a pair of strong

pulses (quadrupolar echo sequence) as a function of VQ This sequence

be used to avoid distortion due to dead time as shown in Figure

mav
LAy

38, 39.
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Figure 41, Response functions for pulse sequences with two weak
pulses. The response in (b) is practically as good as (a) since small
amplitude oscillations will be obscured by broadening. The sequence

shown in (b) is best suited for experimental application in powder

samples since it overcomes the problem of spectrometer dead time.

Figure 42, Response functions for two pulse sequences as a functiom
of vQ, multiplied by the intensity function for an axial quadrupole
powder pattern (upper curves). These predict the lineshape for

chemical shielding if the quadrupolar and shielding tensors are

axial, with unique axes aligned.

Figure 43. Ideal response functions for two strong pulse preparation
of double quantum coherence, as a function of VQ’ for three delays
T=m, (b) V.T = 37 c) V. T = 5T where v, is

the maximum quadrupole splitting. At the bottom is the sum of these

between pulses, (a) V

three with appropriate weights for a Fourier approximation to a square

wave.

Figure 44. Calculated response function for realistic parameters,
with pulse widths and delays adjusted to give the best possible
response. The response functions shown are for a maximum quadrupole
splitting (separation between sattelites) of 260 kHz, r.f. pulses
with vl = 100 kHz and Av = 0. Shown are responses to the following
sequences: (a) 1.75 usec pulse, 2.25 usec delay and 2.50 uysec pulse,
(b) 1.75 psec pulse, 10.00 usec delay and 2.50 usec pulse, (c) 1.75

usec pulse, 17.75 usec delay and 2.50 usec pulse. At the bottom is

the appropriately weighted sum of these showing the very small
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deviation from ideal response. A ninety degree pulse on resonance

would be 2.50 psec and the delays v.T of m, 37 and 5T rotations for

Q
the maximum splitting are 3.85 psec, 11.54 usec and 19.23 psec

respectively.

Figure 45. Response functions for first and third echos in a multiple

. Also shown is the

Q

average of response function for the first four echos, showing that

quadrupole echo sequence as a function of v

averaging of several echos does not degrade response. Pulses were

100 kHz in amplitude and 2.25 usec in length, and T was 30 usec.

Figure 46. Stick spectra for two equivalent and inequivalent deuter-
ons which are dipolar coupled. At top and bottom are single quantum
spectra and in the center is the double quantum spectrum, which is the
same for equivalent and inequivalent cases, and shows no quadrupole

splitting.

Figure 47. Single and double quantum stick spectra for three equiva-
lent deuterons which are dipolar coupled. The double quantum spectrum

has no quadrupole splitting.

Figure 48. Energy levels for two equivalent deuterons which are

dipolar coupled. Arrows represent all possible transitions. Solid
arrows are allowed single quantum transitions and single spin double
quantum transitions which would be observed in FTDQ NMR experiments.
Dashed lines are zero, two, three and four quantum transitions which
could be induced by the dipolar coupling (Ch. IV). The two sets of

levels are symemtric (left) and antisymmetric (right) with respect to



exchange of the spins.

Figure 49. Pulse sequences for FIDQ NMR. Experiments on single

crystals commonly use A, while D is most often used for powder samples.

Data are collected as a function of variable time T.

Figure 50. Double Quantum free induction decay for d-1 benzene doped

107 into normal benzene, taken at -400C. Points are spaced by 100

usec.

Figure 51. Fourier Transform of decay in Figure 50 showing chemical

shielding anisotropy for the aromatic deuterons. AC = -6.5 PPM. The

position of liquid benzene is shown.

Figure 52. Theoretical powder patterns for the d-1 benzene experiment,

generated by a computer for the pulse sequence used.

Figure 53. Single quantum deuterium spectrum of 57 deuterated
ferrocene showing axially symmetric quadrupole powder pattern with

eqV__ = 96.8 kHz n = 0.

