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ABSTRACT 

The kinetic equation is used to compute the elastic and 

inelastic quasiparticle branch mixing rates for a superconducting 

film into which quasiparticles are injected via a tunnel barrier 

from a second superconducting film. Representative graphs are 

presented of the steady-state quasiparticle distribution, th~ 

* . quasiparticle charge imbalance, Q, vs. injection current, the 
-1 

charge relaxation rate, TQ*' vs. tJ./kBTc for several values of 

elastic scattering rate, and the quasiparticle branch relaxation 
-1 

rate, T
Q

, as a function of energy. The quasiparticle potential 
-1 

developed in the injection film is related to TQ ' and thence to 
-1 

T ,a characteristic electron-phonon scattering time. Detailed 
o 

measurements of TQ are reported for films of superconducting Al, 

some of which were doped with oxygen to give a range of transition 



-1-

temperatures from 1.2 to 2.lK. 
gap 

-1 
From the dependence of 'Q* on ~/kBTc' 

values are deduced for the/anisotropy of the films. In the cleanest 

samples, T = 0.10 ± 0.02~sec, a value that is in good agreement 
o 

with energy gap relaxation and 2~ - phonon mean free path measurements, 

but a factor of about 4 smaller than that obtained from recombination 

-1 

, , 

time measurements and theoretical calculations. The value of T 
o 

in the Al 

5 
films increases with the transition temperature, T , as T or 

c· c 
T 6 

c ' 

instead of T 3 as predicted by simple theory. It is suggested that 
c 

the rapid increase of T 
o 

-1 
with T may arise from either a strong 

c 

dependence of a 2F(w) on T or from a small concentration of.magnetic 
c 

impurities. 

I 
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I. INTRODUCTION 

In a superconducting material, the quasiparticle branch mixing 

1-3 
time, 'Q' and quasiparticle recombination time, TR, are both 

proportional to a characteristic time for the electron-phonon 

interaction, T. The time, is related to T , the transition 
o oc 

temperature of the superconductor, and to a 2F(w), the product of 

the square of the matrix element of the electron-phonon interaction 

and the phonon density of states, via the relation
4 

(1.1) 

In Eq. (1.1), Zl (0) is the real part of the Eliashberg renormalization 

factor at w = O. Provided that the constants of propurtionality 

can be calculated, measurements of either 'Q or 'R can be used to. 

estimate T. However, measurements of recombination time often yield 
o 

a time that is enhanced by phonon trapping. S Although one can make 

. f h h f d h . 6,7 h est1mates 0 teen ancement actor ue to p onon trapp1ng, t ese 

estimates may be somewhat uncertain because of the difficulty in 

accurately determining the phonon transmission factor between the 

sample and the substrate and/or helium bath. On the other hand, 

measured values of TQ are not enhanced by phonon trapping because, 

for low injection rates, the trapped recombination phonons generate 

equal numbers of quasipa'rticles above and below the Fermi wavevector, 

k
F

, so that the branch imbalance is not affected. 

8 Of the several methods of generating and detectirig branch imbalance 

in superconductors, the tunneling injection and detection schemel is 
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probably the most straightforward. This method was used previously 

. S 9 to measure LQ ln n; the results are in good agreement with theor-

; 1 . 2,3,4 etlca estlmates. In this paper, we report measurements of TQ 

in superconducting Al as a function of mean free path and transition 

temperature. In Section II we first briefly review Tinkham's3 theory 

of the generation and detection of branch imbalance, and extend it 

to the case of a superconductinginjection electrode. We next 

solve the kinetic equation numerically for the injected quasiparticles 

to find the steady-state distribution and the average branch mixing 

rate. Representative curves are presented with both inelastic and 

elastic branch crossing processes, and with inelastic processes alone. 

