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FOREWORD 

The National Resource for Computation in Chemistry (NRCC) was 

established as a division of Lawrence Berkeley Laboratory (LBL) in 

October, 1977. The functions of the NRCC may be broadly categorized as 

follows: (1) to make information on existing and developing computational 

methodologies available to all segments of the chemistry community, (2) 

to make state-of-the-art computation facilities [both hardware and soft­

ware] accessible to the chemistry community, and (3) to foster research 

and development of new computational methods for application to chemical 

problems. 

Workshops are one facet of the NRCC's program for both obtaining 

and making available information on new developments in computationally­

oriented sub-disciplines of chemistry. Numerical algorithms underlie 

all aspects of the NRCC's program; a focus on algebraic methods in the 

first year of workshop activity is appropriate because of its continuing 

importance in chemical applications. It was planned that the workshop 

include not only chemists who have pioneered algebraic methods, but also 

numerical analysts and computer scientists expert in the subject area. 

___ T~h",is workshopYl~f:'l tl1~reJo.!.e organized1>J1_a. numerical analyst along with 
--=----------

a computational chemist. We are indebted to Dr. Isaiah Shavitt, Battelle 

Columbus Laboratories, and Professor Cleve Moler, Department of Mathematics, 

University of New Mexico, for organizing the workshop and for their 

considerable efforts in editing this volume. 

In order to promote maximum interaction among the attendees of 

disparate disciplines, the workshop was held at the University of 

California, Santa Cruz, in the commodious facilities of Oakes College. 

The workshop focused on three topics: eigenvalue problems, linear systems 

of equations, and the four-index transformation of quantum chemistry. 

At the conclusion of the presentations by invited speakers in each area, 

participants from the three areas met separately to develop recommenda­

tions on the role the NRCC could uniquely serve to advance the field. 

These recommendations are listed on pages 74 and 77. 
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At the time of preparation of this volume, the NRCC has begun to 

implement the first recommendation of acquiring the most important 

programs available in the subject areas. This effort is being coordinated 

by Professor Moler, in his recently assumed capacity as a consultant to 

the NRCC, in collaboration with the Applied Mathematics Department of 

Lawrence Berkeley Laboratory. 

The present volume attempts to present a timely and succinct digest 

of the contribution of each speaker. Extended annotated bibliographies 

serve as a guide to the open literature of various areas. 

A companion workshop ("Post Hartree-Fock: Configuration Interaction") 

held at Lawrence Berkeley Laboratory on August 14-16, 1978, was concerned 

with the numerical methods for the study of the electron correlation 

problem in molecules. The proceedings of this workshop are available 

upon request from the NRCC. 

The NRCC is jointly funded by the Department of Energy and the 

National Science Foundation. 

- William A. Lester, Jr. 
Director, NRCC 
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MATRIX EIGENVALUE PROBLEM: 

THE NATURE OF THE PROBLEM 

I. Shavitt 

Battelle Columbus Laboratories 
Columbus, Ohio 43201 

MATRIX NOTATION AND TERMS AS USED 

IN THEORETICAL CHEMISTRY 

A = matrix with elements Aij (or a .. ) - l.J 

A == transpose of A ... ... 
A* = complex conjugate of A ... ,.. 

At -* (Hermitian) adjoint of A = A ... ... - ... 
At ==A => Het~itian matrix ..... 

At -1 = ~ ---> unitary matrix 

~ ::: column vector with elements xi 

t * x = row vector with elements xi 

In most problems all quantities are real, 

A* = A x* - x ... ... ' 

THE MATRIX EIGENVALUE PROBLEM 

IN QUANTUM CHEMISTRY 

The general form is 

where t;, B are Hermitian (and usually real) 

and ~ is positive definite. 

In most applications ~ =); or ~ is block 

diagonal (in small blocks), so that a trans­

formation to an orthogonal representation is 

easily carried out. Thus in most cases we 

are only interested in 
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A x· = Ai xi __ 1. ,.., 

The roots (eigenvalues) are numbered so that 

CHAr~CTF.RISTICS OF THE PROBLEM 

• The order n is very large, typically 10
3 

- 105. 

• A is randomly sparse, with the fraction of 

nonzero elements 5 - 25 % in most cases. 

• ~ is diagonally dominant in most applications. 

e Only the lowest root AI' or just a few lowest 

roots Ai (i = 1,2, ••• , k), and the corres ponding 

vectors, are required (k:5: 10 in most cases, 

but in some applications k may be as large as 

100). 

e Reasonable initial approximations are easily 

generated. 

e-On-ly-nonzero-e-lements-A ij ~i-~-j-)-a re-usua-Hy 

stored (or computed). 

• In many cases the nonzero elements are ordered 

by rows of the lower triangle, 

Aij precedes Ai I j I if i < i I 

or if i = ii, j < j I • 

It would be very inconvenient if we would have 

to store .!!.2!h Aij and Aji , ordered by rows 

of the square matrix. 

• In some applications the nonzero elements of A 

are available in essentially random order, and 

it would be impractical to have them reordered. 
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PREFERRED APPROACHES 

G Iterative, starting with generated initial 

approximations ("trial vectors"). 

8 The original matrix should not have to be 

modified (to preserve sparsity, avoid re­

writing the matrix, and reduce error 

accumulation) . 

III Only a small section (e. g., row) of the 

matrix should be required in central 

memory at one time. 

CLASSIFICATION OF METHODS 

e Gradient methods -

Search for minimum of the Rayleigh quotient 

(~t~y)/(~t~) by steepest descent (Hestenes, 

Karush) or by conjugate gradient methods. 

Relatively slow. 

III Relaxation methods -

Modify one element of the trial vector(s) at 

a time, either to reduce the residuals (Cooper, 

Nesbet) or to minimize the Rayleigh quotient. 

Can use over-relaxation (Ruhe, Schwarz) • 

• Expansion methods -

Expand the required vectors in a gradually 

increasing set of generated vectors. This 

set can be a sequentially orthogonalized 

Krylov sequence ~~ (i=0,1,2, ••• ) (Lanczos): 

or can be generated by a relaxation method 

(Davidson) or by perturbation theory (Roos, 

Siegbahn, Pople). 
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MULTIROOT TREATMENT 

@ Sequential -

Implicit modification of A to shift previously 

found roots above next root sought (Shavitt et 

a1., has difficulties for closely spaced roots), 

or including previously found eigenvectors in 

the expansion set (Davidson) • 

• Simultaneous relaxation -

Concurrent iterations for k roots, interspersed 

with diagona1ization of kx k "interaction" 

matrix (Raffenetti, Shavitt) 

• Global -

Lanczos method; extreme roots converge first, 

but explicit orthogona1ization is required 

because of round-off error accumulation. 
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ORIGIN AND STRUCTURE OF THE H-MATRIX 

E. R. Davidson 

University of Washington 
Seattle, Washington 

Let f.(~) be a finite basis (L2) in Cartesian 3-space, and {a,S} be the basis 
1. 

in spin space. Let 

DU1 N 

Solve model "independent particle" (Roothaan-Hartree-Fock) problem 

--("Slater determinant") 

= 0 

F</>. 
J 

E. </>j J 

where 
ZA 

F -~ r;;2 - L + veff h +veff 
= = 

A r
A 

Matrix generation 

{ K ZA} 
n 

1 
H = L -~ IJ~ - L -- + L 

i 1. A rAi i<j r ij 
\. v 

h(i) 

Hl/J El/J 



where 

and 

r
1 

= position 3-dimension 

S 1 = ± ~, discrete spin variable 

r) f d~ 1'1'12 = 1 

S (n) 

= -'I' (Pij is spin-dependent boundary condition) 

[fifjllfkf,Q,J = (fi(rl)fk(r2)ll/rl2.lfj(rl)f,Q,(r2» 

Solutions to model problem aZmost solve the true problem. Expand solution 'I' 

as combination of Slater determinants (or symmetry-adapted Slater determinant) 

4> I = A { <P i Xi' 4> i Xi' •.• } 
1 1 2 2 

or 

(symmetry-determined g1J) 

Rules (Slater-Condon): 

(4)1,4>J) = 0 

because all (<Pi,<Pj ) = 0ij. 

I .; J 

(4)1,H4>J) = 0 dim {I} (){J} < (n-2) 

if 

{I} n -({r}(){J}) = {il,i
2

} 

{J} () -({1}(){J}) = {j J' } 
l' 2. 



if 

,) ,) 

n-1 

hij + L (a [<pi<pjll<pk<PkJ - b[<Pi<Pkll<pj<PkJ ) 

kE {I}n{J} 

{I} II ~ ({I} II {J}) {i} 

{J} II -({I}II{J}) = {j} 

= L: ni hit +( L a[~k~kll~l,~l,] - b[~k~l,ll~k~I,]) 
k,j/, E {I} 

{I} = {J} 

Choice of ~K for inclusion in 

Pick zero'th order space from model (RHF) problem 

'¥i - ~l' '1'2 ~ ~2' etc. 

add other ~ with large (~0.1) 

J .-;;; P 
max 

Typical size for zero' thO order space -(1-5) x P = @. max 

Pick first order space such that 

J .-;;; P ] > 10-
3 

, max-

Note ~ must be a single or double substitution fro~ {~J} or else (~,H~J) = o. 

HIJ (~I' H~J) 

H = 



Example, (jJ 1 
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Q - {ij from {ro} --p. pq from ~{ro} } 

(n2) --i> (N_n)2 choices 

dim Q ~ 2 2 
n (N - n) 

(usual N ~ 3n) ([ij ~ pq], H[k~ ~ rs]) 0 unless dim{ij pq k~ rs} < 4 

for N »n, ~N2 non-zero per row H
QQ

, or ~ 1/n2 = fraction non-zero, 

n
2
N

4 ~ total non-zero. 

6 
N method 
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EXPANSION METHODS FOR EIGENVECTORS OF LARGE MATRICES 

E. R. Davidson 

University of Washington 
Seattle, Washington 

N XN Matrix H 

p < 10 

nth Approximate 
K 

C == -p 
C(n) 
-p -L: 

i=l 

(n) 
s .. 

1.J 
= (b ~n) , 

-1. 

h ex = A s ex - -p p - -p 

E ~ 1 
N-p !\K-p 

Cyclic Methods 

p<K«N 

A ~ E 
P P 

n = 1,2, cycles through a complete set of vectors repeatedly 

I p = 1, K = 2 

Nesbet; J. Chern. Phys. 43, 311 (1965) 

Cooper; Quart. App1. Math. i, 179 (1948) 

Shavitt; J. Comput. Phys. i, 124 (1970) 
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b (n) C(n-1) [CO " A 

nul 
-1 

e
J 

b(n) A 
H
JJ 

inf er = -2 

E(n) = (f(n) !! f(n)) 

(cn-1
) II9.Cn-l)r [!! ~:n-l\ ) 

h = 
[H C(n-1)] 
- - r rr 

s = 

[(H - U) C (n-l)] 
- - r 

[(H_E(n-1) ].) C(n-1)] 
- - r 

A -H 
rr E(n-1) _ H 

rr 

---.. Faueev-and-Faueeva-,-"-Computati-ona-l-Methoils-of-IJi-near-A-l-gebra"'-----------· 

Shavitt, Bender, Pipano, Hosteny; J. Comput. Phys. 11, 90 (1973) 

Solve 2 x 2 problem exactly, 

[(H - A1I.) C (n-Jl) f 
- - r 

p " 1 
K = 2 

Shavitt, Bender, pipano, Hosteny; J. Comput. Phys. 11, 90 (1973) 

Root shift, 

H 

p-1 

!! + L 
j=l 

~ 

so A is the lowest root of H. 
P 

]1J. C. C: -J -J 
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Requires C1 ..• C 1 before C • - -p- -p 
Error accumulates in higher roots. 

Rapidly convergent for diagonal dominant matrix -- slow otherwise. 

Trouble with near degeneracy. 

p .; 1 K = p +1 

Raffenetti; J. Comput. Phys. (in press) 

b (n) ben) = C(n-1) C(n-1) 
1 ••• -1 -p - -p 

ben) A 

e -p+1 r 

p = 1 K > 2 

Chung and Bishop; preprint 

Falk; Z. Agnew. Math. Mech. 53, 73 (1973) 

Fadeev and Fadeeva; 

Davidson and Bender; unpublished, used in all diatomic calculations (1968) 

Bender; Ph.D. Thesis, University of Washington (1968) 

= C(n-1) 
-1 

~Variation: ..;;;;;.-Perturbation Hethods 

p = 1 

= C (n-1) 

H = H + V 
-0 -

A 

= e , ••• 
r

2 

K = 2 

-1 
= (E(n-1) 1 - H) V ben) 

-0 - -1 

or equivalently 

~(n) 

~2 

Dalgarno and Stewart; Proc. Roy. Soc. (London) 77, 467 (1961). 

(b1 , b2) or (b1 , b2) span same space; bZ is same as Nesbet formula, if 
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all elements are varied simultaneously rather than sequentially, and if 

Note non-variational simultaneous Nesbet (i.e., iterative first order 

perturbation theory) often diverges. Variational must converge. 

p = 1 , K > 2 I 
Roos and Siegbahn; in "Methods of Electronic structure Calculations," 

(H.F.Schaefer, editor, Plenum Press, 1978) 

Rayleigh - Schrodinger Pert Series 

Lowd_in; J. Math. Phys. §.., 1341 (1965) 

DuPont-Boudelet, Tillieu, Guy; J. Phys. Radium 21, 776 (1960) 

Hirschfelder and Epstein; Adv. Quan. Chern., Vol. 1 

H b 
-0 -0 

E b 
0-0 

i. e., b 
-0 

K-l 

£K - £K-l = (EOI - gO) -1 { (!! - EoJ1)£K_l - L EK_n £n} 
n=O 

= E (b_
m

, b_
n ) 2K-l-m-n 

------------------------------------------------------------------------------------------

Usually 

H 
-0 

2K 

E = L E. 
j=O J 

K K-l 

LL E (b
m 

b_
n ) 2K-m-n -' 

m=l n=l 

c 
K 

= L b 
j=O -j 

is pert. result 
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Seeger, Krishnan, Pop1e; J. Chem. Phys. 68, 2519 (1978) 

same as Davidson method (see below) except for choice of H • o 

p :f 1 , K ~ p +1 

Davidson; J. Comput. Phys. ~, 87 (1975) 

Butscher, Kammer; J. Comput. Phys. 20, 313 (1976) 

for K = P + 1, ••• K max 

b (n+l) 
-K+l 

b(n+l) 
-1 

-1 
(E(n) ]l - H) (H _ E(n») C(n) 

p -0 - p -p 

b(n+l) 
-K 

i.e., Border ~ on each iteration until K gets too large or convergence is 

reached. Then truncate to 

b
l 

••• b 
- -p 

and start building new h. 

Can solve directly for any p or for "root-homing" pattern search on vector. 

Properties of Pert. l1ethods 

A. Rapidly convergent for diagonal dominant matrices -- otherwise can 

be slow. Derived from Rayleigh-Schrodinger theory or Gauss-Seidel 

approximation to Newton-Raphson inverse iteration. 

B. Most reasonable for p ~ 5, K ~ 15, N > 10 3
• 

max 
C. Well adapted to direct CI methods since HC can be formed without H. 

D. In case B, time is dominated by forming HC, cost/root - # of non-zero H ..• 
l.J 

E. No trouble with degenerate roots, or non-dominant roots. 

F. Input/output demands are high. 

G. Only two vectors are in high-speed memory at once. 

H. May miss roots. 



Davidson Variation - Perturbation 

Initialization, given 
o 0 

~l •.. £J 

£1 

£Z 

* ~Z 

f. 
J 

o 0 
1 

o)~ 
fl / (fl , fl 

0 
fz - (£1' 

0 
fZ)£l 

!.! £Z 

j-l 
o 'I\~ 0 

C. - ~ (b~, fJ.)£~ 
J ~=l -

* d. = H b. -J - -J 

-Z0-

(J ;;;;. P) 

* d -1 

£Z 

h
iZ 

!.! £1 

1 

£Z / (£2' 
)~ 

£Z 

(b. , 
-1 ~Z) 

)~ f. /(f., f. 
J J J 

h .. = (b., d.) 
1J -l-J 

or in root-homing mode, given only CO approximation to some root of 

unknown p. 

Iteration 

Solve h a. '" A. a. K XK Matrix 
- -1 1 -1 

Select a. of current interest 
-1 

(track on vector, or on i = p with tests for root switching) 

hll 

i 

i 

Test a
iK 

for convergence of vector (or a. for convergence of E) 
1 

(£1 ' ~l) 

1,Z 

1 ... j 

----TaK=e--~E--=-A-.-, ---C-<iKL=--~a-.. -15,---.--------------------

1 - L: J1 -J 
J 

f. K+l J, 

£K+l 

* ~K+l 

- L a
J
. 1· [d. - E b . ] 

-J -J 
j 

- -1 
(E -H .. ) q. K 

JJ J, 

!.! £K+l ' 

~ 

f 
-K+l 

K 

1T (Jl - £i £;)!K 
i 

i = 1 ... j 

Note each iteration requires all d. once, and each b. twice 
-J -J 

large I/O demand. 

*Time consuming Hob required once per iteration. 



Truncation 

(J , 1 
v 

If K is too large, or if $tarting on new root, truncate to K = J 

b. <= ~ 0, •• b. i = 1 ••• J 
-1 J1 -J 

d. <= ~ 0, •• d. i = 1 .•. J 
-1 J1 -J 

Kry10v Methods (Power Method) 

Expand C (n) in sequence based on Hj C 

K:::; 2 

Karush; Pacific J. Math. ~~ ~33 (1951) 

Hestenes; "Simultaneous Linear Equations and the Determination of 
Eigenvalues", NBS 

b(n) 
-1 

C(n-1) 

E2 ;:: !! £1 

- (b, Hb) I a (g - E(n-1») f(n-1) 01" £2 ;:: 'iJ 
(12,£) b=b 

= 

- -1 

K~p I 
Delos and Iilinder; J. Chem.-Phys. 47, 2784 (1977) 

Expand in b.+1 = HjCo 
-J - -

Extended gradient method: 

Expand in 
j 

£j+1 

j-1 
E,Q, 

= 
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Lanczos; J. Res. Nat. Bur. Stand. 45, 255 (1950) 

Expand in sequentially orthogonalized gj (;t gives tri--diagona1 ~, 
diagonal ~. 

A. Usually slowly convergent for first root (unless IE1/E21 is large). 

May then give several roots without too much additional work. 

Doesn't depend on diagonal dominance. but needs root ratios 

I EL/~I for L< P, M > P to be mostly large. 

B. Well adapted to direct gg methods. 

C. Time domina ted by !! ~ for P« K « N. H 
o 

for £ = e
l 

is same 

as Householder tri-diagona1 H but cost is much higher if H will 

fit into core. 

D. The sequence .!!j Q is nearly linearly dependent. Consequently 

there is a rapid dramatic loss of figures in ~ and s. In principle, 

sequence should truncate with exact linear dependence at n =N. 

In practice some roots repeat and others are missed with implicit 

orthogonalization. 

Lanczos Implicit Orthogona1ization 

£1 = CO 
Sl (£1' £1) 8

0 
0 

* d -1 !! £1 e
1 (£1' ~l) El e

1
/S

1 

£2 ~l - ELk! 82 (£2 ' £2) 81 S2/ S1 

* d -2 g £2 e
2 = (£2' ~2) E2 = e2/S2 

EK = d - E b - 8 b -K-1 K-l -K-l K-2 -K-2 

* d -K g £K 
SK 

8
K (£K' £K) (£K' ~K) 8K- l EK 

e
K = e

K = 8
K

_
l 8

K 

* Time consuming step, needed K times to form K x K h matrix. 
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h .. 
l] 

(b., Hb.) = 
-l --] 

e. 
l 

o 

e'J.' ') 
~ ~: ... 

Lanczos Explicit Orthogona1ization 

~1 

* ~1 

iK 

~K 

* d -K 

s .. 
l] 

h .. l] 

= 

"" 

S11 = (~1' ~1) 

h11 (~1' ~1) 

d - E b --K-1 K-1 -K-1 f3 b K-2 -K-2 

K-1 
fK - L bj (b., - - -] 

j=l 
iK) 

!! ~K hjK "" (b. , gK) -] 

EK 
hKK 

= 
SKK 

S .. o .. 
II l] 

(b. , H b.) not tri-diagona1 
-l - -] 

i j 

i j+1 

j i+1 

\i-j \ > 1 

j "" 1, ••• K 

A. 

B. 

c. 

Advantageous only if Ep converges with· K«eN.---______________ _ 

Does not repeat roots, but still may miss roots. 

