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ABSTRACT

Nonlinear wave evolution in Vlasov plasma is analyzed using the
Lie transform, a powerful mathematical tool which is applicable to
Hamiltonian systems. The first part of this thesis is an exposition
of the Lie transform. Dewer's gemeral Lie transform theory is explained
and is used to comstruct Deprit's Lie transform perturbation technique.
The basic theory is illustrated by simple exzamples.

Two general and remarkahle results are obtained by applying Lie
transform theory to the Vlasov equation. The firast is a useful relation
between the ponderomotive Hamiitomian (the kinetic generalization of the
ponderomotive potential) and the linear susceptibility of Vlasov
plasma. This general relation then yilelds a second result, a general
formula for the second-order self-consistent quasistatic density per-
turhation produced hy 5 wave packet. For a plasma with ome species of
single charged lons this formula is dén(x) = —(4Tr)—1[|§(§)|2 - [@(f)lzl/
(Te+’ri). This formula, which includes kinetic effects, applies to both
magnetized and unmagnetized plasma.

Lie transform theory is then applied to two problems, the first of
which is to find tbe nonlinear wave equation that governs waves in un-
magnetized plasma. We derive the formula of Mora and Pellat for the
wave-generated quasistatic magnetic field, and via systematic perturba-
tion theory we find the equation which gives the nonlinear evolution of
the wave amplitude. This equation unifies previous work: it includes
the ponderomotive effects of Kaw, Schmidt, and Wilcox, the self-
precession effect of Arons and Max, and the (previously meglected)

effect of self Faraday rotation by the quasistatic magnetic field. The



calculation shows that the self Paraday rotation effect is comparable
to the self precession effect. This fact implies that a measurement
of the polarization rotation acquired by a nonlinear electromagnetic &
wave in passing through a plasma does unot determine tie self-generated
quasistatic magnetic fiejd.

The second problem considered is the oropagation of a test wave
in the system consisting of a plasma and a large amplitude electro-
magnetic wave. We show that the change in the polarizaticn of the
test wave, as it propagates through the laser-irradiated plasma,
consists of geveral effects. In addition to Paradar rotation by the
laser-generated quasistatic magnetic field, there are other effects
which are not simply a rotation of the test-wave polarization. For
example, the test wave polarization may change from plane to elliptical.
These results indicate that one may ohtain unreliable results from the
technique of measuring quasistatic magnetic fields through the Faraday

rotation of test waves.
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1. Imtroduction

This thesis is au application of the Lie transform to the anaJ.ys:lz‘
of nonlinear wave evolution in Vlasov plasma. The Lie transform is a -
ne- mathematical tool which simplifies the analysis of a Hamiltomian
system, such as the Vlasov equatinn.' Here the Lie transform is used to
discuss nonlinear wave evolution, by which we mean the nonlinear develop—
ment of the amplitude of a single wave or wave packet. We do not 2on-
sider other nonlinear processes, such as three wave coupling or induced
scattering.

1.1 Mptivatrion and Background

There are many practical reasons for studying the nonlinear

evolution of waves in plasma. The laser-fusion schemes require a large—
amplitude, and thersiore nonlinear, wave to imteract with plasma. Fila-
mentation, a possible outcome of nonlinear wave evolution, may play an
important role in the laser-fusion scheme.l Radiofrequency heatingz’3
of magnetically confined plasma to fusion temperature also requires the
presence of a large amplitude wave in plasma. Morales and Leea have
suggested that the lower-hybrid heating scheme may be limited by fila-
mentaticn, which leads to intense localized electric fields. They uol:e,5
"The interaction of plasma particles with these fields may alter the
transport of energy to the interior of the plasma, . . ." Of course,
1if energy transport is altered for the worse, the lower-hybrid heating
scheme will have to be abandoned. Amnother reason for studying mon-
linearity is to understand the evolution of a linearly unstable system.
For example, Aamodt, Lee, Liu, and Rl:nsp.ml-;lut:'n6 have shown that the non-

linear gyrofrequency shift causes the ion-cyclotron-loss-cone mode to




saturate.
In addition one might study nonlinear wave evolution in order to
waderstand exactly solvable nonlinear wave equations, such as the

Korteweg-deVries equation,7’8 the nonlinear Schrddinger eqv.xa'.::l.m-x,9 and
the modified Korteweg-de Vries eqv.;atian.m’ll A1l of these equations
are derived by invoking tain approximations. If we relax these
approximations do we destroy exzact solvability?

The ponderomotive potential t:m-u:ept:,l2 which arises in nonlinear
wave evolution, deserves special study. The ponderomotive potential
concept provides an elegant way of describing the average motion of a
particle in a high-frequency wave. There have been several proposals
for using the ponderomotive potential to confine plasma13 either entirely
or partiauy.la'-u Her» vhe idea is not that nonlinearity may cause
instability (such as filamentation) or saturate a linear instability,
but that waves might be driven to large amplitudes so that nonlipearity
may be exploited to advantage. It is natural to try to determime when
tl e ponderomotive potential comcept hreaks down, and what concept
replaces it; e.g., must kinetic effects he described by a diffusion
operatot?16 Or is there a more elegant and convenient formzlism?

Early work on nonlinear wave evolution concentrated on plane waves,

i.e., no amplitude modulation, #Hontgomery and Tidman17

applied syste-
matic perturbation theory to the cold-plasma equations. They computed
the nonlinear conductivity of the plasma and the monlinear fregquency
shift of transverse waves. Later, Sluijter and Hnntgum.etyls showed that
relativistic effects are important. A recent example of nonlinear

plane-wave calculation 1s the work of Aroms and Hax,lg who discussed



electrcmagnetic wave propagation in a relativistic Viasov plasma. .

The necessity of allowing for amplitude modulation was demonstrated
by Kaw, Schmidt, and Wilcax.l When the wave am;;litudg has a gradient,
no matter how small, there 1s a quasistatic density response
Sn = (811‘)_1 (ezlmmz) (Ez)/(Te-i-Ti). The change in the plasma conductivity
due to this density respomse is much larger than the nonlinear cor iuc-—

tivity found by earlier workers .17’18

However, the analysis of Kaw,
Schmidt, and Wilcox 1= not systematic. They simply modify the linear
susceptibility hy replacing the wmpertirhed density n, by the nonlinearly
correcied demsity n;ﬁn. One camnot ohtain the previously known non-
linear conductivity from the formalism of Kaw, Schmidt, and Wilcox.

This beuristic method of Kaw, Schmidt, and Wilcox for including
nonlinezrity has since been used by others. Morales and I.ee4 modified
the equation which describes the linear propagation of lawer-hybrid
waves by changing the wmperturbed demsity to the nonlinearly corrected
density. Aamodt, Lee, Liu, and R:aseublul:hl6 used this method to include
the nonlinear gyrofrequency shift in the evolution of ion cyelotron
waves. This heuristic method has great appeal bacause it hus a simple
interpretation and it is easy to use. However, the heuristic method
is not systematic, ard so it may leave out important effects.

A systematic perturbation method for including nonlinearity has
appeared in the literature (see e.g. ref. 20). This method assumes a
perturbation which is a sum of two wsves with nearly equal wave-vectors
and frequencies, e.g., ¢ = a exp(:l}‘! ']f-lwlt) +b exp(ilfz'zf-iuxzt) + c.c.
Such 2 perturbation can be rewritten in the form of a sinusoidal modula-

tion of a single wave: ¢ = [z exp(ik-x-1Qt) +b exp(—.ﬂf-)fﬂﬂt)] exp

no



(150.:_;_11.10:) + c.c, vhere k, = (l_glﬂ_:z)/z, wy = (W H,)/2, k = K-k,
and & = ml-mo. By systematic perturbation theory one can derive the
nonlinear dispersion relation (k). Unfortunately this method cawmot
describe non-sinusoidal modulations, such as solitons. (Since the
equations are nonlinear, superposition does not apply.)

All of these analyses are characterized by the neglect of colli-
slons. This neglect can usually be justified a posteriorl by showing
that the mean free path is long compared to & filamentation length or
by showing that the collision frequency is small compared to the non-
linear frequency shift. Such justification is rarely provided in the
literature, but it can usually be produced with a modest effort.

We summarize the present understanding of nonlinear wave evolution
as follows. The nonlinear evolutior of plane waves and of sinusoidally
modulated plane waves has been analyzed by systematic pertur®ation theory,
but one must be able to treat non-sinusoidal modulations in order to
include solitons and filamentation. To date the znalyses of non-
sinusoidal modulations have been heuristic. Thus we are motivated to
analyze nonlinear wave evolution by some new procedure, which is syste-
matic and which can include arbitrary amplitude modulations. Further-
more, since collisions are not important, while kinetic effects are,
our procedure must imvolve the analysis of the Vlasov-Maxwell equatioms.

Since we must analyze the Vlasov equation, which is governed by a
Hamiltonian, it is advantageous to use Hamiltonian (or canonical)
perturbation theory. Recently, Hor121 introduced Lie-transform pertur—
bation theory, a great improvement over the older Poincaré-Von Zeipel

tmal:l-md.ZZ Deprit23 further improved Hori's formulation so that it could



bhe conveniently applied to time~dependent. systems.- Depr:i.t also"de;jj.véa’
recursion relations between the terms in the Lie serfes. ;Thén Deiiarzl"'
improved Deprit's work by eliminating the need for power series expan~
sions.

llewarz5 applied canonical perturbation theory to the Vlasov equation.
At that time he was not aware of Lie transforms, and so he used tbe
older Poiucaré—Vc;n Zeipel technique. In that work Dewar reformulated
quasilinear theory. Since that time, Johnston26 used Dewar's technique
to discuss induced secattering, and Johnston, Faufman, and Johnstou27
used Dewar's technique to derive three-wave coupling coefficients for
Vlasov plasma. These papers proved the worth of canonical perturbation
theory,, even in the Foincaré-Von Zeipel form. It follows that Lie
transform perturbation theary should further simplify the analysis of
the Vlasov equation. (We note that Kawakam:l.z8 applied Hori's Lie-
transform theory to the Vlasov equation, and Dewarzl' applied Deprit's
Lie transform theory to the Vlasov equation.)

Thus we have a problem and a new method for amalyzing this problem.
The problem is to present az systematic discussion of nonlinear wave
evolution, including ponderomotive effects and kinetic effects. The
new method is the Lie transform.

1.2 Synopsis

Lie transform theory is used throughout this thesis with the

exception of Chapter 6. Accordingly, we begin with an exposition of Lie
transform theory in Chapters 2-5. Chapter 2 is a discussion of prelim
inary material. Here we discuss the basic ideas of Hamiltonian theory.

Chapter 3 contains a review of Dewar's Lie transform theory. We



- mttuduuz :hé: Lie transform, we show how it is generated by a phase
ftﬁié::iunkv'(g;g), and we show how to find the new Hamiltonian from the
Lie transform. Finally, we show how to construct DPeprit's Hamiltoniamn
perturbation theory from Dewar's Lie transform theory. (Historically
the davelopment was in the opposite order.)

In gections 2.3, 3.4, and 4.4 and Chapter 5 we discuss peripheral
issues, which are not important to the later development, and which may
be skipped in a first reading of this theais. Section 2.3 is a discus-
sion of the simplest (but secular) perturbation theory, which is equi-
valent to the usual time dependent perturbation theory of quantum
mechanics.an In section 3.4 we show how to prove Noether's theorem by
using Lie transforms. In sectiom 4.4 we show that Kolmogorov's (super-
convergent) technique31 does not lead to a simpler perturbation theory
in practice as has been suggested by Bmiland.az Finally, in Chapter 5
we give a short discussion of the various conventions used in Lie
transform theory.

In Chapter 6 we begin the discussion of nonlinear wave evolution.
The goal is rto go as far as possible without specifying the medium,
except to say that it has a linear response tensor E(E,m) =1+ é(}&,m)
- kzt:zlu;2 + E%:Z/mz. We first consider wave energy and wave momentum.
We prove that these concepts apply not only to normal modes (det 2 = 0)
but also to any nearly monochromatic perturbation. The techriques used
in this pruvof are then applied to collisionless plasma to show that wave
energy and wave momentum can be divided into coatributioms from the
electromagnetic field znd from the separate species. Next we consider

the nonlinear evolution of wave packets. We show how to systematically



derive nonlinear wave equations in terms of the nonlinear cirreat. (The
vonlinear current itself is computed in later chapters to complete the
derivation of the n.onl:lnear wave equation.) We also outline the
heuristic method of referemnces 1, 4, and 6 for including nonlinearity
and we show how it is related to the systematic method.

In Chapter 7 we discuss general aspects of nonlinear wave evolution
in Vlasov plasma. We first write the Vlasov equation in Hamiltonian
form. Then we use Lie transforms to eliminate the rapid oscillations
from the problem. As a result we obtain a closed set of equations for
the evolution of the wave packet amplitude, the nonlinear fields, and
the oscillation-center distribution, i.e., the transformed Viasov
function which has only slow variationms.

A quantity of great importance to this analysis is the ponderomotive
Hamiltonian, which governs the evolution of the oscillation center dis-
tribution. The ponderomotive Hamiltonian is the kinetic gemeralization
of the ponderomotive potential, simce it contains the momentum depen—
dence of the ponderomotive force. In section 7.4 we prove a very
general theorem, which relates the ponderomotive Hamiltonian to the
linear susceptibility. A special case of this theorem is the expression
Yy = -(411\15)—1@1*'15((1!)'@1 which relates the ponderomotive potential ¢
of species s to the cold plasma susceptibility of species s, where E’-l
is the amplitude of the oscillating field, §1(§,t) = §1(§’t) axp(-iwt)

+ c.c (For unmagnetized plasma, simply use Xy = lmnsezl(msmz) to obtain
the standard resultl® b = e2|~1|2/(m5m2).) The general theorem is
applicable to any Viasov system (hot, magnetized, inhomogeneous, time-

dependent) upon excluding resonant particles.



In Chspter 8 we use these methods to analﬁze nonlinear wave evolu-
tion in unmagnetized uniform Vlasov plasma. Our systematic analysis
unifies previous work inm that it contains the self-generated magmetic
field of Mora and Pellat,33 the pondercmotive effects found by Kaw,
Schmldt, and Wilcux,l and the self-precession effect of Arons and Hax.]'9
In addition it contains the (previously neglected) self Faraday rotation
which is caused by the self-generated magnetic field. Of course, one
could have inclnded self Faraday rotation by using the heuristic method,
i.e., one simply modifies the linear susceptibility to include the self-
generated magnetic field. However, this method cannot ineclude the self-
precession effect. Since the self-precession effect and the self
Faraday rotation effect are comparable, we conclude (in Chapter 8)
that the heuristic method for including monlinearity is wrong inm that
it leaves out effects wﬁch are comparable to those it keepe.

The fact that self precession and self Faraday rotation are
comparable led to the study of Chapter 9. Here we determine how a test
wave propagates through a laser irradiated plasma. We expect the laser-
generated magnetic field to cause Faraday rotation of the test wave,
but in analogy with Chapter 8 we also expect to find additional terms
which cause polsrization precession. In fact, we find many other
effects which can completely dominate Faraday rotation. These other,
more c.-plicated, effects do not comsist of just polarization precession;
they can also cause the wave polarization to change, for example, from
plane to elliptical.

In Chapter 10 we discuss some aspects of nonlinear wave propaga-—

tion in magnetized plasma. We derive the ponderomotive Hamiltonian



for a magnetized particle. Here the elegance of the Hamiltonian methods
becomes apparent, since the ponderomotive Hamiltonfan contains not only
the ponderomotive force,lz and the ponderomotive drifts (with kiretic
corrections), but also the nonlinear gyrofrequency shift, which plays
an important role in the nnnlinear saturatiom of the ion-cyclotron—loss-
cone mde.6 Next we find a general formula for the quasistatic response
to the ponderomotive Hamiltonian. ¥For a single ion species (with e, =-
o) Plasma, this formila 1s én = (40 N(|€ 1% - 1B, (H/ (41, This
formula applies to magnetized and unmagnetized, Vlasov plasma if (1)
IVln]Ell |<<l§ and (2) resonant particle effects are unimportant. Finally,
we use the heuristic method (recognizing its limitations) to include

this density perturbation in the propagation of wave packets.
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2. FNotation and Background

In this chgpter we lay the foundation for later work. W= brieﬂy

discuss the elements of Hamiltonian mechanics: Poisson brackets and ca-

nonical transformations. This discussion is not intended as a substitute
for those found in the textbooks on this subject [1-3, 13,14]. It is mostly
a repetition of standard material, but rewrittem using operator notatiom,
vwhich proves very convenlent for discussing 1le transforms.

Using the operator notation we discuss the time development transformation
generated by a Hamiltonian. We show how it can be used to solve Liouville's
equation. Finally we discuss how it can be found using secular perturbatiom

theory, in analogy with quantum mechanics.



2,1 Canonical Transformatisns

We work in a 2N dimensional space. The variables are collectively
denoted by the vector z. The components of z are Zyseees 2y = ql,..._, Iy
and Zgppree-aBgg = Ppasces Pyr The Poisson bracket relations are contained
in the matrix y defined by

’
1 for J = 1N
Vi = {zi, 2.} =C1 for 1 = J4+§ (2.1.1)
1 0 otherwise .
By inspection we gsee that the matrix y is antisymmetric and invertible:

Yi3 % Yy (2.1.2)

- z Y:Lj ij = 611: (2.1.3)

3
We now consider a time dependent mapping of the 2N variables by the vector
function Z(z,t). We call this mapping canonical if the new variables have
the same Poisson bracket relations as the old. The Poisson bracket of two

functions f and g is generally givem by

N 2N
2 : f 3 3 D 2: af g
(£, g} = £ 08 9t CB =y, . (2.1.5)
> e 3‘11 3py api aqi e~ Bzi 13 azj
i=1

Thus, the mapping Z(z,t) is canonical if

{zi,zj} = [zi,zj} (2.1.5)
or 9z, 9Z.
I i
et Tz kL 3z, i3
k,L

We take it to be well known that a canonical mapping preserves the Hamiltonian

equations of wmotion.




' Given any cenonical mppﬁg 2(z,t) of the phase space variables, we
“define g corresponding canonical transfornation operator T(t) which operatzs
on functions of phase space. The action of this operator is that it evaluates
the function at the mapped point. If f = Tg, then
’ £(z,t) = 5(Z(z,t), £). (2.1.6)
A particular example of this 1s when g(z,t) = z;, one of the canonical variables.
(Strictly speaking we mean the function z 4» Dot the variable; if there were
only one variable z, this would be the identity functiom, g(z)= z.) By our
rule for Tg, we have
Tz = 2(z,t) - . (2.1.7)
We see that the mapping is cbtaimed by applying the traasformationm to the
variables (but thought of as functions).

We also introduce an operator to denote the Poisson bracket. To every
phase space fumction £(z,t) we assign an operator I‘E whose action an a function
g is given by

LE g = {£,81 . (2.1.8)
Some authors have defined I..f with a minus sign relative to this choice. We
have made this choice so that Jacobi’s didentity in operator form is easy to
remember:
MLes L = Lyg oy - (2.1.9)
In the above equation the square brackets denote the commutatar of the two
operators.
We note that the mapping f—*Lf is linear and unique, but it is mot invertible.

If we are given two operators LE =I'g’ we cannot conclude that f=g. Since in

this case Lf 5 = ngi, we have
9f _ 3g . 10
3z, 32 for all j. (2.1.10)



Thus we cum-_'l.ude that the difference (f-g) has mo Eunctional dependence on
the canonical variables, but it may depeud on time or other psrame;:ers.

Tao illustrate how the use of the operator notation simplifies equations,
we consider the statement that Poisson bracket relations are preserved by
canonical transformations. In r.hé non operator notation the equation is

written

{f[z(g,:).t],g[z(s,t),t]} = {f,g} l . (2.1.11)
Z(zst) st
In words, transforming the functions and then forming the Poisson bracket

gives the same result as first forming the Poisson bracket and then transforming.
In operator notation this statement is written
Log TE=TLE . (2.1.12)
Since this is true for any &, we have the operator relatiom,
TLg = LyT or IL '1' =Lge s (2.1.13)

for any canonical transformation T, and any pbase space fumction £.

When evalvating a Poisson bracket, such as the one on the left of (2.1.11),
we will need to use the chain rule to caleculate derivatives. To avoid confusion,

we introduce a very explicit notation for derivafives. By the symbol

28
Bzm
Z(z.t),t,
we mean: take the derivative of the fumction g(z,t) with respect to the
variable z s then substitute Z(z,t) and t into the argument slots of this
new function. We use this cumbersome notation since it is unambipguous as
explained in Appendix A. To illustrate the use of this motation we apply

the chain rule to Eq. {2.1.6):
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9z
of 3g - ™ 3g
3= 3 e + 3t (2.1.14)
m m
Z(z,t),t Z(z,t), v .

Whenever we do not explicitly show the arguments of a function, they are

assumed to be (z,t).
Finally, we want to introduce the concept of an infinitesimal canonical
transformation. Such a transformation is of the form
T=1I+ ng (2.1.15)
where g is any phase function, and € is near zero. This transformation is
called an infinitesimal canonical tramsformation of order €, since it is

canonical to order ez. To see this, consider the Poisson bracket of

{Zi(g,t), Zj(g,t)}. It is given by

{2, (2,0, 2,(z,0)} = Az, ozl +E{zi’{g’ "j}} (2.1.16)
+‘e{{g, zi}’ zj} +e(sz) .
Using (2.1.1), and Jacobi's identity, this can be put in the form
_ 2
{Z:l’ Zj} = Y:lj +e(7) , (2.1.17)

and is therefore canonical to order Ez.



2.2 The Time Development Operator

In Hamiltonian mechanics we solve for the trajectories of a given

Hamiltonian. A trajectory ls found hy starting at some position Zys and
integrating forward in time using Hamilton's equations, z ={z,h}. An alter~
native point of view is that Hamiiton's equations specify a mapping %(z,t),
which gives the position of a particle at time t for a particle which was

at z at t=0. The equatiszs which define the mapping are

%oy,
3t 5 Y13 Bz,

(2.2.1)

2(Z,t),t

and

?1(5,0) =z - (2.2.2).
If one knows the mapping, one knows all of the trajectories. Hamiltonian
mechanics therefore consists of finding the mappings assccdated with given
Hamiltonians.

In this section we develop this point of view. We start with this
mapping and construct the corresponding transformation. We show how the
time derivative of the transformation is related to the Hamiltonian. We
show how this transformation can be used to solve the inhomogeneous Liouville
equation (2.2.12). Finally we give an example of a time development trans-—
formation.

The importance of this section is that it formalizes the method of
solving the inhomogeneous Liouville equation hy integrating along particle
orbits. We give the explicit solution in terms of the time development
operator. Of course, our expression is useful only when the time development
operator is explicitly known, i.e. for solvable Hamiltonians. However, this

1is a situation which occurs repeatedly in perturbatiom theory. In perturbation
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B ij.imnry we have a solvable Hamiltorian h . The effects of the perturbation

Ah-are found by :lnr.egrations along the particle orbits of h .

One can shw that the mapping%(z t) is canonical by showing that the
timz2 derivative of the Poisson bracket | f‘i’ j} vanishes. We do not show
this here sioce it 1s a standard topic in most texts (e.g. ref. [1] ch. 7).

We call this mapping *the time development mapping. The corresponding trans-
formation M(t) is the time development transformation. M(t) is defined as
follows. The relation £ = Mg means

£(z, t) = g(}(g. t), ©). (2.2.3)

The effect of the mapping M is to develop the observables im time. As an
example, suppose we are given the potential energy V(z,t) at time t as a function
of the particle's position at time t. By applying M, we get a new function
defined by

U (z,t) = (M) (z,5) = ¥ ('”?(5. o), t) . (2.2.4)
The new fumction ci" is the potential emergy at time t of a particle which
was at phase point z initially (i.e. at t=0). Another example is where
g = z;, one of the varlables, but thought of as a function, as in Eq. (2.1.7).
In this case Mz, = '}i(g, ).

Since the mapping %(3. t) is related to h by (2.2.1), we expect the
time derivative of M to be related to h. We define the time derivative of

the operator M by the usual procedure:

Lim
M M(t + T)g - M(t) g
3t B 5 g T . (2.2.5)

This definition insures that the product rule for differentiation will hold,

Bt Mg) = S +HM gi . In our case, where the action of M is given by (2.2.4),

we can use the chain rule to show that the time derivative of M is given by



ST

‘ A Wy - e .
in - e Ao o
(9 ao= i 2 2. @.2.6)
- ,;(z.t). t- "
Inserting (2.2.1) into this expression, we get
M ) Z 2 %h
5 8 ) (2,t) = oy e . .2,
at B) (2.t) kL) Vi3 3z 2.2.7
qjg.t), t 3(z.e), €
Since g is arbitrary, (2.2.7) is the same as the operator equality
M _
Y, . (2.2.8)

Whenever we are given a relation such as (2.2.8), we say that the trans-
formation M is generated by the function h. To see why, we use the expression
(H(t-!—'r) - H(t))l‘r +o(T) for the time derivative of M in equation (2.2.9).
The result,

u(e + ) =u(e) (1 -1, +e0d), (2.2.9)

shows that we generate the operator M(t + t) from the operator M(t) by
multiplication of M{(t) by the infinitesimal canonical transformation I - TLh
The inverse operator M-l(t) has properties similar to those of M. We
define H_l by the same route. We first consider the inverse mapping /é:l(g,t),
which gives the initial position of a particle which is at z at time t. Then

we define M+ by

¢ lg) (e, v = g(?,'l(g, t), t). (2.2.10)
By definition we have H—]'H = HH—l = 1. By differentiating this expression
we get
L -1
T LhM . (2.2.11)

In our discussion, the time t=0 has been a special time. However, we
could have instead used time t, as the initial time. The time development

transtormation from r.n to t is given by M(t)H_l(r.D), i.e. we transform back
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from t, and then forward to t.

We can now show how to solve the inhomogeneous Liouville equation;
RN (2.2.12)

with the operator M. The equation occurs over and over in perturbation
theory. Therz the funciion h is the unperturbed Hamiltonian, the fumction

g 1s the perturbation, and f, which we are solving for, defines the canonical
trarsformation used in perturhation theory. To solve (2.2.12) we introduce
the function f' = Mf. Using (2.2.8) we see that f| satisfies

1
2"
ac - Mg . (2.2.13)

This equation is now trivially integrated giving

£ (e) = Fr MO B + £ (£ ) (2.2.14)
1 tD
Ingerting f = Mf into (2.2,14) gives
t
£(8) = M L(t) J amM(DE(T) + M (DUCE DECE ) (2.2.15)
t

o
as the general solution of (2.2.12). This method of solution ig commonly
known as finding f by integrating g along the particle orbits of h.

A special case of particular importance is whemn £=0. In this case
(2.2.12) reduces to the Liouville equation, and its solution (from 2.2.15)
is (for tD=0):

£(r) = M () E(0)

or

£(z, ©) = f('?;-l(g,t), 0. (2.2.16)
We see in (2.2.16) that to find a distributiom at a later time, we apply
H-l. That is, M(t) is the time development operator for observables, but

ﬂ_l(t) is the time development operator for distributiocms.



In particular, I.h and )1 commte :h: this caae.
LhH(t) = M(t:)l.h

To see this, we use the fact that the time devalopmnt ttanaformatinn preaerves

the Hamiltonian, M(t)h = h, if h is time independent. From this we have

Tyreyn = T 0 (2.2.18)
which yields (2.2.17) upon insertion of (2.1.13).

Using (2.2.17) we can prove the relation
e - £) = MW ). (2.2.19)

On physical grounds, this looks true. If h is time independent, the tramsformation
which develops observables from time 0 to time t—l:‘, on the left side of
Eq. (2.2.19), must be the same as the transformation which develops observahles
in time t to t + (t-t'), the right side of Bg. (2.2.19). If h is time

$nd 4.
i

p t, M can depend only on the time difference. Using (2.2.19), we

can simplify (2.2.15). Inserting gives

t
£(e) = I aw(t - g + ¥ e - ¢ YE(E )
t ° (2.2.20)
fo -1
= J d(t)elt + 1) + M (£ - £ JECE ).
£t
For an illustration of these ideas, we consider the free particle
Hamiltonizan h = pz for one degree of freedom. Using (2.2.1), we see
that the time development mapping is
0.(q,p,t) = q + pt (2.2.21a)
" (qspat) = p . (2.2.21b)

Now we consider the density function in x-space given a partic‘e's phase
space coordirate (q,p): p(xz,t; q,p) = 6(x - q). By applying the time develop-

'
ment operator to p, we get a mew functionm p = Mp,



20

P&, 5 a,p) = 8 - q - pt). 2.2
Whereas p gives the density at time t: a.s a fumction of the coordinate at
‘time r;, p’ glves the density at time t as a function of the initial (t=0)
phase space coordinates. ﬁe.&st aluays keep in mind that z or (g, p) are
durmy varisbles.

Now suppose we have a particle distribution which is gaussian in q
and p at +=0

_i2 12
?

(g, p, 0) = e (2.2.23)

s

To find the distribution at time t, we develop f in time using ¥ as in

(2.2.16). The inverse transformation is trivially solved for, GL,1= q - pt
and —{_—1=p, 50 we get

£(.pst) = M H(E) £(q,p.0) i (2.2.24)
2
=;%#—%m-m



2.3 Short Time Solution for the Time Development Operator; Secular

Perturbatior Theory.

The operator representation M of the time deva‘l.opﬁent nméfoﬁtion
of the previous section looks very similar to the tine.’dzveloﬁment trans—
formation U in quantum mechanice [12]. In quantum mechanics the operator
U is unitary and its time derivative 1s found by mumltiplication by the
antihermitian operator -iH,

2y
at

= ~4HU . (2.3.1)
In Hamiltonian mechanics the time derivative of the operator M_l is found
by multiplication by the antihermitian operater L, as in (2.2.11). This
analogy leads us to construct expressions for the time development operator
M in terms of time ordered products as in quantum mechanics.
We employ the metbod of successive approximations to find M. We
assume M is of the form
H(t) = T+ M (£) +M,(r) + ..., (2.3.2)
where the terms are ordered in powers of the Hamiltonian. Insertimg this

into (2.2.8) gives

BHn
T = _Mn—l Lh' (2.3.3)
which is easily integrated, resulting in
t
Mn(t) = - Idmu—l(r)l'h('r) . (2.3.4)

o
By repeating the process in (2.3. 4) we arrive at the general formula °

for the uth term:

LA L)
n
M o= (-1) Idtll e, ... I dtnl'h(t:“) Lh(tl) . (2.3.5)
o

o o
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This expresaion is exactly analogous to the quantum mechanical expression.
As in quantim mechanics, we can introduce the time ordeting‘ ape.r;tnr which
rearranges operators putting the one at earliest time first. Then the

expreésion for Hn becbmes "
- 1 cy(_ n
M= I'm‘h(r)) , (2.3.6)

allowing M to be written

t
exp (-— [ dTL‘h('r)) . (2.3.7)
o

This form for M is of course purely formal. In writing (2.3.7) we mean
that one sums up the separate terms Hn found by (2.3.5). Only in very
special cases can this sum be done in closed form. An example is the time

independent Hamiltonian H = lz'pz for which we have

M= exp (tp %). (2.3.9)
This 1s just the Taylor operator for a shift in q by th2 amount tp.
Mf =g %g (a,p,t) = £{g + tp, p, t) (2.3.9)
In complicated cases, the sum is not known. Practicality requires that
we evaluate only the first few terms of M, and hence we get a solution which
1s valid only for short times.

This same technique can he used to construct a perturbation theory. We
consider the Hamiltonian h = “o + hl’ where ho is the solved unperturbed
Hamiltonian, and hl is a perturbation. If the effects of hl are small, then
we expect the total time development transformation M to differ litrle from
the unperturbed time development transformation Mo(t). Thus we write

H(t) = m(eMM (t), (2.3.10)

and we expect m(t) to be close to the identity.



pifferentiating M, and using the known timeAder:ivar_ive of M, we.find

. . aM :
M _ . _m o . P
Tl M, = 3t ¥ +m _a:‘ . ‘(2.3.11)

Now we use = + and the known time derivative of M. in (2.3.11).

Iy = Iy *+ 1Ty, and the o :

The result is
am _ =1
e Hc.al‘hlun

= -m LMohl .

(2.3.12)

The last step follows from (2.1.12).

Noting the analogy between (2.3.12) and (2.2.8), we find m just as

we found M. The result is

t
m= o7/up (- [ ar LMO(T)hl(T)) . (2.3.13)

o

This form of perturbation theory is analogous to the Dyson Wick Feynman
formalism in quantum mechanics. Tn quantum mechanics, the theory ultimately
breaks down due to divergences. In classical mechanics the theory breaks
down because of secular terms. In quantum mechanics, the divergences are
regularized using a renormalization technique. In classical mecbanics we
treat the secular terms by isolating them. We use a transformation theory
to get tid of rapidly oscillating terms, and we study the resonant terms
individually. The development of a2 convenient transformation theory is

tbe subject of the remainder of this paper.
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3. Continuous Pamilies of Canonical Transformations

We now consider canonical mappings which depend on an additiomal parameter
‘6. .Tl"xat is, the mapping Z(z, t, ©) 1s canonical for all values of t and
for 0 in some domain. Further, we require that Z(z, t, 8) be continuous,
and twice differentiable in al” variables simultameously. We call this
set of mappings (all 6 valueg) a continwous family of canonical transformations.
In this chapter we will examine the consequences of the parametric de-
pendence of Z(z, t, B). We first establish the fact that the mapping can
be specified by a single function w(z, t, 6}, in place of the 2N functions
Z(z, t, 8). This fact 1s proven elsewhere [1, 16], but we include it here
for completeness. In the second section, we derive the expression for the
transformed system. For the case where w is a power series in 6, this
wag first done by Deprit [8]. Later, Dewar [10] found the general expression
for the new Hamjltonian when w is not a power series in 8.
The last two sections are illustrations of the theory. Section 3
consists of a simple example where all of the operators can be found explicitly.
In section 4 we use the theory to prove the symmetry-equals-invariant theorenm,

known as Noether's theorem in lagrangian mechanics.
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3.1 The Generating Function

An important property of canonical ;:ransfotmationa is that they can
be specified by a single function. This property is helpful since it means
that one can work with this single function rather than the 2N functioms
Z(z,t). In Hamilton-Jacobi theory this function is F(g,B,t) [1,3], the
generating function o mixed variables.

Given a family of canonical mappings Z(z,t, é), we will show that there
exists a function w(z,t,8) satisfying

9z
52 - oy vG@eo, & o)}

- T %
]

This property 1s shown in ref. [1] sec. VII-2, but we include a proof for

3.1.1)

Z(z,t,0), t, 6 .

completeness. If w has appropriate properties (say w € Cm) s we can specify
Z2(z,t,0) as the unique solution of (3.1.1) for some given boundary conditions.
In our work we will always require that the mapping reduce to the identity
when 6=0 giving the boundary condition
Z(z,t,0) =z . (3.1.2)

We note that equation (3.1.1) is analogous to (2.2.1). Just as the
Hamiltonian h generates the time development mapping ;L in the variable t,
the function w generates the mapping Z(z,t,0) in the variable 6. Following
this analogy, we introduce the canonical transformation T obtained from the

mapping Z, just as M came from Z;_/. From (2.2.8 ) we see that T must satisfy

|
@[3

= - TLw . (3.1.3)



26

. “We i;léd note that T ' must satisfy

]
. BT -1
LT (3.1.4)

which s amalogous to (2,2.11). Finally, any function £ satisfying

g—§+ {£,w} =g (3.1.5)

can be solved using

-1 6 1] ) T -1
£(8) = T (S)I de T(8 )e(®@ )+ T (e)'r(eo)f(eo) (3.1.6)
6
[
which 1s amalogous to (2.2.15).
These equations are meaningful only if we can prove the existence of w.

To do this we consider the vector y given by

sz

v:| = - E :T'jkw o . (3.1.7)
1 2 "(z,t,0), t, B
Suppoge we can show that v is the gradient of a function w,
2
e _ z : o5

v]. = Bz]. = ij 38 (3.1.8)

i

27 (z,5,0),6,0 .
Then, by multiplying (3.1.8) by Yij’ sumning over j, and using (2.1.3) we

9z
4 _ aw
% ‘ - an A G-1.9

70,8 3

get

Transforming the variable in (3.1.9) gives (3.1.1). We see that we must
prove that y is a gradiemt of a function w. Of course, knowing that y is

a gradient, we can find w very simply by integratiom:

v = I 2 vy dz (3.1.10)
m



To prove that v is a gradient, we will show that the integrabiliry™ = = -
condition holds. This amounts to showing that the qumtiﬁ D moe e
w © 3 ' a2t :
#=-Zyﬂ‘azu% . sz—"? . . (3.1.11)
m Z g,t,0),t,0
is symmetric in 1 and j. This proof follows from some special properties
of the derivative matrix of a canonical transformation. This proof is
algebraically tedious, and one need not follow it to understand the rest of
this paper, so the reader may choose to skip the rest of this section.
One property which we wish to show is that the derivative matrix of the
inverse mapping (az‘lilazj) is simply related to the derivative matrix of

the forward mapping ('r)Zi/ Bz j)' By differentiating the following identity,
—1
2, =2, (2:£.8),8,8) , (3.1.12)

it follows that the two matrices are inverses:

8z, azt,
= p— o —
8 Zaz. B (3.1.13)
3
3 27 (z,t,00,5,0

However, we also note that by multiplying (2.1.6) by ij and summing over ]

BZi BZm
6:[k= E E -E :YJEE Yok . (3.1.14)

3 in

we get

Comparing (3.1.13) to (3.1.14), we see (since Z(z,t,8) is invertible) that

1

_1_ - (3.1.15)

'jv, ’52 Yok *

2 (z.e,0),5,8
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relating the Inverse mapping derivative matrix to the forward mapping

derivative matrix.
From the Poisson bracket relations (2.1.6) we can prove the other

identity needed to show the symmetry of (3.1.11). By differentiating (2.1.6)

with respect to 6 we get

2 2
-S. .ai Y 5 = - § '3_zk_ Y Bi (3.1.16)
Bﬁazm 1) 322 s Bzm .1 aeazz
Now we use (3.1.16) and (3.1.15) to prove the symmetry of ¢3.1.11).

We first imsert (3.1.15) into (3.1.11) obtaining

Bvi QZZ azn )
3. Z ‘(Yik 305z, ~ Yem 3z 'mj @-1-17)
i Y 2 m 1
Z " (z,t,0),t.0 .

Then we use (3.1.16) to put this in the form

- 2
vy _ Z 2, g, (3.1.18)
%z, Yir 5z, Yom 3z 96 Tnj
d km L = ~1
Z “(z,t,0),t,8 .
By rearranging the dummy indices and using the antisymmetry property of

Y:lj’ we get

g

. o’z oz )
— = - — — .1.19
3z, E (ij 32,28 Yim 3z Yni) &
] L m
kel e, .
Comparing this to (3.1.17) we see that the integrahility condition holds,

and so w does exist.



3.2, The New Hamiltonian

The reason we introduce transformation theor_y 1s that we hope to be
avle to transform to a new system where the Hamjltonian has a simpler form.
Upon solving the equations in the s:l.mlpler‘ system, we can transfoim back to
ocbtain the solutions in the original system.

The new Hamiltonian K must have the property of giving the equations

of motlon for the transformed variables Z(z,t,0):

2, = {z,, K(g(g,t,e),t,e)} .. G.2.1)
In this equation, overdot refers to the time derivative along a trajectory.

Using the old Hamiltonian, we can also find Zi:

3 azi

2 =52 +{z, nGo} . (.2.2)
Introducing the finctiom H(z,t,8) = h{Z (z,£,0),t), ve can write (3.2.2)
in the form

Z - {zi, n(_z_(;,:,e),:,e))}+% . (3.2.3)

Hence we need only. find a function R such that

% - {zi, R(Z(g,t,e),t,ﬂ} , (3.2.4)

than the new Hamiltonian K is given by K = H + R.

That such an R exists is evident from the following consideratioms.
Z(z,t,8) is a canoniecal transformation for all t and 8. Since it is
canonical for all 68, we were able to conclude that w exists satisfying (3.1.1).
Likewlse, since Z(z,t,0) 1s canonical for all t, we conclude that an R exists
satisfying (3.2.4). Kaoowlng that R exists, we can be more secure about finding
it.

To find R, we consider equations (3.1.1) and (3.2.4) written in operator

form.




n

3T
- T, (3.2.5)
g_: --my (3.2.6)

Now we equate the second partials of T calculated from the two zbove equatioms.

