
TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 
which may be borrowed for two weeks.; 
For a personal retention copy, call 
Tech. Info. Dioision, Ext. 6782 



'~-'"'"'------~--- LEGAL NOTIGE-~"';"'----~~ 

, This report w~s prepared as an account of work sponsored by the 
United States Government, Neither the United States nor,the Depart­
r'nentof Energy,' nor a:ny of, their'employees, nor any of, their con-, 

, tractors, subcont~actors, or their employees, makes any warranty," 
expressw implied, or assumesanylegalliabilityor,responsibility for 
the accuracy, completeness oruseful,ness of any information, appa­
ratus, product Or ,'process disclosed ,Qrrepresents that its use would 
not infringe pri~atelyowned rights. . ". 

',; 



LBL-8134 

A GERMANIUM FIELD-EFFECT TRANSISTOR MADE A HI PURITY SUBSTRATE* 

William L. Hansen, Frederick S. and Eugene E. Haller 

Lawrence Berkel Laboratory 
University California 
ley, California 94720 U.S.A. 

Abstract 

Field effect transistors have been fabricated on high-purity germanium 
substrates using low-temperature technology. The aim of this work is to 
preserve the low density of trapping centers in high-quality starting material 
by low-temperature (< 350°C) processing. The use of germanium promises to 
eliminate some of the traps which cause generation-recombination noise in 
silicon field-effect transistors (FET's) at low temperatures. Typically, the 
transconductance (gm) in the germanium FET's is 10 mA/V and the gate leakage 
can be less than lo-12 A. Our present devices exhibit a large 1/f noise 
component and most of this noise must be eliminated if they are to be compet­
itive with silicon FET's commonly used in high-resolution nuclear spectrometers. 

Introduction 

When a silicon junction FET used as input age of a charge sensitive 
preamplifier is cooled below ambient temperature~ the signal-to-noise ratio 
generally improves. This improvement can be anticipated due partly to the 
normal KT term in the Nyqui noise equation and also due to the increase in 
gm which results from the temperature dependence the carrier mobility. 
However, at temperatures below about 120 K the noise increases through a 
series of peaks so that a minimum is found in the range of 140 to 180°K. The 
origin of this excess noise has been shown be due to: 1) process-induced 
deep impurity traps and 2) a fundamental fluctuation in the charge state of 
majority impurity atoms which occurs in the temperature range of carrier 

*This work was supported by the Division of Biomedical and Envi'ronmental 
Research the Department of Energy under Contract No. W-7405-ENG-48. 
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DRAIN 
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Fig. 1. Vertical FET showing method of forming self-aligned gate. 

The operation of this device may be roughly analyzed with reference the 
ideali structure shown in Fig. 2. Sel ing an n-type substrate with a 
donor concentration of 1o121cm3 and a wafer thi s of 100 v, the device 
will be totally depleted to the drain contact at a gate bias of -4 V with 
respect to the drain. This means that injected source current will be 
contained to a narrow channel between the g fingers, and the device acts as 
an analog transistor; i.e., instead of ing as a voltage controlled resistor 
(the model usually assumed for a lateral FET at low voltages), the vertical 
FET (VFET) acts as an injection control device. 
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(1) 

where is the current and L is the 1 the control region, then 

(2) 

If the aci between the gate electrode and the current sheath in the 

ion is C then we so have: 

aQ "' av.c (3) 

where av is the incremental change in gate tage and 3Q is the resulting 
change in the charge in transit. Now the transconductance 

( 4) 

but 
(5) 

where ss
0 

is the dielectric constant the material, W the long gate 

dimension (i.e. the integrated length of the fingers) and, d, the distance of 
the gate electrode to the el sheath. Therefore, 

g "' E£ W/d , m o (6) 