Requires all b. each iteration. 
-l 

Methods Based on Partitioning: 

Bk approximation 

Variation - perturbation expansion method 

z. Gershorn and I. Shavitt; Int. J. Quantum Chern. ~, 751 (1968) 

L. E. Nitzsche and E. Davidson; J. Chern. Phys. 68, 3103 (1978) 

G. A. Segal and R. w. wetmore; Chern. Phys. Lett. 32, 556 (1974) 

L. E. Nitzsche and E. Davidson; J. Am. Chern. Soc. (in press) 

K. Freed, work in progress 

McMurchie and Davidson, work in progress 

* . Tlme consuming step still needed only K times to form K x K matrix. 
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Partition space 

P Important (small ) 

Q Less important (large ) 

-Approximate: H ~ H 

or 

( ~p 
-QP 

EQ diagonal of BQQ 

[Bpp -!!PQ (E - 12Q) -1 !JQPJ fp E fp 

c = 
-Q 

-E = 

(E -D )-1 ~ 
-Q 

H C -eff -p 

-1 
(E - l?Q) !!QPfp 

EO + 8 

(E -D )-1 _ 8(Eo -D )-2 
o -Q -Q 

___________________ ~_e_f_f _____ (~]_p_p_,_B_p_o~.(_E_o_-_Qo~.)_-_l~)_~ __ (~:::~~-l H---)------------
o -Q -QP 

S 
-eff 

- -so, for all E, E + 8 ;;;. E, and E = E for 8 = O. 
000 

E + 8 
o 

E 
o 

~QJ 
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-8 
Because of variation property E + 0 varies by -10 when E is changed by o 0 

10-1 . For a grid in Eo over range of spectrum, compute Heff(Eo) and Seff(Eo) 

for all E simultaneously 
o 

Hki Hkj 
(Eo - Hkk) 

i,j E P 

i,j E P 

\ 
weighted scalar product HQi "sparse" 

Compute 

if any C
Q 

are "large" (> E). Change P and repeat. 

Repeat fOl' decl'easing E until C and E convel'ge. 
-2 

Little experience yet. Probable E ~ 10 for acceptable accuracy. 

p _ 10 _102 

independent of N for quantum C item. 

2 
cost - P N 

Faster than N
2

! 

(CPU and I/O) 
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THE USE OF VARIATION-PERTURBATION TECHNIQUES 

- IN CI-CALCULATIONS 

We want to solve the problem 

B. Roos 
Lund, Sweden 

by expanding the eigenstate I1/!} in a set of known "basis" functions: 
N 

(1) 

I1/!} = L c~I~}, (2) 
~=l 

where we normally assume (~ I V ) 

between 103 and 105
• 

o . In actual application N may range 
~V 

"- "- "-
Partition: H H + HI 0 

"-
H is chosen 

0 
to be diagonal in the basis space: 

H .L1~}a (~I 
0 ~ 11 

where a are arbitrary, and can be chosen to improve convergency of the 
11 "-

---pe-r-turba-t-icon-expans±on-. -We-lrave-H-hr)-=-a-hr}, ana especial1:y 
"- ~ 
HIO} = Eo I 0 } (ao = Eo) where 10} is the zeroth order approximation 

to I1/!} (IO) 11/!(0)}). The kth order Rayleigh-Schrodinger perturbation 

theory gives the kth order contribution to I1/!} as: 

k-l (n) -L Ek_n l1/! > 
n=O 

(3) 

(4) 

(5) 

where Ek is the kth order correction to E. Now expand l1/!k} in the basis I~} 

l1/!k} = L C (k) I ~ } 
~ ~ 

Inserting Eq. (6) into (5) gives, 

(E - a )C (k) 
o 11 ~ 

r N " l ~1 (~IHllv) c~k-l) -

(6) 

k-l 
"\' E C (n) 
L.. k-n ~ 

, 
(7) 

n=O 
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U ij 
J 

Closed expressions for E2k- l and E2k can be used to update the energy. 

Introducing a vector 

where 

We can write Eq. (7) as 
k-l 

(E -a, )c(k) 
o ]J]J -L: E C(n) 

k-n ]J 
(8) 

n=O 

The crucial step is the calculation of the a-vector. 

After having obtained the kth order correction in Eq. (8), it is very 

easy to improve the results by making a variational calculation in the basis 

of perturbations. Introduce the new basis 

and expand I~) in this basis: 

k-l 

I~ ) L ail~(i» 
i=O 

This leads to the secular problem 

where now 

and 

Ha 

H .. 
1.J 

( .) (.) C(i)t () = (~1. I~ J ) = C j 

(9) 

(10) 

These matrix elements are thus obtained as simple scalar products. According 

to MCDonald's theorem this method is bound to converge even if the perturbation 

expansion happens to diverge. An example (N = 971): 
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k E2k Linear VE* Optimal v~t 

2 -0.4132 -0.2428 -0.267611 

b,. --0.2392 -0.2793 -0.313136 

6 -0.1374 -0.l333 -0.320340 

8 -2.1054 -0.1804 -0.320674 

9 -2.7582 -0.0561 -0.320685 

10 +7.95M 0.0480 -0.320688 

*Variational energy with all ai in Eq. (9) ~qual to one. 
tVariational energy according to Eq. (10) (E(k)). 

Some remarks on the method: 

o The method converges even if the perturbation expansion diverges. 

Convergence in this expansion, however, always is enforced by a proper choice 

of O'.]..l (level shifting technique). 

Q The method has been extended to a multi-configuration reference 

function 11jJ(0) [Roos and Siegbahn, to be submitted]. 

8 
€I Largest case studied has N ~ 80000 giving more than 5 x 10 non-zero 

matrix elements, which were actually never calculated, since they could all 

be expressed in terms of a much smaller number of integrals ('" O. 5 x 106) which 

were used directly to construct a. 

@ More than one root can be obtained by adding eigenvectors of previously 

obtained roots to the basis used in the variational step. 

o An important feature of the method is the fact that the H-matrix 

elements can be used in random order. 

Bibliography: 

E. Brandas and o. Goscinski, Phys. Rev. A1, 552 (1970). 

B. Roos and P_ Siegbahn, in Chemical and Riochemica1 Reactivity, The Jerusalem 
Symposia on Quantum Chemistry and Biochemistry, The Israel Academy of Sciences 
and Humanities (Jerusalem, 1974). 
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HISTORY 01' RELAXATION ALGORITHMS 

AND rl'HEORETICAL CHElUSTRY 

Richard C. Raffenetti 

Argonne National Laboratory 
Argonne, Illinois 

Early references: 

Systems of equations: R. U. Southwell (1940) 

Natural frequency eigensystems: J. L. B. Cooper (1948) 

Theoretical chemistry: 

Coordinate relaxat~on: S. F. Boys (1950) 

Large systems, updating: R. K. Nesbet (1965) 

Use of matrix symmetry: r. Shavi tt (1970) 

Optimal CR, interior solutions: I. Shavitt, 

C. F. Bender, A. pipano, R. Hosteny (1973) 

Simultaneous CR: I. Shavitt - R. Raffenetti 



-30-

THE RES I DUAlJ VECTOR 

The length I Ir(x) I I of the residual vector 

rex) :: (H - AS) x/llxli 

is often used to measure the quality of the vector x 
as an approximation to the eigenvector x. In an iterative 

process in which a sequence of eigenvector approximations 

{ i. 012} h th f x : 1 = , , ... approac es x, e sequence 0 

residual vectors {r(xi ): i = 0, 1, 2 •.• } approaches 

the null vector. 

vector v is defined as 



COORDINATE RELAXATION 

Treat the secular equations as a linear system 

(H - pS) x = Q. 

and iterate first order changes in a trial vector 

x +- x + ox 

to satisfy each of the equations 

(h~ - Ps~) x = O. 

If ox - ae~[(e~)j = 0e.]' then 
J 

The usual choice of 

coordinate ~ is k so that 
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The eigenvalue is not known so that p is taken to be 

the Rayleigh quotient 

and p approaches the eigenvalue as x approaches the 

eigenvector. 

The update quantities are 

l\q = 

and 

l\p == 

T and q == x Sx .; 

T 
2cx(Skx + skk cx ) 

cxrk(x)/(q + l\q) 



u ~) 1 
.1 d -...­

l 

SHAVITT CRALGORITHM 

e Effective elimination of the zero matrix elements. 

o Use of unique matrix elements onl~ (H = HT). 

The matrix is stored out of core and is ordered by rows. 

Only the non-zero elements are stored along with their 

column indices. The row index is incremented or if rows 

are not ordered the row index may be stored also. 

The use of symmetry is based on the matrix decomposition 

o = ~ + " + ~ where the block ~ is the transpose of 

~ and" is the diagonal. The result Ox = Xl is obtained 

from Xl = u l + Vi where u l = (~+"') x and Vi = ~x. 

The result of multiplying a row of 0 onto x can be 

obtained by accumulating the column sums Vi for use in 

the ith iteration during the (i_l)st iteration. This 

device requires that all rows be processed in normal 

(descending) order. 
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OPTIMAL COORDINATE RELAXATION (OCR) 

Shavitt, Bender, Pipano, Hosteny (1973) 

Choice of a at each step is to minimize the Rayleigh 

quotient. One obtains 

2 + ba + c 0 aa = 

with 

Choose a which decreases p • 

Note that expanding the expression for a gives 

a = - (c/b) [1 + (2ac/b2 ) + •.• ] 

and the first term is equivalent to that obtained in 

ordinary CR. 
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HIGHER EIGENSOLUTIONS 

• Root-shifting: a variant of deflation . 

• Orthogonality constraint. 

Root-shifting: Imp1icity modify H so that eigenvalues 

corresponding to lower eigenvectors are shifted out of 

the way. 

1..2 • 1..3 
fj 

1.. 4 • old spectrum 
, , , , 

1..1 
• 

1..2 

• 
1..3 

• 
1.. 4 

" new spectrum 

p-l 

H + L: T = °kSxk~S 
k=l 

Apply ordinary OCR to H(P) instead of H but without forming 

H(P) explicitly. (All prior devices for effective algorithms 

can still be used.) 

Orthogonality constraint: Keep the vector being iterated 

explicitly orthogonal to lower eigenvectors. The computa-

tional work is greater than that for root shifting and the 

convergence is usually somewhat faster. The total work is 

about equal. Orthogonality is maintained in an implicit 

fashion. 
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THE BASIC CR ALGORITHM 

(Ax = AX) 

Initialize: T T determine Xi compute X Ax, x x, p(x) 

Test for convergence: if satisfied, then stop, else 

begin the row iteration: i = 1, 2, ... n 

Obtain the i th row of A. 

Determine a. 

x+x+ae. 
1. 

T T Update x Ax, x x, p(x) 

End the row iteration 

Return to the convergence test. 

! , 
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CR AND OCR CONVERGENCE 

Convergence of an eigenvector and eigenvalue is slowed 

when higher eigenvalues are "close" to the one being 

sought. In CI problems the spectrum of eigenvalues for 

a molecule at its equilibrium geometry may schematically 

look like 

Away from equilibrium the spectrum may be 

The success of CR and OCR has been due to the fact that 

most of the earlier calculations have been carried out 

to obtain the lowest eigensolution in the former situation. 

We are now interested in higher eigensolutions and in 

----molecules~not-closeto-their-equilihr-i-um-geome-trLeEL~. ___________ ~ 

In either case the eigenvalues are closer and convergence 

is slower. 
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SIMULTANEOUS COORDINATE RELAXATION (SCR) 

~ Relax p trial vectors simultaneously 

e Employ the root-shifting formalism without having 

accurate lower eigenvectors 

with 

-1 
I Q ~ 

or 

-1 
21 Q where Q I t, Q ~ - = + . 

e At the end of each major iteration solve the p x p 

problem 

and transform Y 
p 

x + Y C . 
P P 

p p 



:J . , 
~.; 

• The root-shifting formalism ensures that each 

higher eigenvalue is approached from above. 

~ Convergence of the lowest eigenvector is not slowed 

by the presence of higher vectors. 

• If all members of a cluster of "close" eigenvalues 

are iterated simultaneously, the convergence rate 

is increased. 

• The 10 operations are diminished. 

• Principal quantities may be updated . 

... ---.... ~. -Spars-ity--i s-~not ~ des troyed.-----------------------
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THE SIMULTANEOUS CR ALGORITHM 

(AX = X A) p p 

Initialize: determine Xpi compute P, Q, Pj (j = 1, 2, .•. p) 

Test for convergence: if satisfied, then stop, else 

begin the row iteration: i = 1, 2, ... n 

Obtain the i th row of A 

compute T 
a,x 

1. j 
j = 1, 2, .•• p 

Begin the column iteration: j = 1, 2, ••• p 

Up da te P, Q, P, 
J 

End the column iteration 

End the row iteration 

Solve: pc = QCA 

Upda te P + A, Q + I, P, = A" (j = 1, 2, ••• p) 
J JJ 

Return to the convergence test. 
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ADVANTAGES AND DISADVANTAGES OF SCR 

ADVANTAGES: 

e CR methods are single vector (Gauss-Seidel) processes. 

b · h d' (i+l A i) Jaco 1-type met 0 s requ1re two vectors x = x . 

• SCR has improved convergence (vs CR). 

• The 10 processing is decreased substantially. 

DISADVANTAGES: 

• The matrix must be ordered by rows. 
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TEST MATRICES 

The "Nesbet" matrix used for the convergence tests shown on the following 

pages is defined as follows: 

a .. = 2i -1 
11 

i 1.2,3.. •. 50 

a .. = a .. 
1J J1 

1 • i < j 

The "modified" Nesbet matrix is the same matrix except that the diagonal elements 

3, 5, 7, and 9 are replaced by 1.1, 1.2, 1.3. and 1.4 respectively. 

The actual eigenvalues of these matrices are spaced essentially like the 

original diagonal elements. 

Note that this matrix is expressed in units far larger than the matrices 

encountered in chemical problems. A scaling of the entire matrix by -1/50 would 

produce off-diagonal elements and eigenvalue spacings which better resemble 

Hamiltonian matrices. Solution of the eigenvalue problem is invariant to such 

a scaling. 



Optimal vs. Simultaneous Coordinate Relaxation: 

SCR convergence of the 3rd eigenvector 

(Nesbet Matrix) 

I 
I 

Key 

OCR 

- - - -- SCR, P = 3 
o ,. ••••••• SCR, P = 5 

6 8 10 16 

Iteration 
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Optimal VB. Simultaneous Coordinate Relaxation: 

SCR convergence of the 3rd eigenvector 

(Modified Nesbet Matrix) 

r---------------------------------------------------------

OCR 

SCR" P = 3 

SCR" p = 5 

,------­
-------..,-------~~ ----

6 8 10 16 
Iteration 



The Effect of the Size of the Subspace: 

SCR convergence of the lowest eigenvector 

(Nesbet Matrix) 

10'.------------ p => 1 

p => 3 
p = 5 

10° 
10-1 

10-1 

o 10-3 

:.1 
"'0 10-4 

UJ 

~ 10-
-a 

~--~-10 

10-7 

10.L 

4 • • • 0 • • • • 

... 
10-8~~~~--~ __ ~ __ ~ __ --~ ________ --__ ~ 

o 2 .. 6 8 10 12 14 16 
IteratIon 
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The Ef~ect of the Size of the Subspace: 

SCR convergence of the lowest eigenvector 

(Modified Nesbet Matrix) 

Key 

10° p = 1 

10-1 - - - -- p = 3 

10-2 
090 ••• 00. P = 5 

10 ... 3 

0 10-4 

::J ------
-0 10- "'- ... ---I • ---rn --- - ... -. 
(1) 10-& 

c.:t: 
10-7 

10 
10-9 

10-1 

0 2 4 6 8 10 12 14 16 
Iteration 
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PROBLEMS 

., Incipient "diagonal blocking" of the hamiltonian 

matrix at extremes of a molecular system • 

• Starting vectors. 

Cases: 

[->+ -:-] 
A 

.r _A_ "' 
~ , ,~ ,~ , ~. 

.. 
B 

Molecular fragmentation 

C -+ ~O 

Rydberg-valence state separation 

spectrum 
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FUTURE DEVELOPMENT OF CR AND SCR 

• Iteration of one of or a group of the interior 

eigenvectors and eigenvalues is possible. 

The Rayleigh quotient has saddle points when the 

vector corresponds to an interior eigenvalue. 

Therefore if a trial vector is close enough to 

an eigenvector the relaxation parameter may be 

chosen so as to cause the minimum change in the 

vector. The Rayleigh quotient may be raised or 

lowered. It will move to the nearest minimum, 

maximum, or saddle point, all of which satisfy 

d 
da P (x) 0 

-----------~---------------------------------------~ 
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THE SIMULTANEOUS EXPANSION-METHOD FOR THE ITERATIVE SOLUTION 
OF SEVERAL OF THE LOWEST EIGENVALUES AND CORRESPONDING EIGENVECTORS 

OF LARGE REAL-SYMMETRIC MATRICES 

B. Liu 

IBM Research Laboratory 
San Jose, California 95193 

Davidson's expansion method1 for the iterative solution of matrix 

eigenvalue problems has been generalized to yield simultaneously several 

of the lowest eigenvalues, and corresponding eigenvectors of large 

real-symmetric matrices. The principal advantages of this simultaneous 

expansion method are a reduction of the number of times the matrix elements 

are read from peripheral storage, and a reduction of the number of 

iterations required for each solution. Assume that M solutions are being 

iterated upon simultaneously, and that each solution individually requires 

I iterations to reach convergence. The number of scans of the matrix 

elements would be MXI using the original Davidson method, and at most I 

using the simultaneous expansion method, which often would yield all M 

converged solutions in less than I iterations. 

Consider the matrix eigenvalue problem 

= ,k k f\'£', k = 1, 2, ''', M 

where! is an NxN real-symmetric matrix. The main storage requirement of 

the simultaneous expansion method is 2M vectors of dimension N and a small 

amount of buffer space for reading the elements of ! from peripheral 

storage. The processing time per iteration is essentially M times that 

required for one iteration of the original Davidson Method. 
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The basic steps of the simultaneous expansion method are as follows. 

1. Select a set of orthonormal trial vectors 

{~i} with i = 1,2, 'f' L, where L ~ Mf 

2. Use a small matrix method to solve the LXL eigenvalue problem 

\ k k 
1\9;., k 1, 2, ••• , M 

where the elements of G are given by 

1 :0; i, j :0; L. 

3. Form the correction vectors ik, k = 1, 2, ••. , M, with components 

fk = I 
(Ak_A ) -1 dk 

II I I = 1, 2, ••• , N 

where 
L 

dk 
= L kCA -

i -
Ak)b. 

-1 

i=l 

4. Normalize fk. 

5. Schmidt orthonorma1ize and append f 1 to {b
i
}. Schmidt orthogona1ize 

f2 to {~i}' now with L+1 vectors. If the norm of the repu1ting vector 

-3 is less than some threshold T, say 10 ,then go to the next correction 

vector. Otherwise, normalize the resulting vector and append to the 

set {b.}. 
-1 

k Repeat this process for all i • At the end of this step 

6. Schmidt orthonorma1ize {~i}' This step is necessary to insure true 

orthogonality of the expansion vector set, and avoid accumulation of 

numerical errors in the iterative process. 
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7. Increase L by m and go back to step 2. 

th 1 The convergence of the k solution may be checked after step 2 by 

k the sum of the squares of the last m components of a , or after step 

3 by the size of (dk , dk)1/2. 

As example we consider the following test matrices. 

Aij = Aji = 1 1 :s; i,j :s; N 

AU = 1 + 0.1 x (i-l) 1 :s; i :s; 5 

AU = 2i - 1 5 < i :s; N 

The convergence of the 4 lowest eigenvalues are shown iteration by 

iteration in the following table for N=50 and 250, respectiv~ly. In each 

case the trial vectors were obtained by diagonalizing the leading 4x4 

submatrix. Convergence for all 4 state to lX10-12 in the eigenvalue were 

achieved in 4 iterations. 

It is of interest to compare the simultaneous expansion method with 
.... _-----------

the simultaneous coordinate relaxation method described earlier in this 

proceeding. 2 Both methods achieve the same reduction in scar~s of the 

matrix elements relative to the respective single-solution methods. 

However, the expansion method has the advantage of rapid convergence for 

1 nearly degenerate solutions. The relaxation method often CRn only achieve 

rapid convergence when all nearly degenerate roots are treated 

simultaneously, thus increasing both main storage requirement and 

processing time. The simultaneous expansion method has the additional 

advantage of improved convergence for each solution due to a shared 
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expansion set consisting of correction vectors for all of the solutions 

treated. There is no comparable gain for the simultaneous relaxation 

method. Furthermore the expansion method does not require sequential 

access to the matrix elements and, therefore, can be used in direct CI 

calculations. On the other hand, the expansion method has a larger 

input/output requirement, needing to read 21 vectors of dimension N in 

each iteration. Also, in practice, the relaxation method often yields 

more rapid convergence for the lowest eigenvalue when only one solution 

1 is desired. In conclusion, it is my opinion that simultaneous expansion 

method is to be preferred over the simultaneous relaxation method. 

However, it is most desirable to implement both methods ih a general 

purpose configuration interaction program. 

References 

1. E.R.Davidson, J. Computational Phys. 12, 87 (1975). 

2. R.Raffenetti, J. Computational Phys., to be published. 



TABLE 1 

N == 50, M = 4, L = 4 

1 2 3 4 

* .033608040442 .143251493711 .25197477 0602 .362342667413 

0 .034653842412 .• 144531631596 .2533031277 52 .363512358083 

1 .033608736525 .143252566719 .251976144864 .362344143590 

2 .033608040833 .143251494463 .251974771778 .362342668936 

3 .033608040442 .143251493711 .251974770603 .362342667414 

4 .033608040442 .143251493711 .251974770602 .362342667413 

N == 250, M = 4, L = 4 

0 .034653842412 .144531631596 .2533031277 52 .363512358083 

1 .032927059063 .142406634660 .251084436398 .361544227781 

2 .032925890029 .142404814222 .251082075853 .361541703060 

3 .032925889256 .142404812722 .251082073478 .361541699938 

4 .032925889255 .142404812720 .251082073476 .361541699934 

* Householder-Givens method 
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POWER METHODS AND LANCZOS METHODS 

FOR THE EIGENVALUE PROBLEM Ax = Ax 

C. Van Loan 

Cornell University 

(a .. ) . 
Jl 

Power Iteration 

for 

Suppose 

where 

and 

y 
(0) 

k 

z(k) 

a.(k) 

y 
(k) 

y 
(0) 

= 

starting vector 

1, 2, .... 