T oT Y3 5
=L +4TL =L +TL (3.2.7)
at L @ r =
ot FL]
By using (3.2.5) and (3.2.6) again we get
L + 1L = 1 (3.2.8)
=’ {R,w} aw .
30 3t

From equation (3.2.8) we would like to deduce the relationship betweem

R and w. As discussed in section 2.1, we can only deduce

= .
3g + 1R.w} 3 TB o (3.2.9)
where g is any function indep dent of z. H , we can set g equal

to zerc here, since R has relevance only through its Poisson bracket relations
as in (3.2.4). The addition of a function independent of z to R does not

affect any Polsson bracket relations. Setting g = 0, we get

- (3.2.10)

2R aw
L = &
EL {R,w} ot

Following the discussion in the last section, this equation can be

integrated using (3.1.6). We use 90 = 0 since then T reduces to the

identity implying that R(Bn = 0) vanishes. This gives the result for R:
5}
- T T T
R(8) = T L(0) I a6 T(e) % @®y . (3.2.11)
o

If we now use K = H + R, we get the new Hamiltonian.
e 1 L
K() = TH(®h + r‘l(e)I a8're) E @). (3.2.12)
o
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This result was first obtained by Dewar [10], but with different.conventions. =~

To compare (3.2.12) with more familiar equations, we consider the /
case where the crmfamtﬁn is time independent., In this case %; O.IA so

k@ = Ti@emn . ' (3.2.13)
Using the definition of T, this can be writtem

R(2(t.0),5,8) = h(z,t,0), (3.2.14)
which simply says that the new Hamiltonian evaliited at the mapped positions
equals the old Hamiltonlan evaluated at tbe old positions.

In the time dependent case, the remainder fumction R must equal 3F/3t,
the time derivative of the generating function of mixed variables, which appears
in Hamilton~Jacobi theory. Using this fact, one can derive the relation
between w and ¥. The relation between w and F was first found by Dewar by a
different method [11].

A final point which we wish to discuss is the transforaation of the
Liouville equation. If f is the old demsity and F (not the gemerating fumction)
is the new density, they must be related by
P=7%, (3.2.15)
since the new density at the new point equals the old demsity at the old

point. 3ince £ satisfies

g—'f:—+ {f,h} =0 , (3.2.16)
we can show that F satisfies

oF _
3 + {F,K} = 0, (3.2.17)

as it must if F is the dessity in the transformed system. One shows this
by combining (3.2.6) and (3.2.12) to obtain

9T _
T —TLK + LhT N (3.2.18)

and using this expression in differentiating f = TF with respect to time.



32

3.3 An Illustration

To illustrate this theory, we consider a especific tramsformation. We
consider the transformation given by the geverating fumetion
w = -8t . (3.3.1)
We mst first find the variabie mapping Q(q ,p,t,8), P(q ,p,t,6). This

mapping is found by solving (3.1.1), which becomes in this case

3
a—g~= -26t P (3.3.2a)
and
gl: 0 (3.3.2b)

These equations are trivially solved glving
' Q= a-6%p (3.3.32)
P=p (3.3.3b)
We note that the boundary conditions (3.1.2) have been satisfied.
The operator T corresponding to (3.3.3) acts on a function f as follows.
1f Tf = g , then
8(q spat.0) = £(g - 6%tp, p.t,0). (3.3.4)
We could also use the operator notation to deduce (3.3.4). The Lie

operator in this case is given by

3
L,=+ 20tp ] - (3.3.5)
The equation for T is
aT 3
36 = -T 28tf q - (3.3.6)

This equation is trivially solved giving

T

1]

c 2 32
0 &
exp (6% 57 ) (3.3.7)

1 2 .n,3.0
= Z: a1 (87w G

n=o9



and this 1s just the Taylor series expréssion for the shift operater in
(3.3.4) ) . : ] e

We now calculate the new Hamiltonian using (3.2.12) in the case where
the original system is a free particle system, h = pZIZm. In this case we

see that T 1h = hand T 5—3:= % , so that K 1s easily calculated giving

1.2 1,22
R=z-p" -5 0% (3.3.8)

We see that the motion in the new system 1s free particle motion with the -
new mass given by
M(8) =L2 . (3.3.9)
1-6"m
We see that we can transform away the Hamiltonian entirely-in this-simple
case, by choosing Bz = % . In this new system q and p are constant. To
find the motion in the original system, we first apply the inverse transformation
¢l = q +pt/m (3.3.10a)
-1 _
P =P
Then we substitute the trajectorfes in the transformed system x®) = q

and ! R(t) =p, to get the trajectories in the original system

1 _ 1.
g8 =g, + o epy (3.3.11a)

L}

T a®

1.
I{(c:) +ot

Al
Lp(®) =j MO N . (3.3.11b)
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Equals-Invariant Theorem (Noether's theorem)

4N'c':_ebther's theorem (ref. [1] p. 83) in Lagrangian dynamics states that -
3f 6t€ 1s given a fantly of transformations which leaves the form of the
. Lagrangian unchanged except for the addition of a total time derivative, then
one can congtruct an invariant of the motiom. Conversely, given an inmvariant
of -the motion, one can construct a family of transformations which leave the
Lagrangian unchanged except for the addition of a total time derivative.

Since there is a direct correlation between Lagramgian dynamics and
Hamjltonian dynamice, one expects a similar theorem to hold in Hamiltonian
mechanics. This theorem has in fact been discussed by Whittaker [2] and
Anderson [15]. The advantage of the Hamiltonian formulation is that the
relevant transformations are the time dependent canomical transformationms,
the natural transformations which occur ia BHamiltonian mechanics. In contrast,
the Lagrangian theorem requires the use of path transformations (see ref. [1]
p. 83) not just time dependent coordimate transformations.

However, one drawback of the theorems presented in refs. [2] and [15] is
that they consider only infinitesimal transformations. With the finite
transformation theory presented earlier, this can be remedied, as was done
in ref. [16]. Here we present this theorem using the operator notation of
this paper.

Given a system which evolves according to a Hamiltonian h, we say that
h has a symmetry if there exists a transformation family T(0) which leaves the
Hamiltonian unchanged up to the addition of a phase space independent funection:

K=h+f (3.4.1)
where

3z =0 for all 1. (3.4.2)



The resson we allow the addition of £ is that it will not affect the motion

in the new system, since its Poisson bracket with any function vanighes.
We define an invariant to be any function g whoge total time derivative

along a trajectory vanishes:

384 fg.n = 0. (3.4.3)
We will prove that given a symmetry, one can construct an ‘.'nvariﬁnt, and given
an invariant, one can construct a symmetry.
First we suppose that we are given a symmetry. Using (3.4.1) in (3.2.12),
w2 have 9
h+t=TlEMm+ 'r‘l(e)[ ao'rey = @) ., (3.4.4)

o

vhere w is constructed from T as discussed in 3.1. We premultiply this
equation by T, and note that Tf = f, since f does not depend on the phase

space variables.

e ? ] aw A
T(BYh + £ = h + I de T(® ) o ®) (3.4.5)
]
Differentiating (3.4.5) with respect to 6, and premltiplying by T—l gives
9w _ 3f _ '
5t ~ 99 ¥ B} = 0. (3.4.6)

14
Thus the function g(z,t,8) =w - Idr 9£/39 is en invariant for ailé€ .

To prove the other half of the theorem, we assume we have an iuvariant
g . From this invariant we construct a transformation T(®) using w =g .
The new Hamiltonian K is then given by
- 8 .
K@) = TL(@)h + T 1(e)f a8’y 38 . (3.4.7)
a
Premultiplyiug T and differentiating with respect to 8 gives

oL rrrEo e

g 20 3t (3.4.7



6

" which 4xplies that
59 ¥ (K Bl= 3¢ . (3.4.8)
We now use the fact that g is an invariant. This gives
ED 4 {xn,g} =0, (3.4.9)
since h is independent of 8. We define b by b =T (K-h). In terms of
b, (3.4.9) reads

i 0 . (3.4.10)
Since b = 0 at 6 = 0, b vanishes for all 6, from which we deduce K = h, proving
the theorem.

As stated here, the theorem is more powerful than it is in its usual form.
Here we find that the gemerating fumection g 18 an invariant for all values
of 0, whereas usually onlyg at 6 = 0 is shown to be an invariant.

We are used to thinking of the explicitly time independent invariants
such as momentum and angular momentum. This theorem shows that symmetries are
assoclated even with time dependent invariants such as the function

=P cosu,t + q sinw t ’ (3.4.11)
for the harmonic oscillator h = %’mo(q2 + pz). In general a Hamiltonian
in 2N dimensional phase space has 2N functionally independent invariants,

and hence its symmetry Lie group is 2N dimensional.



4. Deprit Perturbation Theory.

o this section we'sh‘cwhﬁ to comstruét a perturbatisii ‘thééry ‘from the - - ‘
general transformation theofy of the previous chapter. Historically the * = °
development was in the opposite difection. Deprit comstructed power series
representations of the transformation, and later Dewar gave the general -
representation applicable even when the transformation is mot amalytic.

The basic idea of the perturbation theory is that the Hamiltonian which
we wish to solve consists of a solvable term plus unsolvable terms which are
ordered in a small parameter. We equate this small parameter to the parameter
6 of a Lie transform which is to be determined. We then expand the Lie
transform in powers of the parameter 6, and use the expansions in eguation
(3.2.12). We end up with an equation for each order relating the new Hamiltonian
to the transformation and to the old Hamiitonian.

The next stage in the transformation theory is to pick the transformationm,
thereby choosing the form of the new Hamiltonian. Ideally we would like to
pick the transformation so that K vanishes ic all the higher orders. However,
this choice is not always best since it may lead to secular terms or small
denominators in the transformation, making it useless for a discussion of
long time effects. The scheme ve adopt is then to transform away as many
terms as possible. The slowly varying terms, which give rise to secularities
and small denominators, must be kept in the new Hamiltonlan. Th's scheme
usually simplifies the analysis to soma= degree since at least the rapidly
varying terms are trarsformed away. Sometimes this scheme in effect solves
the problem when the slowly varying terms depend only on the momenta.

The structure of this chapter is as follows. In the first section we
derive the power series expressions for the Lie transform theory. Then we

illustrate the method of choosing the transformations outlined in the previous




" paragraph hy doing two eianplea. However, it must ke noted that the des--
cribed method of choosing is not the only one. A nice feature of the
Deprit per;qrhation theory is that one can use any method to select the
transformation. The important thing is to choose the transformation so
that the new Hamiltonian is as easy to analyze as possible. Finally we
include a2 section on superconvergence, showing how it occurs in Lie trans-
form theory. In this section we also discuss the practical usage of the

superconvergence technique.
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4.1 Deprit Perturhation Series-Relations S A

This perturbation theory relles on the power. series e:xpa.naion.é ofthe
Lie transforms. In this section we assume that tbe Hamiltonisn h is ordered
in a parameter which we ééuété to the Lie transform parameter. We th
Insert the power series expansions into (3.2.12) to obtain r;he expression
for the nth order term in the new Hamiltonian.

The starting polnt is the assumption that the objects h,w,K, and T can

all be expanded in power series. For h,K, and T we have

h(z,t,8) = E 8", (2,3, (4.1.1)
n=0

K(z,t,8) = E oK (z.5), 4.1.2)
=0

and T(t,8) = Z enrn(t) . (4.1.3)
n=0

However, for w we assume a slightly different form

w(z,t,8) = E Snwn_'_l(g,t) . (4.1.4)

n=0
The reason for this cholce is that w occurs in (3.2.12) along with an integral
over d6 which effectively boosts the order of w by 1 in all the equations.
We also assume that the transformation is close to the identity. This
15 necessary for perturbation theory to work at all. This implies that

To = I, putting 8 = 0. It also implies 1(0 = h0 since in (3.2.12) the inc.egral

is at least of order 6.



We first find the form for the operator T to-all orders. We start with

: {:i:é relation

. ) 7 T -T Lﬂ. - (4.1.5)
To use this relation we will need to know the series for Lw' Since the map

L = E BnL"n+1 4.1.6)

n=0

g+ I.g is ldnear, we have

We abbreviate the operator L by L . Now we simply take the series repre—
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sentations for Lw and T and insert them into (4.1.5). As a result we calculate

the following recursion ralatiom:

T ==L 2: T L. 4.1.7)
n n m n-m

=0
By iterating this relation we arrive at

~1y/-1 -1
T = z ; =}=)--- (=2)L_ --- L (4.1.8)
n @37%m) (“)(“‘1) (“‘f) o 2 0y o), 11_“‘1

037, M, > .>m!>0
The sum 1s over all sets of integers Dyseeesm satisfying n>m1>m2>...>mr>0.

This expression was first derived by Littlejohn [17].

-1
From the expression g: = Lw'l.'_l, we can derive similar relations for
T_l The results are n-1
rl-1 2 : L_ Tl (6.1.9)
n n n-=m m
m=Q
wvhich gives
-1
T = L -« L . (4.1.10)
n (ml,. .-’mt) )( ) ( ) n-ml ml mz I'ILL_

11>m1>m2>. > mr>0

To find the expression for K, we could insert the series for T, w, and

h into (3.2.12). If this were done, it would be better to choose the conventions

of ref. [16]. However, by manipulating (3.2.12), one can derive the power series



for K from the resulting equation [17]. If one finds K by this me'thbd,

it is better ro use the conventions given here, as discussed in Ch. 5.

Premultiplying (3.2.12) by T and differentiation with respect to

0 gives
ar W _3h 3w
v T~ " T - 4.1.1
Using (3.2.5), and premultiplying by T_l then glves
3w _ 3K _ - g i3h
3t = 38 LVK. T 38 * (6.1.12)

Inserting the series expressions for K, T, and h gilves (in nth order)

n-1 n

aw‘1 } : } : R

O Lirfa Ton®hy - (4.1.13)
m=0 m=1

By writing out the first term of the first sum, and the last term of the sum
we get the fimal answer (note Ko = ho):

Aw 1

1
n _ _ _ S .
e b {wn’ ho} =nK -oh L (Ln-m Bt T o hm)
m=1

(4.1,14)
This is the form with which we work when doing n‘:h order perturbation

theory. After calculating through order (n-1), we know all of the quantities
in the sum in the above equatich. We also know hn. _We then pick Kn in a
nanner described in the next section. Finally we find W by integrating the
right side of (4.1.14) alang a trajectory. At this paint all of the quantities
are known through order n, hence we know the motion through nth order, and
we can begin the order (n+l) calculation.

For future reference, we give the formulas for the various quantities

through fourth order.
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(4.1.15a)
(4.1.15b)
(4.1.15¢)
=-1 EY 1y, 1,3
Tg=-Fly+tglly +3hb -5k (4.1.15d)
1 1.2 1
R i A I R Lt
1 2 1 1.2 1 .4
T Lle - 12 LlLZLl -8 L:. I..2 + 2% Ll (4.1.15e)
-1
To =1 (4.1.16a)
tl-1 (4.1.16h)
A 1 1.
ALl 1,2
I, =3l *3lh (4.1.16c)
_1, .1 1 1.3 :
T3 =3 L3 + 3 LILZ + 3 L2L1 + 3 Il (4.1.16d)
A _1, .1 1,2,1
Tl. —zLA+ 12L1L3+ 8L2+4 L3L1
1 .2 1 1 2 1 4
+355 1 L, + l—ZLlLZLl +EL2L1 TR (4.1.16e)
VWe note that '1‘;1 = '1‘:, vhere the dagger indicates hermitian conjugate.

To find the hermitian conjugate of a product of operators, we reverse the
order of the product, and then take the hermitian conjugate of each of the
pultipliers;
+ +
(aB) = B+A . (4.1.17)
+ -1 +
Since Ln = —Lﬂ (Ln is antihermitian), we see that T'J = Tn is true in

(4.1.16). This fact is proven in general by noting that the differential

equations for T and T“l are hermitian conjugates.



W3

The equations for Kn to fourth order are:

Ko = ho v7(4.1.17a) ST

Bw_1+{w hl =K -h : (4.1.17b)
3t 1’ o IS. 1 . : M
ow.

2 -
Bt + {w,, ho} = Z(K2 - hz) - Ll(Kl + hl) (4.1.17c)
Wy

3 _ _ _ 1,12

So* 9, B} = 3(R; - hy) - L (R, + 2hy) - Ly(&y +5hy) -5 L] By

3 (4.1.17d)
Tt ¥ B = 4R, - hy) - 1y (By * 3hy) - Ly (Ry +By) - Ly

3

L (5.1.17¢)
Ly +ghy) = Gyl + 2oy +Lh, -

In passing, we note that Littlejohn [17] has written a computer program to find

thege equations to arbitrary order.
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4,2 The Anharmonic Oscillator

In this section we apply the Deprit perturbation technique to a sample
problem as an illustration. The problem we consider is that of a particle
moving in a potential with cubic and fifth power force nonlinearities. The
Hamiltonian in this case is given by

2
1 2.1 22 eg,24 € 36
h=3 p +2moq +4mnq +3 aq (4.2.1)

We solve for the motion near the bottom of the well where the nonlinearity
is small.

The unperturbed Hamilitonian is a simple harmonic oscillator. For

convenience we use the (uperturbed) action angle variables defined by

p=- JZmoj sing (4.2.2a)
q= JZj?mD cos¢ (4.2.2b)

In terms of these variables the Hamiltonian takes tbe form

h = u)oj + Ejzcos['cp + Ezaj3c056¢ . (4.2.3)

The ordering scheme for this Hamiltaniasn h is of course

hD =L|l°j
_ 2 4
hl = j cos ¢
_ 3.6
h2 = ajcos ¢
hn =0 forn>2 (A.2.4)

We equate the Lie transform parameter 6 to the small parameter E.
The first step in perturbation theory is to solve the unperturbed prohlem;
i.e. ve must find the time development operator. In this case the tim: development
mapping is
Y, 3, ) =0+ wt (4.2.5a)

—,}« (¢, j, ) =3 . (4.2.5b)



The time development mapping H 'Ls therefore given by
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£ = Mg £@,3,0) = 56 + o t,j,t:). T Ga.e

To do first order perturbation theory we cans:l.der the first order Deprit

equation (4.1,17b). In this case we ﬁzve
wab b = K (83,0) - Seass,

=K - 26 + Fcos2d + Leosti). (4.2.7)

We can solve for vy using (2.2.20). Since we are looking for any solution to

(4.2.7), we use the indefinite integral:

- K6+ uyen), ‘)] (5.2.8)
We would like to pick Kl = 0, but since hl has a nonzero time average this
would cause v, to be secular (uobounded in time). Therefore we pick Kl to be

the time averagze of hl along a particle orbit:
2r/w

w o -
K () =5 ! dth, Ga¢ + uD)

i . (6.2.9)

oojw

Inserting this result into (4.2.8) gives

w = jz(:%2 sind¢ + L s1n20)/ s, - (5.2.10)

We have completed our calculation to first order since we have ¥y and Kl

Introducing the transformed variatles ¢ and J we know that they evolve in time

according to

J= JD (4.2.11)
3

= 5]

-3 q,o + (mo + A _'[D)t, (4.2.12)
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since to firet order the transformed Hamiltonlan is

K@) =0 3+dcd . (6.2.13)

Also, by applying the inverse transform (4.1.16) we kaow that the old

and new variables are related by z, = zi + (wl, Zi} giving

1

=0+ 53(16 sinkd + —smzq:)/m (4.2.14)
§=3-¢er? (eostd + %c.oalﬁ))/wo. (4.2.15)

Inserting the time development of J and ¢ (4.2.11) and (4.2.12) into (4.2.14)
and (4.2.15) gives the time development of j and ¢.
Going to second order, we insert our results for Kl and vy into (4.1.17c).

The result is

®y s’

£ = - 2
3t + {wz,ho* 2 [Kz 37 (10 + 15cos82¢ + 6cosséd + cosﬁ(b)

64"1 (17 + 33cos2¢ + 6 cosbd - Zcosﬁd:)]
(4.2.16)

Since the average along a particle orbit is essentially a phase average,

we can pick off the terms in KZ by inspection.

K - E&- saw ) (4.2.17)

We could now find wz from (4.2.16) and proceed to third order.

To understand the physical meaning of this transformation, we note
that these transformations do not change the topology of the variables.
® and ¢ are both defined modulo 2m. Hence we can calculate the action
I of the oscillator 27

-1 R
1= fp(q)dq = a0 J Iyae . (6.2.18)

[¢]



to the action angle variables of the puturbed system.

The physical relationship which one usually desires for an oscillator
is the frequency versus energy fumction. The mmerical value of the Hamiltonian
is unchanged in a time independent transformation, so ve can get this relationship

by eliminating J from the expressions for the new Hamiltonian and the frequency:

K=m_,+_5y2+ 2_- )J’3 (4.2.19)
m=m°+%sr+sz'lf—6‘l—“5—‘vf. | (4.2.20)

To second order in € this result is

- 3 (& B 2(15a _ 69
w = mo + 45(m>+ (m ) ( thg ) (4.2.21)
[o] o o

We now compare our results to a known solvable system, a pendulum.

We have set K = E.

In this case the Hamiltonian is

h= % pz + M§(1 - cosq) (4.2.22)
12,1 2 1 24 1.2 6
=30 +im§q -Gy Fgrel . (4.2.23)
Comparing with (4.2.1), we see that € =—% and a = 3—:'— . Perturbation theory
o
thus gives 2
- 1E S5 (E
w= Luo(l e zse( 2) ) (4.2.24)
w w
o o

The exact result (ref. [18], p. 112) 1is

K(‘/_— ] (4.2.25)

whichn ylelds (4.2.24) upon expansion ({{ is the complete elliptic integral).
A point to note in this example is that we gemerate the exact solution
as a power series in €. It could happen that there are singularities a e=0,

2
e.g. w(g) in (4.2.20) could contain a term like e_]'/E . Perturbation theory
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unnot pick theee r.em np s:Lnr.e analyticity in € is assumed from the uutset.:

Bu 3 :Lf the mct solution 15 a pover series, we should be able to obtain

it term by term uaing pertu:bar_irm theory.



the problem of the previcis section. The paﬂ:imiiaf pertm'i:at:fon we choose

is a parametric time dependence, so that h hag the form

12,12 2 2 4 i n Ay
h=3p +7u (L+osinlt)g +§m°q (4.3.1)

Before embarking on this problem, we discuss the ordering scheme. If
we wish to be careful, in any calculation we must assign an order to each
of the various terms in a Hamiltonian. Then we can approach the question
of errors. However, in most work in physics only very rough error estimates
are given. Secondly, a natural small parameter may not appear obvious.

For example, in the problem of the last section we could have set e=1 and
followed the same perturbatiom caléulat:ion. _ The Deprit equations would

keep track of the orders, and we would have to keep in mind that our solution
is good only when the term we treat as a perturbation is small. In the
previous calculation this would mean small enmergy. Hence In doing a cal—
culation it is not nmecessary that h2 have an ez in front of it, instead

we know that upon doing a calculation to first order, errors of the size

of h2 remain.

In the above Hamiltonian we have two small parameters, & and €. We
want to solve it in the case where the time depeundent perturbatiom is

smaller than the nonlinearity, so we choose

o (]
_e 24
by =gt
_1 2 2
11Z =3 umosinﬂt q
h_ =0 for n>0. {5.3.2)



0

xﬂ‘dé’ing --this calculation ‘we-setG=1; ‘letting the Deprit perturbation

By equations keep track of the otderiug. . .
o We again swit:ch t:o t:he more conven:l.ent variagbles. We have done the
first order analysis :tn the pteviuus sectlon, and so we know hl and Kl.

Here we start with h, (and the more ==nwvenient variables).

w
h2 = zn [s:l.nﬂt + % sin(flt + 2¢) + % sin(ft - 2(1;)] (4.3.3)

This term modifies (4.2.16) to be
) 1 1
¥+ {Hz,hu} = 2K2 - woj [sinm: +37 sin(Qt + 2¢) +-2- sin(fit - 2¢)]
-1— ( coszqa + — coshd - 5 cosGdﬁ)
(4.3.4)
The analyaié of the Lﬂst: four terms was done in the previous section. Since

(4.3.4) 15 linear in ¥, and Kz, we can find W, and Kz by analyzing the equation

9w,
2 = - 1 1 -
50 F lwysh ) = 2K, - ow ] [s:l.nm: + 5 sin(ar + 2¢) + 5 sin(ae 2¢)] .
(4.3.5)
Adding the results of thisanalysis to the vy and K2 of the previous section
will give the total v, and K2
In analyzing (4.3.5) we first set K, = 0 and integrate to find v,
This gives

(cosm: leos@+2¢) 1 cos(at - 2¢)\
2

™ 2R+ Zmo 2 Q- Zm (4-3-8)

"2 +
We see that Wy 1s very large if either 2, 2 + Zmo, or 1 — Zmo is small.
This is the familiar problem of small demominators. For 2 >> w, we pick
v, as in (4.3.6), but we must treat the other cases individually.

Here we treat the case where n-zmo. Then we choose K2 to cancel the

only term which we can not transform away. Thus we have



= cosfit .. 1. cos(Qt + 2¢))
¥y “%j(n AT

cupoj

sin(dt <2¢)"

Kz-:

Collecting all the terme mK :Ln:luding those pa.rts of Kz calculated 1n th'

previous eection we have

3. owj PR o L
cuiede2 2 M -
K= uoj + 2 sj - € oy + % sin(9t = 2¢). . (4.;.9)

In this case we have not been able to transform to a Hamiltonian inde-
pendent of the angle , but we have simplified the analysis by eliminating
two terms. In fact, this Hamiltonlan can now be solved by transforming to

the new variables
I=] (4.3.10)

a=t+¢ - (4.3.11)
Using this transformation K becomes a time independent one degree of freedom

Hamiltonian,

aw I
K—ulI+-—EI2—-1—7'Ez P —
w, 4

gin28, (4.3.12)

which can now be solved by quadrature.
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. Superconivergenrai Kalmogorov's Technique

- -

irl th:l.s section we discuss thé phenomenon of aupefcdnvergeuce. This
: phenumﬂ:;nn is knoﬂ'n to occur when one is doing Hamiltonian perturbation theory
using the generating fum:tions of mixed variables F(q,l’ t). Here we show how
the,same phenomenon occurs when doing Hamiltonian perturbation theory with

I.:I.e tranaforns.

~In the Poincare-Von Zeipel techmique [4,5] a mixed variable gemerating

functiun!(g,i”_,t) is introduced and chosen, order by order, to cancel the
phase dependent part (rapidly varying part) of the Hamiltonian. Kolmogorov [6]
" improved this scheme by Introducing the method of lauccessive transformations,
here after known as Kolmogorov's techaique. In this scheme one transfoms to
successive systeme. After each transformation the Ramiltonian becomes solvable
to higher vrder. The improvement arising in this technique is that after

doing the nth transformation one has solved the problem to order E(Zn).

Another way of puiting it is as follows. Let ﬁhn be the rapidly varying part
of the Hamiltonian after the n™* transformation. Then the terms of the
sequence Gbl, Ghz, 6113... are of orders ez, t-:l', ea,... . This phenomemon

1is termed superconvergence. It does not by itself imply convergemce.

In this paper we show how superconvergence arises in Lie transform
theory. We show explicitly that the successive errors go like ez, el., ea,...
when combining Lie transform tbeory with Rolmogorov's technique. This has
heen shown previously in the case of time independent tramsformations [9].
Here we extend these results to the case of time dependent transformations.

We also draw new conclusions concernimg the use of Rolmogorov's technique

in practical calculations.




in zeroth order. - : e R
h{z,t) = Eenh' (z.t).

Transformiug to appropriate conrd:lnates, l:he zernth urder Ham:l.ltonian :I.s

written entirely in terus of the ‘momsnta.
ho(g,t) =h (p). C (44.2)
As usual, the vector z represents all of the phase space variables.

We will introduce successive ILie transforms to successive mew Ham:lltonians

We distinguish the various transforms by a left subscript. In: particular.

we intfoduce the transform 4T Atcording to fhe usual method, ‘the variable

wmapping is given by
1
120 =2 - {1"’1' 5}"'5 E{1"1’ {11° 5}}
1
-E-E{lwz, 5} + .ee

=Tz, (4.4.3)

where the lwi's are yet unchosen .

Following the general Lie transform scheme, we choose the gemerating

function 1% by examining the equations for the transformed Hamiltonian

11( = € lKn(g,t). To second order thege equations are
n
1Ko = h0 (4.4.8)
°1*1
e PO Bt Rl (4-4.5)
4%,
S+ {9 B} = 208~ hy) - (), hitgKid (4.4.6)

In the ordinary Lie transform method, we choose the new Hamiltonian lK order by order
to make the right hand side of these equations have zero average along a

particle orbit. Then the lwi s, which are found by integration of the right

hand side along an orbit of ho’ will be nomrecuiar.
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In the kgqéé::s;.ﬁ,_!;ranéfomhtiqh;:schm,A.ve choose. the_new Handltonian
,t.iiffe;:'eﬁéiy. ﬁ:e general rule is that we calculate the genmerating flxﬁction’
61;]}; in: those orders which can be d;:ne nonrecursively. In particular, in
f:ltst'qtder we can p:[.ck, 1K1 - Fl (overbgr denotes orbit ave;age) a‘:_z_dj:!.nd‘ .

» ¥ to calculate the Poisson bracket on the right hand side of (4.4.6). Hence
vg cljmqse ¥ ™ 0 for n>1, and we usge ¥ and the transformation equationms,
e,g. .(4.4.5), to find 1Kn for n>1.

o The result is that we now have the hamiitonian 11( which 1s solvable to
firat otdgr. 1K1 =v1Kl(P) since 1!{1 was chosen to be the average of lxl.

We want to ;pply a sgcond transformation, but before doing so, we rearrange

the terms in our Hamiltonian. We pick our "mew-o0ld" Hamiltonian

n
lh - E € 1hn to be given by

Mo = 1K, * 55K 4.4.7)
My =0 (4.4.8)
= K, (4.54.9)
R (4.4.10)

That is, we absorh all of the solvable pexts in the unperturbed Hamiltonian.

Naw we apply a second transformation T to the above Hamiltomiamn.

2
Since there is no first order perturbatiom to transform away, 21: vanishes
in first order. Using this fact, we get the following equations relating

the new Hamiltonian to the gemerating fumection of ZT'

Bzwz
TR {292, lho} = 2(,K, - hy) (4.6.11)

82w3
a_t+ {2"3) 1h0) = 3(2K3 - 1113) (4.4.12)



}' 408, - 1 4) ¥y 1hz + I‘z
Now we p:lck ZK so that t;he right: hand sides have zero nrb:lt avera
lh . WE note that Eqs. (4.4.11) and (4.4.12) can be solved nun.recu:sivdy, »
but to solve (4.4.13), wve smst first know the results from (4.4. 11).7 Bencg
we sa‘l.ect ¥ ami by the usual method, we set ™M, = 0 for n>3, a.ud vern
use the higher order transform equations to find ZKn for n>3. )

We remark on the ordering system here. By regrouping terms in (4.4.7),
we have messed up the ordering scheme. We have added an order 51 term to
an order £ term and called the result order £°, This does -nor. invalidate
our resuits. When ve calculate 2V in (11) it is good to aecol;ld order, but
since 1h° has a first order part, M > has higher than 52 effects included
in it.

Let's review what has been accomplished. First we introduced an order
€ transformation lT. Then we regrouped terms in the Hamiltonian and transformed
away order 52 and order 53 oscillations using 2'1'. If we regroup terms again,
we will have Zhn =0 for n = 1,2,3. It follows that the perturbations in
2h are of order ea.

To construct an inductlon proof we use the equation (4.1.14). We
assume the unsolvable terms in the Hamiltonian a h are of orders higher

1

0.
than or equal to E(z ). By regrouping terms we get n—lhm =0forl<mc< 2,

We apply the transformation T. We must have W ,..., ¥ = 03
n n n (zn_l)
T yeeey T = 0; and svees K = 0. Simply put, if there
o'l LN K"’ 7 (2%-1)
is no perturbation to (2 -1) order, then there is no new transformatiomn

nor new Hamiltanain tol2®-1)"® B rder. From (4.1.%u43, this implies
3w

BBy (v, h}salk - b)) (6.4.14)



Kolmogoruv 8 techn:lque 18 very appealing since the errors in the per-'

f.urbatiun theory are of otdera e, 22, El', 58,... after esch step tathet
than the usual :, 752,' 23, e:[',b... .V One should be closer to the righc answer
after n stepé of Kolmogorov's technique than after o steps of the usual
method. To theoretical physicists Kolmogorov's technique is appealing for
anor.ﬁéf reaéon. In calculating the orbit integrals Kolmogorov's technique
uses an impraverl unperturbed Femiltonian. The inclusion of higher order
" terms in the unperturbed Hamiltonian is called renomalization, amd it is
beuﬁﬁ to be important in a number of fields such as quantum field theory,
statristical ﬁacl-mnics, and plasma physics.
A point to he noted about Eolmogorov's technique is that terms of
order 53, 55, es,... do not vanish. Instead they are being absorbed in lower
brdet terms. For example, the term of order three is included in the gen-
erating function v = 292 + EZ“3 Although Kolmogorov's technique has
fewer terms than the standard method, each term is much more complicated.
There are reasons for believing that Kolmogorov's technique is not
the most practical method of attacking problems. To see one reason, compare
Kolmogorov's technique to the standard Deprit method in fourth order theory.
Kolmogorov's technique requires knowing zh (Zho plus perturbations) at this
point, and h mst be found by multiplying three infinite series:
h = 1-1'1' +h. In the standard Deprit method, only two infinite series
are ever multiplied, c.f. (4.1.14).
Another criticism of Kolmogorov's technique is that it can introduce
spurious small denominators. An example of this is the one degree of freedom

Hamiltonian h = 5 1:|2 + %— mz q2 + AU(e, q) for which the transformed Hamiltonian



1s exponential in the true action J: g - o oeds B

K@) = o (e )e = 03 - 5 u .12+... .
If we use pettutbatiun theory to find K frmn h (as in s:ection 5, 2); we
would have K to first order in £ wpon doing the first order ttansfomation.
Using the standard. methed we have a fixed orderl.ng, and so we juat
generate the power series in (4.4. 15) term by term. In Kolmngornv s technique
we change the ordering by absorbing the solvable terms in the unperturbed
Hamiltonian. After the first transformation we would get )
@ =ui-Sui®. ‘ : (4.‘4‘.;.16)
Recalling section 4.2, we note that each time we imtegrated along a particle
orbit we had a llmo in our expressions for the wn's. If we ingtead use the
unperturbed Hamiltonain of (4.4.16), we end up with a factor of lllwo =
lllmn = ll(mcJ - t-:moj). We see that Kolmogorov's technique fails for j = 1l/¢
and perhaps beyond, because it gives a small denominator.
The reason Komogorov's technique is worse than the standard method
in this case is not hard to see. The improved frequency 1mo is closer than
w, to the final result w in the range 0 < J < 2/e, but the improved frequency
is much farther than R from the final result for 2/e £ J < = . TFurthermore
the improved frequency is qualitatively different: it has a root for finite
J. Neither w, DO w are ever zerc in the range 0 < J < =,
We conclude that Kolmogorov's technique is not necessarily the most
practical way of obtaining answers. This does not contradict the fact
that Kolmogorov [6], Ar:.. ! [20], and Moser [21] all used this technique to
show convergence of certain invariant tori. In their proof the comcern
was about getting very good expression in small regions of phase space.

In the imterval 0 < J< 1, the improved Hamiltonian .h does give a much

1o
better value for the frequency than does the unperturbed Hamiltonian hO = woj.



58

: l?j.qmuiion Of the Choice of Conventions

’ ;l'he primary purposé ovf this paper has been té give an .F:xpository account
. of Eam:l.ltunian perturbation theory using the Lie transforﬁat:lon theory
of Deﬁ:, and from it to derive Deprit's perturbation theory. Furthermore,
wve have iilnstfated the theorles with examples. However, a secondary purpose
on ;:liis i:a-perl has":eeu to ﬁnuduce convantions which are convenient im
practiéal applications. 1In this section we outline how and why the
conventions presented here differ from previous omes.
We first mention that there are two minus signs in the definition of
the operator Lf. Thé more obvious one is that (2.1.8) differs from the
corresponding definitions in for example referemces [8] and [10]. We chose
the definition (2.1.8) to rid Jacobi's identity of 2 minus sign. In the
case where Lf is defined by
L5 = {g.£), (2.1.8")
Jacobi's identity is

(g Ll = - Lyg (2.1.9")

.8}
A second minus sign occurs becauge of a difference in the meanings of coor-~
dipates and momenta in the different literatures. In the celestial mechanics
literature [7-9] the unmperturbed Hamiltonian depends only on the coordinates.
Here and elsewhere [1, 16, 18, 19] the umperturbed Hamiltonian is chosen

to depend only on the mopenta. This 1s the patural choice when dealing with
nearly free particle motion where momentum is conserved in the unperturbed
system. Of course, when momenta and coordinatga. are interchanged, the sign

of the Polsson bracket changes.



In choosing the transformation T in t:erms of" I. =) t:here are a n\nber -

of posgibilities. Heri [7] defines T by simple ‘exponentiation: TZ exp(L, )._" B
Deprit’s choice [8], that T satisfies a differential equation, proves more . . .
useful in two respec.cs. fne is able to derive recursion relations for the
successive terms, and one is able to do t::[.me dependent transformations in.a
straightforward manner. With Hori's choice one does time dependent theory
by first enlarging the phase space with time as 2 new coordinate. Dewar [10]
improved Deprit's work by mot requiring T to be a power series. BRasically,
we have followed Dewar's formalism, but we differ in minor ways on the form
of the differential equation. Our choice is to make the evolution of T in

8 by I'v exactly analogous to the evolutian of the time development operator
M in t by Lh.

Another convention we must choose is whether T should transform from old
to new coordinaces as done here, or from new to old as in [10]. The choice
made here simplifies the perturbation equations, in particular Eq. (4.1.14).
In pertwbation theory we average (4.1.14) along a particle orbit to find

Kn' Since the Kn's are averages and the vn's have no averages, this gives

n-1
K =h_ + 2 L -1
n n n o-m m

=1

Had we made the opposite choice, we would have effectively interchanged h

apd K, and the result for Kn would be

-1
K =5 -1 E (L h+mT‘1g). .1
n n n o-m m n-m m

m=1

By our choice, we avoid the extra set of rerms in (5.1").
We also write our expansions differently. In previous works, the

expansion (4.1.4) is of the form
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w= z : ar o - CRE

n=0
That choice does not allow Bq. (4.1.14) to have such a simple appearance.
The effect of that choice 1s to imsert n!'s im all the equations. The result
is that Deprit's equations (e.g. ref. [8] eq. (27)) have binomial coefficients
whereas ours have simple fractions.
In summary, we have changed the conventions in minor ways. We have

presented the conventions we have found to be most useful in practical cal-

culations.



f, Wave Packets: The Meaning of Wave Energy and Momentim ’md'ﬁhe

Effect of Nonlinear Currents on Wave-Packet Evolution

In this chapter we prepare the way for later work ‘b'y;' distuseing the
aspects of wave packet evolution which arée universal to -all unifofm °
dispersive media. The goal is to go as far as possible using only the
concept of the Iinear response tenmsor D (E,m). Past work along these Iimes
includes expressions for the wave energyl and wave mumentmnz of normal
mode wave packets, and it includes derivations of the geometric optics
of weakly nonuniform systems. 3,4

We begin by discussing the technique of expanding in Fourier space.
This techonique is useful for amalyzing wave packet perturbations, i.e.
perturbations which have a narrow spectrum in Fourier (E,ui) space. In
section 6.2 we use this technique to generalize the concepts of wave
energy and wave momentum. We derive expressions for the wave energy and
wave momentum, which apply to perturbations that are not normal modes.
Exploiting these expressions allows us to write the wave energy and
wave momentum as sums of contributions from the electromagnetic field and
the individual species of a Vlasov plasma.

Then we analyze wave packet evolution using the method of variation
of parameters.s We used this method to systematically derive the
nonlinear wave equation for the electric field amplitude, given the
nonlinear currents. We also discuss a heuristic method for deriving

nonlinear wave equations. This method, which may leave out important

effects, has seen mich use in the litna.x:':-nn.rceﬁ_9 because it is easy to

apply. In this chapter we compare the gemeral aspects of the heuristic



.. method and the systematic method. Later in the thesis we show in specific

examples how the heuristic method leaves out imporctant effects.



6.1 Expansion in Fourier Space:. A Useful Technique for Ana.].yzing,,, .

Wave Packets

The problem we consider is how to find approximate local
relations in real space for quantities which are related -by simple
multiplication in Fourier space [as, for example,‘ the current and the
electric field in a linear dielectric are related hy the conductivity:
S(E,m) = g(k,m) -E(l_;,m)]. We solve this prohlem for the case where the
quantities (e.g. j and E) have a marrow spectrum in Fourier space by
using the technique of expanéion in Fourier space. Here we descrihe
this technique and apply it to find the local relations hetween j and
E, p and E, and B and Edna homogeneous dielectric.

Since =z and t are treated equivalently in this section and much
of the next, we introduce the notadonlo of special relativity. The
four-vector x has contravariant components xe-3 = (t,g) and covariant

components x0_3 = (t,—x). Similarly the four-vector k has contravariant

components k0—3 = (w,k) and covariant components k0_3 = (w,-k).

Also, in this section and section 6.2 only, we use the Einstein

summation convention for repeated indices.