Finally in this section, we compute the branch mixing rate as a function 

-1 
of energy, and relate the average value to T 

o 
In Section III, the 

experimental techniques are described, and in Section IV the experimental 

results are presented. For our cleanest films with transition t~mpera-

tures le~s than 1.3 K we find L = 0.10 ± 0.02~sec. Measurements 
o 

of the dependence of T 
o 

on the transition 
are 

path are reported, and valuesideduced for 

temperature and the mean 
gap 

the/anisotropy of the Al 

free 

films. 

Section V contains the discussion and conclusions. First, we compare 

our value OfT with theoretical estimates and other experimental measure
o 

-1 
ments. We then discuss possible explanations for the fact that T 

o 

increases with T much more rapidly than the T 3 behavior predicted by 
c c 

Eq. (1.1) (d 2F(w) is usually quadratic in w for w much less than the 

Debye frequency). 
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II. THEORY OF BRANCH IMBALANCE 

A. Generation and Detection of Branch Imbalance 

We briefly review Tinkham's theory of the generation and detection 

of branch imbalance, and extend it to the case of a superconducting 

injection electrode. The sample c9nsists of a superconducting film 

sandwiched between two other metal films with a thin oxide barrier at 

each interface. Quasiparticles are injected from the injection film" 

which may be either a normal metal l ,9 or a superconductor (as is the 

case for the present experiment) into a volume n,of the middle 

superconducting film. A normal metal probe (the detector) is coupled 

to the reverse side of the superconducting film via a second tunnel 

junction. The detector voltage, V
d

, generated between the normal 

probe and the superconducting film at a point far from the injection 

region represents the quasiparticle potential, and is measured with 

a null-balancing technique in which no current flows through the 

detector junction. Vd is given by 2,3 

* Vd = Q /2N(0)egNS (0), (2.1) 

where 

(2.2) 

In Eqs. (2.1) and (2~2), N(O) is the single-spin electron density 

of states at the Fermi surface of the superconductor, gNS (0) = GNS/GNN 

is the ratio of the tunneling conductances of the detector junction in 

the zero voltage limit with the injected film in the superconducting 

state and in the normal state, and f> (E) and f< (E) are the quasiparticle 

distribution functions on the k>kF '(denoted by k» and k<kF (denoted by 
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* k<) branches. The quantity eQ represents the charge imbalance of 

* the quasiparticles. Q differs from the quasiparticle population 

2 3 
imbalance, Q, by a density of states factor: ' 

Q = 2N(0)f~p~(E)[f>(E) - f«E)]dE. (2.3) 

2 2 ~ Here, p~(E) = E~E - ~) is the normalized BeS density of states. 

In the present experiments the injection film was superconducting 
a gap 

with hI j~. It is straightforward to show .that the injection current, 

I ., is given by 
1 

1. 
1 

+ P~I (eVi + E){f(E) - feE + eVi)]}dE, (2.4) 

where f(E) is the Fermi function, and G
NN 

is the tunneling conductance 

of the injection junction with both films in the normal s.tate. The 

11 
rate of generation of branch imbalance is given by 

(2.5) 

In deriving Eqs. (2.4) and (2.5), we have assumed that the departure 

from thermal equilibrium is small so that we can use the thermal 

distribution of quasiparticles. This assumption is well-justified 

in the present work, since the steady-state quasiparticle population 

never deviated from the thermal equilibrium value by more than 

0.05%.10 

In a steady-state situation, it is convenient to define a quasiparticle 

charge imbalance relaxation time T * byll 
. Q 

* . * \t = Q /Q , (2.6) 
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.* of 
where eQ , the rate of generation/quasiparticle charge imbalance, is 

given by11 

. * _ GNNJoo . - 1 I I Q - e 2 r1 t.Pt. (E){pt.' ( eVi - E ) [f(E - eVi ) - f(E)] 

+ Pt.' (eVi + E)[f(E) - f(E + eVi»)}dE. (2.7) 

. .* 
Since both Q and Q are not experimentally measurable quantities, it 

12 
is convenient to define the two dimensionless parameters 

F = erlQ/I. , 
1. 

