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ABSTRACT

The Calculation of Autoionizationm Positions and Widths with

Applications to Penning Ionization Reactions
by
Alan David Isaacson

Using an approximate evaluation of Miller's goiden rule formula
to calculate autoionization widths which allows for the consideration

1,3,

only of L2 functions, the positions and lifetimes of the lowest
autoionizing states of He have been obtained to reasomnable accuracy.
This method has been extended to molecular problems, and the ab initio
configuration interaction potential energy and width surfaces for the
He(235)+H2 system have been obtained. Quantum mechanical close~coupling
calculations of ionization cross sections using the complex V* - %-F
potential have yielded rate constants in good agreement with the
experimental results of Lindinger, et al. The potential energy surface
of the He(ZlS)+H2 system has also been obtained, and exhibits not only

a high degree of anisotropy, but also contains a relative maximum for a
perpendicular (sz) approach which appears to arise from s-p hybridiza-
tion of the outer He orbital. However, similar ab initio calculations
on the He(zls)+Ar system do not show such anomalous structure. In
addition, the complex poles of the S-matrix (Siegert eigenvalues) have

been calculated for several autoionizing states of He anl H , with



encouraging results even for quite modest basis sets. This method has
been extended to molecular preblems, and results have been obtained for

the He(ZjS)+H and He(2153+H systems.
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I, INTRODUCTION

Penning ionization is the collisiqnal autoionization of a two particle
* . . - : . . .
system A"-B, in which the excitation energy of particle A is greater than

the ionization potential of particle B:
f+B-a+8 + e (1.1a)

+ -
+ AB + e . (1.1b)

(Actually, reaction (1;la) is reférred to as Penning icnization, while
reaction (1l.1b) is often called agsociative ionization.) These reactioas
play an important role in many phenomena, such as gaseous discharges,
shock waves, photolysis, and plasmas. In fact, Fenning ionization involv-
ing He atoms in the lowest metastable states is important in the physics
of the atmosphers-of star§ and planets.

Under the Born-Oppenheimer approximation, we can separate the
electronic problem of the ionization from the nuclear motion. Thus, for
a given (fixed) nuclear geometry, the (electromically) bound A*-B state
is sicting in a continuum of A—B++e_ states, since the energy of the
ejected electron is not quantized. From quantum mechanics, however, we
know that in such a situation, the bound state rapidly decays to the
cont? ~um, with a lifetime on the order of 10_13 sec. A way to view
this decay is as follows: For energies close to the resonance energy
Er > 0, the eigensolutions have large amplitudes for a bound A*-B
configuration near the nuclei, but asymptotically behave like oscillatory
continuum solu;ions.1 If we imagine that at time t=0 we form the system

in the bound state, then this corresponds to a linear combination of



N

eigenfunctions in which all of the asymptotic oscillations interfere

destructively.  However, at some later time (still with fixed nuclei),

this linear combination of eigensolutions changes, and thus the asymptotic

N

oscillations gfow, coréésponding to a net outward flux of ionized electroms.
Within a classical or semiclassical %ramework, all of the interesting

aspecfs of the dynamics--ionization cross sections, branching ratios for

associative to Penning ioniza%ion, the angulardistributions of both

p

electrons and heavy particles, and the energy distribution of the ionized

. = * - *
electrons--are determined by the three functions V , V+, andeﬁ V and V+{

) * + I
are the potential energy surfaces for the A ~B and A-B . systems, respect-

ively, while [' is the width, or probability of ionization, as a function
of nuclear coordinates. (Alternatively, ['/h is the autoionization rate,
N .
while h/T is the lifetime of the A -B state with respect to autoionization.)
The present work deals mainly with the calculation of these three functions.
S + . ; - &
Since A-B' is an ordinary bound electronic state, the V surface can
easily be obtained with standard techniques of electronic structure calcu-
%
lations. However, since the A -B state is imbedded in a continuum of
ionized states, other techniques are necessary for the calculation of
* * Py . :
V and T'. V can often be calculated with relative ease by using the
AN . . 2-5 s ce s P
stabilization method. In practice, this method reduces to a variational
calculation in which the trial wavefunction is restricted to those
configurations which one intuitively assumes should contribute most to
the bound part of the resonant eigenfunction. The form of this trial
function is also chosen to decay asymptotically, so that bound state
techniques (e.g., integrals over orbitals and matrix diagonalization)
may be applied without modification. The calculation of the width is

much less straightforward. One method which has been relatively successful



o

, “ e 6 o
employs the golden rule approximatidn of Miller. USing Feshbac

. 7, s . .
projection operator techniques,” Miller Zound %ha;,the width is
Y N ST
by (in atomic units)

Toomo |<sjm-e lel® .

N

¥

where 4 is a normalized bound state wavefunction descriting the metastabl

V]

S N -‘ e s IR aY Py
A -B state, ¥ is' a continuum function degenerate with ; which descrides

s + -2 .7 s s - :
the ionized A~B +' e state, and 5 is the density of contiauum states

at Er’ the resonance energy: o

This result suggésts:that we maf/view the width as the sguare of the

coupling gatr;x°element between an initial (bound) and final (coat

AnU

um)

state, in analogy to the standard result from time-dependent perturbaticn

8 ;
theory. (The —%f¢|x> term of Eq. (1.2) results from orthogonalization

of x to 4.)

*
A more direct method of determining V and T which recently has shown

great promise is a variational calculatiorn of the Siegert 2igenvalues of

the system.g—ll

the Green's function or, equivalently, the S-matrix, has poles.

occur at the resonances of the system as well as at the bSound states.

These

Physically, the pole in the S-matrix for a resonance arises because there

is only an outward flux of electrons from the autcionizing state.

-

Since

i *
these poles occur energies E - % T, we obtain both V and I from the

same calculation.

Until fairly recently, T had been abtained oaly for two and three

2
electron systems.l"l3

However, these calculations employed the golden

These eigenvalues correspond to complex energies at which



, sucis as the use of Hylleraas basis:

Yrule approach, and invnlved procedurs

sets or the evaluation of~matriz elements between bound and continuuam

5117 be wxtended to more complicated systems.

functions, which coanpet ed

has alsc been used

Anuther approach, the mcthod of rotated coordinate

B . 14 .
wucewessfully for calculations on small atomic, systens, and appears:' to

. A 4 .

e wel] suited to problems withsphericalx§1mmetry. However the extension
W

Ay

I =,
mnetric problemss"1.e., molecules,
/

to non-spherically 1s not clear.

Therefore, the poal of Lhe work presented in this thesis has been to
develop simple mcethods for the caléu{}tions of autoionization encrgies
t P

sed on st ard electronic structure techniques,

1

and widths which are
and which can be applied to larger, molecular systems. Of particular
1

3

emphasis in this work have been systems which iavolve the lowest S

states of He col%iding with various targets.(e.g., H, HZ’ and Ar). These
systems were chosen for a number of reasons; (1) There are r;latively few
electrons, so that ratherextecnsive electronic structure calculations are
Eeasiblc.’ (2) It is poss%ble, once the potential energy surfaces and
widths are available, to obtain cross-section information for these systems
fairly easily, which can then be compared with*experiment. (3} Reliable
experimental data are available on these systems. (&) Experimental
results on the He(ZlS)+H2,Ar systems have indicated that the corresponding
potential curves contain relative u'laxima,ls_17 a rather unuéual feature.

The following chapters contain the implementation of both the
stabilization~-golden rule and Siegert eigenvalue approaches outlined
above. Chapter II contairs a preliminary calculation of some He
resonances by an approximate version of the golden rule method, in which
the continuum function ¥ of Egq. (1.2) is replaced by a function which

asympcotically decays. The extension of this method to mciecular calculations
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w

is discussed in Chapter 111, and“vesults for the potenti

s I : .
and widths for the He(27S)+H, svstemiare presented in Chapter 1V, In
Chapter V, both quantum mechanical “and classical seattering calculations

. . o 3
of the ionization cross_sections and rate constants for the He(2 S)+H,
system are discussed, and shown to be in good agreement with experiment,
thus demonstrating that the surfaces and widths are reasenably accurate.
Chapters VI and VII present our results for the potential energy surfaces
- 1 1 s 5 .

of the He(2 S)+H2 and He(275)+Ar svstems, respectively. The former is
shown to contain an anomalous structure for certain geometries, while
the latter dues nct. Finallw, the calculations of the Siepert eigenvalues
for both atemic and molecular systems ave discussed in Chapter VIII, and

the results for the He(235)+H and Hc(215)+H systems are presented.



II. PRELIMINARY ATOMIC CALCULATIONS

In order to study the feasibility of approximating the continuum
function 7 in the golden rule formula [Eq. (1.2)] by a function which
asymptotically decays, calculations have been performed for the positions

. . P 19 - .
and wideths nof two autoionizing states of He. Section A discusses the

1’3P)

theoretical aspects of the calculation. Results for the He(2s2p
autoionizing states are presented in Section B, and comparad with more

accurate caleulations of Miller6 and Bhatia and Temkin.12

A. Theoretical Considerations

The motivation for the idea of this approximation lies in the fact
that the bound function % used in Eq. (l.2) decays rapidly to zero outside
of a region of space near the nucleus. This implies that we only zet
contributions to the width inside of this region, and we thirefore only
neced to know the form ct the continuun function ¥ of Eq. (1.2) inside
this region. Thus, ¥ can be approximated by a function which also decays
asymptotically, i.e., ¥ can be taken as a linear combination of some set
of square-integrable(Lz) functions, as long as this set spans a regioan
of space at least as large as that spanned by 4. (Furthermore, since
¢ approximates the exact resonant eigenfunction in the region of configura-
tion space characterizing the metastable state, the quantity (H—Er)¢ is
approximately zero. Therefore, the form of X is actually important only
in some "shell" near the extent of ¢.)

As will soon become clear, a convenient choice for this approximate
X 1is one of the non-resonant eigeﬁfunctions of the Hamiltonian matrix used
in the stabilization precedure. For, following Hazi and Taylor's analysis

of a one-dimeusional model problem,” when we performed a stabilization



calculation, we start with scme basis of N orthonermel spin configura-

. TR s . . s . .
tions 1?ij and Jiagenalize the Hamiltomizn matrix

= <3 'HlE > . (2.1)

and obtain the resonance positien:

Eo= < luly > . (2.3)

P ; . 2
In addition, as Hazi and Taylor demonstrate,” some of the other N-1
eigenfunctions of Hij are approximate "continuum-like' solutions of
. o oot - .
energy EC that correspond to the ionized state He +e for wvarious

electron energies:

N
Xe= 20 a8y % - (2.4)

These approximate solutions oscillate within the space spanned by the
basis set, but decay rapidly to zero outside of this space. But since
this space is the sazme as that over which wr is defined, approximating
¥ of Eq. (1.2) by one of the Xe having the proper energy'should still
provide a reasonable result for the width.

A further consideration is that ¢r of Eq. (2.2) also contains
contributions frem cenfigurations which correspond to centinuum-like

solutions. To get a bound function ¢ for the golden rule exprescsion,



m

then, we must first project out of Ve these continuum contributions.
This is easily done by restriccing the summation in Eq. (2.2) to exzclude
these continuum configurations. This then provides us with our approzimate

[’}

ne

N L)

E a_ . 92, . (2.5)
4 ri i

i=1

where the prime on the summation indicates the exclusion of certain
configurations. (Note that if this projection is not done, the ortho-
gonality of Wt and e would zive a zero widrth.) Substituting the
approximate ¥ and 3 choices of Eqs. (2.4) and (2.5) into the golden

rule formula (1.2), and using the fact that

HX, = EX, 2.6) .

we trivially obtain our working equation for the width:

2 . 2
P =2mp (E-E) |z | , 2.7)

a_.a .
Trl cil

where the prime emphasizes that the surmation excludes certain configurations,
Before using Eq. (2.7), however, we must first determine p, the

deusity of coatinuum states at the resonance energy. As discussed above,

Xc decays rapidly at the boundary of the space spanned by the basis set.

This roughly corresponds to the boundary condition of an infinite wall at

some boundary L, so that we ma; use a particle-in-a-box analysis to claim

that the energies of continuum states corresponding to He++e- which are

determined by the basis set are roughly given by {in atomic units) .



P =il . (2.8)

R 1,2, P + s s .
where ~ 5 Z7 is the energy of the He core and L is given by

2

k =~ 2wn/L . (2.9
n

This analysis is substantiated by the fact that when kn is determined
for eachk continuum eigenvalue, a kn vs n plot is nearly linear. From

Eq. (2.8), it is clear that
2=k 2 (2.10)

or, for a unit change in n,

AEn = knAk . (2.11D)

However, since the eigenfuncticns are normalized to unity by the

stabilization procedure, we can take

=L 1
P2 Tk (2.12)
n
The slope Ak of the kn vs n plot can be determined to an accuracy of

10-15%, causing a corresponding uncertainty in p.

B. Results for He(ZsZul’BP)

The positions and widths of the 252p1’3P autoionizing states of He
were calculated using the HETINT and MRINO programs written by Schaefer.20

The basis sets for these calculations were composed of linear combhinations

of Slater determinants formed from Slater tvpe orbitals with exponents
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given in Table 1. (Each orbital in this lisc is orthogonalized to those
precceding it.) The 2s and 2p exponents were chosen by optimizing the
energy of the autoionizing state in a separate calculation consisting only
of the 1s2p and 2s2p configurations. & set of diffuse p functions was
then added to represent an oscillatory continuum orbital. (The rather
large exponent for this p set was chosen so that the outermost maxima of
the radial p functions roughly matched the extrema of a radial coulomb
function of the proper energy.)

From the orbital basis in Table I, 1s2p and 2s2p configurations
were chosen to represent the bound resonant state, and a set of 1s2p',
1s3p, ..., 1s8p configurations was taken to represent various continuum
solutions. That is, since these configurations roughly correspond to a
bound 1ls electron and a p electron with large amplitude far from the
nucleus, a linear combination of such lsnp configurations should approximate
the He++e~ state. Configuration interaction (CI) calculations were then
performed with this set of 9 configurations. Since only the ls2p and 2s2p
configurations were chosen to describe the resonance, the primed summation
in Eq. (2.7) consists only of two terms. T is thus not only very simple to
evaluate, but is also a direct measure of the amount that the resonant
state mixes into the continuum state, and vice-versa.

It was initially hoped that the resomant root would be closely
bracketed by continuum-like solutions, providing (approximately) the
degeneracy to $ required by the golden rule formula and allowing for
the computation of an average width. However, since adjacent continuum
solutions differ (roughly) by one-half of a wavelength over the effective

length of the "box" formed by the basis set (see Section A), these



Table I. Basis sets for atomiz calculations.
% 5
1s Z2=2.00 Z=2.00
2s .74 .56
2p .85 .99
2p", 3p-8p 1.71 - 1.81 1.71 - 1.81

1l



Figure I.
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- 3 .
I" for He("P) resonance as determined from the gnlden rule
cquation (2.7) for several basis sets giving continuum roots

in a vange near the resonance energy Er = -0.7504 a.u.
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solutions are widely spaced. It was possible, though, by adjusting the
exponent ¢ of the 2p'-3p set, to get one continuum-like solution fairly
close to resonance. In fact, as [ was varied, the energy EC of the
closest continuum root moved monotonically through an interval about
Er. The width [' was then calculated for a number of Ec values. Since
both [ and Er were relatively stable against variations in g, F(Ec)
values could easily be interpolated for a value at Ec = Er' Results
for ' as a function of EC are plotted in Figuce I for the He(aP)
resonance. Final interpolated results for the positions and widths

of the 1’3P resonances are given in Table II, and compared with the more
accurate golden rule calculations of Hiller,6 and with the accurate
Feshbach projection operator calculations of Bhatia and ‘remkin.l2

The agreement in the 1P widths is quite good, while our 3P width is
about a factor of two too large. vFrom the crudeness of the approxima-
tions described above, however, even an error of a factor of two is
quite reasonable. It is also important to note here that good results
can be obtained for the widths even though the errors in the resonance
energies are quite large. Of course, the resonance energies could be
improved by performing larger CI calculations, but the interest here
was in determining if reasonable widths could be obtained with a ;mall
enough basis such that the method presented above could be applied to

larger systems, as will be discussed in the following chapters.



Table II. Final results for atomlc resonances.

This Work Miller's Results® Accurate Values
State E (a.u.) I (ev) E (a.u.) T (eV) E (a.u.) I' (eV)
lle(21P) -0.6577 0.0420 -.6579 0.0375 -0.6929 0.0374
He(ZSP) -0.7504 0.0170 -0.7531 0.0078 -0.7615 0.0084

2gee References 6

bSe\z References 12.