In the voltage saturation region, which is the usual operating int 
VFET 1 S, the gm therefore depends only on the diel ic constant and 

gate spacing and width. The saturation velocity v5 is roughly the same for 
the common coval semiconductors and is about 107 cm/s. For W "' 1 em and 

d "' 10 ~m, this simple calculation yiel gm 20 mA/V. For a control 
region length, L, 2 ~' control capacity (i.e. gate to electron sheath) 

CSG' is 0.2 pF, Extraneous gate i increases this value but, even for 
this very undemanding geometry, the figure merit gm/C is much better than 

best lateral FET 1 s. 
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In selecting the physical dimensions of the device we are limited by the 

availability of headers (T0-18) to a maximum of a J.3 mm square chip. Given 
this constraint, a chip of 1.2 mm square is used with source fingers 50~ wide 

with 25 ~ spacing. After etching and metallizing the base fingers. an adjust­

able base spacing d of 10 to 30 ~ results with a total width W of l em and a 

length, L, of 2-6 ~. 
The chip is bonded to the header with silver-epoxy and the source is 

contacted by the use of an overlay chip. The overlay chip is made from 

heavily doped germanium which is indium coated on one side and subsequently 
~ 

bonded to the source fingers at 200°C in an enert atmosphere. An SEM photo of 
a mounted device is shown in Fig. 3. More detailed processing steps are given 

in the Appendix. 

XBB 789-12353 

Fig. 3. VFET mounted on T0-18 header showing 

over-lay chip for source contact. 
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Typical de transfer characteri ics at K are shown in Fig. 4 and the 

expected triode-like ch istics are found. g ing d is measur-
to be 20 ~ 5 v which~ from Eq. 7, gives a gm 10 mA/V in agreement with 

Fig. 4. The fabricated devices initially ibit excessive gate leakage (vA) 
but a short in methanol results ;" the gate 1 age shown in Fig. 5 The 
g leakage is qui able and no changes are observed after several months 

ambi storage. 
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typ·f ca 1 Ge VFET, 
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Fig. 5. Gate current typical VFET with Schottky barrier gate, 
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Ion implanted gates have about two orders of magnitude less 
current, 



While the de characteri ics are close ' t 
when used as the input of an excessive noise th a 
large 1 component. The noise grounded gate configuration 
was measured with a Hewl ard* Noise Anal and 
is shown in Fig. 6 together with a comparison se1 2N4416 20°C. In an 
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*Reference a company or name not imply or recommenda-
tion of product by Universi C i ia or the U.S. Department of 
Energy to the exclusion of others that may be suitable. 
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Using a calibrated capacitor, the germanium equival noise line width 

(NLW) was using the germanium FET as i a normal 
sensitive lifier. result (see Fig. 7) shows noise in excess 

that of a good silicon FET. 

1 

.1 ~~~·~~ ~~~~~~· -~~-~~~~~L,_~~---~~~ 
.1 1 10 100 

ME 

XBL 789-]]174 

Fig. 7. ise line wi Ge VFET as input age of a charge-
sensitive preamplifier. The minimum noise is about 700 eV at 

lJS time con 
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the ions which becomes extrinsic at low and results in a forward 
double-di volt Attempts will be made fabri devices with low-
temperature solid-phase epit 
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Appendix 

The processing steps are shown schematically in Fig 8. 

a) The use of high-purity germanium doped with arsenic to 
Io12;cm3• lap and optically polish to 100 ~ using colloidal 
silica with hydrogen peroxied. 

b) Implant 1015;cm2 phosphorus at 77 K and 25 KV. Anneal 48 hours 
at 150°C and ramp up to 350°C. 

c) Sputter off in Ar for 30 sec then sputter 3 ~ Au on both sides. 

d) Define source fingers with KTFR photoresist and etch in KI + I2. 
Remove photoresist in activated H2so4. 

e) Etch 90 sec in ~~ HN03:HF; quench in CH30H. 

~ 

f) Angle evaporate 3000A Au for gate. Follow by 15 sec etch as in (e). 
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Fig, 8 

Schematic of 
processing 
steps 
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