F*= .* 
and erlQ /1 .. 

1 

* Both F and F can be calculated from Eqs. (2.4), (2.5), 

the limit eV.»t.,eV.»kBT, it is easy to show that 
1. 1. 

F::'l-t./eV., 
1. 

* and F '" 1 - rrt../2eV .. 
1. 

and 

(2.8) 

(2.9) 

(2.7). 

(2.10) 

(2.11) 

Therefore, * 

In 

/when T is very close to Tc so that kBT ~ eVi»t., both F and F can be 

taken as unity without introducing significant errors. 

From Eqs. (2.1), (2.6) and (2.9), we find 

F*TQ* = 2N(O)gNS(0)rle2v
d
/I

i
. (2.12) 

All the quantities on the right-hand side of Eq. (2.12) are either 

experimentally measurable or known constants. One can also relate~* 

to the quasiparticle branch mixing time, TQ = Q/Q, by 

* * TQ =FTQ*/F(Q /Q). (2.13) 

* The value of Q /Q depends on the steady-state nonequilibrium distribution 

functions f>(E) and fc(E), and is therefore not as readily ob~ainable as 

* * the factors F and F. In order to calculate Q /Q, one has either to use 
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to 
a nonequilibrium model of superconductivity or/compute the steady-state 

quasiparticle distribution functions from the coupled kinetic equations 

of the system. We have adopted the latter approach. 

B. Calculation of Steady-State Quasiparticle Distribution 

In this section, we take E = ± IL2_~2 as the independent variable, 

where the plus and minus signs refer to the k and k branches respectively. 
> < 

The use of the variable E rather than E avoids the square root singularity 

of the BCS density of states in the collision integral, and allows for a 

faster and more accurate computation. 

The kinetic equation of the quasiparticles is 

. 
f = G G G E E - inE - elE' (2.14) 

G is the quasiparticle generation rate with the injection junction biased 
E 

at a voltage V. ll~ 
1 

(f (E) - f (eV. + E») - PA,(-eV
1
. - E)(l - f (E) - f (-eV.- E»]}. r T 1 u T T 1 

(2.15) 

where e is the Heaviside function. The thermal distribution function is 

used in Eq. (2.15) because the departure of the quasiparticle distribution 

from its thermal equilibrium value is small for our experimental situation. 

-G. is the collision integral due to irelastic nrocesses: 4 1nE 

t' 

"". 

... 
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G. = T -l(k T )-3foodE I 
1nE 0 B c _00 

EEl ~2 I 2 . 
{!z(l - EEl + EEl)(E + E ) [fEf E, -n

T 
(E + E)(l - fE - fEll] 

EEl ~2 2 
+ !z(l + EEl - EE,)(E - E') [0(E - E')(fE - fEfE' -nT (E - E')(fE) - f E) 

+ 0(E' - E)(-fE! + fEfE' ~ nT(E
l 

- E)(f E - fEll)]}, (2.16) 

where n,./E) = l eXP(E/kBT)-l ]-1 is the Bose-Einstein function. Here, we 

assume that the phonons in the system are in thermal equilibrium at the 

bath temperature T. Because of phonon trapping,S this is not a good 

assumption if one is interested in the total excess quasiparticle density. 

However, it is.a valid approximation in the calculation of branch imbalance 

because the trapped excess phonons do not affect the branoh imbalance to 

first order. To further simplify the calculation, the thermal equilibrium 

gap is used in the kinetic equation. This is also a good approximation 

for our experimental situation since the maximum deviation of the gap from 

the thermal equilibrium value is estimated to be less than 1% in the 

.worst possible case over the entire temperature range of interest 
13 ' 

(0.8T to 0.999T ). Further, in deriving Eq. (2.16), we have also 
c c 

assumed that a2F(~) can ,be approximated by bw2 • 

G is the branch mixing rate of quasiparticles due to elastic 
elE 

processes: 