A y(k-l) 

II z(k) II 

/k) fa. (k) 

AXi = A.x. 
1 1 

Inverse Iteration 

~ approximate eigenvalue 

(0) 
y starting vector 

For k= 1,2, ••• , solve: 
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(A llI) 
(k) (k-1) - z y 

ex 
(k) II z(k)1I 

y 
(k) z(k)/ex(k) 

Suppose 

where 

Ax. A.x. 
l. l. l. 

Then y(k) is unit vector in direction of 

a 
n 

0 

Xl + .... + X 
(A _ ll)k n 

n 

Two questions: 

Given x, what A minimizes II(A - AI)x II 2 ? 

Answer: A = 
T 

X Ax 
T 

x x 

Given A, what unit vector x minimizes II (A - AI) x 112 ? 

T 
(A - AI) (A - AJ)x = llmin x 

Rayleigh Quotient Iteration 

(0) 
y initial unit starting vector 

for k = 1, 2, ••• 

(k_1)T A (k-1) 
y y 

solve: 

(A - Pk-1 1) z(k) 

ex = II z (k)1I 
K 

(k) 
y 

(k-1) 
y 



For symmetric A: 

• cubic convergence locally 

o essentially globally convergent 

c II(A- Pk I )y(k)1I
2 

+ 0 

Errors and Residuals 

A symmetric: 
A 

Ax = AX + r 

(A - rxT)x 
A 

AX 

~ 3:A E A(A) so 

A unsymmetric: 

But A E A (A) 

A 

lIn e: 

1 

o 

o 

X 

Generalization: Invariant Subspaces 

x = [x I ... I xkJ 
1 

Span {Xl' ... ,.~ } is invariant for A: 

The eigenvalues of S are eigenvalues 
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o 

A 

A 

1 

o 

o 

X 

+ 

+ 

x
k 

E 

AXy = XSy E 

of A: 

A(S) C A(A) 

r 

Rn 

span{x
1

, ... ,x
k

}· 
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Orthogonal Iteration 

starting matrix with orthonormal columns 

For k 1, 2, ... 

A y(k-l) = D 
Q (k) R (k) = 0 \J (modified Gram-Schmidt) 

y(k) = Q(k) 

The columns of y(k) = [y{k) I ... Iy;k) ] form an orthonormal basis for the 

range of Ak y(O). 

Error in Orthogonal Iteration: 

A[y 1 I ... IYj] [y I ... I Y.] T. 
1 J ] 

\. ... ... ~ 

orthonormal 

A (T . ) = { AI' ... , A.} 
] J 

For j = 1, ••• , r 

Question: Given X = On 
r 

with independent columns, what r Xr S 

minimizes II AX - XSII F ? (where 

Answer: 
S if 
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Ritz Acceleration 

Suppose columns of X (XT X I) approximate the dominant eigenspace. 

If S XT AX 

and QT SQ T "'J 

Itnl ~ ~ Itrrl 

then columns of XQ are better. 

min II A(XQ) - (XQ)TIIF 

Orthogonal Iteration with Ritz Acceleration 

D starting matrix with orthonormal columns 

For k = 1, 2, ... 

Z(k) A y(k-1) 

Z(k) Q(k) R(k) 0"1 
A(k) 

T 
Q(k) A Q(k) 

T 
V(k) A (k) V (k) T(k) "'l (QR) 

Convergence is just as for orthogonal iteration, except we replace 

Aj +1 
k 

Ar+1 
k 

by 
A. Aj J 

Lanczos: Motivation 

A symmetric 

There exists an orthogonal Q such that QT AQ = J is tridiagonal. 

Proof: 
x x x x x 
x x x x x 
x x x x x 
x x x x x 
x x x x x 

x x 0 0 0 
x x x x x 
o x x x x 
o x x x x 
o x x x x 
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Lanczos Algorithm 

or 

Know 
T 

0 .. q 1 ' qk qi qj 1J 

0'.1 ' , O'.k-l 

13 1, , Sk-l 

o 

1 

Here it is: q1 = unit starting vector 

For k = 1, 2, ••• 

T 
O'.k qk Aqk 

{ Aqk - "k qk (k = 1) 

r k 
Sk-l qk-l (k > 1) Aq - a. q -k k k 

13k = II r k 112 

qk+l = rk/Sk 
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13. 10 
1. 

i = 1, .•• , k =? {q l' •.• , qk+l} is orthonormal basis 

The Eigenvalues of Tk 

After k-steps we have 

can show 

If e.s. , 
J J 

II s} 2 = 1, then 3: A E A (A) , so 1 A - e j 1 ~ 1 13k 1 1 Skj I· 

Lanczos and~ Extreme-Eigenvalues--~~~ ~-- - ~- ~~~ ----- ~- - - - ~--~~---- ~_m~ __ ~_~ __ ~~ ___ H_ 

Sample result: 

A > A > ••• > An 1 2 

111 > .. 0 >11 k 

i An -11k 1 ~ 
(AI - An)C 

2 (1 +v) 
Pk l-v 

v = 
An- l - An 

A - A 
1 n 

e.v. of 

e.v. of 

is kth Chebyshev polynomial. 

A 

Tk 
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Loss of Orthogonality: Why 

Suppose q is almost an eigenvector: 
1 

Aq 
1 

Aq + r 
1 

(IIrII=£ ) 

Now q2 is defined by Q q 
iJ 1 2 

IIAq - a q II 
1 1 1 

~ Cancellation. 

£ 

Errors in Approximate Invariant Subspaces (symmetric case) 

For every eigenvalue 8 of S there is an eigenvalue A of A, so 

11..-81.( V2IIEII II(XTX)-~112 

Coping with Orthogonality Loss 

Re-orthogona1ization: 

• keep around 

~ 

• compute qk+1 

-• set qk+1 = component of qk+1 in 

Selective re-orthogona1ization: 

[Parlett and Scott] 

Iterative Lanczos 

1. ql unit starting vector 

2. 

3. 

4. 

generate q2'··· ,qk 

TK u = A . u (liull mln 

ql +- [q11 •.. IqkJu 
5. Go to 2 

1) 

1 
span ql' ..• ,qk 

Can show 
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Block Lanczos 

starting matrix: 

p 

For k = 1, 2, ... 

(k = 1) 

(k > 1) 

Zk+1 Qk+1 ~+1 = D"\J (MGS) 



0 d ; ,J ) 0 "" 
, 1 ... 6}'.t. 

THE GENERALIZED EIGENVALUE PROBLEM IN QUANTUM CHEMISTRY 

Nelson Beebe 
University of Florida 

Solution of a linear differential eigenvalue equation, f$ = E$, by the 

expansion method reduces to the problem of solving the generalized eigenvalue 

problem: 

f [ = S [€ 

where 

($.Ifl$.) * F .. F .. 
1J 1 J J1 

(Fock matrix) 

and 
S .. = ( $ .1$. ) = S~. 
1J 1 J J1 

(overlap matrix) 

and the overlap matrix should be a positive definite matrix. Lowdin has 

pointed out that if we know a matrix B such that 

(unit matrix) 

then Eq. (1) reduces to solving a standard eigenvalue problem 

f [ [t 
where 

f = 18+ fB 
and [ is obtained from 

N 

[ = /B( 

(1) 

(2) 

The optimum method for f[ = [€ is implemented in EISPACK routines TRED2 and 

TQL2, which require only N2+ N storage l'ocations, rather than the N
2
+ ~N(N+l)+N 

usually needed. Clearly IB is not unique; it could be replaced by !BLD, where 

LD is any unitary matrix. Several choices of /B are commonly used: 
1.J. 1 

1. Solve SUI = Ulf'A\ and form IB = Ulf.8-'2 Ul 1 
== S -'2. This is known as syrmnetric 

orthonormalization, since it preserves symmetry properties in f [Slater, Lowdin, 

~195l]. 

2. This is known as canonical ortho-Solve SUI = UI,u and form IB = UljJI-~ • 
-~ 

normalization~ and it has been suggested that if any ~k is small, that ~k2 be 
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replaced by 0 in forming IE; this introduces zero columns in IB and effectively 

reduces the order of the problem. 

3. Find an upper triangular matrix IB = 1= (~) by Gram-Schmidt ortho-

normalization: 

( ~ll ~lr ) = (~I ~) 

The set ~ is simply the GS orthonormalized set obtained from ~. ~ is not 

produced explicitly; T may be computed so that it overwrites $. Approximate 

linear dependencies which are found in the construction of I are treated by the 

introduction of a zero column into lr. 

1 is identical to the transposed inverse of the Cholesky matrix ~ in the 

decomposition S = 111+; however, ~ is not needed explicitly. 

This last method is most economical since the transformation l+rlf can be 

done in t N
3 

operations compared to t N~ for S+flB if IB is a full matrix, 

and since the back-transformation C = l[ can be arranged so that [ overwrites 0:. 
However, NONE of these methods, incZuding canonical orthonormalization, deals 

reliably with the case where S is numerically nearly singular. The following 

example given by Fix and Heiberger illustrates this: 

6 1 0 
5 1 

4 

f 3 S diag (1,1,1,1,0,0,0,0) = = 2 
1 

1 0 
o 1 0 

The exact eigenvalues are: 3, 4, 2/0, 1/0, 1/2 (-1 ± J 36 + 4U/ ), 
1/2(-1 ± ~25 + 4/0 2 

• As ° + 0, only two of these remain finite. However, 

application of canonical orthonormalization or Gram-Schmidt orthonormalization 

with appropriate tolerances would predict eigenvalues 6, 5, 4, and 3 -- the wrong 

answer. This example is perhaps somewhat artificial, but the production of eigen­

values which are in fact meaningless can occur in practice. An example which I 

encountered was using a K atom basis given by Wachter on two different machines 

(IBM 370/165, 16 figures and CDC-6400, 13 figures) with Clementi and Veillard's 
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atomic SCF programs; one converged, the other failed due to production of 

nonsense eigenvalues. 

The QZ algorithm developed by Moler and Stewart looked promising, since it 

solves Fix and Heiberger's example correctly, but tests comparing it with 

canonical orthonormalization on some simple atomic problems show that it does 

not perform significantly better. 

RESPONSE TO BEEBE BY MOLER 

The QZ algorithm is probably not the way to solve this problem because it 

destroys symmetry. 

The Cholesky or Schmidt approach is risky because linear dependence may not 

be revealed by small diagonal elements in L and because introduction of zero 

columns in T may remove important information and raise the eigenvalues 

drastically. 

The problem of finding a completely satisfactory algorithm for the symmetric 

generalized eigenvalue problem which preserves symmetry, which is efficient and 

numerically stable is still unsolved. One possible approach is described in 

a yet unpublished paper by Moler and Wilkinson. It is essentially a careful 

implementation of the symmetric orthonormalization method which employs modified 

Givens transformations and the QR algorithm. Further research is needed to 

investigate the effectiveness of this approach in problems of quantum chemistry. 
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FELER'S METHOD FOR FINDING EIGENVALUES AND EIGENVECTORS 

Nelson Beebe 
University of Florida 

M. Guy Fe1er: J. Compo Phys. 14, 341-349 (1974). 

IDEA: To solve large sparse eigenvalue problem, 

minimize the variance defined by 

W(A, V/) 

!He = lESe 

'/ <lH - A$ / <111 - AS) V/ 

V/+ $\1 

with respect to V/, or with respect to both A and V. If A is fixed, then 

applying the method of relaxation, we have for some arbitrary vector Jr and 

constant a. 

W(A, V; +a,\t') 
PI (a.) 

P
2 

(a) 

where P
1

(a.) and P
2

(a.) are polynomials of degree 2 in a., and their construction 

requires formation of the vectors 1Hv;, Hn.-, $V/, and SJr, and scalar products 

between these. Iteration with fixed A finds the eigenvalue E closest to A, 

(i. e-:-----min (A-::Et)-;--Possi151e app1Tcafion oC-fliiS-is :-------------------------­
E 

1) Use Gershgorin disks to select a A < min(E). Iteration will then 

converge to the lowest eigenvalue, which most other methods cannot 

guarantee. 

2) Propagator, Green function, or equations-of-motion calculations 

often require determination of the poles of a matrix~(E) [or 

equivalently, the zeros of ~-l(E) ] , where E is a variable parameter, 

and poles are required as a function of E. G-l(E) is known, but 

it has a wide spectrum of eigenvalues. Setting A = 0 would allow 

perhaps a rapid pole search as a function of E. 

If A is chosen as the Rayleigh quotient, 'Q~'Qh'+Sv, then after some manipu­

lations, the variance is obtained as 
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where P6(a) is obtained by analytic polynomial multiplication of quadratic 

polynomials. 

Differentiation with respect to a gives 

dw 
da o 

and solution of the 7th degree polynomial equation gives seven a's, from which 

that giving a minimum in w(a) is chosen. 

There are two disadvantages of this method: 

1) Forming !Hit' and $It' requires full row of IH and $, so they must 

be stored as square matrices. 