ST
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II1T. THE -EXTENSION OF A APPROXIMATE GULDEN RULE

METHOD TO MOLECULAR CALCULATIONS

In the preceeding chapter, we demonstrated that one could obtain
reasonable results for the width of an autoionizing state even when the
continuum function ¥ in the golden rule formula [£q. (1.2)] is replaced

v a function which asymptoticaily decays. However, the procedure dis-

o

cussed above possesses several serious drawbacks, prohibiting a direct
application to molecular systeims. First, the method is not accurate
enough for quantitative calculations. Second, the need for rumning
several calculations with different basis sets would make the method too
costly. Finally, the procedure requires the identification of a
"continuum-like" eigensolution; which is difficult, if not impossible,
for iarger, molecular systems.

These drawbacks ran be eliminated, however, by a more zccurate
(but still practical) choice for the continuum function . For, with
only a different choice for y (involving the true coulomb orbital for
the ionized electron), I-Iiller6 obtained very accurate widths for the
‘atomic systems discussed in Chapter II (cf. Table II). The major problem
with such a choice for ¥, though, is that the matrix element evaluations
required by the golden rule formula are too time-consuming for general
application to larger systems. The basic idea of the approach developed
in this chapter, then, is to explicitly expand this coulomb orbital in
a set of square-integrable functions. As we shall see, this leads to
a practical way of defining the P and Q projection operators of the
Feshbach approach7 such that standard configuration interaction (CI)

techniques can be used with almost no modifications. application of
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function and a function which asymaptotically beﬁaves like a coulomb

: = . s 2 . .
wave. Now suppose we choose an orthonermaj .set of L™ spatial orbitals

{¢l, cees On} whichh is fiexible enough to represent both the bound and
the ionized components of the resenant eizenfunction in some fiaite ’
E3

region of space. We then consiruct crthoncrmal configuratioms i,
i

linear combinations of Slater determinants fornea from this orbital set
which have the proper spatial symmetry. This set of orthonormal configura-
tions {Qi} forms the basis for & space 3 of ¥ electron wavefunctions, ’
where & is a subspace of A, the space of all possible N electron wave-

functions. Let us next denote by H the representation of H in this space

A. TIhat is,

H= & >H, <0, 3.1)
.}._‘ R (3.1)
3
where
Hyy = <¢iiﬂl¢j> . (3.2)

We now wish to partition the space A such that we can identify the

bound and lonized components of the eigenfunctions of H. For this

[

purpose, let *ion be an approximate wavefunction for the ground state of

<

the N-1 electron ion core which has been constructed from the ‘¢i} set,



and let us define

¥p =AY

- . (2 .
i iun( T r}_l)qi(rﬂ) , i 1, «..yn , (3.3)

B

where A'is the antisymmetrizer. Then each % has the form of an ion
core times another orbital, and since yion has been constructed from
the [ﬁi} set, each y; can aiso be written in terms of the ¥ electron

configurations {@i}. The set (Xi) therefore spans some subspace of A

We can then define the desired préjectcr P onto this subspace as

P= 3 lxpgl s (3.4)

Q=1-7P . (3.5)

What these definitions mean phys;cally is that any element in the P
subspace of A can be written as an antisymmetric product of an ion
wavefunction for N-1 electrons and another function f(;N)’ while an
element in the Q subspace cannot. That is, the bound function ¢ in
the golden rule formula is an element only of the Q subspace. In fact,
¢ is an eigenfunction of QﬁQ,7 so that both $ and Er can be easily deter-
mined, as we will see.

We now consider the appropriate form for the comtinuum function ¥
which we shall use in the golden rule expression, following closely the

development of Miller, et al.l3 As a physical assumption, suppose we take

-+ - -+ -+ -+
X(rl, cers rN) = Ay, n(rl, ey rN—l)¢c(rN) R (3.6)

10



19

whetre e is a coulomb orbital for the ionized electren with asvmprotic
-
energy € and direction €. Employing a partial wave expansion of Do mRoul

the major interparticle axis, we obtain
- * 2 -
4 = 1 3 -
b () .2% Yom T exp(igy) v, (1) > (3.7)
&

where 9y is the usual coulomb phase shift and the partial coulomb
orbital ?alm is

->_—l _ .~
¢€1m(r) =r Fl( l/k,kr)&zm(r) s (3.8)

: 1/2 ~ ~
with k = (2¢g) / . (¢ and r are referred to the major interparticle axis.)

Since the radial coulomb function Fz is normalized for large r as

Fy(-}/i,kr) ™ sinfkr + (1/k)1n(2kr) + (1R/2) + ol ., G.9
the density of continuum states p is given by
2up = 4/k . (3.10)

Defining Xalm by Eq. (3.6) with ¢€£m replacing ¢c’ we substitute the
expansion in Eq. (3.7) into the golden rule formula [Eq. (1.2)], and

a
obta.n the autoionization width in the direction €:

I (£} =-ff 1> Ylm(é) i7* exp(icrl)IE|2 , (3.11)
m

where

1, = <¢|B-E_|x, > - (3.12)
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For a collinear case in which the excited and ionized states are of the
same spatial symmetry, onlvy the m = 0 term contributes to the summation
in Eq. {3.11). (Other cases will be considered as they occur.) Furtcher-
wmore, the magnitude £ of the energy of the ionized electron is fized by

- . > .
energy conservation. That is, for a fixzed nuclear geometry R, £ is
27 B

!
simply the vertical difference between the excited and ionized surfaces:

£ = V(R) - v, (R) . (3.13)

Therefore, to get a total width, we need only integrate over angles:

P=farr@ . (3.14)

Finally, substituting Eq. (3.11) for T(g) into Eq. (3.14) and performing
the integration over dzg trivially (since the Ylo(g) functions are ortho-

normal), we obtain
4 - 2
=+ 2 15,1 , (3.15)
=0 i

where

- > -
I, = <¢,H_ErlA UionlTrr oo Ty 0e00(Ty)> . (3.16)

ion N

We now wish to obviate the problem of needing to calculate matrix
elements containing coulomb functions, as inm Eq. (3.16). From the
discussion in the preceeding chapter, it would seem reasonable to expand

the coulomb orbital ¢ in the orbital basis {¢.}:
el0 i

), 2y _
a ey s Ay = <hilege (3.17)
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In fact, Hickman, et al. demonstrated with calculatiens on the He(278)+H
system that for the choices of P and Q projectors presented above, the part

of V10 which is not square-integrable may be neglected in a calculation
el

of the width, Therefore, we may approximate Y _., by
ell
n
= . > * ) A (T
Xep0 5 A VionTys woos Fyly) (1—2 a; ,i(r:‘,)) , (3.18)
or,
S (3 - > -
= ~ A it 4
Xe10 El ay [\ YionTy> sovs Tyg) ,i(rN)] , (3.19)

where the quantity in square brackets is an element of the P subspace,
as discussed above, and is identically one of the basis configurations
¢i of that subspace when a single deterﬁinant is chosen for wion' as
has been done in our work. Thus, Xe20 of Eq. (3.19) is a linear combina-

tion of elements in the P subspace:
= &)
Xe20 -}I;ai o, , (3.20)

where the P subscript signifies that @i is a member of the P subset.
Furthermore, since the bound function ¢ of Eq. {3.16) is an eigenfunction
of QHQ, it can be written as a linear combination of elements in the Q

subspace:

6 -Tbo, . (3.21)
Q
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Using the expressions for le10 and % given by Egs. (3.20) and (3.21),
2

we obtain:

=Zb.2af”) <%, [w-E_{%.> . (3.22)
J i j r''i
Q P
But since °j and @i have been constructed from the same -~=t of orthonormal

orbitals, they are orthonormai, so the —Er term is zero, and we are thus

lefr with only off-diagonal (i.e., PﬁQ) matrix elements which are normally

calculated in a CI procedure. Our final working equation is therefore
given by
4 o P 2
r= E,E DS E jil . (3.23)
=0 P

Before proceeding to some actual calculations using Eq. (3.23), we
will summarize the basic steps in the computation:

1. An orbital basis set {$1, . ¢;} is chosen. An orthogonal
transformation is performed on them (i.e., a self-consistent-field
calculation is done) to generate better orbitals {yl, P ¢n} Erom
which we construct the N-1 electron wion function, the ground state of
the core ion. This procedure also provides V+, the ionized state energy
at the given nuclear geometry.

2. The same (¢l, vees ¢n} set is used to coustruct a set of N
electron configurations needed for a CI calculation.

3. This configuration set is divided into P and Q subspaces, with
the P configurations following the Q configurations. P configurations
are those which have the form of wion * another orbital. All other

configurations are in the Q subspace.



a
4. The Hamiltonian matrix H'j is computed. It has the following
1

blocked form:

————m e

5. The QHQ block of H is diagonalized to vield % (i.e., the {bj}
o Py - * . -
coefficients) and E.» the resonance energy V  for the given nuclear

geometry.

* 5 2
6. From V_ and V', £ is computed from Egq. (3.13), giving k = (25)1/ .
2 s X R
The ai ) coefficients are then obtained by evaluating the necessary over-

lap integrals of Eq. (3.17).
7. Finally, using the PQQ block of matrix elements, Eq. (3.23) is

evaluated to yield the width at the given nuclear geometry.
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LV. THE He(27S)+H, STYSTEM: POTENTIAL ENERGY AND WIDTH SURFACES

()

The chapter presents the results for the potential energies v
and V+ and widths [ for the He(lsZs3S)+H2 system as functions of the
nuclear geometry, obtained from the stabilization--golden rule method
described in Chapter III. Because the excitation energy of He(235) is
so large (% 20 eV), ionization must be considered for all nuclear
geometries, The geometric parameters for this system are shown in
Figure IT. R is the distance from the helium to the midpoint of HZ'

r is the HZ bondlength, and © is the angle between the two.

It should be pointed out here that the only other theoretical
calculation of the potentials and widths for this system were carried
out by Cohen and Lane,zz who also studied the corresponding singlet system.
However, their procedure is somewhat limited in applicability, as they
employed a smaller, valence-~bond CI with a single-center expansion to
describe the Hz molecule. In addition, they present results only for
the equilibrium bond length of Hz. They also obtained widths using a
golden-rule procedure as described above, but employing a slightly
different (and less practical) expansion of the coulomb orbital in L2
functions than that used here.

The self-consistent-field and Hamiltonian matrix element calcula-
tions described in Chapter III were performed with the GAUSSIAN 70 SCF
program27 plus the CI packape developed by Morokuma and co—workers.23
The basis set of Slater type orbitals used in our calculations is given
in Table III. Each STO in this list was expanded in six Gaussian
orbitals, with exponent scaling factors rec.mmended by Hehre, et gle

This ""double zeta plus polarization" level basis ser was used in



He(275)-1,.2
Aton Orbital Zeta
Re © s 2.00
. 1s 1.00
2s 0.61
pr,Zpy,sz 0.61
Each H 1s 1.50
1s 1.00
2Px’2py’2pz 1.00

a Each 5T0 was expanded in 6 Gaussian-type orbitals.

o
W



Figurce 11.

Coordinates (R,8,r) specifying the geometry of He+H
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Figure IIL.
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order to accurately describe both the Hu*h‘2 resonznce and HeH; ionic
states. However, in order to be able to identify the resonant eigen-
solution of QQQ, only a singlz 2s orbital was included in the basis set,
with an exponent that was optimized in a separate calculation of He(Z3S).
It was thus hoped that the resonant root could be characterized as having
a4 major contribution from the configuration corresponding to a single
excitation from the lowest molecular orbital (essentially a ls orbital

on He) to the molecular orbital most resembling a 2s orbital on He. This
was found to be true, In fact, since the resonant state we are iaterested
in has triplet spin symmetry, it was usually the lowest root of Qﬁq.

The SCF procedure described above was then used to cohtain good
molecular orbitals for a description of the ground state of HeH+, as
required by our choices for the P and Q projectors. In order to demon-
strate that this choice of molecular orbitals does not significantly harm
the accuracy of the CI description of the He*H2 state, tests were run
with different basis sets. Since it is well known that when every
possible symmetry-allowed configuration arising from a given orbital
set is retained in the CI basis (i.e., when a full CI is performed),
the eigenvalues of the CI Hamilitonian do not change when the basis
orbitals are rotated (as happens in the SCF procedure), we first
considered an orbital basis set which was sufficiently small that a
full CI could be performed. Such a basis was obtained by deleting
the hydrogenic p orbitals from the basis given in Table ILI. CI potential
energy and width results for this basis were then compared with those
obtained from a CI calculation in which only single and double excita-

tions from the ground state reference occpancy 3,3, are retained.
I ¥ ?19%,%,

(Again, since the ¢1 and ¢2 orbitals are obtained from an SCF calculation



&) then 3, is essentiallv a He

+ y = le 3.
of the HeHz ground state, Jﬁeﬁj ity 102(,

+
1s orbital and ¢, is essentially a 1 orbital for },.) Except for the
; 7 5 T

2
expected differences in asymptotic (R = =) limits, the potential surfaces
obtained in these calculacions were virtually identical, and the width
surfaces differed by less than 3%. Therefore, in our fipal calculations
with the full orbital basis of Table III, we retained only single and
double excitations in the CT wavefunction. This produced a manageable
number of configurations spanning the QﬁQ subspace: 130 351 configura-
tions for C2v (6 = 90°) geometries, 237 3Z+configurations for C&v

(8 = 0°), and 313 3 configurations for CS (3 = 45°). Two fur&her tests
of the potential surface were then carried out for this basis. %Firs:,
with the helium far removed (i.e., R - =)}, the H2 bond length (;) was
varied, and the dependence of the energy was found to be exactlyithat

24 |
for an isolated H2 moleculeTL Second, with one of the hydrogens far

removed and the other near the helium, the energy dependence was in good
y

agreement with the-He(235)+H results of Hickman, et al.21

The dimensions of the PHP blocks of the matrix, i.e., the numb%r of

P-type configurations; were relatively small: & for C2V geometriesi.s
for Cmv, and 11 for C_. This is fortunate in that these are the num&ers
of coefficients ail) = <¢i'¢s£0> which must be computed for each 2 in
the partial wave sum for . The overlaps were evaluated by Caussian
quadrature, with the coulomb orbital (which is centered at the midpoint
of Hz) evaluated using the continued fraction algorithm of Stead.23
It is worthwhile to point out that once the QﬁQ block is diagonalized

and the {bi} coefficients for the resonant root have been determined, the

quantity}Sijji can be cemputed for each of the (6-11) i values of the P
Q
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subspace. As the CI matrix is now no longer needed, the a{' coefficients,
and the [, values and total [ can then be computed in a separate calcula-
%
tion. Before this can be done, however, the energy of the ejected electron
#iven in Eq. (3.13) must be computed and corrected for the errors in the
%
asymptotic (R -+ = ) limits of the V' and v, surfaces. The correct
asymptotic limit for He+H;(r=2.U) of -3.5063 a.u. was taken from Ednmiston,
26 3 - . .
et al. For He(2 S)+H2(r=1.40). the correct asymptotic limit of

-3.3495 a.u. was computed by adding together the energy of two hydrogen
atoms (~1.0 a.u.), the experimentally accepted Hz well depth (De =
0.1743 a.u.), the helium ground state (-2.9037 a.u.), and the excitation
cnérgy of the lsZsBS state (0.7284 a.u.).

One final comment must be made concerning our calculations. Even
though this is a triatomic system, only m = 0 contributions were included
in the partial wave summation for I' (see Eq. (3.11) and the subsequent
discussion). This procedure is valid for the following reasons: For
Cmv (collinear) peometries the ionization is a L + I transition, so only
the m = 0 term contributes, as discussed in Chapter LII. For C2V
(perpendicular) geometries, only even m terms can contribute, since the
R axis is also an axis of C2 symmetry. Also, the maximum £ (and hence
m) in the orbital basis of Table III is £ = 1, so that only the m = 0
term will contribute in this case; otherwise, the angular integrations
in IL [see Eq. (3.12)] involving the product of ¢ and the coulomb orbital
will give zero. Finally, in the Cs (6 = 459 case, all m contribute in
principle, so that the m = 1 term does have a non-zero effect in this
case. However, this contribution has been shown to be small,22 as the
resonant wavefunction ¢ contains only very small contributions from

confipurations which do not possess L symmetry. This implies that the



HZ may be treated.as a neurly sphericallw syrmmerric entity, an arrument
g X

'l

L. A . e R K . s

which is borne out tv the/fact that V -and [ are fairly insensicive to

the angle 5, and that these quantities change smoothly as 3 is varied

1y

from 0° to 90°. An additional fact which supports thislgrgument is that
if the Hz is treated as spherically symmecfic, calculated ionization
cross sections for various collision energies are in excellent agree-
ment with those calculated by treating the H2 as a riéid rotator (sce
Chapter V). It was thus felt that m = 1 terms could be neglectec in
these calculations.