Let us consider an electric field of wave packet form, i.e.

u
EG) = E@e 9 reie . (6.1.1)

The dominant k-vector for this electric field is kU_3 = (2,x), and the
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slowly varying amplitude is E(x). The Fourier transform of E is given

n
ik x
E(k) = j:l[‘xe u E(x)

1(k -x) 1(k +K )x .
f y x[e xE( e ¥ c(x)]
£ +

h
£ G+, (6.1.2)

by

In our notation system the Fourier transform _E_(k) is distinguished from
E(x) only by the argument. Furthermore, E.* (k) denotes the Fourier
transform of g*(x), not the complex conjugate of _f_;(k). Since ;":(x)
varies slowly in x, é (K 1is highly peaked at k=0. Hence the first term
in Eq. (6.1.2) is highly peaked at k = ¥, and the second at k = -x

In Fourier space the current is related to the electric field by

matrix multiplication:

100) = (k) “EQ)

n

0() € 0= + 0(k) et (6.1.3)

Inverse Fouriler transforming this equation we find j(x).



4 ~ik xu‘
d'k Ty

e (k) -E (k-
(Z'rr)l' 2 EG-8 )

i= =

1k o
u ok
e ¥ ogmwEratn

~
A~
[

cam*
& -1 (ku+x y=H

dk N -
ot © gem-E@

ae e—i (ku- lil)x

+
(zm*

90-0-E" W (6.1.4)

The last step follows from changing the variable of integration. Pulling

the rapidly varying phase out of the integrals we find
-ig ="
i@ =fwe ¥ +cuc., (6.1.5)

where

4 ~ik ¥
D = ‘: k)4 e Y oG£, (6.1.6)
5 o g

To evaluate this integral we invoke the highly peaked nature of
E(k). This peaked nature allows us to appropriate g(k+w mnear k=0 by the

first few terms in the Taylor series

n
glktn) = E %! (kl; % ) a(0. (6.1.7)
M
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Ingerting this expression into Bq, (6.1.6) we obtain

4 -k 5
Jo - [dhp T El(“ a_) g0a-£@

oy ]
on® e u 3k,

° n
1 3 3 a.
= 2 = 1=, 7=—) g (D-ck)
n! ( 3 Bxu> = -

exp[ 2 o Em . (6.1.8)
s aku e h

]

Approximating this expression by the first two terms we obtain

-tk 3 3 -
jx) =e 1+4— g(KQ L (x)+c.c., (6.1.9)
= ax" aKu = ~ i

a local relation between !(x) and. g(x).

The critical step in obtaining this local relation is the
approximation of the sum (6.1.7) by its first two terms. The
validity of this approximation depends on how much g(k+x) varies over the
narrow reglon in k space where g(k) 1s significant.

The relations between p and §, and B and E are found in the same
way. From 0 (k) = k-j(k)fw = keg(k)-E(k) /0 we obtain

u

-1x x 3 3
p(x) =e ¥ (1+i = 5?) [x-g(r.)-s(x)lﬂ]+c.c., (6.1.10)
ax uf L~ e

and from Paraday's law B(k) = ck x E(k)/w we find



-1k xl‘l A ) -
B(x) =e ! (1+1 3——3—) [ch E(x)/rzl'afc.'u
- e BKH -

In summary, we have found local expressions between j and E,

p and E, and B and E by the method of expansions in Fourier space.
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"6.2 Wave Epergy and Momentum

We consgider a homogeneous time independent dielectric (-uch as a
magnetized plasma r;r a polaﬂ.zed crystal) which is excited ty an external
current jo(x). By computing the average rate at which the external
current source loses energy and momentum, we derive expressions for the
energy and momentum of the dielectric. Our expressions are gemeralizatioms
of the well known wave energy and momentum i:‘ormulas:,l'2 in that our
expressions -apply as well to perturbations which are not normal modes.

In addition our generalization technique allows us to uniquely divide
the wave momentum and energy into a contribution from the
electromagnetic field and contributions from each species in a
multispecies collisionless plasma.

In general a dielectric responds hoth linearly and nonlinearly
to an external current ie(x). The linear {in J.e) response includes
the electric field El(x) and the assoclated dielectric charges and

currents. In Fourler space the linear response satisfies

1w 5
B DEE W = § ) (6.2.1)

where D = I (1 |kl2 2 mz) + %k ¢2/u? + 41i0() /w is knaun here as the
£ & ~ o~ ~

linear response tensor. Assuming je(k) is highly peaked near k=k,

the response El(k) i1s also, and we can use the method of expansion in

Fourier space. We find [essentially- Eq. (6,1.9) with o > img 4mi:
=



~r ¥ ’ o :
5 = [y 3 _ 2 i .c. e e (FLT Y-
ge(x)v- e (1+ . am) [4_“ g(K) :1.(x)]+c.c.,. - +25.(642.2)"

where El is the slovly varying amplitude of E; (x).
To find the energy in the dielectric we consider the negative of
the average power density -E(x)’je(x) transferred to the external current

ie by the electric field E, Exzpanding E in orders of je we have

_E-ie =-E -+ - El'j.e - Ez-j (6.2.3)

~0 "fe ~e T3

through second order. The first term in the above exprassion vanishes since
Eu is stationary and ie is oscillating. The second-ordeyr electric field
§2, which appears in the last term, is a sum of terms which are either
nearly stationary or oscillating at the second harmonic (k~2k), as

we shall see in the next section. Hence Ez-ée has only oscillating terms
at the the first and third harmonics and it vanishes upon averaging.

Therefore Eq. (6.2.3) reduces to

- I_Z'; = - El'j.e . (6.2.4)

We now insert i, from Eq. (6.2.2) and E, into Eq. (6.2.4) obtaining

1

-E3 = -8 g [g(x) - 2"(@]- € 0

e X1 -~

+ E*(x)-["— L) (@]- L
=) '«)Ku 4T = Bxu ~L

3_ g 42 2 oteol- &
+[ax” gl(x)] [ax 7 D (K)] &), (6.2.5)
u
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- where D+(K) 1s the.adjoint of the matrix D(K).  Introducing the
1 ! ;

hermitian and antihermitian parts of Efgh + 1D, Eq. (6.2.5) can be
written in the form

9%

Q & - 2 ]
SEL 7 o GW,0-5m 2 a—[,m WD (93 (x)]
B EHS) [Bﬁj r ) (x)] :—u ® + c.c. (6.2.6)

The antihermitian part of 2 represents dissipation, which we assume

small fe.g. 0(e)]. We have also assumed wave-packet perturbations

so that the operator (BIBK ) (3/3xM) 1s small [e.g. 0 (6)]. Thus the last
term in Eq. (6.2.6) iz much smaller than the first two [e.g. 0{(e8)] and

may be neglected, and reducing Eq. (6.2.6) to

Q %
EL T H AW, w6+ L5 [ €692, (€ (x)]

3|2 ex(y,. 3
-y- 3 [Rgl(x; ghm-gl(x] .

'
This equation has a simple interpretation.

- E.je

is power density supplied to the dielectric by the external

(6.2.7)

The quantity

current., This quantity equals the sum of three terms., The first is

the rate at which the dielectric dissipates energy. The second is

the time derivative of the reversibly stored wave energy density.

The last term is the divergence of the energy flux density We denote

the wave energy density by W:

70



W E [g—n ngh(g)]-gl(x). (6.2:8)°

Integrating Eq. (6.2.7) over all space and neglecting dissipation (Da=0)

we find
-f @ x T@,m T %t.—fd35u(x). (6.2.9)

That is, in the apsence of dissipation, the time derivative of the
spatial integral of W equals the total power transferred to the plasma.
We stress that nowhere in this derivation have we used

D(Y-E (x) = 0, i.e. that we are driving a normal mode of oscillatiom.

Of course, in that case, Eq. (6.2.9) gives

= * .

W(x) ,m El(x) B, &)+ 0. (6.2.10)

By an identical analysis we derive the equation

=(p E + j xB/c) = E— £ D, .E
T 7n <1'=a ~1"
1_ ] E k] % .02 - 1 * e 1 % .
i 3—[;2_ @ OB R N - g By
_lyg 3_ . .
= [a ~§1D E) ZIED E1+El~hE
- *
== * 51'231:‘:1] (6.2.11)

Here the arguments of the functions are the same as inm Eq. (6.2.7),
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i.e. (K, El(x)- The interpretation of this equation parallels the
~ £3
preceding interpretation of Eq., (6.2,7). We define the wave momentum

density G by
K
=1 |~ 3 o, T R P 1. .2
g6 -tm[z G R SN AR S N :1](5“2'12)

From (6.2.11) we can prove that when dissipatfon is absent, the time
derivative of the spatial integral of E is the force exerted on the
plasma by the extermal current density J-e and charge density Pge
Computing the derivative in Eq. (6.2.12) and requiring the perturbation

to be a normal mode, i.e. 2h-§1=o, we obtain the standard ex-pu:ession,2

K
£ = 75 £10+ T b (€ (. (6.2.13)

Now we specialize to the case of a collisionless wultispecies

plasma. The average power density put into species s is P =

To second order we have

S _ . .5 S i 5
P = Ec is + El i + E‘Z i (6.2.14)

In general species s may have nonzero jS and js, and all three terms
o
in the above expression contribute to the power density. However,

we may define the "wave energy demsity" W of species s to be that



energy density which comes frmn the term’ 21'31

s which 13 bilinear in
the wave amplitude [jl(k) g ('k) E (k)]. Using the ‘game method of

analysis as before (except for imD/lnT -*5 = -:lwx /61T) we f:Lnd '
== s

" _Q gk s £ e 2 N
Efriy =gy L (00x, (et )+ lﬁm 1(x) (k) :l\x)]
a_|8 -* 5 ;
- V'il_s[b_n' il(x)'lh(")';‘.l{'x{l. (6.2.15)
Thus the wave energy of species s 1s defined to be

W (k)

n

1 9 ;* s z
a7 5 00y, (0-c, ()

= - 200 ® (0. (x3
=-3% (x) g, (k) r:l(x,. (6.2.16)

Similarly the wave momentum density of species s is defined by

e _Ll: s
TR ik

CK -

!y.

*
2

el (]

s
Zh L

X K

(6.2.17)
It is easy to verify that summing the wave energy (moz~ntum) demsity

of all the species as given by Eq. (6.2.16) [Eq.(6.2.17)] and the
electromagnetic emergy (momentum) density m,_/sw (El"gllh‘n‘c)
gives the rotal wave energy (momentum) of the system as given by
Eq. (6.2.8) [Eq. (6.2.12)]. Thv we have achieved a natural division
of the total wave emergy density and wave momentum denmsifty into

contributions from the electromagnetic field and the separate species

of a collisionless plasma,




In conclusion we strese the limirations of our results. We have
ehtiwn that the spatial integral of W is the total energy supplied to the
dielectric by the exterral current, but we have not shown that W gives
the true local energy density, This must be decided by a nonlinear

calculation. We shall seeln chapter 8 that in gemeral W is not the

true local energy density. Similar statements hold for G.



6.3 Derivation of Nonlinear Wave Equations Using the Method of
Harmonic Balance : ’

The study of waves in a dielectric divides naturally into two
parts: (1) computing the charge density responmse Gp(g,t) and the
current depsity response 61 (5,1:) to amn electromagnetic field perturba-
tion 51;’.(5,:) and 8B(x,t), and (2) solving for perturbations 6!_! and GE

which, together with the responses §p and 8j, satisfy Maxwell's equa—

tions,
V-6 = 4ubp (6.3.1)
V-8B =0 (6.3.2)
VxsE = -~ 1a(8B) /2t (6.3.3)
VxsB = ¢ L[4nss + 3(5E)/0t] . (6.3.%)

(0f course, the unperturbed system must also satisfy Maxwell's equations.)
In this section we discuss the second part of the problem. We assume
the response to be known, and we sh~w how to find wave—packet perturba-
tions that are consistent with Maxwell's equations.

To begin, we discuss the concept of linear response. In general,
the fully nonlinear current response of a spatially homogeneous time

independent medium to the perturbing field can be written in the form
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t
63(x,t) -ﬁgx'fdt:' O(x-x",t~t*) 6E(x',t")

t t
+ﬁ3x1/dtvﬁ3xuﬁtu g(f'f'!t't"E'E"'t't"):SE(E'-t')SE(x"!t“) -

t t t
+ﬁ3x|ﬁt "/ng"ﬁt"/‘dax'" ﬁtlu E(E-El Jt-t', x_En Lt-t",
) = = =

E_Elﬂ,t:_t:"l)e GE(E'Dt.)ag(fl't")sg(f’" ,t"') 4 e .
(6.3.5)

We see that the current can be separated into linear (1) curreat,
t
83, (x,1) sﬁ:‘x'fac' g(x-x",t-t") "6E(x’,t") (6.3.6)
S

and nonlinear (V) current,
61, (x,t) = 83ix,t) - §3;(x,8) . (6.3.7)

Since Eq. (6.3.6) has the convolution form, we may Fourier transform to

obtain

83, 0k,w) = 9(k,u)"8ECc,w) (6.3.8)
where ) -

a(k,w) Eﬁ3sﬁ1 o 1(k-s-ut) g(E_i,T) . (6.3.9)

0
This concept of linear versus nonlinear response is not te be
confused with ordering. By ordering we mean that the perturbations can

be written as series,



8E(x,t) = B\ (x,t) +E,(x,t) +Ey(x,t) + ... (6.3.10)

8B(x,t) = B, (x,t) +B,(x,t) +e ’ ‘ (6.3.11)
§1(x,8) = 35 (X,0) + 1,(x,8) + ... ' (6.3.12)
dp(x.t) = p) (x,b) + Py (x,8) + ..., (6.3.13)

in some small parameter (ro be determined in cach specific system). T1f we
insert Eqs. (6.3.10) and (6.3.12) into Eq. (6.3.5), we note, for example,

that we have a linear second-order current,
t
into ‘ﬁa"ﬁ" s et By (6.3.16)
Zm

and a nonlinear second-order current,

t t
Ipu(z:0) =ﬁ3"'ﬁ"ﬁ3’“'ﬁ3=" gz se-t g, et

E (x',t") E (x".t") . (6.3.15)

The concept of linear curremt can be used to rewrite Mazwell's

equations. Using Eq. (6.3.10) we write Eq. (6.3.4) in the form,

Vx8B(x,t) - %[lmﬁ;l}‘(z,:) + % SE(x,0)] = "T” 81,(:0) (6.3.16)

which we Fourier transform to obtaim

1kxBB(k,0) = [476], () -1wSE(k,u) 1/c = 478] (kw)fe .

The left-hand side of this equation can be written in terms of GE by
using (6.3.8) and Faraday's law (6.3.3) in Fourier space: Gg(lf,w) =
ckmﬁl_i(lj,m)/w. We find

uxg(g,w)'ﬁli‘.(lf,m) = —Imiﬁju(lf,m) . (6.3.17)
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_vhere
Dk,w) = 1P ) + ke ? + dniot0 fo . (6.3.18)
We first analyze Eq. (6.3.17) for linear wave-packet perturbations.
We take E, to be of wave-packet form,
1(k, <x-w t)
EI(E’:) - El(:_:,r.)e ~0~"0 +c.c. , {(6.3.19,
where 51(1‘") is slowly varying, we neglect the nonlinear current in Eq.

{6.3.17), and so we obtain
wb (k) -[E_I(E—k i) "gi'(‘f*".‘o“"'“"o)] =0 . (6.3.20)

(We now use EO’wO to denote the central wave vector and frequency of
the perturbation, and we no longer use relativistic notation.) Since
§1(§,t) is slowly varying, £~1(k’w) is highly peaked at the origin of
(E,m) space. If we consider the region of Fourier space where

E (e-ky,uw-w)) 18 significant, i.e. k0= ko, ve find that
E:i('fﬂfo'“’*“’o) +E:._i(2!50,2m0) is insignificant there, and Eq. (6.3.20)

reduces to

e .
w}:z)(lf,m)-_c.l(lf—.-o,u-wo) =0 . (6.3.21°

Dividing the tengor D into hermitian and antihermitian parts
=

13 = 1311 + :L!Ba, we rewrite the above equation:
uly (k) &) (ke wmg) = brdgy (k) € (kg pumug) (6.3.22)

In deriving this equation we uged mDE = lmgh. The right side of this
equation represents the linear dissipation of the wave. Here we assume
dissipation to be small so that it can be treated in the usual way (see

ref. 6 for example). Since we also assume small ponlinearity, the two



effects can be combined additively. However, bere we neglect dissipa-—
tion entirely, since it has been thoroughly discussed in the literature.
Thus we now consider

wpy (x,0) & (k-kgumug) =0 . (6.3.23)

To analyze this last equation, we introduce the diagongl representa-

tion of the hermitian matrix lgh(k,w):

3
2;‘1 D, (k,w) 8 (k,w) ﬁ;(g,w) . (6.3.24)

Bh(l_g.m) =
The elgenvalues Du in thia equation are real. The complex eigenvectors
ﬁu form an orthonormal basis:

% L3+ -

ua(lf,w) us(lf,w) 603 .

If we expand El is this orthomormal basis,

3

c = = 113 = A

£ ket pumu) = El Ey Gty ey 6 (0) {6.3.25)
then Eq. (6.3.23) reduces to

wh_(k,w) 5‘;(5—50@-%) =0 fora=1,2,3 . (6.3.26)

We are looking for wave packet solutions of Eq. (6.3.26). Mathe-
wmatically this means that at least one of the Da's has a root ma(E),
which we take to be real, in the neighborhood of Eo,mo. {In a degener-
ate case, such as transverse waves in unmagnetized plasma, two or more
Da's have roots wﬂ(lf) in the neighporhood of EO’NO') We use S to
denote the set of indices a for which Du(lf,w) has a root near l_co,mo,

and we use S to denote the complement of S. For « an element of 5(c€5),

the only way to satisfy Eq. (6.3.25) is by requiring




Lok, wp =0 for a€5 . (6.3.27)

inat is, that part of the linear electric field with polarization ﬁa
must vanieh if a€5. On the other hand, let us examine the case a€S5.

Since now Du has a root mu('f)'
E_‘[l_:,mu(lf)] =0 for a€s , (6.3.28)

in the neighborhood of ko,mo, we expand leJ in [m—-mu(k)]:

mDu(l_:_,m) = [“H“u('f)] —Blm [wDu(ls,m)] for a€s (6.3.29)
w-wu(l_()
in Eq.(6.3.26), and we obtain
(e Jub_ (1) € Jlkky,um)=0  for a = 5 (6.3.30)
TR, (0 = 2 fwb, (k] for a€S . (6.3.31)

w=w (k)
As shorthand, we use f to denote indices in the set S (8€S) and 1 to
denote indices in the set 5 (MHEE).

We assume ﬁé(lﬁ) to be nonzero in the neighborhood of lfo and divide
Eq. (6.3.30) through by ;n—ﬂ(l_c) (1f m_ng(lf) did vanish, we would go to the
next derivative):

8 =
Tmwg (k) 1€ (ko) =0 . (6.3.32)
Then we Fourier transforw over w to obtain
[ K-&m —mq(k)] El(k—k ) =0 . (6.3.33)
To return to the variable x, we first expand mﬂ(lf) about ]:0:

48 = Qi) + k) vy + il Gl g (6.3.34)
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wvhere

amB
8 = - (6.3.35)
~ k Eo
and
asz
gB S g . . (6.3.36)
R =]
and then Fourier transform uver k, thereby obtaining
3
[£ (3 + v69) +3gpW + - (ko)]f. @ =0 . (6.3.37)

Usually we choose wo - w (k ) in this equation, so that it reduces to

[1 (2 +vg?)+ l,gszvv] By =0 . (6.3.38)
We have derived equations for the evolution of the set {E:(:_:,:) .
If Du(!..m) has no root near (Eo,wo), thenaq' = 0, but if Da(E,l.u) has a
root near (Eo,wu), then E; satisfies (6.3.38). The next step is to
determine how {E:(E,r_)) is related to the electric field amplitude
£ =0.

To find this relation we inverse Fourier transform,

El(x,t) ='fd—3kdz ei(ls'{:—(ur.) El(k-ku,w—mu) + c.c.
T (2m) e

akedw 1(k-x-wt) a
f{zn)" ): B (k,w)E; (e-kp,uwy) + c.c.
(€.3.39)

'ﬁmm!i out the rapidly varying phase,
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51(5":) - e1.(1: =it t)/d kdm i(k x-ut) 2“ (it o)c-fl!(k'w)
(2 -
+ c.c. . (6.3.40)

by making the change k+k+ ED in the integration varisble, we find

the first-order amplitude to be given by

3 3
£ (x,t) = [QM XY S o e YR (kW) . (6.3.41)
LS R (am® El“u 20 E1 2

o

Since E; is highly peaked near the origin of Fourler space, we can

calculate this integral by expansion in Fourier space, c¢.f. Sec. 6.1:

£ (x0) = py L (1 MLO%-N-—~> Zuu( Wb @) . (6.3.42)

Through first order im (3/3t,V), this equation gives

3 2%
~ 1
E1te) = R0t + 15 () —330 8, (g up)

- 19 3% S| - (6.3.43)

Thus we see that there are two steps in the linear analysis. The
first is finding the evolution of E(; as given by Eqs. (6.3.27) and
(6.3.88). The second step is using Eq. (6.3.42) to determine ‘t‘;.l.

This analyels requires two assumptions. The first is that
,.E,l(lf'lfo"‘"‘“o) is highly peaked in Fourler space in the neighborhood ot
EO’NO'
to use the expansion (6.3.18) for wB(E)’ and to find the amplitude

This assumption is needed to deduce Eq. (6.3.4) from Eq. (6.3.3),
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€, (x,©) from £](x,t) 1n Eqs. (6.3.25) and (6.3.26). The meaniog of this
assumption is that the amplitude g(g.:) must vary slowly in space and
time (how slowly depends on the wave in question). The second assump—
tion 18 that l_:u.wu is near a root of wDB, so0 that we can mh the approxi-
mation (6.3.29). This assumption means that we are considering normal
mode oscillations of a plasma.

Let us consider the particular case of transverse wvaves in cold
unmagnetized plasma, for which mDB -y - (kzc2 + wﬁ)lw and mB(E) -
(m: + kzcz)!’. It is easy to show that to use the expression (6.3.29),
we must have [m—mB(l_t)] < mB(l_t), i.e. 3E/3t < moé. Ome can also show
that to neglect the third derivative in Eq. (6.3.34) and to keep the
second derivative, we must have cz(l‘s-l_ro)-!_:()(m(z’. This condition amounts
to [V < (W2nlch g€l = (1 + m:/kgcz) liegEl-

Now we turn to second-crder theory. Since the first order field
has the wave packet form (6.3.19), we expect the second-order nmonlinear

current to have the form:

Jpu (K = $y00mt) + [22\:2"5’” e (6.3.44)

My x-upt) ]
+c.c.| -

That 18, the electric field in Eq. (6.3.15) beats to produce a second-

order zeroth-harmonic nonlinear current jZ\JD’ and a second-order second-

harmonic nonlinear current,

21 (k- x-to_t)
LGt 2, e 0T 0 e, (6.3.45)

We expect the nonlinear current (6.3.44) to drive electric fields at the

same harmonics:



10y 2-0gt)
Ey(x,t) = Epp(x,t) + Eppxtd & 0~ +tee . (6.3.46)

We Fourier transform (6.3.44) and (6.3.46) and insert the results into

the second~order part of Bq. (6.3.17) to find

”9('.‘-“’)'[520('."“‘) + €y g u-2up) + §52(5+250'“"'2“0)J

- “'“‘[12\»0('5""’ 4§ g -2 -2 +r9~5u2(5+2‘.‘o"‘"'2“’o’] .
(6.3.47)
We split this equation into three equations by applying the same reason-
ing that was used in going from Eq. (6.3.20) to Eq. (6.3.21). For
example, for E,w near the origin, only the first term on each side of
Bq. (6.3.47) is significant. The other terms vanish, since they are

highly peaked near either (ZEO,ZMO) or (-2k .—Zwo). Thus we find
wg(l_t,w) 'gzo(lf.w) = 47l 12\)0(5'“) - (6.3.48)
On the other hand, for k,w near Zko,ZLuo, only the middle term on each
side is important, and so we find
WDk, 0) ~€yy (k-2 - 2ug) = =bmt §, o (k=2 u-2u) (6.3.49)

This last expression may be solved for E~'22’

4mi

L.t R . -
£,y 2k uw-2ug) = = 225 07 (k) -§ 5o (k-2ieg,0-2u) (6-3.50)

and then expanded in Fourier space to obtain a local expression for

.22}

N —~ 1( 3 3 3 Y
€0 = 4mi }, ﬁ(i 3 T2uy -iv'm—o) B (g 2ug) gy (en B/ ()

(6.3.51)



To lowest order this expression reduces to

c =4mi -1
Ept0) =5 ¥ (Zkgu2p) B0 (xa0) (6.3.52) .

The other expression (6.3.37) is not so easily converted to x-t
space by expanding ic Fourier space, since g Q_:,u) may have singularicies
for k,w + 0. For example, one term in g(l_:,u) is (g—iﬁ)kzczlwz. Tostead
it is simpler to returu to Maxwell's equationms,

VEgg = 45pyy0 + Pgyp)

VByo = 0
38
1 %Py
Rl =V Il T
3E.
4m 1 220
9% B30 = ¢ Uno *dwd? *oHe - (6-3.33)

in the problems considered in the later chapters of this thesis.

He proceed to third order. We use the harmonic structure of El
and Ez to infer that j 3v? which is bilinear in §1 and E, or trilinear
in El' has the form :

1k

'x—mot) 31(}.‘0.5'"’0”

< - ~0 =

EPNCIDR S P ON * Q3v3(§’t) € *e.een
(6.3.54)

and similarly for Eaz
10k -x-w t) 31i(k, * x~w t)
_ ~0 =70 ~0~0

§3(Jf’t) = €31(15,t) e + €33(5,t) e + c.c.,

(6.3.55)

We insert E up tc third order and j up to third order into Eq. (5.3.17),

and we separate tbe first-harmonic terms to obtain
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W (k) - 1€, (ke o) + £, (- o) )

= At Gk o) . (6.3.56)
(The :hird-hgtmnic terma can of course by handled in the same fashion
as were the second-order second-harmonic terms.) To handle the first
harmonic terms we must be careful since (as has been assumed) one of the
Du's vanishes at or near EO'”O’ and ao g(l_no.wo) 18 not invertible.
We use the diagonalization (6.3.24) of P to write (6.3.56) in the
form

D 0 £ ok i) + £, Gty )]

- - [t - . e 13
4l 8% (kaw) § ) (ko) (6.3.57)
We recall that Du(k,m) has a root near ko,mo for c€s (or a = B), but
Da(k,m) does not have a root near ko,mo for a€s (or @ = p). In the

latter case we can solve Eq. (6.3.57) by simple division:

" W _
€] (kokgrumg) + €3 (kokgumwy) =

L. S )} - -~ 6.3.58

R B3 k) gy (o) - (6.3.58)
We note now that we have an ambiguity. We have two variables E‘ll and
Egl to describe the first-harmonic amplitude. In this case the right

side of Eq. (6.3.58) is a third order quantity, so to preserve our

ordering scheme we choose EE = 0 and

—tmt 8 0,0) "y, (Kl omag)
mDuQ:,w)

Yo (ke = 6.3.59
E'Jl(lf ke s-wy) ( )

0f course, we iy expand in Fourier space and transform back to real



space to cbtain

3 3 2 P B0g0p) gy, o)
E% (xt) = amt ( = 2 _ iv. _) B =
) e Z EL3 3ul° ako moau(so'uo)

(6.3.60)

vhich is

O P )

(x,t) = —4mi it (6.3.61)
31 uDu(_c',(.oo)

to lowest order.
We now consider the other case, @ = B8, where mDB does have a root
mﬂ(lf) near mO’!O' Since mDB vanishes we cannot simply divide through
by wDB. Instead, we use the expansion (6.3.29) im Eq. (6.3.56) to
obtain
[u-0g00 |[EEetipuma + €

..31 (et s )]

Gk . X
g B By ok o)
D) (6.3.62)
B's
Zzain the right side of this equarion is a third-order quantity. How-
ever, on the left hand side we have the factor m—mﬁ(k) which represents

the nonlinear frequency sh’ft, a quantity which is of some order greater

than zero im El 1-1s time we preserve our ordering scheme by choosing
B _
831 = 0 and

8 -4mL (k) - 9 1 (g, u)
[m-wﬁ (15)] El (kg tisg) =

%0

(6.3.63)
“"DBQ‘)

We use the expression (6.3.34), and we expand the above equation in

Fourier space to obtaim the real space equation:
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3 - .ov|eB - - 1 /3 2 3\,
[i(a: + g V) +g 'W]Eﬂi"“’ = "‘“in% ar 1(ﬁﬁ - E)

8 Cegoing) §1 (2,007 W) (6.3.64)

The above equation is valid only with the right side calculated to

lowest order om (V,a—at),

[1(3—"’t +vgV)+ %gB:W]Eg(E,t) = w5 Geu) - B Gue)s Wk
(6.3.65)
since we have computed the left side only to lowest order in uHuB(k).
Thus we have derived the nonlinear evolution of E in terms of the
nonlinear currents. We use Egs. (6.3.65) and 6.3.61) to determine the
first-harmonic quantities E:(g,t) and Egl (E’t)' Then we expand in

Fourier space, as in Eq. (6.3.42), to determine the first-harmonic

amplitude.

6.4 Derivation of Nonlinear Wave Evolution Using a Heuristic

(But Sometimes Incomplete) Method

We are about to describe a method for obtaining nonlinear wave
equations., This method has been used in one form or znother to discuss
the nonlinear evolution of transverse waves in unmag'netizedﬁ‘7 plasma,
lower-hybrid waves in magunetized pl::lsma,8 and ion cyclotron waves in
magnetized plasma.9 This method has appeal because (1) it corresponds
to a simple physical picture, and (2) it involves less work than would
a systematic calculation. Unfortunately this method sometimes gives an

incomplete answer; it mway leave out effects of comparable size to the
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effects it includes. This method seems to have no name in the litera- ’
ture, so we give it ome: the "heuristic methud for mcludiug non.‘l_inear—
ity," or in short: the "heuristic method."

The beuristic method begins with Eq. (6.3.37) Hhii:i\ we rewrite
here:

[1(31 +yg T+ :W]E,Bl(x,r) = G . (6.4.1)

t -8 =B - B~ 0° 1

This equation is strictly valid only for linear perturbations, However,
we apply it to monlinear perturbations in the following manner., In
general, the dispersion relation mB(Eo) depends on a number of parameters
l. These parameters include the background density, magnetic field and
so on. In the absence of the wave these background parameters have the
value -%0' However, to second order in the wave amplitude these quanti~
ties change by the amount }2 = .l.—éo'

To account for this nonlinear change we use NB(EO’}. = §0+§2) on
the right side of Eq. (6.4.1) rather than mB(EO,zo). This gives

[1(3%+ vg7) + :,gﬂzvv]e (x,t) = [ 5 ax g g A ]Ef(g,r)

(6.4.2)

upon expanding mﬂ(ko,lu-ﬂz) and choosing wB(k l ) = This is not
a derivation. In an ad hoc manner we have inserted a nonlinear effect,
the frequency shift due to the change in the background state, into an
equation which is only linearly valid.

As an ald to understanding the sbove equation, we present the
following quasi-derivation, We again use the idea of the background
state depending on a number of parameters 5, but now we apply this idea

to the conductivity. That is, due to lz, the conductivity is modified to



g( 2) = Q(ko.mo,l )+ A, gr Q(ko.m BV (6.4.3)
By applying the second term in the conductivity to an electric field
Ext) = 850,00, 065 (5.8 em [10ky-x0y0)] + c.c., ve £1nd the

nonlinear current

i(k -f-mot)
E =83v1(’.‘*") e +coce (6.4.4)

where
s B
§rsslmt) = [ , M gk, 0,50)] Byl o) . (6.4.5)
We insert this expression into Eq. (6.3.65) to obtain the nonlinear
equation for Eﬁ

[1Z + v7)+ g ]S ) = —amt g2

] s B —_—
[ = 2% AEEIN] BTG W T NO

90

(6.4.6)

To put Eq. (6.4.6) in the form (6.4.2) we perform a series of

manipulations. We first note that

3 P R T
A, a). gy sty o) = N 3 7 Dgeugedy) o (6.4.7)

Ay 4w, w1 2

since the electromagnetic part of D does not depend on any changeable

parameters. Secondly we note that

88 Cegotig 1) ( > % )D(k tigrAg) =B gt sA)

=0 )ﬂB(ko,mo A "By ridgdg) 8 Gegutigs Ao

=2

I
22w, Dg Uegstigsdg) (6.4.8)



since g(lfo,mo,éo) -ﬁB(l_co,mo,lo) =.0. By using thesé relations.we re§ﬁcé
Eq. (6.4.6) to '

[1(3% * v U 1’;‘J-B’W]Eg(’f’t) = '[52' '3‘2; ';’obs(lfo’"’o’l‘oﬂ
€8z 001 W ey (6.4.9)

Finally we expand the equationm,

g (kg » D (a0 (k1)1 =0, (6.4.10)

to prove
Wk A A, motag (ko A ) = = A+ =0 Dk ) (6.4.11)
B0 20’22" 31,8 %0* 20 0=2" 3, "8 lerd) - -4

From Eqs. (6.4.9) and (6.4.11) we deduce Eq. (6.4.2).

Thus we have a quasi-derivation of Eq. (6.4.2). This is not a
valid derivation, since the initial hypothesis, that the nonlinear
current j3v1 is given by Egs. (6.4.4) and (6.4.5), can not be proven.

In fact, as we chow in section 8.4, the heuristic method leaves out terms
which are comparable to the terms in includes. Nevertheless, Eq. (6.4.2)
has great appeal because it has a simple interpretation and it is easy

to use. The interpretation ig that the important effect of nonlinearity
1s the change in the background state. Eq. (6.4.2) 1s easy to use, since
one need only compute }2, a second-order quantity, rather tham j v1° the
third-order quantity needed for the systematic formalism of the last

section.




-.7... Application of Lie Transforms to Viassv Systems: Gemeral Aspecfs
The development of the transformation theory of Chapters 2—5
. relied on the Lie structure of the canonical transformation group.
With minor modifications one ought to be able to develop an equivalent
theory for other Hamiltonlan systems such as classical Hamiltonian
field theory, quantum mechanics, and quantum field theory. 1In this
chapter we discuss the application of Lie transform tha.)ry to the Vliasov-
Haxwell equations.
In the Viasov-Maxwell system of equatioms the demsity fs(f'z‘t)

of particles of species s evolves nonrelativistically according to

o, e st
AT 45 [E(E,t)+(xlc)x§(§,t)] -0, 7.0.1)

where the charge and mass of these particles are ey and o From fs

we compute the charge and current density of species s via

1

ps(:_z,t) eS-/-dav fs(g,g,t) (7.0.2)

and

15(1:,:) = esfdav v fs()j,!,t) . (7.0.3)

The evolution of the self-consistent electric and magnetic flelds

E(x,t) and B(x,t) in (7.0.1) is given by Maxwell's equations:

V-E = 41Tz:ps (7.0.4)
~ E)

Y3 =0 (7.0.5)

VsE = - 12 (7.0.6)
~ ¢ 3t
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VxB = X Eﬂ i+ o5 - N (707) Lo

We apply Lie transforms to this set of ‘equations foumin;"p;'é\;ioﬁs
work using Hamiltonian perturbation theory1_4 for discussing the:Vlasov-
Maxwell equations. We first write (7.0.1) in Hamiltonian form. . We then
use Lie transforms to analyze (7.0.1) for given electricmagnetic fields
E. and lj Finally, we require E and B to satisfy Maxwell's equations;
this part of the calculation is donme without Lie transforms.

Obviously, simplification would result if we could apply Lde trans-
form techmiques to the entire syatem (7.0.1-7). To do this we would
need a Hamiltonian or, equivalently, a Lagranglan for the entire system.
A Lagrangian description exdsts for the system (7.0.1-7) in Lagrangian
variables,s but we have found this description cumbersome because of
its use of Lagrangian coordinates. A Lagrangian description nsing
Eulerian c:otu'd:l.l:tates6 exists, but we find this description cumbersome
in its wse of the auxiiiary field E, the dispvla::ement vector. Im
acdition, since this description involves an expansion in E, the posi-
tion of a particle in the perturbed system relative to its position in
the wmperturbed system, this description would not apply to pondero-
motive effects.7 Ponderomotive effects can cause a particle to bounce
off a wave packet. After bouncing, the time average of I_’;_ is nonzero,
and E increases without bound, invalidating the expansion.

Previous applications of Hamiltonian perturbation theory to the
Vlasov-Maxwell equations have concentrated on plane waves in imiform
media. Dewarl derived the quasilinear evolution equations of a longi-

tudinal unmagnetized plasma using the Poincaré-Von Zeipel perturbation




Ei:hﬁda for Hamiltonian systems. Johnstonz used the same method to

" de ive the induced scattering coefficients of plaﬁe waves in magnetized
and unmagnetized plasma; and Johnston, Kaufman, and Johnston used this

. method for discussing three wave coupling 'coefficients.:* Lie transforms
were first used in discussing the Vlasov-Maxwell equations by Dewzu:9
in his formulation of turbulence theory.

This thesis is directed toward the description of the nonlinear
evolution of a single normz! mode of finite extent,in which case pondero-
motive effects are important. In this chapter we discuss the general
aspects of this problem. We begin in section 7.1 with the Bamiltoniza-
tion of equation (7.0.1)}. 1In section 7.2 we outline the gemeral scheme
for calculating linerr and nonlinear effects. In sectiom 7.3 we present
the general calculation of the linear susceptibility of Vlasov plasma,
and in section 7.4 we prove a relation between the linear susceptibility
of a Vlasov plasma and the ponderomotive Hamiltonian KZvO’ & quantity
of major importance In nonlinear wave evolution.

7.1 Hamiltonian Description of Vlasov Systems

In this section we rewrite the Vlasov equation in terms of
canonical variables. The evolution is then given by a Hamiltonian and
is therefore amenable to amalysis by Lie transforms. We also describe
the ordering of the various quantities, since the ordering of the
Hamiltonian formulation differs from the usual case.

We i:.8t note that the relativistic Viasov equation is equivalent

to Lioyville's equation for fa(g,p,t),

}=0, (7.1.1)
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* with the Hamiltonian
2 4 2|7
hs(g’g,t) = |me + [ep - esé(g,t)] + esii(g,t) . (7.1.2)
where ey and m, are the charge and mase of species 8. To derive
Liouville's equation from the Vliasov equation one must use the expres—
sion
Vg2, = § = °/3p
1
_ 2 2, 2|2
= [g—esé(g,t)lc]l o + [g-ese(g,t)lc] /c N (7.1.3)
which gives the velocity v in terms of the canonical variahles q,p.

The fact that the velocity is not an independent variahle is important

when one computes the current demsity,

0 =,[dﬁz N (xlzt) 56,0 , (7.1.4)
where

n.(xlz.t) = e v?(a,p.0)8(x-0). : (7.1.5)
The quantity Es(:flf':’t)’ the current density at x due to a particle at z

at time t, depends on thc vector potential in this canonical formalism.

On the other hand, computing the charge density is simpler:

0% ex, £) =[dﬁz Gz, 62,0 (7.1.8)
where

n.s(xlg,:) = e b(x-q) . (7.1.7

Eqs. (7.1.1), (7.1.4), and (7.1.6) together with Maxwell's equations
are the canonical form of the Vlasov-Maxwell system.

Much of this work is species independent, and so it is convenient




to &rdp the species label s. -Purthermore, we chodse units such’ that

m=c =1. Of course, we revert to ordinary units and restore specles

14beéls whenever confusion might arise. Thus we have

1
| B(g,p.t) = ,1 + [p-eAlg,t) 12l2 +eb(q,b), A X

p-ed(q,t)
v(g,p,t) = ————————7 . (7.1.9)

,l+[g—e5(g,t) 1?