2) Preliminary experience indicates that convergence may be slow. 

~~~~~-~ ----~ 
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BIBLIOGRAPHY ON THE LARGE MATRIX EIGENVALUE PROBLEM 

IN QUANTUM CHEMISTRY AND IN RELATED FIELDS 

A general review on the origin, characteristics, and structure of the large 

matrix is given in the chapter by I.Shavitt, "The Method of Configuration Inter­

action," in MEST (= Methods of Electronic Structure Theory), Volume 3 of the 

series Modern Theoretical Chemistry, edited by H.F.Schaefer (Plenum Press, 1977), 

pp. 189-275. Section 6 of this chapter reviews the matrix eigenvalue problem 

in quantum chemistry. 

A primitive form of the coordinate relaxation method, based on setting one 

element of the residue vector to zero in each step, but with the actual modifi­

cation of the trial vector deferred to the end of a complete iteraction (cycle 

of n steps), has been given by S.F.Boys, Proc. Roy. Soc. A201, 125 (1950). 

A much improved form, based on applying each correction as soon as it is 

computed, similar to the method of J.L.B.Cooper, Quart. App1. Math. ~, 179 (1943), 

but with efficient continuous updating of all quantities, has been described by 

R.K.Nesbet, J. Chem. Phys. 43, 311 (1965). 

A modification of Nesbet's method to allow the use of the rows of the lower 

triangle of the (symmetric) matrix in order has been described by I.Shavitt, 

J. Comput. Phys. ~, 124 (1970). The same approach is also applicable to some 

of the subsequent methods. 

An extension of Nesbet's algorithm to real eigenvalues of nonsymmetric matrices 

has been given by C.F.Bender and I.Shavitt, J. Comput. Phys. ~, 146 (1970). An 

application of successive over-relaxation to this algorithm (also applicable to 

the original Nesbet algorithm) has been shown by R.M.Nisbet, J. Comput. Phys. 10, 

614 (1972). 

The coordinate relaxation scheme based on the minimization of the Rayleigh 

quotient, essentially as given by D.K.Fadeev and V.N.Fadeeva, Computational Methods 

of Linear Algebra (Freeman & Co., 1963), Section G1, has been described by 
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I.Shavitt, C.F.Bender, A.Pipano, and R.P.Hosteny, J. Comput. Phys. 11, 90 (1973). 

This paper also shows how non-extremal eigenvalues can be obtained by "root 

shifting" [a modified form of-the deflation method of H.Hote11ing, J. Educat. 

Psycho1. 24, 417 (1933)] or by orthogonality constraints. Similar ground (and 

some additional aspects) was covered in the same year in the paper of Z.Fa1k, 

Z. Angew. Math. Mech. 53, 73 (1973) where "group relaxations" are also discussed. 

A recent discussion of "group relaxations" (simultaneous relaxation of two or 

more components of the trial vector) has been given by L.P.Cheung and D.M.Bishop, 

Comput. Phys. Commun. 13, 247 (1978). 

The use of over-relaxation for these methods has been discussed by H.R.Schwarz, 

Comput. Math. App1. Mech. Eng. 2, 11 (1974), and by A.Ruhe, Math. Compo 28, 695 

(1974) (this last paper describes "convergent splitting" with over-relaxation). 

A relaxation method based on variance minimization, capable of computing 

interior eigenvalues, has been described by M.G.Fe1er, J. Comput. Phys. 14, 341 

(1974) . 

The simultaneous coordinate relaxation method, developed independently by 

R.C.Raffenetti and I.Shavitt and discussed at this workshop by R.C.Raffenetti, 

has not been published yet. 

The use of the Lanczos method in quantum chemistry and physics has been 

described by H.Nissimov, Phys. Lett. 46B, 1 (1973), and by R.F.Hausman, C.F.Bender 

and S.D.B1oom, Chem. Phys. Letters 32, 483 (1975). 

The method described at this workshop by Davidson, in which the Krylov 

sequence of the Lanczos method is replaced by a sequence derived from perturbation 

theory, is descirbed in E.R.Davidson, J. Comput. Phys. 17, 87 (1975). Related 

perturbation theory approaches are described in the chapter by B.O.Roos and 

P.E.M.Siegbahn in MEST (see above), page 277, and in R.Seeger, R.Krishnan, 

and J.A.Pop1e, J. Chem. Phys. 68, 2519 (1978). A root-homing version of Davidson 

algorithm (for obtaining an eigenvector "closest" to a particular trial vector) 

has been described by W.Butscher and W.E.Kammer, J. Comput. Phys. 20, 313 (1976). 

The simultaneous multi-root version of Davidson's algorithm, described at 

this workshop by B.Liu, has not yet been published. 

Methods based on matrix partitioning (and perturbation theory) have been 

discussed by P.O.LOwdin, J. Math. Phys. ~, 1341 (1965); Z.Gershgorn and I.Shavitt, 
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Int. J. Quantum Chem. ~, 751 (1968); S.Iwata and K.F.Freed, Chem. Phys. 11, 

433 (1975); G.A.Segal and R.W.Wetmore, Chem. Phys. Lett. 32, 556 (1975); and 

L.E.Nitsche and E.R.Davidson, J. Chem. Phys. 68, 3103 (1978). 

SOME REFERENCES FROM THE NUMERICAL ANALYSIS LITERATURE 

FOR COMPUTATIONAL CHEMISTS 

Introductory texts which indicate the kind of analysis one does in the 

field of matrix computations! 

G.E.Forsythe and C.B.Moler, Computer Solution of Linear Algebraic Equations 
(Prentice Hall, 1967). 

G.W.Stewart, Introduction to Matrix Computations (Academic Press, 1973) 

The standard treatise on Ax = AX with associated error analysis: 

J.H.wilkinson, The Algebraic Eigenvalue Problem (Oxford, 1965). 

The most recent volume on sparse matrix computations: 

J.Bunch and D.Rose, Sparse Matrix Computations (Academic Press, 1976). 

Three papers in this book are of particular interest: 

G.W.Stewart, "A bibliographical tour of the large sparse generalized eigen­
value problem" 

W.Kahan and B.N.Parlett, "How far should you go with the Lanczos process?" 

Cline, Golub, Platzman, "Calculation of normal modes of oceans using a Lanczos 
method". 

A very extensive bibliography with Highland chit-chat: 

Iain Duff, "A Survey of the Sparse Matrix Research," Proc. of the IEEE 65, 
500 (1977). 

A paper which will tell you all about simultaneous iteration (i.e., Akyo) is: 

G.W.Stewart, "Simultaneous iteration for computing invariant subspaces of non­
hermitian matrices," Numer. Math. 25, 123 (1976). 

The Lanczos algorithm and its several variants are discussed in the 
following papers: 
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B.N.Parlett and D.S.Scott, "The Lanczos Algorithm with Implicit Deflation," 
U.C.Berkeley, ERL Report UCB/ERL MZ7/70 (College of Engineering, 1977). 

R.Underwood, "An Iterative Lanczos Method for the Solution of Large Sparse 
Symmetric Eigenproblems," Stanford CS Dept. Report CS-496 (1975). 

J.Cullum and W.E.Donath, "A Block Lanczos Algorithm for Computing the q 
Algebraically Largest Eigenvalues and a Corresponding Eigenspace of Large, 
Sparse, Real, Symmetric Matrices," Proc. IEEE Conf. on Decision and Control, 
Phoenix, Arizona (1974). 

J.Cullum, "The Simultaneous Computation of a few Algebraically Largest and 
Smallest Eigenvalues of a Large Sparse Symmetric Matrix," Report RC-6827 (1977), 
from IBM, Yorktown Heights 10598. 

J.Cullum and W.E.Donath, "A Block Generalization of the Symmetric S-Step Lanczos 
Algorithm," IBM watson Research Center Report RC-4845 (1974). 

C.C.paige, "Practical Use of the Symmetric Lanczos Process with Reorthogonali­
zation," BIT 10, 183 (1970). 

G.H.Golub, "Some Uses of the Lanczos Algorithm in Numerical Linear Algebra," 
in Topics in Numerical Analysis, J.Muller (editor) (Academic Press, 1974). 

C.C.paige, "Computational Variants of the Lanczos Method for the Eigenproblem," 
J. Inst. Math. & Applic. 10, 373 (1972). 

BIBLIOGRAPHY ON THE GENERALIZED EIGENVALUE PROBLEM ~~ A~~ 

1. J.H.Wilkinson and C.Reinsch, Handbook for Automatic Computation, Vol. II: 
Linear Algebra (Springer-Verlag, Berlin, 1971) , pp. 196-197, 303-314. 
[prepublished in Num. Math. Q, 99 (i96S) r:-- - . -----~~--~.-.. ---.-------. 

2. G.Peters and J.H.Wilkinson, "Ax = ABx and the generalized eigenproblem," 
SIAM J. Numer. Anal. ~, 479 (1970). 

3. G.W.Stewart, "On the sensitivity of the eigenvalue problem Ax 
SIAM J. Numer. Anal. ~, 669 (1972). 

ABX," 

4. G.Fix and R.Heiberger, "An algorithm for the ill-conditioned generalized 
eigenvalue problem," SIAM J. Numer. Anal. ~, 78 (1972). 

5. C.B.Moler and G.W.Stewart, "An algorithm for generalized matrix eigenvalue 
problems," SIAM J. Numer. Anal. 10, 241 (1973) (Describes the QZ method.) 

6. L.Kaufman, "The LZ-algorithm to solve the generalized eigenvalue problem," 
SIAM J. Numer. Anal. Q, 997 (1974). 

7. B.Ford and G.Hall, "The generalized eigenvalue problem in quantum chemistry," 
Compo Phys. Comm. ~, 337 (1974). 
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8. R.C.Ward, "The combination shift QZ algorithm," SIAM J. Numer. Anal. 12, 
835 (1975). 

9. L.Kaufman, "Algorithm 496 -- The LZ algorithm to solve the generalized 
eigenvalue problem for complex matrices (F2)," ACM Trans. Math. Software !, 
271 (1975). 

10. C.R. Crawford, "A stable generali zed eigenval ue problem," SIAM J. Numer. 
Anal. 13, 854 (1976), (for banded symmetric matrices). 

11. C.B.Moler and G.W.Stewart, "An Algorithm for the Generalized Eigenvalue 
Problem," Stanford University Computer Science Dept. Report STAN-CS-232-7l 
(August 1971). (Same as Ref. 5, but contains additionally a listing of 
the QZ FORTRAN program.) 

12. L.Kaufman,"A Generalization of the LR Algorithm to Solve Ax = A~~," 
Stanford Computer Science Report STAN-CS-72-276 (April 1972). (Contains 
preliminary version of FORTRAN program in Ref. 9.) 

13. L.Kaufman, "The LZ Algorithm to Solve the Generalized Eigenvalue Problem," 
STAN-CS-73-363 (May 1973). (More extended version of Ref. 6, and inter­
mediate version of FORTRAN program in Ref. 9.) 

14. G.W.Stewart, "Gershgorin Theory for the Generalized Eigenvalue Problem 
Ax = ABx," Math. Compo 29, 130 (1975). 

15. G.H.Golub, R.Underwood and J.H.Wilkinson, "The Lanczos Algorithm for the 
Symmetric ~~ = A~~ Problem," STAN-CS-72-270 (March 1972). 

16. International Mathematical and Statistical Library (IMSL) subroutines EIGZF, 
EQZQF, EQZTF, EQZVF, UERTST, VHSH2C, VHSH2R, VHSH3R (March 1975). 

17. B.T.Smith, J.M.Boyle, J.J.Dongarra, B.S.Garbow, Y.Ikebe, V.C.Klema, and 
C.B.Moler, Lecture Notes in Computer Science, Vol. 6: Matrix Eigensystem 
Routines - EISPACK Guide, second edition, edited by-G.Goos and J.Hartmanis 
-(Springer=Verla-g,Berlin,-19'16-)-~-tFORTRAN~vers±ons-o f-the-AI:.GOh-procedures------­
in Ref. 1. Listings are given and magnetic tape copies may be ordered.) 

18. B.S.Garbow, J.J.Dongarra, C.B.Moler, and B.T.Smith, Lecture Notes in Computer 
Science, Vol. 51: Matrix Eigensystem Routines - EISPACK Guide Extension 
(Springer-Verlag, 1977) (Supplement to Vol. 6, second edition, includes 
QZ and SVD.) -
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REFLECTIONS ON THE NRCC CONFERENCE 

B. N. Parlett 
University of California, Berkeley 

My first impression was that chemists who have specialized in the eigen­

value problem and linear systems are fairly well acquainted with matrix compu­

tations and the numerical analysts did not have much to offer them. My second 

impression is that the workshop may produce some valuable insights in the near 

future when the numerical analysts have absorbed two rather surprising facts 

which emerged unstated from the discussions. 

The first fact is that the typical matrix H which arises does not have 

a sparsity structure that can be readily exploited. (Most numerical analysts 

are brought up on two- and three-dimensional elliptic problems which have lots 

of nice properties.) 

as quite a shock. 

7 4 
The presence of 10 nonzero elements when n = 10 came 

The second fact was less apparent and more interesting. It appears that H 

always has a strong diagonal (thanks to Hartree-Fock), i.e. the matrix of normalized 

eigenvectors is diagonally dominant, and so several numerical methods which are, 

in general, very poor, appear to be quite satisfactory for the problems under 

discussion. This "strong diagonal" property makes H very nice and the challenge 

to the analysts is to exploit it to the hilt. I do not believe that the current 

methods are close to achieving that goal. 

I wrote recently in Progress in Numerical AnaTysis-tnat-Iexpecnm-numerical--'--' 

analysis to break up into several almost autonomous disciplines. Rather than 

solving more and more general problems, the development of the field will lie 

in more and more specialized applications. I see the NRCC workshop as confirming 

this prediction to a considerable extent. The chemists will not be well advised 

to borrow the "best" methods for the general large, sparse, symmetric problems, 

but will be well advised to consult with the experts on how to build their own 

codes. Proliferation lies ahead whether we want it or not. 
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RECOMMENDATIONS FOR WORK BY NRCC 

1. It would be useful if NRCC acquires the most important programs for the 

types of problems discussed here, from both chemical and numerical analyst 

sources (such as EISPACK), and makes these accessible in a fairly compatible 

form (as far as feasible) to facilitate utilization, comparison, and testing. 

2. It would be useful if NRCC acquires a set of representative matrices of 

various sizes (and somewhat varying characteristics, if feasible) for use in 

testing, comparison, and analysis. The documentation should include available 

answers and experience (such as convergence rates) with current methods. 

3. NRCC should acquire, on a continuing basis, reprints, preprints, and unpub­

lished reports on numerical methods from both chemical and numerical analyst 

sources, and make bibliographies of these available. Help in obtaining copies 

of unpublished material will be quite useful. 

4. NRCC should solicit proposals from numerical analysts for work on developing 

and testing numerical methods useful in chemistry. 
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SUMMARY OF DISCUSSION ON THE 

SOLUTION OF LARGE LINEAR SYSTEMS 

1. S. Duff 
A.E.R.E., Harwell, England 

1. It is not possible to store original matrix in core. 

2. Order of system is 1000 - 10000. 

3. Problems usually have the following structure 

P1~~~~ 

Q 

where border is fairly dense and Q is of order N4 with typically N6 non-zeros. 

P is typically of order 1 to 50. Although Q has large diagonal elements and is 

usually symmetric positive definite, this does not hold for the matrix as a whole. 

It is not clear that any advantage can be taken of structure in Q. 

A few problems have block tri-diagonal structure. 

4. Can be unsymmetric although a very main class is symmetric, but not 

positive definite. 

5. The number of negative eigenvalues is small (commonly 10-20), and thus are 

associated with small leading submatrix P of number 3 above. 

6. Distribution of eigenvalues 

[ ] [ ] dlc 1000 
a b c d 

with eigenvalues uniformly distributed in [c,d]. 

7. Main storage is assumed large enough to hold at least 5 vectors of length n. 

8. Often we wish to solve for about 5-20 vectors simultaneously. 

Comments on Numerical Methods 

1. Conjugate gradients only efficient and guaranteed for positive semi-definite 

symmetric matrix. 

2. SYMMLQ available to problem at hand but in view of suggested spectrum in 
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number 6, it may not be very efficient. In fact, it can be O(n
3

) on each 

solution. For example, in number 6, 

Yad/bc - I / < E 
( )

11 iterations 

/ Vadlbc + I 

)

11 iter. - II neg. eig'values 

I / < 
/ v"d/c + I E 

So we can estimate the number of iterations since an estimate of c can be 

obtained from Lanczos process. 

The convergence is better if the eigenvalues are clustered rather than 

uniformly distributed. One way of doing this is to precondition the matrix 

(see below). 

Since we are often solving for multiple RHS, the development and use of a 

block Lanczos scheme was suggested. 

See presentation by Cline for description of SYMMLQ. 

Preconditioning. If A-I . .. A-I h 1S an approx1ma t10n to. , t en 
o 

have many eigenvalues clustered near 1. Thus, if we use C.G. or 

A-IA should 
o -1 

SYMMLQ on A A, 
o 

convergence should be rapid. To be a useful technique the inverse of A must be 
o 

easy to calculate (see also presentation by Wid1und). 

For the present example, a possible preconditioning matrix might be 

where D is diagonal of matrix Q in number 3, and that matrix has been reordered 

It was pointed out that 

be obtained cheaply by using 

information on the eigenspectrum 

Davidson's second method on ( I 
CT 

of the matrix could 

:). 
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Direct 

1. The danger of just using pivot size (or change of size in diagonal elements) 

as a numerical stability test when using Cho1eski on non-positive definite systems 

was noted. 

2. The possibility of pivoting when using column access was pointed out and 

the use of 2 x 2 pivots if Cho1eski broke down was mentioned. 

3. If we order the matrix to put the large positive principal minor first (Q), 

then two things are possible: (i) advantage may possibly be taken of sparseness 

in Q; (ii) we need not pivot on Q and can do necessary pivoting on the indefinite 

modified P in core with full numerical stability ensured for that part of the 

computation. 

4. The possibility of using a direct method with drop tolerances coupled with 

iterative refinement or other iterative methods was discussed. 

Recommendations for Work by NRCC 

1. Examination of use of SYMMLQ on typical problems and research into precon­

ditioning techniques to accelerate such methods. 

2. Investigation into the efficient handling of large amounts of data out of 

core. Especially to see if I/O can be performed simultaneously with arithmetic 

to reduce expansion factor (elapsed time/CPU time) to near 1. 

3. Further investigation of Cho1eski's method to see: (i) why little instability 

'. ,orrises in practice on typical problems; (iiL!f scl:u::mes __ ~~~~~_~l1 __ p~oc_~~~~_l1_~__ __ _ 

the sparse part first (see 3 above) are beneficial. 
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LINEAR EQUATION SYSTEMS IN BOUND STATE 

AND SCATTERING PROBLEMS* 

R. K. Nesbet 

IBM Research Laboratory 
San Jose, California 95193 

+ -1 The matrix expression m (h-£) m, where h is a large Hermitian 

matrix, occurs in linear expansion methods for bound state or scattering 

solutions of Schrodinger's equation. Applications include partitioning 

methods for the matrix eigenvalue problem, variational methods in electron 

scattering theory, and the Stieltj es imaging theory of osc'illator strength 

distributions and photoionization. Examples of such applications will be 

given. Methods for evaluation of the indicated matrix expression that 

avoids direct inversion of h-£ include direct diagonalization and a 

modified Cholesky factorization. These methods will be discussed. 

I. AREAS OF APPLICATION 

A. Large Matrix Eigenvalue Problem Partitioning"""""'''''' ....... , .---_ ... ---a ••• 

In a matrix representation of the Schrodinger equation 

(H -E)'l' = 0 (1) 

it is often convenient to separate the basis into two segments, such that 

the smaller segment consists of a few functions chosen to dominate the 

wave function of interest, while the residual segment contains a much 

larger number of functions whose individual influence is small. In 

molecular spectroscopy, such a basis separation, which corresponds to 

partitioning of the matrix of H, is sometimes referred to as a Van Vleck 

transformation [J.H.Van Vleck, Phys. Rev. 33, 467 (1929) for example]. 

The formalism of partitioning has been extensively developed by Lowdin 

[P.O.Lowdin, J. Chem. Phys. 19, 1396 (1951); in Perturbation Theory and 
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Applications, ed. Wilcox (Wiley, New York, 1966)] in terms of projection 

operators. 

If the small segment of the basis space is defined by a projection 

operator P, the residual space corresponds to the orthogonal complement 

projection operator Q, where these operators have the properties 

Q2 = Q , 

The resulting partitioned form of Eq. (1) is 

i (~p- E),¥p + HpQ'¥Q 

l HQp '¥P + (HQQ - E)'¥Q 

o 

o 

P + Q = I 

The second line of Eq. (3) has the formal solution 

'¥Q 
-1 

-(HQQ - E) '¥P 

(2) 

(3) 

(4) 

When this is substituted into the first line of Eq. (3), the resulting 

equation is 

o (5) 

This is of the form of an effective Hamiltonian operator acting in the 

P-space. The second term in Eq. (5) is of the general form of a Green's 

function, __ expressed_in_a_finite_basis ___ representation. ______________________________________________ _ 

The practical use of Eq. (5) is to introduce approximations that 

simplify the Green's function term. In this way, the Q-space (of very 

large dimension) is formally eliminated in favor of an effective operator 

in the P-space (of small dimension), in which an exact solution of the 

reduced problem can be carried out. 

When used as a formal method for the large matrix eigenvalue problem, 

the idea is to estimate E, construct the Green's function term, then solve 

exactly in the P-space. The estimate of E is then updated, and the 

method is iterated to convergence. Approximations can be introduced in 

evaluating the Green's function term 

(6) 
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such as assuming E ~ E to avoid iteration, or neglect making a diagonal 
o 

approximation to at least the remote portions of H
QQ

• Such approximations 

can be systematized by use of various forms of perturbation theory. 

Unless a diagonal approximation can be justified, partitioning 

requires an efficient method for evaluation of the contracted form 

indicated in Eq. (6). Here HQQ is considered as a real symmetrix matrix 

of very large dimension (too large for core memory in a computer), H
QP 

is a rectangular matrix with one very large and one small dimension, 

while ~~p is small. 

B. Electron-Atom Scattering, Variational Theory 

In electron scattering by an N-electron atom or molecule, an approx­

imate solution of Eq. (1) is sought with ~ of the form 

A quadratically integrable component ~Q is partitional from a term ~P 

that contains specific continuum orbital wave functions 

= 

such that for open scattering channels, 

1 k 2 
"2 

P 

the asymptotic radial channel orbitals are of the form 

(7) 

(8) 

(9) 

(10) 

(11) 

In Eq. (7), ~ is an antisymmetrizing operator, Gp is an N-electron target 

atom or molecule wave function, and {~~} are a set of Slater determinants 

or configuration state functions for the N+l-electron system. In Eq. (10), 

nkp is the momentum of the scattered electron, E is the total energy, 

and Ep is the energy corresponding to target state Gp ' The asymptotic 

form indicated in Eq. (11) is appropriate to scattering by a neutral atom. 
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It must be modified for a COl!16mb or static electric dipole potential. 

The multichannel variational method of Kohn [W.Kohn, Phys. Rev. 24, 

1763 (1948)] can be applied in a form that makes use of the partitioning 

method, introduced in scattering theory by Feshbach [H.Feshbach, Ann. 

Phys. (N.Y.) i, 357 (1958); 19, 287 (1962)]. Formal developments and 

applications have been reviewed recently [R.K.Nesbet, Adv. At. Mol. Phys. 

13, 315 (1978)]. 

The variational functional matrix is 

H 

~st ('1' I H - E I '1' ) s t LE 
ij pq 

* Cl. lpS (12) 

The indices sand t refer to various independent degenerate solutions 

of Eq. (1) at given energy E. The number of such solutions is equal to 

the number of open scattering channels at E. In Eq. (12). the matrix m 

is 

= (13) 

where the effective Hamiltonian acting on '1'p' obtained by partitioning 

as in Eqs. (3), is 

, 
~p (14) 

-The-mat-r-i-x--mP'-Q---is-of--d-imens-ion-2N-x-2N-where-N-is--the-number-of-open---------------lj c c' c 
channels. Indices i,j have values 0,1 only, referring respectively, to 

the sin and cos components of Eq. (11). The specific form of Eq. (13) is 

(15) 

where M denotes H -E. The second term here is a generalized matrix optical 

potential, of the standard Green's function form indicated in Eq. (6). 

The bound-bound matrix, M].lV is in general very large (symmetric), while 

mij is small, and the bound-free matrix Mv,jq is rectangular. In 

scattering theory, the free-free matrix M~~ is not symmetric and it~ 
. pq lJ 

asymmetry carries over lnto m
ij

. 

Because of the large size of ~V' most of the work of a variational 

scattering calculation is involved in evaluating Eq. (15). The subsequent 
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variational calculation provides an approximate solution of the matrix 

equations 

ma ~ 0 

where m is the matrix m~j. A convenient matrix notation, retaining 

indices ij but suppressing channel indices is 

~ 0 

where 

{a
ops

} 

(16) 

(17) 

(18) 

are matrices containing the coefficients of the asymptotic wave function 

indicated in Eq. (11), with an additional index s to denote one of the 

Nc independent degenerate solutions at given energy E. The submatrices 

have the properties 

m 
00 

= m 
1 1 

m - m+ 
01 10 

~ I , (19) 

+ where ( ) denotes a matrix transposed for real matrices. In this notation 

the variational functional is 

H = + a mao. (20) 

Scattering cross sections are computed directly from elements of the 

scattering matrix 

S (I + iK)(I - iK)-l 

defined in terms of the real symmetric open-channel reactance matrix 

-1 
K = 0. 10. 0 

where the matrices a i are defined by Eqs. (18). 

In the Kohn variational method, 0. 0 
is taken to be a unit matrix, 

that 
0. 0 = I 0. 1 

K 

(21) 

(22) 

so 

(23) 
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and a
1 

is replaced by a matrix [K[ stationary with respect to 

The variation of 3 is 

oa = 0 o 

oK + (m + mIl K) + (m + m K) + oK + ~ oK 
10 10 11 

The Kohn functional 

[K] 

is stationary as a result of Eq. (25) if 

-1 
-m m 

1 1 1 0 

and its value is 

[K] -2(m -
00 

(24) 

(25) 

(26) 

(27) 

(28) 

Recent developments of this formalism have made it possible to avoid the 

spurious singularities arising from Eq. (28) when mIl has zero eigenvalues. 

Quite refined calculations of electron-atom scattering cross sections 

have been carried out with the variational method. A recent example is 

the complicated resonance structure in the range 22.4 eV - 23.1 eV for 

e--He scattering [R.K.Nesbet, J. Phys. B11, L21 (1978)]. The theoretical 

--- calculations .. reproduced--details_of_energy~dep_endent_s_tr_uc_tur_e_s_e_e~:lIl_a~ ___ . ___ . ________ _ 

recent high resolution experiment [J.N.H.Brunt, G.C.King, and F.H.Read, 

J. Phys. B10, 433 (1977)], but could analyze the structures into specific 

contributions of superimposed resonances due to short-lived states of He-. 

Because only the total metastable excitation cross section was observed, 

such analysis could not be carried out unambiguously on the experimental 

data by itself. 

C. Moment Theory, Stieltjes Imaging 

Langhoff [p.W.Langhoff, Chern. Phys. Lett. 22, 60 (1973); P.W.Langhoff, 

C.T.Corcoran, J.S.Sims, F.Weinho1d, and R.M.G1over, Phys. Rev. A14, 1042 

(1976)] has used moment theory to develop a Stieltjes imaging method for 

computing the oscillator strength distribution function for an atom or 
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molecule. Although only quadratically integrable electronic wave functions 

are used, the method makes possible the computation of the continuous 

photoionization cross section. Practical difficulties with the original 

version of the method have been discussed and to a large extent resolved 

[R.K.Nesbet, Phys. Rev. A14, 1065 (1976)], and applications to molecular 