Potential energies V* and V+ and widths I were calculated for
several values of R, 5, and r (cf. Figure II). (The nuclear repulsicn
energy is always included in the potentials.) The complete results are
listed in Table IV. Even though the orbital basis set was not optimized

EN
for the HeH2 system, the collinear SCF V+ energies we obtained are in
good agreement with the results of Brown and Hayes.zg In addition, the
V* results we obtaired are in pood agreement with, though somewhat less
repulsive for R < 6 a s than those obtained by Haberland30 by fitting
molecular beam differential cross section measurements.

Since there are three degrees of freedom in this system, it is
difficult to graphically displéy the results. However, as the scatter~
ing calculations preéented elsewhere in this thesis are based on a rigid
rotator approximation to the H2 molecule (see Chapter V), we will discuss
the "slices” of the excited state V" potential and width T corresponding
‘to a fixed value of r = 1.40 a (the equilibrium bond length). Such
slices of V* and T are shown in Figures III and IV, respectively.
Considering Figure III, we see that the potential is basically repulsive,

as would be expected from the repulsion of the excited helium electron



Table [¥.  Pesults for ¥Y, v, and T for iei,?

R & r v* r Ve
3.0 0 1,00 -3.186143 6.06 x 107> ~3.309554
30 0 1.25  -3.210686 3.78 x 1of3, -3.3958L6
3.0 0 1,30 -3.216311 3.47 % 1070 -3.407380
3.0 o 1.35 -3.214450 3019 x 1072 -3.416385
3.0 o 1.40 ~3.21143 2;95 z 1072 -3.424050
3.6 0 1.80  -3.158920 1.52 x 1072 -3.454388
3.0 45 1.40 | -3.421032
3.0 %0 1.00  -3.208059 7.34 x 107> -3.304738
3.0 .90  1.35  -3.255670 4.31 x 1072 -3.410330
3.0 90  1.40  -3.255828 4.03 x 107> -3.417774
3.0 90 1.45  -3.255040 3.79 x 1073 -3.424046
3.0 90  1.80  -3.233047 2.60 x 103 -3.445639
4.0 0 1.60 -3.240024 2.96 x 107> -3.306871
4.0 0 1.30  -3.282371 1.98 x 107> -3.405918
4.0 0 1.35  -3.2382938 1.88 x 1073 -3.415042
40 0 1,60 -3.282363 1.80 x 107> -3.422804
4.0 0 1.45  -3.250818 1.73 x 1073 -3.429387
4o . 0 1.80  -3.252833 1.48 x 1073 ~3.453140
40 0 3.00  -3.175245 -3.436948
4.0 45 1.40  -3.289316 1.70 x 1077 -3.422244 "
4.0 20 1.09 -3.2465&9 3,83 x 10'3. -3.305512
4,0 90 1.35  -3.291346 156 x 1070 -3.413793
4,0 90  1.40  -3.294770 1.40 x 1072 -3.421556

32
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Table TY, rontinued.

afb B 1.45 -3.352553 1.553; 107 —3.Z57zaa
8.0 0 1.67 -3.283042 2.06 z 107° ~3.450479
8.0 65 1.66 -3.353313 1.32 2 1070 ~3.4206%0
6.0 90 1.00 ~3.257383 1.26 % 107° ~3.304600
£.0 90 1.40 -3.305565 1.10 » 1078 ~3.420713
2.0 90  ° 1.BD -3.282954 1.15 x 1078 -3.450615
4.0 0 1.40 ~3.305947 2.46 % 1077 -3.420662
9.0 90 1.40 -3.305940 1.50 x 1077 ~3.420653
10.0 0 1.40 -3.305108 3.82 x 1070 -3.420630
10.0 45 1.40 -3.306093 2.65 % 1070 -3.420622
16.0 90 1.40 -3.306027 1.89 x 1070 -3.420520
14.5 0 23.0 -3.206108 ~3.368466
15.0 0 22.0 -3.200393 -3.360546
17.0 0 18.0 -3.134897 ~3.358469
19.5 0 13.0 -3.129821 ~3.358542
23.0 0 6.0 -3.125245 -3.36996%
24.5 0 3.0 -3.160897 ~3.431992
25.0 0 1.40 -3.306141 -3.420572
25.0 90 2.00 ~3.453147
25.0 90 1.00 -3.257929 -3.306509
25.0 90 1.35 -3.305916 -3.412854
25.0 90 1.40 -3.306141 -3.420572
25.0 90 1.45 -3.305415 -3.427102
25.0 90 1.80 ~3.283589 -3.450367

a . +
The energies for HeHz wvere deternmined from the SCF wave funetion. The
exact asymptotic limits for these potentials are V*(R+W, r=1,4) =
~3.3495 a.u. and V+(R*w, r = 2.0) = =3,5063 a.u.

b
R, r, and 9 are the coordinates defined in Figure II.



from the closed shell Hz. The long-range van der Waals attraction was
not calculated, since it would not have been reliable for our choice of
basis set. 4We also see that the potenti:zl is not very anisotropic,
justifying the concept of a spherically symmetric H2 discussed above.

From Figure 1V, we note that although there is some leveling off for
small R, T shows the typical exponential behavior calculated or estimated
for other autoionizing molecules. This is not surpriéing, since in the
golden rule picture, [ depends on the overlap of two functions which are
exponentially decaying in R.

For the gcattering calculations presented in the following ci apter,
it is quite useful to parameterize the potential V* with width T for
fixed r by the following Legendre expansions:

w

VIR,0) = T v, (R) Pyleosd) (4.1)
£=0

Ms

T(R,98) TE(R) Pl(cose) s (4.2)

P
[}

0

where, since Hz is homonuclear, only even terms contribute. Since the
potential and width are fairly isotropic, these expansions should converge
rapidly. In fact, since V* and T were calculated for three values of

8 at each R, we have assumed that the series can be truncated after the
first three terms (L = 0,2,4). That is, we substitute results (at each

R) for 8 = 0°, 45°, and 90° into Egs. (4.1) and (4.2) and solve explicitly

for the Legendre moments vy and Fi:

v (R) = 1—13 [V(R,0°) + 8-V(R,45°) + 6-V(R,90°)] (4.3)



Figure J11.

. P PP |
Interaction potential YV (R,35) for he(ZJS)+H2 with 7 fixed

at On(CaN), 65°(CS), and 90°(C2v). The Hz bond length is
= 1,40 a . The calculated

fixed at the equilibrium value r =
o

*
asvaptotic limit for this potential is ¥ (Zwe, r = 1,40) =

~3.306141 a.u.
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Figure
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Autoionization wideh T(R,Z) for He(2 5)122 with % fized ar

O°(CGN) and 9{”(C2V). The HZ bond length is fixed ar the

equilibrium value r, = 1.40 a . The € = 45°(C5) results
lie in between those of & = 0° and 4 = 90°, and have been

omitted for clarity.
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vz(R) = é% {53-V(R,0°) + 4-V(R,43%) - 9-V{R,90°)] > (4.4)
16 o ° o
VZ‘(R) =33 {V(R,0°) - 2-V(R,45°) + V(R,90°)] , (4.5)

with analogous equations for [ rz, and FA, These Legendre moments for

0’
v and [ are tabulated in Table V and are plotted in Figures V and VI,
respectively. Since Yo > vy 2> v, this procedure apﬁears justified.
In fact, FA is so small relative to FZ that it can be neglected.
Considering briefly the r dependence of the potential and width
surfaces, we found that for R 2 6 a_, the equilibrium value of r (ro)
is unchanged from the value for an isolated HZ mclecule. In fact, even
at R =3 a.» ro is only 0.12 ao less than the isolated value. Further-

more, a cubic fit of the potential in r about L, (for fixed R and 8) of

the form
* % 2 3
Vvi(r) = v ({r ) + alr-t )° + B8(r-r ) (4.6)
o o o

shows that in the Conv case, the o and B coefficients at R = 3 a, only
change by 532% and 12%, respectively, from their asymptotic values; [or

the C2v case,a and 8 remain virtually unchanged at R = 3 2. These facts
strongly suggest that the electronic structure of the H2 is relatively
unperturbed until R < 3 a - Since at thermal energies the region R < 5 a
is roughly energetically forbidden (cf. Figure V), and since the dependence
of T on r was not found to be pronounced for r near L treating the HZ

as a rigid rotator in the calculations of ionization ctoss sections seems a
reasonable approximation. Such calculations are presented in the

following chapter.



Table V. Legendre expansion coefficlents of the potential energy surface and

width, in atomic units.

R(ao) vy vy vy r ‘ r

0 2
3 .065113 .029598 3.67 x 1073 7.20 % 107°
4 .015107 .007986 .000685 1.59 x 1073 3.09 x 107"
5 .006416 .002679 .000206 3.39 x 107 9.44 x 107°
6 .003315 .000922 000047 5.62 x 1070 1,41 x 107°
7 . .001533 000277 ~.000002 8.52 x 107° 1,92 x 107"
8 .000609 000059 ~.000010 1.25 x 107° 3.31 2 107
9 .000199  =,000005 1.82 x 1077 6.40 x 1075

10 .000049 -.000012 -,000004 2.42 % 1078 1:21 x 1078
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Figure V. Legendre morents 2 (B), 2 = 0,2,4, c¢f the !ia(235)+H2 potential

energy surface [ef. Ea. (4.1)]. The H, bond length is fixed

2

at the equilibriom value ro = 1,40 a .
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Figurs V1. Legendre moments Ti(R), 2 = 0,2, of autcicnization width for
H0(235)+H2 [cf. Fa. (4.2)). The H2 bond length is fized atr

the equilibrium value r, = 1.40G a -
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V. SCATTERING CALCULATICNS O HE‘HG(23S)+HZ SYSTEM

This chapter presents a study of .the scattering of triplet metastable

helium, He(ZBS), by an H2 molecule. Such a study is worthwhile for a

number of reasons. First, several elastic and reactive channels are

possible:

*
. He' + Hy(3") (5.1a)
He + Hy + e (5.1b)
. _
Hel + H + e (5.1c})
CHeH) + e ) (5.1d)

Second, because the system has-ouly four electrons, extensive CI calcula-
tions for the interaction potenﬁials and autoionizing width are feasible.
In fact, such calculations have already been presented for this system

in the previous chapter, Third, as was discussed above, the interaction

% . *
potential V between He and H, is basically repulsive, so the cross

2
sections for the various reactions given in Eq. (5.1) should be strongly
energy dependent. This means that the accuracy of the calculated cross
sections should provide a sensitive test of the potential and width.
Finally, it is possible to judge the accuracy of our cross sections, as
. . s 31-35 . .

there is a considerable amount of experimental data . with which to
compare.

The potentials and widths presented in the last chapter have been

used in both quantum mechanical and classical studies of the cross

sections for the reactions given in Eq. (5.1). In Section A, we discuss



quantum mechanical close-coupling calculations of the elastic, rotationally
inelastic, and total ionization cross sections in the (center-of-mass)

< - 36 s
collision energy range 0.010 vo 0.500 eV. Section B presents a
discussion of classical calculations of the total ionization and
associative lonization cross sections, based on a spherically svmmetric

approximation to the H, molecule, in the energy range 0.010 to 1.000 eV.

A.  Quantum Mechanical Calculations

In this section, we discuss quantum mechanical close—coupling calcu-
lations of the various cross sections related to the scattering of
Hc(ZJS) by H,,36 based on a rigid rotator approximation to the HZ‘ The
Cl interaction potential and autoionization widths needed for these
calculations were presented in Chapter IV. A brief summary of the
theoretical aspects of the calculations is given in Section I. Cross
section and total ionization rate constants ase presented in Section 2,
and are shown to be in good agreement with the experimental results of

]
Lindinger, et al.”

1. Theoretical Considerations

The scattering calculations presented in this section are based on
the well-known Arthurs and Dalgarno formalism for the scattering of an
atom by a rigid rotator,38 and are exact within this approximation. For
the present case in which ionization is possible, however, the loss of
incident He* atoms due to Penning ionizatien is described by the cowmplex
18,39-42  x '

i * . R X
potential, " - % ') £ V, where V' is the interaction potential

for He(235)+}12 and I' is the autoionization width. Roughly speaking,

since the square modulus of the true wavefunction is proportional to



fexpl-1v™= 3 1emil® = exp(-Te/m) (5.2)

we see that the width corresponds to a damping of the resonant state,

i.e., a loss of the excited specie to ionization. The inclusion of

this imaginary part of the potential is the only change needed in the

Artiwrs and Dalgarno formalism. The coupled-channel eguations arising

. . * i

from the complex, angularly-dependent potential V - E—T are then

numerically integrated to provide the complex S-matrix, from which the

various cross sections can be derived. Since the method emnloyed here
SE i 43

and tests of its accuracy are presented elsewhere (see also Ref. 36

and references contained therein), we will present only a brief summary

of the theory and computational method.

We start by considering the Schrodinger equation for our problem

(HO +H, ~E)¥Y =20 , (5.3

1

where “0 = HO(R) is only a function of the radial distance (ci. Figure

II) and H, = Hl(R,B) is a function of both radial distance and angular

1
orientation. (In terms of a Legendre expansion of v* - % ') £V as
in Eqs. (4.1) and (4.2), HO contains the £ = 0 term of this expansion

[VO(R)] while the higher order terms comprise Hy vy (R), VA(R), etc.].)

We next express the approximate set of solutions to Eq. (5.3) as

.

_ 1 A
WJM = R.Uj % JM(R) qj 9 m(R,r) > (5.4)
n=1 nn nn

where J is total angular momentum quantum number, j(2) is the rotational

(orbital) angular momentum quantum number, and y is relared to the product



~ ~
of spherical harmonics Y,  (R) T, (r) bv a Clebsch-Gordan series. 7he
ij ki,
solutions ?Jﬂ are gpproximale since the sunmation is finite. Using

Eg. (5.4) in Eq. (5.3) leads ro a set of i ccupled-channel equations

(axpressed in matrix rotation):

(EO + gl)-g =0 , (5.5)
where the elements cf QO are given by
2 2mj (j_+1) L (2 +1)
N . d 2 n “n n'n -
Hy) =8« =5+ k" - ——o—— - V. (R) - ———} | (5.6)
=0"nn nn dr? 2I 0 P

and vhere the elements of 51 involve products of VZ(R) times angular

¢
9‘1) Lo

integrals of Pl(cosﬁ) with the y functions. The solutions
1

E3. (5.5) are expressed in terms of the components U;;i.(R), where

Uj'i' is the amplitude for a tramsition between the approximate stites
3% and 3'%2'. Since the VZ(R) functions are complex, the coupled channel
equations of Eg. (5.53) have complex solutions. These solutions can be
generated using a complex version of the Numerov algoril:hm.44 In this
procedure, the N complex coupled-channel equations are separated to give
2N real coupled equations, to which we determine N linearly independent
complex regular solutions Z(i). The proper linear combinations of these
X(i) must then be taken to insure that our solutions have the correct
asymptotic behavior. To accomplish this, the asymptotic form of our
complex solutions is matched direction to the complex S-matrix. Follow-

ing the notation of Arthurs and Dalgarno,38 we write the desired

asymptotic form as



, k. 12
 enpl-ik R - Ey-gly sTaaan
i

I EN GO

Jji

. exp[i.(kj,x—z‘;)] . (5.7)

For convenicnce, we write Eq. (5.7) in matrix notation, so that for

cach J, we have N z N complex matrices

P R TN R (5.3)
where
* 5. ,8,., k K.R) % if (kR 9
(g )j'll’j?‘ = Ojjlc’i‘ll J-R[n;l( 5 )z l_fl(ij)] (5.9
and :
(g)j'Z',jE = Ojj'oll‘ kj . {5.10)

The jz and HZ in Eq. (5.9) are spherical Bessel functions, and have
asymptotic forms such that

[y (eR) £ 47, (e BT ?%R exple (kR - o, (5.11)

as is required for Eq. (5.7). Writing the set of linearly independent

() as YJ

solutions Y Y", the asymptotic matching of Eq. (5.8) is accomplished

by solving the equations

- + J
A+ 3 =

H-A+H'B=Y; (5.12)

- + I

Hy'a + Hy B = ¥, , (5.12b)



where the subscripts 1 and 2 indicate that tie matrices arc evaluated

IA
at two large walucs of R, Rl and Rz. It can then be shown43 that the

S-matrix is given by
§J - 51/2'E'A_l'

112 (5.13)

[

In actual computations, the real and imaginary parts of the above
matrix equations are separated for convenience.

