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Abstract 

The variational calculation of Siegert eigenvalues has previously been 

shown to provide reliable positions and widths for atomic resonances. This 

approach is herein extended to molecular problems, and the first such 

calculations for a molecular autoionizing system, He(21 ,3S) + H ~ He + H+ + 

are reported. 

Introduction 

I As the authors have recently demonstrated, the variational calculation 

of Siegert eigenvalues is a most promising approach to the determination of 

e , 

atomic autoionization positions and widths, in that results of useful accuracy 

can be obtained with quite modest basis sets. In addition, this approach is 

advantageous in that it involves no approximations (such as neglect of 

non-resonant proc~sses, use of free particle orbitals in "golden rule" 

formulae, etc.) other than the finiteness of the basis set itself, it 

provides stable convergence to the correct result for increasing basis 

sets, it avoids the ambiguity of looking for "stability" of the eigenvalue 

as the basis set (or rotation angle, in the rotated-coordinate method) is 

varied, and it in principle requires little more than standard electronic 
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structure technology. In this letter, we extend the methods to molecular 

problems and present reliable results for the He(23S) + Hand He(2l S) + H 

Penning ionization systems. 

Our procedure for the atomic case is briefly summarized as follows: 

We choose an atomic trial function Wt of the form 

N-l 
= E 

i=l 

where {~.}, i = 1, •.• , N-l are bound, M-electron configurations which 
1 

(1) 

decay (exponentially at large distances), while G is an M-electron configura-

tion involving a combination of the ground state of the (M-l)-electron 

system with a function which asymptotically behaves like an outgoing coulomb 

wave with wave vector k (the Siegert orbital)., The Siegert eigenvalues are 

determined by requiring that the functional 

be stationary with respect to variation of the coefficients {c.}. (The 
1 

..t. 

conjugate function Wi is defined by taking the complex conjugate of all 
t . 

(2) 

spherical harmonics in Wt but not of the radial functions. 2) This leads 

in the usual way to a secular equation for the coefficients {ci }, which 

when solved yields a complex eigenvalue E.(k) which we identify on physical 
1 

grounds as corresponding to the resonance. (The eigenvalue E.(k) is complex 
1 

because the Hamiltonian matrix is complex symmetric, and it depends on k 

because the Siegert orbital does.) One then needs to choose the value of 
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k to satisfy the equation 

E.(k) 
]. 

(3) 

which requires iteration. 

The major practical difficulty in extending this procedure to more 

complicated (1. e., molecular) systems lies in computing the Hamiltonian 

matrix elements which involve the Siegert orbital. For the autoionization 

of a neutral system, this function takes the form1 

(4) 

it thus has the form of a linear combination of complex Slater functions. 

If the bound orbitals of the basis set are chosen as Gaussian functions, 

the resulting matrix elements involving e cannot be computed analytically. 

On the other hand, if the bound orbitals of the basis are chosen as Slater 

functions, all the molecular matrix elements cannot be computed analytically, 

even in the case of a diatomic system. Since numerical integration is thus 

unavoidable for a molecular calculation, we decided to perform our first 

molecular calculations on diatomic systems and employ a basis of Slater 

orbitals. 3 The systems we chose to investigate are the He(2 S) + Hand 

He(21S) + H Penning ionization reactions. These particular systems have 

several desirable qualities: (1) Since they contain only three electrons, 

extensive electronic structure calculations are feasible. (2) Feshbach 

projection operator technique results are available for comparison for both 

systems. 3-5 (3) Sufficient experimental data exists 6- 9 with which to compare 
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ionization cross section results obtained from the computed potentials and 

widths. 

The main theoretical consideration in extending our procedure to 

molecular systems is that the problem no longer possesses spherical 

symmetry. In the language of a partial wave analysis, this means that 

Siegert orbitals of s,p,d, etc., symmetry can all contribute to the 

trial function, just as the bound orbitals of those symmetries do. It 

is important to point out, however, that the Siegert boundary condition 

for such a multichannel situation requires that there be only outgoing 

radial waves in all channels (i.e., in all partial waves in this case), 

so we thus include ,Siegert-type orbitals of s,p,d, .•• , symmetry in the 

basis. Since the ionized electron departs primarily from the He atom 

* +-in He + H + He + H + e , we centered the Siegert orbitals on the He 

center in the hope that only a few partial waves would be required to 

describe the resonance. This turns out to be the case. 

The only remaining theoretical question is how to define the Siegert 

configuration. First, we note that only m = 0 Siegert orbitals need to 

be considered for the problems we are studying, as they possess~symmetry. 

Then for each e~(r), ~ = 0,1,2, .•• , we wish to consider configurations 

which have the form of e~(r) times the remaining 2-electron HeH+ core. Since 

the dominant configuration in ~Heg+ is ls2He + H+, we take for our Siegert 

configurations those configurations which correspond to an orbital occupancy 

, <P a <Pb e ~' where <P a and <Pb are Is orbitals on He. 

The calculations presented in this section were performed with modified 

10 
versions of the HETINT and MRINO programs written by Schaefer. Since all 

integrals were performed numerically, it was not necessary to determine 
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analytic expressions for the integrals involving the Siegert functions. 

The program was then tested in two ways: 1 (1) the He(2 S) resonance 

results obtained previouslyl were reproduced by this program; (2) setting 

k to a pure imaginary number (and thereby making e~ a purely real function) 

gave the same results as the corresponding bound calculation. 