photoionization have been published [T.N.Rescigno, C.F.Bender, B.V.McKoy, 

and P.W.Langhoff, J. Chem. Phys. 68, 970 (1978); J.Barsuhn and R.K.Nesbet, 

J. Chem. Phys. 68, 2783 (1978)]. 

In a discrete basis representation of wave functions dipole-coupled 

to a reference state '1'0' the frequency-dependent po1arizabi1ity is given 

by 
N 

a(w) L (29) 

i=l 

This expression has nonphysical poles for real values of hw above the 

ionization threshold, where a(w) should be a continuous complex function 

whose imaginary part is proportional to the total photoionization cross 

section. To avoid these poles, it is convenient to consider the inverse 

energy moments of the oscillator strength distribution, defined by 

N 

L 
i=l 

-k f. E. 
1 1 

k« N , 
B 

(30) 

where NB is the number of basis functions. The computed oscillator 

strengths fi and excitation energies Ei vary irregularly with the 

choice of basis, but the moments are nonsingu1ar physical quantities and 

have well-defined limiting values. 

The po1arizabi1ity is defined as a function of a complex frequency z 

by the Stie1tjes integral 

00 

a(z) (31) 

where f(E) represents both the discrete and continuous portions of the 

oscillator strength distribution function. In the Stie1tjes imaging method, 

Eq. (31) is approximated by a generalized Gauss quadrature formula 
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n 

a(z) ~ L 
a=l 

f 
a 

(32) 

valid for points z not on the positive real axis. Here the quadrature 

points are Ea and the weights are fa' defined so that the first 2n moments 

11k 

00 

f -k 
E df (E) 

n 

2: k 0, ... ,2n-l (33) 

a=l 

are given exactly by the quadrature formula. The set of values {E ,f } 
a a 

defines a principal representation of the oscillator strength distribution. 

The cumulative oscillator strength function 

F(£) .f df (34) 

° 
is defined so that the oscillator strength distribution is 

df(E) dF dE 
dE 

g (E)dE (35) 

Above the ionization threshold, the total photoionization cross section is 

if all quantities are in atomic units. The principal representation 

approximation to F(E) is the histogram 

(36) 

(37) 

Given a principal representation, the histogram is fitted by a smooth 

curve (passing through the midpoint of each vertical rise), whose slope 

gives geE) and hence 0pI(E). 

For complex atoms, the oscillator strength for transition from state 

~0(10) to state ~1 (11) is given by 

where 

f. 
1 

(38) 
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(h -E ) .. 
o 11 

(39) 

d. is a transition moment, and C is an angular momentum coupling coeffi-
1 

cient. The corresponding expression for the moment ~k is 

~k = 1:L C(LOLl ) L
1

• 4= di [(h - Eo) -k+1 J.. d
j 

i J 1J 

(40) 

expressed as a contracted form involving the inverse of a large matrix. 

This form requires computational methods similar to those needed for Eqs. 

(6) and (15). 

A. Diagonalization of h 

This is the most straightforward method, but inefficient or impossible 

for large matrices, because all n eigenvalues are required. The matrix 

h is real and symmetric but not, in general, sparse. If results are needed 

for many E values, diagonalization is advantageous because it has only to 

be carried out once. 

B. Modified Cholesky Method [R.K.Nesbet, J. Comput. Phys. !!.., 483 (1971)] 

Although h-E is not positive definite, it can be represented in the 

form 

h -E (41) 

where t is a lower triangle and cr is a diagonal matrix whose elements 

are either +1 or -1. If m is a rectangular matrix and 

then 

b 

+ -1 
m (h-E) m 

-1 
t m (42) 

(43) 

Use of Eq. (43) eliminates the back-substitution step that would be 

required if (h-E)-lm were evaluated directly. Algorithms including the 

data-handling necessary for large matrices have been described in the 

indicated publication and implemented for electron-atom scattering calcu­

lations. In practice the method is numerically stable. 
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C. Computation of Moments 

The modified Cholesky method can also be used to compute moments, 

but back-substitution cannot be avoided. To evaluate 

11k = (44) 

making use of Eq. (41), the steps are 

d 

(45) 

Then 

= k odd , 

(46) 
k even. 

III. QUESTIONS AND PROBLEMS 

Can sparse matrix methods be used for matrices that are not strictly 

sparse? 

-_________ Can_an_n=---_process_(such_as_the_modified_Cholesky-factor-izat-ion.)--be 

avoided? 

The optimal method would be an n 2 iterative procedure, valid for 

h-E not positive definite, that would converge in some number of steps 

much less than n. 

c _ 



u 

DIRECT METHODS FOR SOLUTION OF Ax = b 

1. S. Duff 
Harwell, England 

A is general sparse matrix. 

Gaussian elimination to find permutations P and Q, and triangular 

factors Land U 

PAQ LU 

At intermediate stage we have 

~u 
1----1 

L active 
latrix 

Basic operation: 

multiplier 

or by rows, 

row i ~ row i-multiplier x pivot row • 

x x x x 

x o x o 

Fill-in: 
x x 0 x 0 

x 0 x x 0 

0 x 0 0 x 
0 x x 0 0 

x x x x x 

x x 0 x 0 

x x x x 0 

0 x 0 0 x 
0 x x 0 0 

x x 0 x x 

x x 0 x 0 -x x x x 0 

0 x ?S x x 
0 x x x x 
x x x x x 
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Extreme Example of Fill-in 

* x x x x x x x x x x 

x x 

x x 

x x 

x x 

x x 

x x 

x x 

x x 

x x 

x x 

Use of * as pivot gives total fill-in and subsequent active matrices are full. 

Pivoting on black diagonal elements gives no change to the initial structure 

and operations and storage are both O(n). 

2500 

2000 

non-zeros in 
row/ co 1 umn fil e 

-----------------T5UO- -------~---------------------------

1000 

500 

o 
150 

pivot step numbers 
50 100 

This figure shows a fairly typical decay in the number of non-zeroes in the 

active matrix and a fairly steady growth in the number in the Llu factors, the 

final number being about twice the initial number of non-zeros. Note the plateau 

- , 



at the end of the row file curve; after 118 pivots the active matrix is full, 

so no more fill-in can take place. 

One major difference from full matrices is illustrated below: 

1) 

2) 

Solve 

Solve 

Ax = b - -
A x = b 

1- -

where Al has the same sparsity structure as A. 

3) Solve Ax = ~I 

(1) PAQ-LU 

(2) Al 
P,Q 

~ LIU I LU 

(3) b P,Q 
~ x 

LU/LIU1 

Ratio of Times: (1) (2) (3) 

Full case: n n 1 .... 

Sparse case: 50 10 1 .... 

uPbloting, For Numerical Accuracy 

Total or complete pivoting 

= max la~~) I 
i,j ;;;. k 1.J 

analyze 

factor 

operate 

0(n
2

) 

O(n) 

L 

u 

i.e., largest element in active matrix chosen at each stage. 

1) Expensive, so not often used even in full case. 

2) No attempt made to maintain initial sparsity. 

Partial pivoting 

or max I a1.~kk) I 
i;;;'k 

1) Can be unstable but used often in full case. 

2) Still severely restricts maintenance of sparsity. 
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Threshold pivoting 

la~~) I ;;;. u. max I ak(~) I 
i ;;;. k .L 

where u E [0,1]. 

We can now maintain a balance between partial pivoting (u=l) and ignore 

numerical stability entirely (u = e:). 

Markowitz Criterion [1957] 

min 
i,j 

a .. :f. 0 
1J 

* 
x 

x 

x 

• 
• 

(c.- 1) 
J 

x 

• 
• 

x 

• 
So we are: 1) minimizing the maximum possible fill-in, and 2) minimizing the 

number of *,+ operations. 

Also proposed are: 

min 
i 

a .. :f. 0 
1J 

(min c
J
.) 

j 
or vice versa 

restricted MARKOWITZ when we do not search for the absolute minimum. 

--Order-ings-to-F-l'eser-ve-Spal'-si-t-y------

We find that if we a priori restrict our search to a specified row/column 

of the active matrix, then we do not maintain sparsity sufficiently on general 

systems. So we choose from among all the non-zeros in the active matrix. 

Two of the commonest choices are: 

1) Choose ai~) (satisfying stability criterion) such that fill-in is 

minimized; 

2) If ri is the number of non-zeros in row i, and Cj is the number of 

non-zeros in column j, choose a(k) (satisfying stability criterion) 
ij 

such that (ri-l)o(cj-l) is minimized. 

Number 1) is rejected because extra cost in implementation is not matched by 

gains in sparsity. 
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Stability of Proposed Pivoting Method 

If we say that the L,U factors produced are the exact factors of a pertur­

bation to the original matrix, i.e. 

A + E L U 

(we ignore the irrelevant permutations here), then we wish to find a bound on 

the elements of E. 

The elements of E can be shown to depend on: 

1) E (MACHEPS •.. dependent on machine) 

2) Number of multipliciations/divisions on anyone position ••• ~ min(i,j) 

3) Maximum element occurring in active matrix. 

Only number 3.) need cause us any concern. 

We can control the size of the largest element in active matrices (here 

the original matrix is assumed to be well scaled) by adjusting the value of u. 

Indeed, at anyone stage, growth is bounded by 

(1 + l/u) 

so that the maximum growth occurring in anyone position is bounded by 

(1 + l/u)# operations 

This is, of course, a gross upper bound. 

We can, of course, monitor the growth either by examining the size of each 

new non-zero created or by an a posteriori bound based on the factors Land U. 

We do the latter because of the overheads involved with the former, particularly 

in the factor entry. 

Amount of searching to find pivot. 

Order of Matrix 

Number of non-zeroes 

Average length of search 

Pre-Ordering Techn~ 

147 

2449 

8.2 

57 

281 

2.8 

292 

2208 

3.1 

The basic idea with these techniques is to find an ordering of the rows 

and columns of the matrix so that the non-zero elements are confined to certain 

well defined regions of the matrix. It is then normal to arrange that the 

solution process preserves this partitioning of the rnatrix. Tewarson [1973] 

lists "desirable forms". We examine some of these in this lecture. 
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1) Band matrix 

If there are some zeros within the band including its edges, we have a variable 

band structure. Some basic techniques for obtaining this form are discussed by 

Cuthill in Rose and Willoughby (1972). 

2) Bordered triangular form t 

Algorithms for obtaining this form are based on the notion of a minimum essential 

set. An essential set is a set of vertices whose removal (plus their incident 

edges) which leaves the diagram acyclic. In the figure above the removal of 

the t vertices, corresponding to the last t rows and columns of the matrix, 

leaves the remaining graph acyclic. 

Algorithms so far proposed for this tend to choose too large a t for this 

form to be useful in practice. Cheung and Kuh, and Sangiovanni-Vincentelli at 

UC Berkeley have done some work on this, but I don't recommend the paper in 

Bunch and Rose (S-V). 

3) Bordered block triangular form 

~l 0 ~ 
~~ ~ ~ ~/& ~ 

Even less work has been done on this form and no really good algorithms exist 

for obtaining it. Chemical engineers Kevorkian and Snoek [Himme1b1au Book], 

Sargent [papers in Chero. Eng], and Westerberg [papers in Chero. Eng.] have 

proposed heuristic techniques. 

Certainly in view of the cheapness of block triangularization algorithms, 

we could afford two or three selections of t columns. 



" 
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Tearing 

Utilizes formula relating inverse of a matrix to the inverse of a matrix 

different from it by a small rank change. Sherman-Morrison Householder 

(Woodbury) formula: 

= 

where, normally, U,S,V are of small rank compared with A (and A +USVT) , 

With reference to the previous two forms, U,S,V will have rank t. 

Some people who have worked in this area are: Gabriel Kran (1946-1956), 

Donald steward (1962-1969), Barkley and Matard (1972), Hellerman and Rarick 

(1971), and Lin and Mah (1975) -- but I wouldn't recommend reading any of these! 

A major problem with forms 1) and 3) [band matrix and bordered block 

triangular form] is that the problem of obtaining the optimal form (e.g., 

minimize t in 2) and 3)) for an arbitrary given matrix has been shown to be 

NP-complete. Therefore heuristics have been proposed to find sub- (but hopefully 

near-) optimal orderings, Unfortunately, apart from form 1), they have not been 

of much use. However, form 3) with the shaded area zero is called a "block 

triangular form." 

Good algorithms for obtaining this form exist and there are several areas 

(most noticeably chemical engineering and linear programming) which give rise 

to matrices which can be decomposed into this form. We now examine this form. 

A matrix is bireducib1e (a, P, Q:3 PAQ is in BLTF) if and only if any 

--permutation of it with a zero-free diagonal is-];educib1e_(a_,_P_:3_PAP~ __ is in BLTF)'-C, __ _ 

Furthermore, the block triangular form is essentially independent of this initial 

permutation (e.g. Duff, 1977). 

Thus it is possible to perform the BLTF algorithm in two steps: 

1) A + AQ = Al where Al has a zero-free diagonal. 

2) 

Most algorithms O(nt)!! perform well in practice. 
!,; 

Hopcraft and Karp's [1974] algorithm is O(n 2t), 

although no good implementation yet exists. 

A2 (BLTF), corresponds to finding strong components of 

a diagraph. Tarjan algorithm [1972] is O(n) +O(t) 

and has been implemented by Duff and Reid [1976-78]. 
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Wiberg [1977] has devised an algorithm which combines steps 1) and 2). 

Relative Times for Two Phases of Block Triangularization 

Matrix Transversal Tarjan 
N NZ selection algorithm 

50 100 41 15 

50 300 22 30 

100 200 78 32 

times are in milliseconds on an IBM-360/67. 

So: 1) no great evidence of O(nT) behavior of transversal selection (i.e. 

obtaining a zero-free diagonal) on typical examples, and 

2) transversal selection not always that much slower than symmetric 

permutation and may even be faster. 

Overheads of Block 

Order of Matrix 147 199 822 

Number of N-Z 2449 701 4841 

------Block '70 30 250 

PAQ -+ LU 1470 210 480 

A~LU 
Q 

280 50 180 

LU + rhs -+ .R.hs 20 10 40 

times are in milliseconds on an IBM-370/l68. 

199:701 240 without BLOCK 

822:4841 1520 without BLOCK 
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Use of Dominators to Decompose Graph/Matrix 

Tarjan has attempted to extend the partitioning discussed earlier to a 

decomposition of irreducible blocks by means of dominators, defined earlier. 

We find a vertex V such that there exists vertices U and W, for which V dominates 

W with respect to U. (If no such triple exists then the graph is said to be 

strongly biconnected.) We then partition the vertex set V into three sets: 

{V}, VI' and V2 ' where VI contains all vertices reachable from U by a path 

which avoids V. 

If we order the rows and columns of the matrix according to an ordering 

on the vertices, numbering those in V2 before V before those in Vi we get the 

partitioned matrix 

Vi I ~ 
0 V2 

and we can both preserve the zero block in this matrix and confine our pivot 

selection to the "diagonal" blocks. 

Tarjan has indicated a scheme to perform a "canonical" decomposition in 

nearly O(n) +O(T) time, but to my knowledge it hasn't yet been implemented or 

used. 

1) 

2) 

Recent improvements in S.M. codes 

n (order) 199 822 900 
•• ________________ • __ • ______ 0 ____ 

nz (non-zeros) 

MA18 [1971] 

MA28 [1977] 

701 

410 

240 

4841 

3090 

1760 

Analytic Factor Operate ratios (MA28) • 

n 199 822 

nz 701 4841 

Analytic 240 1760 

Factor 50 260 

Operate 10 40 

times in milliseconds on an IBM-370/l68. 
codes MA28A and MA18A are from Harwell subroutine 

4380 

88800 

11400 

900 

4380 

11400 

1520 

90 

library. 



3) Use of Block 

n 

nz 

MA28 

MA28 + block 

199 

701 

240 

240 
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822 

4841 

1760 

940 

900 

4380 

11400 

11700 

Although the following refers to a technique applicable to problems arising 

in finite element calculations (in, for example, structural mechanics), we hope 

to generalize it so as to handle symmetric indefinite and asymmetric matrices. 

As you can see, it is well organized to handle matrices out of core. 

Finite Element Matrices 

The region over which our differential equation (for example) is to be 

solved is first divided into small subregions or elements (for example, if our 

region is in R2 then a triangularization of it would yield triangular elements). 

Equations are set up for each element. The matrix, B(k) say, associated 

with element k will have a non-zero in position (i,j) only if variables xi 

and x. belong to element k. It is common to store B(k) as a small full matrix 
J 

of order of the number of variables in element k and hold an index vector 

indicating the position of the variables in the main array. 

Then our equations Ax = b can be considered to have the form 

A I B(k) 
k 

b I c(k) 
k 

where c (k) is the contribution of element k to the right-hand side. 

We need to: 

1) Calculate the B(k) and c(k). 

2) Assemble the matrices to get A and b. 

3) Solve the assembled system. 

------------ ------

The techniques we now discuss take advantage of the fact that we can 

perform some of the eliminations in a Gaussian elimination decomposition of A 

before the assembly of A is complete. 



fully 
assembled 
rows/columns 

effective 
active matrix 
or IIfront ll 

0 

I 

i 
I 

I 
I 

I 
I 

I 
I 
I - ----

Notes on this Partially Assembled Matrix 

0 

-

• The rows/columns in the upper left submatrix are fully sununed and 

the rectangular matrices contain only zeroes. 

• If a pivot is chosen from anywhere within the fully summed block, 

fill-in and arithmetic operations are confined to the submatrix 

in the upper left. Hence we call this the effective active matrix, 

since this is all of the matrix we require during elimination of 

these fully summed rows/columns. 

• We can easily organize the computation to make use of backing store, 

since elements need not be assembled into effective active matrix 

until fully assembled part is exhausted and rows/columns which 

have been pivotal can be sent off to backing store. 

---~~--_. __ Such frontal techniques can be_e~_s.liy_genera1ized to asymmetric 

or indefinite systems by choosing pivots from fully assembled 

matrix according to some pivoting criterion. 
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DIRECT METHODS FOR SOLVING SPARSE 

SYSTEMS OF EQUATIONS 

S. Eisenstat 
New Haven, Connecticut 

Problem 

where 

To solve system of linear equations 

Ax = b 

i) A is large (;;. 1000 unknowns) 

ii) A is sparse, i. e. , most aij = 
iii) A is nonsymmetric, but •.• 

O. 

iv) ... pivoting is not required to maintain numerical stability. 

Model Problem : 

",2 2 2 
a ~ + b ~ + c ~ + d dU + e au + fu 

dX2 dXdY ay2 dX dy = g in D 

u on elD 

where D = unit square 

Grid Discretization 

D 

h 1 
= n +1 
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Five-point difference equation : 

= 

"* System of N =n 2 equations. 

(Dense) Gaussian elimination 

(1) For k = 1, ••• ,N-l , use kth equation to eliminate kth variable 

from remaining N-k equations. Back-solve resulting upper 

triangular system for x. 

(2) Form LU-factorization of A where L is lower triangular and 

U is upper triangular with unit diagonal. Successively solve 

triangular systems 

Ly = b 

Ux y 

Cost of dense Gaussian elimination work 
N-l L (N -i)(N -i+ 1) 

i=l 

2 
Storage NN words 

multiply-adds 

for n x n model problem, work - 1/3 6 n , storage - n4 

which is unacceptable for n large. 

Goals of Sparse Direct Methods : 

(i) Avoid storing zero entries of A, L, and U 

(ii) Avoid operating on entries which are known to be zero. 

potential savings 

dense band profile sparse 

complexity/overhead 



Example 

[ ~~~~~ ] 
o 0 x x x 

Natural ordering 

fill-in 
.; 

\! 105 + (128) -+ 233 
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Zero structure of A 

x denotes elements of A which 

have filled in during elimination 

1-2-3-4-5 

I I I I I 
6-7-8-9-10 

I I I I I 
11-12-13-14-15 

I I I I I 
16-17-18-19-20 

I I I I I 
21-22-23-24-25 

\--;-



l, J . i) 

x x x 
x x x 

x x x 
x x x o 0 0 

x x 0 o 0 

x 0 o 0 0 x x 0 

x 0 0 0 x x x 
x 0 o 0 x x 

x 0 0 o x 
x 0 0 0 

x o 0 

x 0 

x 

0 

0 o 0 

x 0 o 0 

x x o 0 

x x o 0 

o 0 x x 0 o 0 

0 0 x x 
0 0 0 x 
x 0 o 0 

x 0 0 

x 0 

x 0 

x x 
x x 
0 x 
0 0 

0 

o 0 0 

x 0 0 0 

x o 0 0 

o x x 0 

o 
o 

x 0 0 0 x x x 0 0 

x 0 0 0 x x x 0 0 0 

x 0 0 0 x x x 0 0 

o 0 x x 0 0 0 0 x 
o 0 0 0 x x 0 0 0 

o 0 x x x 0 0 

o 0 x x x 0 

o 0 x x x 
x 0 0 0 x x 

x = nonzero 

o ~ fill-in 

Band Elimination : 

= 
upper bandwidth 

max{j-ili";;j, a ij :fa} 

lower bandwidth 

= max{j-i Ii ;;;;'j, a ij :f a} 

Band (A) {(i,j) Ii -mL ,.;; j ,.;; i +mu} 

Perform Gaussian elimination under assumption that all elements 

within Band (A) are nonzero and all other elements are zero. 

Note: No fill-in can occur outside Band (A). 



Cost : 

Work -NmLrun ' multiply-adds 

Storage -N(mL + run), words 
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cost for n x n model problem is work ~ n~, storage - 2n 3 
, 

which is significantly better than dense Gaussian elimination. 

Reordering to Minimize Bandwidth : 

Problem formulation generally induces "natural" ordering of 

variables and equations, but -- could also solve permuted system 

b , Px y 

which might have smaller bandwidth (and therefore require less work/storage). 

[cf. Cuthill-McKee, Gibbs-Poole-Stockmeyer]. 

Diagonal Ordering 

fill-in 
I 

V 105 + (100) -+ 205 

x x x 

1-2-4-7-11 

I I I I I 
3-5 -8-12-16 

I I I I I 
6-9-13-17-20 

I I I I I 
10 -14 -18-21-23 

I I I I I 
15-19-22-24 -25 

~~--- -X-X-O-X-X~~~~~~~~~~~~~~~~~~~~~I-~~~~~~~~~~~~~~~~~~-

xoxoxx 
xoxooxx 
xxoxooxx 

xooxooxx 
x 0 0 x 0 0 0 x x 
x x 0 0 x 0 0 0 x x 

x x 0 0 x 0 0 0 x x 
x 0 0 0 x 0 0 0 x x 

x 0 0 0 x 0 0 0 x x 
x x 0 0 0 x 0 0 0 x x 

x x 0 0 0 x 0 0 0 x x 
x x 0 0 0 x 0 0 0 x x 

x x 0 0 0 x 0 0 0 x 
x x 0 0 0 x 0 0 0 x 

x x 0 0 0 x 0 0 x x 
x x 0 0 0 x 0 0 x x 

x x 0 0 0 x 0 0 x 
x x 0 0 x 0 0 x 

x x 0 0 x 0 x x 
xxooxox 

xxoxox 
x x 0 x x 

x x x 

x = nonzero 

o '" fill-in 



·J ..".105.:') . ! 
~ .... 

Profile Elimination : 

(AKA envelope, frontal, variable bandwidth elimination.) 

~ 
x 

x 
x x 

x x x 

fL first nonzero column in ith row of A i 

f~ = first nonzero row in ith column of A 

ENV(A) 

Perform Gaussian elimination assuming all elements outside ENV(A) are zero. 

Cost for model problem on n xn grid is 

work ~ t n 4 storage ~ t n 3 

versus n 4 and 2n 3 for band elimination. 

Reordering Algorithms : 

King; Levy; reverse Cuthill-McKee 

Alternate diagonal ordering 1-14-2-16-5 

I I I I I 
15-3-17 - 6 -20 
I -I-~I~I~I~~~~ 
4-18-7-21-10 

I I I I I 
19-8 -22-11-24 

v = 105 + (82) -+ 187 
I I I I I 
9 -23-12-25-13 
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x x x 
x x x x 

x x x x x 
x x x x 

x x x 
x x x x x 

x x x x x 
x x x x x 

x x x 
x x x x 

x x x x x 
x x x x 

x x x 
x x x x 0 000 

x x x o x 0 0 o 0 

x x x o 0 x 0 0 0 o 0 

x x x x o 0 0 x o 0 o 0 0 

x x x x o 0 0 0 x 0 o 0 o 0 

x x x 0 000 x 0 000 

x x x 0 o 0 o x o 0 o 0 

x x x x o 0 000 x o 0 o 0 

x x x x 000 o 0 x 0 o 0 

x x x 0 0 o 0 o x 0 0 

x x x o 0 o 0 x 0 

x x x 0 000 x 

Sparse Elimination : 

Perform Gaussian elimination but do not store or operate on any zero 
entries. 

where 

N 
Work ~ 1: r i C

i 
i=l 
N 

Storage ~ ~ (r i + 
i:.1 

C. ) 
1 

ri 

C
i 

number nonzeroes in the ith row of U 

number nonzeroes in ith column of L 

cost for n n model problem with alternate diagonal ord~ring is 

Work ~ n'l multiply-adds 

2 Storage ~ - n 3 words 
3 

versus t n q 
and 4 3 

}n for profile elimination. 
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Reordering Algorithms : 

Minimum degree (AKA Markowitz) 

Nested dissection (cf. George) 

Nested dissection ordering 1-2-21-6-5 

I I I I I 
3-4-22-8-7 

I I I I I 
17-18-23-20-19 

I I I I I 
15 -16-24 -12-11 

\) 105 + (76) + 181 I I I I I 
13-14-25 -10-9 

x x x 
x x 0 x x 
x 0 x x x 0 

x x x o x o x 
x x x 
x x 0 x x 
x 0 x x x 0 

x x x 0 x 0 x 
x x x 
x x 0 x x 
x 0 x x x 0 

x x x o x x 0 

x x x 
x x 0 x x 
x 0 x x x ..... _..9~~ 

x x x 0 x x 0 

x 0 x 0 x x o 0 o 0 

x x x x o 0 x o 0 

x 0 x 0 x x 0 0 o 0 

x x x x 0 0 x o 0 

x 0 0 x 0 0 o 0 0 0 x x 0 o 0 

x x o 0 o 0 x x x 0 0 

x x 0 x x x 0 

x x 0 0 o 0 0 0 x x x 
x 0 0 x 0 000 0 o 0 0 o x x 
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Nested dissection : 

Eliminate variables on separating cross last 

9-point 

Cost for n xn model problem 

Work 

Storage 

versus 1 4 "4 n work and 2 3 
}n 

5-point 

9-point 5-point 

'" 20 n 3 8n 2log 2n 

'" 10 n 3 4n 2log 2n 

storage for sparse elimination 

using alternate diagonal ordering. 

32 x 32 Model Problem 

Work * storaget 
(Multiply-adds) (Words) 

Band (natural) 1.06 xl0 6 6.55 xl0 4 

and 

----Envelope--(diagonaJ.-) ~.67-~qO,_6---4.-S7-x-IOI-4-------------

Sparse 3.04 x lO s 2.77 x l0 4 

(alternate diagonal) 

Sparse 2.40 xl0 5 

(nested dissection)* 

*To factor A 

tNumber of elements in Band (A) or ENV(A) or number of nonzeroes in L+U 

*Five-point nested dissection. 



Fact 
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TRUE COST Cost + Overhead 

• Additional storage required to specify data structures. 

• Additional "bookkeeping" operations required to access 

and manipulate data structures. 

• Loop control operations. 

The efficiency of a program is generally determined by the 

efficiencies of its innermost loops. 

90-10 Rule 90% of run-time is spent executing 10% of the code. 

Implementation of Sparse Elimination : [Chang] 

Goal: Factor A into LU without storing or operating on zero 

entries of A or L+U. To be efficient, one must avoid testing for zero 

entries and must also avoid comparing column or row entries -- or else 

arithmetic operations will not comprise the bulk of computation. 

Storage Scheme : 

Store nonzero entries of A, L, U by rows, together with column 

index for each entry: 

JA 3 4 column index 

A: value 

IA(K) = pointer to start of row K 

An alternate form of Gaussian elimination for K = 1, ••• ,N-1 or for 

I = 1, ••• ,K-1 is to use the Ith equation to eliminate the Ith variable 

from Kth equation. NOTE Ith variable only needs to be eliminated 
th 

from K equation if LKI f O. 

Assume positions of all nonzero entries in Land U were known 

(assuming exact cancellation never occurs, this can be done symbolically). 
th Then proceed as follows at K step: 

1. Expand Kth row of A into vector of length W, inserting zeroes 

where fill-in in L+U will occur 

D : 

L U 



2. 

-110-

th For I = 1, ... K-I, where LKI I O. subtract multiple of I 

row of U from D. 

For J = J .• J m1n max 

D(JU(J» = D(JU(J» - LK1*U(J) 

3. Store nonzero elements of D as Kth rows of Land U. 

Remarks Symbolic factorization (SYMFAC) need only be done once for 

a given zero-nonzero structure. SYMFAC takes significantly less time 

than numerical factorization (NUMFAC). 

Innermost Loops 

(1) Inner product 

DO 1 J = JMIN,JMAX 

1 SUM = SUM + A(J)*B(J) 

(2) Band elimination (outer product) 

DO 1 J = JMIN,JMAX 

1 A(MI+J) = A(MI+J) + UIK*A(MK+J) 

(3) Profile elimination, band elimination (inner product) 

DO 1 J = JMIN,JMAX 

1 SUM = SUM + A(MI+J)*A(MK+J) 

(4) Sparse elimination 

DO 1 J JMIN,JMAX 

1 D(JU(J» = D(JU(J» + LIK*U(J) 

32 x 32 Model Problem 

* 

Band (natural 
(natural) 

Profile 
(diagonal) 

Sparse 
(5-point nested dissection) 

In seconds on IBM 370/158 using 
tIn words (1 word = 4 bytes). 
+Symbolic factorization required 

Factorization 
time* 
7.'.2 

(7.0) 

Total 
storaget 
6.55 xlOlf 

(1. 00) 