G = T -l(E)(f - f ) 
e1E Qel E -E' 

(2.17) 

where TQel-l(E), the average elastic branch crossing rate of a quasiparticle 

f by 
3 

o energy E, is given 

-1 
T
Qel 

(E) 
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-1 
Here, Tl is the elastic scattering rate of an electron when the 

superconductor is in the normal state, and the bracket indicates 

an average over the gap anisotropy distribution. From Eq. (2.18), it 

is easy to see that T- 1 (E) = 0 if the gap is ;.sotropic, so that gap 
Qel 

anisotropy is necessary for elastic scattering to relax branch imbalance. 

When the gap anisotropy is small, it is convenient to define a root 

mean square gap anisotropy, o~, by 

- 2 k2 M :: < (~ - ~) > (2.19) 

where ~ - < ~ >. For E > > ~ + o~, it can be shown that 14 

(2.20) 

-1 
For E $ ~ + o~, TQel(E) can be evaluated exactly from Eq. (2.18) only by 

using an explicit gap anisotropy distribution function. Fortunately, 

for the purpose of the branch imbalance calculation, it is sufficient to 

- - -1 -1 - -
Eq. (2.20) for E L ~ + o~/2, and T

Qel 
(E) = TQel(~ + o~/2) for use 

E < ~ + M/2. The error introduced by making this approximation for 

-1 
TQel(E) is of the order of 871/6., typically 10-3 , for thin superconducting 

films. Following Markowitz and 
15 

Kadanoff, we define the normalized mean 

square gap anisotropy <a 2> by 

(2.21) 

For clean bulk superconductors, <a2> is a constant independent of temper-

ature. For dirty superconductors, for example, thin films, <a 2> is reduced 

by the Anderson averaging effecl6from its bulk value, <a 2 > to 9 
0' 
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_ 2 

= <a 2>o/[1 + (h/2Tl~) ] 

_ 2 
:::: < a 2 > 0 (2T 1 Mh ) , (2.22) 

since (h/2Tl~) »1. Then, from Eqs. (2.20) to (2.22), we have 

'Q~i(E) (2.23) 

h -1 
were 'Qelo is defined by 

(2.24) 

For convenience, hereafter we use ~ rather than ~ to represent the 

average gap. 

Since we are mainly interested in the small perturbation limit, we 

can linearize the kinetic equation, Eq. (2.14), with respect to 

Of :: f- f 
£ £ Te' It is easy to see that, in this regime, the steady-stat~ 

solution of of scales linearly with the product of the two parameters R 
E 0 

andT in Eqs. (2.15) and (2.16) respectively. Curves a and b in Fig. 1 
o 

are typical examples of our computer calculation of the steady-state 

solutions for (of - of )/R T. Both curves were calculated for 
. > < 0 0 

T/Tc = 0.9, Vi = 10~/e, and ~' = 1.2~, with 'Qel; TO = band 7.8 for 

curves a and b respectively. Thus, curve a includes inelastic branch 

mixing only. The addition of elastic branch crossing substantially 

decreases the branch imbalance. near the energy gap, but only slightly 

affects the branch imbalance at higher energies. These results are 

expected because TQ~i(E) [Eq. (2.23)] is strongly peaked near the 

..; energy gap, and decreases as 1/E2 for large E. The cotmnonly-used 

3 nonequilibrium model, the chemical potential model, isrepresented 

by curve c. This model assumes that 
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dfT(E) 
dE ~> = ~>/4kBTCOSh2(E/2kBT), 