Now that the S-matrix has been determined, the elastic and
rotationally inelastic cross sections can be expressed in terms of
it, exactly as Arthurs and Dalgarno have done. The ionization
cross section, on the other hand, is obtained by inverting the
normal proof of the unitarity of the S—matrixas based on the
assumpti-n of flux couservation. For the rotator initially in state
j and for an initial translational energy of E = k§/2, the total

43

ionization cross section is then given by

s, (= —= T

J . 2
ton®d) = 5 ey |1 - X Is7Gren,in|
(2j+1)kj J=0 2=|J-j| jrat

(5.14)

The lack of unitarity of the S-matrix implies that the term in square
brackets is non-zero, hence describing a loss of incident flux to ioniza-

tion. Note that the cross section O, _(j) given by Eq. (5.14) is for

ion
the total amount of ionization over all possible channels {e.g., for Eq.
(5.1b) through (5.1d)]. Other cross sections can alsc be obtained from

the (complex) S~matrix by application of the appropriate formulae. 1In

particular, the diiferential elastic scatturing cross section (i.e., the



]
cross section for scattered He(2”S) as a function of angle with the

“2 remalning in the j = 0 state) is given bya
da »
00 . 1 3 12
T I55p Z(ZJ+1)(SOO 1) P (cos8)| s (5.15)
0 J=0
where SgO is the (1,1) element of the S-matrix, .

2. Resulls
The covordinates for the ile(23s)+H2 system are shown in Figure II.

i
2

this section was given in the preceeding chapter. As discussed there,

. * : X s
The complex potential V& - [ used in the calculations presented in
*
we are considering rhe "slice" of the V' and T surfaces corresponding
to a fixed HZ bond length of r = 1.40 a_. We have already shown that

these "slices" can be accurately eupressed as a low-order sum of even

order Legendre moments

vi-Zr =§[V1(R) - % F, ()] P, (cosd) . (5.16)

Values for VO’ VZ’ Vs FO, and I', are listed in Table V, and these

2
functions are plotted in Figures V and VI. F4 was found to be negligible.
These moments were in turn fit to some form which can easily be inter-
polated. In the region spanned by the calculated values, Voo Vo and

FO were fit by a cubic spline procedure. Vo and v, were set to zero

for R > 11 a, and 9 a, respectively. For R > 9 as FD was set to
(14.008) exp(~2.0177 R) a.u., obtained by fitting the exponential form

to the calculated values at R = 9 a, and R = 10 a. Finally, for all

R, [, was set to (0.73648) exp{(-1.7926 R) a.u. and v, was set to
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(0,08375) exp{-1.2015 R) a.u. These approximate {its to v, aad Oy
were found to be sufficiently accurate, siace the roral ionizarion

cross section was insensitive to their inclusion over the entire
(center-of-mass) collision energy range investigated (0.010 eV to

0.500 eV¥). 1In fact, vy had only a minor effect on the rotationsal
excitation cross sections.

All calculations presented here were run with tée OPCHANZX program.43
Only open (energetically allowed) rotational channels were included in
our calculations. We found that inciuding only the j = 0 and j = 2
rotational states produced converged ionization cross sections for the
entire energy range studied. For example, just above the tihreshold for
the j = 0 to j = 2 transition, inclusion of the just-opened channel
produced less than a 2% variation in Uion(O). As could e expected,
the cross sections for rotational excitation were somewhat more sensitive
to the addition of extra channels. For collision energies just above
the j = 0 to j = 4 transition, for example, inclusion of the j = 4
channel increased the Tgr2 value by 12%Z.

Calculated total ionization cross sections as a function of center-
of-mass collision energy are given in Table VI for the case in which the
H, molecule is initially in the j = 0 state. Deviations from these
results of cnly a few percent are cbtained with the HZ initially in
the j = 1 or j = 2 states. As is apparent from Table VI, Uion is a
strongly increasing function of the collision energy. This is a
reflection of the fact that since V* is repulsive, high collision
energies lead (on the average) to closer approaches of the particles.

But since T increases rapidly as R decreases, closer approaches have

much higher ionization probabilities.



Table V1. Total ionization cross sections as a function of energy for

}10(235)-1{2

E(eV) Ui(aoz)
0.010 234
0.040 1.6
0.070 3.5
0.100 6.4
0.140 11.
0.200 20,
0.300 30.
0.400 35.
0.500 39,

54



Table VII. Cross secrions for the rotationally inzlastic process

He(275) + H,(j=0) = He(2’s) + H, (3=2)

E(eV) T4s2 (aoz)
0.070 ©0.10
0.100 0.63
0.140 2.2

0.200 5.3
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kKotational excitation eross secticn results for the j = 0 to § =
transition as a function of collizion enerzy are given in Table YII.
As is the case with Tiun’ Ze2 also increases sharply with ernergy, and
an analogous argument can be made for this behavior. That is, higher
collision energics lead to closer approaches, where vy is larger.
Since v, (and higher Legendre moments) couple the j = 0 and j = 2 states,
there is consequently more rotational excitation. However, the 00»2
values are much lower than those {or Sion” This is due not only to
the fact that FO and v, are of the same order of magnitude for close
approaches, but also to the fact that, unlike rotational excitation, in
which flux can go back and forth, ionization is a virtually irreversible
process.

Assuming that both the initial and final rotational states of H2
are j = 0, the angular distribution of He(235) in elastic collisions
was calculated from Eq. (5.15) at 0.1C0 eV. The results are shown in
Figure VII with the width included (lower curve) and not included (upper
curve). Two comments concerning these results are in order:

(1) The effect of including T' is to decrease the amount of wide
angle elastic scattering. Since collisions inveolving small impact
parameters generally lead to large scattering angles for repulsive
potentials, this suggests that the ionization is occuring for small
impact parameters, i.e., for close approaches of the particles, as was
postulated above.

(2) Unlike the total ionization cross section, the differential
elastic cross section is quite insensitive to the inclusion of vy, as
well as to the inclusion of FZ. In fact, excluding Soth Vo and T,

causes noticeable differences only at large angles; even then, the
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differcnces are less than 33,
Assuming a Maxwellian distribution of coliision energies, crossy
section results :ion(i) can be thermally averzged to vield the ioniza-

tion rate constant k(T):

K(T) =V3?L}TT ﬁ(s/mm/m e~ (B/KT) SonE (5.17)
o,

where k on the right hand side of Eq. (5.17) is the Boltzmann constant.
In our calculations, the integral in Eq. (5.17) was perforwred numerically
with the trapezoid rule. The results we obtained for k(T) agree
reasonably well with the experimental results of Lindinger, EE.ELL'37

as shown in Figure VIII. Although the strong temperature dependence

is correctly reproduced, our absolute values are somewhat low. In fact,
if our results were scaled up by‘a constant factor of 1.7, they would

lie well within the allowed error bars from 300° to 900°.

In general, then, the results presented in this section indicate
that the V¥ and I' functions presented in Chapter IV are reasonably
accurate, though not perfect in all respects. As the width is based
on a golden rule expression employing an approximate continuum function
(see Chapter IV), T' could be too small, leading to ionization cross
sections which are too small, This would also be the case if V* is
too repulsive (see discussion above on Uion(E) results), but this is
contraindicated by a comparison with results obtained by Haberland30
by fitting his experimental differential cross sections (see Chapter
IV). Some error could also be due to the approximation of H2 as a

rigid rotator, but it was felt that these errors would not be on the

order of those presented here. The best way to solve tha question of



Fipure VII.

w

. : . ; . L
Differentinl elastic scattering cross sections for He(2 S)+n2
at (e.m.) collision encrgy E = 0.190 eV, assuming the initial

and final rotational i = 0. The upper

. " .
curve was calculated with ¥ alone, while the lower curve

* :
was calculated with V' - = T. The cusp at § = 20° is due

N

to the change in horizontal scale.
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where Lhe error lies may be by recomputing Vk and I by another procedure.
In Chapter VIIT, we discuss how a caleculation of the Siegert eigenvalues
for a system can provide these quantities. In fact, results for the
He(2]’35)+H systems indicate that the golden rule wmethod may scmewhat

underestimate the width in certain cases.

B. Classical Calculations

This section presents classical calculations of the total ioniza-
tion and associative ionization cross sections for the scattering of
He(ZBS) by H2 under the assumption of a spherically symmetric HZ.
That is, we assume in this section that the full interaction potentials

and width are given only by the V;

of the preceeding section. That this assumption is reasonable is based

and FO terms in the Legendre expansions

on the fact that the higher order terms in Legendre expansions made only
a 10%Z contribution to gion at 0.100 eV in the quantum mechanical calcula-
tions presented above. However, since the first [Po(cose)] term in the
Legendre expansion is independent of the angle 9, the problem is thus
reduced to one having only a single degree of freedom, R. (The H2 bond
length is still fixed at r = 1.40 ao.) We can thus discuss the problem
in the language of an atom-atom collision, which has been thoroughly
developed by Miller.lS The basic aspects of Miller's derivations of

the classical cross sections for total and associate ionizati~n are
presented in Section 1. Results and comparsions with quantum

mechanical calculations and with experiment are presented in Section 2.

1. Theory

The following discussion closely follows Miller's derivutions,LS

4
but employs the notation used in Garrisom, Miller, and Schaeferf‘7 We
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assume throughout that the total collision energy £ is {ixed, and that
all quantities are given in atomic “nits. The classical thecry of

~

Penning ionization is then formulated in the lunguage of probabilities.
For a given impact parameter b, Pb‘ dR {3 the probability that

ionization occurs in the interval (R,R+dR). Then, for a particle

approaching with impact parameter b, it can be shown that

5 expl de' ;{ 1, (5.18)

where ' is the autoionization width and vb(R) is the radial velocity

at R:

v, (R) = { E- v (R) - ——1‘1/7 ; (5.19)
R

Since ' is the ionization rate and ;—%ET is roughly the time spent in
the interval (R,R+dR), T(R)/vb(R) is the probability of ionizing in
the interval (R,R+dR), The exponential factor is the survive. factor

for reaching R without ionizing. Similarly, for a retreating particle,

out

(-] R
TR , T@®RD T(R")
) = ) e:xp[—/R-dR o) -J:dR' 7 Tanl - a0
: 0 0

P

where R0 is the classical turning point, i.e., the point for which

2

E=vy(R) + % (5.21)
R

(see Figure TX). The total probability for fonization at R is thus

given by
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1«

Classical potential curve model used for the description of
Penning and associative ionization in an atem-atom problen,

See text for dufinitions of indicated quantiries.
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in cut
= 3 2
Pb(R) Pb (R) + Pb (R) y (5.22)
and the total probability for ionization along a trajectory of impact

parameter b is simply

=)

P, =f P (AR . (5.23)
*o

To obtain a total cross section for ionization, we thus need to add up

all the contributions from individual impact parameters:

-

Oot = 27 ./O‘db-b.Pb . (5.24)

Performing the necessary substitutions and the integration over R, we

obtain

 on Fabebe f1oann(os [ are —LR'Y
Ot = 27 fdb br{l-expf-2 de " (R')}] . (5.25)
0 RO b

We would also like to calculate the amount of associate ionization,
i.e., the cross section UAI for the formation of HeH; in our atom-atom
plcture. We can ther compute the branching ratio R = kA[/ktot’ which
can be compared with experiment. Classically, we can ccnsider the
lonization as a vertical transition from the excited vg curve to the
jonized vg curve, where the nuclear kinetic energy is locally conserved
+

(see Figure IX). (The Yo

the r = 1,40 5CF results for V,_ presented in Chapter Iv.) 1E&, after

curve is just the & = 0 Legendre moment for

the ionization has occurred, the nuclear kinetic energy falls within

the shaded region of Figure IX, we have a bound (i.e., associated)



product. his includes both a component which is truly bound (E less
than vS(w)) as well as a component which is only quasibound (E less than
the centrifugal barrier). The criteria for deciding i{ the final nuclear
kinetic energy falls within the shaded region can be included by
restricting the limits on the R integration of Pb and by multiplying

the integrand in Eq. (5.23) by a step function h(x), which eguals one

if the final energy is sufficiently low and equals zéro otherwise.
Assuming, as is the case presented here, that the topology of vg

+ . . s
and vg are such that only a single reaction of R contributes to UAI’

we obtain for GAI a triple integral

. . W TR 7T W TRY |
9, = z:r’ZEb b-Z.dR M TRy e:\p(—de AL
0 b R, b
-
. ex: CIRD - « IRY
[QXP(ZdR vb(R.)) + exp(: z-dR vb(R,))] R (5.26)
0 0

where B is the maximum value of b for which Vo + E7T possesses a
R

well, R is R;ax(b) (cf. Figure IX), and X is given by

+
\7
max

X = ®) - E+ vi(R) - v;(R) . (5.27)

For the amount of the truly bound component only, R is taken as the

point RO where

2
+ Eb” _ _+
VO(R) + *RE" = VO(“’) s (5.28)

and X becomes



he

+ %
K= vy(=) - E+ 1 (R) - vgm) . (5.29)

-

s . o s +
2 owe et R'Lbj be the larzest value of R in the interval (RO, Rma?(n)

9] : c . :
or 7)) for which h(X) = 1, we can rewrite the triple integral in Eq.

(5.26) as the double integral:

Opp = 2 ﬁb h-{exp(- de '*- 11 sinh[‘?dR = (R)] . (5.30)
(] RO b

RO

4

In general, the values of R B, Rmax(b)’ and R0 must be determined

0’
numerically. For certain choices of potentials, however, such as

those described below, some of these values can be found analytically.

2. Results '
The integrations in Eqs. (5.25) and (3.30) were performed with
a Simpsons rule procedure. The R integrals pose a problem, however,

in that since vb(R) approaches zero as R approaches R the integrand

0’
is singular at Ro- Fortunately, th.s problem can be obviated by a
suitable change of integration variable. Letting :<=VRJ._RO‘ we get

the following transformation.

V3Ro IR %) x

R .
I‘(R) _ 0 )
-/;; v, VR Zf dx — . (5.31)
0 0 vb(R0+x )

The integrand is now finite for all x in [O,VRI—RO]. However, the
integrand has 0/0 for» as x + 0, so that the limit of the integrand
as x > U must be proverly determined for evaluation at or near the lower

limit of integration. For the choices of potential forms used



here, this can be done by standard limiting procedures involving
expansion techniques. With this limiting procedure taken into account,
the integrands in Egqs. (5.25) and (5.30) are smooth, well-behaved
functions of R and b. In fact, for energies less than 0,500 ev, 20
integration points were sufficient for four-figure accuracy in Crot”
For higher ecnergies, 40 points proved to be enocugh. A somewhat larger
number of points was required for the UAI calculations. In additionm,
the infinite limits in Eq. (5.25) were set to about 20.0 for the b and
R dintegrations.