Figure 54. Double quantum free induction decay for 5% deuterated
ferrocene, taken with pulse sequence D of Figure 49. Points are

spaced by 50 usec.

Figure 55. Fourier Transform of the decay in Figure 54. From the
width we estimate the chemical shielding anisotropy to be ;6.5 PPM,
as for benzene. The position of the line was not measured relative
to a reference, and the scale has been reduced a factor of two to

compensate for double quantum scaling.
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Figure 56. Single quantum spectra for a crystal of BaClO3-D20 in an

arbitrary orientation. The inserts show the resolved dipolar splitting
between deuterons (inner lines), and the extra lines for HOD impurities
(outer lines). In this orientation the separation between sattlites is

138.3 kHz.

Figure 57. Proton decoupled (left) and coupled (right) double quantum
spectra of BaC103-D20, taken for the orientation of Figure 56. These
spectra were taken with pulse sequence A of Figure 49, with double

quantum decays of 50 points spaced by 25 usec.

Figure 58. Single quantum powder spectrum of d-1 hexamethylbenzene,
showing the nonaxial quadrupole coupling tensor. From this we obtain

quZz = 18.95 kHz and n = 0.096.

Figure 59. Single quantum powder spectrum of o,B8 d-2 hexamethylbenzene,

as Figure 58. quzz = 20.9 kHz n = 0.08.

Figure 60. Single quantum powder spectrum of o, B, Yy d-3 hexamethyl-

benzene, as Figure 58. quzz = 22.2 kHz n = 0.07.

Figure 61. Carbon spectra for ordinary HMB (bottom) and d-1 HMB

(center) showing axial symmetry from rapid rotation about the sixfold
axis. The theoretical spectrum (top) shows the lineshape expected if
the carbon tensor had the same asymmetry as the deuterium (n = 0.10).

Slight broadening from deuterium is evident for d-1 HMB, but there is

no evidence for a nonzero asymmetry parameter.

Figure 62. On-resonance decay of echo amplitude with time between

pulses for some deuterated hexamethylbenzene samples. The rate of
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decay is clearly associated with deuterium concentration, and hence
the strength of deuterium—deuterium dipolar couplings. All curves

were obtained while decoupling protons.

Figure 63. Oscillation of echo amplitude with time for d-1 HMB, 500
Hz off resomance. These oscillations clearly demonstrate the behavior
predicted by (III-81). The decay of the constant term (top) comes
only from T2 while the oscillations are damped by chemical shielding

anisotropy as well.

Figure 64. Single quantum spectrum of a single crystal of d-2 HMB
showing quadrupolar and dipolar structure. The quadrupole gplitting

was nearly the maximum possible for d-2 HMB.

Figure 65. Theoretical (bottom) and experimental double quantum
spectra for the d-2 HMB crystal shown in Figure 64. The spectrum

was taken with pulse sequence A of Figure 49 for 100 points spaced

by 50 usec.

Figure 66. Single quantum spectrum for a single crystal of d-3 HMB,
showing quadrupolar and dipolar structure. As for the d-2 HMB
crystal, this crystal was oriented to give nearly the maximum possible

dipolar and quadrupolar splittings.

Figure 67. Theoretical (left) and experimental (right) double quantum

spectra for d-3 HMB. The spectrum was taken using pulse sequence A of

Figure 49 for 100 points spaced by 50 usec.

Figure 68. Experimental double quantum spectrum of 20% d-1 HMB in

ordinary HMB. The linewidth is ~100 Hz or 3.5 PPM, This spectrum was



obtained using pulse sequence D of Figure 49, for 50 points spaced by

200 ysec.

Figure 69. Experimental double quantum powder spectra for d-2 HMB
(top) and d-2 HMB 10% in normal HMB (bottom). The dipolar powder
patterns are clearly evident in both. The pulse sequence was the same

as for Figure 68.

Figure 70. Response function for the pulse sequence used in Figures

68 and 69. Although response is quite poor near v, = 0, it is quite

Q

good near the peaks of the powder pattern, the most intense regions

of the spectrum.