2

nixlz,£) = e v(g,p.t)5(x-9) . (7.1.10)

In nonlinear théory we expect the electromagnetic field, and hence
the potentials A and &, to have terms of all orders (in some small

parameter) :

o(x,t) = § : @n(x,t) (7.1.11)
- n=0 =

é(x,t) = E ; An(x,t) . {(7.1.12)
z &=t

We want to determine how this ordering is reflected in the Hamiltonian

formalism. Of course, to zeroth order we have

s
+ eb,(g,t) , 7.1.1»

= \1 + [B-af\‘;g,t)]z

=2
(=]
>
&
o
T
~
[

p-ed,(q,t)
_ Pehole (7.1.14)

L
~
w2
el

<
(23
Z

[

1
i1+[g-t=-t_&l.j(g,c:)12!2

%



and .
No(a,pst) = e v, (q,p.t)G(x-q) . (7.1.15)"

To find the higher order terms in the Hamiltonian we note that

b(g,p,t) = hy(g.p-ebA(g,t),t) + edd(g,t) , (7.1.16)
where

S4(g,t) = Alg,t) - Ay(g,t) (7.1.17)
and

82(q,t) = ¥(q,t) - By(g-t) - (7.1.18)

We Taylor expand Eq. (7.1.16) to obtain

BEp,0) = Dy o (efAp ) hy(qupt) + eB8(q,0) . (1.1.19)
- n=0 ° - -

By inserting the expansion (7.1 12) into Eq. (7.1.19) we obtain

@

1(g,p,t) = § b_(¢,p.t) (7.1.20)
bl
where
by = -evo-A) +ed (7.1.21)
h, = -evy-A, + ed, + yo [A1 Al—(v A1\ ] N (7.1.22)

hy = —evgay + o8y + Py VA oy Eat e

+ e Iy, AliAll—(voAl)l,
. 1
and yy(g,p,t) = |1 + [E'eén(‘i"‘)lz z. (7.1.23)

The higher order terms in v and n are found by using Eqs. (7.1.3)

and (7.1.10) order by order. The results are




T = el T A TG 7.1.20
» v, = -eY, [A v orA] - L2 2
0} 0 %% ] - 7% Yo Trghh
+ 251\10-51-320(30'1_‘:1)2] . (7.1.25)

7
vy = evg Ay vevgagl [oghy "By¥a, Vg AyHA,v A =370 "Ar vy oA, 1

~ N gty ) P Ay ay-Sefryan T GlLz6)

and 7 (q,p,t) = e v (g,p,t)8(x-q) . (7.1.27)

We see that the veloeity v and the current density N have terms of
all orders. Thus, 1if we kv . the solution of Liouville's equation

order by order,

)
£(q,p,t) = g £ (q,B.t) . (7.1.28)
=i
and we want to know the current, we must use
© =
i(x.t) =/;16z Z 1, (xlz,1) E £.(z,0) , (7.1.29)
- =0 =0
th
of which the o order part is

n
1,0t =/:iﬁz m;) (Elzt) £ (2,0, (7.1.30)

However, since l'l.(xlz,t) has no higher order terms, the higher order
contributions to the charge density are given by

P (x,t) =/;15z Rxlz,) £ (z,0) (7.1.3)
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transforms-to- a.nalyie nbnli_ﬁear wave e’#dlution’. ‘He.- 'start‘ by- ni:lting

ect’s we specialize to t:he case of wave: packev: propagatiun

in miform plasma and we assume -that resonant partir_'l_es ar absent (or***4~" .

unim-porta.ut). Much of ‘this discussinn may seem vague to the reader who

; had not studied any cau:rete examples. Therefore the reader is urged

to study, Chapte' 8. :I.n para].l&'l. with this section. .Thg specific calcu—-

“state n_tvslof‘,‘m

85ndt

1atinn; of C‘hap ‘iz"secﬁoﬂ’»a‘ré

more easily 'l‘i':u'de'rétdod”'in‘ coubiration.
To begln, we nmst have a thorov.gh lcnuwledge of the unpertmrbed
system. Ta p:u:ticular, we Tust know the wunperturbed Hamiltonian

(7.1713), its time develofment operator Mo(t), which satisfies

k)
T = -Ho(t) Lho(t) (7.2.1)

and the imperturbed Viasov distribution fo(z,t) which satisfies

¥,
5t {fﬁ,ho} =0. (7.2.2)

Let us add perturbations SE and 8B t. this aystem. The problem is
to calculate the change 6f of the distr'bution, from which we can cal-
culate the charge density perturbation 8p ané the current density

perturbation §j. Our method for finding &f is somewhat indirect. We


file:///bution

introduce a Lie transform T (and thereforr. a generating function w) and
a function P such that

f=TP . (7.2.3)
Prom section 3.2, Eqs. (3.2.12, 15-18), we know that if F satisfies

oF
T {r,k} =0, (7.2.4)

where K 1is given by
8

K@) = T 2(0)h + T 1(8) /ae'T(e') T @9, (7.2.5)
then f satisfies Liouv:l_]_le'soequation (7.1.1). Now, we choose T to
make the new Hamiltonian K, which is given by (7.2.5), as simple as
possible. FRext, we solve for F in that system, i.e. Eq. (7.2.4).
Finally, we tramsfora back via Eq. (7.2.3) to obtain f, the desired
solution. Actually, this method proceeds order by order, so we will
need to use (7.1.15a-e) for T and (7.1.17a-e) in place of Eq. (7.2.5).

In zeroth order, the Lie transform reduces to the identity, 1.e.,

Egqs. . .2.3-5) become

£, = F, (7.2.6)
3,

el {Fo,l(o} =0 (7.2.7)
Ry =hy . (7.2.8)

We proceed to first order. The first step is finding suitable

vector and scalar potentials for the perturbation El and B. Inserting

1

these potentials into (7.1.21) we obtainm h The usual way of f.nding

1
the response fl is to solve the linearized Vlasov equation,

A,
—_— = Q
Tt {fl,hol + {fo,hl} o, (7.2.9)
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by integration along a trajectory. Incontrast, tbe Lie !tiéhéfoixnv’v<

method involves using Eqs. (7.2.3-5), which through first order are:

£; = [QAT+. ) (Fp#Fy+e. ) ]y (7.2.10)
= - {wl.fq} +F .

| )

= = {F. K} ¥ .k} =0, (7.2.11)

and Eq. (7.1.17b). Ve choose ¥ to make Kl in Eq. (7.1,17b) as simple as

possible, we solve (7.2.11) for Fl, and Lheﬁ we use (7.2.10) to find fl.

The Lie transform scheme is flexible in that it does not tell us

how to choose 1& or w. We choose one of these functions to our advan-

1
tage, and then we solve Eq. (7.1.17b) for the other. For example,

suppose we choose wl = 0. Then (4.1.17b) gives Kl = hl, and so Fl

satisfies (from Eq. (7.2.11)),

oF.

1 : _
et {Fl,ho} + {fo,hl} =0 . (7.2.12)

Since f1 = 1> when wl = 0, we are left with the same equation (7.2.12)

as we originally had (7.2.9). That 1s, setting ¥y

set the transformation equal to the identity (through first order).

= 0 means we have

Suppose instead we choose Kl = 0. 7In this case Eq. (7.1.17b)

glves
3&11
=+ Bashgl = -hy (7.2.13)
which can be integrated along a trajectory to obtain vl:
0
v, (z,0) = - [ar myOn (30 (7.2.14)

(We use the indefinite integral since we can use any solution of Eq.



(7.2.13).)‘ Since Kl =0, FJ now gatisfies

BFl R
5 tl{ELhl=0. (7.2.15)
Torfind the correct particular solution of Eq. (7.2.15), we note that
¥y vanishes when h1 vanishes, and fl should vanish when h1 vanishes.
Hence we deduce Fl = 0 from Eq. (7.2.10), so that

£, ==tw, g5} . (7.2.16)
Thus we have seen the two extremes, choosing ¥, = 0 and choosing Kl = 0.
More generally we may choose to have neither Kl nor w, vanish.

So how do we chooge Kl (or wl)? We benefit from choosing K.J_ =0,
since then the linear problem is solved. In fact some of the nonlinear
effects, such as the Li term in the transformation T, are known once
we know w1 However, we cannot choose Kl =0 if hl varies slowly along
an orbit since them the integration (7.2.14) gives secular terms, and
the result for ¥y wovrld be valid only for short times. Hence the
prescription we adopt is to choose T to transform away the oscillaticus
and to keep the slowly varying terms im K. This is called the oseilla-
tion center prescription;]' F is called the oscillation-center distri-
bution, and K is called the oscillation-center Hamiltonian.

Of course, to say that the linear problem is solved we must be
able to explicitly compute the integral (7.2,14) to find Wy After
all, we can always write the solutiom to Eq. (7.2.9) as an integral
along a trajectory. For now we simply state that the integral (7.2.14)
can be done explicitly if the phrase (lﬂc"g—mt) of the perturbation
E (g,t) = E_cl(g.t) exp(ik-q-iwt) varles sufficiently rapidly aleng an

orbit. Since this qualification depends om details of the unperturbed

102



motion, we leave further discussion for later chapters.

No matter how fl is found, it can be insettaq into Eq. (7.1.29) to

find the linear current,

1,@0 = [ Glag o + Gl el . (7.2.17)

As we show In the next section, we can extract, from the above equation,

the conductivity g(l"f"t’t')’ which gives 11(§,t) from 51(5-") via

t
11(5,t) =ﬁ3x'fdt' g(:_t,:_t',t,t')'gl(g',c') R (7.2.18)

For a spatially homog and time—independ medium, for which

g(g,g',t,t') = g(g—g',ﬂ,t—t',ﬂ), we can compute the Fourier-space

conductivity,

o(k,w) = fads f at o(s,0,7,00e TEEWTD) (7.2.19)
otk J o3

The conductivity g can be inserted in the expression for the linear
response tensor 2 = _}: (1—k2c2lm2) + Ek;czlmz + 4mi o(l;:,m)/m, and so we
can use the theory of section 6.3 to describe linear wave packet propa—
gation.

Now we turn to nonlinear theory. From this point on we restrict
ourselves to a certain class of nonlinear problems. We consider wave
packets (6.1.1) in a spatially-homogeneous and time-independent
medium, and we require that linear resonant-particle damping is umim—
portant. {(Linear and nonlinear resonant-particle damping of plamne waves

have been treated by Dewa.r]' and Johnston.z) The absence of resonant

particles allows us te choose K, = 0, that is, we require hl (i.e.,
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exp[ﬂ_s'g-imt]) to be rﬁpidly varylng along a trajectoﬁ. 6\11: goal is to
achieve an underétauding of ponderomotive effects: nonlinear effects
which arise because the wave amplitude varies in space and time.

Since we have assumed the linear fields El and Bl to have a slowly
varying amplitude and a rapidly varying phase (l_:_‘z—mt), all of the
first-order quantities have thia form. This obviously applies to the
vector potential Al, and the Hamiltonian hl' Purthermore, it applies
to ¥, 38 ve show explicitly in the particular problems treated in
Chapters 8-10 of this thesis. Therefore, Eq. (7.2.18) implies that fl
also has a slowly varying amplitude and a rapidly varying phase (E-S-Lut).

To second-order the Lie transform equations (7.2.3-5) are

- 1. 1
£,=F, +3 {wl,{wl,ho} -3 (wz,fu} , (7.2.20)
3172
-+ {Fz,ho} + {fo,l(z} =0 , (7.2.21)
and
1%, 1
K -5 + {wz,ho} =h, +E{w1,hl} (7.2.22)

for Kl = 0. Eq. (7.1.29) gives the second-order current,

i, =/dﬁz Mgty *+ My + MyE) (7.2.23)
Now the question is how to choose vy to make K?. as simple as possible.

Before answering this question, we discuss some of the concepts
of the forma’iem of section 6.3. The first concept is linear response
versus nonlinear response. The second-order Hamiltonlan, which is

glven by Eq. (7.1.22), and which appears in Eq. (7.2.22), can be sepa-

rated into a linear (A) part and nonlinear (V) part, hZ = h2\) + hn,



which are given by -

hoy = - evph, +ed, I CEED
and

hyy =7 Y0 tia, - “1'(v 2% (7.2.25)

The same 18 true for the second-order current Functlon Ny = Nyy + Tyt
“n(’flf't) = -e yo (8- "2, 18 (-0 (7.2.26)
- l - -4y
R I A A I

Similarly we can separate all the second-order quantities into a linear

part and a nonlinear part. The linear part Eqs. (7.2.20-23) is

= 1

B = Fap = 7 Tigpefpl _ (7.2.28)

By

e * Fyabpt + 155,81 = 0 (7.2.29)
3,

1{F9

B - 2( 2+ Tty }) oy (7.2.30)
6

1 =jd z(pfyy + Mafy) - (7.2.31)

and the nonlinear part of Eqs. (7.2.20-23) is

- 1 _1
fZ\) = FZ\J + 2 {wl,{wl,fu}} 2 {wzv,fo} (7.2.32)
3F,
5+ 15, ho} + {f0 sz}- 0 (7.2.33)
1<a2"+{ h}) L+ 3 L) (7.2.38)
2v ~ 2\ 8t “2v*70 2 Yty i

6
v —fd z (‘JOfZ\) + Hlfl + EZ\JED) . (7.2.35)



The second concept we introduce is harmonic number. Since each of
. the linear quantities has a rapidly varying phase, each of the second-
order quantities has terms which oscillate at the zeroth harmonic (f.e.,
v they vary slowly) and terms which oscillate at the second harmonic.

Accor;iingly, we write

by =hyy +hyy (7.2.36)
By, = Byyy + Byyp (7.2.37)
{wl,hl} = {wl,hl}o + {wl,hl}2 (7.2.38)

-
and we may further separate Eqs. {7.2,20-35) into zeroth-harmonic
parts and second-harmonic parts.

Now we return to the question of solving these equatioms, i.e.,
haw do we choose w27 We begin by discusging the second-harmonic
nonlinear terms. We recall the assumption that &xp(i.]f'g—imt) varies

rapidly along a trajectory, and hence h, can be transformed away. It

1
follows that the second harmonics, which have the factor exp(Zﬂf-ﬂ-Ziwt),
vary even more rapidly, and hence they may be transformed away. Thus

we choose

K2u2 =0, (7.2.39)

which implies F2\)2 = 0, and we solve for v?_“z by integrating (7.2.34)

along a trajectory,

0
-le,n - f &t My (0 [, (t40) +Hw, (e40) 0 (240),] . (7.2.80)

The remarks concerning the solution (7.2.14) for w, also apply here; to

1
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have truly accomplished ‘anything, we must be able to _conﬁ:ute_:tﬁ‘e' integrnl
(7.2.40) explicitly. Again, this is possible, as we show in later
chapters, because of the rapidly varying phase. From Yaou2 and Eq.

(7.2.32) we compgte f2“2.

-1 _1 ;
fouz =7 Wy 1w, 553l, = 5 f9y 0054} - .2.480)

Then we use f2u2 in (7.2.35) to find 12‘,2-

(s
d2v2 = _/:1 z [ofup * (Mfy)y+ Tyyofp) (7.2.42)

At this point we use the formalism of section 6.3, specifically
Eq. (6.3.52), to compute the second-order second-harmonic field from

12‘,2. Enowing the second-order fields, we are ready to compute the

d

order d-harmonic linear quantities.
This computation proceeds in an analogous manner, but from Eq.

(7.2.28). Since second-harmonic linear terms also have the factor

exp(ZiE'S-Zimt), we may set KZAZ = 0 and, therefore, FZAZ =0. We
solve (7.2.30) by integration along s trajectory
1]
-3, =fd‘c My (D) by, (541) (7.2.43)
and we use this solution in Eq. (7.2.28) to find
£ =-1 {w £1. (7.2.44)
2X2 2 U232’

This result can be inserted into (7.2.31) to find

6
i “fd z (ofa + Taafy) - (7.2.43)
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The Tésult of thése minipulations is the following. If the con-
diticn, that the integrals (7.2:40) gnd (7.2.43) can be computed
expliciﬂy, ia 5ﬁthfiéd, we have sulvéd the second-order second-
harmonic problem. (Ar we see in later sections, this condition holds
when the amplitude g;_(f’t) varies slowly.) We then have explicit
formulas (7.2.40-45) and (6.3.52) for the second-order second-harmonic
quantities.

Now we turn to the second-order zeroth-harmomic quantities,

vwhich satisfy
£ =P -x fu, £ (7.2.46)
2v0 2v0 2 2X0°0 oo
aF
20 -
= + (Fnu,ho} + {fu,sz} =0 (7.2.47)
Bw
i .
Ejo E( aztm + ["zm"‘o}) = b - (7.2.48)
jore = fa®2 £ 4. £ (7.2.49)
1220 Tot2x0 © "2x0%0’ - :
and
£ =F,  +% fwfu,f )} -Lfw, £} (7.2.50)
2v0 2v0 2 11’00 2 2v0°70
oF
2v0 _
g+ {Fpygebgl + {EsK, 03 =0 (7.2.51)
1[{"2v0 = 1 2
Ryua = z(a:t + [w,l“o,hojb— hZ\:O +3 [wl’h]_}(l (7.2.52)

= f4b 2.5
1avn = J47% Igfayg * (1) + Moyefpl - (1.2.53)
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In general we cannot transfom avay the second-order Ham:[ltonian, o '
i,e., we cannot choose KZD = 0 since the terms in the abnve equatinns
are slowly varying. As a result we have not completely determined the
solution by using Lie transforms, but we have simplified the problem.

The coupled equations (6.3.53) and (7.2.£6-53), which deseribe t:l;e evo—
lution of the zeroth-harmonie guantities, have only sluwiy vaﬁﬁg terms;
the rapid oscillations, the secand-harmomics, have been tranaformed

away. This is a simplification even 1f we must resort to numerical
teclmiques. When equations have only slow time variations, they can be
numerically integrated for a much longer time.

One term, KZ\)O’ in these equations deserves special attention.
sz is called the ponderomotive Hamiltonian, since it depends on the
1linear fields and it governs the motion of the oscillation-centers (i.e.
the evolution of FZO)' sz 1is the kinetic generalization of the
ponderomotive potential (ezg 1/um2 in the unmagnetized case) since l(z vo
contains the momentum dependence of the average nonlinear force. In
the last section of this chapter we * vestipate the general aspests of
KZ\JO more thoroughly. In later chapters we investigate szD in detail
in the special cases considered.

We proceed to third order, for which the Lie transform equations

(7.2.3-5) are

= W2,
f3 1‘350 + TIFZ + Fa . (7.2.54)
3F,

—at—+[F h]+[F Kl =0, (7.2.55)

and
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ii"-'l(aw ¥ & }) Ly h,}
3~ 3\ 3t wa,h +3 vl,l(z+2h2
+%—' {v By } + {w , o ,hl}}, (7.2.56)

where T3 18 given by Bq. (4.1.,15d). W%e have used Kl = Fl = 0 to cbtain

these equations. The third-order current is given by

33 —/:l z (nof3 + “1 2 + ‘-\.2f1 + Q3f0) . (7.2.57)

The harmonic structure of the first-order and second-order quantities
implies that the third order quantities oscillate at the first harmonic

and at the third harmonic, and so we may transform away the third-order

Hamiltonian, i.e. we choose X3 = 0. This implies F3 = 0. Thus, the

third order equations reduce to
f3 = T3, + T;F, » (7.2.58)
0

-% w, fd'r M, (1) [h +—{w K2+2h}+ Gy, }

1
+ Fy {wl,{wl,hl}}] R (7.2.59)

T

and Eq. (7.2.57).
Before analyzing these equations we note that they can be simpli-

fied. We denote the time derivative along a trajectory by the symbol

d,
0 2,
dgeg =50 + fwg,bgd (7.2.60)

so that Eq. (7.2.56) can be written



1 ‘,_ l - [ i )
-gkdov3 - h,3 +3 ;{wl,K2+zyz} +3 {v shy } + {v {w ,h }} s

(7261)
The third term in this expression was be written
1 -_1
§ Wy} = - ¢ a9}
-—ld{w w]-+ {dv w_}
6 0 271 021
B SPI (RIS SO S (W VSR, Y (7.2.62)
g dot¥pr ¥y ~ 3 WKy F ol ey -2-

upon using Egs. (7.1.17b,c) with K; = 0. Tnserting this into Eg.
(7.2.61) we find

law =p a1 1 ,
- 3 dgvg = by + 3 ;.30 + {1 - 2 dpleyw} (7.2.63)
Thus we can split vy = w3' +v3" into two terms,
1 .
w o X -
wy' =5 fwy,w} (7.2.65)
and
“lawt =+ fw Lo, + {w 0 1 (7.2.65)
3993 Thy 3 WL,y v e, -2
one of which is already integrated. This also simplifies T3. Using
Eq. (4.1.15d) and the above rasults, we find
Ty = - 3 g Eg) + 2 G e, e e L Gt G
30 3 of 2°70 6 1171’70 N
(7.2.66)

Thus, to find f3 we use integrate (7.2.65) along a trajectory to find

w3',

0,

_-]3;‘73' =fd'r (D) [h +% > fwy, 3, + (o hl}}]l

t+T
then we use w3' in Eq. (7.2.66), and we insert that result imto Eq.

(7.2.58).



We now proceed with ihe analya:ls of the third-order equ.ntj.uns We

separal:e the various quantil:iea into 1inzar and nonl:(ngar pa:t:e. The

linear equations are

h_‘ﬂ = —ego-éa + eﬁa . (7.2.68)
ny =Xl - vov a8 (7.2.69)
3 0 ‘23 T Iglp2atEY -£.69;
£ = - Lt LF ) (7.2.70)
n 3 WMoty - -t
1 0
T :
- 3% f v ¥ (hg (647) (7.2.71)
and
i fd z(_o a F k) - (7.2.72)

The nonlinezr equations are

by = 5 [ttt +3 G s
—(30'9_1)3] » (7.3.73)

3.-2 . .ol
Oyv = {'e To [‘1051'52"'51‘10'92"*32‘10 41 3%% 4% ‘3]
-3 vy [A]_Al 8,438, (78> 2+3vpv A1A1 A,-5%9 (% 4p) ]}
§(xq) , . (7.2.74)
1., 1 1
fay = = 5 5,60} +F Gopa{w,, 601 - g {wp, bap, {wp £ 11

w . F,) (7.2.75)

(7.2.76)

0
-1ay, =f at un(r)[hav +1 0w, m, + {vl,hl}}]
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_ [ . o
I3y /d 2(Mgfqy + mf, + “2 it “auf ) : o
= ejd 1187 Yo 3“ + vy f + vzfl + ZS\}fO) . (7.2.77)

Fow we discuss the use of these equations: Asétmiﬂg that the
integral (7.2.76) can be computed explicitly, Eqs. (7.2.73-77) glve the
nonlinear third-order current in terms of the lower order fields él and
52 and the oscillation-center distrubution 1?2. The first-harmonic part
of these currsnts can be ingerted into Eqs. (6.3.65) and (6.3.59) to
obtain the evolution equation for the first-harmonic amplitude and to
obtain the third-order first-harmonic electric field. The third-
harmonic nonlinear current can be used to obtain the third-harmonic
third-order elestric field. Finally we insert the third-order fields
into Eq. (7.2.68), and we use Egs. (7.2.69-72) to compute the third-
order linear response.

In summary, we have used Lie transforms to remove the oscillations
in the Viasov-Maxwell equations to third order in the first-harmonic
amplitude. As a result, we have a closed set of equations which deter—
mine the evolution of the first—harmonic amplitude, the oscillation-
center distribution, and the second-order slowly varying fields.
Equation (6.3.65) determines the evolution of the first-harmonic ampli-
tude in terms of the third-order nonlinear current, which depends on
the oscillation-center distrihution and the second-order slowly varying
fields through Eqs. (7.2.73-77). The oscillation-center distribution
evolves according to Egs. (7.2.47) and (7.2.51), and the second-order

slowly varying fields evolve according to Eq. (6.3.52).




We now proceed with the analysis of the third-order equations, We

separate the various quantities into linear and nonlinear parts. The

linear equat. ' ere
hyy = -evghy * <ty (7.2.68)
n, =-e YO (A - ¥ 'Aa)ﬁ(x—q) R (7.2.69)
£, 7 {"’37\’ s (7.2.70)
0
-3vh =fd-r My (Dhyy (47, (7.2.71)
and
13 = fd 2(pfyy + Iypfp) - (7.2.72)

The nonlinear equations are

n3\)

1
3

n

EZY(-JI[. 5% 4% 'Az] 7e Yo [o AAs
- (‘10"31)3] s (7.3.73)

{'E o [ Lo Rea B Ry MRS ) "31‘.’0"32]
-3 [’Al“‘l 43 (7" H43vguy Ay A -Sv (v A ]}

8(x-q) , : (7.2.74)

[

1. 1 21
-3 {VBU’fD) +35 {Vl,{wz,fo}} 3 {wl,{wl,(ul,fo}}}

- (wl,bz} . (7.2.75)

0
i - L
Wi, -f dt )10(1-)[113“ +3 {wl,3h2 + {ul,hl}}]

(7.2.76)
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and
I3 = /d z(“o av “152 + “251 + “3 0
=e/d gty + Vyf, + V,fs Vi) . (7.2.77)

Now we discuss the use of these eqﬁations. Asé\hning that the
integral (7.2.76) can be computed explicitly, Egs. (7.2.73-77) give the
nonlinear third-order current in terms of the lower order fields 1_5_1 and
éZ and the oscillation-center distrubution FZ' The first-harmonic part
of these currents cam be inserted into Eqs. (6.3.65) and (6.3.59) to
obtain the evolution equation for the fir.it-harmonic amplitude and to
obtain the third-order first-harmonic electric field. The third-
harmonic nonlinear current can be used to obtain the third-harmonic
third-order eler ‘ic iifeld. PFinally we insert the third-order fields
into Eq. (7.2.68), and we use Eqs. (7.2.69-72) to compute the third—
order linear response.

In summary, we have used Lie transforms to remove the oscillations
in the Vlasov-Maxwell equations to third order in the first-harmonic
amplitude. As a result, we have a closed set of equations which deter—
mine the evolution of the first-harmonic amplitude, the oscillation~
center distribution, and the second-order slowly varying fields.
Equation (6.3.65) determines the evolution of the first-harmonic ampli-
tude in terms of the third-order nonlinear current, which depends on
the osec:llation-center distribution and the second-order slowly varying
fields through Eqs. (7.2.73-77). The ovscillation-center distribution
evolves according to Eqs. (7.2.47) and (7.2.51), and the second-order

slowly varying filelds evolve according to Eq. (6.3.53).




114

7.3 Kubo Relations for the Viasov Conductivity

Kubom gave a general prescription for finding linear susceptibili-
ties of time-independent Hamiltonian systems. Purthermore, Rubo showed
that the linear susceptibility of a classical Hamiltonian system in
thermal equilibrium is generally related to the expectation value of
the product of the corresponding observables. This is known as the
fluctuation-dissipation theorem. However, Kubo's rasults do not apply
to the Vliasov conductivity, since in thie case the presence of a linear
perturbation affects not only the evolution of the state f but also the
form of the observable n. Hence we are motivated to generalize Kubo's
results to Vlasov theory. We determine the conductivity of a time-
dependent Viasov system. Then we specialize to the case where the
wnperturbed distribution fo depends only on the Hamiltonian ho (this 18
more general than thermal equilibrium) im order to prove a generalized
fluctuation-dissipation theorem.

Prom section 7.2 v: know that the linear current response jl of a
Vlasov plasma to a perturbation hl is determined by Egs. (7.2.9) and
(7.2.17). 1In the present analysis we assume that fo and 'n0 represent
a time-dependent system for which the time development operator Mo(t)

is known. Then we use Eq. (2.2.15) to solve Eq. (7.2.9):

t

£(0) =Hal(t)f de’ 1 ()t (), 6y (e} . (7.3.1)

=3
In using Eq. (2.2.15) we have assumed that hl vanishes for t + -=.
We use the radiation gauge (‘91 = 0) for the perturbation. From

Bgs. (7,1.21 & 15) we find
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We insert (7.3.2) into (7.3.1) and the result into (7.2.17) to obtain

i,(0) = —ezt}l(g.t)'[d% fo(g.g.t)Yal(g.g.t) [é—go(g,g,t)go(g,g,t)]

t
- /d"’z/ dt‘[d3x' Ny talz, 0055 (M (e ' 22, £ (2, £)

A (xT,e") - (7.3.3)

To obtain the conductivity kernel from the above equation, we must

ingert into it the expression 4
A (zit) = - J "B (x,t"). We find
e R 4 S1vs

3p(mt) = 87;31: fo(g,g,t)Y_é(g,g.t) [I-vy (x,p,0)¥ (%2, 0D ]*

t t
fdc'gl(:f,:') +/dcf13xf15250(5|5,:)1451(:)110(:",

S )
t'
{QO(§'|5.t),fo(g,t')}'fdt"§1(§,t") . (7.3.8)
S
Integrating the last term by parts we obtain
i
ip (x,£) = % £ (x p t)y-l(x p,e) [T-vo (x.p t)v, (xp ) 1 fE(, b)Y
Jp %, p fg(x:pat)vy (xp,B) [ I-vg{x.p e vy (ps (=,

1

t t
+f dt"/_d3x"/_ dt"'/:lﬁz nplxlz, (M ()
£ t!

{50(75'|§.t).fo(g,t")}‘gl(z_:'.t') . (7.3.5)
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From (7.3.5) we extract the conductivity

o(x,x',t,t") = e:ﬁap fo(g.g.t)Yal(z_:.g.t) {I-v (%2, 1) ¥, (%,p,6) ]

t
Stx-x") “f““','ﬁ‘a’ g a2 (6, (e

t‘
{no(g'lg,t),fo(g,c")} (7.3.6)
which gives jl thru

t
il(g.t) = dax'fdt' g(g,:_:',t,t')'gl(g',t) . (7.3.7)

=

10-12

We have thus generalized previous work in that we have found

the conductivity of a time-dependent relativistic Vlasov plasma. How-
ever, the practical use of Eq. (7.3.6) depends on one being able to
solve for the time evolution operator Ho(t). Although Ho(t) cannot be
found in the general case, there do exist a few time-dependent systems
for which Ho(t) 1s known, such as a uniform plasma in the presence of a
spatially-uniform but time-dependent electric field.l3
We can prove a fluctuation-dissipation theorem from Eq. (7.3.6),

if fo is a function of 9P only through ho: fo(ho(g,g,t)). Of course,
this implies that ho (and therefore EO) must be time independent, if we
are to satisfy the umperturbed equation Bfolat + {fo,ho} = 0. In this

case Eq. (7.3.6) reduces to
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o,z 5t = 60 [0 £t (xS () [1-vg (v (o) ]

[1]

6 9%, ’ ‘
+[dt% 2 Ty (i (x22))m ([ 2)2(£™) .
t'-t
nox'l2)m2 . @.3.7)

In finding this expression we have used Eq. (2.2.19), which is applic—
able when ho is time-independent. We note that g(f,lt',t,t') =
E(f,:_x',t—t',o) depends only on the time difference t-t', as must he true

in a time-independent system. How we use Eq. (2.2.8) to obtain

9(x,x',T,0) = ezd(g—g‘?/t;ap fo(ho(’f’?.)”al(’f’g) [X-v, (%, Py, (%,P) ]

0
df
+ ﬁcﬁszﬁgmo(gngo(glg);,—wt"(t")go(a_:'lz) - (.38

=T
Upon computing the time integral in the above expression we find
. 2 w3 -1
o(x,x',7,0) = e"8(x-x")d7p £(h;(=,p))Yy" (x,p) [I-v, (X, p) ¥y (x,p) ]

2 3 %
+e 6(x—x'}/; P g (hg(xp)) vy (x.p)vg (.2
rE o R 200 N} 21 el

df
6 0
—_/:1 : &, (hg (21, (x| 24y -TIng (xfz) . (7.3.9)
The first two terms in this expression camcel. To see this we

integrate the second term by parts,
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aE of
3 % 3 %
,/;Pdho"oo ﬁpap~o

3v
= 3 0
-_/:i P £y 3 B (7.3.10)

and ve note (from Eq. (7.1.14) chat

v

S

- %0 LE-vgYy) (7.3.11)
The cancellation of the first two terms in Eq. (7.3.9) follows immedi-

ately from Egs. (7-2.10;11). Thus Eq. (7.3.9) reduces to
glx,x',7,0) = -Jab 20 G (@ el -0 (' |2 (7.3.12)
bt 2 dn, o't My (=2, (- (27 [2) -3.

This expression is a generalized Kubo relation. To obtain the
usual form, one need only use ther-al equilibrium: dfo/ﬂh0 = -fol'r.

W'e see that Eq. (7.3.12) relates g to the two point current correlation
function weighted with the fumction -dfoldho.

In conclusion, we have used Hamiltonian methods to derive the con—
ductivity of a Vlasov plasma, a case where the standard Kubo procedure
does not apply, since the perturbation changes the form of the current
function. Even so, we are able to prove a fluctuation-dissipation
tbeorem (7.3.12).

7.4 Belation between the Ponderomotive Hamiltonian and the Linear
Susceptibility of Vlasov Plasma
The concept of pocderomotive potential has proven to be of

14—
great value in analyzing nonlinear wave propagation 4-19 and plasma

7,20,21

confinement by rf oscillations. The ponderomotive Hamiltonian

is a generalized ponderomotive "potential,” which allows one to include



kinetic effects in the sli:rw evolution of £. In: ﬂ'liS' section’ we: show:!

that the ponderomotive Bamiltonian’l(zvo is simply related to. the linear

Vlasov susceptibility of a (possibly inh a.nd time—d dent)

BENE

plasma. This relation ia'very powerful b 1t reduces the ponlinear

calculation of the ponderomotive Hamiltonian to the ].:Iwﬂ calculation
of the susceptibility.

A central assumption of this section is that we can transform away
hl entirely when we compute the linear response of the plasma, i.e.
Kl = 0. In essence this means that there are no particles which are
resonant with the linear perturbation under consideration. If we like,
we may divide the particles into resonant particles and nonresonant
particles. The remarks of this section apply only to the nonresonant
particles.

We first discuss the calculation of the ponderomotive Hamiltonian.

The second-order zeroth-harmonic Deprit equatiom is

Ryg - ;(a:io + {wm,hu}) =hyg + 3 bt (7.4.1)
for l& =

As we noted in section 7.2, we may split the quantities iun the
equation into second-order linear (A} terms and second-order nonlinear

(v) terms, which satisfy

oW,
1 20 -
Ryup - i(_a:“' + {wzw,hu}) =y * {wl,hl}o . (7.4.2)
and
W
1 (™20
K0 7 3 ( Mgy }) 2o (7-4-3)

where hZ\) and hZX are given by Eqs. (7.2.24) and (7.2.25).




In a.simllsr fashion we find the linear charge-density response:
0, (x,t) = -ﬁﬁz (:_5[53{v1(5,_t),f0(g.t)} o (7.4.9)

Let us consider the bilinear quantiry 014?1 - 1;°A,- Integrating

" this qﬁantity over all spaf:e glves

];13x[£1(‘§,t)¢1(}_t,t) - 1,6t )] =

_ﬁﬁ{ﬁ3xh(§|é)i’1(§,t) - Tp(xl2) 'el(g,:)l]{ul(z,:),fo(z,t)}

- ﬁﬁzﬁ% N, (xlz,0) 8, G5, t) folz,t) . (7.4.10)

By using Eqs. (7.1.21-27), we see that the spatial integrals on the right

side of Eq. (7.4.10) are simply terms in the Hamiltonian:

ﬁ3x[r'~(§|§)¢1(§,t) - Tp(xlz) A, (x,0)] = by (z,8) (7.4.11)

ﬁ3x m Cxlz, 00", (x,t) = 7, (2,0 . (7.4.12)

Thus we can write Eq. (7.4.10) in the shorter form:

ﬁ3x[pl(§,t)¢l(§,t) - il(g.t) 'gl(g.t)] =ﬁ6z[—hl(§,t)
) (a0 £ (2000} + By (2,00 £ (2] (7.4.13)

The first term on the right hand side of the above equation can

be integrated by parts.

-fdﬁz ny (2, 0w, 2,8, 652,01 = [ £zt {5 G,

b, (z,t)} (7.4.14)
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Then the form of ‘the entire integral on the right hand-side ‘of Eq
(7.4.10) may be changed’'by using the integtatiun-variable‘tfansforniation,
z > Mo(t)z.

ﬁﬁz fo(g,t:)[{wl(f,t) ,hl(g.t)} + 7hy (z,0)] =

_/;Gz HO(:)fO(E,:)HO(:)[{wl(g,:),hl(f,:)} + 2hy (2,0)] (7.4.15)

We next use the known evolution of fo, Ho(t)fo(z,t) = EQ(E'O)’ and we
use the expression (7.4.15) for the right side of Eq. (7.4.13) to

obtain

ﬁ3x[ol(§.:)4-1(5,:)—11(5,:)-51(5.:)1 - ﬁﬁz £(2.004, ()
[{wl(g,:),hl(_z_,t)} + 2h2v(5,t)] (1.5.16)

Finally, we apply the averaging operator to the equation, and we use

Eq. (7.4.7) to ohtain

ﬁ3x[p1(:_=,:)ml(g,:)-il(:_c,:) 4 x0)] = 2/51% £ (2. 08y ()R, (£
(7.4.17)

and we again change the variable in the phase space integral,

z + H(-)l(t)z. This give.';‘l

f:ax[pl(g,ml(g,t)—gl(a_c,:)-51(5,:)1 = zﬁ"z £(2, 0Ky (8)
(7.4.18)
This relation is known as the K-x theorem, since it relates the
ponderomotive Hamiltonian Kz\_‘o(:), oun tbe right side of Eq. (7.4.18),
tc the linear response pl’:-‘l’ on the left side of Eq. (7.4.18); in a

moment we will show how the linear response can he related to X, the
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ﬁiasmav;suéceptibﬂity. {We note that Johanston and Kav.lfmamz2 have .- -
recently. shown that this relation is one of a family of similar rela-
tions which comnect Kn with the (u-1)th response.) This relation is
very powerful, since if we know the “inear response as a functional of
the unperturhed distribution fo, then we can functiomally differentiate23

both sides of Eq. (7.4.18) to cbtain

Ky 0(2s8) =%3§—0 ﬁ31[01(§.t)¢1(§.t)—11(§,t:) 46,01, (7.4.19)
i.e., we can deduce the ponderomotive Hamiltonian from the limear
response.

However, in order to compute the fimctional derivative of the
right side of the above expression, one must know it for arbitrary fo.
(This is analogous to the fact that in order to compute the ordimary
derivative of a function y(x) in some interval [a,bl, one must know
y(z) for all x in that interval.) Unfortumately, tbe linear response
for arbitrary f0 is oot usually known. For example, consider the case
ho = —;172, i.e., unmagnetized plasma. The limear response for spatially
homogeneous fo is published in many texts, e.g., ref. 24, but the class
of arbitrary unpertuorbed distributions is wuch larger. This class
contains all fumctions of the form

£5(g,p.t) = g(g-pt.p) . (7.4.20)
Still, we are able to exploit Eq. (7.4.18), if we also make some approx-
imations. Since these approximations depend on the particular unperturbed
state, we must defer discussing them to later chapters.

To prepare the way for later work, we specialize Eq. (7.4.18),

first to time-independent systems, and then to systems which are also



épatia]ly homogeneous.. For convenience we use the radiatiun gauge,
‘I’l =0, In the time—i.ndependent ‘case, the linear fielda are taken tq

have a definite frequency.

x,) = iﬁ e 4 e e, “(1.21)
4 wh
E () = B e e ' (7.4.22)

The associated linear currents are found from the linear conductivity,

(x,t) = :}/1;3 10 (x,x',m)-El(x')e-Wt + c.c. (7.4.23)
We use only the antihermitian part of since our remarks are relevant
to nomresonant particles only. We insert this expression into Eq.
(7.4.18), and we use the averaging operator to eliminate the second-

harmonic terms. The result is

2u0(2) -
(7.4.24)

1ﬁ3xd B () 40, w0 B ) = [ £5() &

Of cuurse, O is related to the susecptibility X through 4wic/u = X

Thus the above expression can be rewrittem

-= ﬁ3xd3x'§;(g) % (x0) B (21 = [d82 £(2) Ky 002D
(7.4.25)
Here we see that the ponderomotive Hamiltonian K is simply related to
the linear susceptibility. Rence the name: K-X theorem.
We further specialize to the case of a uniform background,
é(]f,lt',m) = %(g-g',m), and nearly plane waves: }l.:.l(:f) = (’_:l(n_t) exp(ilf'x),

where [VE,f<<|kE |. We find
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- Il‘r? d3ﬁ3xvg(§) .xh(é_iv ) '§1(§')eﬂ5. (5'—5)

6
-ﬁ z £4(2) K, 0(2) . (7.4.26)
Changing the integration variable on the left, x' + s = x-x', gives
1 [3.. 1.3 . ik*s
= JARE ) -fd7s pACED) §1(§-§)e ~~
=fdf2 £ (2K, () (7.4.27)
0= " 2v0'l) ¢ o

We compute the left side of Eq. (7.4.27) by expanding in Fourler space

(c.f. see. 6.1). Keeping the first term we obtain

1 . 3~ - _ 1.6
_'1,_11,&1(15"")' d x:‘l‘(g).:l(g) =fdz fo(E)KZ\JO(E) N (7.4.28)
which will be used in chapters 8 and 10 to determine KZ\’O'
In summary, we have introduced the pt of ponderomotive

Hamlltonian, and we have proven a theorem relating it to the linear

susceptibility of Vlasov plasma.