Before presenting the results for the total ionization cross
section, a few remarks are in order on how the classical turning
point R0 was obtained in these calculations. Basically, a strictly

numerical technique was used. That is, suppose we define the function

f(R) by

2
E(R) = vg(R) + E—bz— -E . (5.32)
R

th

We thus want the value RO such that E(RO) = 0. Given the i

approximation to R we can determine the (i+1)St approximation by

0’

e L (5.33)

i1 17 ET(R,)
1

Sirce v; is fit by a cubic spline function, both f(Ri) and f'(Ri) can
be determined analytically. Given some initial guess to RO then, Egq.
(5.33) can easily be iterated until the change in the computed RO value

between successive iterations is sufficiently small. An efficient

method of cheosing the initial guess to Ro is to take the final Ry value
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Lo . ; 3
Total fonization cruss secctions 7 for He(27S)+H, [cf.
tot 2
Fq. (5.25)]. The classical resulrs obtained with an atom-

atom approzimation (solid curve) are compared with the

quantum mechanical results of Section A (crosses),
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obtained for the previous value of b. Since the incremeat hetween b
values was not too large (1), this provided a good initial guess for
RO. Thus, only the initial guess for b = 0 is undererminaed. However,

for b = 0, tha condition for R0 becomes

0 = E(R) = v;(a) -E , (5.34)

. 4
which, since vg(R) is a cubic spline, can be solved :umlytically.‘8

Also, since E crosses v;(R) at one and only one point in the interval
between two cubic fit points, the choice of root is unambiguous.
Results for the total fonization cross section for the collision
energy range 0.010 to 1.000 eV are plotted in Figure X, and compared
with the quantum mcchanical results of Section A. We see that the
classical atom-atomresults are slightly lower than the quantum ones,
but still within 10X. Since the effect of vz in the quantum mechanical
carculations was to lower the ionization cross section by around 107,
classical mechanics (i.e., the neglect to tunnelling) appears to
introduce roughly a 20% error over quantum mechanics. The magnitude
of the error caused by the neglect of tunnelling is re¢asonable for
the case of a repulsive potential and a width which rises rapidly
as R decreases. Thermally averaging the cross sections to obtain
rate constants as in Eq. (5.17) similarly produced results which
are within 107 below those obtaired in Section A,
In order to calculate the cross section for associative ioniza-

. . . + . . ;
tion O the ionized VO(R) curve is needed. This function was

AL’
derived from the SCF results for V' presented in Chapter IV by the

use of Eq. (4.3). 1t is listed in Table VIII and is plotted in

Figure XI. To interpolate between the computed paints, the vg
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Table VIIL. % = 0 Legendre moments for v
5

R (ao) vg (a.u.)
"3 + 0.006642
4 - 0.001381
5 - 0.090833
6 - 0.000439
7 - 0.000231
8 - 0.000129
9 - 0.000076
10 - 0.000050
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potential wan fit by the relatiueiy simple form

+ '
vo(R) = < -5 . (5.35)

ey
=

The value of ' was set to 0.69, the polarizability of helium., Taking
two differvnt values of ¢ (obtained by a least-squares fit of the data
with and without the computed value at R = 3 ao) produced two different
. . + e : . .
fits to Vgr alifering primarily in the position and depth of the
minfowa {n the attractive well (ef. Figure X1) and bracketing the correct
+ e : .
o curve. The true results should thus lie between those obtained from !
thtse two fits,
The advantage of using a fit of the form in Eq. (5.35) is that

cercain upper limits needed in Eq. (5.26) and (5.30) can be determined
analytically. The position of the maximum of the centrifugal barrier,

2
+
(b), and the largest value ‘of b for which VO(R) + E%T contains a
K

4
max

well, B, can both be obtained by setting the derivative of the effective

potential to zero:

2 2
d + Eb 1 c' 1 Eb -
0 =92 (vg(R) + 55) = - 3o+ =5 . (5.36)
dR ‘70 ‘RZ Rﬁ 2c o2 Rz

X . . . ; 4

As mentioned above, such cubic equations have analytic solutions, 8 so
+

that Rmax(b) is relatively easy to determine. Since no real solutions

exist when the discriminant for the equation equals 0, we cbtain the

condition for B as:

, et

RSV .37
E c
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7', the value for which vo(n) + T crosses v, {
2
R
%a1 for truly bound component), can similarly be obtained by solvine the

&

v ) (neceded for calouiuating

cubic wquation

vy + B =0 (5.38)
0 R

dircccly. The final quancity to be determined, R'(b), corresponding
to the largest allowed R value forlwhich the step function h(X) is
nan-zero, cannot be determined analytically. It was determined by a
straightferward numerical search.

Associative ionization cross sections GAI were calculated with
both of the fits given in Figure XI, and with and without the gquasi-
bound component. The four sets of :cross sections were then thermally

averaged via Eq. (5.17), producing associative rate constants k\I at
> ) A

300°K. From these, branching ratios R = kAT/k weze computed. Results

tot
for the total (both component) associative ionization for Fit 1 and Fit
2 are 16%Z and 17%, respectively, When just the truly bound component
is considered, these results are 12% and 13%. From these results, we
can conclude that the branching ratic is not very sensitive to the well
region of the ionized curve, which is consistent with the picture that
at thermal energies, the particles cannot get much closer than about

5 ag- We also note that the gquasibound component contributes only 20%
to 30% of the branching ratio. However, the experimentally determined

32,34 Clearly,

- . . + . <
branching ratio for the formation of HeH2 is a mere 1.5%.
some factor Las not properly been accounted for in this comparison,

since classical mechanics would be expected to underestimate the result,

through the neglect or tunnelling., The diflerence between this



theoretical treatment and what is experimentally determined thus lies in

the atom-atom approximation employed here, That is, this model cannot

+ R
12 which is formed with a sufficient

+

distinguish between true “t”z and '}
P . ; ; R . :

amount of vibrational excitation to subsequently decay to Hed +H. Since
L + c . - 5y e s

the branching ratio for HeH formation is around 10% at 300°K, this is

a plausible ezplanation. In terms of pofrential curves, this means that

to properly compare with experiment, we need 2o add the ﬂ;

vibrational
+ - ; s ..

encrgy to the vy curve, thereby raising it relative to the original

+ ; .

vo(m) valuc and decrcasing the size of the well. 1In fact, for a

sufficiently large amount of vibrational energy (> .002 a.u.), the

well would disappear entirely, corresponding to a zero classical cross

section for associative ionization. The observed branching ratio for
+ . . .

HeH2 formation could then be calculated only in a quantum mechanical

framework. This last idea is supported by the work of Preston and

49 . + . . N s e . .
Cohen, who o© sec no llell, formation in a classical Lrajectory study
2 J y 3

=

of this problem.



This chapter presents the results of our stabiliration--golden

. 1. 50 . . . .
rule calculations con the He(lsls™S)+., system. This system is of

'

differential scattering cros
triplet system, the singlet interaction potenticl ¥V contains a
relative maximum (cf. Figure XII). In a previous theoretical study

. 22 . . s -
of this system, Cohen and Lane found a high degree of aniseotropy.
However, since thelr calculation employed a rather limited valence-
bond CI wavefunction with a single center expaansion for the H,
orbitals, a reliable maximum was either not observed or not reported.

The method employed in our work was presented in Chapter III.
All comments in Chapter IV concerning the procedure and programs apply
hetre as well, and need not be repeated. Ly two differences between
the work presented in Chapter IV and the current case are significant.
First, the orbital hasis set listed in Table III was used as given,
except that the 2s and 2p orbital exponents on He were changed to

cns . . . . 1
0.305, as determined in a separate calculation of He(27S). Second,
unlike the triplet calculation, the ground state (reference) configura-
tion for HeH2 must te included in the configuration set. Since it was
considered a part of the Q subspace of H, the root corresponding to
-
resonance was thus the second eigenvalue of QHQ.
* . P N
The results for the resonance energy V  are listed in Table IX.
. ; R L R .

Since the singlet SCF calculations on Heﬂz differ from the triplct

only in the 2s and 2p He exponents, the V, results were almost the

same as before (differiay v 09,0602 a. ..), and need not be repeated.

~3
[rst
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Table 1¥X. Results for the He(2's)wity v potential.®
R ] P y* R 5 r v*
L0000 1.40 -3.191679 6.00 0 1.40 ~3.269032
3,00 45 1,40 -3.216420 6.00 45  1.40 -3.270460
3000 90 1,40 -3.234810 6.00 90 1.00 -3.222912
4.00 0 1.40  -3.256306 6.00 90 1.40 -3.271680
4.00 45 1.40  -3.263535 6.00 90 1.80 -3.249739
4.00 90 1.40  -3.269144 6.25 0 1.40 -3.269508
4.50 0 1.40 -3.263758 6.25 45 1.40 -3.270702
4.50 45 1,40 -3.267951 6.25 90 1.40 -3.271725
4.50 90 1.40 -3.271489 6.50 0 1.40 =-3.269971
4.75 0 1.40  -3.265434 6.50 45 1.40 -3.270956
4.75 45 1.40  -3.263869 6.50 90 1.40 -3.271806
4.75 90  1.40 -3.271769 6.75 0 1.40 ~3.270414
5.00 0 1.40  -3.266548 6.75 45  1.40 -3.271217
5.00 45  1.40  -3.269406 6.75 90 1.40 -3.271923
5.00 90 1.40 -3.271817 7.00 0 1.40 -3.270829
5.25 0 1.40 -1.267350 7.00 45 1.40 =3.271479
5.25 45 1.40  =3.269749 7.00 90 1.40 -~3.272061
5.25 90 1.40 -3.271776 7.25 0 1.40 -3.271215
5.50 0 1.40 -3.267983 7.50 0 1.40 -3.271571
5.50 45 1.40  -3.770007 7.50 45  1.40 -3.271987
5.50 90 1.40 -3.271714 7.50 90  1.40 -3.272368
5.75 0 1.40 -3.268528 7.75 0 1.40 -3.271890
5.75 45 1,40 -3,270234 8.00 0 1.40 -3,272175
5.75 90 1.40 -3,271677 8.00 45 1.40 -3.272429
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Table IX, continued,

R 4 r v R g T v*
8.00 90 1,00 -3.224158 10.0 90 1.35 -3.273164
8.00 90 1.35 =3.272406 10,0 90 1.40 -2.273431
8.00 90 1.40 -3.262672 10.0 90 1.45  -3.272747
8.00 90 1.45 -3.271987 10.0 90 1.80 -3.251202
8.00 90 1.80 -3.250440 25.0 0 1.40 =3.273657
8.25 0 1.40 -3.272423 25,0 45 1.40 =3.273657
8.50 0 1.40 -3,272638 25.0 90 1.00 -3.225122

"8.50 45 1.40 -3.272786 25.0 90 1.35 -3.273388
8.50 90 1.40 -3.272938 25.0 90 1.40 -3.273657
9.00 0 1.40 -3,272978 25.0 90 1.45 -3.272975
9.00 45 1.40 -3.273062 25.0 90 1.80 -3.251443
9.00 90 1.40 -3.273150 50.0 %0 1.00 ~3.225122
9.50 0 1.40 —3.273217> 50.0 90 1.35 -3.273388
9.50 45 1.40 -3,273260 50.0 90 1.40 -3.273656
5.50 90 1.40 -3.273314 50.0 90 1.45 ~3,272974

10.0 0 1.40 -3.273381 50.0 90 1.80 -3.251442

10.0 45 1.40 =3.273401

10.0 90 1.00 =-3,224905

3511 quantities in atomic units; angles in degrees. The exact asymptotic

limit for the potential is V' (R + @, r = 1.40) = -3.3204 a.u.

l."R, r, and @ are the coordinates defined in Figure IT.
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Also, the reaszoen that results for the autoionization width are not

. ) v * . .
tabulated will bhe detailed below. Vo results for a {ixed hz bond
length (r = 1.40 a ) and two fized orientations (% = 0° and 5 = 95°%

are plotted in Figure XI1, and conmpared with the experimentally deduced
. 30 s . . .

sotential of Haberland. From the figure, we see that the potential

i quite anisotropic, and that, whereas the Cmv approach is purely

repulsive, the sz approach actually does possess a relative maximun.

In addition, a Cs (9 = 43°) approach (not shown) has a pronounced

"wigpgle', though not a true maximum. Since the potential curve inferred
.30 o . : . : -

by HaberTand assumes an isotropic potential, a direct comparison of

our results with cxperiment i5 not possible. Svch a comparison could

be made with scattering calculations employing the complex potential

*

v - T, but the autoionizing width for this system is not currently

i
5 |
availabla (see below). However, the fact that the height of the relative
maximum in our sz potential is roughly the same as that of Haberland's
effective potentialBZErougly suggests that our calculation is correctly
modeling the physics of the situation.

The Legendre moments vgr Va» and Vs defined by Eq. (4.1) are plotted
in Figure XIII. The larg. ucgree of anisntropy is easily visualized
from this figure, although the "wiggle'" is not very pronounced. 1In
fact, the maximum region in the sz approach is converged in the Legendre
moments to a crossing of the v and v, curves. For if vy T vy and 7
is.neglected, it can easily be shown [cf. Eqs. (4.3) to (4.5)] that
v(90°) = % V(0°), which is nearly true around R = 5 a.
The physical origin of this unusual structure in the potential

. . o s
does not appear to be due ro an avoided crossing with the He -H, ionic
pp =4 2

state. Such an interaction is precluded by the fact that for the C2v
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geomelry, the resonance and ionic states are of difrerent
tries. It should also be pointed out that the structure s not
an drtifect ol our procedure, at least with respect to perfors
PN -V . Lt . ~ 1 :
SCY ealeulation for the HeH, state, as the corresponding €1 calculation

witti an SCF on the HeH2 ground state also produced a Cﬂv curve with a
prencunced structure.  An analysis of the resonance wavefunction for
various R values in the sz approach indicates that the structure is
due to the interaction between two excited states which aswvmprotically

Levome Hc(lslsls)+u7 and Hc(lsZplP)+H2. That is, for R larger than

the relative

iqpum, the exceited He electron is in an arbital which

has essentially 2s character, while for R inside the maximum, the electron

ie in an orbiral characterized as a Zs—zpz hybrid. Such s-p correlation
22

was also found to be important to Cohen and Lane. To gain a more

quan[itntive.view of this wnybridization, we performed a crude population

analysis, as follows: For fixed R, we consider the eigenvectors for

the two roots which dissociate to He(ZlS), He(ZlP)+li2 (roots 2 and 3

of our calculation). For each root, the electron density in the

2s and 2p molecular orbitals of He is then roughly given by the squares

of the coefficients for the configurations corresponding to single

excitations from the ground st;te to the respective orbitals. To obtain

the atomic orbital densities, these squared coefficients are then

multiplied by the proper coefficients of the atomic orbitals in the

molecular orbitals, and the results for a given atomic o.bital are

summed over the 2s and 2p molecular orbitals. We thus end up with a

crude measure of the electron density in the excited s and p atomic

orbitals, which we can denote by Ds and Dp. We then define the mixing

ratio for each of the eigenvectors as DS/DP. These mixing ratios are
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1
Figure %711, = 0,2,4, of the Hel275)H,
surface [ef. Eq. (4.1)]. " The Hz bend

length is fixed at the equilibrium value r = 1.40 ag.
g w0
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given in Table X. From these vesults, it is clear thot outside the
relative mazimum, the two roots correspond guite well to distinct S
and P excited orbitals, whereas inside the maximum, the two roots
become mixed, and at S a the ezcited orbitals are probably quite
ncarly sp hybrids.

The structure in the potential surface may now be explained in
terms of this s-p hybridization. For the hybridization provides a
mechanism whereby electron charge depsity may be polarized along the
R axis and away from the HZ. Thus, more of the +1 charge of the He+
core is bared to the HZ’ providing a charge-guadrunole interaction, for
which the CZV approach is the most stable. Of course, such an effact
is also possible for the He(235)+l{2 system discussed in Chapter IV,
However, the He(Zas)—He(ZzP) spiitting is 1.14 eV, as opposed to 0.60
eV in the singlet case. Such s~p interaction would then be expected
to occur at smaller R values,50 where the potential is too steeply
repulsive to support a well.

Using the same procedure as was used in the triplet study (see
Chapter 1V), the autcionization width for He(215)+ﬂ2 was computed.
Unfortunately, in the present case the width did not fall to zero as the
HZ was moved away (R + «}. In fact, ' reached an asymptotic value of
N 10"5 a.u. To understand the origin of this result, we will restrict
our discussion to a sz geometry with a fixed H2 bond length of I, = 1.40 a.
We also consider the case in which R is large, for in this limit we may
talk ubout molecular orbitals which are centered on either He or HZ‘
Since in our calculations the SCF is used to obtain a good set of

. ; . S
orbitals with which to describe He+kl,, in theCT the reference (greund
<



Table X. DS/Dp population ratios for He(215)+H2.a

R (ao) Root 2 Rcot 3
3 1.07 1.23
4 1.55 1.20
5 2.34 1.01
6 3.66 0.48
7 4.83 0.20
8 1.99 0.66

a R A
See text for definitions of quantities

involved.