From Eq. (4), we note that the form of the Siegert function is such 

that the numerical integrals cannot in general be evaluated at Im(k) < 0, 

where Eq. (3) has the root we desire. To circumvent this problem, we first 

performed the calculation of E.(k) for Im(k) » 0, fit the results to a 
1 

rational fraction, and attempted to analytically continue this fitted function 

to the region Im(k) < O. Unlike the atomic case,l however, Ei(k) varied too 

strongly with k for this procedure to be useful. A much more successful 

approach was to perform the numerical integration along a rotated contour. 

That is, if a function fez) is analytic in the upper half z-plane, say, then 

the integral !dX f(x) along the real axis is ~quivalent to the integral 
o 

along a ray of angle a in the complex plane: 

00 

kx f(x) 

i<l' =le dz fez) = (5) 

10 
Since the HETINT program performs the numerical integrations in ellipsoidal 

coordinates (l;,T]), only the l; integrations (on the interval [1,00]) need to 

be performed on a rotated contour, which is defined by 

-ia 
l; = 1 + (x-l)e 

x=l-+oo (6) 
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For real values of k (which proved to be close enough to the true k for 

our calculations), a rotation angle a ~ 0.15 ~ radians produced integrals 

-8 
with an error of ~ 10 a.u. (and which are independent of the precise 

value of a). 

The set of bound, Slater type orbitals used in the calculations 

4 presented here is the same as that used by Hickman, et a1. in a golden 

rule calculation of He(23S) + H, except that the IT orbitals are not 

included. The orbital basis was then augmented with Siegert functions 

e
t 

of s, p, andd symmetry centered on He. Since the change in the final 

r was less than 20% upon addition of ed' the inclusion of only these three 

Siegert orbital symmetries was considered sufficient. For the CI ca1cu1a-

2 tion, all L configurations arising from the bound orbitals (240) were retained. 

To this set, 4 Siegert configurations were added for each Siegert orbital 

symmetry. These configurations have the form ~a~bet where ~a and ~b are 
, . 

the 1s and/or 1s functions on He. The final CI calculation was thus per-

formed with 252 configurations. As the real resonance energies at each 

internuclear separation had already been computed for our systems by the 

stabilization technique,3 we could easily determine an approximate value 

for the real part of the true complex resonance momentum. The resonant 

eigenvalue E.(k) was then computed for five closely-spaced real k points 
1 

bracketing this approximate value. The five resulting E.(k) values were 
1 

fit to a low-order rational fraction, which was then analytically continued 

to the region Im(k) < 0 and the root Eq. (3) was found by a Newton-secant 

iteration. 

The results for the real resonance energies as functions of the 

internuclear separation (i.e., the potential curves) are plotted in 

,-, 
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Figures I and 2 for the singlet and triplet systems, respectively, and 

are compared with the results from the stabilization technique. 3 ,4 We 

see that in both cases the general agreement is quite good. Results for 

the singlet and triplet ionization widths as functions of R are shown in 

Figures 3 and 4 and compared with the golden rule results of Miller, 

Slocomb, and Schaefer3 and Hickman and Morgner. 5 For the triplet case, 

our width agrees well with both golden rule calculations, although it 

4 seems to favor the results of Hickman, ~ al. For the singlet system, 

our width is somewhat larger than Hickman's.5 Since Hickman5 found that 

to obtain good agreement between his calculated ionization cross section 

results and those of experiment9 his width would have to be increased by 

about a factor of 2.5, and since our results are between a factor of 2 

and 3 larger than Hickman's for R > 4 a , we feel confident that cross 
~ 0 

sections calculated from our potential and width would be in very good 

agreement with experiment. Such calculations are currently in progress. 

Variational calculations with Siegert boundary conditions thus seem 

to be a practical and reliable way to carry out ab initio calculations of 

the energy and lifetimes of molecular autoionizing states. 
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Figure Captions 

1. 
1 Potential curves for He(2 S) + H •. The solid curve is the present 

result, obtained from the real parts of the Siegert eigenvalues for 

various values of R. The dashed curve was obtained by the stabilization 

method (see Reference 3). The corresponding asymptotic limits are 

indicated by arrows. 

2. Potential curves for He(23S) + H. The solid curve is the present 

result, obtained from the real parts of the Siegert eigenvalues for 

various values of R. The other curves were obtained by the stabiliza-

tion method. The dashed curve was taken from Reference 4, while the 

dot-dashed curve was taken from Reference 3. The corresponding 

asymptotic limits are indicated by arrows. 

3. Autoionization widths r for He(2 l S) + H. The solid curve is the present 

result, obtained from the imaginary parts of the Siegert eigenvalues 

for various values of R. The dashed curve was obtained by the golden 

rule method (see Reference 5). The dashed extension of the solid curve 

is an assumed result, as the imaginary part of the Siegert eigenvalues 

for R = 8 ao was below the limit of accuracy for the calculation. 

4. 3. Autoionization widths r for He(2 S) + H. The solid curve is the present 

result, obtained from the imaginary parts of the Siegert eigenvalues for 

various values of R. The other curves were obtained by the golden rule 

method. The dashed curve was taken from Reference 5, while the dot-

dashed curve was taken from Reference 3. 
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