125

8. Nonlinear Wave Evolution in Ummagnetized Plasma

In this chapter we use the nonlinear wave formalism of section 6.3
and the Lie transform techniques outlined im section 7.2 to study the
nonlinear evolution of high frequency waves in relativistic unmagnetized
uniform plasma. (Sluijter and Mt:mt:gu:nm:):y1 showed that a correct treat-
ment must include relativistic effects.) Our primary goal is to derive
the equation which describes the nonlinear evolution of the wave ampli-
tude. Along the way we discuss many other nonlinear effects, such as
quasistatic magnetic field generation, the self-comsistent quasistatic
density perburbation, and the meaning of wave energy and momentum. We
follow the outlines of sectioms 6.3 and 7.2 and proceed order by order.
In section 8.1 we discuss the first-order effect, the response of the
plasma to a wave packet: gl(E’t) = §1(5,t) exp (ik - x - iwt) + c.c.
We calculate this response with Lie transforms; i.e., we use W to
transform away the first-order Hamiltonian. As a matter of course we
determine how siuwly gl must vary in order to explicitly compute the
integral (7.2.14) for vy- The condition on 5 turns out to be that §1
must vary slowly along an orbit compared to the phase (k - x - wr), or
I(_v_o -V ¥ E)/Z‘)I‘.)é1 1 << I(k - Vg~ m)f_i]. This, of course, excludes
resonant particles for which k + p - w vanishes. At the end of sec-
tion B.1 we let él be ccnstant and we thereby obtain the usual expression
for the limear susceptibility of relativistic unmagnetized Vlasov
plasma.z

The second order calculation is split into two parts. The first
part (section 8.2) is a discnssion of the second-order zeroth-barmomic

effects. We derive the ponderomotive Hamiltonian szo’ and we discuss
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its effects on the averzge particle motion. We also show that KZvO
reduces to the usual ponderomotive pntenti313 upon taking appropriate
limits. Then we determine the plasma response to the ponderomctive
potential when the wave packet amplitude is nearly static. (The more
general case does not appear to have simple asalytical solutions.)
Finally, we include the second-order zeroth-harmonic electric and magnetic
fields. We include the effects of the second-order potential ¢20 in the
calculation of the second-order density response, and we compute the
wave penerated magnetic field EZO.A_II
Since we spent some time in the earlier section 6.2 discussing
wave enerpgy and momentum of general media, we now investigate the
meaning of these concepts in Vlasov plasma. Our method is to use Lie
transforms to compute the second-order average momentum density. Our
result is very simple. If there is no oscillation-center response,

Fpg = 0

then the wave momentum density equals the true momentum density.
However, if the wave-packet is finite (so that §1 depends on x and t)
then the oscillation center response on to the ponderomotive Hamiltonian
causes the true momentum density to differ from the wave momentum
density.

The other part of the second-order calculation (section 8.3) is to
compute the second-barmonic effects. This calculation proceeds in a
straightforward manner. We compute the second-order nonlinear current,
and use it to compute the second-order second-harmonic electromagnetic

field. These second-order fields are important to the third-order

calculation, since they appear in the third-order Hamiltonian.
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Section 8.4 is a discussion of the third order effects. W_g‘ compute
the third-order nomlinear current 13\)1' and we calculate (via the
formulation of section 6.3) its effect on the nonlinear evolution of the
first-harmonic amplitude ":11' First we discuss Langmir oscillations;
we recover the usual nonlinear Schrédinger equ‘at.:i.tm.12 Then we discuss
electromagnetic waves. Here we unify previous work in that our equatioa
contains ponderomotiva effect513 and the ucml:i.nea171'.1'.1'.esl’lh-l6 associated
with plane waves. In addition, our equation includes the self-Faraday

rotation caused by the self-generated magnetic field.
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--8.1 - Linear Theory; The Ligé Transform to First Order

Here we use Lie transforms to calculate the linear response of a
relativistic nnmagnetized plasma. In doing so we assume we can trans-—
form away the first-order Hamiltonian. As we shall see, this means
that there are no resonant particles and that the wave amplitude varies
slowly.

We begin by discussing the unperturbed system. Since the plasma
is unmagnetized and uniform, we have A = 0 and 4:0 = 0. We also choose

~0
units so that m = ¢ = 1. Then Eq. (7.1.8) gives

() = (1+ D% . 8.1.1)

We note that a uniform unperturbed distribution can be any function of
the momenta, fD(R)' (Later we will require io to isotropic.) The time

development operator for ho is
Hy(t) g(g,p) = (g + yt,p) (8.1.2)

where, from Eq. (7.1.14),

o) = p/Q + pz)!é . (8.1.3)

We pow impose a perturbation él(_)_(_,t) = gl(z,t)exp(ig - x - iwt) +c.c.
{We use the radiation gauge: l‘b] = 0.) We fipnd the response to él by
transforming away hl’ i.e., we use Eqs. (7.2.14-16). From (7.1.21) the
first-order Hamiltonian is given by

i(k-q-wt)
B (g:p,t) = -y (@) - & (g, e + c.c. (8.1.4)



129

We insert this expression into Eg. (7.2.14) to find vy

i(k-g-wt)
Hl(g,p_,t) ee fdt y_o(g) . @L(g Tt 1)

i(k v, -w)T
X e ~0 + c.c. (8.1.5)

We calculate the ahove integral by repeated ingegrations by parts:

i(k-gut) o
(@) = 58 [
! )

ik - %y -w &
x gy &, (g,t) + c.c. (8.1.6)

The above expression is not very useful unless we can approximate
the infinite sum by its first few terms. To do this, the approximation

2] 2]
G2 Bg) m -di@ -k my - &) .17

must hold. (For the special case gl(q,t) = % exp(vt), the infinite
sum in (B8.1.6) converges only when the inequality |v] < jw - k 'Y'OI is
satisfied.) Thus, we see that in order to transform away hl, @l(z,t)

must be slowly varying, by which we mean (8.1.7) is satisfied. 1In

particular we must exclude resonant particles, for which w - k - Yy =
0. Keeping only the first term in Eq. (8.1.6) we obtais
i(k-g-wt)
-iey,(p) - @1(5,‘1)2
wl(g,g,t) = + c.c. (8.1.8)

kv -uw
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Suppose instead we consider plane waves, for which the expression
(8.1.6) reduces to (8.1.8) exactly. Now we ask what conditioms are
requi;ed for the full Lie transform series (including all the Hn's) to
converge. We expect convergence for untrapped particles, since Dewar17
has shown that the Lie transform for untrapped particles in a longitud-
inal wave is amalytic in e. A nonrelativistic particle is untrapped if

the inequalitcy,
1 p-wi?> Qe (8.1.9)

holds, i.e., the kinetic energy of the particle in the wave frame must
be greater than the wave amplitude. This condition also excludes
resonant particles.

bigce we want to be able to transform away the first-order Hamilton-
ian, we will assume throughout this chapter and the next that the
approximations (8.1.7) and (8.1.9) hold. Thus, we are restricted to
discussing electromagnetic waves and Langmuir waves with large phase
velocity. (Jon sound waves have resonant electrons and so they cannot
be analyzed by these methods. However, it may be possible to treat
resonant particles by some other technique.) For electromagnetic wave
packets and Langmuir wave packets with large plasma velocity the following

separate inequalities hold: The nearly monochromatic assumption,

|ag1/at| <« |u,gl| s (8.1.10)
and large phase velocity compared to particle velocity,

Ik - !o/r.ul << 1 (8.1.11)



and
fyg - VA1 < lmf1 . (8.1.12)

Together these inequalities imply (8.1.7).

We now use vy to calculate the linear response. First we find f1

from Eq. (7.2.10).

e o Sl - Wy, 4 2y Jleeen) (8.1.13)
1 E'Zn—u“ an o o

For shorthand we introduce the notation § = k - x -wt (or = k-gqg-uwt
depending on context). Finally, we insert f1 into Eq. (7.2.17) to find

the linear current,

(I-v,v) vV, of
11={['ezjrd3pfu ~(2)-;n - a2 fdap ~0 ~0 “o
(1427 ke y,-w dp

x (k - iV)] - @119“’ + c.c. (8.1.14)

To obtain the linear conductivity o(k,w), we simply specialize to
the case of plane waves. In this case 41 is independent of space and
time and the electric field is

gl eiw + c.c.

§1(5,f—)

= imqq eitp + c.c. (8.1.15)
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Hence, from (8.1.14) we deduce

2
ie 1 -v, v,)f v, Vv af
ak,w) = — d3p[ ! ‘2'°¥ 0, 070 . —‘1] . (8.1.16)
- w (1 +p) k g -w ap

From O we obtain the susceptibility y = 4nio/w,
L=my

2
~arte (I-v, v.)f v, ¥ af
Kw) = — fda[ 250t 08 k-——“] , (8.1.17)
o w 1+ p9 kg, -w ap

of a relativistic unmagnetized lzclasma.2 Since we have assumed a lack

of resonant particles, we can integrate (8.1.17) by parts:

2

~4me’ I-v, v 2 V. v

1) = —5 fd3pf(n)[__:%~%_5._&]
w 1+ p%) ap -m

-y
(8.1.18)
2 2 _ 2
_ ~hne 3 By, vy k gy y ks - w)
=—— fdp 75 |- 14 z
w (1 +p9) E-v,-uw (k- g5 -w

Calculating the nonrelativistic limit (v/c » 0) of (8.1.18) is s
delicate process because the limiting value of kc/w depends on the
perturbation under consideration. For example, kc/w = 0(1) for electro-
magnetic waves satisfying k > me/c Ouz E‘lmnuezlme is the electron
plasma frequency), but kec/w << 1 for electromagnetic waves satisfying
k << melc. To illustrate this point, we first restore c in the expression

(8.1.18):
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~hre 3 . f0
) = —5 fdp 2 2%
hd w (1 +p"/c%)
2_.2,2
kv +v. k v v (k -w/c)
x[--02 07%,070 1 . (8.1.19)
s-y_o—m (E-v - w)

One type of nonrelativistic limit we can take is- to simply let c-l vanish

(and therefore ¥y~ p). This gives

~tme? 3 Ep+pk K 2
;1(.'.‘.-"') = fd P f0[1 - + 1 (8.1.20)

1.
w k-p-w (s-p-w?

We call this the nonrelativistic limit of type 1. This is the non-
relativistic limit usually seem.l8 However, we have kept terms of order
kzpzll.u2 in the above expression. Thus, we should also keep terms of

order 1)2/c2 when considering electromagnetic waves satisfying k > ule/c.

This prescription gives

2
-41te 3 2 2
X 2 fdpf(,[;(l-HPIC)+

p p02 - w?rc?)
¥ 5 (8.1.21)
(w-k-p)

We call this the nonrelativistic limit of type 2. For later reference

we take the limit k -p/w << I limit of Eq. (8.1.21) for isotropic fo.

We find
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2
w 5
~.p 22,2 _ 2 2 2 2, 2
X 2 [I(1 + K vT/tu 2 T/c )+2kk vT/!u 1 (8.1.22)
where
2_1 -1 (3 2
vp =30, fd P fop . (8.1.23)

In summary, we have used Lie transforms to find the limear respobse

of a uniform relativistic uamagnetized Vlasov plasma.
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8.2 Second-Order Zeroth-Harmonic Effects

The second-ordér zerotﬁ;hazmnnig effects are those eéfects wﬁich vary
on the temporal and spatial scales ofvthe wave packet. These effects
deserve study for two reasons. Tﬁe first reasunbis that the sécond-order
quantities must be known before the third-order calculation, whichr
determines the nonlinear evolution of the wave packet, caﬁ be done. The
other reason is that these effects are important by themselves. For
example, the ponderomotive potential3 may help confine plasma for fusion
application. For another example, the wave generated quasistatic
magnetic fieldl'-11 may affect particle trauspnrt19 in the laser-fusion
scheme.

We divide this section into three subsections. 1In the first we
derive the equations which describe oscillation center evolution. This
includes deriving and discussing the ponderomotive Hamiltonian for an
unmagnetized particle. In the second subsection, we find the solutiom
to the oscillation center equations in the case where the wave packet
amplitude is nearly static. We find explicit expressions for the demsity
perturbation and the quasistatic magnetic field produced by the wave.

In the last subsection, 8.2c, we show that wave momentum has a simple

interpretation in the oscillation-center formalism.
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8.2a Second-Order Zeruth—Harméﬁié Equétions: The Pénde;oﬁﬁtive Hamil-~
A t.m;ian and Oscill: “on-Center Evolution

iu this subsection we derive a set of equations which govern the
vz‘e;:'nth-hamonic quantities. We begin by deriving the ponderomotive
Hamiltonian for an unmagnetized particle. The ponderomotive Hamintonian
and the second-order zeroth-harmonic electromagnetic field determine
the evolution of the oscillation-center distribution F via Liouville's
equation. Then we transform F to obtain f, the true distribution.
Finally, we show how to compute the second-order zeroth-harmoni. -urrent
density and charge density, which determine the evolution of the . ectro-
magnetic field. Thus, we obtain a set of equations which, given the
wave amplitude, determine the evolution of the second-order zeroth-
harmonic quaatities.

We derive the ponderomotive Hamiltonian K200 in two ways. First,
we use the K - X theorem of section 7.4. Unfortunately, the approxims-~
tions involved in finding K?_uo are not apparent in this derivation.

For this reason we give another derivation using ordinary Deprit pertur-
bation theory.

For a wave packet,
E ) = EGoe™+ e (8.2.1)

Eqs. (7.4.28) and (8.1.18) combine to give the following relationm,



involving the ponderomotive Hamiltonian for a relativistic unmagnetized
particle. We functionally differentiate this equation with respect to

f(] (p) to obtain

2
e
k.3
deq Koup(@:Rst) = 2 @x € (x,0)

(8.2.3)
I-v. v <] v, v
x [_"o—z": -k — 0~ | §1(5't) + 0(Y,9/0t).
(1+p7) gpk-yv-uw

In the above expression we have two quantities with equal spatial
integrals. The difference of these two guantities is therefore a
function whose integral vanishes, i.e., a derivative. Thus, we deduce

the formula,

& [ig@.01? - 1g@ - @0’
Kpoo(@Rot) = Qs BT

u

2 Iy - & g0

- c — ———————]+ 0(d/3g, 3/dt) , (8.2.4)
ap k+«vip)-uw

W

for the ponderomotive Hamiltonian. We see that the K-X theorem provides

a three-line derivation of the ponderomotive Hamiltonian. Unfortunmately,
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this derivation does nt:;t tel.i ug what small parameter the error
0(d/3g, 8/dt) represents.

To determine these errors, we must find KZ“D from hZuO‘ ¥1r and h1
using standard Deprit perturbation theory, i.e., Bq. (7.2.56). As
usual, we analyze (7.2.56) by letting KZvD equal the slowly varying
terms on the right side of that equation, and we integrate the rapidly
varying terms along a trajectory to find You0" 1o this case there are

only zeroth-harmonic terms, which vary slowly, on the right side of

Eq. (7.2.56?. So we choose w, . to vanish, and KZ\JO is given by
K, =h _+=% {w,h} (8.2.5)
2v0 200 2 Y110 oo
The first term in KZ\!D is easily computed from Eq. (7.2.36):
2 2 2 2
hz‘m(g,g.t) =e [la.l(ﬁxt)l - lzo(p_) - gl(g,t)l /(1 + p )!t. (8.2.6)

To find the second term, we take ¥y from Eq. (8.1.6),

ev. -Q 2] 2] ey, - & -
. [_ﬂL R e P SRR
i(E-xo-w) :14 ag (_l_&_-go-w)

we take hl from (B.1.4), and we compute the zeroth harmonic terms in

their Poisson bracket:
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{wy.b}y = - 2¢° k -

5@ &gy - w Dl v e

a N # . .9 -
‘a(gu'gl)-:.gu'@lg'ﬁl(k'!u-m)
(8.2.8)

Inserting these results into Eq. (8.2.5) gives
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2 2 2 2
U - gy - 20T, 2y, - 4
Kppolaspit) = e - gk —
~ (1 + p°) agg-go-w
e, 2 -1 * ’
trliggy A&y w5y g

+ =y, a’;(g-v - Hy + ecl}

A A R ST T
2 BTN T e T Tage T R T g Yo
3 = .8 -2

R TR RS R R AR
2 3

x (a-—r_ Y, a—g—)!u - 41] +c.c.} . (8.2.9)

We use §1 = iw@ - 84/t (or £ =@ /iw + 0(3/3ut)) to compare
(8.2.9) with (8.2.4). We see that the K - X relation does indeed give
KZ\)O correctly to 0{V, 8/38t). However, in (8.2.9) we have the correc-
tion terms and so we can estimate the errors. Examining (8.2.9) we see

that neglecting the gradient and time derivative terms means we are

approximating

154 < (8.2.10)

I(g_t + ¥ g_g)gll <<k ¢ A w) éll (8.2.11)

PR Y kv - R0 . (8.2.12)
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The first approximation (8.2.10) is invoked Hhen'wé l;se él = glkim, the
second (5.7.11) in invoked when we neglect the last term in (8.2.9),
and the last (8.2.12) is invoked when we neglect the next to last term
in (8.2.9).

The ponderomotive Hamiltomian sztl is the kinetic gemeralization

of ponderomotive potential. To obtain the ponderomotive potential ¥

from KZ\JD’ we simply take limit p + 0 in the expression (8.2.9). This

procedure gives

e2]€ IZ

_ . _ .2 2 ~1
¥ =K, 0(3,p=0,t) = e |gll =— (8.2.13)
o

upon restoring ordinary umits (m # 1). the above expression is the
usual result for the ponderomotive potential of an unmagnetized particle.
Thus, we see that the usual ponderomotive potential is correct for
particles with small momentum, i.e., k - 30(2) << w, Ixol << ¢, and
lzg * VA1 << uf).

To compare with previous werk, we evaluate K to lowest order in

2v0
(v,2/8t) in the nonrelativistic limit (of type 1, w/kc > 0) when 51 is

parallel to k. We find

1€, (g, 01

Kz‘m(g,z,t) = (8.2.14)

o(w - k - E/m)Z
upon restoring ordinary units {(m # 1}. An expression similar to (8.2.14)
has previously appeared in the literature,zo but in that work (8.2.14)
was interpreted as a velocity dependent potential, which determined the

average particle acceleratien via
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e2|€1l2

mz(ul -k )_7,)2

g =-v . (8.2.15)

-However, this cannot be right since it violates Liouville's theorem in
that the divergence of the flow,
3 3 e2|£ll2

— @+ —-(D=0+2k 9

3 . (8.2.16)
ax By -k - 9]

does not vanish.

We must also allow for second-order fields on(g,t) and ¢20(g,t),
which appear in Eq. (7.2.52). To analyze that equation we note that

the right-hand side is slowly varying. Thus, Yoro = 0, and
Koao = hapg = "e¥glR) Ay +ePyy - (8.2.17)

We combine KZAO and KZUO to obtain the total second-order oscillation

center Hamiltonian,

KZO = KZAO + KZuO . (8.2.18)

By combining KZO with ho, we obtain the total oscillation-~center Hamil-

tonian

X= ho + KZO . (8.2.19)

The oscillation-center Hamiltonian determines the evolutien of F

through Liouville's gquatiOnlzl,ZZ
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9F _ .
St {EKI=0 . (8.2.20)

Actually, to preserve the ordering scheme, we should "linearize" this

equation. That is, we should use

F= fo + on ) (8.2.21)
where

oF, o

Tl {on, hu} + {fo, KZD} =40 . {(8.2.22)

Of course, it is always permissible to use the full nonlinear equation
(8.2.20), but we must keep in mind that our result for F is va:iid omly
to second order, since K has been computed only to second order.

We digress for a moment to compare this formalism to the formalism
of Aamodt and Vella.23 Both formalisms must ultimately agree since
they both use systematic perturbation theory. However, the ultimate
equation to be solved in their formalism is a velocity space diffusion
equation. In this formalism the equation we must solve is Liouville's
eQuattion.

It is interesting to note that the pondermotive Hamiltonian of a
plane wave (3 Qﬂlag = 0) does not affect F, since there is no pondero-
motive force if the wave amplitude has no gradiemt. To prove this, we
note that when K :s independent of g, any time independent function
F(p) of the momentum is a solution of (8.2.20). If the system evolves
in time from zero wave amplitude and F(t + -®) = fo(E), then since F is
time independent, F = f

o for all time.




144

It is important to keep in mind that the oscillation-center distri-
o bution does not equal the time average of the distribution f. To
compute f we must perform the inverse transform (7.2.3). Using the
equations (4.1.15a-c) for T, the expression (8.2.22) for F, and the

fact that Vo = 0, we obtain the zeroth-harmonic (or time-averaged)

second order part of f:

=1
£0°3 {ul,(ul,fo}}o +Fpy - (8.2.23)

Thus, we see that the oscillation~center distribution and the time
averaged true distribution differ by the term %{wl,{w],fo}}o. Using
the expression (8.1.8) for Wy we find that this term is given by

. 3 [e?iy, - 4,1 az,
sl =k - —|———— k- — (8.2.24)

2~
3p| (& * x5 - w) 2
to lawest order in (V,3/8t).

To complete this discussion we must show how to compute the second-
order zeroth-harmonic charge density and current density. These quantities
determine the second-order zeroth-harmonic electromagpetic fields via
Haxwell's equations (6.3.42), and the electromagnetic fields, upon
choosing a gauge, determine ﬁZO and ¢ZO'

The second-order zeroth-harmonic charge density is determinad from
(7.1.31). Using (8.2.23) we find

Prolait) = e [a% 1L fuy,luy gl

207~ 2 1’170’ o

Xt + FZD(E,E,t)] . (8.2.25)
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Ve note that the first term (8.2.24) in the above integrand is a momentum
derivative to lowest order im (¥,3/3t), and so its integral vanishes.

Thus we have
Pag(Est) = efd3p F,o(%:2,t) (8.2.26)

to lowest order in (V,3/3t).

To find the current density we extract the second-order zeroth-

harmonic part of Eq. (7.1.30):
'120 = fdsz(!]()fzo * (ﬂlfl)o + ﬂzofo)- (8.2.27)

Using Egqs. (7.1.24), (7.1.25), (7.1.27), and (8.1.13), we reduce the

ahave expression to

dog(®et) = Efd3pix(,(2)fzo(es,g.t) N O/ AR

&+ (g, - &) o, .
*TE y, -w 3 c.e.] + [-ey, (A

v, v, *A,)
YW

220 " Zp Y9 " R20

-6 xglyy - @llz)]ful ) (8.2.28)

where fZO is given by (8.2.23).

Thus, given the wave amplitude Ql(g,t), we have a complete set of
equations for the second-order zeroth-harmonic quantities. The wave
amplitude 421 determines the ponderomotive Hamiltonian via Eq. (8.2.9).

The ponderomotive Hamiltonian and the second-order fields determine the
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“6uéillation cénter Hamiltonian via Eqs. (8.2.17-20). The oscillation
‘ceniter Haniltonian determines the evolution of the oscillation center
distribution F via Eq. (8.2.20). The oscillation-center distribution
determines the second-order Zeroth~harmonic charge density and current
density via Eqs. (8.2.23-27). Finally, the charge density and current
density determine the second-order zeroth-harmonic fields via Maxwell's
equations (6.3.42).

The importance of these equations is that we have removed the
rapid oscillations from the Vlasov equation to second order. As we
shall see in the next section, the fact that Eq. (8.2.2¢) has only
slowly varying terms will allow us to find its solution in special
cases. Even if we must resort to numerical integration of these equa-
tions, we have improved matters. Since the original equations comntain
rapidly varying terms, much more computer time would be required to

integrate them.



..B.2b Quasistatic Oscillation-Center Evolution’
The ei;uatiuus of the previéus section have analytic ‘soiilfioﬁs"';l»iéu
the wave-packet evolution is quasisﬁatic, by Hhich'wé mean that wve can
neglect the term 9F/3dt in Eq. (8.2.20). This approximationvis Qalid
when the majority of the particles can cross the wave paéket bgfofe itr 7
changes much. The quasistatic solutions are exact (within the framework
of oscillation center theory) when the wave envelope is static, a case
of wide applicability. For example, in most rf heating schemes the
wave is present for a time compar;ble to the plasha lifetime. .

If we can neglect the term 9F/3t, Eq. (8.2.20) has the solutiom,

F(z,t) = g[K(z,t})] , (8.2.29)

where g is an arbitrary function. We set the wave amplitude egqual to

zero in this egquation and find
£y(z,t) = g(hy(p)) - (8.2.30)

Thus, the solution (8.2.29) can be valid only when the unperturbed

system is isotropic. Actually, we are justified in keeping our solution

F = fo + on + ... only up to second order. Expanding (8.2.29), we
find
df,
on(g,t) = ﬁo (ho(g))KZO(E,t) . (8.2.31)

When fo is Maxwellian, this expression reduces to

Fyq(@:t) = -£4 (kg (R))Kpq(2,8)/T - (8.2.32)
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To determine the condition for validity of this result, we examine
. the "linearized" eguation (8.2.22). In finding the solution (8.2.31),
we have neglected the first term in Eq. (8.2.22). For this term to be
emall we must have BYZO/Bt << {Izo,ho) or, using Eq. (8.2.31),

axzo
3t | << ]!0 -V Kzol . (8.2.33)

Since Kzo varies on the scale of the wave packet, this approximation
means that particles can traverse the wave packet before it changes
much.

O0f course, not all particles satisfy Eq. (8.2.32) unless BKZD/Et
strictly vanishes. There are always some particles with zero umper-
turbed velocity. However, we reason that if the relative number of
such particles is swall, then our final results will be approximately
correct. This condition is

2K

20
Bt 1 << lev KZO' . (8.2.34)

where Vo is the therma! speed. This re~:jning is analogous to the case

where one finds the linear response of a V.az0ov species to a perturbation
of frequency w and wave vector k. When w/k << v_,, the Boltzmann response

24

is valid.

At this point we choose a gauge. Since Vo < ¢ must hold, quasi-
static evelution (8.2.34) is slow compared to the speed of light, and
so the displacement current agzo/ac may be meglected in Maxwell's

equations (6.4.32). In this case the transverse gauge, V - A, =0, is

20

convenient because it reduces Maxwell's equations (6.4.32) to



7 oy, = bmpoy s

20
VoBp=0
_ &4 |
and VX¥Byp=C dzo - (8.2.35),

where AZD' if needed, is determined from

Vi By =0
and v x AZD = E20 . . (8.2.36)

This gauge differs from the (tadiétiun) gauge that was used for the
linear fields, but this difference in gauges does not cause any diffi-
culties, since the first order Maxwell equations were separated from
the second order equations in the last section.

We proceed to solve for the charge demsity perturbation in terms

of the potemtial ¢20. Inserting the expression (8.2.31) into (8.2.26),

we find

3 dfo 3 df0
pzo=efdegK20=efdpﬁa[K2u0+e¢zo'e"~o'ézo]
The last term inside the brackets does not contribute to the integral,
since ¥

Y is an odd function of p, and fo is am even function. Thus,

restoring species labels, we find

Poo(®iE) = Py (Eat) + Poaglx,t) (8.2.37)



150

5 3 dfg s 5
pzAD(‘E,t) =e, fd P d—h—s (ho(g))Kz“o(g,B,t) (8.2.38)
0

is the second-order nonlinear charge density, and

E
Poag(t) = &2 0 (x, t)fd b : &5 (p)) (8.2.39)
0

. is the second-order linear charge density.

The last expression suggests that we define a generalized tempera-

ture,
af
T, = - n;{/‘dap —: , (8.2.40)
dng

which is seen to reduce to the usual temperature when f; is Maxwellian.
Using this generalized temperature one can define a generalized Debye

length for species s:

daf,
R S fd3p—° . (8.2.41)

The plasma Debye length AD is found in the usual way:

EE A2 (8.2.42)
s
s

To find ¢20 we use Poisson's eguation,



. .
e ¢2o—1m2p20 )

Inserting (8.2.37) into the above equation and using the definitions

(8.2.38-40), we obtain

7 - A2y (0,) = -4m Y P () = Py pet) . (8.2.43)
=

This equation is easily solved by using the Green's function for the

Yukawa equation:

oplert) = [ by o0 emp-lx - K IAD/E - 57T - (B.2.60)

Thus, we have obtained ¢20 in terms of the first~harmomic amplitude,
which is in Pavo® and, by combining the equations (8.2.37) and (8.2.44),
we therefore know the charge density p;o in terms of the first-harmonic
amplitude.

With certain assumptions, these equations simplify dramatically.
When the unperturbed distribution is Maxwellian, the nonlinear second-

order charge density (8.2.38) becomes

e
S

3
PoupEt) = = T Jor £5(bg (R)IKp (5.2, t)
e =
= ﬁ:él(g,t) CfEa - £t (8.2.45)

upon using the K-y theorem (8.2.3-4). When the Debye length is small

compared to the wave amplitude scale length, (B.2.43) becomes



152

() = 2 Pap®t) - : (8.2.46)

Combining these equations we find
g (xet) = ADZ :— £t Flw - Eay (8.2.47)
which, together with (8.2.39,40) implies

5 2
n.e e . = -
PhaEt) = - 2.: a2 z,f £t - X (k) - § (50 -(8.2.48)

Inserting (8.2.45) and (8.2.48) into (8.2.37) we obtain

=5 2
potzt) = Erat) - [m Pl - 2‘ A,Z,Z X G m)]

-E kW . (8.2.49)

Thus, we have expressions for DSZO and 4’20 which depend on the wave

amplitude l‘_.:-] and the unperturbed system; the K-} theorem allowed us to

eliminate the ponderomotive Hamiltonian.

With one additional assumption, this equation becomes even simpler.

We assume that our plasma has only one ion species which is singly

charged, e; = -e, = e, Then Eq. (8.2.49) reduces to

; ; £x,t) - xlkuw) - £, (k)
i _ e _ 1 _~1= ~ M2
b0 = Do = Paglep = W, v 1) s (8.2.50a)

where x = xe + xl. Use of the linear propagation equation,
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D(k,w) - §1(5,t) = 0, and Faraday's law, k % 51 =,iug1]g:, allows us to .
rewrite (8.2.51) in the form

2 2
. 156017 - 1B G001
Byg = Hpp = - (T, + T,) - (6.2.500)

This formula generalizes the work of reference 25, where cold plasma

waves were considered.

For future reference, we specialize to the casé of cold plasma
waves (xs > --_';z _].’_quz) in a plasma with one species of singly charged

ions with m; >> m_. Equation (8.2.50b) becomes

2,0 2
elg !

nyp = sl —— T, + 1) (8.2.51a)
l.lleul

and Eq. (8.2.47) becomes

2
e ig 1~
P R i‘lz_ . (8.2.51b)
1+T /T, nw
e 1 e

¢ZO

The remaining part of this problem is to determine the second-order
zeroth-harmonic current density and magnetic field. To determine the
current density we use the expressions (8.2.23), (8.2.31), and the fact

that fu is isotropic to reduce (8.2.28) to the form,
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= 2 |
¢20(§,t) = AﬂAD szofg,t) . (8.2.46)

Combining these equations we find
® (xc)=ZE:E—SE*(xt)-xs(kw)-&(xc) (8.2.47)
20 %1 A —~T_~1'~ = 1= : e

which, together with (8.2.39,40) implies

nSe?
Qs

2olEt) = - 2215‘*( ) o8 Qo) ¢ E(x,t) L (8.2.48)
PoaolE:t) = T, A Ts‘”IEJ ¥ Gu) - € Get) (8.2

5

Inserting (B8.2.45) and (8.2.48) into (B.2.37) we obtain

5

s 2
X e n.e e . -
Pt = iz - [? Xl - 120 Y 5 ‘5'“’]
2.

bk . (8.2.49)

5 s
20 and ¢20 which depend on the wave

Thus, we have expressions for p
amplitude §1 and the upnperturbed system; the K-X theorem allowed us to
eliminate the ponderomotive Hamiltonian.

With one additional assumption, this equation becomes even simpler.

We assume that our plasma has only one ion species which is singly

charged, e, = -e, = e,. Then Eq. (8.2.49) reduces to

e o e & () - x(kw) - £ (kW)
20 20 20070 lm(Te + Ti)

(8.2.50a)

where X = XE + xl. Use of the limear propagation equatian,



153 .7

D(k,w) * §1(§_,t) =0, and Faraday's law, k x Sl = iuﬁ/"c, allows us ta

rewrite (8.2.51) in the form

2 2
. 1§ @017 - B 0]
i ~ e 1~
20 ~ T (T, + T,) . (8-2.500)

This formula generalizes the work of referemce 25, where cold plasma
waves were considered.

For future reference, we specialize to the case of cold plasma
waves (x° > -Lui ;/wz) in a plasma with one species of singly charged
ions with m; >> m . Equation (8.2.50b) becomes

b0 = ~Ty > /(Te + Ti) s (8.2.51a)
m

and Eq. (8.2.47) becomes

2
e tg 1
= [ 212 . (8.2.51b)
1+ T/T. muw
e 1 e

¢20

The remaining part of this problem is to determine the second-order
zeroth-barmonic current density and magnetic field. To determine the
current density we use the expressions (8.2.23), (8.2.31), and the fact

that fo is isotropic to reduce (8.2.28) to the form,
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a£,
i fd Pl s “’1’{"1’f Ho * h Koo = € Yo * A3]

(k + iV) (¥, ) of,
a)———= " : d:

2
1»[ey0 @ -y, 5 -4 TEgw ——+cc]
ey (gt %Xt M) - (8.2.52)

The terms involving AZO cancel, since integration by paris gives

as af
3 0 Y N
fdpzﬂdhogo B0 = fdPBEZO 45

Y - N
‘fdpfuag!o 420

=fd3p fo ¥y (Byg = Yo Yp * Apg) - (8:2.53)

Hence, the expression (8.2.52) for jZU reduces to

3 dfo 1
l20(5’t) = efd P dn KZvo(g_t_,p_,t) t¥% 3 {"1’{"1’f0}}|
[+]

XaP,t
* [EZYBI(al T Y Yyt q—l)
k + NG, A ot
x — . a—°]| (8.2.54)
~  ~) 3 X,p,t

Since 520 does not appear in this expressiom, the remaining steps are

straightforward. We evaluste the expression (8.2.54), we sum the
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coptributions from the various species, and we iﬁsert-thertotal current

into (8.2.35) and solve for Boo-
Let us evaluate the expression (8.2.54) to zeroth order inm the

gradients. WUsing (B.2.4) and (8.2.24) we find (after some algebra and

integrations by parts)

3 1 2 % "%
_/:’ P{Zo 3 {"1'{"1'fn”|x2 e [E Yo - %%t &) g L.

af €K
0 _ 3 2v0
x k % + c.c.]} = fd P f0 _32 . (8.2.55)

Inserting this result into (8.2.54) and integratiﬁg by parts, we obtain

izo(g,t) =0 . (8.2.56)
That is, the quasistatic current vanishes to zeroth order in V.

At first glance this result seems surprising, but im fact it is
required by charge conservation. The structure of the theory is such

that the calculation of 120 must result in an expression of the form

3 i .
ligeptts 021, =§ (e )R (0 Od (xie) (8.2.57)
j=1
k=1
where the tensor a is a2 function of k,w, and the background state. In
the quasistatic limit, charge conservation requires V - j = 0. Requir-

ing this in Eq. (8.2.44) gives
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: 'uijk B(ﬂjdk)/axi =0 . . (8.2.58)

ijk
At this point we note that '_a_'(:__(',t) is an arbitrary function, We are
simply using Lie trapsforms to find the second-order Vlasov response to
the field A(x,t) =41(§,t)exp (ik - x - iwt) + c.c. Thus, the tensor

X
a(ajak)/axi is arbitrary and the only way Eq. (8.2.58) can always bold
is if uijk = 0. We conclude i = 0(V) for a quasistatic response. 1n
fact, V - iZO = 0 implies that j_zo is the curl of some vector field.

This fact does not preclude a quaistatic magnetic field EZO which
is zeroth order in the amplitude gradient. For a zeroth order (in VQI)
gZO’ from V x EZO = lm_j_za we see that 'iZO is first order in Vgl.
Hence, to calculate EZO’ we must calculate iZO to first order in V~1.

To determine gzowe must repeat the calculation without inveking
the approximation (8.2.12). However, it is still permissible to use
(8.2.11), which is necessary to transform away hl' For simplicity we
also approximate k - Yo << w (large phase velocity) and p << 1 (mom-
relativistic thermal speed). With these approximations, Eq. (8.1.6)
gives

i(k-g-wt)

w‘(g,p_,t) = iTe P Q (g,t)e + c.c. (8.2.59)

and Eq. (8.2.9) reduces to

Ko@) = €214 (g, 0317 -

x (i(g,0) - gg R 8(g0) +ce) (8.2.60)



We insert these results into Eq. (8.2.54). . Asspminé fo:to be isotropic - »

we find

2
~ie’

ﬂf .
. 3 "
0= fdpag If Vp - 0 Vg'q__l]

2
ie

0 *
dp[alg-vg-q Qla-v p-4,] (8.2.61)

in the nonrelativistic limit. This expression integrates by parts

yielding

-vdl Ql-v0+ alﬂv a]

iZO

ie3
%9
w

vx @ x4y . (8.2.62)

Using 41 = cgl/im and restoring ordinary units and species labels we find

3
2 ) = 25 ¢ x i ) X £ ()] (8.2.63)
Igp®etd = 23 if (x.0) ¥ € G . .2.
5

We see that only the electron current is important.

Keeping only the elctron current in Ampere's law (8.2.35), we find

hnnoeg -
VxBy =53 ¥Vx U §1 x Ql) , (8.2.64)
mEuh (=

where -e, is the charge of an electron. From this we deduce
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: o
: i
By T -vv o, . (8,2.65)
* me wc

where V is determined by V °§20 = 0:

3. ;

dnes iV - (€ x £)
Vy=—20 " & . (8.2.66)
meluc

The equation is easily solved by using the Green's function

-(lm)_ll‘as - _g_'l-l for Poisson's equation.

v(x) =

(8.2.67)

cinged oL U [N, X (27,0
33 fd x”

mWwc

e

Iz - x71

Inserting this expression into Eq. (B.2.65) gives our final result:

N 2
1le W - },

Byo(xit) = Lae I€] (x, ) * E (x,t) -fd3X' — a—
mem 4 lonlz - X |7 ex

: @i(i'-t) x £l . (8.2.68)

This expression for §20 has been noted previously by Bezzerides,
et alg’lo for one-dimensional variation of the envelope §1 and by Mora
and }?ellat11 in the case where V - (g X 51) = 0. Of course, in general
v - (§i x §1) # 0 is true and we must include the second term in (8.2.57).
This gives a nonlocal dependence of «B-?_() on %

Thus we see that we can solve the second-order zeroth-harmomic

equations when the oscillation center evolution is gquasistatic, i.e.,

when the particles have time to equilibrate with the oscillation-center



Hamiltonian. Equations (8.2.38-43) are’ éxﬁliéii’.‘ formulas for the ™ °
electrostatic potential and the charge demsity perturbations associated
with the wive packet. For a single-ion-species plnstna'wit:tx";i =-e,
we get the surprisingly simple result (8.2.51). Equatione (8.2.6_3) and
(8.2.68) are explicit formulas for the current density and magnetic

field associated with the wave packet.
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B.Zc‘Iqterpietation of Wave Momentum
VST To calculatg the time average kinetic (as opposed to canonical)
momentum deppityrgzo,of a Vlasov species to second order, we use the

,Jgkpressipn
Gott) = [ 0% (g - Al 0GR, 0]y

=fd39 [efyq - e(8f))g0 - p0fe! - (8.2.69)

where sz is determined by the theory of the preceding subsection. In

section 6.2 we showed how to assign a "wave-momentum density" QZw to
each species in a collisionless plasma. In this section we determine
the relationship between EZD and QZH’

Let us use (8.2.23) in the above equation.

= &3 1 -
S0 -fd P IRF,0 = eBygfy * B 5 Ty, Dwy Egllg - e(a £)0] . (8.2.70)

The last two terms depend on only the amplitude of the wave packet, not
its shape. In contrast, the first term vanishes for plane waves, but

does not vanish otherwise. The second term depends on the second-order
current response, which depends on F70. Since the expression (6.2.17)

for the wave momentum demsity is independent of the wave packet shape,

we are motivated to guess the formula

Sy, = fd3p B3 v lup,Eghlg - ea E1] . (8.2.71)



" This equation is easily verified:: Using (8.2.24) and (8.1.13)in

Eq. (8.2:71) we find.

o ) ) -
3 2 [lyy - &) %%
Se=Jorjpk s —|——— 5k —
op \(k g, - w ap

- (8.2.72)

On the other hand, inserting (8.1.18) into (6.2.17) gives

2
“’ZW fdpfk a—-E

(8.2.73)

Integrating by parts we see that (B8.2.36) and (8.2.37) are equivalent.
To correlate these results with previous wurk,26 we define the

background momentum density:

= - = 3 -
S, = Gp - Spy —fd PR Fpg - & Ay £) - (8.2.74)

The second term in the integrand can be ignored since it vanishes upon
summing over species. To see this, we restore ordinary units (m # 1

and ¢ # 1) and compute

3 _ s _
E :fdp es Agg fofc = Ay¢/c z , 0% T 0
5 s
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'l'ﬁe firal sum vanishes beéause‘the u.nperturbed‘state is m:utr‘al;v Thus,
vt.he important term is j'dap B on. In general, this term does not vanish.
For the quasistatic response (8.2.31) one can explicitly show that

¥ dap b3 on is nonze?:o.

This exercise démonstrates the meaning of wave momentum density in
(uniform unmagnetized) Vliasov plasma. The wave momentum density is
calculated by not allowing for the second-order field 'QZO’ and by not
allowing the oscillation centers to respond. In general, the wave
momentum density is mot the total momentum density. To find the total
momentum density we must add the background momentum density, which is
defined by (8.2.74). (Demax:z6 discussed the breakup of total momentum
density into wave and background contributions for a Lagrangian system.
The breakup presented here corresponds to Dewar's “canonical", meaning

standard, not Hamiltonian, breakup.)