3.97 4.77xlO lf 
(7.0) (1.04) 

2.28+ 4.71 xlO lf 
(9.45) (2.04) 

t t 
~sec/multiply words/nonzero 

FORTRAN H extended (OPT=2) compiler. 

an additional 0.75 seconds. 
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CONCLUSIONS : 

1. Profile elimination is superior to band elimination 

• Fewer nonzeroes in ENV(A) than in Band (A), whence less 

work/storage. 

• Equally efficient. 

o Added storage to specify ENV(A) is not significant 

2. Sparse elimination may be superior to profile elimination 

• Fewer nonzeroes in sparse factorization than in ENV(A) , 

whence less work/storage. 

• Sparse elimination is slightly less efficient. 

• Added storage to specify data structure is significant. 

• For high order discretizations on coarse meshes, savings 

in the number of nonzeroes is less significant. 

Direct vs. Iterative : 

Direct Methods have the advantages of exact solution, fixed cost, 

and a solution for additional right-hand sides is relatively cheap. The 

disadvantages are that there is excessive (?) storage and excessive (?) 

work. 

Iterative Methods have the advantages of very low storage requirements; 

rapid convergence whence less work; and can take advantage of good starting 

guess (e.g., nonlinear or time-dependent problems). Disadvantages are: 

~--choi-ce (existence?) of good parameters (i-;-e.,-unobody~knows~how~to~tune 

SIP"); total work highly dependent on choice of initial guess; and stopping 

criterion is delicate balance between speed and accuracy. 

Recommendations : 

For one-dimensional problems, use profile elimination. 

For two-dimensional problems, use direct methods (sparse/profile) 

unless storage is a limiting factor or iterative methods are demonstratively 

superior (e.g., iterative runs faster in practice or problem is time­

dependent with time-varying coefficients). 

For three-dimensional problems, avoid direct methods unless iterative 

methods don't work. 

Example : 7-point discretization of Poisson equation on unit cube. 

Direct 
W ~ O(n6 ) 

S ~ O(n4
) 

Iterative 
W.;;:; O(n41og n) 
S ~ O(n3

) 
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REMARKS ON ITERATIVE METHODS FOR THE SOLUTION OF 

LARGE SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS* 

Olof Widlund 

Courant Institute of Mathematical Sciences 
New York University 

251 Mercer Street, New York, N.Y. 10012 

1. Introduction. This is a sununary of a talk given at the 

NRCC Meeting in Santa Cruz, California, August 9-11, 1978. 

First, a brief survey is given of classical, stationary 

iterative methods with an emphasis placed on their limitations. 

The rest of the paper is devoted to conjugate gradient type 

methods, which have been studied intensely in recent years. 

Attention is focused on the use of preconditioning and on 

methods which provide alternatives to the standard conjugate 

gradient methods. 

We shall restric"t ourselves to problems of the form 

Ax = b 

where A and b are real and A is a square matrix. We shall 

also always assume the existence of a solution. 

*This work was supported by the U.S. Dept. of Energy under 
contract No. EY-76-C-02-3077. 



2. Basic Iterative Methods. The very simple iterative method 

or 

is known as Jacobi's method. Here D is the matrix of diagonal 

elements of A. Let Land U be the strictly lower and upper 

triangular matrices given by 

The Gauss-Seidel method is defined by 

and can be considered as a special case of the successive 

overrelaxation method (SOR). This method which enjoys a 

well deserved popularity, is defined by 

(I - wL) x (k+l) = (WU + (1 - w) I) xk + WD-Ib 

where w is a real parameter, independent of k, chosen in 

the interval (0,2) in order to enhance the convergence. The 

SOR method can also be considered as resulting from an acceler­

ation of the Gauss-Seidel method. The new iterate is thus 

chosen along the half line originating at the previous 

iterate and passing through the point x(k+l) defined by the 

Gauss-Seidel method. The use of a method in this family 

requires the solution of a linear system of equations with a 
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lower triangular matrix, a fact which in no way complicates 

the calculations. 

The Jacobi method can similarly be accelerated and its 

rate of convergence is often used as a standard of comparison 

whp,n evaluating the performance of iterative methods. 

The study of the rate of convergence of an algorithm of 

this type begins with the substitution xk = x + ek , where x 

is the exact solution and ek the error after k steps. For 

the SOR method, we then obtain 

where 

£W = (I - wL)-l (wu + (1 - W)I) • 

The rate of convergence is measured by the spectral radius of 

the matrix ~. 
W 

For the optimally extrapolated Jacobi method,with A 

positive definite symmetric, the correspoinding spectral 

radius is given by 

where the condition number K(B) of a matrix B is the ratio 

of its largest and smallest eigenvalues. Choosing the optimal 

acceleration parameters for the extrapolated Jacobi and SOR 

methods requires knowledge of the spectrum of the matrices 

involved. Exact information of this kind is normally not 

available and the development of an appropriate procedure of 



estimating and improving this parameter and a good stopping 

criterion are often the most time consuming parts of the 

preparation of a computer code of this kind. Similar problems 

arise when semiiterative methods of Chebyshev type are used. 

The three standard monographs in this area, see Varga [14], 

Wachspress [15] and Young [18], contain discussions of this 

problem. Professor David Young and his associates at the 

University of Texas at Austin have incorporated recent ideas 

into computer codes developed for the ITPACK project. ITPACK, 

which will provide standard FORTRAN programs for a number of 

important iterative methods, is now closely tied to the ELLPACK 

effort. ELLPACK is a software project for solving ellipt~c 

problems coordinated by Professor John Rice of Purdue. 

While the development and study of iterative methods and 

algorithms for elliptic finite difference schemes have been 

connected intimately, these methods can of course be used 

with success for many other problems. 

We shaLL now })~iefly discuss the limitations of these -=-----

methods. The theory on the convergence of iterative methods 

of the type discussed in this section has reached a mature 

state, see in particular the monograph by Young [18]. 

Young [19] is recommended for a shorter survey. The positive 

definite symmetric case is considered almost exclusively and 

this restriction is not accidental. There are examples of 

positive definite symmetric matrices for which Jacobi's method 

diverges but the optimally accelerated Jacobi method is always 
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convergent for such matrices. For symmetric matrices the SOR 

method converges if and only if A is positive definite and 

wE (0,2). Cases are known for which SOR is not appreciably 

more efficient than a Jacobi method but for certain families 

of matrices an order of magnitude improvement can be realized. 

This is true if the matrix has property A, which means tha"t a 

permutation P exists such that 

Dl ' D2 diagonal. 

For this family the role of K, in the estimate given above 

for the rate of convergence of the Jacobi method will be played 

by constant x IK. Similar gains can be made when all off 

diagonal elements are nonpositive. It should also be noted 

that the SOR method is known to be convergent for certain 

nonsymmetric problems and that extensions exist to nonlinear 

systems. 

We remark that block versions of these methods have often 
------ ~-=-------~~--~------------------~----- ~-----

proven quite successful. In particular a block tridiagonal 

structure of A with tridiagonal diagonal blocks can be exploited. 

We also note that property A and block property A can be used 

to develop compressed versions of the algorithm with reduced 

storage requirements. A similar device is described by Reid [13J 

for the conjugate gradient method. 

Finally, we define still another iterative method, the 

symmetric SOR methodo In every other step the order of the 

unknowns is reversed in the SOR method, resulting in an error 



-117-

equation, corresponding to a double sweep, which is of the 

form 

e(k+l) = ~T ~ ek , 
w w 

...p Tw ..fJ ~ the transpose of ~w. 

As it stands, this method offers no real benefits in comparison 

to the methods previously introduced. It has however been 

shown for certain elliptic problems, that Chebyshev and conju-

gate gradient acceleration of this method results in a very 

considerable improvement of the convergence rate, see Young [18] 

and Axelsson [1,2]. 

3. Conjugate Gradient Type Methods. These methods can be 

considered as members of the family of nonstationary iterative 

methods. Other well known members of that family, the 

Richardson and Chebyshev methods are considered in detail 

in the monographs mentioned above. The conjugate gradient 

method often requires only marginally more work per step and 

--it-is becoming an-increasingly popu~ar~(;hQi(;e-.~I-t-requires~------

no a priori information on the spectrum of the operator and 

is optimal in a sense which shall be specified below. For an 

introduction to standard material on the conjugate gradient 

method, see Hestenes and Stiefel [7], Luenberger [8] and 

Reid [12, 13] • 

The standard conjugate gradient method can be character­

ized mathematically in the following way: Let A be positive 

definite symmetric and let Xo be the initial guess. The Krylov 

sequence with respect to the initial residual rO = b - AxO 
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is given by 

Denote by Sk the subspace spanned by the k first elements of 

this sequence. The kth approximation xk then satisfies 

for all y = Xo + z z E Sk , i.e. xk is the element with 

the smallest error with respect to the A-norm IxTAx • 

When properly implemented only a few vectors of storage 

are needed and a three term recursion relationship can be 

used to define xk •.. Extensions to more general operators 

are discussed below. 

Any of the iterative methods of section 2 can be studied 

in terms of a splitting of the operator A, 

A = AO - R • 

A simple iterative method is then applied to the transformed, 

_preconditioned _e~ation A~IAx = A~lb. It is therefore 

natural to consider the Krylov sequence, 

It must of course be economically feasible to compute the 

solution of a system of the form AOY = c in each step. 

If both A and AO are positive definite, symmetric, the conjugate 

gradient algorithm easily generalizes. In the algorithm the 

operator A is replaced by A~lA and the inner product xTy , 

used in the computation of certain parameters, is replaced 
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T by x AOY. These ideas go back, at least, to Hestenes 16]. 

For elliptic problems this device has proven very useful when 

AO is chosen to correspond to a fast Poisson solver, a symmetric 

SOR operator or an incomplete Cho1esky factorization 

of A, see Axe1sson [2], Concus, Golub and O'Leary [4J and 

Meijerink and van der Vorst [10]. 

The choice of AO for a given A is definitely an art. 

Ideally A~lA should have the form aI + B + C where a is 

a scalar, B an operator of low rank and C an operator with 

small norm. The conjugate gradient algorithm converges very 

quickly in such cases. Another important consideration is 

of course the cost of obtaining the solution for the simplified 

model AOY = c. 

The rate of convergence of the conjugate gradient 

algorithm can be estimated as follows. The decrease of the 

square of the A-norm of the error, 

is bounded from above by 

see Luenberger L8]. Pk- 1 is any polynomial of degree k-l 

and a(A~lA) the spectrum of A~lA i.e. the eigenvalues of 

the generalized eigenvalue problem A~ = AAO~. This expression 

is bounded from above by 
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-1 where K is the condition number of AO A. This last bound is 

known to be a gross overestimate in certain cases. 

We conclude by surveying some work on methods for operators 

which are not positive definite, symmetric. 

If A is symmetric but indefinite numerically stable 

algorithms, SYMMLQ and MINRES, due to Paige and Saunders [11] 

can be used. Preconditioning by a positive definite symmetric 

AO can sometimes be very helpful. A revised version of SYMMLQ, 

which incorporates preconditioning, is available from the 

author upon request. Professor S. Eisenstat of Yale and his 

associates have worked out alternative stable algorithms. 

Apparently, it is not widely recognized, that error bounds 

similar to those given above in the positive definite case can 

be obtained for the SYMMLQ algorithm, see Widlund [17]. 

The case when a nonsymmetric operator A can be split 

into A = AO - R where AO is positive definite, symmetric 

and R is antisymmetric has been considered by Concus and 

A Chebyshev method, which requires estimates of the 

-1 eigenvalues of AO A , has been developed by Manteuffel [9]. 

It converges if the eigenvalues of A~lA lie in an ellipse not 

containing the origin. 

Any system of equations, with an invertible matrix A, 

can be transformed into a positive definite symmetric problem 

by the Gauss transforms 

and 
where T 

x = A Y 0 
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Preconditioning by an arbitrary invertible AO can precede 

these transformations. In certain cases a good choice of AO 

makes these methods attractive in spite of the extra work 

involved in each step. We remark that since the conjugate 

gradient algorithms require the operator only in terms of an 

operator-vector multiplication, it is normally advisable to 

T -1 retain the operators A A, AO A, etc., in factored form. 
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MODIFIED GRAM-SCHMIDT 

Cleve Moler 
University of New Mexico 

The Modified Gram-Schmidt algorithm (MGS) is a rearrangement in the 

Conventional Gram-Schmidt algorithm (CGS) which, in inexact arithmetic, 

produces vectors that are usually "closer to orthogonal" and better 

suited for such applications as solution of least squares problems. 

Let S be an arbitrary m by n real matrix with columns s, where 
J 

j = 1, ..• ,no The objective is to produce a matrix Q whose columns qj 

are orthonormal and where each Sj is a linear combination of the qk for 

k .:;;; j, that is, 

s, 
J 

If R is the upper triangular matrix with elements r kj (and zeros below 

the diagonal), this can be written 

S QR 

The CGS algorithm produces R a row at a time. The inner products 

are taken between the emerging columns of Q and the columns of the 

original S. The algorithm is: 

for j = 1, ,n 

qj Sj 

for k = 1, ... j-1 

(qk,Sj) 

qj r kj
q

k 

r" II qjll 
JJ 

qj q/rjj 

The MGS algorithm produces R a column at a time. The inner products 

are taken between the emerging columns of Q and the columns that have been 
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produced by previous steps. The qj can overwrite the Sj' The algorithm 

is: 

for j 1, •.. , n 

b s. 
J 

for k = I, ••• , n 

r kk IIqkll 

qk qk/rkk 

for j = k+l, .•. ,n 

t;= (qk,qj) 

q. = qj - r kj qk J 

As an example, let S be the 4 x 3 matrix 

S o 
o 

1 

o 
£ 

o ~) 
where £ is not small enough to be neglected when compared to 1, but whose 

square is, for example £ = 10- 5 on a computer with eight significant 

digits. Then CQS produces 

-------"~---

Q = 

where 0 = 1/12 . Note that the second and third columns of Q are nowhere 

near being orthogonal to each other. In contrast, MGS produces 

( 
1 0 0 

) £ -0 -T 
Q = 

0 0 -T 

0 0 4T 

where T = 1/16. Now the second and third columns are exactly orthogonal 

to each other. The only difficulty is that they are "not quite" orthogonal 

to the first, but this is the best that can be done with the arithmetic 

we have assumed. 
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THE SY~Q ALGORITHM 

A. K. Cline 
University of Texas 

SYMMLQ is an algorithm for solving symmetric indefinite systems developed 

by Paige and Saunders. It is related to the Lanczos process. 

where 

a
1 13 2 

0 
132 

a
2 

"-
"-, 

" 
, 

TK = , .... '13 , , 
, , K , 

0 '13 
K 

'a 
K 

We seek to solve Ax = b. Let 

1 
VI TIbI b 

.~~~~~~~--~~--~~.~~~~~~~~~~~~~~~.~--- --_. 

If x 

Alternatively, use SY~1LQ. Let TKQ
K 

= L
K

, 

Thus 

LK is lower triangular. 



where 

Note: 1. Lower 

2. x is 

It turns out: 

1. LK is 

2. wK is 

3. zK is 

1. 

W = V 
1 1 

for K = l, 2, •••• 

2. Lanczos: 

-

,.) ,j ;J ./ -V7- J{j 

and 

triangular system is solved in one direction 

computed as linear combination of 
, w

K 
s. 

easily determined from L
K

_
l 

easily determined from wK- l 

easily determined from zK_l. 

Algorithm 

x = 0 • 
o 

8K+l vK+l = A vK -Cl.
K 

vK-

8K+l = 118K+l vK+llI 

vK+l = l/~+l • 8K+l vK+l 

T 
Cl.K+l vK+l A vK+l 

and Cl.K,8K• 

and vK• 

8K vK_l 

3. If K = l, e 2 = 82 ; otherwise 

4. c 
K 

s 
K 

for zK· 



5. 

6. x = 

Per step: 5 vector adds 

7 scalar times vector 

2 inner product 

1 A times vector 
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if K;;' 3 

Convergence: Depends on size of polynomial of degree K which is smallest 

on spectrum but having value of 1 at origin. Can be improved by pre-condi-

tioning. Instead of forming Av at each step, we need to solve 

Av v 

then form 

Av 

Other generalizations: 

1. Minimum resident· variant 

2. Non symmetric 

3. Least squares 

4. Singular values 

Reference: C.C.Paige and M.A.Saunders, "So.lution of sparse indefinite 

systems of linear equations," SIAM Jour. Numer. Anal. 12,617-629 (1975). 
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FOUR INDEX INTEGRAL TRANSFORMATION: AN n 4.? PROBLEM? 

Steve Elbert 
Iowa State University 

To solve the time-independent Schroedinger equation for a system of N 

electrons in the field of K (fixed) nuclei 

H '1' (1 ••• N) = E'l' (1 ••• N) op 

H op = 
N N K 

-~ ~ V;-~L 
i=l i=l a=l 

r . al. i<j 

choose an expansion set of n « 200) "atomic orbitals" (AO' s), <i> (q), a 
(i = 1,2, ... ,n) of either Gaussian or exponential type and evaluate the 

electron-electron interaction integrals 

for all p, q, r, s. Methods that go beyond Hartree=F'o_ck_x_eJ}u:lr_e_t_b_a_t ·we_furth.~e",r ____ _ 

transform integrals over AO's to integrals over "molecular orbitals" (MO's), 

<P , where 
m n 

<Pm (i) = ~ Tip <Pa (p) 
p=l 

i = 1,2, ..• ,M~n 

Interaction integrals Gover MO's are obtained by the 4-index transformation 
m 

G (i,j ,k,.R,) 
m 1: 1: I I 

p q r s 
A(i,p) B(j,q) C(k,r) D(.R"s) G (p,q,r,s) 

a 

where ~, ~, ~, pare subspaces of T used to form <p. In practice, Granges 
.- .- .- .- ~ ~m -a 

from dense to as high as 80-90% sparse (for large systems) while the coefficient 

matrices A-D may range from dense to very sparse depending on the amount of 

symmetry present. 
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For large n, this 4-index transformation becomes quite time consuming 

and it is absolutely essential that one have efficient codes that take advantage 

of sparsity and any symmetry that may exist. 

Computational Complexity 

(ilqrs) L A(i,p) G (p,q,r,s) a 
p 

(ij Irs) L B(j,q) (ilqrs) 
q 

(ijkls) L C(k,r) (ijlrs) 
r 

G (i,j ,k,.Q,) m L D(.Q"s) (ijkls) 
s 

all i,q,r,s 

all i,j, r,s 

all i,j,k,s 

all i,j,k,.Q, 

Maximum number 
multiplications 

n S 

5 n 

n S 

Total 4n5 

Alternatively, this can be regarded as two back-to-back two-index 

transformations: 

+ C G (p,q,r,s)D 
~ ~a ~ 

G (i j k .Q,) 
m 

n 2 (2n 3) 

Total 4n5 

In general, the elements G~i are not generated in the same order as they are 

needed so a partial re-ordering (matrix transposition) of the Gpq 's will be 
k.Q, 

required before the second transformation can be carried out. Using the 

direct access "bin sorting" techniques of Yoshimine, however, this re-ordering 

is at most an O(n4) step. 

An O(nl!) Method 

Let [AB] ij 
pq A(i,p) B(j,q) and [CD]k.Q, = C(k,r) D(.Q"s). 

rs 

G (i j k .Q,) 
m I L [AB]!~ Ga (p q r s) [CD]:! 

p,q r,s 

is an obvious O(n 6) method. 

Then, 
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For dense matrices it is possible to improve on the nS dependence for 

ordinary matrix multiplication as shown in Table 1. The Winograd and Strassen's 

original algorithm are given below. 

Winograd Algorithm for AB = C 
,--, 
N/Z 

C .. 
~J = L (Ai, ZK-I + BZK,j )(Ai,ZK + BZK-I,j) - (Si +nj) +Ai,N BN,j 

K=l 
if N is odd 

rN/ Z' 

Si = L: Ai,ZK-I 
. 

Ai,ZK 
K=l 

~ 

N/Z 

nj = L: BZK-I,j • BZK,j 
K=l 

unstable when IIAi,ZK_III /IIBZK,jll »l or « I • 

Strassen Algorithm for A B = C -
MI (AU + AZZ ) (BU + BZZ ) 

MZ = (AZI + AZZ)BU 
~------~---

M3 = All (BIZ - BZZ ) 

M4 AZZ (-Bll + B21) 

MS (All + AIZ)BZZ 

M6 (-All + AZI) (BII + BIZ) 

M7 (A1Z - AZZ ) (BZ1 + BZZ ) 

Cll MI + M4 - MS + M7 

CZI MZ + M4 

CIZ = M3 + MS 

CZZ = MI + M3 + M6 - MZ 



Method 

Standard 

Winograd (exploits 
commutivity of real 
multiplication) 

Strassen (exploits 
7 multo instead of 
8 in product of two 
2 x 2' s) 

Limit 

-132-

TABLE 1. Matrix multiplication 

Scalar 
multiplications 

3 
n 

3n2 
- 3n+l? 

Scalar 
additions 

3 2 
n - n 

3 2 
3/2 n -n 
2n 2 scaling 
operations 

Scalar 
arithmetic 

There are six possible kinds of index symmetry for the 4-index arrays discussed 

here. The operator generating the array (symmetric or antisymmetric) may be 

restricted to certain types of index symmetry 

Index Symmetry Pattern Operators 

ij of j i; k~ =f ~k; (ij) of (k~) 0 0 0 A, S 

ij j i; k~ of ~k; (ij) of (kn I:::,. 0 0 S 

ij of ji; k~ = ~k; (ij) =f (k~) 0 ~ 0 S 

ij =f j i; k~ =f ~k; (ij) = (k~) 0 0 I:::,. A 

ij j i; k~ = ~k; (ij) =f (k~) ~ I:::,. 0 A 

ij ji; k~ =f ~k; (ij) = (k~) ~ 0 ~ does not occur 

ij =f ji-, , k~ = ~k; (ij) == (k~) 0 t::,. t::,. does not occur 

ij j i; k~ == ~k; (ij) :: (k~) t::,. I:::,. ~ A 

l/r is antisymmetric ee 

The most difficult case to treat (i. e. exploit all the index symmetry) 

is t::,.. t::,. 1:::,.. Use of s~rrmetry reduces external storage requirements and I/O 

but complicates the implementation at every stage. 

'" 
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Table 2 shows the number of multiplications needed for each of 8 different 

algorithms for the 4-index transformation that have been published since 1970. 

Elbert's 25/24 n S method is the only significant improvement in recent years. 

It should also be pointed out that the n S method was actually in use prior to 

1970 [Tang and Edmiston]. A 1961 [unpublished] formulation by E. R. Davidson 

is known. 

Figures 2 and 3 give the algorithm loop structure for Elbert's [1978] new 

algorithm and the older method of Bender and Shavitt [1972]. 

Resource Management 

Table 3 summarizes the I/O requirements for the various methods. 

Internal Storage Requirements 

L 

2. 

3. 

Fast n2 (+bin buffers) 

(n 3+n2 )/2 

Slow [n]4 

Virtual n S (threshing?) 

[Yoshimine, Elbert and Diercksen] 

[Benqer, Pendergast and Fink] 

[Shavitt] 

[Pounder] 

External Storage and I/O (assumes no zero integrals) 

canonical integral list 

"square" canonical integral list 

Bemder-Sha vi tt (sEigle pass in, n pasSes ouf) 

~ 
j(DA. 

nS +n (t:;. + ~) 1/4 words transferred 
in in-out 4 

~ 1/8 n for small min 

Pounder (n passes in, single pass out) 

n(~) + ~ + paging (especially for nS
) >1/8 nS words transferred 

in out 

Pendergast and Fink (save all partial sums)(n passes in, single pass out) 

nm 
n(~)+[n]2 D 

in in-out 
+ D 

in-out 
+~+ 

in-out 

~ 

out 
>1/8 n S words 

transferred 
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Yoshimine, Elbert (single extended pass in, single pass out; 

transpose intermediate results) 

D.A. 
D + D + ~ 

inout out 
space for D needed, but D+D reduces 
read-write conflicts 7/8 n 4 words 
transferred 

Diercksen (same as above plus sequential write/read around d.a.) 

D.A. 
D + D + D + 

out inout 
D + 
in 

~ 
out 

11/8 n4 words 

This procedure provides better restart security and is less memory-intensive 

during the cpu bound phase. 

The transposition of the half-transformed integrals is done with a bin sort 

developed by Yoshimine. To be effective, a reasonable size buffer (one track 

will avoid rotational delay) is needed for each bin. This may require large 

amounts of fast/slow memory. If the memory requirements are too large, a P-ary 

sort-merge may be required. How is this best carried out? 

"No clear cut strategy for optimum disk sorting has been worked out; 

the number of available options greatly exceeds the number of 

strategies that have been theoretically analyzed ••• a good deal of 

experimentation still needs to be done." 

- Knuth, Vol. 3 (1973) 
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TABLE 2. Number of multiplications for various algorithms. 

Method Sum 1 Sum 2 Sum 3 Sum 4 

Tang & Edmiston (1970) N2[N]2M N[N]2[M]2 N2 [N]2M N[N]2[M]2 

Bender (1972) Shavitt (1977) [N]4Ml 2[N]3[M]2 [N]2M[M] 2 4N[M]4 

Yoshimine (1970,1973) N2[N]~ N[N]2[M]2 N2M[M]2 N[M]4 

Elbert (1973) N2 [N]2M N[N]2[M]2 N2[M]3 N[M]4 

Diercksen (1974) N2 [N]2M N[N]2[M]2 N2 [M]3 N[M]4 

Pendergast & Fink (1974) N2[N]~ N[N] 2 [MJ 2 N2[M] 3 N[M]4 

Pounder (1975) ~[N]2M N[N] 2 [M]2 N2 [M] 3 N[M]4 

Elbert (1978) N2 [N]2M N[N]2[M]2 N
2

([M]?U N[M]4 
-[M] ) 

M1 = M+l 

[x]2 2 n 
= x /2 + x/2 ~i I 

i I 

n 
[x]3 3 2 ± i 2 = x /3 + x /2 + x/6 = '. l. 
[x]4 - x4/8 + x3/4 + 3x2/8 + k/4 = [[x]2]2 

Total for n = N =M 

(36n5+24n4+l2n3)/24 

5 4 3 2 (29n +65n +73n +43n +6n)/24 

5 4 3 2 (33n +42n +l5n +6n )/24 

5 4 3 2 (29n +42n +l9n +6n )/24 

5 4 3 2 (29n +42n +l9n +6n )/24 

5 4 3 2 (29n +42n +l9n +6n )/24 

5 4 3 2 (29n +42n +l9n +6n )/24 

5 4 3 2 (25n +42n +23n +6n )/24 

r"" ,-,' 

.... ,' 

.:...-

~.,... 

I' 
I-' 
.,~ 
I' 

.;' ... 
' .... -,. 

G', I. 
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TABLE 3. Element1s transferred in and out of primary main storage. 
I 

Method Exp~ession for Total for n = N = M 
elemehts transferred 

Tang & Edmiston (1970) Unknownl, probably must be carried out entirely in fast storage. 

Bender(1972) Shavitt (1977) [N]4 + i[M]4(2N+I) 
I 

5 4 3 2 (6n +18n +30n +30n +12n)/24 

Yoshimine (1970,1973) [N]2[N]r + 2[N]2[M]2 + [M]4 432 (21n +42n +27n +6n)/24 

432 [N]2[N]12 + 2[N]2[M]2 + [M]4 (21n +42n +27n +6n)/24 

[N1
2

[N1r + 4[N1
2

[M12 + [M1
4 432 (33n +66n +39n +6n)/24 

5 4 3 2 ;;;'M[N]4 +'1 2MN[N]2 + 2[N]2[M]2 ;;;. (3n +61n +87n +3Sn +6n)/24 
+'1 2N [M]3 + [M]4 I 

I-' 

5 .~ 3 2 w 
00 >M[N]4 +'1 [M]4 >(3n +9n +ISn +ISn +6n)/24 I 

432 
[N1

2
[N1r + 2[N1

2
[M12 + [M1

4 (21n +42n +27n +Sn)/24 

Elbert (1973) 

Diercksen (1974) 

Pendergast & Fink (1974) 

Pounder (1975) 

Elbert (1978) 

.' 

,. 
d' 
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Fig. 1. Scalar multiplicities vs n 
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for the product of two (nxn) matrices. 
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The Winograd algorithm does fewer scalar 
multip1 icities for n ;;. 4 and <24 

n -+ 

lOL-----~-------;------~------~r_------r_------T_----__r 
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Fig 2. Algorithm loop structure [Elbert, 1978J 

r = 1 to N 

s = 1 to r 

p = 1 to N 
GPP = G(p,p,r,s) 

[ 

i = 1 to M 
Sl(p,i) = T(p,i) * GPP 

q = 1 to p - 1 
GPQ = G(p,q,r,s) 
i = 1 to M 

Sl(q,i) = Sl(q,i) +T(p,i) * GPQ 
Sl(p,i) = Sl(p,i) +T(q,i) * GPQ 

S2(r,s,-,-) = 0 
= 1 to M 
r q = 1 to N 

SQ I :: S l( q , i ) 

r 
j = 1 to i 

S2(r,s,i,j) = S2(r,s,i,j) +T(p,j) * SQI 

= 1 to M 
j = 1 to i 

r = 1 to N 
SRR = S2(r,r,i,j) 