89
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state) configurativn, which is in the Q subspace, will mix with the
single excitations in the P subspace to provide a better description
aof HZ. Unlike the triplet case, then, in which the reference configura-
tion is not included, this normal CI correlation of the Hz is counted in
the HPQ coupling, and thus contributes to the width. Since such
corrclation would reach some non-zero asymptotic value fnr large R,
I' would be ezpected to level off as R -~ =, as is observed. In addition,
since such CI correlation changes with R in some unknown manner, the
asymptotic limit cannot simply be subtracted off to provide the width.
In fact, when such a procedure is used, the results we obtain are about
an order of magnitude smaller than those for the triplet system, in
contrast to the results of Cohen and Lane,22 who obtained an approximate
singlet width which was slightly larger than their triplet. (Cohen and
Lane22 did not observe the correlational difficulties discussed here as
they did not use the golden rule approach for their singlet calculations.)}
It should also be pointed out that these asymptotic difficulties were
not observed by Hickman in a golden rule calculation on He(le)+H,51
since as R + o, there is no electrenic correlation for the H atem.

In an attempt to remedy our correlation difficulties, we tried a
few other schemes, corresponding to different effective choices for
the P and Q projectors. First, the reference configuration was removed
from the Q subspace and placed in the P subspace, so that the mixing
between the ground configuration and the P configuratioas would not be
counted in the width. However, since the reference configuration mixes
strongly with the entire Q space, this procedure was not effective.

Second, with the reference configuration replaced in the C subspace,

- +
the SCF calculation was performed on HeHZ instead of HeHZ. This choice
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of molecular orbitals provides a poorer description of the continuum function
¥ in Eq. (3.12), but this is probakly not a serious concern, as Cohen and
Lane22 obtained reasonable widths for He(21’35)+‘d2 asing quite modest
wavefunctions. The advantage of such a choice of molecular orbitals,
52

however, is that by Brillouin's Theorem” " we know that the reference
configuration cannot mix with those configurations which are single
excitations from the reference (i.e., the P configurAtions). We thus
obtained no contributicns to the width from the mixing between the
reference configuration and the P subspace. However, a different type
of correlation in the Hz was observed in this case. For large R, double
2xcitations in the H2 (eQ) mixed strongly with the single excitations in
HZ(EP), again providing an asymptotic contribution to the width.

In a final atteémpt to remove the electronic correlation from the
width, we replaced the single determinental ionic wavefunction wion
in ¥ [cf. Eq. (3.6)] by a three electron CI wavefunction. The idea
here is that by “precorrelating” the continuum function X, the correla-
tional effects described above could be expected to cancel out in the
golden rule matrix element of Eq. (3.12). That is, suppose we reconsider

the physical approximation assumed for the continuum function ¥,
> -> > > -+
XElO(rl’ ey rh) = A&ion(rl,rz,r3)¢szo(ra) ) {(6.1)
where, as before, we expand the coulomb orbital ¢€20 as

o, Gy Y a®e ) (6.2)
erotal T L B Pt : :
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However, for vicn(rl’r7’r3)' we now take the ground state eigenvecter
. +

from a CI calculation on HeHZ:

> > 3 > + =
I = S ~
PionF17720T) T G e (FraTpeTy) ’ (6.3)

-

where the superscript 3 indicates that 2 is a 3-electron configuration.

ww

We .us obtain for x:

N = 3., )
Zego = A(‘gck " (gai 4y

1

- %) 4
—-Zai %qu’ik R (6.4)

where @ik is a 4-electron configuration corresponding to a proper
spatial and singlet spin coupling of the 3-electron configuration
¢i with the orbital @i. Qik can be written as a simple linear combina-
tion of configurations @i for HeHZ. Assuming that the ¢i configurations
contain single and double excitations from the 3-electron reference ground
state, the ¢ik will involve linear combinations of single, double, and
some triple;éxcitations from the 4-electron reference configuration of
the original HeH2 set. It should be noted here, however, that the only
terms in X of Egq. (6.4) which contribute to the IE matrix element of

Eq. {(4.16) are those terms which were not included in the original

Q subspace. To demonstrate this, we assume that a given ¢gk corresponds
to a configuration ¢t (or a linear combination of such configurations),
where ¢t is an element of the 9 subspace. Then the contribution to I

L

2
93 .
from the ¢ik term is related to
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<'fQ;H-ErI’-D > =<y b, 5 [H-E la >

szj (Hjt_Hajt) =0 , 6.5)

where the last expression equals :ero because the final equality of

Eq. (6.5) is simply the secular equation which determines the coefficients
{bj) for the eigenvectors of QﬁQ. Contributions to tﬂe width only arise,
then, from matrix elements between ( configurations and P conf{igurations
and between Q configurations and triple excitations from the reference.
Unfortunately, both tvpes of matrix elements do not go to zero as R - =,
and the results from this procedure are not very different from the
original calculation described above, with the exception that the
asymptotic limit for T is now 7 10_7 a.u, This indicates that a partial
cancellation of the correlational effects may be occurring. In conclusion,
for cases in which such correlational effects as those presented here

are important, the choices of P and Q projectors presented in Chapter III
are not suitable for an accurate calculation of the width. A different
method presented in Chapter VIII, based on a calculation of the Siegert

eigenvalues of a system, shows great promise for the calculation of widths

in such cases.
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1
VII. THE He(2 S)+Ar SYSTEM

Another reaction of current scientific interest is the Penning

1onization of Ar atoms by singlet metastable He: 15717,33-55

He(lsZslS) + Ar > He + Ar+ e . (7.1)

Haberland17 recently published an extensive study of the differeutial
elastic scattering cross section for this system at several collision
energies, from which it is concluded that a proper calculated fit to
the cross section results requires an excited potential v* which
contains a relative maximum (cf. Figure XIV), similar to that observed
for the He(2lS)+H2 system (cf. Chapter VI). This unusual feature is
necessary in that it gives rise to a well-resolved rainbow maximum in
the differential cross section observed at intermediate angles (20° for
100 meV). This anomalous rainbow peak has also been observed by Siska,55
who obtained the differentisl cross section at a single collision energy
(64 meV}). Using a considerably less flexible potential form rhan that
of Haberland, Siska55 was able to obtain a good fit to his data with a
potential containing a pronounced shoulder (cf. Figure XIV), though not
a relative maximum, Nevertheless, the position (7 ao) and height (25
meV) of the structure in Siska's potential are in good agreement with
those of Haberland's. In addition, Siska's time-of-flight measurements55
contain a single peak corresponding to elastic scattering, indicating
that the observed behavior does not arise from an excitation transfer
process producing Ar*.

Since this system has only a single degree of [reedom for tie

*
nuclear motion, a theoretical calculation of the V' potential is most
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worthwhile, as it can be directly compared with the cxperimentally
deduced potentials. Such a calculation is presented in this chapter.
As the aumber of electrons in the HeAr system (20) is relatively large,
extensive CI calculations were not considered feasible. However, the
reasonably-sized calculation presented herein, while not of sufficient
accdracy to- reproduce the exact details of the potential, was consider=-
ed adequate enough éo furnish the gross shape of V*, f.e., two high-slope
regions separated by abour 2 a and joined by a low-slope region.

The calculation of V¥ presented in this chepter differs
significantly from the method detailed in Chapter IIT in three
respects. First, those configurations corresponding to a HeAr+ core
plus another orbital (the P subspace of Chapter III) were included in
the CI diagonalization. This corresponds to the alternative definitions
of the P and Q projectors as used by Miller and Schaefer5 in a stabiliza-
tion calculation for the He'H system. Such definitions place all the
L2 functions of the basis set into the Q subspace, while the P subspace
contains only non—L2 functions. Second, the molecular orbitals from
which the configurations were generated were determined by an SCF
calculation on the neutral HeAr system, instead of on Hear'. That
such a procedure does not change the overall characteristics of the
calculated potential was discussed in Chapter VI. Third, all structure
calculations discussed in this chapter were performed with the BERKELEY
systems6 of minicomputer-based programs.

The atomic orbital basis set of 34 contracted Gaussian functions
vsed in our study is listed in Table XI. Those orbitals centered on

Hle are the same as those used for the He(215)+37 caleulations (cI.



Figure XIV.

96

Interaction potentials for He(215)+Ar plotted on a linear
scale. The solid curve is the theoretical result. The
dashed curve is Haberland's deduced potential (cf. Reference
30), while the dot-dashed curve is Siska's deduced potential
(cf. Reference 55). All curves are plotted with the same

zero. The calculated asymptotic limit is ~528.944849 a.u.
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Figure XIV.
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Table XI.

“98

Contracted Gaussian orbital basis set for He(21s)+Ar.

Atom Orbital Exponent Coefficient

Ar 1s' ' 18186. 0.00030

| 17688.8 0.00238

427,30 0.01233

114.96 0.04908

376.954 0.15104

138.070 0.23140

Ar 1s’ 138.070 0.10000

54.9540 0.40780

23.1650 0.18556
Ar 2s 7.37688 1.0
Ar 2s’ 2.92369 1.0
Ar 3s 0.6506603 1.0
Ar 3s' 0.232877 1.0
Ar 4s 0.083348 1.0

Ar 2p,,2p_.%p, 660,901 0.00299

157.219 0.02364

50.0639 0.10589

18.6119 0.28567

7.43692 0.44322

3.08857 0.30458
Ar 2p;,2p;,2p; 1.10267 1.0
Ar 0.414763 1.0

3p»3p,, 30,



Table XI, contiaued. v
= o 0
Atom Orbital Exponent~"’ Coefficient
Ar 39;,39;,3;;; N 0.145:49 1.0
Ar o l',px’('py’l'pz 0.051006x: 1.0 -
Ar 334 0,34, 0.81 §
3dxy,3dxz,?§yz = o 2
He is ¥ 92.4121 0.00916
16.9437 0.04936
4.74023, 0.1685%
1.62840 0.37056
0.632354 0.41649
0.260438 0.13033
He 1s' 23,1030 0.00915 .
4.23592 0.04936
1.18506 0.16834
1 0.407099  0.379536
0.158088  0.4164S
0.065110  0.13033
He 2s 7.06036  -0,004151
1.29480  -0.02067
0.363866 -0.05150
0.052034  0.33463
0.023616  0.56211
0.£11262  0.17130
He 2p22p,.2p, 1.49656 0.00792
0.390272  0.0514%

99
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Table XI,continued.

Atom Orbital Exponent Coefficient

He 2p, cont'd. 0.139643 - 0.18984
0.058374 0.40499
0.026692 0.40124

0.012619 0.10519
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Chapter VI), except that the expansion of tﬁe STO's in Gaussians is given
explicitly. For the Ar, the (12s,9p) Gaussian set used by Veillard52
was contracted to a [6s,4p] set by Dunning's rules.58 This "double-zeta"
level basis set on Ar was then augmented by diffuse 4s and 4p Gaussians,
with exponents chosen by the even-temperedness criterion.59 These
diffuse functions were included for a better description of either Ar
or Ar” states, as it was felt that such states might-play a rele in
determining the interaction energy. In addition, a 3d set of polariza-
tion functions was added to the Ar, with an exponent of 0.81. The
final Ar basis of 28 contracted Gaussians gave an SCF energy which was
only 0.006 a.u. higher than that obtained b; Veillard57 with an uncontracted
Gaussian set.

For a given nuclear separation (R), the SCF calculation on HeAr
thus provided 34 molecular 'orbitals from which the configurations were
generated. With the 1522322p6 core of Ar and the highest five virtual
orbitals frozen out of the configuration generation, all allowed single
and double excitations from the ground state reference occupancy
yielded a CI basis set of 1398 configurations. An iterative procedure

was used to obtgin the desired root of the resulting Hamiltonian
matrix. This root was identified by considering the molecular orbital
populations determinea from the eigenvectors. The results for V*vére
given in Table XII and are plotted in Figure XIV. Clearly, no "wiggle"
is obtained, although the potential does appeai to be roughly linear
in the 6 a, to 8 a, region, Qith a sharp rise for R < 6 a- However,
when V* is élotted on a semilog scale, an anomalous feature is readily

apparent (cf. Figure XV). TFor a normal repulsive potential, such a

plot would produce a roughly linear curve for the low-energy repulsion
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Table XII. Rescnance energies for He(213)+Ar.

R (ao) v (a.u.)
4.0 -528.918737
4.5 -528.933942
5.0 -528.939501
5.5 -528.941434
6.0 -528.4v42164
6.5 '~528.942595
7.0 -528.942987
7.5 ~528.943373
8.0 -528.943740
8.5 -528.944055
9.0 ~528.944308
9.5 -528.944489

10.0 ~528.944627

25.0 -528.944849




. X - 1 ,
region. Our calculated V' curve for He(27S)+Ar, on the other haad,
definitely possesses a downward curvature for this region. We also

see that the structure in our curve occurs over the same regicn as the

w

structures in both Haberland'sl7 and Siska'sS curves, though it is not
nearly as pronounced as theirs.

A fow more comments on our calculated potential are in order.
First, the computed van der Waals tail is too unreliable to be
included in our discussion. Second, the computed asymptotic excita-
tion energv for the He(Z]S) state is 23.6 eV, as opposed to 20.6 eV
from cxperiment. This implies that our calculation is providing a
mﬁch better description for the ground state of the system than for
the excited state under consideration. Third, the calculated asymptotic
splitting between the 215 and 21P states of He is 0,58 eV, in good
agreement with the experimental value of .60 eV, indicating that
the calculation is treating these states equally.

In analogy to the findings of Chapter VI, the anomalous structure
obtained here could be expected to arise from the coupling between the
two states which dissociate to He(ZlS), He(ZlP)+Ar. That is, hybridiza-
tion of the excited He orbital would allow charge density to be drawm
away from the Ar, baring more of the He+ core to Ar, and lowering the
energy. In the present case, we define the s-p wmixing ratio as the
ratio between the population densities in the 2s and 2p molecular
orbitals for the resomant root. (This mixing ratio is somewhat crude,
for it does not take into account the s-p hybridization of the molecular
orbitals.) These miving ratios are given as a function of R in Table

XIII. We note that the amount of s-p hybridization rises sharply in the
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Figure XV. Tnteracition potentials for He(215)+Ar plotted on a logarithmic
scale. The solid curve is the theoretical result. The dashed
curve is Haherland's deduced potential (see Raference 30),
while the dot-dashed curve is Siska's deduced potential (see

Reference 55). All curves assume the same zerc.
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* .

resion of the anomizlous structure in ¥V, but not nearlvy to the same
1
degree as wac observed for Hel2 S)+H2. These facts seem to indicate
that the same mechanisi can be applied to both systems, but that much
. * -

more extensive calceulations need to be performed on He Ar to obtain
a result which is of cemparable accuracy.

Ir order to determine the extent to which our ab initio potential
aprees with the experimentally observed cross sections, we performed
quantum mechanical calculations for the differential elastic scatter-
. . Pes : : N s
ing cross section for He(Z S)+Ar, using the single-channel SCAT program
provided by Hickman. This program was first tested by reproducing the

. ; .17 . . 60 . s
cross sections obtained by Haberland and Siska when provided with

7
17,60 those authors found best fit their

the patentials and widths
data. (Note: The A and C coefficients of Haberland's I should be
correcced61 to read A = 1632.6 eV, C = 0,0163 eV.,) OQur V* curve was
paramcterized in the following manner: For R between 4 a and 10 ao,

V* was fit by a cubic spline function through the computad points.

For R > 10 a_, V* was set to (96.565) exp(-0.96796 R) a.u., while for

R < 4 a s V* was set to (766.82) exp(-~1.7460 R) a.u. These exponential
fits were determined by a fit of the exponential form to the last two
and first two computed points, respectively. Regardless of the form
assumed for the ionization width [, the calculated potential did not
yield a differential cross section with a rainbow peak for 100 meV.
Instead, a very broad shoulder is obtained, with a breaking angle (i.e.,
the angle at which g% starts to drop precipitously) between 30° and 70°,
depending on the form of I'. This is to he compared with the experimental

result of a rainbow peak at 20° for a collision cnergy of 100 meV., Fven



Table XIII. Ratio of P to § character in He(>' y)+ar.”

R (a) Ratio (%)
9.0 0.20
8.5 0.24
8.0 0.60
7.4 1.9
7.0 3.7
6.5 7.3

6.0 12.
5.5 19.
5.0 25.
4.5 29.
4.0 27.

a RN
See text for definition of

this ratio.