< < . 
(2.25) 

where ~ and ~ are the shifted chemical potentials on the two branches. > < 

Because ~ -~ is an adjustable parameter in the chemical potential 
> < 

model, curve c in Fig. 1 can be shifted up or down to give any desired 

degree of branch imbalance. However, no position of curve c gives 

a satisfactory representation of the exact steady-state solution of 

6f - 8f , especially near A. Even in the case of pure inelastic processes 
> < 

(curve a), 8f 
> 

8f has a sharp peak at an energy slightly higher than 
< 

A, while the chemical potential model predicts a sharp peak at A 

(curve c). With the addition of elastic processes (curve b), the 

peak shifts towards an even higher energy because the quasiparticle 

branch crossing rates for both inelastic and elastic processes are 

faster at the energy gap than that at slightly higher energies. The 

sharp peak at E = eV.-A' for both curves a and b is due to the BCS 
1 

density of states of the superconducting injection film. For the case 

of a normal injection film, this peak disappears as shown by curve a' 

(broken line in Fig. 1), which was calculated for the same parameters 

as curve a with A' = O. Below about 7A, curves a and a' are indistinguish-

able. 

Iri the inset of Fig. 1, the calculated Q* is plotted as a function 

of injection current, r .. The solid line and the broken line represent 
1 

results calculated from families of curves a and a' respectively for 

various injection voltages, V .• For large injection voltages 
1 

(V.»A/e), the two curves merge together, indicating that the branch 
1 

• 



• 
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mixing time does not depend on whether the injection film is normal or superconducting. 
The 

/region of the solid line with zero slope occurs at V. ~ (~ + ~')/e, where 
1 

the injected quasiparticles do not create branch imbalance. The cusp 

near the origin is due to the cusp in the injection current at V. =(~'-~)/e . 
1 

The slope of the Q* vs~ I. curve at large injection voltages gives F*T *, 
1 Q 

using Eqs. (2.6) and (2.9). Similarly, we have also calculated Q from 

. 
the steady-state solution of of - of and Q from Eq. (2.5) to obtain 

> < 

the calculated quasiparticle branch mixing time, T
Q

. 

"ic -1 
In Fig. 2, (FT

Q
*) TO is plotted vs. ~/kBTc for several values of 

shown (broken line) for TQ -lIT = O. The e 0 0 
T -IT while T -IT is Qelo 0' Q 0 

inset of Fig. 2 shows F, * * F , and Q/Q vs. 6/kBTc for Vi ~ 10~/e, and for 

three values of -1 
QerTo· * F and F are independent of TQ~iTO' and 

approximately equal to 0.9 and 0.84 respectively for ~/kBTc ~ 0.2, 

* in agreement with Eqs. (2.10) and (2.11), while Q /Q depends strongly 

on the values of ~-ll T and ~/kBT . 
~e 0 0 c 

* * However, F, F, and Q /Q all 

approach unity as ~/kBTc becomes small. Therefore, for ~/kBTc~ 0.2, 

there is practically no difference between TQ and TQ*' as seen in 

Fig. 2 for inelastic scattering in the limit ~/kBTc·+O. Furthermore, 

all the solid lines tend to the same limit because T Q~~.(E) (Eq. 2.20) 

decreases rapidly as the g~~ becomes small and only TQ:l(E) is important. 
In 

It. is interesting to note that TQ~IT is approximately linear in ~/kBTc 
l.n 0 . 

for ~/kBTc ~ 0.9, and can be approximated by 

T :1 = 7.2T- 16/k T 
Qln 0 B c 

* (F TQ\n) begins to deviate from TQi~ when ~/kBTc ~ 0.2. 
-1 

(2.26) 

In general, 

/ 
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* -1 1 (F 'Q*) has an upward curvature in ~/kBTc that increases as T - T Qelo 0 

increases. 

C. Inelastic Quasiparticle Branch Crossing Rat.e 

Although it is not necessary to know the inelastic branch crossing 

rate,TQi~(E), of a quasiparticle with energy E to obtain the total 

branch mixing rate, a knowledge of T
Q

: 1 (E) gives 
ln 

considerable physical insight. The inelastic collision integral 

[Eq. (2.16)] contains all the information required to extract TQi~(E). 