8.3 Secnnd-Ord;r Second-Harmonic Effects

The next stép in‘i ;he-study,of ponlinearr wave evolution is the’
calculation of the‘second-order ‘secoﬁd-hamonic quantities. These
quantities are of intérest;. ﬁecause tl;eir;xistence may cliange the
character of the wave. For example, we find that waves which are
traosverse in the linear limit possess a longitudinal second-order
second-harmonic electrid field.16 Another reason for studying the
second-order second-harmonic quantities is that they are needed.in.the
calculation of the third-order first-harmonic currents, which alter the
evolution of the wave envelope. The second-order electromagnetic field
appears in the third-order Hamiltonian, and the second-order distribution
function contributes to the third-order current. '

The calculation of these quantities proceeds via the outline in
section 7.2. We first calculate the second~order second-harmonic
nonlinear quantities, including the current 12“2. Then we insert this
current into Eq. (6.3.39) to find the electric field. Fipally, we
compute the second-order linear quantities.

We calculate the second-order second-harmonic quantities by trans-

forming away the Hamiltonian. This choice, K. = 0, bas been used to

292
derive Eq. (7.2.47). The remaining analysis of that equation is to
compute the right-hand side and then to integrate it alomg an orbit.
From Eq. (7.2.36) we obtain
2 2
B =e@1 &, - (g - @7 21y

e + c.c. (8.3.1)
2v2 201 + p2)$
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Eqs. (8.1.4) and (8.1.8) combine .to give

iy @M - - g

{“111}
1z ” & - vy - w? (1+p)“

ezw

+ ¢c.c. (8.3.2)

to lowest order in (V,3/3t), i.e., we invoke the approximations

(8.2.10-12) in this calculation. We insert these expressions into

Eq. (7.2.47), and we integrate along am orbit, i.e., we divide by the

resonant denominator i(k - Yo -~ w), to find

1 ie? [ 4, &

)
2 You2 © 4(1 +p )!,

kv -w

(g - Bp? (¥ - & - 5p? .
~0 1 o MR 1) - e21¢ + c.c. (8.3.3)
kog-w \G oy -of

We are now able to compute f2“2 via Eq. (7.2.48). We use the
expression (8.3.3) to compute the first term,

e a4y -0,

2.% .
2(1 + p?) k - Vg — W

e Tl T

1
-2 {w.

a) k*mz-Zmlf'\_ro)

(kv - w?

of |
X -0 P cel (8.3.4)

and we use the expression (8.1.8) to compute the second term,

ez("n 4 3 \2 . 2y )
{u S £ 11 —_— (k . ) f e + c.c. (8.3.5
1t 2 T mf“lo'“’)z- op 0
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Thus, Eq. (7.2.48) gives

. 2,2 . 2 e
e . @+ oD% 4 g T U s Sl
2v2 . i

0
2 E'Y.O—m (k « v 4w)3
~ -0
af, @y dl)z 3 ! 240
Xkl — k7 St e e, (3.3.6)
P kv -w T ”

Now we can use Eq. (7.2.49) to calculate ijZ' Using (8.3.6) and
(7.1.15) to find the first term,

3 a, *q
6 e [3 141 1
_/:‘z‘lofzvz'zfdp"oz(“"’) Eeg-w

2,2 . 2 ..
_(Zo ql) (k" +w” - 2uk v . i,
& - vy - w? - %
2

v, * 4 o

+—0 L - et e, (8.3.7)
~ p [}
(lc " Vo~ w) £

The second term in Eq. (7.2.49) is found by combining Eqs. (7.1.24),

(7.1.27), and (8.1.13):

6 Cafs Y-y )Y "4 o gy
znlfl—e d’p 2.5 k 35 ©
~ @+ )%k - v, - w) 14

+ c.c. (8.3.8)
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and Eq. (7.2.39) allows us to compute the third term in Eq. (7.2.49):

2

6 S [ Yod t Gy + 2 4y - 3w Y
47z Nypfg = -3 J4P 2
(1 +p9)

Wice. (8.3.9)

X fe
0
We sum these three expressinns to find tne cotal second-order second-

harmonic nonlinear current jZ\JZ' To second order in k - vo/m and p{p/mc)

we obtain

ne3
0

dpv2 = 25 |

2, ,.,.22,2
5@1 -Ql (1 - 8vp + 6k"vp/w’) +Q1 k -a_l(z

- lﬁvi + 12k2v§/m2) * 12K(k + @) zvi/mzl Sy ce. (8.3.10)

where v,% is defined by (8.1.23). We note that j2\)2 is longitudinal for
either transverse (k * dl = 0) or longitudinal (k X 01 = 0) waves. In
either case we have

3

n_e
; .0 o 2 2 ,,,2.2,2
gz e [k(k @1) (2 - 16vy + 24k vp/w®)

. a2 22,2 21y
+ 541 ql(l Bvy + 6k ve/u] e + c.c. (8.3.11)

To find the corresponding density perturbation, we use continuity,

Nyyo = k- éz Jew:

_ co 2 2 22,2
Ny = 7= ok Ql) (2 - 16vl + 2k vT/uJ )

+4, -0, -8l 4 octviuh1 e r el (8.3.12)
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To prepare for the self consistent calculation, we restore units
and species labels in our expression for jZ\JZ:
3

;8 0"s S a2 2,2 22,2
202 5 [k(k @1) (2 - 16v /" + 24KV fw)
stuu:

el - 4a -kt s el o) Y rce. (833

where v = Ts/ms. The presence of the factor m;Z in this expression

makes the ion current negligible. Thus the total nonlinear current is

well approximated by the electron portionm,

3
n.e ~
e 0%0 8200 1602, 2 22,2
gy 3 g Ik(k Ql) (2 - 16v_/c" + 266"V /")
Zmemc

+ 541 ] Ql(l - BV:/CZ + ﬁkzvzlmz)] ezj'w + c.c.

(8.3.14)
Inserting the electric field El = tual/c, we obtain
n e3
e _ "% s 2 7,2 22,2
iovz =~ 33 Lk(k - EDCQ2 - 16V fc” + 26KV /)
2m w
e
o 2,2 22,12 21y
+k G- G~ v/t + KV )] 7T + euc. (8.3.15)

To find the second-order second-~harmonic electric field

Ell(’f’t) = @12(::(,!:)3):1:(2101) + c.c., we use Eq. (6.3.52), for which

we need the linear responmse tensor D = I(1l - kZCZ/mZ) + k kr:z/m2 + L Xg-
= 7 T s
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For high frequency waves we can neglect the fon currents. Hence

we have
E(If,m) - (E -kk)[1 - kzczlm2 - w:(l + kzvlza/m2 - %vez/cz)/mzl
+ ki1 - o2 + wBE? - 3F Ak, (8.3.16)
e e 2%
which gives
-1 mZ(I - kk)
D T(k,w) = =
b 7_ .27 _ 3 72,2 _5 2,2
m-kc—me(1+kve/m—2velc)
mzkk
+ . (8.3.17)
2 2 22,2 5. 2,2
w” - w (1 + 3k ve/m -5 e/

Inserting (8.3.14) and (8.3.17) into (6.3.52), we obtain

ieumik
Eqp(x.0) = 7 =
2z -~ 2 1 2 22,2 5 2,2
bmec [w® ~ 3 me(l + 3k vE/m -3 VE/C )1

>

- 2,2 22,2
[[!l . G:.l\l - Bve/c + 6k velm )
+ k- gl - 1edke? e (8.3.18)

From this we obtain the vector potential aZZ =

QZ /(24w) :

2 2,2 2.2, 2 ° 2,2 22,2
g elf[gl . Ql(l—Bve/c + 6k Ve/l: Y+ (k - ql)(Z—lﬁve/c + 24Kk’ ve/c 1

R, (x,t) =
~22°~ 8m r:l.u[m2 1 wi(l + Bkzvzlm2 32 vzlcz)l
e 4 e e 2 e
(8.3.19}



Ve digress momentarily to discuss the inversion of 2 more -
thoroughly. If an eigenvalue of D has a zero at the second har-
monic, i.e. there exists a normal mode with wave vector equal to
ZE and frequency equal to 2w, then the inversion (8.3.17) is not
possible, and so one must analyze the situation differently. How-
ever, In our specific case we do not have a problem. In unmagnetized
plasma, high frequency waves satisfy m>me and therefore greater than
Zl.ue. but from Eq. (8.3.11) we see that there is not tramsverse current
to drive a transverse wave to second order in ‘.’.‘ - 1’0/"" and p/mc.

In fact, for isotropic fo one can show from Eqs. (8.3.7-9) that 12\,2
1s transverse to all orders in those parameters.

To complete our discussion of the second-order second-harmonic
terms, we compute the second-order linear quantities. The curremnt

Ilinear in AZZ is calculated using the linear conductivity:

I = 0(2k,20) - Byy = o2k, 2u) « (12u4,))

- .
= gt T X220 - (12u4,,)

2
w .
= x@k 200 8y, . (8.3.20)

Inserting Eq. (8.1.22) into (8.3.20), and noting that Eq. (8.3.19)

implies that A is longitudinal, we find
422 &

o2 22,2 5.2 219
ing e (1 + 3k vT/m 3 vp! 4229 + e.e. (8.3.21)




170

through first order in v.f.. To find the corresponding linear density
perturbation, we use continuity, Ny ™ 5' 12)2/&‘”

n.e
._ o 22,2 _5 2, 2
fgyp = = (1 +3kva/w® - F vk B.e™Y +c.c. (8.3.22)

For purposes of comparison, we restore units f{n Eqs. (8.3.12} and
(8.3.22) and we sume to find the total second-order density perturbation.

The result is

i 1talia, -4, a1 - el el + g2 - 1602+ 20dvE P

N2z 7,2 1 2 32,2 5 2,7
8ma_c [w -5 wa(1+3Kk ve/m -3 ve/c )1

(8.3.23)

uhere’\zz is the density amplitude. 1In the cold plasma Iimit this reduces
to

22 ~ 2
_alig, -4, + 20k

,7 - ' (8.3.24)
2 8mm cz(w2 -1 wz)
e 4 e

which was obtained by Arons and Maxlﬁ. their Eq. (14), in their dis-
cussion of nonlinear transverse plane-wave propagation.

This conecludes the analysis of the second-order second-harmonic
effects. By using Lie traasforms to transform away the second-order
second-harmonic Hamilronian, we have obtained expressions for the
electric field (8.3.18), the current (8.3.12) and (8.3.21), and the

density (8.3.23).



8.4 Third-order Effects

As we poted in section 7.3, third-order quantities oscillate at
the first harmonic or the third harmanic. The first step in calcu-
lating either type of quantity is to compute the third-order nonlinear
current jo. = ja * dze3- The third-order first-harmonic nonlinear
current 13“1 modifies the evolution of the €irst-harmonic amplitude
via Eqs. (6.3.46) and (6.3.51). The third-order third-harmonic
current 13‘,3 produces a third~order electric field 533 = D-I(S_lg,Bw) . 13“3,
just as the second-order secong-harmonic currant produced a2 second-order
electric field, c.f. Eq. (8.3.14).

Here we are interested only in the nonlinear evalution of the
first-harmonic amplitude g]. Hence, we ignore 13“3, and we calculate
only 13‘,1 {in subsection 8.5a). Then (in subsection 8.5b) we use
the theory of section 6.3 to determine how i:ivl alters the evolution
of gl' We fird all previously discussed effects, such as the nonlinear
change in the conductivity due to the density depression caused by
the ponderomotive l;usatern.iall3 and the self-precession effect previously
calcular.edlﬁ for plane waves. In addition, we find a new, comparable
effect: self Faraday rotation caused by self-generated quasistatic
magnetic field. In the end, we unify previous work by calculating
the third-order current including all effects te zeroth order in

2 22, 2
c

vi/ and k' ve/w for the case of quasistatic evolution.
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8.4a Calculation of the Third-Order First-Harmonic Current

The ca. uidtion of the third-order first~harmonic nonlinear

current ij“] foll '« the ocutline of section 7.2. We calculate the
integral (7.2.76) to find v;vl’ which we use in Eq. (7.2.75) to find
£301' Then we insert (3“1 into Eq. (7.2.77) to find 13\!1'

We make a number of simplifying assumptions in this calculation.
First, we treat the case cf quasistatic evolution, for which we have
an analytir expression (8.2.31) for the oscillation-center distribu-
tion. Secondly, we work to zeroth-order in (3/3t, V)g, i.e., we
invoke all of the approximations (8.2.10-12). 0f course, as we noted
in section 8.2b, to be consistent we must keep terms in the gradieat
of the vector potential, Vﬁzo. In addition, we study plasma with one
species of singly charged ions, for which the quasistatic density
change (8.2.51) is simple. Finally, we calculate i3v1 only to zeroth
order in the temperature. From reference 1, we should expect a

contribution to the current of size

i~ 6ne’E/(mw) =~ 2 EIE|%/auT

’

A kinetic cor.ection to j~ would be of magnitude j°~ ~ (eZEIElzlmuT)
x (kZT/mmZ), and so would be zeroth order in T. Thus, by calculating
i3u] to zeroth order in the temperature, we obtain the first kinetic
correction to the work of reference 1.

We begin by combining Egs. (7.2.75) and (7.2.77),
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. 3 1. 1 :
13v1=’fdp-‘-'o{'5"3v1’fo“°fd]"!o'z'{"1'["2'fo”
R O RN I RN R L g djv(w}'}
[3 P Xpt¥pI¥yalvgt, e P Xy ¥y

3 3 3
+ efd p(!lfz) + efd P !Qfl + efd P Ya fo R (8.4.1)

keeping only the first-harmonic terms. We must evaluate (8.4.1) term
by term. Throughout this process, we will try to put these terms in
the form, Aj ~ J d3p fo(p) g(q,p,t). In that form we need g only to
zeroth order in p, since we want Aj to zeroth ovder in T.

The first term is

1 3 =.1
iefdpxo{"avl'fo)' 3

Jo

] B,
3 vl
3 efd P gyt (B %) - (842

where the last step follows from integration by parts. Since we need

the quantity (3/3p) - [(Bwivllag)xo] to zeroth order in p, we need

¢ .
he quantity (8w3vl

/85)20 te first order in p. Thus, we use !0 =~ p, and

we T
compute wg .

to zeroth order in p. This reduces the first temm

to
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1 3 _1 3 vl _
'3'[""-‘%"3»1"0"3’["“‘0 3g =0 |
o
= % nge aZ‘” =0 . (8.4.3)

The quantity "iUI is found by computing the integral (7.2.76).
Integration along a trajectory of a first-harmonic term does not

change its leading order in p, since such an {ntegration amounts to

3v]
in g, we need h3“1 + [w1.3h2 + {wl,hlllllz to zeroth order in p.

division by ~i(w - k - !0)' Therefore, to find w, to zeroth order

This quaatity can be written in the form,

1 1 au1 o
bagy + 3 Qwp3hy + fugebg by = by #5050 - 55 Gy ¢ D
]

1 au1 ]
-3 a—p— . SH (th + lul,hl}) . (8.4.4)
~ ~ 1

Using Eq. (7.2.73), we find the first term in this expression to be
= a2 . . iy
by, =e @, -4y, + & - a0e " + e (8.6.5)

to zeroth order in p. Since vy is first order in p, the second term
in (8.4.4) must be at least first order in 8 and so it is ignored.
To compute the last term in (8.4.4), we need 3h2 + {"l'hl) to zeroth

order in p. Egs. (7.1.22), (8.2.8), and (8.3.2) yield



3h, ¢ ["l‘hl] = 3e ‘20 + Jezlgllz
et -4 e 0@ - (8.4.6)

This result, combined with (8.1.8), allows us to compute

3 k-3
E Sx-ai4 -a
I SRS S - B 1 iy
[ 3 3q (3hy * “"1"‘1”] = w e
1

+ c.c. + 0(p, W) . (B.4.7)

Inserting (3.4.7) and {8.4.5) into (B.4.4) and integrating along a

trajectory we find

1 . ie Wl

"GV T e @) -Gy 48, - By
_ied gt et + (8.4.8)
2k ~1~1gle c.c. 4.

Finally, we insert (B8.4.8) into (8.43) to obtain

3,
D
'% fdap Yol¥gypfgl = [——(d aiz"*k'qvlgl 4,/

- k]
in.e
+ 4

. .0 . iy
A, - Ayg) o T A,0) Ql]e + c.c. (8.4.9)

As always, we must remember that véZO is zeroth order in ng.

The second term ou the right side of (B8.4.1) is
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. fee, B 2w, of
1 3 = fp vt~ 2.0
2 ’f" ? Yolvy U foll = zf" r "-o(ag 333 o

-ﬁ.iﬁ.*ﬁ:sfdsf”_. 22 (2,
3p ~Bq8q ap 2 P fa3p 3q ap 33 o

(B.4.10)

where the last step follows from integration by parts. Since v and
¥, are both first order in p, we need "2 only to zeroth order in p

i £.10). Si . =
for the evaluation of (8.4.10) Since Yop C B sz we have Wy = W,

+ 0(p) which from (8.3.3) is

iezgl - t_l_lezul‘
wz=—‘T—+ c.c. + 0(p) . (B.4.11)

Inserting this expression for ¥, and Y (8.1.8), to lowest arder in

p we find

3 efd3p Yolwy 1y £l = 0 + 0(vy) . (8.4.12)

The third term on the right side of (B.4.1) alsc vanishes to
this order. To see tbis we note that Yo = 0(p) and w, = 0(p). We
apply the usual technique of integrating by parts to take the operator
8/8p off fD and onto the rest of the integrand. We see that we have
three operators a/ag but four functions Yo and 3 wl's of 0(p). Hence

the integrand is 0(p).
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The fourth term on the right side of (B.4.1) is found by first

computing the Poisson bracket and then integrating by parts.

. 3
3 2 3 [Y% "
-e fd P ylvFl = - e fa p [k———_m k Ery (-K,£,/T)

2%

3 yeiev, -4 9 .
~ Vo 3g (x - 3 = :;) ‘3 (’Kzfa/'l')]ew + c.c.

-3
-e 2 fuv @ ie
3 ~~0 -1\ i 3
p— dp ¢ 5'_('—._'._)2 + — dp
T 072 ap \k % w T

8!(2 a
x f v = (8.4.13)

0% ag “Bpl\k -y, -

é<
.
ki)
S
1)
e
=3
.
a
La}

In evaluating 9k,/3g we keep only the term V 520. In evaluating the
integrals we must keep in mind -the T-1 factor, and hence we keep the
integrands to 0(p2). Carrying out the differentiaticas and integra-

tions in (B.4.13) we find

w w

, nge’k [k - @ G817 « ze0,) Pk -4 -4,
-e fd P ¥olvw,.F,l = - * w

2
n_ e
0 !\l 2 2 2 2 2
-e gl B 520) + mz (e Ik - gl‘ + k(e lg’ll + e4>20))

n E(.d* n ea
0t % 2
ro ke )T - Ao k&
w w
3

in_e
.l S i
+ - 4 v 520] e + c.c. (8.4.14)
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The fifth integral on the right side of (8.4.1) is
3 _ 3
efd ply fy) = cfd p(!le o 3y teptvngh

1
-5y lw,. 1, l) (8.4.15)

To calculate this integral to zeroth order in T, we need ¥, in the
last two terms in the integrand to O(po), but we need ¥, to O{pz) in

the first term. Thus, we find
3 vz oeela . 3 .1 2
Efd Py, £,5, = ~e"A; fd P(3 P 1+ p RMEGK,/T
e2la - [ &3 1 _1 p
e [.A,, J@elr, ¢ 3 o teeght - 1 {uz,ro))]l (8.4.16)

to zeroth order in T. We evaluate these expressions, noting that the

last integral is simply R, We find
3 = - = -
efd Bly,f,) = R NG N N RN
= (-2 _ 24 iy
= [ e ll(e Ia I + e¢20) e A]nzo e 4;1222]5 + c.c.
(8.46.17)

where n,, is given by Eq. (8.2.49) audplZZ is given by Eg. (8.3.23).

The sixth integral on the right side of (8.4.1) is



i79

[/ 2w 3t
3 - . 3, 1. %
f" PlLEy), = °f""3’-zaq = ),
3 3 Bw, '
=efdpr°5- 5 %) - (8.4.18)
- 1
UWe see that we need ¥ to 0{p) and ¥, to 0(p°). Thus,
2
w
3 R 3 1 _ L2 "3
efd Pl ), = (e ézfd P £y 5p 3‘1)1- e (ﬂzf" p(v].fol)l

= 'ez(éz“l) . (8.4.19)

To find 0, we use continuity, n, = k - i‘/au:

n, = (k - g- sl/em)eiw + c.c. = l.u(lme)“l k - X -413* + c.c.
= -(nue k - @llw)ei‘u + c.c. (8.4.20)

The last step follows from the use of (8.1.22). Inserting (8.4.20) into

(8.4.19) we obtain
e [ Ppu,e) = [ne’a k- d ju
~271 0 =20~ =

+ nc'e—i 4_22 k - @_::/l.l.ileil‘I + c.c. (8.4.21)

3 e P VT S et TN - e -

For the last integral in (8.4.1) we need 23“ only to zeroth

1
order in p. Using (7.1.26) we find
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efdap Yooy fo = noel.(ﬁlgllz + %4: a - gl)ei"’ +cc.  (8.4.22)

We can now sum these integrals to find the total current (8.4.1).
First we cazlculate the partial sum j:’:ul‘ which is defined to be the
total current neglecting ponderomotive effects, i.e., to calculate
j:’:ul we neglect terms contaiiing FZ’ o,, ¢20, and A20' Thus, we keep
the first two terms in {B.4.9), the last term in (8.4.17), the last

term in (8.4.21), and all of (8.4.22). The result is

I U - P N 2
i301 = g k) - dppfu - ek - ) &) - G /07) - nge'd) 1

1 4 g% Z‘q
tange &4, -4+ edmy,
+n e3d2 Kk -4 /wle™ + c.c (8.4.23)
0" ~2z =~ &1 e
Restoring units in this expression we find the amplitude,

.3 . 22 332
&-3\;1—“0&5541 422/mcm noe_lg 4 Ql ﬂ.l/mcnu

*
+ n e, d |a. |Z/m3c5 + % noe: 41 4_1 . gllm::c5

2 g% 3 *, 22
- . 424
7[22 €. 4,‘/msc + e 422 k gllmsc w . (8.4.24)
We note that only the electron curreats are significant because of

the factors of m;l. We now use Egs. (8.3.19) and (8.3.24) in

Eq. (B.4.24) and e = -eys 2nd so obtain



4 2 . 2.0 .42
d: %% & ', 4«1\;“"(& @

=99 k-
R R | I P
e e
nue: - K22 2k2c2(E -a )2
e R ST 32
Zmec w” - w /4 w - w /4
“oeg Qllgllz
+ — 35 . (8.4.25)
mEC

This result is correct when the particles do not have time to respond
to ponderomotive effects, such as the case of a fast wave packet on
the case of the early development of a laser pulse. As discussed by
Arons and Hax,16 fast means that the wave packets changes before a
sound wave has time to cross it. For comparison we transverse waves.

Then (8.4.25) reduces to

n el’ 3l.l.|2
- L] 2 * e
& =22 |24 a1“-+a. & -4 |—— R (8.4.26)
3vl Zmzcs 17 ~1 1~1 1 awz o "’2

which agrees with Eq. (15) of Arons and Hax.16

Now we sum the remaining terms, the ponderomotive terms. From

Eqs. (8.4.9, 14, 17, and 21) we find

d.-h =- [um + nge? 14126572 - W ?) = mgedlk - @15 p?

nged, (572 - kZ/uJZ)] + nuez(glmz)[g -l et1g1% + 200,

+

ref -4 a, - q'l] +ng G - 7" - inge X Byglu

(8.4.27)
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‘We restore units in this equation, and we use e = e, to obtain

Ja - =- (etz)gl/"'e‘:) [“20,+ “oeglgllz(f‘/z - kzczlmz)/"’z‘b
Z3v1

~3vl

2.° 2.2,222 22,2 2
- Deo(k 41| k /me"" < - noeo¢20(5/2 - kK ¢/ )/mec ]

2 2 2,02 24
+ njeq (ke/m )[5 4, 3e14 1" mc” ~ 268, /m )

+ egb . g’; gl . Qllm:ch] + noeggi(_l‘(_ . 4’1)2/111:u12c3

. 3 2 2
+ i noeog x Ezl.’/memc ) (8.4.28)

where LPY 4120, and EZO are given by Eqs. (8.2.49, 47, and 68). We
see that the ponderomotive terms contribute substantially to the
third-order nonlinear current.

Finally we sum Eqs. (8.4.25) and (8.4.28) to obtain the total

third-order first-harmonic nonlinear current. We find



e
0 2 22, 2., 2¢
23\;1 N E—c_l [“zo * “o"glﬁl' (3/2 - K" ) me

L oall

2,7 22,222 22,2,, 2
noeolk Qll K /mem c noeo¢20(5/2 K°cT/u )/nec ]

* [ 2 2 2 2 2
_ %% 8 {0 - , ok £ =,
24, 2 2 222, 2 2
L m_c (¢ we) o cw (¢ '"e)
2 2 2 2 - 22
. n.e, ke .- é ﬁeoléll ) 2e4®,, R €k -Ql) W
m unz - 1 mzc[‘ m c2 = = mzc['(luu2 - mz)
e e e e e
2
e- ., 4
0D~ = . 3 2 2
k- &l 57— )|+ ingegd, * Byp/minc® . (8.4.29)
W (Gw” - w?)

Putting this in terms of the electric field él = :hugl/c. we obtain

ie €
__0~1 2 2 22,2\, 2 2 2
"-’vBuI o [nzo + ngegl€17°03/2 - K /) /mn’c

noeglk . gllzkzlmiwl‘ -ned (5/2 - kzczlmz)lmecz]

07020

. * 2 2 2, e 2 2

_ % £ 3 & - & v _ sl £ u,

mw Zmzmzt:z(luu2 - wz) mzmh(luuz - u:z)

e e e e e
.2 02 2 2 2 2 2
kol P £, & v | 2* £
m \n3 e mzmzcz(luu2 - ulz) mzwzcz(luuz - wz)
e e e e e

020
k-Gl 37 - — 2 || * b % Bufmee (8.4.30)
mew [ mec

2
eolgll } 2e &,

vhere Ny ¢20, and EZO are given by Egs. (8.2.49, 47, and 68). Twe

of the terms in this equation have simple interpretations. The term
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.2 . ) )
1n20e0 gl/mem is the change in the electron current response due to

R . 3 2 2
the change n20 in the average density. The term noeo £1 X Ezolmem (J

is the:change in the r

P due to the laser generated magnetic
field. Both terms can be obtained by the heuristic method of
section 6.4. Furthermore, the first term, inzoeg §1/mew, is the
largest term; all others are smaller by the factor kzvi[mz or vi,’cz.
The fact that the heuristic technique gives the dominant term leads
one to trust it. However, we also note that the heuristic technique
gives the term noeg &1 x gzolm:mzcz with no hint of the many other
terms in Eq. (B.4.26) of the same magnitude.

For the final zesult of this chapter, we insert the

formulas (8.2.47) and (8.2.50b) into Eq. (8.4.30). We find

2 2 2

J—;Sul 4im w l T
w? [|5 -7 g’ {ZTi + 1,08 ? - 3)
r - +
w? I_ n u? o t:z \ T
e
2 g 2 2 2 22
L% § | 208 & k&

4nim w Zmzwzcz(luuz - wz) mzwl'(t‘.wz - I.UZ)
e e e e e

w2l 1£12\ for_ + T,
e ~1 e i

+

3 2 2
: 2 4 + myeg & X Bypfmeue
4mim W o w T

kK- N (N A O

0 ~1 e ~1 ~1 ~1 4.31)
3 2 2 ’ (8.4.

4tim w wm (" - w ™)

e e [

where T=T_ + T..
e i



In conclusion, we have derived the nonlinear conductivity of the

plasma to second order in El and to zeroth order in vi, keeping both

pondercmotive effects and cold plasma effects; thereby extenﬁi‘ng and

unifying previous work.



' 8.4b Nonlinear Evolution of the Wave Packet

Finally we have the ingredients needed for deriving the nonlinear
evolution of the wave packet amplitude. We assemble these ingredients
here in a discussion of the nonlinear wave-packet evolution of longi-
tudinal waves and of transverse waves. In both cases we concentrate
our discussion on the derivation and form of the nonlinear evolution
equations. We point out the new terms in the nonlinear evolution
equation, and we briefly discuss their effects. However, for detailed
discussions of the solutions of these equations we refer to the litera-
ture.

We begin with a discnssion of linear waves in order to calculate
the quantities needed for the left side of Eq. (6.3.65). In section 8.1
we noted that this work is restricted to Lamgmuilr waves and electro-
magnetic waves, since we ignore resomant particle effects. For such
waves w >> kve is satisfied, which implies that B(E,m) can be written

in the (diagonalized) form, c.f,(8.3.16),

D(kw) = Dy (k. + Dy (k,w) a- k), (8.5.32)
where

by =1 - @ldi+ 3528~ 3 olihr s
and

D (kw = 1 - K2k - Wlwh + 12l - 3 ovleh . @.4.30)



(For Langmuir waves LA (k,w) = 0 and for transverse waves DJ‘:(E;m) - 0.')':':3
Eq. (8.3.16) implies that the natural polarization unit véctors of ‘D nEE
are ll;, ﬁu(p, and 312(15)' where ;J.l and :12 form an orthor{ormal
basis for the plane perpendicular to ;. We define the corresponding
E‘]’:(lc,t)'s of section 6.3 to be E" ’ EJil, and E'Iiz.

To find the electric field amplirude gl(f’t) from the quantities -

E;(x,t), we use Eq. (6.3.42), which, in this case, is

o - 3 & v B+ Bty + Bouy0] -
=0 -
(8.4.35)

Note that we now use k, rather than kO’ to denote the central wave vector.

To lowest order in V, this formula yields

£,0 ~ ) +E O, 0 + E (D, , (8.4.36)

the usual result from lowest order WKB theory. It is important to re-
member that (8.4.36) is valid only to lowest order in V- 3/3k, otherwise
one encounters what seem to be contradictions, as the following example

shows. Consider a longitudinal wave, for which (8.4.35-36) reduce to

@

oo = Y L 1v- gl o) (8.4.37)

n=0

and

£ o= E&!(g,:) . (8.4.38)
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The._‘r,url-b,f -the electric field found by using the second expression

does .not vanish:

~ I i(k*x - wt)
Vxg = - kxVEpNe T T + c.c. (8.4.39)

and so it seems our longitudinal wave has nopnzero curl. Hhowever, one
must remember that we have restricted ourselves to working to zeroth
order in VE|]I. by using (8.4.38). To that order, the expression (8.4.39)

does vanish. If we wish to go to higher order in V, we must use (8.4.37).

In fact, it is easy to show that inl does vanish 1if one uses (8.4.37).

We have
i(k=x - wt)
Vx 131=e -T (ilfx§1+v)<§1)+c.c.
©
i(k s x ~ wt) 1 3 n.7
ce - - (ilf+V)x ZH(—:LV--BI) [kgl(lc,c)]+c.c. R
n=0
(8.4.40)
which is seen to vanish upon noting the identity,
9 .n-1
fkx (17 %0,k = - 0¥x(-17- 3" g(x,00
9 .mn
+ (—1V'§E) 1k x g(x,k) . (8.4.41)

Analogous statements hold for transverse waves.



‘We now disciss the iunlinea"; prop}:_g'ationb'of‘ Lau;gmu'ii'{‘;va!\'iefs, i.e’. ]

k,w is a voot of D“ but hot a root of»Dl. (We do not discuss’k + 0,

where DlI = D.I.‘) In this case Bq. (8.4.34) applies, and Egs. (6.3.61)

and (6.3.65) become

£3105,0) = = 4L - XK oy G0 /LDy ()] (8.4.42)
and

2+ iy -0+ Lo VIR Ga0 = - amtled G0 /@0

(8.4.43)

From Eq. (8.4.28) we obtain the quantities:

w (&) = “‘e[ -3 hh + 3 (kz)\g)] . (8.4.44)

W =3kl (8.4.45)

g &) = 23"2 lw, (8.4.46)
and

Wy = 2D A+ et . (8.4.47)

In deriving these quantities we have used kve << w,.

expression (B8.4.38) into (8.4.30), and using Egs. (8.2.51a,b), we find

Inserting the
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T 2 4l 1,2 2 2
2 §/§n020 &Y 0lfll \ ST T, [3(2m Su) 5Ty
3vl \ oW B (T .7 )} z llmz ~ m: 2(T, +'T)
22 {9m§ - 2002 3t
+ + (8.4.48)
m2 \Amz - "’2 Z(Te * Ti)

This expression and Eq. (8.4.42) yleld E;l = 0, 1.e. no tranaverse
electric field at the fii. Tarmonic is generated sinceJ 3u1 1s purely
longitudinal. Inserting (8.4.44-48) into (8.4.43) we find the evolution

equation of il;_(:_:,t) H
a 2 . 2 2000 el 2
[L 50 + 34V fw )k V + 3(v_ Ju )V']E, = u“r_lwl] , (8.4.49)
where

(Te+Ti) 32 T - w) STi Z/Qm 3T

mc2 l_luu-

X Z(Te + Ti) 2 2('1‘ + T, )

2,

wil ~ ;
w? 4 -
Ye e

o =

22,2
81\-n0('tE + Ti) (1 + 6K vE/m )
(8.4.50)

Thus we have obtained the nonlinear evolution equation for the
Langmuir wave amplitude. Taking the limit kve/u) + 0, we find agreement
with Za’.{.‘na‘m."sl2 Eq. (1.8). Our calculation complements Zakharov's.

We have systematically derived (8.4.50) including kinetic corvections,
but with the approximation |k§1| >> |V£1] Zakharov presented a heuristic
derivation of his Eq. (1.8), such that he could not include kinetic cor-

rections. However, he did not require |kE1| >> IVEll. Of course, both



derivations reciire quasistatic evolution. Since the :a:oi;é.bn:s o
(8.4.50) have been disd&ssed dsewhere,lz’z7 V
nonlinear Langmuir wave propagation.

We now discuss the»nonlinear evolution of electromagnetic waves;

i.e. we assume TJl(k,m) = 0. In this case Eqs. (8.4.36), (6.3.61), and

(6.3.65) become

£,60 = £ =Elmou,® «§200u,0  6.4.50)

£l ) = - amik od ) 0/l Ew] (8.4.52)

and
GLs v oV +2a D @) = - wmiT - KO+, G ) @Dy (1)
ac T 0 28 VIR I 2301 % ) (K
(8.4.53)

From Eq. (8.4.34) we find quantities needed for the left side of

Eq. {3.4.53):

N

w () = (mi + 1%eh , (8.4.54)
v -kl @® (8.4.55)

and

40 = (- Kk faly Pl (8.4.56)
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we do not further discuss



to zeroth order in v:. The thermal corrections to these quantities
do not change the physics, v remains parallel to k and dJ(k) can
still be written as the sum of 1 times one factor and kk times

another. Therefore we neglect these thermal corrections. On the

other hand, we want the RHS to first order in VZ’ 50 we need GEI -1
to first order. From Eq. {B.4.34) we find
Wb (0 = 201 + kARl (8.4.57)
< ee
We also need the nonlinear current at the first harmonic. Using
k- 1= 0 in the expression (8.4.30), we find
2 2 2 5
- i) _Jvh sl T 5 2‘)
3vl W wz(T +T) 2 X
e e 'L
im;eo u,
“T3 G Bty
mwc
e
(B.4.58)

To obtain the longitudinal part of the first harmonic amplitude

we Insert (8.4.58) and (8.4.30) into (B.4.52). We find

) e
g fugegkk * & By

m u.n:[mZ - mz(l - 3k2v2/w2
e e e

-2 vi/cz)] . (8.4.59)

We see that only the self generated magnetic field rerm contributes
Ell' Thus the longitudinal part of the first harmonic amplirude vanishes

when §20 vanishes.



To derive the nonlinear evolution equation for Ve insert

Egqs. (8.4.57) ard (8.5.58) into (8.4.53) and obtain

[1(—-+v V)+%— -vv]gl-—uflnll +sf_lg_1 11 1y(1- kk)-glxn

(8.4.60)
where
mz[l +T /m cz - T (; - kzczlwz)/m cz]
a = (8.4.61)
w BT ng (T, + T,) (1 + Al
3e2m4
R | S (8.4.62)
2m2m3c2(10w - mz’)
e w?
y=— . (8.4.63)
2m w'e
e
Since k 'el = 0, the last term in (8.4.60) can be simplified:
- iY(E ~ kk) - gleZO = = iyke 1320€1K k . (8.4.65)

In addition, the second term may be written
* * 2
BE E "= BE X () +B glel

=Bk - xEl)El‘ck +BE | 511 . (8.4.65)




19

Thus Eqr.‘ (8.4.60) becomes
v vy +1aawig = - @+ g le 1% - 16 xkk . (48E xg)
Ty 2 4 WVIE 61§ & L 21

- 1§ xkk - (YByg) - (8.4.66)

Two of the nonlinear terms in (8.4.66) have appeared previously
in the literature. The first nonlinear term - {a + B) §1[5|z was
obtained in Ref. 13 by heuristic means. Our work is a slight lmprove-
went in that we have obtained the corrections of orders kzvilmz and
vi/c2 to the coefficient (a + B8). The second nonlinear term
- is_xl:;- (:I.BEIX ~%_). appears in References 1,14-16. Arons and Hax16
showed that this term causes the polarization of the wave to precess,
as one might infer from the presence of the cross product glﬂi in
this term. The last term -1_€1xf& - (YEZO) has not appeared previously
in the literature. The similarity between the last term and the second
term allows us to deduce that the last term also contributes to pre-
cession of the wave polarization. In fact, this term causes self
Faraday rotation by the self generated magnetic field 1.;20'

Since these last two terms are so similar, let us compare their
magnitudes. Neglecting V in Eq. (8.2.65) we find

~ x

k: iﬂgl x gl . 3m2

2 7 . (B.4.67)
[ )
e

k*YByg
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Thus the self precession effect of Arons and Haxl is comparable to

the self Faraday rotation effect E;mnr] hére.f' This illustrates how
the heuristic ﬁa"hnd(c.f. sec. 6.4) for iﬁcluding nonlinearity can
err. Had we used that method, we would h;ve simply inserted the change

in the conductivity due to B

20 into Eq. (6.4.6), i:hereby ob{:éining

the last term in Eq. (8.4.66). Howover, we would have néglected
the szcond term, which 1s of the same magnitude, and which contributes
to the same effect, polarization precession. Thus the heuristic
method leaves out terms which are comparable to the terms it includes.
In conclusion, we have used the systematic method of section 6.3
to derive the equations which describe the nonlinear evolution of
Langmuir waves and of electromagnetic waves., In the case of Langmuir
waves we verified previous heuristic work and make a slight Improvement
by finding corrections to the coefficient u" of the nonlinearity. 1In
electromagnetic waves we also verified previous work, but in addition
we found that the previously neglected self Faraday rotation effect

1s comparable to the self pracession effect discussed prﬁv:lously.]'6
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8.5 éimnéry of Chapter 8

VHe have presented a syste.!n;tic discussion of nonlinear uavé
evolution, Our discuésﬂm is ful;nded on the systematic perturbation
scheme bf ;ectiun 6.3 and on the Lie transform perturbation theory
oﬁfliuéd :lnvsecl:ion 7.2. Our results include a self comsistent
discussion of the fields and particle response through third order
in the wave amplitude.

In first order (section 8.1) we showed how Lie transforms are
used to derive the linear response of a relativistic unmagnetized
plasma. We pointed out that there exist two nonrelativistic limits
of the linear response which differ in the order assigmed to w/kc.

In second order we found respomnses at the zeroth harmonic
(section 8.2) and the second harmonic (section 8.3). Central to
the zeroth-harmonic discussion is the concept of pondermotive Hamiltomnianm,
a generalization of the pondermotive potential, The pondermotive
Hamiltonian, together with the zeroth-harmonic fields on and Ao
determine the evolution of the oscillation-center distribution. We
showed how the pondermotive Hamiltonian can be obtained very simply
from the K-X theorem of section 7.4. Tn the case of quasistatic
evolution, where the ascillation centers have time to equilibrate with
the wavepacket, we found simple expressions for the nomlinear oscillation
center response (8.2.31), the nonlinear demnsity respomse (8.2.50b), and
the self generated magretic field (8.2.¢8). In additiom we found, in
section 8.2¢, that the oseillation center formalism leads to a simple

interpretation of wave momentum.