107
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forms for the width containing broad maxima did not change the general

shape of the differential cross section. Similarly, addition of the
.52 . . s e

propers van der Waals tail te our potential did not significantly

alter our results.  Although it would be useful to compute an ab initio

1 R - . e s
for the He(27S)+Ar system, then, it is doubtful if any such width

could provide a differential cross section with a rainbow peak, given
, * i
aur cajculated V. However, as an anomalous shoulder in the cross
.ection is obtained with our potential, it is possibly fairly close to
tie accurate one. That is, our potential may need to be modified cnly
a -

slightly (e.g., perhaps made flatter in the 6 a  toda, region) to

produce a peaked cross section.
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VII1. TBE CALCULATION OF SIEGERT EIGENVALUES

In previous chapters, it was demonstrated that the stagbilization--
golden rule method presented in Chapter II1 can in scme cases be used
tn obtain reliable positions (Er) and widths (') for autoionizing

In other cases, notably those involving a singlet system

systems.
which correlates strongly with the ground state, the method was observed
In addition,

to fail in the computation of the autoionization width.

a function which

a

it should be pointed out that the method is an approximate one, not

only in the approximation of the continuum function by
is sguare-integrable, but also in the neglect of non-resonant scatter-
It was thus considered most useful to develop a more

ing processes.
exact and direct method to compute Er and [, which could theu be applied

As discussed in Chapter I, the aim of such a

to molecular problems.
method is to caleculate the complex poles of the S-matrix, or equivalently,
Since the

of the Green's function, which correspond to resonances.

position of such a pole is
(8.1)

we can directly obtain the position and width of the resonance from the
This procedure therefore

real and imaginary parts of the pole position.

obviates the need for choosing P and Q projectors, and avoids the

approximations inherent in the golden rule expression.
As mentioned in Chapter I, one such direct approach, the method of

rotated coordinates, has already proven successful for calculations of
small atomic systems, Sy H™ and He . However, this method suffers



from the ambipguity {(as well as excess computation) of examining the
"stahility" of the complex eigenvalue with respect to the rotation

angle. A more serious drawback with this method is that the extension

ta nou-spherically symmetric systems, i.e., molecules, is unclear.
Another direet approach, the one which will be discussed in this chapter,
is based on a variational calculation of the Siegert eigenvalues of the

9-11 . : .
system. As will be demonstrated below, this approach contains

several important advantages: (1) the method requires little more than
standard elecfronic structure techniques, (2) the resulting complex
eigenvalues are stable with respect to increasing the size of the

basis sct, (3) only a relatively small number of diagonalizations must
be performed to obtain converged results, (4) the extension to molecular
systems is quite straightforward, and (5) no significant approzimations
are involved.

The metiod employed in this chapter stems from the variational
calculation of Siegert eigenvalues proposed by Bardsley and Junker,lo
and applied by them to a one-~dimensional model problem, to the 252
autoionizing state of H , and to the lowest 25 resonance of He-.ll
It will be demonstrated below, however, that Bardsley and Junker's some-
what pessimistic conclusions on the applicability of this method to
more complicated systems can be disregarded when a proper iterative
scheme to obtain the Siegert eigenvalues is employed. The basic theory
of the Siegert eigenvalue approach is presented in Section A, along
with the results for a one~dimensional model problem, from which it
will become evident that the method converges 1n a completely stable

manner to the correct result as the basis set size is increased.



Section B prescnts the application of the method to some
autoionizing states of H and He, and it is demenstrared that results

of useful accuracy (¢ 20% error in ©) can be obtained with gquite nodest
c s - . . : 63 .
variational functions (£ 10 configurztions). The extension to mol-

o : PP \ L
ecular problems and results for the He(278)+H and He(2 S)+H svstenms

are presented in Section C.

oy

A. The Varjational Calculation of Sicrert Eipeavalucs

To illustrate the variational calculation employed by Bardsleyw

10 ; ;
and Junker to calculate the Siegert eigenvalues o. a system, we

consider s-wave scattering from a potential V{(r) ich can support
a resonance. We also assume that V(r) is identically zero for r > Ty

Enploying atomic units throughout (and taking m = 1 as well), the

Schrodinger equation for our problem is given by

2 2
(- %dd?ar v -3 & @ =0, (8.2)

where k = V2E. The usual scattering boundary conditions require that

the solutions (r) ta Eq. (8.2) that we desire be regular at the

wk
origin and asymptotically (r > ro) behave like

e R TS IS (8.3)
where S(k) is the S-matr?-, which for real k is a number of unit modulus.

We then need to look at complex values of k for which S(k) has a pole.

The corresponding complex energy E = % k2 is a pole of the analytically

continued Green's function, and thus



“
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Tt can then be shnwng that S$(¥) has a pole at k if and only if

:
¢k(ro) - ik vk(ro) =0 . (8.5)
We thus have an eigenvalue problem for Eq. (8.2) with the boundary
conditions that wk(r) be regular at the origin and satisfy Eq. (8.3)

atr =r It is interesting to anote that this eigenvalue problem

o
is not Hermitian. The consequences of this fact (e.g., that the
cigenvalues need not be real) will be discussed below. Of greater

importance is the fact that for physical systems, there is no finite

distaacr r_, beyond which the potential identically vanishes. %We thus

0
necd to consider the limit of Eq. (8.5) as ro - @, This corresponds
to a new asymptotic boundary condition
kr

wk(r) " constant x ei (8.6)

which can also be obtained from the usual boundary condition [Eq. (8.3)]
by assuming that S(k) has a pole at k. Physically, this indicates
that a pole in the S-matrix corresponds to a situation in which there
are only outgoing waves, which, as discussed in Chapter I, is the case
for an autoionizing state. Our eigenvalue problem for physical systems
thus requires a solution to Eq. (8.2) which is regular at the origin
and contains only outgoing radial waves for large r.

As in the case of a normal, Hermitian problem, we now wish to
transform our non-Hermitian eigenvalue problem into a variational

problem. Proceeding as in the usual Raleigh-Rirz variatiomal methed,
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we choose a trial function wt having a form which imposes the desired
boundary conditions:
N-1
wt(r) =_§: cn¢n(r) + cNe(r) . (8.7)
n=0 »
The variational coefficients {Cn}’ n=0,1, ..., N are then determined

by requiring that the functional I{wt],

@ : 2 2
Hmli[awgm[—%ig+vu>-%wgm . 6.8
dr

be stationary with respect to variations in wt; Before continuing, we
note that the radial function on the left side of the integrand in

Eq. (8.8) is not complex conjugated. This fact arises naturally from
the transformation64.of the eigenvalue problem to a variational one,

in that otherwise I[wt] would be an infinite quantity for all values of
k. The basis functions {¢n}, n=20,1, ..., N~1 in Eq. (8.7) are square-
- integrable functions which vanish exponentially, say, for large r (e.g.,
Slater orbitals), while the Siegert function O(r) is chosen such that it
imposes the asymptotic boundary condition, Eq. (8.6):

y et (8.9)

0(r) = (1-e ©

where the (1—ehr) cutoff factor insures that 6 goes to zero at the
origin, but still allows O to have the form of a linear combination
of (complex) Slater functions. It should be pointed out that, in
general, the functional I[wt] is then formally defined only for

Im(k) > 0, for which 6(r) is also square-integrable. However, we



will see that it is possible to evaluate I[ﬁt], i.e., to solve the
variational problem, for all values of k by the process of apalvtic
the coefficients (cn}, n=20,1, ..., N to make I[Wt] stationary then
leads in the standard way to the secular equation for the Siegert

cipenvalues:

det{M , (k)] =0, n",n=20,1, ..., ¥ ’ (8.10)
n,n \

where Fq,,n(k) is the complex symmetric matrixz of (H - EE) over the
fgll_hasjs set (i.e., including 3). The matrix elements Mn,’n(k)
depend on k both by the k2/2 term and by the fact that 9(r) is a
funciion of k. Thus, the resonant eigenvalue Ei(k) ébtained from

Eq. (8.10) is also a Function of k. But, by the definition of k,

k2

Ei(k) - 0o (8.11)

must be satisife. for Ei(k) to be the true resonance energy. This

leads to the use of some sort of iterative scheme in solving for the
. 10

true resonance energy. If, following Bardsley and Junker, we

write Eq. (8.11) as k =+/2 Ei(k) and use the iterative procedure

kypy = V2 E (k)] ,  2=0,1,2, ... . (8.12)

then convergence to the correct result is not guaranteed; in fact,
we have found cases for which this scheme diverges. The proper way
to determine the resonance energy is to solve Eq. (B.11) by a Newton-

secant iteration scheme., For all of the systems we have studied, only
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a few iterations are needed for convergence,

In general, the matrix elements Mn' n(k) when one or both functions
>

is the Siegert function exist only for Im(k) > 0; otherwise, €(r) is
2, . ) - )
not an L° function. However, the solution to Eq. (8.11) requiress a k

value with Im(k) < 0. We can remove this difficulty by analytically
continuing the matrix elements from Im(k) > 0 to Im(k) < 0. In this
way, we determine a unique analytic continuation of éhe entire problem,
as stated in Eg. (B.10), from a region where it is formally defined
to a region .there it is needed. The analvtic continuation of the
matriz elements can be accomplished in three wavs:

(1) If the matrix elements Mn',n(k) are algebraic functions <f
k for Im(k) » 0, we can simply use this fumction for all appropriate

k, i.e., for Im(k) < 0. For example, consider one of the terms in the

overlap integral <§|g>:
y 2ik
J(k) =fdr 2“5 . (8.13)
0

Clearly, this intepgral is finite only for Im(k) > 0, for which we have

i

= &
Iy = 5% . (8.14)
But Eq. (8.14) is finite for all k # 0; in fact, it is a unique
analytic continuation of J(k) to the region Im(k) < 0. We can

similarly evaluate all other integrals for Hn ,n(k), and thus eobtain

Ei(k), for any k of interest.
(2) If the matrix elements Mn' n(k) cannot be evaluated analvticallwy,
B

i.e., the integrals are computed numerically at real values of the



integration variazbles, we can only obtain hn',n(k) and hence Ei(k)
for Im(k) > 0. From a set of Ei(k) values at various k values in

the upper half k-plane, however, we can construct a rational fraction
fit to Ei(k) which tihen provides the znalytic continuation of Ei(k)
to the lower half k-plane, as long as the Ei(k) "surface" is
sufficiently smooth.

(3) If the Ei(k) "surface" proves to be sufficfently structured
that Method (2) is impractical, we can perform the numerical integration
by choosing complex quadrature points, i.e., by rotating the contour on
which we do the integration. %e can then evaluate the numerical
integrals for all k of interest, provided the angle of rotation is
sufficiently large.

All three of these methods zre equivalent, and all give the same
result when they are applicable. Where possible, Method (1) is, of
course, preferable, since it allows us to compute Ei(k) for Im(k) < 0
directly. We have implemented each of these mathods for the various
problems discussed below, and shall comment further on them as they
arise.

As an example, we have applied the Siegert eigenvalue method to
the problem of s-wave scattering from a one-dimensional barrier

potenti3163

V() = vl L (8.15)
This problem was also considered by Bain, et al.l'L although their
method did not employ a proper iterative scheme to solve Eq. {8.11),

and hence proper convergence to the correct energv was not achieved.
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No such difficulties were observed in the calculeticns presented here,

For our calculaticns, we used a basis set of orthonormal genera!

6
Laguerre polvnomials 7

372

« ~ur/2

€3] .

rl:n(r) = ﬁhﬁ: r Ln {ar)e . n=20,1, ..., N-1 ,(8.16)
augmented with trhe Siegert function 5(r) as given in Eq. (8.9), which
must first be orthogonalized to the (@n}. The kinetic energy matrix
elements can all be evaluated analvtically, while all the other integrals
may be computed bv stable recursion formulae or related to a finite
hypergecmetric series containing only positive terms, which can thus
be summed without round-off error. Routines for the evaluation of all
matrix elements were provided by Dr. C. W. McCurdy. Diagonalization of
the resulting complex Hamiltonian matrix was performed with the EISPACK

66 . . s s s
system of programs. The entire matrix construction and diagonalization
was then used as an input function to a2 Newton-secant iteration scheme
. . . 75

ov=r k, perrormed with the CZERO routine.

Recults for the complex resonance eigenvalue as a functien of basis
set size, i.e., the number of real basis functions, are shown in Table
XIV for the case V0 = 7.5. We see that, as the basis set is increased,
there is a well-behaved convergence of the real and imaginary parts of

. s 11 : .
the Siegert eigenvalue to the exact value, obtained by a numerical
integration of the Schrdodinger equation. In addition, the convergence
is seen to remain stable even after the basis set is increased far
beyond that required for practical convergence. Similar behavior was
obtaincd for a very bread resenance, E = 1,234209 - 0,187228 i a.u.,

obtained for V0 = 2.0. It should be stressed here that cnly one Siegert
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Table XIV. PResonance position and width (E =E - 1 ) for
res r 2

the potential V(r) - 7.5 rze_r.

% is the number of
square-integrable basis functions (cE. Eq. (8 :8),

with @ = 2.0) used in the expansion of the wave-

function {cf. Eq. (8.7)]).

N Er r

5 3.40822 .004812
10 3.42706 .022380
15 3.42641 .025596
20 3.42641 .025591
25 3.42638 .025586
30 . 3.42638 .025553
35 3.42639 .025548
40 3.42639 .025548
45 3.42639 .025549
50 3.42639 .025549
60 3.42639 .025549

70 3.42639 .025549




function has been included in the basis. That is, only one such
function is required to impose the proper boundary cendition on the
trial function.

Before describing our calculations on some physical svstems, we
note a necessary modification to our procedure for the case in which
the outgoing particle experiences an attractive coulomb potential, as
occurs in Penning ionization. To satisfy the proper‘physica] boundary
condition, we require that the Siegert function have the asymptotic

form of an outgoing coulomb wave,

¢k(:) N exp[ikr + % 2n(2kr)]

« ri/k eikr

. (8.17)
We thus replace the Siegert function defined in Eq. (8.9) by
P q b

9(r) = £k KT (172 (8.18)

for s-wave scattering, where the extra power of the cutoff function
insures that 8(r) - 0 as r » 0 at least as fast as r. As pointed out
before, though, it is most convenient to keep 8 in the form of a
linear combination of complex Slaters, so that the integrations

required for matrix element evaluvations will be possible.

B. The Calculation of Atomic Resonances and Results

. . 1 ; -

This section presents the results for the 27S rcsonance in H and
1 1 R . 63 . .

the 2°S and 2P autoionizing states of helium. The trial function
in all three cases is a linear combination of two-c¢lectron singler

configurations, ;i’ of the form
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5, (1,2) = 3 [0, (1) 4,(2) + 9, (1) ¢, (D]-[a(1) 22) - £1) a(@], (3.19)

where & is a one-electron orbital, and « and 2 are spin functions.

'he bound one-clectron orbitals are simple normalized Slater functions

- n-1 -¢r o
¢i(r) = Nn r e Yzm(r) , (8.20)
with the exception that the 2s orbital is a linear combination of two
Slater functions which reproduces the hydrogenic 2s orbital. The exact
form of the Sicgert orbital depends on the rescnance under consideration.

The following forms were used:

. R {2 .

for 1 (2%8): 65 = £— (- ¥, (), (8.21)
L s GAfkke

for He(275): 9(r) = ——— (l-e¢ )~ Yoo(r) . (8.22)
L ilk ikr .

for He(2'P): ad = ey . (8.23)

10

The cuteff function, (l—e_r), insures that the Siegert orbital limits
properly both as r > 0 and as r > «. Only one configuration involving
the Siegert orbital was employed, i.e., the configuration corresponding
to a combination of the Siegert orbital with the ground state of the
remaining one-electron target [H{(ls) or He+(ls)].

Using this configurational basis, the variational calculation to
find the resonant eigenvalue Ei(k) was performed using a modification

. . . s . 12
of the atomic configuration interaction program written by Schaefer.
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Apart from the conversion to complex variables, the major modificati

to Schaefer's program involved the evaluatrion of matrix elements contuin-
ing the Siegert function. Since this function has the form of a complex
Slater with an arhitrary, complex power of r, the one-electron inteszrals

; 65 .
unction, while the

can all be written in terms of the complex Gamma f
two-electron integrals can be expressed in terms of the complex hvper-
s s 65 . . s

geonetric series, 2Fl(a,b;c;z). The resulting complex Hamiltonian

. : . . vy 66
matrix was then diagonalized with the EISPACK system of programs.
As a test of the entire calculation, k was set to a purelv imaginarw

2 .

number, so that 5(r) becomes a real, L” function. The eigenvalues
obtained from this calculation agreed exactly with those from a calcu-
lation involving only bound orbitals, with exponents chosen to match
those in the first calculation. To obtain converged resonance energies,
Eq. (8.11) was then solved by a Newton-secant iteration. At first,
Ei(k) was computed directly for each iteration of the search. Later,
the calculation was modified so as to compute Ei(k) at a small number
of real k points in the region of the correct resonance momentum. The
resulting set of eigenvalues was fit to a low order rational fraction,
which was then continued to find the solution to Eq. (8.11). This
procedure resulted in a significant savings in time with no apparent
loss of accuracy.