~~~~~--- --k = RANGEK--------~-----------------------~- ~~-- --
[ S3(r,k) = T(r,k) * SRR 

Method 
old 
new 

s = 1 to r - 1 
SRS = S2(r,s,i,j) 
k = RANGEK 

S3(s,k) = S3(s,k) + T(r,k) * SRS 
S3(r,k) = S3(r,k) + T(s,k) * SRS 

G'(i,j,-,-) = 0 
k = RANGEK 

s = 1 to N 

RANGEK 
1 to i 
i to M 

SSK = S3(s,k) 

r 
if i = k then 1 = RANGEL else 1 = 1 to k 

G'(i,j,k,l) = G'(i,j,k,l) + T(s,l) * SSK 

RANGEL 
1 to j 
j to k 

Multiplications when n=N=M 
(29n 5+42n 4+l9n 3+6n 2 )/24 
(25n 5+42n 4 +23n 3+6n 2 )/24 



multo 
p :: l,N 

e' ::: 1 

Fig. 3. Bender-Shavitt method without mUltipass I/O 
and without n3 storage region. 

q == 1.P 
5Z(p,q,-,-) ::: 0 
If p =q then e'=2 

r = 1.P 
5l( -) :: 0 
5 '" 1. r for rip; 5 = 1.9 for r = p 

If 5 = r then e = 2e 
If rs :: pq then e = 2e elements required 
G5 :: G(p,q.r,s)/e sequentially 

r 
i :: 1.M 

51(i) = 51(i) + T(5,i)*G5 

i = 1.M 
51 = 5l(i) 
TRI = T(r. i) 

r
j = 1. i 

2[N]3[M]2 52(p.q,i,j) = 52(p,q,i,j) + TRI*51(j) + T(r,j)*5I 
~~ __ ~~ __ L-____ ~~~~~ __ ~~~~~~~~~~~~ 

(52 stored on direct access device) 

i = l,M 
j = 1.i 

P = l,N 
53(-) = 0 
q = 1,P 

5PQ = 52(p,q,i.j) 

r K = l,M 
[N]2[M]2M 53(K) = 53(K) + T{q,K) + 5PQ 

i = l,M 
j = 1,; 

54A{i,j.-,-) = 0 
K = 1, i 

TPK = T(P,K) 
SK= 53{K) ~----~--~----~~-- -----~~--~ 

rR. = 1,K for K fi ; R. = i ,j for k = i 
I 54A(i,j,k,R.) = 54A(i,j,k,R.) + TPK*S3(R.) + T(P,R.)*5K 

54B(-,-,i ,j) :: 0 
i-I = 1.M 

TPI = T(P,i') 
Sl = 53(p,i) 

r j I = 1, i' for i f i, j' = j , i for i' = i 
S4B{i,j,i,j) = S4B(i,j,t,j) + TPI*S3(j') + T(Bj')*SI 

(S4A and S4B stored on direct 
access device) 

k = l,i 
R. = 1, K for K fi, R. = i,j for K = i 

G(i ,j,k,R.) = 54A(i ,j.k,R.) +S4B(i,j ,k,R.) 
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OUTLINE OF YOSHIMINE'S 

TWO-PASS SORTING SCHEME 

M. Yoshimine 

IBM Research Laboratory 
San Jose, California 95193 

This algorithm requires that it should be possible to calculate the 

position of each item in the sorted list from information stored with 

the item. 

Definitions ({n} = smallest integer ~ n; [n] largest integer ~ n) 

N Number of items to be sorted. 

K Number of items which can be accommodated simultaneously in 

the central memory working array. This is the same as the 

capacity of a "segment" (or "core load"). 

L {N/K} Number of segments into which the list is to be 

partitioned. This is also the number of "buckets" into which 

the central memory working array is to be divided during the 

first pass. 

---M-=-[K/-LJ ~-K~/-N-=-CapaG-it-y-of-eaGh-buGket-(-i-.e.-,-~he-number-oE'---------­

items it can hold). Each bucket belongs to one of the L 

segments (numbered 1,2, .•• ,L). When filled, each bucket is 

dumped as one record on a direct access file. The total 

number of records to be stored on the file during the first 

pass is approximately given by {N/M} ~ (N/K)2 ~ L2. 

J = The position index of the current item in the final sorted list. 

Procedure 

Pass I Read the items in the original list in order. For each 

item compute J (its position index in the final sorted list), then store 

the item in the next available position in bucket number P = {J/K}. 

Whenever a bucket is filled, write it out as a record on the direct access 



" 

:J 

file. Maintain a list of the locations of all the records belonging to 

each segment. 

Pass II Deal with the different segments in order, P 1,2, ••• ,L. 

For the pth segment, read the records belonging to it, one at a time, from 

the direct access file. For each item in these records, compute its final 

position index J, then store it in position J - (P-l)*K in the central 

memory working array. When all the records belonging to segment P have 

been processed, write out the central memory working array onto the final 

sorted file. 

(Note that the central memory working array for K items is in addi­

tion to storage for various pointer arrays, buffers, etc.) 
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STORAGE UTILIZATION AND SORTING 

M. Yoshimine 

IBM Research Laboratory 
San Jose, California 95193 

Many problems in large-scale computation involve the manipulation 

of long data lists, typically containing millions of elements, that extend 

far beyond core storage capacity. For example, a list of two electron 

integrals produced in one order, dictated by the algorithm used for the 

most efficient computation of the integrals, may be needed in a quite 

different order for efficient processing at a later stage. Or, a large 

matrix with elements written onto a peripheral device by row may be needed 

later by column, thus requiring a reordering. 