The calculétion éf th;léecﬁnd—urdéf secbnd—harﬁunic response
vas very short. Firsé’ we used Lie transforms to calculate the second-
order second-harmonic nonlinear current;'vThéﬁ'wé uﬁéd>tﬁé Eofﬁéiism
of section 6.3 to find thebasgociafed élebﬁrié f1eld. ‘

Finglly (in section 8.4) we comﬁutéd the third-order nonlinear
current j3v1 and determined its effect on the evolution of the first—
harmonic amplitude. In this calculation we unified and added to previous
work by including all of the previously know effectsl’13_16 and a
previously neglected effect, self Faraday rotation, in a single equation
for the nonlinear evolution of an electromagnetic wave in an unmagnetized
plasma. An important conclusion of this study is that one must use a
systematic perturbation’ theory to discuss nonlinear wave evolution,
since the heuristic method commonly in use may leave out effects com-

parable to the effects it includes.
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- ’9.7" éropagution of Test Waves in the Laser Plasma System

In the last section we studiefi the lagg: plasma system. We calculated
the nnnlineaf degsity change aﬁd th; ‘sa‘lf generated magnetic field, and
we derived the eq'uation -u‘h:l.ch governs the evolution of the laser amplitude.
In this section we complicate matters by adding in a small amplitude
"test wave". Our goal is to understand the linear propagation of this
test wave in the laser plasma system.

We are wotivated by recent experiments 1-3, which use the Faraday
rotatinn effect to measure the laser-generated magnetic f:l.eldl.'—6 In
a typical experiment a laser propagates through the plasma until it
reaches the critical layer (defimed to be where U-‘P(f)qﬂ). vhere it is
reflected. 1In this process several mechanisms are present which lead
to magnetic field generation (see ref. 7 and references therein). We
are concerned with the so called resonance-absorption-generated magnetic
fieldg_lz, the field produced mainly at the resomance layer, or critical
layer. According to Eq. (B.2.68), the self-generated magnetic field is
large whenever the electric field amplitude is large, such as at the
resonance point.

One way to measure magnetic fields is to use magnetic prubes.4_6
Unfortunately, magnetic probes are much larger than the laser-plasma
interaction region, and so they measure a spatially averagec magnetic
field which is much smaller than ihe peak magetic field. Magnetic probes
are small enough to measure the resonance-absorption-generated magnetic
field in microwave simulations 13,14 of the laser-plasma Interaction, but
the relation of such simulations to the laser-plasma interaction is not
entirely clear.

Thus the more direct method of using the Faraday rotation effect to

measure the laser-generated magnetic field was :Lnt:ruducedl. This method



employs a small amplitude test vave, wvhich propagates r_hrough r.he luer

irradiated region, (although bot:h waves are generated by 1asets, t:u

distinguieh them we call the large amplitude wave t:he Laser or 1aser

beam, and we call t:he small amplit:ude wave t:he r_est: wave. ) As t:he t:est

wave propagates, the quasist:a"ie magnetic f:l.eld causes its po;.arization
to rotate; this is the Faraday rotation effect. Therefore, one can ‘
deduce the magnetic field by measuring the angle through vhieh the
polarization rotates upon traversing the magnetized region. Typicelly,
such measurement:sl-3 yield magnetic field magnitudes of 0.1-2.0 megagauss.

At present, Faraday rotation experiments do not measure the resonance-
abaorption-generated magnetic field, because the test-wave frequency is
too low to allow the test-wave to propagate near the critical layer.
However, if the test wave could propagate near the critical layer while
the laser was present, then one might expect to see other effects hesides
Faraday rotation, since the self-generated magnetic field is not the only
quantity which is driven by the laser. For example, the laser generates
second-harmonic electromagnetic fields, and it changes the particle
motion via the ponderomotive Familtonians.

In this chapter we determine these effects systematically for the
following situation. We study a uniform plasma, through which a large
amplitude laser beam and a small aplitude test wave propagate. Thus,
the first-order electric field has the form El(f’t) =€L (x,t) exp 1)
+ .E.t exp (19,) + c.c., where €, 1s the laser amplitude, §t is the test
wave amplitude, ¢ = k.x - wr is the rapidly varying phase of the laser,
and V.llt = ‘ft' x - mtt is the rapidly varying phase of the test wave.

Our method for determining these effects is very similar to the
wethod of chapter 6, which was used in chapter 8 to derive the nonlinear
evolution equations governing waves in unmagnetized plasma. This method

can be summarized as follows:
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Ftam t.he Eirat nrdet fielda we calculate the . e.cund—urder nonlinear
"urtenta. He aeparate these currents according to their rapidly varying
phaae. 1.e. hamon:lc numbet. In second order (it turns out that) the
phases do not correspund to waves, and go we find the assuciated electro~
magnet:l.c f:l.elds by inverting D , as in Egs. (6.3.50). Having solved the
second order problem, we can compute the third-order nonlinear current.

The third-order current can be divided into term according to their
rhase. The phases of some of these terms do not correspond to waves, and
so the assoclated electromagnetic fieid can be found using I_)-l. Other
terms exist with phases exp (t:l.wt), i.e. they are in resonance with the
test wave. Such terms modify the evolution of the test-wave amplitude
as in Eq. (6.3.65).

We divide this procedure into two parts. In the first—part, sec.

9.1, we calculate the third-order nonlinear current at the first-harmonic

of the test wave. In this calculation we keep only those terms that are
linear in the test wave amplitude, since the test wave is assumed small.

As a result we obtain the laser-modifjed test-wave conductivity, the temsor
which gives the current at the first harmonic of the test wave when multiplied
by the test-wave electric field.

In the second part of this procedure, sec. 9.2, we determine the effect
of the laser-induced conductivity on the evolution of the test-wave. We
find a number .Df new effects. One of these effects is that an electromagnetir
test wave acquires a longitudinal part. 1In addition, the test-wave polari-
zation changes as the test wave propagates through the laser-irradiated
plasma. In part this polarization change is due to Faraday rotation by
the laser-generated magnetic field, but there are also other effects which
are not rimply a rotation of the test-wave polarization. For example, an

initially plane-polarized wave can become circularly polarized. Thus we



conclude that the inference of the r absorption-g ated
quasistatic magnetic field from measurements of the polarizat:lon

change cannot be accomplished hy using only Faraday rotation theory.
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9.1 Condﬁctivil:y 6f the Lﬂser;Plasﬁa System
9.1a Pirst 6rder

The first part of the problem is to calculate the currents pro-
duced by the test wave in the laser plasma system. This calculation
is similar to the calculation of section 8.4a, so the reader may wish
to skip to the result, Eq. (9.1.67-68).

The first-order vector potential is assumed to have the form,

iw.L :Llpt

51(5,1:) =(Z.I. (x,t)e + g‘:(f,t)e + coCe (9.1.1)

where ‘l‘.L = 155 -~ wt and ’J‘t = l_tt P xX- !Dtt. Therefore, the first-order

Hamiltonian is

by (4,2,t) = h,(q,p,t) | B .,(d,p.t) s (9.1.2)
where
4 iwl.
b (9,p,t) = -ev, - g (g,tle © + c.c. (9.1.3)
and
iwt
htl(g,g,t) = -evy* Qt(s,t)e + c.c. (9.1.4)

In these equations we have introduced notation that we will use
throughout this chapter. The subscript L denotes quantities that are
independent of the test wave amplitude, i.e. quantities associated with
only the laser. The quantities of Chapter 8 are all of this sort. The
subscript t denotes quantities that are linearly dependent on the

test-wave amplitude. A quantity with neither the subseript L wnor the



subscript t 1s the sum of the laser quantil:y and the test wave quagt}qff
The rest of the notation 1is identical to that of previous chapter;. The
first numerical subscript refers to order, and the Greek ietters A “and
v refer to linear and nonlinear.

Using Eqs. (9.1.2-4) we calculate the remaining first-order quantities.

Integration along an orbit gives w.:

1
Wy S Wy R W , (9.1.5)
where
iy
iev0 “ie L
LR el T‘F—m— + c.c. (9.1.6)
and i¢:
ievo'ate
w, = - ——————— + c.cC. (9.1.7)
tl k ~v, -w
~t -~ t
Next we compute £, = —[wl,fo}:
fl = le + ftl N (9.1.8)
where
iy
eV, e L BEO
f =--"—=—""——%k -+ —+c.c. (9.1.9)
L k *v, ~w ap
-t -0
and
10,
evy 'ﬂte 14
Etl = - ————— kt‘ F + c.c. (9.1.10)



"Ffdﬁ’fl we obtain the deasity:
n =mpy bog, . (9.1.11)
where
1Y,
L
nek@ e
_ Ptk gy 22,2
o, = - + c.c. + O(k VT/w ) (9.1.12)
and
iy
noek' e © 22, 2
ng=- —mt + c.c. + o(k:vl.lwt) N (9.1.13)

-and the current 21 = fd3p (gofl + glfﬁ):

holptiy

R (9.1.14)
where
1y
J;Ll = - nOEZ@Le Lyce. + D(kzv_i/mz) N (9.1.15)
and
ip
I = - ogele ©+ e +o0iEnd . (9.1.16)

The laser density nlL vanishes since k -aL = 0. However, we do not

require k:'at = 0 at this time.
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9.1b Second Order

The second-order calculation proceeds im the usual man;ler.’ l’irsti i
we compute the second-order monlinear current. Then ve use 9-1 t§
find the second-order electric field EZ' Finzlly, ve use ];’.2 to calcu-
late the second-order linear quantities.

The second-order quantities are of three types. There are terms
quadratic in QL (denoted by subscript L2) with phase 0 or phase 2¢L.
These terms were calculated in sections 8.2 and 8.3. There are terms
quadratic in Qt’ which we ignore, since Q: is small. Fina;ly, there
are terms bilinear in QL and @t (denoted by tt:= subscript t2), which
we calculate here. FPor example, from Eqs. (7.2.25) and (9.1.1) we

obtain

Bov = Muvo F Ppovs * Peout F Begye (9.1.1)

where hI.ZuD and hI.Z\JZ are given by Eq. (8.2.6) and Eq. (8.3.1), and

where

L0b Hp )
2-1 ey
b =Yg Iy 20 - vy Gy, A le +c.c.  (9.1.18)

and

100,~0p)

2 -1 % *
By = € Yg @y -4, - '!0'41,'30'4:] € te.c. (9.1.19)

[}

(Note tbat the final subscripts ¢ refer to the phases ¥_ = "l"t + vJJL.

For convenience we also define k,_ = ktt k and w, = w, *w.)
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To calculate the effects of the second-order test wave quantities

we must first examine the second-order nonlinear Lie transform equations,

1 ¥y 1
Ry ~7 5+ (wtw__,ho}) =hpue t3 {ul,hl}tt , (9.1.20)

which are obtained by extracting the test wave part of Eq. (7.2.34).
The terms on the right side of (9.1.20) are rapidly varying if
kivT << w, is satisfied. The "+" inequality is easily satisfied since
v, Vv,
kv, = ll_ct + 1_(| v < (k: + k)\'T = C—T (ke + ke)< EI (mt + w)
v,
Za, (9.1.21)

holds and vT/c << 1 has been assumed. The "-" inequality hoids whenever

(VT/C)(N+/|hLi) << 1 is satisfied as we see from the relation,
k_vT Vo (kt + Kc Vi w,

-lm__|-<_c-_—lm__r—<c_-lm__|- . (9.1.22)

Therefore, as long as w_ is not too swall (i.e. the test wave frequency

is not too close to the laser frequency), the right hand side of (9.1.20)

1s rapidly varying, and we may choose Kt2v+ = 0 and compute w by

integrating the right side of (9.1.20) along a trajectory.

t2vi

Before computing wt2v+, let us look ahead to the calculation of

J:Zvi‘ which, from Eq. (7.2.35), is given by

. - 3 3
Jppus = -fd P Yy faust efd LICE D N . (9.1.23)

For simplicity we calculate jt7v* only to zeroth-order in the quantities

22,2 22,2 22,2 2,12
k vT/m N kth/mt, kth/mi, and VT/C , all of which have beeu assumed to
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be small. Essentially this Deans we are keeping only those terms which

are zeroth order in v2. To calculate the first integral in (9.1.23)
we need ftZ\J*" From Eq. (7.2.32) this is given by

1 1
fiops =3 {wtzvt,fu} +3 {vl,{wl,fo}} . (9.1.24)

t:

(th‘ﬂ, vanishes since K vanishes.) Therefore, the first integral

tZvi
of (9.1.23) 1s

3 _ 3 _1 1
efd P Vg Epus = efd PLvg - 319 pueefod * 3 Volup. o E1 LT

(9.1.25)

The last term in Eq. (9.1.25) gives no contribution to zeroth order in

v;. To see this we note that wl and vo are first order (and higher) in

p, and that the two Poisson brackets can introduce at most two p de-

rivatives. Thus the quantity vO{wl,{wl,fO}} is at least first order in

P, and so its integral is at least of order v,f. (since f_ is isotropic,

0
odd moments of p vanish). Hence we have,

ow of
3 3 t2v: 0
efd P frgur = - %fd PY “3q 3p (9.1.26)

tc zeroth order in v:,. Integrating this term by parts,

ow
3 _1 3 3 t2v:
efd PV faue =3 efd ? £, 3 ¢ 3q 30) N (9.1.27)

we see that we need Yeous only to zeroth order in p in order to find

s 2
dpays O zeroth order in Ve
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“Now we return to the calculation of Yieous® Since Kt2v+ =0,

we find Yioue by integrating the right side of (9.1.20) along a tra-
jectory. This amounts to division by 1(k * p - w,), and so the leading

order im p of Yoyt equals the leading order in p of the right side

4
of (9.1.20). Thus we need to calculate h % ,h }

zeroth order in p. From Eqs., (9.1.18) and (9.1.19) we obtain

, only to

_ 2 Wy
Boous = e@.L 4= " +eec. (9.1.28)

1
2 4% -
h, =e @Lgte + c.c. (9.1.29)

and from Eqs. (9.1.2-7) we find that {Hl,hl}t vanishes to zeroth order

in p. Thus Eq. (9.1.20) yields

N[

2 by
Yigur = 1e @L'qt/m+)e + c.c. (9.1.30)
and

1 2, % v
2 Ve = ie (@L-gt/w_)e + c.c. (9.1.31)
to zeroth order in p.

At this point we have everything needed to calculate the nonlinear

current density and charge density. From Eqs. (9.1.27) and (9.1.30-31)
we find

3 Ty
a°p vg fos = & nok (ﬂL at/m+)e + c.c. (9.1.32)
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and

1y ’
efd3p o Frpy. = €ngk (@ -G, /ude  + c.c. (9.1.33)

From (7.1.24) and (9.1.23) we find

1
efd3p ), = n0e34L(5t <G fw)e F+cac (9.1.34)

1
efd3p ) = mge ik, 4, fu)e T+ eee (9.1.35)

Combining these results in Eq. (9.1.23) we obtain

iy
. _ 3 . . +
Jegue = 9% (0 8 /w, + Ak A fule T+ coc. (9.1.36)
and
. 3 * a Ak iy
1.9y = mg® [l:._qL' ~t/m_ + ke -qt/mt]e + c.c. (9.1.37)
Using continuity [nthi = lf+. l:zv:/(e"’:)] we determine the second-

order nonlinear test wave demsity perturbation:

2,2 2 Wy
cour = mg Ly Belul + K, gk B/ Cuwple Tk ce.

=]
]

(9.1.38)

and

1y
20 = noez[kfdl- Q:t/mf +k_- a:LEt' qt/(m_ut)]e " ¥ c.c.

=]
[(

(9.1.39)
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Finally, we restore ordinary units (m # 1 and ¢ # 1) in Egs. (9.1.36)
and (9.1.37):

-2 - iy
g = Tm 2e Ak - B S, + Bk B fole T+ c.c.(9.1.402)

U
*@ /v e T+ c.c.(9.1.40b)

j.tZ\!- = n0e3m_zc_2“f—§ ) gt/m— * @: t

We note that the factor m_2 in these expressions causes the ion current

to be Insignificant. Thus we are justified in using the above expressions

(with e = - eo) for the total nonlinear second-order test-wave current.
The next step in the second-order calculation s the determination

of E, from 3y- The electric field §2 produced by :_‘tZ\J has the form

0 1y, 1
I-‘:r_Z = ~t2+(1(,t)e + th—(f’t)e + c.c. N (9.1.41)

where, in analogy to (6.3.52), EtZ* is given by

4mi

Eipe = - TI_’ ( NERRS JO (9.1.42)

Using Eqs. (8.3.16) and (9.1.40a-40b) with e = -eg» ve obtain

3 2 W " . .
- i“’eeo‘f 4 -4, 1“’250 gk, Ak, 4:
Eeo s W2 - ) 2 @ - Pyme?
'+ w mc Lllt 'y e me
RO RV ST
w, (- mz - kK2c%ymc? (9.1.43)



and

2 2
£ egk G "8,  duequkk -fik -4,
£ - WPyme? @ (W - oPmc?
t e
2 * ~ o *
in"e w ~-kk @)k -
y—2f==t == %L = ¢ (9.1.44)

w (w - w -k c)me

In these formulas we see another restriction. The resonance denominator
mi - mi(— kicz) causesour result to blow up for mi = m§(+ kicz). This
corresponds to the three wave interaction of the laser and the test
wave decaying into a wav of frequency w, and wave vector Et' The
treatment of this case requires different techniques. For our purposes
we simply assume that the three wave resonance condition is not met.

To complete the second-order calculation we must find the second-
order linear quantities, for which we use Eqs. (7.2.28-31). We first

use (7.1.22) to find htZX

1y 1y

- - . +_ .
htZX =-ev, 4t2+e evy th—e + c.c. (9.1.45)

where
4:2: = Epp./ (i) . . (9.1.46)

The second-order linear calculation parallels the first-order linear

calculation. In analogy to (9.1.5-~16) we find

tep+d,,.e = (9.1.47)



. w,
a - ngek, < fyoe +
t2Ax w, CeCe

iy
- _ 2 *
jtZAt = - n.e &2+ e + c.c.

to the lowest order in p anf v,%.

e

(9.1.48)

(9.1.49)
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9.1c Third Order

Finally we are prepared to calculate the third-order ﬁonliu:eaf
test-wave current. Since this current is linear in (_’: and qi.:adraﬂl:
inqL, it contains terms with phases \pt ES ‘pL + \pL. Here we keep only
in those terms with phase wt, i.e. the terms in resonance with the »
first-order test-wave electromagnetic field. These terms modify the
test-wave evolution im third order. The remaining terms simply give
rise to self cu)nsistent third-order fields with phases wt S ZwL. For
simplicity, we calculate iﬂ\; only to zeroth-order in v,:.

Combining Eqs. (7.2.75) and (7.2.77) and selecting the test-wave

terms, we obtain
TR PUSNEE SO AR S CAR NI NS T B CAR CAN CAR A 3
de3v P Ypl™ 3 Wesyrfp 22707t 1 o'He
= fwg g Bt + efd Ly €, + Vpf) + vy £o] (9.1.50)

All of the quantities in this expression are known except for w:::w,

which is calculated via

0
1+ 1
-3 Yy —f dt HD(T) [ht:w +3 {w1,3h2+(w1,h1}}t] . {9.1.51)

The above equation is obtaimed by“extracting the test-wave terms from

Eq. (7.2.26). We now proceed to evaluate j term by term.

=t3v
Following the development from Eq. (9.1.26) to Eq. (9.1.27), we

find the first term in {9.1.50) to be given by

3w
1 3 _1 3 t3v
-3 fd P {w3v1, 0} =3 efd P fo 5 (9.1.52)
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to zeroth order in v,‘:, where we need w;3“ only to zeroth order in p.
. Thus we need the quantity in bracket in (9.1.51) only to zeroth order
in p- Prom (7.1.21-23) we find

i
= z . * - . t
By = €@ By Gyt Regy F B A g0t (9.1.53)

to zeroth order in p. The next term is obtaimed by using Eqs. (9.1.5-7)

and (7.1.22). ‘The result is

3 i

e * * t
fwhyd, === (e @@ <R, -k 4d "§)e ~ +cc. (9.1.56)

to zeroth order in p. The last term {wl,{wl,hl}} vanishes to zeroth

order in p. Inserting these results into (9.1.51), we find

1 =_£[ - +a*.& +a - +E(k .ﬂa:.
3 ¥ T Ty QB By Bpy * At Aty R4,

* w,
-k, -a_LL_lL-Qc)]e + c.c. (9.1.55)

This expression can be inserted into (9.1.52) to obtain

_1 d3 {w' f}—noe.}st[ﬂ'a +*'a. . .
ER A N T O &y, +8e Agp
1,
+ 2 e 0 R, -k, 4,4 -4l
3
0 .




Hote that'we have kept the VA, term since it is zeroth in k’—:»lVInMI:z.-
Integrating by parts, we find the second term on the right side 7

of (9.1.50):

v, v,
1 3 _1 3 3 , 23 .1
7 efd P YO{wl'{wz'EO}}t =3 e/d P fO BP, [Bt_l _aE (—35 YO)

e, Bw

R TR §
TR % vole - (9.1.57)

By straightforward calculation we obtain

4. *
ne'k, @) Ak -4
%efd3p v i {"'z’fo}} _ 0m t [_L Sttt <L

-0 w,

*
a,"08x, a4, v
- ;I;:‘;-P—"—L]e t+e.c. (9.1.58)

The third term - %‘ e S d3p VOLI:I‘. fO vanishes to zeroth order in P

as one can see by using the same reasoning as was used in the paragraph
following Eq. (8.4.12).
To calcular_e‘ the fourth term in (9.1.50) we evaluate the Poisson

bracket, integrate by parts, and so obtainm

3w
3 e f3 3.,
’“fd P YglweyaFpot = - 'rfd P Bk 55 " (g %0

Bwtl BKZ

ap 'W

1 f (9.1.59)

+ Y

where we have used FL

(9.1.59), we wust expand the quantity in brackets to 0(p2) to obtain a

2 = -k, fD/T. Since the factor (1/T) is present in
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result valid to zeroth order in T (i.e. v,i). In addition we allow the
gradieat in the quantity,BKLZIBq to act ouly on A'LZO for reasons we

have discussed previously. Evaluation of (9.1.59) gives
3 _ 2 2,2,,2 2
'efd P volvyy oot = mge T8 G/ (7 | + et 50

iy
e 205 12
+ deff - VA ,ofu de +2“oe2‘fc(e 18,17+ e

LZO)

i
2 t
(&, - q:/wt)e

X

3

- mge (e, - A oglo,
1,

+ Aok, gtlwt)e + c.c. (9.1.60)

Following the development from Eq. (B.4.15) to Eq. (B.4.17),

we find the fifth term in (9.1.50):

3 5 2, .2 .2 2
e f Eplyy £y, = - nge A TIG 1T+ ety - ety

[- % “oezgc(ezlgﬂz +ebag) - nLZOeZQt

iy
2 %
-na+e !L—ntz_equ]e ¥e.c. {9.1.61)



Here, ., 1s the amplitude of ﬁth' Using Eqs. (9.1.39,.40, and 47),

we can rewrite (9.1.61) in the fornm

i
e_[d31’ Wfe = _ezgt[anﬂ +% ag(e’14, 1% + etpple *

“09241,[52"39: ‘ Qt/wf * ezlf: 'dj.lft .Q:/(u’—wt)
B T 1ot o A - A
-ek @y fule T -l e - G

1
2 :
ek - Bk, 'Q:/(“’+“’:)," ek, @i ude T+ e

+

(9.1.62)

Following the development from Eq. (8.4.19) to Eq. (8.4.20), we
find the sixth term in (9.1.50) to be given by
iy
3 2 3 t
E_[d PpE), = —e (Aygn), = mge Ak - fue T+ cc.

(9.1.63)

For the last term in (9.1.50) we need Vedv only to zeroth order in

3
p. Using (7.1.26) we find

* * iw
efd3p Yeafo T “oel‘ @, -0 +a. a0 + gtlg‘lele Ftee.

(9.1.64)
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We nov collect the formulas (9.1.56,58,60,62<64) to obtain the

total third-order nonlinear test-wave current amplitude:

2 2, 123 .2,2 5 2,2
&:3\) == e Iy +uge 10, 176G - K fu) + mged 505 - Kfup ]
+ uerQL[eZQ_: .@t(l - kE/u)f) - ezlft .@:}t. @t/(m_u:t) +ek o, ful
+ 0’0 1%, +Q, (1 - 1) - Pk @k, A W) + ek, A, e,
+ (uoezgt:l"t) [z(ezlel.lz + by, B S, + ety +a.:. Gy
2 * *
—e ik, Oyl -0 fu_+ K 40 4 fup]

3
+ineBoox A fu . (9.1.65)
At this point we restore ordimary unmits (m#+ 1 and ¢ # 1):

2 22,2
J;t:i\J: - (ezét/m) [ny 59 + mple |@L|2/m2c4) (% - ket fu)

2,,,22,2 S5
- no(e'?uo/mc Y e up - 3]

+ nD(eZQLImc) [ezq.z . @t(l - kzczlmf)/(mzcl‘) + ek 'qcz—/ (mew )

- ezkt .@:}.t -qt/ (mzczw_mt)] +



+ no(ezazlmc) [ezaL 6. - kic:ZIMi)/(mzc{') 4"‘»!%'@:21-/ (mcm+)r ‘
- ezl_‘r; 'QLEt - Q:/ (m2c2m+mt)]
2 2 * 2 4
+nglec’k u )@ <&, +06, <0,/ /@c)+

2 2, 2 2 3
+2ek, - B (7, |7/me" + o0,/ (e

SO X ¥ WOR AR w S WR VI o)

3 2 2
+inge’B 0% (_}t/(m we) . (9.1.66)

We see that the factor m—l in each of these terms causes ihe ion current
to be insignificant. Hence Eq. (9.1.66) with e = — e gives essentially
the total current. We now make this substitution (e = - eo), use

Egs. (9.1.40a-40b), and £ = iwl/c in the above formula. The result is

&:3\; =g, E_Lt (9.1.67)

where 92’ the laser induced conductivity is given by
2 2 2,222 .3 22,2

= s Y =
g, =il (eo/mt, [n .0 F no(e°|EL| Jou’c )G - ke W)

t t

2,.5 22, 2
= nylegd o/mc) G - ke /wt)l -
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wt]
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k (ageg/ma, ) legiey 1€ [+ £y / Gy = wmuiu ]

2
eop20/™ /v,

2 2 2,2 202,22
k[/m w Lut)[|k_' F:Ll [ (w” - w) + |k+ {:1‘ /w, we)

e+ i, = € 1710l - Wl - kD)

(9.1.468)
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and where the quantities o .0 61.20, and BLZG are given by

Eqs. (B.2.47, 49, and 68).

To conclude tbis section, we note a few properties of oz.

2 have simple interpretatioms. The first part of

Two

of the terms in o
. B 2

tbe first term, ianzoeolmmt, is the change in the conductivity due

to the quasistatic density perturbation caused by tbe laser. The

222

fourth term, - B x I noeg/(m wie }, is the change in the ccuducti-

~L20
vity due to the quasistatic magnetic fleld caused by the laser. How-
ever, the remaining terms cannot be simply interpreted. Secondly, we
note that all of the terms except for i_I._"L2De(ZJ/mmt are of zerath order
in v,i. So if one term is kept, such as the magnetic field term in a
discussion of Faraday rotation, then all must be kept. Finally, we note
thate the laser completely destroys the symmetry of the conductivity.
Whereas the unperturbed conductivity can be diagomalized by trans-

forming to @ coordinate system where kt is along an axis, the laser

induced conductivity cannor be diagonalized by any trivial transformation.
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9.2 Test Wave Propagation

Motivated by the Faraday rotation e:r:periments,l_3 we wish to
analyze the situation shown in Fig. 1. A large amplitude laser pro-
pagates through a plasma. A test wave propagates across the laser
irradiated region. While propagating, the test wave polarization
changes from its initial value Ei to its final value Qf. Our goal
is to calculate this polarization change. Our calculation closely
parallels the development of sec. 8.4b. The test-wave evolutionm is
taken to be governed basically by the homogeneous plasma equatiomns.
The effect of the laser induced current ‘ir,3\) is calculated perturba-
tively by using the formalism of sec. 6.3.

The first step in this formalism is the projection of gt along
the eigenvectors of l;)(l_;t,mt). We are interested in the case where
tbe unperturbed test wave 18 transversely polarized as in the Faraday
rotation experiments. Thus we assume that Dl (l_(t,mt) =0, c.f. Eq.
(8.4.29), but ut is far from being a root of DII (L(,u)t). In addition
we assume gt =¢,'ti to first order, where lft . i:,t =0, 1i.e. gt is a two
dimensional vector in the plane perpendicular to lf:' The next step
is the calculation of the effect of il__

4 08 E:' From Eq. (6.3.59) we

find the third-order longitudinal curreant driven by jl:3v:

g ik d.s | ik cg Et 0.2
~t3 mtD“ (Et’mt) mtD” (l—(-t’mt) s
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and’ £iem Eq. (6.3.65) we detérmine the evolution equation for the tesf=

wave amplitude in the presence of the laser:

ari(l - kk) '4t3v

W (k)

[}

P 1 .
Ur+v G e V1 +3 a0k VU,

4mi(L - ktkt) *g, ‘r;t

@y (k)
(9.2.2)

The functions NE ‘31.’ and _“’D_L’ which appear in these equations, are given
by Egs. (8.4.51-53), and 9, is given by Eq. (9.1.68).

Eq. (9.2.1) states that the test wave acquires a longitudinal part
while it is in the laser irradiated region. This effect is of mimor
iwportance and will not be discussed further.

Eq. (9.2.2) shows how the test wave propagates in the presence of
the test wave. TFor our purposes, we may neglect the dispersion term
S:VV~E, since the test wave beam typically has a very narrow spectrum
in k space. In addition we restrict ourselves to the steady state problem.

As a result we obtain the equation,

CPFL = - AT ) g .gl
1v (k) VEL g, gl

L , 9.2.3)
wp (k) 7T T

where It =I- ktkt' This equation can be solved by the method of

characteristics. We define s to be a coordinate along v (kt) and so obtain

3 _ el
14558 =0 g, 9.2.4)
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~

where ﬁ, a two by two matrix in the plane perpendicular to kr.’ is given

by
He=-4inTie g+ /v, (x )& (k)1 (9.2.5)
= Lo Do/t - oo

(Ve are justified in right multiplylog 0, by It, since k_ -g,t =0,

Inserting the formula (9.1.68) into (9.2.5) we obtain

_ L, ~ AF A PR SO |
]:— }-\‘Z (£a+ ib X£b +uLuLa+uLuLB) gt N (9.2.6)
where
Ye 20012, 222 ,22,2 1
T2 Iny 5y = ngleqléy | “/m e tepe™/uf - )
tC
2..22,2 5
+ no(eo¢L20/mc )(ktc /wt -3 )] (9.2.7)
b = By 5o/ By 50 (9.2.8)
_1 2, 3
b= 5 eoﬂLzome/(ktmc mt) (9.2.9)
2 2. (2 4232 22,2 2
a= - [weeolng /(2K e'n W)L - kpe™/ W) - w)] (9.2.10)
8 = - wleldlg |Zrar el - W - uh1 2.



Formulas for the quantities n‘LZO, ¢L20,'and ELZO are in the preceding
chapter, Eqs. (8.2.47, 49, and 68).

We note that the matrix H is manifestly hermitian. Therefore H
can be diagonalized,

2
H(s) = E B (s) ;u(s) a(s) (9.2.12)

a=1

in terms of real eigenvalue Hu(s) and orthomounal eigenvectors ;u(s).
The hermiticity also implies that the solution gt(s) of Eq. (9.2.4) has
constant magnitude: (8/35)|€t(a)| = 0.

In general, Eq. (9.2.4) 1s not amenable to an analytic solution.
Of course, one can always integrate (9.2.4) numerically. However, to
gain physical insight we study a special case which 1s analytically
tractable. We assume that the eigenvectors ;u of }:i are independent of
s, although the elgenvalues do depend on s. This condition is not un-
physical. It holds whenever the directilons of gL and ELZU are uniform,
even though their magnitudes vary from place to place.

Invoking this condition, we find that the solution to (9.2.4) is

I A -19(8) . -idy(s)
£.(s) =uie +u,fqe , (9.2.13)

where El and EZ are constants, and @1(5) and d)z(s) are given by

]

3, (s) = fds' H (s . (9.2.14)

The verification of this solution 1s trivial. Now we require the test

wave to have polarization e ac s, Elc(si) = lstiei. Then we find that



the polarization of Et at s 1s given by

T T T
eg = ujuy ee uu, ee . (9.2.15)

where the phases ¢1 and ¢2 (no agrument attached) are given by

8

3
¢, = j ds' H (") . (9.2.16)

51

We interpret this solution as follows. OQutside the irradiated
reglon (s < 5, 0T s > 55) the electroms=gnetic test wave is degenerate;
there are two polarizations with the same dispersion relation. Inside
the irradiated region (ai <5< sf) the laser induced conductivity C_IZ
breaks this degeueracy. So the test wave splits into the two polari-
zations :11 and 1:2, the two polarizations propagate with different wave-
numbers, 1(3/3s) = Hl or H2, and as a result, the two polarizations
obtain different overall phase shifts ¢1 and ¢2.

Regarding this result we note that the identity portion of H does

not affect the final polarizatiom. To see this we rewrite (9.2.15) in

the form
R 106 40.3/2 n oy n A
e e 172 [ulu;i' eie'1¢ + uzu;' eiem] , (5.2.17)
where
2t
b=(o, -0/2=3 f ds'[H (') - Hy(s)] . (9.2.18)

51



If we change H to H + K1, we do not change the eigenvectors u.

u

4 _and ]
20 and we change the eigemvalues by adding K to each: Hu. + ﬁu + K,
This change does not affect the relative phase ¢. It only affects the
overall phase ¢1 + ¢2, which is not observable in a polarization

measurement. Thus we may change Eq. (9.2.4) to

i %"i = -' 'f:lt H (9.2.19)
wlhere
- (1hxTb + ‘1:‘11,"‘ + llLf{s) (9.2.20)

without affecting our result for ec in a measurable way. For future

reference we define the transfer matrix,
R R I T)
g = ulule + u,u e N (9.2.21)

which gives the fimal polarization via

5 . (9.2.22)

m ¥

n
=

m 2

We note that H is unitary, as it should be since l;l is hermitian.

Let us now apply this formalism to a few examples. First we treat
the familiar case of Faraday rotation, i.e. we arbitrarily set a =8 -
in the expression (9.2.19) Eor El':

, - .
W= i-ibxzbli = bk,o btk *1 (9.2.23)

0
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The second equality in the above relation follows from the use of
vector identities. At this point we choose our cnordina:é'systém ‘such’

:hét/kt =2, and’ therefore B' 1s the follduing two by two x-y matrix:

g = bk:' b - (9.2.24)
This matrix has eigenvectors,

e, = ‘/%_ G . (9.2.25)
and eigenvalues
H =% bk +b . (9.2.26)

Thus the transfer matrix U is given by

I TR
E = (e+e_e + eee )
cos & - sin ¢
= , (9.2.27)
sin ¢ cos ¢
where
ff 2 £
PN 1 Sg¥ -
b = ds' bbek = > —5—— ds' k_-B . (9.2.28)
t mew k t -L20
B Tt s
1 i

The last equality follows from use of Eqs. (9.2.8) and (9.2.9). We
see, from (9.2.27), that the polarization undergoes a rotation by angle
¢, which i1s determined by (9.2.28). This result agrees with standard

theory.l5



Having verified the familiar case of Faraday rotation, we move
on to another example. This time we assume that the laser 1s circularly -

polarized, and that kt and k are nearly parallel. Let us write g in

the form

nm
n

L 1 . T 1
I- g e+ B (upuy +uu)l-T,

+£t'{i[%(u- s)i;:xGL+bG]xy-

L - (9.2.29)
Since the laser is circularly polarized, we have
~ ng e an
Wy + wu = (E - kk) s (9.2.30)
and since kt is nearly parallel to k, we have
1 o 1
. - . ~ . .2.31
LWLk (0:2:30

Thus the first term in (9.2.29) can be ignored since it is proportional
to the identity matrix for the plane perpendicular to ;(t. The second

term in (9.2.29) is identical in form to the expression (9.2.23). Hence
the results are similar. The polarization rotates by angle ¢, but now @

1s given by

8

f
- ok +1 Fenoh
¢ = J-ds [bb k[ + 3 (o - B)iuLXuL kt] - (9.2.32)

1



The additional rotation can be accounted for by involing the presence

of a "pseudomagnetic field" B' given by

3
me w k PUTN
t tt *
B =——— (@ - By xu
e w
0e
*
equ ME xE) e k%c?
0t 3L < L+ - N
2 [— v 31 . (9.2.33)
2mew w, ~w - w
+ e - e

Of course, B’ is strikingly different from a true magnetic field in that
its magnitude depends on the frequency and wavevector of the test wave
used to measure it., For order of magnitude purposes we neglect v in

Eq. (8.2.65) and so obtain

|E'| w kf_cz kicz
S - . SR S (9.2.36)
22 2 2 2
IBLZOI 2o, Wl -wl W] - w

He see that by proper choice of l:.t and mt, this ratio can take on any
value from - @ to + . (Actually, we have made approximations such as
(9.1.22) which restrict the variation of this ratio to some several
orders of magnitudc.; Hence Faraday rotation can be completely masked
by pseudo Faraday rotationm, i.e. the contriburion to ¢ of §'.

Finally, we treat a third example to 1llustrate other possible effects.

We examine the case where kt = 2z, k = x, and the laser 1is plane polarized

-
in the y direction, i.e. W=y =y, In this case Eq. (8.2.65) implies

that B ,, = 0, o that E', from (9.2.29) 1is the following two by two



matrix in:the x-y plane:-

o SR e R
H = (o +B)" o R IR O 3% T-) B
- 0 0. . .. . i o o

Obviously, the eigenvectors of H' are x and y, and so, from (9.2.29),

the transfer matrix is

U=xxe P ayyelt | (9.2.36)

where, from (9.2.18) ¢ is given by

8

£
o=3 [ ds'las™ + 8(sN]
!
|
S
wzeg k_::'_cz k‘::'t:2 £ \ 2
_ _ - 1 '
4k cl'mzm2 2 (mz - \2) (mz - mz)] a Iq"(s )l )
t 4+ U - e 5

(9.2.37)

Now let us suppose that Elt is initially plane polarized at 45° to the

x axis:
;1 = (x+ ;)/ Yz oo (9.2.38)

Then the final polarization is given by

;f s Ge ™ 43ty m (9.2.39)



We 'see that e, 1s plane polarized for ¢ = m /2, circularly polarized:
for ¢ = (2m + 1)W/2, and elliptically polarized for other values of
¢. This is in contrast to the Faraday rotation effect where the

‘final polarization is always plamar, though rotated.



9.3 Summary and Conclusione

By syst:ematiu perturbation t:hanry we have nbt:ained t:hE conductivity
of the laset-plasma ayat:em (9 1. 68) to secund order in IELI a;nd h
zeroth order in v,i, and we have used this conductivity to derive the
equacion-s of evolution (9.2.1) anﬂ (9.2.2) for a test wave in the laser
plasma system. The laser induced conéuctivity causes two basic effects.
First, an electromagnetic test wave acquires a longitudinal portiom.
Secondly, the laser-induced conductivity breaks the degeneracy of trans—
verse modes in an unmagnetized plasma.

Then we used our formalism to calculate the change in the polari-
zation of the test wave Vas it propagates through the laser irradiated
region. We noted that the polarization of the test wave can change in
a mmber of ways depending on the characteristics of tbe laser (;I.’ E” w)
and the characteristics of the test wave (;1, Ec’ m:). For example,
the polarization may be rotated by the laser generated magnetic field
IEL:,_O and the pseudomagnetic field g', or the polarization may change

its character from planar to elliptical as in Eq. (9.2.35). These

effects are all comparable. Thus, a Faraday rotation measurement of

the resc bsorption ated magnetic field does not just measure
BLZO’ and the analysis of Faraday rotation measurements of laser-generated

magnetic flelds is more complicated than previously believed.




234

10. Nonlinear Wave Evolution in HMagnetized Plasma

A thorough discussion of nonlinear wave evolution in magnetized
plasma recuires much more labor than does a similar unmagnetized-plasma
discussion. In magnetized plasma there are more waves: MHD, cyclotron,
ordinary, extraordinary...; and the description of a problem involves
wore parameters: gyrofrequency, gyroradius, kl’ kll’ .... To keep
this chapter reasonably short we do not fully explore roanlinear wave
evolution in magnetized plasma, but we do discuss the basics. We
construct the machinery needed for the magnetized-plasma discussion,
and we obtain a few simple results.

We begin by discussing the unperturbed problem. We introduce
convenient vzriabies and we construct the time development operator.

We discuss the Hamiltonian formulation of magnetized-plasma Vlasov
theory. Next we discuss linear theory; we find the response to
wave-packet perturbation. Here we see what approximations are reqnired
by the formalism, for example: How slow is slowly varying? We also
correlate our results to the more common velocity-space Vlasov theory.
Here and throughout this chapter we use nonrelativistic theory.

The third and final section is a discussion of some of the mom~
linear effects that occur in magnetized plasma. Using the K-x theorem
we derive the ponderomotive Hamiltonian and we discuss some of its
effects such as: ponderomotive particle drifts and the nonlinear
gyrofrequency shift. We find the second-order quasistatic demsity
perturbation caused by the ponderomotive effects. Finally, we use
the heuristic method for including nonlinearity to derive the evolution
equation for magnetized plasma waves including the nonlinear quasistatic

density depression.