According to Kaplan, et 
4 

_al. , we have 

T -:- 1 (E) 
Qln T-1(k T )-3{JEdE'(E-E,)2(n + 1 f )(1 ~2 EE') 

o B c 0 E-E' - E' - EE'-EE' 

+ J:dE'~E'-E)2(nE'_E + fE,)(l- ~;, - ~~:) 

+ J:dE'(E + E')2(nE+E, + fE,)(l + ~;, - ~~:)}. . (2.27) 

In the limit E»~, TQ:l (E) has the simple asymptotic form 
ln 

TQ:l (E) ~ ,-l(kBT )-3E2~coth(E/2kBT). 
ln 0 c 

(2.28) 

The solid and broken lines in Fig. 3 are the exact T
Q

: 1(E) and ln 

their asymptotes respectively for T = 0.9T and 0.99T. One can see that 
c c 

the exact TQi~(E) does not approach its asymptotic behavior very rapidly. 

Also, the asymptotic curve fails to show the rise in T Q -1 near ~, which is 

partially responsible for the shift of the peak in 

of - of away from ~ in Fig. 1. Because of this increase in TQ:1(E) 
> < ln 

near ~, the exact curve crosses its asymptotic curve at a quasiparticle 

energy not too far away from ~, so that the asymptotic form of TQ:l(E) 
ln 

[Eq. (2.28)] accidentally gives a fair representation of the exact 

'Q:1(E) in the whole energy range. 
ln 

• 
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In a steady-state situation, the average branch mixing rate, 

-1 ' i b 'Q' , 1S g v~n y 
1n 

Using the exact 'Qi~(E) and the steady-state solution of of> - Of found in 
< 

the previous section, we obtained a result from Eq. (2.29) that wa$ 

essentially the same as .the previous result using the steady-state 

calculation [Eq. (2.26)]. On the other hand, as in the earlier work of 

Tinkham,3 if ,we use a chemical potential model for the quasiparticle 

-1 distribution function [Eq. (2.25)] and .the asymptotic form for 'Q' (E) 
1n 

[Eq. (2.28»), we find from Eq. (2.29) 

-1_ -1 
T
Q

. - 4.2, ~/kBT. 
1n 0 c 

(2.30) 

The numerical prefactor is surprisingly close to the exact value of 7.2 

[Eq. (2.26)]. 

Using an entirely different approach, namely a lin'earized version of 

the Gorkov-Eliashberg equation, Schmid and Schon;7 and, more recently, 
18 . 

Entin-Wohlman and Orbach obtained 

T -1 = 6.6,-1 ~/kBTc' Qin 0 
(2.31) 

h 1 1 f hm d d h .. 17 h T e ca cu ation 0 Sc i an Sc on also uses the c emical potential 

model for the quasiparticle distribution but a different approximation 

for, -1(E)19. 
Qin . 

(2.32) 

This approximate form is also shown in Fig. 3 as the dotted line. One 

can see that it is a good approximation to the exact 'Q:l(E) for quasi-
1n 

particles with energies near the gap where the chemical potential model 
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predicts the quasiparticle branch imbalance to be a maximum. 

Therefore, the small difference between Eqs. (2.31) and (2.26) 

can be attributed to the difference in the steady-state distribution 

function of> - of< obtained from the chemical potential model and the 

actual steady-state calculation. 

'd d h" 17 d h f .. Schml an Sc on also consi ered t e case 0 paramagnetic impurltles 

in the superconductor, and found 

= 4T (TE)~(l + h?; )~. 
TQin TI~ 2f 2~ TE 

(2.33) 

In Eq. (2.33), T
E

, the inelastic scattering time of electrons at the Fermi 

surface at T = T . can be related to T 
c' 0 

and f is given by 

T is the electron spin-flip time. 
s 

Eq. (2.33) is valid if 

(2.34) 

(2.35) 

.• 17 
According to Schmid and Schon , 

(2.36) 

When T -1 = 0, Eq. (2.33) reduces to Eq. (2.31), and the validity condition 
s 

[Eq. (2.36)] becomes ~/kBT«1.4 The results of the last section indicate 

that Eqs. (2.31), and Eq. (2.26) are valid for M~T ~ 1. Therefore, we 

suspect that the requirement for the validity of Eq. (2.33) may be too 

-1 
stringent, and that Eq. (2.36) should be replaced by ~/kBT $ (TEf) ~. 