Reordering long data lists necessarily involves peripheral devices, 

and it is important to minimize the I/O time involved in the reordering 

process. This is the time for data transfer between the core and peripheral 

memory devices, including the access times to information on these devices. 

Non-optimal I/O procedures may result in substantially increased I/O times, 

and therefore elapsed time, before completion of a job. When the increase 

is from 4 hours to 160 hours, as is the case in the examples we discuss 

below, the substantial difference is an important consideration. 

In the first section of this paper, we present a two-step ordering 

techniquel using direct access devices in a way that minimizes I/O time. 

First, we outline the procedure and describe in detail the algorithm 

employed in a scaled-down example. We then present two more realistic 

examples estimating and discussing I/O times. 

Outline of the Procedure 

Suppose an input array AI (a i= 1 N') is to be reordered to i' , 

produce an output array A(aj' j=l,N), where i and j are position indices, 

and N' ~N. It is assumed that the order in A is predetermined, that is, 

-. 



j 
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a contains information on jls position in A. Further suppose that K is 
i 

the maximum number of elements of the reordered list A that can be held 

simultaneously in core. The reordering is efficiently accomplished by 

the following two-step procedure. 

Step 1. Sort AI into subarrays AI' A2, ••• , ~ with the number 

of elements in subarray Ai being ~K. This can be done in one or more 

passes on the input array AI according to the formula, developed below, 

involving timing parameters of the appropriate I/O devices. It is assumed 

that elements of any subarray Ai can be efficiently reordered or processed 

in the core area reserved for K elements. An essential point is that 

elements of the subarray A. be stored, in the manner described below, on 
1 

a direct access device. The elements of the original array are used 

sequentially and can, therefore, be stored on magnetic tape. 

Step 2. The elements of subarray Ai are retrieved from the direct 

access device and reordered, or otherwise processed, one subarray at a time. 

As previously indicated, the number of elements in a subarra.y is ~K, and 

therefore all elements of the subarray can be finally processed without 

expensive intermediate I/O. 

Detailed Description of the Procedure 

The procedure will be described in detail, using a scaled-down 

example. Suppose that an input arrayAl has-20-elements-(N L =-N-=-20-) 

which are integers from 1 to 20 but randomly ordered (see Fig. 1). Suppose 

further that the available core space is 5 (K=5), and the reordering will 

be done in one pass on the input array (P =1). Then, the number of sub­

array Ai is 4 (M=l) and the number of elements in Ai is 5. It is assumed 

that there is enough disk space available (direct access device). 

Figure 1 shows t~e initial state of the input array AI (assumed to 

be a sequential data set), core and disk. The core contains four buffers 

with associated chain indices, and a disk record counter. The chain indices 

a.re set to zero initially. 

The elements in AI are processed one at a time in a sequential order. 

The first element is 1, which belongs to AI; it is therefore placed in 

buffer 1. The second is 17, which belongs to A
4

, and is placed in buffer 4. 
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Figure 2 shows the core after the fourth element has been processed. Note 

that the disk record couhter is still one, indicating that no disk record 

has been written. 

Processing of the fifth element is slightly different. The element 

is 3, and thus belongs to AI' but buffer one is full. One must write 

buffer 1 with its chain index onto the first record of the disk, replace 

the chain index for buffer 1 by the value in the disk record counter, 

increase the record counter by 1, and finally place 3 in buffer 1. 

Figure 3 shows the state of the core and disk after processing the fifth 

element. Note that the number on top in the disk record is the chain 

index. 

After all input elements are processed (see Fig. 4), elements 

contained in the core buffers must be emptied out onto the disk, in the 

manner described above. Figure 5 shows the state of the core and the 

disk at the end of Step 1, which is also the initial state for Step 2. 

Note that the chain indices in the core are starting indices for retrieving 

the subarrays in Step 2. 

Reorder the subarrays in Step 2 in the following manner: The chain 

index for the subarray Al is 17. Retrieve the 17th disk record and put 

its element in the appropriate place in the core (the 5th core storage in 

this particular example). Its chain index indicates that the next record 

to be retrieved is the 11th record. Process the 11th record in the same 

- -_. manner-,~and~repea t~this~processing_of_the_dislcrecords~until~the_chain __ _ 

index is zero, which signals that the subarray Al has been ordered. The 

ordered Al will then be outputted (see Fig. 6). Repeat this process for 

the remaining subarrays. When the last subarrays (A4 in this example) 

have been ordered, the output array contains the desired ordered list 

(see Fig. 7). 

This admittedly simple example illustrates the main points of the 

procedure. In real cases, millions of elements are processed and the size 

of the core is in the thousands. Thus, each buffer residing in the core 

and records on the disk will be large enough to contain several hundred 

elements. The main point is that Step 1 allows the subarray to be 

retrieved in its entirety with the help of the chain indices and (by the 

nature of the direct access device) without excessive intermediate I/O. 



Following are two more realistic samples in which we use the two-step 

ordering technique described above. 

Example 1. Two-electron integral list 

Consider a list of integrals 

A' {(E,I)., i=1,2, ... ,N} 
1 

where each element of n
i 

bytes consists of a floating point number E and 

an associated integer I. I is unique in the range 1 ~ I ~ N, and the 

sequence of I values in the input array is arbitrary. A floating point 

number, E, is required to produce a reordered list of N elements The 

output list will be 

A {(E)I' 1=1,2, ... ,N} • 

Suppose that n K bytes of core storage are available for reordering 
o 

the subarrays in Step 2. Then the definition of the ).lth subarray A).l is 

A).l - {(E,I)i' ().l-l)K < I ~ K } 

and the number of such subarray is 

M [(N-1)/K] + 1 

(In these equations a square bracket denotes the integer part of the 

bracketed expression.) 

(1) 

Further suppose that the subarrays A are to be produced in P passes 

. ov~r the input array. Consideration of the QPJ::t.muIILI>aSSeS will be deferred 

to a later section which discusses the timing analysis. The number of 

sub arrays produced in each pass is 

m = [(M-1)/P] + 1 (2) 

and the subarrays produced in the pth pass are 

(p-1)m < ).l < Pm (3) 

To produce m subarrays, we need m buffers in the core, and the length 

of each buffer is given by 

L c [n K/n.m] 
o 1 

The procedure for the pth pass is as follows: 

(4 ) 
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(E,I). goes to the Q,th buffer if (p-1)mK < I. < pmK, 
1 1 

and 

(5) 

When a buffer is full, write out onto the direct access device with the 

chain index, as described in the previous section. 

Step 2. Process subarrays of A~ as described in the previous section. 

Example 2. Transposition of a large matrix 

Suppose the elements a
ij 

of a matrix are stored by column 

AI :: {all ,a2l , ... ,an 1,a12 , ••• ,a 2"" ,a } , 
r nr nrnc 

where nand n are, respectively, the number of rows and columns in the 
r c 

matrix. These elements must be reordered so that the transposed matrix 

is stored by column, that is, the final ordering must be 

The meaning of the parameters K, M, m, L , P, n ,n. is as in 
COl 

Example 1, except that: 

o K is chosen to accommodate an integral number of columns of the 

transposed matrix in Step 2; that is, 

K nn (6) c 
which leads to a simple algorithm for the Step 2 reordering. 

o There is a definite relation between the initial and final 

ordering of the element a ..• Thus, indices do not have to be 
1J 

stored with the matrix elements and we can set the ratio ni/no 1. 

Subarrays of A~ are 

:: {a .. with (~-l)n < i < ~n for all j } 
1J 

Subarrays produced in the pth pass are 

~ (p-l)m < ~ < pm 

and the procedure on the pth pass is: 

a .. goes to the Q,th buffer if (p-l)m < i < pnm, and 
1J 
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[(i-I) /n] + I - (p-l)m (7) 

Step 2. The following algorithm is used in reordering: the Rth 

element of any subarray is put into position S of the output block which 

receives the reordered elements where 

S ncRI + R2 + I (8) 

with 

RI (R-I) mod n 

R2 [(R-I)/n] 

We again note that Eq. (8) yields the correct results only when K is a 

multiple of n • 
e 

Timing Considerations 

In this section we give (a) upper limits on the I/O time required by 

the process described for the examples, and (b) a formula for determining 

the optimum number of passes on the input array. We neglect CPU time 

because it is small compared to the I/O time required for the examples 

given above. It should be noted, however, that in determining the optimum 

number of passes for some complicated reordering procedure, the CPU time 

must be taken into account. 

Maximum times required for Examples 1 and 2 are estimated for various 

-values of parameters N, K, and P, and are comp-ared-with-the-times-requirea~-~--~---­

by the non-optimum method described below. 

I/O Time Required for the Two Examples 

The total I/O time, T, can be divided into four parts, namely 

T TR + DW + DR + TW (9) 

where TR is the time required for the P passes over the input array; TW 

is the time for writing the output array. These two data sets are assumed 

to be sequential. DW and DR are times required for writing and reading 

subarrays on the direct access device, respectively. These four terms 

are estimated by 
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TR TReff x ni x N x P 

TW TWeff x n 
o 

x N 

(10) 

where TReff' DWeff , DReff , and TWeff are the effective transmission rates 

per byte. DWSAC and DRRAC are the sequential and random access times for 

the direct access device, and (KM/Lc) is the approximate number of records 
2 

written. Use of Eqs. (1-3) to derive KM/Lc = niM /noP and determination 

of the optimum value of P = Popt by the condition dT/dP == 0 gives 

P opt (11) 

Note that Eq. (11) assumes there is enough direct access device 

space available. If not, a higher P value dictated by available space 

must be chosen. 

Non-Optimum Method 

The non-optimum I/O method considered here reorders the core-load 

at one time without use of temporary data storage, and passes over the 
- ----------" 

input array as many times as necessary. The I/O time, T', required for 

this method is given by 

T' = (12) 

where the· first term is the time required to read the input array M times 

(M = (N-l)/K+l) and the second is the time to write the output array. 

Comparison of Times 

Table 1, containing estimated I/O time for Example 1 for various P 

values with fixed Nand K, clearly demonstrates the validity of Eq. (12). 

Tables 2 and 3 give estimated I/O time for Examples 1 and 2, respectively, 

for a number of N, K combinations with P = P opt. These tables have been 



prepared assuming that input and output arrays are stored on magnetic 

tape (IBM 3420-8), and the subarrays on disk (IBM 3330-11). The values 

of device-dependent parameters are 

TWeff 0.9573 lls/byte (6250 bpi) , 

1. 241 lls/byte 

DW
SAC 

8.4 ms/record 

DR
RAC 

= 38.4 ms/record 

Table 1 clearly shows that reading back of subarrays in Step 2 

processing is the most time-consuming part of the procedure. However, 

the reading of the subarrays is not entirely random, and the value used 

for D~C is almost certainly overestimated. Tables 2 and 3 clearly 

indicate the importance of the optimum I/O procedure. For instance the 

two-step procedure needs only 3.5 hours of I/O time while the other method 

takes 160 hours for reordering the integral list of N =10 8 elements. 

Concluding Remarks 

The examples discussed above have been chosen because of their 

simplicity, so that the general procedure can be most clearly demonstrated. 

Modifications appropriate to other problems will not change the nature of 

the I/O processing. _______________________ _ 

These procedures have crucial applications in theoretical chemistry. 

For example. consider the so-called four index transformation 

(ij I kfi,) L L L L 
p q r s 

which takes an input array of matrix element (pqlrs), combines it with 

coefficients, and produces an output array (ij Ikfi,). Both input and output 

arrays can contain millions of elements. The reordering techniques discussed 

in this paper not only minimize the amount of I/O but also allow us to 

implement an algorithm, for combining (pqlrs) with coefficients, in which 

the amount of computation is of the order n where n is the range of 

p,q,r,s. This minimizes the amount of computation, which is absolutely 

essential. 
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Another application can be found in constructing the CI Hamiltonian 

matrix, the element of which is given by 

~ IJ 
= L..J C (pqlrs) 

pqrs pqrs 

where CIJ are coefficients multiplying integral (pqlrs). C
IJ 

pqrs pqrs 
in general generated in the order of the IJ index, and (pslrs) needed 

are 

for 

a particular hIJ may be scattered through the entire integral list. Thus, 

when the number of i.ntegrals is in the millions, the list of C
IJ 

which pqrs ' 
can also be in the millions, must be 

efficiently and with minimum 1/0. 6 
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TABLE 1. Estimated I/O times for Example 1 for various numbers of pass 
with ni = 12 bytes, no = 8 bytes, N = 10 7 and K = 50 x 10 3

• 

P 1 2 3 4 5* 6 

m 200 100 67 50 40 34 

L 166 333 497 666 833 980 
c 

TR (sec) 115 230 345 460 574 689 

DW (sec) 655 401 318 275 250 235 

DR (sec) 2462 1302 922 725 610 541 

TW (sec) 77 77 77 77 77 77 

Total (sec) 3309 2010 1661 1537 1511 1541 

TABLE 2. Estimated I/O times for Example 1, with ni = 12 bytes and 
n = 8 bytes, for various N, K, and M values. 

0 

N K M P opt T T' 

10 6 25 40 3 111 sec 467 sec 

10 6 50 20 2 ---74-sec-- ------237-sec - -- --- ------------------

10 6 100 10 1 56 sec 123 sec 

10 7 25 400 10 44.1 min 767 min 

10 7 50 200 5 25.2 min 384 min 

10 7 100 100 3 15.9 min 193 min 

lOB 25 4000 32 21.1 hrs 1277 hrs 

lOB 50 2000 16 11.0 hrs 538 hrs 

10 8 100 1000 8 6.1 hrs 319 hrs 

10 8 200 500 4 3.5 hrs 160 hrs 

Note: Only times for Popt are listed and T' are corresponding 
estimated times for the non-optimal method. 
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TABLE 3. Estimated I/O times for Example 2 for various N, K, and M 
values, with ni = no = 8 bytes. 

N K M P T Ti 
10 opt 

10 6 25 40 3 77 sec 313 sec 

10 6 50 20 2 52 sec 161 sec 

10 6 100 10 1 40 sec 84 sec 

10 7 25 400 10 29.8 min 512 min 

10 7 50 200 5 17.2 min 257 min 

10 7 100 100 2 11.0 min 129 min 

10 8 25 4000 32 14.1 hrs 851 hrs 

10 8 50 2000 16 7.4 hrs 425 hrs 

10 8 100 1000 8 4.1 hrs 213 hrs 

10 8 200 500 4 2.4 hrs 107 hrs 

Note: Only times for Po t are listed and Tf are corresponding 
. d' fP the non-optimum I/O method. estlmate tlmes or 

Fig. 1. The initial state of the input array AI, core, 
-~--~~-----~~and--dcisk--for~Stoep-1-.--~ ----~---~----- --~--~----~ -------
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Fig. 2. State of the array A', the core, and disk after 
the 4th element has been processed. 
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Fig. 3. State of the array A', core, and disk after 
the 5th element has been processed • 
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Fig. 4. State of the array Ai, core, and disk after all 
the elements have been processed. 
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Disk 

Core 

Array 
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±1 I I I I I 

11 16 7 10 
----I----

5 10 15 18 

1 0 3 4 2 5 0 8 9 
3 14 11 12 4 13 17 16 19 

0 12 13 10 14 
6 19 7 18 8 

Fig. 5. The initial state of the disk, core, and output 
array A for Step 2. 
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Fig. 6. State of the disk, core, and output array A after 
the subarray Ai has been processed. 
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A DIFFERENT APPROACH TO INTEGRALS 

AND INTEGRAL TRANSFORHATIONS 

OR, DO WE REALLY NEED ALL THE INTEGRALS? 

N.H.F.Beebe and Jan Linderberg 

-+ 
Molecule with basis functions ~.(r) on each center (N in all). 

1 -

Compute integrals over I-electron operators like V2
, l/r, 

I ~ N2 one-electron integrals plus integrals over l/r
12 

: 

~~ Z-electron integrals I N ~ ZO -7- ZOO I 

Hartree-Fock calculation: 

Solve 

where 

fe = 5(( 

f .. 
1J 

hij + 2 {Z(ij Ik.Q,) - (Ulkj)} Pk.Q, 
k.Q, 

+ --and------r-""---[[--------------------------------------------

~ from last interaction 

and 

s.. (~.I~.>:: (~.,~.) 
1J 1 J 1 J 

i.e., principle problem is data handling of N4 (ij Ik.Q,) IS. After 

successful solution of Hartree-Fock problem, we want to form 

[linear combination of ~'s] 

and construct Z-electron integrals over ~IS by 

N N N N 

(as Iya) 2 Cia IcjS 2: Cky 2: (ij Ik.Q,)C.Q,8 
i j k .Q, 



u '. 
;) I_>.i -Js9i 

., 
,.) .,j ,) 

These are used to construct matrix elements for the large sparse problem 

B-I[' = S'['[ 

where each B-1 •. may involved up to M2 2-electron integrals (M 
1J 

electrons ~ 10-+100). 

Problems: 

1) Summation is Ns problem. 

number of 

2) If S in f[ = Set is numerically almost singular, some CiS 

are large and have both plus and minus signs ~ error propagation 

into every (as/Yo); e.g., must have (aa/SS) > 0 and (as/Sa) > O. 

3) Often bottleneck of computational quantum chemistry. 

Obs: (ij /kR.) = V .. kO is matrix element of a positive definite 
1J, N 

operator 1/r12 ~ /V/ > o. 

Idea: [Jan Linderberg, September 1976] 

If \lU = IUA 
~ eigenvalues 

then V = IU A U+ 
(N2) 

or V ij ,kR. L Uij,M AM U~R.,M 
M 

Note: V contains N4 numbers constructed from N functions. 

If rank (V) is small, then ------------------ ---

V·· k O ~ 1J, N 

or 

I 

i.e., data reduction! 

·-10 

NHFB: 1) What if 500, not 10, is upper limit ~ currently impossible. 

2) It's a lot of work for me. 
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Idea: [JL, October 1976] 

u > 0 =? W [Cholesky] 

Suppose 10 

V .• k 1J, ~ :E Lij ,M r1: ,M 
M=l 

What if? 

J 1 +M 

(I J+l +M) 

Algorithm 

1) Get all V
JJ 

and arrange in non-increasing order, remembering 

2) 

3) 

4) 

original order. 

Select largest (i.e., VII)' 

Get entire column (= row) of 

Set Ln -+- Vn/Ln 

a) 

b) 

c) 

d) 

~ Form L11 -+- V 11 • 

U: V
I1

, (I = 1, ••• M). 

(I 2 +M) 

2 +M) 

(I J+1 ... M) 

STOP! when largest remaining element VII < 8 (8 is user-specified). 

Call V the number of columns of l computed (~ effective rank). 

Advantages: 
2 1) Only need V (not N ) rows of V. 

2) Recompute whole V from 



3) 

4) 

/ 
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min(I,J,V) 

VIJ ~ LIK LJK 
K=l 

(l/r } is rigorous lower bound if generated from 
12 + 

truncated LL (would actually prefer upper bound, but 

no one has any bound yet, and 0 is small). 

2-electrort integral transformation becomes 

i.e., V I-electron transformations, or VN 3 work. Form 

I L' L' 
M as.M yo,M 

in VN 4 work (one dot product/integral!). 

5) Less propagation of errors for large [IS. 
6) Adjustable tolerance: some (aSlyo) can be computed less 

accurately than others. 

7) Possible to construct f from IL directly. so reading VN4 

numbers each iteration, instead of N4
• 

8) Linear dependencies beneficial! (small V). 

9) Symmetry properties conveniently included. 

10) Program simpler. 

11) 

12) 

Lots of DOT PRODUCTS 

Can estimate (aSlyo) = I L Q M L 0 M Mal-', y, 

Disadvantages: only one or two, 

from few terms (or one). 

1) What if V ~ N2
; then work ~N5 to form IL', and N6 to form 

(aSlyo), [plus I/O!]. 

2) If V is large, each new column of IL requires disk access 

to all previous columns. 

Other ideas: 

1) Apply to linear equations and least-squares. 

2) Use Winograd's idea: 

A = IB[ 
N/2 

=> Aij = E (Bi ,2k-l + C2k,j )(Bi ,2k 4- C2k- l ,j) - (~i +nj) 
k=l 

Reference: N.H.F.Beebe and J.Linderberg, Int. J. Quantum Chern. 12, 683 (1977). 
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N/2 

l;i L Bi ,2k-l Bi ,2k 
k=l 

N/2 

nj = L C2k- l ,j C2k,j 

k=l 

Normal method: N3 multiplications + N
3
_N

2 
additions 

Winograd: 1/2 N3+ N2 multiplications + 3/2 N3 + 2N(N-l) additions 

Brent: 1) Scale to prevent B +C accuracy loss (_N
2
). 

2) Apply to Gaussian elimination, Cholesky et ale 

Matrix multiplication (double precision with extended precision accumulation) 

12r-------~--------~------~~------_r--------T_------~ 

.. 

2 

0.2 0.4 0.6 

normal 
method 

0.8 

Order of matrix (Xl02) 

~ 

,I. , 
, • , 

I 
I 

I 
I , 

It. 

I--~- -~---

I 
I 

Winograd 
method 

1.0 1.2 
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