Figure 71. Theoretical double quantum powder spectra (compare Figure
69) for dipolar coupled pairs of deuteromns, with no shielding
anisotropy, generated using the experimental parameters for HMB,
including weighting by the transfer function, Figure 71. The width of

the Gaussian broadening used is noted to the right.

Figure 72. Experimental single quantum deuterium spectrum of d-1
p-methoxybenzoic acid (anisic acid) obtained by Fourier Transforming the
second half of a quadrupolar echo. From this spectrum we obtain

quzz = 169.0 * 1.0 kHz and n = 0.132 * 0.003. The high intensity

at the center and oscillations in amplitude arise from pulse imperfec-

tions. Pulses were V80 kHz in amplitude and the time between x and y

pulses was 40 usec.

Figure 73. Double quantum FID (bottom) and spectrum (top) of deuterons

in d-1 anisic acid. The structure comes from a combination of dipolar
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coupling and chemical shielding anisotropy. FID was taken with pulse

sequence D of Figure 49, 50 points with a spacing of 50 usec.

Figure 74. Pulse sequences used in FT Multiple Quantum NMR. The parts
of the experiments are labeled at top, (a) and (b), P, preparation, E,
evolution, and D, detection. Other pulse sequences for particular
experiments are below: (c¢) and (d) nonselective multiple quantum,

(e) selection of even or odd quantum, (f) nonselective with multiple
quantum echo for resolution enhancement, (g) even or odd selective
with m.q. echo for resolution enhancement, (h) single quantum echo

for resolution enhancement.

Figure 75. Energy levels for oriented benzene. These are labeled
with total magnetic quantum number (left) and symmetry (top). All

transitions, single quantum and multiple quantum, occur within a
single symmetry.

Figure 76. Experimental (top and center) and theoretical (bottom)
single quantum spectra of protons in oriented benzene. The top
spectrum is the Fourier Transform of an ordinary FID, showing lines
broadened by inhomogeniety of HO. The linewidth is 100 Hz. The
center spectrum was obtained by Fourier Transform of a single quantum

echo FID, Figure 73 (h), showing greatly improved resolution. The

lidewidth is ~3 Hz.

Figure 77. Experimental (top) and theoretical multiple quantum
_ spectra for oriented benzene. The pulse sequence and theoretical

parameters used are discussed in the text.
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Figure 78. Order selective spectra of oriented benzene. At the top,
A, is the nonselective spectrum of Figure 76. B is the even quantum
only spectrum obtained with pulse sequence (e) of Figure 73, C and
D.show respectively, 0 and 4 quantum selection and 2 and 6 quantum
selection obtained by adding and subtracting multiple quantum FIDs with
preparation pulses phase shifted by 90° but the same phase detection

pulses.

Figure 79. Zero quantum FID and spectrum showing extremely sharp
lines, limited in width for the present case by truncation of the

FID.

Figure 80. Even quantum selective multiple quantum spectrum with an
echo in the evolution period. The full spectral width is one Aw in
Figure 75. The linewidths in this spectrum are "3 Hz, independent of
order. The spectrum is completely symmetric since only a single phase

FID was transformed.

Figure 81. 2 and 6 quantum selection in a multiple quantum spectrum
obtained with an echo during the evolution period. Just the upper half
of the symmetric spectrum is shown. Linewidth was limited by trunca-

tion of the multiple quantum FID.

Figure 82. 0 and 4 quantum selection in a multiple quantum spectrum

obtained with an echo during the evolution period, as Figure 80.

The degree of separation of orders can be seen by observing that the

strongest line in this spectrum has less than 3% of this intensity in

the 2 and 6 quantum spectrum. Degeneracies in line positions occur
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for various orders so that some lines (as that near 2500 Hz) appear in

several selective spectra.

Figure 83. Block schematic of the spectrometer used for the experi-
ments described here. Various components are further described in

the text.

Figure 84. Detailed schematic of the transmitter and probe configura-

tion.
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