We will return to this point when we discuss our experimental results. 

20 
Recently, Chang has calculated T

Q
*. (E) analytically. His result is 
ln 
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= -1 ( ) - 3 { Joo ,(. , ) 2 ( ) ( t. 2 TO kBTc OdE E-E fl. E_E, + 1 -fE' 1 - EE' 

Joo 2 t. 2 E'2 
+ dE' (E'-E) (nE, E + f E,) (1- -, - ~) 

E - . EE E'L 

£'2 
i'Z) 

00 t. 2 El2 
+ JodE(E + E,)2(nE+E, + f E, )(l + EE' - E'2)}' (2.37) 

I h l ' , E A -1 ( ) b . d by·.20 n t e 1m1t »0, TQ*in E can e approx1mate 

TQ*i~(E) ~ ~ To-l(kBTc)-3E2t.coth(E/2kBT). (2.38) 

The asymptotic value of T
Q

*'7 1 (E) [Eq. (2.38)] differs from that of TQ-: 1 (E) 1n 1n 

[Eq. (2.28)] by a factor of ~/2. In Fig. 4, Chang's values for TQ*-:I(E) 1n 

and its asymptote are shown for T = 0.9T and 0.99T. Again, the 
c c 

asymptotic curves cross the exact curves near t.. Since TQ*:l(E) 1n 

does not rise near the gap energy (as is the case for TQ:1(E», 1n 

Eq. (2.38) is a reasonable approximation to T
Q

*'7 1 (E), especially at 1n , 

temperatures close to T . 
c 

In a steady-state situation, the average quasiparticle charge 

relaxation rate, TQ*-:l, 
. 1n 

is defined by 

TQ*i~ = J:[Of>(E) -

Equation.(2.3~differs from the corresponding equation, Eq. (2.29), 

for TQ-:l by the omission of the normalized BCS density of states in the 
1n 

integrals, a factor that is cancelled by the normalized quasiparticle 

charge. As T approaches T , the normalized BCS density of states becomes 
c ' 

4 increasingly less important in the integrals. If the asYmptotic forms of 

TQ-:1(E) [Eq. (2.28)] and TQ*-:l(E) [Eq. (2.38)] are used near T to 1n 1n c 

obtain their average values, we find TQ*:1 ~ 2!.1;..,-1 a result that 
1n 2~in' 

contradicts the result TQ*i~ ~ TQi~ obtained from the computer calculation. 
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This contradiction is due to the error introduced by using the 

asymptotic form for 

is used, the factor 

LQ"';"l (E) . 
1n 

If the exact LQ-:-l(E) [Eq. (2.27)] 
1n 

n/2 cancels out. For example, using the chemical 

potential model, Schmid and Schb"n obtained a better approximation for 

L
Q

"7 1 (E) near tJ., so that their result (Eq. 2.31) is a factor n/2 larger 
1n 

than Tinkham's result [Eq. (2.30)], which used the asymptotic approximation 

for LQ"7 1 (E) . 
1n 

III. EXPERIMENTAL TECHNIQUES 

The sample configuration and experimental procedure were similar to 

9 those used by Clarke and Paterson, and are described only briefly here. 