10.1 The Unperturbed System and Comvenient Variables =

When calculating the generating functiéns bn" we must :i_url".'egr:é\:é:l
along the unperturbed trajectories. To facilitate this process we
should choose variables for which the time development operaior has a
simple form. In the unmagnetized case the variables g, p are well
suited since the time development operation is simple translation in
g, but in the magnetized case the time development operator involves
gyration, and other variables are more convenient.

The unperturbed nonrelativistic Hamiltonian for a uniform magnmetic

field is
by = 3 (@ - e (a))? (10.1.1)
o T 2 P T 2t o
where the vector potential is given by
QO(S) = q Byy (10.2.1)

for the magnetic field EO =z BO' For this system convenient canonical

variables are (Y,P), (¢,J), and (q,p), defined by the relations

B/Q + {23/ sin ¢
J207 cos ¢
Y + 23/ cos ¢

L

‘o
®
"

<&
f

=P
Py
a, =a
P,=P (10.1.3)

<
where Q = eBo is the signed gyrofrequency. We see that @ > 0 implies

<
J > 0; if Bo > 0, negatively charged particles have negative J, and



positively charged particles have positive J. In this system the

unperturbed Hamiltonian is

ho'= a1 + 3t . (10.1.4)
The physical interpretation of these variables follows from
(10.1.3) and (10.1.4). The x guiding center position is P/{}, the y
guiding center position is Y, {J is tne perpendicular energy, and ¢
is of course the gyrophase.
Sometimes we use the q, gyrocenter X = P/ and the gyrospeed
v = J20J instead of the variables P and J. With these new variables
the transformation (10.1.3) becomes

9y =X + (v/0t) sin ¢

[lj

P, =V cos b4

=Y + (v/Q) cos ¢

3
I

=X
Py
9, =q
P,=P . (10.1.5)

However, the variable pairs (Y,X) and (¢,v) are not caromical; instead
we have {Y,X} = 1/0 and {¢,v} = Q/v. Hence the Poisson bracket of two
functions f(X,Y,d,v,q,p) and g(X,Y,%,v,q,p) is given by

{f,g} = 2(2£28 _2f2g)  D(03f23g of 3
B = \ay BX T 9x 8Y) T v \9b av v 99

-

(10.1.6)

S8
I
JI8
S



On occasion we will refer £6-the: gyrocenter as’a véctor R ="(X,Y,q),

and we denmote the gyrating part of g by £ = g - R.

In addition we sometim_.s use a third set of variables for which

the transformation involves complex exponentials instead of sines and

cosines as in (10.1,5). We introduce the orthonomial basis

2
I

. = (&+ig)/y3

s
I

_ = G-i§)/{2 (10.

and then define

and

Rt = (10.
which satisfy

{R,,R_} = -i , (10.
so that the gyrovector is given by

R=RE +RE + Rz R (10.
and similarly for 5 and g. Then we note that

- 1i +i
g, =3I He (10.

+ off

and hence

§+ = gg.g =8 .5 (10.

1.7)

1.8)

1.9a)

1.9b)

1.10)

1.11)
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q . (10.1.12)

The Poisson bracket of f and g in the variables (R+,R_,¢,v,q,p) is

t£,gy =L {3 8 _ 3¢ 23g |\ Qfafag Afog), f3f g 3f 3g
'8 0 \3R, 3r_ " 3R_ 3R, )" v \3¢ 3v ~ 3¢ 3v 3q 3p _ 9p 3q

(10.1.13)

With any of these set of variables the time development operator
has a simple action. The variable X,P,Y,J,v,R+,R_, and p remain con=-
stant in time, while ¢ and q evolve by simple translation:

H (£)(,9) = ($thr,qipr).

The reader may now he worrying ahout the symbols we shall use to
denote oscillation center variables, since we are using capital
letters (X,Y,J) to denote ordinary variables. We note, however,
that in the last chapter we never used the oscillation center vari-
ables Q,P, or Z. At each stage of the calculation we dealt with
fuactions such ar F,K, or w; all variables were dummy variables.

The same holds true in this chapter.

The unperturbed distribution function fo(z) can be any func-
tion of the invariants of ho’ i.e. EO(X,Y,¢-Qt,v,q-pt,p). Here we
require, for simplicity, that fn be time independent and spatially
homogeneous. IHence the unperturbed distribution caa only be a
function of J and p, ED(J,p), or eguivalently v and p.

Additional ingredients needed in the calculation are the

current density function and the charge density function. The charge

density function is simply



0(x12) = eb(x-g) = eb(xR-E)

e8(x-X~r sin ¢) 8(y-¥-r cos ¢) d(z2-q) . (10.1.14)

In this expression we have introduced the gyroradius r = v/Q. The

current density function is
n (x,tlzg) = eé 5(x-q) . {10.1.15)

0f course the velocity é = 9h/3p has terms of ail orders. For the

nonrelativistic Hamiltonian

) . .
h=—2'(g-e 5n>2+ e z;&bn , (16.1.16)
n=| n=

we have
(-]
q= LA (10.1.17)
n=
where
Yo TR - eﬂo . (10.1.18)
and
v = -eA for n>0 . (10.1.19)
~n ~n

In terms of the more convenient variables of (10.1.5) we have

v = V cos
ox ¢

[}

v -v sin
oy ¢

Voz T P> (10.1.20)




and :

X, -eén(x +rsin¢ , Y+ rcos ¢, q,t). (10.1.21)

To compute integrals over the new variables we need the Jacob-
ian. The Jacobian for the canonical transformation (10.1.3) is of
course unity, but the Jacobian for the transformation (10.1.5) is
not. A simple calculation gives

aqa®p = dvdPdqdpdeds

dXdYdqd$dTdp (10.1.22)

dXa¥dgdgvdvdp .

As an example we calculate the unmperturbed demsity.

o, = J dxdYdqd¢vdvdp 6(x-X-r sin 4¢) G6(y-Y-r cos ¢) .

6(z-q) £ _(v,p)

n o S
=f dqf vav [~ dp £ (v,p) = 273/'“’ v'lv[ dp £ (v,p)
o o -0 ° o o °

(10.1.23)

From this example we see that the quantity d¢ vdvdp fu(v,p) equals
the quantity d3v fv 'vll) of the usual non-Hamiltomian formulation
of magnetized Vliasov plasma theory.

We have just seen the main variables and quantities which will
be used in discussing nonrelativistic magnetized plasma theory. We

have seen that the time development transformation is particularly
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simple for the variables X,Y,¢,v,q, and p, and we have:noted that. fo’-
can only be a function of v and p for a time-independent;sﬁatially-
homogeneous unperturbed system. Furthermore, we have expressed.the

charge density and curreat density in terms of these variables.




~.10.2.. Linear Theory

To compute the magnetized-particle Lie transform in first order,

i.e. Wl, we must that r es are unimportant, and that the
amplitude of the wave packet is slowly vérying. In this section we
compute WI and see what these assumptions mean specifically.

Without loss of generality we take the wavevector of the per-

turbing field to be in the x-z plane.

i(k x-k' IZ'I.IJt)
A, (x,t) =Q(x,t) e + c.c. (10.2.1)

Inserting 5_1 into the first order Hamiltonian and using the variables

introduced in the last section we find
h, = [-ev cos ¢ dx(Xﬂ' sin ¢, Y+r cos ¢,q) + ev cos ¢

dy(x-i-r sin ¢,¥+r cos ¢,q) - ep az(X+r sin ¢,Y+r cos §,q)].

i(k X+k T sin ¢+k| Iq—\ut)

e + c.c. . (10.2.2)

To put this expression in a form whici: can be easily integrated

along a trajectory, we first expanc ¢ in the basis (10.1.7):

W

Q = a+é+ + Qe+ 4z, (10.2.3)

a,=¢-4. (10.2.4)

Now Eq. (10.2.2) becomes



by = - 3—; e‘1¢a+(§+§) - EJ% A @) -epazv(B_ng -

i(k Xtk r sin ¢-l-kI Iq-uﬂ’.)
e + c.c. . (10.2.5)

The next step is the expansion of the complex exponential in a power

series.

m

ik, r sin & .

e 1 = Jl(k r)elﬂp (10.2.6)
Z:—m

This puts Eq. (10.2.5) into the form

i[(l-l)Q*‘k“q-‘ﬂt]

—

ilg X
h, =e ZJ(kr) - 20, @E)e
oo | 2

i[(!l*rl)tb-l-k| ja-wel 12k qrue)

- %0_(5+§)e - epaz (RtE)e

+ c.c. . (10.2.7)

The last simplication we would like to achieve is the removal
of the implicit appearance of ¢ through § in the argument of 4(§+£).
If Q varies slowly over a typical gyroradius, we can achieve this

simplification by the Taylor expamsion

@

G = L g

n=0

3 n
s d®

=y L [ir _ie @ _ir -i¢ B\
_Zu! ( O, an_) dr, R ,q) . (10.2.8)



T

In fact we keep only the first few terms in this;expnni;ion. Thus we.

are making the approximatibn

vl << (. (10.2.9)

The ¢ dependence of hl now being explicit, we proceed with the

integ'tAtion
w, = - fat Ho(t)hl(t+t) (10.2.10)

te find vl. If we substitute Eq. (10.2.8) into (10.2.7), the terms
in the above integral all have the form

i[l(Mt)"’kl I(q~!1at)-u:(t+t)]
fo dtg(X,Y,qtp1,p,J)e

L]
. ymEl ig m
- 2 : 1 | L2 2
= (¢+k“p_w) e (p 3q ¥ at) &(X,¥,q,p,7) ,
=0

where l!.ll = £¢+qu-ult, and the above integration follows from repeated
integrations by parts. Again, in practice we only keep the first few

terms in the above series and so we must assume

[:] 2]
—_— —_— << - Py
|(p 5t at)g I |(m+k”p m)Ql (10.2.12)
for all values of £ for which the gyroharmonic is significant. This
condition eliminates the possibility of heating resonant particles.
We not invoke the two approximation (10.2.9) and (10.2.12) for

the integration of hl' Keeping only the first term in the double

expansion we obtain




. R R s i‘.t|-"': L gl
ik K ievd, (R)e =1 ievd (R)e "

v =e L ZJE(klr) - - - -
S 2 2L (2-1)0k jp-ul - J2L(241)04k | p-u]

iy
iep/, (R)e

- W + c.c. . (10.2.13)

From w, we compute £, = —{wl,fo}.

iy
. 2-1
ik X, ev (g)e of af
£, =-e L 3,(;1) -a*—__ [(2-1) 57t k| BTO]
2 JZ[(2-1)0k | p-u)
iy
evldl ®)e 21 [ o, afo]
e N(e#1) 2k, 2
VL (g51)04k) -] ar e
iy
el@e * [ o af,
+ TEEIEI;B:ET 2 57 * kl' 'y + c.c. (10.2.14)

Using fl we can compute the linear current. From Eqs. (10.1.15),

(10.1.18), and (10.1.19) we find

5000 = [ g xim) 5,0 +fd"z 0, (x19)E,
= o favaaaenatdp y,(p,0,3) SGER-5) £y (Ro.0,3)

- noez él(x,t) . (10.2.15)

Using the & function we integrate over dXdYdgq.
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L0 = ¢ f daste y (0,00 £ 5L 0D

s aef At (10.2.16)

Inserting fl from Eq. (10.2.14) into the above expression we find

ikyx+ik;r sin ¢
100 = -e2 fasnazep £,20,3) ; 3,0
iy, iy
evq"(g-g)e 2-1 of af evd (z-§)e 21
P — (ﬂ'l)ﬁ“‘“—o r—
VATERAL IR ap EL(8+1)k p-ul

@, (x-£) e £
af of epll (x-t)e af 2]
o o ~ o Q
[(‘“” 37 ‘K@ ]* Gk, 7o) [‘l 57tk Bp]

2
+ c.c. - n e Ql(g,t) . (10.2.17)

To calculate this integral we again invoke the small gyroradius
approximation allowing us to replace @_(E—g) in the above expression
by Q(Z)~ We also expand the exponeatial of kjr sin ¢ using (10.2.26)

and we use (10.1.20) for <. We find

2 i(klxi'k”z-mr.) .
I v=-e"e fdtbﬂdldp ;, Jl(klr) Jm(klt) .

511

Mg
; ; evfl, (x)e

J2[ (11—1)1’)+kl lp-m]
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evi (gie

. . i I
[, A '_ : af] w21 [ B, 3t
-1 T ) 52+ K,
GRRTE JB1(2+1)0vk | p-u) ey
iwz
+m
ep 2(g): afo afo 2
+ —!I_HT(-”[JT [f. 57 % k” TS +c.c. - n¢e Al(f,t) .

(10.2.18)

The remaining steps imn finding the linear susceptibility, integrating

over ¢ and returning to a Cartesian coordinate system, are straight-

forward, so we simply quote the resnit from Z[cl:n.i.nmru1 {Eq. 3.71):

uw? 2
é(.';‘,’“’) =- ;% + 4ne

o 2 -
- ivy q Jﬂ(klr) Jp_(klr)

20
? iy Jolym

L

n
2 of =
20 "o of ~2

Mv,dv,dp — s— + k;, 3= * v —

—_— f 1771 v, avy il 3p I‘.('H'k”p-w

le(kr)

PR 1] -
iv) q 3,0k )3, (k) ) P g T

vlz(.'l“;(kll:))2 ipv, Jﬂ(klr) Ji(klr)

ipvy J0q0) 30y ) By D)

(10.2.20)

The longitudinal part of X is given by
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[ 2
2 /o Of IE (%, 1)
4me 2 2 "o af nd
x;g.x.ﬁ=_____ fZﬂvdvdp 225k |- e
It uF et vy Bvl il avll Eﬂ+k||vl| W
(10.2.21)

again from Ichimaru.
In summery, we have calculated the limear part of the Lie traus-
form and shown how it can be used to compute the linear susceptibility

of Vlasov plasma.

Thus the calculation of the lipear respomse is straightforward.

We integrate h1 to find Y and then we use wl to find f . However,

1
to make progress we had to use two approximations. The first (10.2.9)
states that tne amplitude must vary slowly in a gyroradius. The
second (10.2.13) states that the variation of the amplitude along a

trajectory must be slow compared to the variation of the phase.



10.3 Nonlinear Evolution qf Hagne;opl;sma Waves o L L

As we noted in the introduction to this chapter, magnetoplasma
problems tend to involve much labor. Here we try to avoid as much
of this labor as possible. We first discuss a special case to dis-
play the theory, but then we use the K-y theorem to derive the
general form for the ponderomotive Hamiltonian. We discuss some of
the consequences of K (for example the ponderomotive drifts, the
nonlinear gyrofrequency shift, and the self consistent density
perturbation), but we leave others (such as the self generated
magnetic field) for future research. In discussing the nonlirear
evolution of a wave packet we do not use the systematic method,
but instead use the heuristic method for including nonlipearity.

We first consider the special case k; = 0 and 0.2 =0, i.e.
ﬁl(i‘-’t) =ax(§,t) exp(ik“z-iu.lt) +ay(5,t) exp(ik”z-iu.lt) + c.c.
Invoking the approximations (10.2.9) and (10.2.12) we find fram Eqs.
(10.2.7) and (10.2.13) that

b= - 1__ ev[L(B_) e1(-¢+k||q-wt) ) ,__ el ® ex(¢+k,|q-wt)

J2 V2

+ c.c. (10.3.1)

i(-¢+k| |q-mt) i(¢+k| lq-mt)
ieva+(g)e

w, = +

(m—!—Q-kI Ip)Ji {w--k, lp)\/i

ievﬁ_ (R)e

+ c.c. (10.3.2)
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To find the ponderomotive Hamiltonian we need to ksiow {ul,bl}, the
zeroth harmonic (in wt) part of which is
_EZI Q+I2 kZ vZ

- B
fu,by = Wk |9) Q- Tk, p)

ezl&_lz kﬁv2
© @k ) - T@-utE | B

1 22 2% -2 -2] -2i¢
t3e k”v ﬂ_a‘_ [(uﬂ-ﬂ-k”p) + (m-ﬂ-k”p) ]e

+ c.c. . (10.3.3)

This quantity and the quantity

_ 2.2
By, = € 181 (10.3.4)

are inseried into the second-order Deprit equation (7.2.52), which

is then analyzed to find K .
2vo

We note that {wl,hl}o in this magnetized case differs from
{wl,hl}o in Eq. (B.2.7) in a very important respect. Due to the
phase exp(2i¢), the last term in Eq. (10.3.3) oscillates along a

particle orbit, and hence can be put in Yavo® in contrast to the

unmagnetized case where Yoo = 0. Therefore, the analysis ecf Eq.

(8.2.7) gives



nl’ || B
K, = eI 1 ( + )
Zvo & kB 2@k Ip)

24 2f 2P i
e W et 5 (10.3.5)
HP 20w-0-k p)
and
__i.22 2% 42 g -2 | -2i0
Yavo = T 7 & K[}V a_a+[(w+n l.”p) + (w0 k”p) ]e + c.c. .

(10.3.6)

We now use the K - ¥ thecrem ‘.o derive the general expression for
the ponderomotive Hamiltonian. To do so we insert X from linear

theory, Eq. (10.2.19), into Eq. (7.4.25):

‘/;Xdeqd¢vdvdp fu(v,p) K, (X,Y,q,v,p) =

2vo
fd3xf2rwdvdp £,0,0) £ 0w Ex 0 (10.3.7)

where the tensor is given by

©
2 No(v,p)
_e 22: 2 2 3 | 2
L{‘_wzi"e =_m(v av T Ey ap) 2+ie | pow (10.3.8)

and ﬂ2 is given by Eq. (10.2.20). We noted in the previous example
that KZvo is not a function of §, terms in Eq. (8.2.4) which depend
on § are absorbed in wZvo'

Functional differentiation of Eq. (10.3.7) gives

fd3R Ky o (B,v,p) 'fd3x £ (x,0) Htv,0) £t - (10.3.9)



Since the two integrals are equal, we conclude (as in section 8.2a)

that the two integrands are equal except for a derivative.
e
K ,0oBeip) = £ (B, 0) Wv,p)-E@R,t) + 0(V) (10.3.10a)

The approximations involved in obtaining this expression are simply

those used in the sample calculation (10.2.9) and (10.2.12) plus the

wave packet assumptions

IVEl << |KE|
and
el << o4
5e] << {8 - (10.3.10b)

Noting that the expressions (10.3.10), (10.3.8) and (10.2.20) give a

messy result for K?_\m we infer that the calculation of K without

2vo
the K - X theorem would involve much tedious algebra.
For purposes of comparison we take the limit v »0 and p » 0 in

Eq. (10.3.10). We find

2 2 2 * o
if -L &
L LN e )'|,
wz mz—ﬂz w(mz-ﬂz) J
(10.3.11)

2
=0) = &
KZ“B(E,WO,p—D) = [

2
the standard result” for the ponderomotive potential.
Let us discuss oscillation center meotion. For this discussion
only we consider X,Y,q,p,$,J as being oscillation center variables.

The total oscillation center Hamiltonian is



=3+ 9’ + K, R,DD) . S e 0:3.12)

Hence we have the equations of motion

X = {X,K} = - % 33“0 (10.3.13a)
9K

¥ = _1 290

Y= {Y,K} = 5 5 (10.3.13b)

N aK

b= lo.k} = 0+ 520 (10.3.13d)

=gkl =0 (10.3.13d)
3K

qa={q,K] =p+ -5539 (10.3.13e)

- _ o aKZvo

p={p,K} =~ T (10.3.13f)

We see that oscillation center motion is much like guiding center

motion. The X-Y motion is given by a perpendicular drift

(10.3.14)

corresponding to a perpendicular force -BKZVO/BE , but here the force

depends on p and J. From Eq. (10.3.13c) we see that the gyrofrequency

shifts in the presence of the wave by the amount

aKZUo
=2 (106.3.15)
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‘Tom E.q'i?(lo.3.1‘3d)vve see that the oséiliation,c‘en‘tei‘ ﬁgﬂetic
moﬁent 3 is conserved. And we see Lhat parallel motion, governed
bf Eqgs. {10.3.13e) and (10.3.13f), is similar to the motion of
unmagnetized particles. A nice aspect of this Hamiltonian formalism
1s that all of these effects (drifts, gyrofrequency shift, and

parallel motion) = e described by one function, the ponderomotive
Hamiltonian xzuo’

Having noted that the oscillation center magnetic moment is
conserved, it is appropriate to emphasize its relation to the usual

magnetic moment. Temporarily denoting oscillation center variables

by the superscript osc., the Lie transform equations (4.1.15-16)

give

3% = 3 - (2),3) - Biu,y(2),3) + Biv, (2), 1w (2),3))
and
J= JOSC + (wl(zﬂsc 0sC

)‘J } + a{wz(zﬂsc)‘JOSC} + i{wl(z!)sc)‘{"‘II(ZDSE)‘JOSC}I

to second order. Thus, the fact that 3°%€ is conserved implies that
the right side of the first of these equations is conserved. It does
not imply that J is conserved.

For electrostatic waves, rather than work with Eq. (10.3.10), it
is easier to derive K from k-y-k of Eq. (10.2.21). Following the same

procedure as before we obtain

2 2
CIEI°®,L) ) Pk
z 0] ] ] £

Kpuo(Brvspst) = - 2 a3 * i1 ap) Wk pw -

k

(10.3.17)



Thus, the gyrofrequency shift for an electrostatic wave with k” =0

is given by

3K, 2IE12 & 2 FPlyn)
K -t aJ

This formula was first obtained by Aamodt et 813 (their Eq. (2)).
However, by the Lie transform technique we have obtained this gyro-
frequency shift for electromagnetic waves with k“ # 0. Since

Aamodt et al state that the gyrofrequency shift (10.3.18) plays an
important role im the nonlinear dynamics of the drift-cyclotron in-
stability, we infer that the more genmeral formula given by (10.3.15)
may be important in the nonlinear dynamics of the Alfven-ion-cyclotron
iustability.l"5 We leave further investigation of this point for
future research.

At this point we interject a warning that concerns the use of Eq.
(10.3.17). That equation was derived using _lg‘_é = 0. This condition
is not identical to the electrostatic conditiom, (E-iV) x § = 0, but
it is equivalent if the approximarion lt:-1 v 20€ << 1 holds. Hence
one should not use the formula (10.3.17) for electrostatic waves un-
less it is also true that k_l v 2nf << 1 holds.

Let us allow for self consistent fields #, and &20 in the

20

second-order Hamiltonian

hZAo = -eio'ﬁzo(g,t) + ed’zo(g,t) . (10.3.19}

Using the small gyroradius expansion (10.2.8) and keeping the leading

term we find
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1, .0,
(R t) - Ji ev e 20_(5 t)

Ji 20+
- ep AZOZ(E,t) + e¢20 . (10.3.20)
We analyze these terms in the second-order linear Eq. (7.2.48) by
putting the slowly varying terms in KZAo:

Kon = ZDz(R t) + etb (R t) (10.3.21)

and the oscillating terms in Yoro®

(10.3.22)

We now discuss the quasistatic evolution of the oscillation-

center distribution F. Including Kzo, the evolution of F obeys

B

F
+ {F,h K, 1 =0 (10.3.23)

In the unmagnetized case we noted that F could be any functiom of
the only (in general) invariant K. Here there is another invariant, J,
since 3K/9¢ = 0. Thus F can be any function of the two invariants,

¥p2+K20(X,Y,q,p,J) and J.
= glyp? + Koo (%,¥,2,0,3),d1 (10.3.24)

Setting the wave amplitude (and therefore Kz) equal to zero, and F =

fo, we find that g = fo. Inserting this (10.3.24) we obtzin

F(z) = fo(apz + Kyp(2), ) . (10.3.25)



This is just

lBKzo ‘ BKZO
3t P 5q
or
|zl 24
lalgl alfy
ETS << |p 3z . (10.3.29b)

It means tbat the wave envelope changes so slowly that the particles
have enough time to traverse the envelope by moving along field lines.
Suppose instead that the opposite were true; thai. the wave envelope
extent was infinite in the z direction. This wovid be true for a
radiation filament ic the z direction. 1n this cise we would have

KZO(X,Y,J,p,t.) independent of q and the solution is simply
= 2
F=£ ("7, (10.3.30)

i.e. there is no gradient axzu/aq to derive the oscillation center

evolution.
To find the second order average distribution in particle phase

space we must perform the inverse transformation

fyq = Fp - 5g{wzc',foj + 5{w1,{w1,fu}}u . (10.3.31)
The density perturbation found from f20 is

n, () = [ a® 6(x-R-E) £, (R,p.J.0)

0% x-R: 20(R:P:T,

= [ dehaddp £, (x-§.p,9,7) - (10.3.32)



He can expanu tlul upresuon as in Eq. (9.2.8). Assuming '(9.‘2.9»)

ve keep only the first term in this expansion:

B,0(%,t) = ﬁfbﬂdep £, ®"%,p,9,7)
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= fdwdldp [F2(§=§,,P,J) - ¥{v20,fo)|n=x + %{wl.{vl,fo}”h‘ ]

(10.3.33)

¥e evaluate this quantity to lowest order in the gradients, and
50 we keep only the ¢-J part of the Poisson brackets. The second

term

3w Buyg B,
- & faenasep 555 aJ =0 (10.3.34)

must vanish since it is the integral of a periodic function in ¢.

Similarly the third term must vanish

of w gw. 9f
13 fogw o 13 1 o
*fd‘m“dp [a¢ aJ(ﬁ aT) T8y a(w ﬁ)]
3 aul aw af
= ~ & [a¢0drdp s\ a¢ =0 (10.3.35)

(the first equality follows from integration by parts in J), since it

is the integral over ¢ of a ¢ derivative. We are left with

af,
n,,(x,t) =fd¢ndep _p 5 K o(B=%,p,7,t) - (10.3.36)
2

When fo is gaussian in p, we can reduce this expression to a

particularly simple form. We have



n, (x t) = - T d¢CidTdp. f [Z“D(E—"_‘,P;J-’.t).w KZE(B;?'"

- {10:3:37)°
The first t.err.n in KZAo’ c.f. Eﬁ. (10.3.21), is odd in p and gives no .

contribution. We know the contribution of Kz vo from the K-X theo_rein.

Thus

s =1 [.Lg* . .

BV = [ RE@ox tomEoun v a e 0]
At this point the magnetizad plasma calculation is identical to the
unmagnetized plasma (c.f. sec. B.2), and so Egs. (B.2.47-50b) hold
with the substitution Ts -+ TI Is* In particular, for a plasma with

one species of singly charged ions we have

1€1%-180°

Oyy = = ZEZW . (10.3.39)

The next quantity to calculate is the guasistatic second-order
self-consistent current perturbation. From our experience in dealing
with unmagnetized plasma (see section 8.2c) we know that the current
vanishes to zeroth order in the gradient of the amplitude because of
charge conservation. Hence to correctly treat this problem we must
return to linear theory and calculate hl and Wy to 0(Va). Then we
find I(2 and v, to 0(Va). We will then know f2 from which we can
find izo. Finally we must include 520 self-consistently. The mul-
tiple expansions (10.2.8) and (10.2.11) make this calculation gquite

6
tedious, and so it is left for future research.
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‘We_also .leave the calculation. off' the second-harmonic terms and

the systematic calculation of the third-order current for later
research. }lowever, we do give the general nonlinear evolution equa-
tion for a wave packet includil;g the second-order density perturba-

tion by the heuristic method. First we let A = n in Eq. (6.4.2):

a dw,
[i(ﬁ + !ﬂ'V) + adﬂ:vv] E.06:1) - oy E £a(35,t) =0 .

(10.3.40)

Next we use (10.3.39), noting that =ckx i€ /w (i is the polariza~
=" 4

tion of the mode), tao abtain

a3 1-Jelodi fwl® .
[( at * "~«“’) ' ”ﬁu“"’] €t mer T, m Gulfa) =0 (0.3.40)
ell "ill °

This is a very general evolution eqnation. No statement has been
made atcui the medivm; this equation applies to both magnetized and
unmagnetized plasma. Furtbermore we note that all the parameters in
this equation (ﬁu'!u’g ...) can be obtained from linear theory. Of
course we must keep in mind that this equation is valid only for
quasistatic wave-packet perturbations; i.e. Eq. (10.3.29) must be
true. In addition we must keep in mind that this equation may be
incomplete (and therefore wrong) since it was derived using the
heuristic method for including nonlinearity.

We have seen a number of differences between tbe magnetized-
plasma discussion and the unmagnetized plasma discussion. In magne-
tized plasma w

20 does not vanish; there are zero-harmonic (in wt)

terms which do not vary slowly along a trajectory because of the



. exp(i#). factor. The convenient ﬁqriabléi for iéﬁnetizgd-pll;mg';:a-l-

culations (10.1.5) are not ae convenient as-the unmagnetized ﬁlﬁp& L
variables q,p, which can be :aiily-‘vmnipulat'ti as.vectors.-: In'gehuféi,‘
magnetized plasma calculations involve more algebra. Yet even though:
these two systems are very diffefent, !:he use of general Lie trans-
form techniques has allowed us to pr «¢ the K-X theorem in both cases,
to derive a general formula for ti ~.cad-order quasistatic density
perturbation Eq. (10.3.36), and - .cvive the general nanlinear wave
equation (10.3.41) that includes this density perturbation.

Huch work remains to be done cn the nonlinear evolution of waves.
in magnetized plaéma. For motivation we point to the proposals for
using large rf power sources to heat tokamaks7 and mirrors.8 In
addition, linear instability may cause wave amplitudes tu grow until
nonlinear effects hecome important. So tar, uonlinear calculations
have wsed the h:ouristic method, but as we showed in Chapter 8, the
heuristic method gives an incomplete answer. For a complete answer
one must attack these problems systematically. In this chapter we

have taken the first few steps toward this systematic discussian.
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11, Summary and Conclusions

In three steps we have discussed nonlinear wave evolution in Vlasov
plasma. In the first step, chapters 2-5, we reviewed the Lie transform
and its use in constructing a Hamiltonian perturbation theory. In the
seccad step, chapter 6, we developed a formalism for deriving nonlinear
wave equations given the nonlinear current. 1In the third step, chapters
7-10, we combined the first two steps; we used Lie transforms to derive
the nonlinear currents, and we used the formalism of chapter 6 to
determine their effect on the nonlinear evolution of wave packets.

In the firer part of this thesis we saw that Lie transforms are a
concise and flexible tool for analyzing Hamiltonian systems. Lie trans-
forms are concise because all operations are expressed in terms of
Poisson brackets; Taylor expansions in the separate —rariables, as in the
older Poincaré-Von Zeipel technique, are avoided. Lie transforms are
flexible because one 1s not committed to transforming away all terms in
every order: slowly varying terms, which would produce resonant denomi-
nators upon integration, can be kept in the new system and analyzed by
another technique.

In chapter 6 we discussed general aspacts of the evolution of wave
packets. We clarified the concepts of wave energy and wave momentum.

We generzlized these concepts to apply to perturbations which are not
normal modes. This generalization allowed us to write the wave energy
and wave - -“um &5 sums of contributions from the electromagnetic
field and ti.. various species in a Vlasov plasma, where the wave energy
(momentum) of species s is the total energy (momentum) :ransferted to

species s by the lirear fields. We also constructed a general formalism
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for deriving nomlinear wave equations in terms of the nonlinear currents,
and we compared this formalism to the often used heuristie method for
including nonlinearity.

In chapter 7 we discussed general aspects of the application of Lie
transforms to the Vlasov system of equations. We gave the Hamiltonian
formalism for the Vlasov funetion, and we showed how self consistency is
included via the current operators. In addition we proved two theorems.
The first was a gemeralization of Kubo's fluctuation dissipation theorem:
if the unperturbed Vlasov distribution is a function of only the Hamil-
tonian, then the linear conductivity is the weighted average of the
current correlation function, where the weighting function is the deriva-
tive of the unperturbed distribution with respect to the emergy. The
second theorem was a simple relation between the linear susceptibility
and the ponderomotive Hamiltonian. This theorem proved to be very useful
throughout this thesis, since it allowed us to deduce a nonlinear quantity,
the ponderomotive Hamiltonian, from a previously calculated linear quan—
tity, the susceptibility, with very little effort.

In chapter B we applied these ideas to nonlinear wave evolution in
unmagnetized plasma. We discussad the pondersmotive Hamiltonian KZ\)O
and showed how it causes a second-order quasistatic density depression
and a self generated quasistatic magnetic field. In third order we
derived the equation that governs the nonlinear evolution of waves. This
equation, which was derived by using the systematic formalism of section
6.3, unified mwuch previous work in that it contains the change in the
conductivity due to the second-order quasistatic density perturbation,

the self precession effect of cold plasma theory, and the self Faraday
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rotation effect. On the other hand, the heuristic method yields the
density perturbation effect and the Faraday rotation effect, but it
leaves out the self precession effect, which is comparable to the
Faraday rotation effect. We conclude that the heuristic method gives
incompiete answers.

In chapter 9 these same ideas were applied to the problem of test
wave propagation in a laser-plasma system. Motivated by experiment we
wanted to know how the test wave polarization changes as the test wave
propagates through the irradiated region. We found a mumber of compar-
able effects. TIn addition to the expected Faraday rotation of the
polarization by the quasistatic magnetic field, we found that the laser
induced conductivity can change the nature of the test wave polarization,
for example the test wave polarization may change from plane to ellipti-
cal. In light of these findings we conclude that a more thorough
analysis of Faraday rotation experiments is in order. By varying para-
meters, such as the test wave frequency and direction of propagationm,
one can isolate the varjous effects and obtain a more certain measure-
ment of rhe quasistatic magnetic field.

Finally, we have applied these ideas to magnetized plasma. We
derived the ponderomotive Hamiltonian from the linear suscepribility,
and we discussed the effects of the ponderomotive Hamiltonian on particle
motion: the parallel force, drifts, and the nonlinear gyrofrequency
shift. We derived the universal formula for the second-order quasistatic
density depression, and we included this effect in the nonlinear ewnlu-
tion of the wave amplitude using the heuristic method.

As we have seen, the Lie transform is a useful mathematical tool for



studylng Hamlltonian systems. It allows simple proof of general theorems,
and it diminishes the computational effort necessary to amalyze specific

systems.
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APPEMDIX A

Hotations for Derivatives

The derivative notatien used in this paper has been chosen to be very
explicit, and as a result it is detailed and cumbersome. In the usual
physics use of derivatives, such a detailed notation is not needed, and
one may wonder if such a cumbersome notation is needed. In this appendix
we show how confusion can arise 1f one uses a less explicit notation.

We first consider two functions, f and F, which obey the following
relation,

f(z,t,8) = F(Z(z,t,8),t). (Al)
In our discussion of Lie transforms, we need to differentiate equations such
as (Al) with respect to z- In the usual physics notatlon this would

be written

%

% 3z - (a2)
n m

af
3z
m
aF
We know what 37 means in this case, but we need an interpretation of this
symbol for other cases.
The two most common interpretations of the symbol %; are:

A. F 1s always a function of Z, so aF is simply the derivative of F with

Er
respect o its argument.
B. Given a symbol such as %%, the object below the line (in this case Z}
denotes both the argument of the function and the variable with respect to
which the derivative is taken.
Let us first consider A. This interpretation cannot be used in Lie

transform discussions, since in these discussions we approximate (Al) by



£(z.t,8) = F(z,t) + @ {u;, F}

Jw v
o 1, 3F 1 _3F
Flz,t) + 8 [T‘l —ag _32 aq] . {A3)

The derivatives which appear in (A3) mean

aF El

3 " 32 [F(z.t)] s (A4)
whereas, using interpretation A, we would assign them the meaning
3F 2 3
T E[F(l(;,t,“). c)] . (as)

Thus we cannot use interpretation A in Lie transform discussions.

Now we comsider interpretation B. This interpretacion is ambiguous

when we consider derivatives of the form

aF
3t ° (A6)

Since t (the object below the line) doesn't indicate Z or z, we don't know

whether (A7) means

3

30 (F@z,0) (a7)
or

2 (F(z(z,t,9), t)) (48)
or even

é% (F(g,t» evaluated at . (A9)

z = 2(z,t,8)

It is important to distinguish between these three objects in the expansion

of fAl) using the chain rule, which might be written in the following way:

3z

2 ( 3F . k

2 (F(z(e,t,0),t)) =Z 2 - =

14 ~~ X BZk at
+ ,:—t (F(E,t)) evaluated at (A10)

z = 7(z,t,6)
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Though the notation used in (Al10) is clear in this instance, it i3 cumbersome.
So ve  © rhar the standsrd notation is ambiguous when using Lie
tranaforns, and we do not use {t., Inatead ve uge the notation introduced

in Chapter 2 which 1s unambiguous though cumbersome.
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APPENDIX B

Further Notation and List of Symbols

Bl. Choice of Symbols

We use script letters to denote the amplitudes of oscillating
quantities, e.g. 5(5,[) = E(f':) exp(iy)+c.c. As much as possible we use
Roman capitzls to denote variables and functions which pertain to
oscillation center phase space and lower case Roman letters to
denote variables and functions which pertain to the usual phase space.
The exceptions are the use of n for the current operator, and the use of

X,Y.J, etc. in the magnetized plasma discussion.



B2, Superacripts snd Subacripta

Superscripts refer to specles.

1
A second numerical subscript or a subscripted + or - after a numerical

A single numerical subscripr (e.g. ‘():) refers to the order in ¢

B ]

subscript (e.g. 331 or(()}‘_) refers to the harmonic number of the term.

A subscripted CGreek letrter, which always appears immediately after the
first numerical subscript (e.p. 9“1 or,QZv)’ denotes whether this

quantity is the linear response (1) to the same order electric fieclds,

or the nonlinear response (V) to lower order electric fields, A subscripted
Roman letter (L,t,x,y,z) or + or - before the first numerical subscript
either distinguishes between laser (L) or test wave (r) fields, or when
that distinction is not needed, it denotes the component (x,v,z,+,or-) of

a vector.

Examples of subscript conventioas

193;\1 - The linear (}) response to the third-order (3) electric

fleld E]1 at the first (1) bharmonic.

3[2V+ - The test-wave (t) second order (2) nonlinear (V) response
{to the lower order fields Et and EL) at the "plus® (+)

harmonic (= exp [i(ulr-fw)t].

A, ~ The second order (2) vector potential.

A, - The "plus" (+) component of the second order vector

*
potential (E+ - A,

~2



B3.

Symbol

PMAESN OT o >

AHOWMA TAOW YOOI ZHXIHDORFXSGHNII®ROQONT

List of Symbols

Meaning (chapters in which first introduced, specinl symbol)

vector potential (7)

magnetic fleld (6)

speed of light (7)

linear response tenor (7)

dispersion tenor (6)

electric field

Naperian base, charge of an unspecified particle (7),
electronic charge (8,e )

oscillation center disribution (3)

usual distribution in phase space, or Liouville function (3)
wave momentum density (6)

transformed old Hamiltonian (3)

old Hamiltonian (Z)

unit tensar

/=T or an index

action (4), magnetic woment (10)
current density (6} or an index
new Hamiltonian (3)

new Hamiltonian in the old phase space (3 only),wave vector (6)
Lie operator (2)

index

time development transformation (2)
mass (3)

number of degrees of freedom (2)
density (7)

order of

new momentum (3)

0ld momentum (2)

new coordinate (3)

old coordinate (2

transformed remainder function (3 only), gyrocenter (10,R)
untransformed remainder function (3 only), gyroradius (10)

species (5)
Lie transform (3)
time (2)




v

e

OIN pUo IR NN <X xE X

> > .x

L =4

AQto A = otmin

ks

unicary operator (2)
unit vector (6,i)

velocity (7,v), thermal veloctty [B,v _(T ] ) 12 1.
gyrovelocity [10,vE(200/m)1/2]

wave energy density (6)

Lie generating function (3)

gyrocenter (10)

position (6)

gyrocenter (10)

oscillation center (3)
phase space variables (2)
index (6)

index (6)

relativistic energy (7)
functional derivative (7)
partial derivative
perturbation parameter (4}

current at x due to a particle at z at time ¢ [7, n(x[z t)]
Lie parametér (3)

Fourier transform variable (6)

denotes nonlinear terms that are linear in the electric field
of the same order (6)

denotes nonlinear terms that are nonlinear in lower order
fields (6)

gyrovector (10)

a tensor which appears in the linear susceptibility of
magnetized plasma (10)

3.14159...

charge density (6)

conductivity (6)

electrostatic potential (7)

272



DL T O

L

l

2773 ":

gyrophase (10)

linear susceptibility (6)

wave phase (8)

ponderomotive potential (B)

frequency (4), plasma frequency of species s (7,w)
Fourier transform variable (6 only), gvrofrequency (10)

approximately equal to

equal {n order of magnitude
proportional to

vector potential amplitude (8)
magunetic field amplirtude (&)
electric field aplitude (6)
current amplitude (6)

order of

charge density at x for a particle at z at time t [7, %(x|z,t)}]
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Figure 1 Caption: Sketch showing a test wave entering the laser
beam with polarization ﬁi and leaving the laser beam with polari-

zation ﬁr.
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