As a test of both the method and the computation, large scale
calculations were performed on the three atomic resonances listed above.
The basis sets and results for these calculations are given in Table XV,

where the resulis are also compared to reliable onmes obtained from



projection operator techniques. In general, the agreement is quite good
in both the positions and the widths. The small discrepancy in the
position and width of the He(ZlP) resonance is probably due to residual
correlational effects not handled by the basis set.

Since basis sets large enough to be of comparable accuracy for
systems with more than two electrons are not feasible, we next studied
the accuracy of results from small basis sets. The results for the best
choices of small basis sets are presented in Table XVI, along with the
large scale results for comparison. For the S resonances, the positions
are quite stable even down to 5 configuratioms, while the widths remain
within 20% of the accurate value down to 8 configurations. It can also
Le noted that the disagreement in the width is larger for the coulomb
resonances than for the plane-wave case. This may indicate that the
method depends on how rapidly the eigenfunction reaches its asvmptotic
form. For the P resonance, removal of d functions causes a sharp change
in the position, due to the loss of p-d correlation. Except for this
(constant) correlation, the position is again stable down to 5 configura-
tivns, and the width alsu remains within 20% of the accurate value down
to 5 configurations. These results suggest that this method can be
practically applied to larger systems while still maintaining a useful
degree of accuracy.

Some comments on the choices of bound basis sets giving the best
small-scale results are in order. Since the ls function must describe
the one—electron core in the Siegert configuration, the ls exponent was
set to § = 2.0 (1.0) for He(H). The 2s and 2p exponents were determined
in separate optimization runs involving only the ls, 2s, and 2p orbitals.

The optimum values we obtained for the 2s and 2p exponents were respectively



Table XV. Accurate atomic

caleculations

System

Basis

Bost Result

ER (a.u.)

Compar fson V
E a.u.
q (2.u0)

T (eV) I' (ev)
w2l 11s4p3d/72 configs. -.14876 0.0460 ~.14878" 0.0472%
He(2'5) 10s5p3d/67 configs. -.77767 0.126 Cm0d® o1t
fe (2 ') 6s9p3d1£/76 configs. -.69181 0.0403 -.69316" 0.037°

a) Reference 73.

b) Reference 11,

¢) Reference 74,



HQ(ZIS)

Hc(21P)

Pasis Ep (a-u.) T (e

72 confizs. -.14876 0.0469
1s~6s5,2p/23 configs. - 14777 0.0522
1s=5s,2p/17 configs. ~-.14776 0.0528
ls-4s,2p/12 coniigs. -.14598 0.0433
1s-3s,2p/8 configs. -.14551 0.0542
1s~2s,2p/5 configs. ~.14315 0.0351

67 configs. ~.77767 0.126

1s,2s + 1s'-6s',2p/38 configs. -.776544 0.151
1s,2s + 1s'-5s',2p/30 configs. ~.77642 0.151
1s,2s + 1s'-4s',2p/23 configs. -.77639 0.151
1s,2s + 1s'-3s',2p/17 configs. -.77635 0.150
1s,2s + 1ls'-2s',2p/12 configs. -.77621 0.149
1s,2s + 1s',2p/8 configs. ~.77348 0.143
1s,2s,2p/5 configs. -.77443 0.138
76 configs. -.69181 0.0403

1s,2s,2p + 2p'-6p' /8 configs. -.65833 0.0337
1s,2s,2p + 2p'~5p"'/7 configs. -.65833 0.0333
1s,2s5,2p + 2p’,4p"' /6 configs. -.65834 0.0332
1s,2s,2p + 2p’'~3p'/5 counfigs. -1;65833 0.0341
1s,2s,2p + 2p'/4 configs. -.65635 0.0894
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0.40 and 0-33 for H , 0,93 and 0.81 for He(llS), and 0.553 and 0.5%9 for
He(ZIP). For the Hn(ZlS) resonance, reasonable results were obtained

by including just the 252 and 2p2 configurations needed to describe the
bound state, aleng with a series of lsns configurations, where ns
represents a diffuse Rydberg-like orbital (n = 3,4,5,6; ¢ = 0.5). The
configurations involving the diffuse orbitals seem to be necessary to
represent the background continuum. However, in orde; to obtain the
good results for the width presented in Table XVI, it was also found
necessary to include all s~-s pairs, i.e., to perform a full CI, among
the bound s orbitals. This procedure probably corrects, to some extent,
for the limited choice of s functions. For the He(ZlS) resonance, good
small-scale results were obtained only when the orbital basis used for
H was augmented with diffuse ls and 2s functions. This is probably

due to the increased nuclear charge of helium. Apain, a full CI among
the s orbitals was required. For the He(ZlP) resonance, just the 2s2p
configuration was used to describe the bound state, augmented by a series
of 1snp (¢ = 1.70) configurations to represent the background continuum.

In this case a full CI among all s—-p type configurations was not required.
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£. The applicatinn tn Mnlecular Svstems: Results Tor He(27'7S)4H

As demonstrated above, the variational calculation of Siegert
eigenvalues is a most promising approach to the determination of atomic
autoionization positions and widths, in that results of useful accuracy
can be obtained with quite modest basis sets. In addition, this approach
is advantageous in that it is exact within the limits of the basis set
employed, it provides stable convergrnce to the correét result for
increasing basis size, it avoids the ambiguity of looking for "stability"
of the eigenvalue as the basis set (or rectation angle, in the rotated
coordinate method) is varied, and it in principle requires little more
than standard electronic structure technology. In this section, we
extend the method to molecular problems and present reliable results
for the He(23S)+H and He(215)+H Penning ionization systems.

Although our procedure was detailed in the preceeding sections,
it is summarized here for clarity. UWe choose an atomic trial function

wt of the form

N~-1
> > > - -+ ->
= v * e .
wt(rl, vees rM) iél ci¢i(rl, vees rM) + y O(rl, N rM),(B 24)

where {¢i}, i=1, ..., N-1 are bound, M-electron configurations which
decay to zero outside some region of space, while O is an M-electron
configuration involving a combination of the ground state of the (M-1)-
electron system with a function which asymptotically behaves like an
outgoing coulomb wave in all directions (the Siegert orbital). The

Siegert eivenvalues are then determined by requiring chat the functional

- -~ -
dory, vee, rM) drl...d‘:;’1

1y,] =fp:(?1, ;M)(ll(;l, ., T
(8.25)
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be stationary with respect to variations in wt. (The conjugate function

+
t

2

is defined by taking the complex conjuggte of all spherical harmonics
in wt but not of the radial functions.68) This leads in the usual way

to a secular equation for the coefficients {ci}, which when solved yields
an eigenvalue Ei(k) which we identify on physical grounds as corresponding

to resonance. However, we also need to satisfy the equation

-

k2

-2 = 8.26

E; k) -5 =0 s ( )

which thus demands an iterative solution for the true resonance energy.
The major practical difficulty in extending this procedure to

more complicated (i.e., molecular) systems lies in computing the

Hamiltonian matrix elements which involve the Siegert orbital. For the

autoionization of a neutral system, this function takes the form

212

(LK ike - R
= (1-e Y, (¥) (8.27)

elm(r) - r ) . fim

it thus has the form of a linear combination of complex Slater functions.
If the bound orbitals of the basis set are chpsen as Gaussian functions,
it was found that the résﬁlting matrix elements involving O cannot be
computed analytically. On the other hand, if the bound orbitals of the
basis are chosen as Slater functions, all the molecular matrix elements
cannot be computed analytically even in the case of a diatomic system.
Since numerical integration is thus unavoidable for a molecular calcula-
tion, we decided to perform our first molecular calculations on diatomic
systems and employ a basis of Slater orbitals. The systems we chose to

investigate are the He(238)+H and He(218)+H Penning ionization reactions.
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These particular systems. have several desirable qualivies: (1) Since
they contain only three electrons, extensive electronic structure
calculations are feasible. (2) Feshbach projection operator technique

results are available for comparison for both systems.lj’n’51 (3)

Sufficient expcrimental data existsﬁg_72 with which to compare ionization
cross section results obtained from the computed potentials and widths.

The main theoretical consideration in extending our procedure to
molecular systems is that the problem no longer possesses spherical
symmetry. In the language of a partial wave analysis, this means that
Siegert orbitals of s,p,d, etc., symmetry can all contribute to the trial
fuﬁction, just as the bound orhitals of those symmectries do. It is
important to point ouc,'however, that since the asymptotic form of zn
outgoing coulomb wave holds in all directions, then the asymptotic
boundary condition applies to all partial waves (i.e., to all Siegert
orbital symmetries}, not just to their sum. By the electron exzchange
model, the ionized electron is thought to depart from the He atom. There-
fore, by centering the jiegert orbitals of Eq. (8.27) on the He, we would
expect to need only a few partial waves to adequately describe the
resonance. This turns out to be the case.

The only remaining theoretical question is how to dafine the Siegert
configuration. First, we note that only m = 0 Siegart orbitals need to be
considered for the problems we are studying, as they possess L symmetry.
Then for each Sl(r),l = 0,1,2, ..., we wish to consider configurations
which have the form of Bl(r) times the remaining 2~electron HeH+ core.
Since the dominant configuration in wHeH+ is lsZHe+H+, we take for our
Siecgert configurations those configurations which correspond to an

orbital occupancy ¢a¢b02’ where ¢a and ¢b are ls orbitals on He.



The calculations presented in this section were perfcrmed with

modified versions nf the HETINT and YMRINO programs written

Since all imtegrals were performed numerically, it

to deternine analytic expressions for the ilategrals invelwving the Siecaert

; _ R . ' P TN
functions. The program was then tested in two wavs: (1) the He(27S)
resonance results of Section B were reproduced by this program: (2)
setting k to a pure imaginary number gave the same results as the corres-
ponding bound calculation.

function 1is

As pointed out in Sectionm A, the form of the Si
such that the numerical integrals camnot in general be evaluated at
Im(k) < 0O, where Eq. (8.26) has the root we desire. To get around this
problem, we first performed the calculation of Ei(k) for Im(k) »> 0, fit
the results to a rational fraction, and attempted to analvtically continue
this fitted function to the region Im(k} < 0. Unlike the atemic case,
however, the Ei(k) "surface'" proved to be too structured in the region
of k-space for which the numerical integrals were converged {or this
procedure to be practical. A much more useful approach was to perform
the numerical integration along a rotated contour. That is, if a function
f(z) is analytic in the upper half z-plane, say, then the integral
<]
j.dx f(x) along the real axis is equivalent to the integral along a ray

0
of angle « in the complex plane:

ia

K. e . o, +
7dx f(x) = '4’ dz £(z) = ela“é-dx £ (xe ™) . (8.28)

0

; 20 : : . .
Since the HETINT program performs the numerical integrations in
ellipsoidal coordinates (§,:1), orly the I integracions (on the interval

[1,»}) need to be performed on a rotated contour, which is defined by
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% = (5-1)e’

(3

+ 1 . (8.29)

)

For real values of k (which proved to be close enocugh to the true k
for our calculations}, a rotation angle «u " 0.15 7 radians produced
; L -8
integrals with an error of < 10 a.u.

The set of bound, Slater type orbitals used in the calculations
presented here is given in Table XVIX. This is the same basis as that

. 21 - 3

used by Hickman, et al. in a golden rule calculation of He(27S)+H,
ceept that the 1 orhitals are not included. The orbital basis was then
aupgmented with Siegert functions 69 of s,p, and d symmetry centered on
He. Since the change in the final I was less than 20% upon addition

of 8 the inclusion of these three Siegert orbital symmetries was

4’
considered sufficienc. For the CI calculation, all ZZ configurations
arising from the bound orbitals (240) were retained. To this set, 4
Siegert configurations were added for each Siegert orbital symmetry.
These configurations have the form ¢a$b92 where ¢a and ﬁb are the ls
and/or 1s' functions on He. The final CI calculation was thus performed
with 252 configurations. As the real resonance egergies at each inter-
nuclear separation had already been computed for our systems by the
stabilization technique,13 we could easily determine an approximate
valuc: for the real part of the true complex resonance momentum. The
resonant eigenvalue Ei(k) was then computed for five closely-spaced

real k points bracketing this approximate value. The five resulting
Ei(k) values were fit to a low-order rational fraction, which was then
analytically continuad to the region Im(k) < Q0 and the rcot Eq. (8.26)
was found by a Newton-secant search.

The results for the real resonauce energies as functions of the


file:///u.ed

Table XVII. Basis set of Slater orbitals for He(21‘3s)+H.

Atom Orbital Expouent
He 1s 2.0
Ls' 1.0
2s 0.90
2s' 0.61 (0.505)°
sz 2.0
Zp; 0.61 (0.505)
H 1s 1.50
1s' 1.00
sz 1.00

a. .
Different exponents

in parenthesis.

for the singlet case given

a



Figure XVI1.

. . 1 . :
Potentizal curves for He(2 S)+H. The solid curve s the

present result, obtained from the real parts of the Siegert

eigenvalues for various values of R. The dashed curve was

obtained by the stabilization method (see Reference 13),
The corresponding asymptotic limits are indicated by

arrows.
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Figure AVII. Potentiai curves for He(233)+H. he sclid curve is the
present result, obtained from the real parts of the
Siegert eigenvalues for various values of R. The other
curves were obtained by the stabilization method. The
dashed curve was taken from Reference 21, while the dot-
dashed curve was taken from Referenc: 13, The corresponding

asymptotic limits are indicated by arrows.
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XV1i.

Figure
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Table XVIII. Autoionization width I' for He(215)+H.

R (a ) T' (a.u.)
o
-3

2.0 1.63 x 10
3.0 2.70 x 1073
4.0 C1.53x 1070 :
5.0 4.52 x 1072
6.0 8.86 x 107>

-52
8.0 < 10

a R
Imaginary part of resonance
eigenvalue was below the
accuracy level of the

calculation.

136



Table XIX.

Autoionization width I

-

3
[or Be(27S)+H.

R (a) I (a.u.)
-3
2.0 8.56 x 10
3.0 3.14 x 1077
4.0 8.12 x 107%
5.0 1.88 x 107%
6.0 5.41 x 107°
8.0 2.17 x 1078
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Autojonization widths T for He(215)+H. The solid curve
is the present result, obtained from the imaginary parts
of the Siegert eigenvalues for various values of R. The
dashed curve wasobtained by the golden rule method (see
Reference 51). The dashed extension of the solid curve
1s an assumed result, as the imaginary part of the Siegert
eigenvalues for R = 8 a was below thé limit of accuracy

for the caleculation.
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Autoionization widtns I for He(235 +H. The solid curve
is the present result, obtained from the imaginary parts
of the Siegert eigenvalues for various values of R. The
other curves were obtained by the golden rule method.
The dashed curve was taken from Reference 51, while the

dot-dashed curve was taken from Reference 13.
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internuclear separation (i.e., the potential curves) are plotted in Figures
XVI and XVII for the singlet and triplet systems, respectively, and are

13,21

compared with the results from the ~tabilization technique.
see that in both cases the general agreement is quite good. Results for
the singlet and tripleﬁ icnization widths as functions of R are listed in
Taﬁles XVIII and XIX, }espcctively. These results are also plotted in
Figures XVIII and XIX and compared with the golden rule results of Miller,
Slocomb, and Schaefer13 and Hickman and Morgner.Sl For the triplet case,
our width agrces well with hoth golden rule calculations, although it

seems to favor the results cof Hickman, g&_gl;?l For the singlet system,
our width is somewhat larger than Hickman's.Sl Both calculations, however,
contain a maximim in the width at about 3 ag. HickmanSl was able to
attribute this to a maximum in the density of states factor in the golden
rule expression (see Chapter I). It is interesting that we also obtain
this maximum, even though the density of states does not appear explicitly
in our calculations. 1In addition, HickmanSl found that to obtain gcod
agreement between his calculated ionization cross section results and

those of experiment,72 his width would have to be increased by about a
factor of 2.5. Since our results are between a factor of 2 and 3 larger
than Hickman's for R > 4 a,, we feel confident that cross sections calcu-
lated from our potential and width would be in very good agreement with
experiment. We therefore conclude that a variational calculation of

the Siegert eigenvalues of a system provides an efficient and accurate

method of determining the positions and widths of wolecular resonances.
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