A typical sample consisted of a 3 x 3 mm AI-AI Ox-AI injection junction 

evaporated onto a glass substrate (inset of Fig. 5). For the "clean" 

-1 
samples, the Al films were evaporated at a typical rate faster than 10nm sec 

-5 from a 5 N Al source in a vacuum better than 10 torr. For the "intermediate 

dirty" samples, the Al films were evaporated at rates of bet'veen 2 and 

-1 -5 10 nm sec .in a vacuum of 1 to 8 x 10 torr. For the "dirtiest" 

samples, oxygen gas was introduced into the evaporation chamber at a steady 

-4 rate to maintain an oxygen pressure of about 10 torr and the Al films 

were evaporated at a rate of 2 to 5nm sec-I. After the injection junction 

was made, it was masked with a 200-nm thick evaporated film of SiD to 

produce a 1 x 1 mm window. The second Al film was slightly oxidized, and 

a diagonal l-~m thick Cu strip was evaporated to form an Al-AlOx-Cu detector 

junction. 

21 
The detector junction was connected in series with a dc SQUID voltmeter, 

and the whole circuit was surrounded by a superconducting can to eliminate 

.. 
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external magnetic field fluctuations. The circuit and can were 

. immersed insuperfluid liquid helium, the temperature of which 

could be lowered to about 1 K by means of a diffusion pump. The bath 

temperature was measured with an Allen-Bradley carbon resistor, 

and regulated to within ±O.SmK by electrical feedback to a heater 

22 
in the bath. The detector junction voltage, which varied from 

10-12 to 10-9 V depending on the value of the injection current, was measured 

with the SQUID voltmeter in a null-current mode. The SQUID was also 

used to measure the resistance of the detector junction near zero 

voltage bias. The maximum power generated by the injection current 

was less than 2Wm- 2 . 

Table I contains all the essential parameters for the second Al 

film in the IS samples reported in this paper. R300/R4.2 is the resistance 

ratio, P4.2 is the resistivity at 4.2K, and £ is the electronic mean free 

path at 4.2K obtained from the equation
23 

-16 2 
P4• 2 £ = 9 x 10 ~m. (3.1) 

R. is the resistance of the injection junction for T<T and V.»(A+A')/e. 
1 c 1 

IV. EXPERIMENTAL RESULTS 

Figure S shows a typical current-voltage characteristic of an 

injection junction, and the corresponding Vd vs. Ii curve (sample 6 

of Table I). The resemblance of this Vd-l
i 

curve to the theoretical 

* Q vs. I. curve shown in the inset of Fig. 1 is remarkable. 
1 

The plateau 

in the V, vs. I. curve at V. ~ (A+A')/e is a direct experimental proof 
. d 1 1 

* that Vd is proportional to the quasiparticle charge imbalance Q . 
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For some samples, such as the one shown in Fig. 5, there was some 

asymmetry of the Vd vs. Ii curve about the origin. The degree of 

asymmetry varied from sample to sample, and was usually more pronounced 

for samples with small injection resistance, for which the dissipation 

at a given injection voltage was higher than for samples with a high 

injection resistance. There was no apparent correlation of the asymmetry 

with the quality of the injection junction as judged by its current-voltage 

characteristics. Furthermore, this asymmetry increased at lower temperatures, 

and disappeared gradually as T approached T. The same phenomenon has 
c 

9 also been observed for S samples. We suspect that the asymmetry arises 
n 

from the branch imbalance induced by the temperature gradient
4 

generated 

by dissipation in the injection junction. In our measurements, .we elimin-

ated this effect by taking the magnitude average of Vd for both polarities 

of the injection current, I .. 
1 

Figure 6 shows the experimentally measured * -1 (F TQ*) ,that is, 

Ii (2N(O)V
d

g
NS

Qe2)-1, vs. ~/kBTc for five representative samples. The numbers 

in parantheses correspond to the sample numbers in Table 1. All quantities involved 

in the experimental data (shown as dots in Fig. 6) were experimentally 

determined with the exception of N(O), which we took as 1.74 x lo28ev-lm-3.25 

The error bars shown in Fig. 6 were mainly due to the uncertainties in the 

measurements of Vd a~d~. The solid lines were the best fits of the 

theory described in Sec. II A and B to the data ~sing the two fitting 

-1 -1 -1 parameters TO and TQeloTo' To was determined from the initial slope 

-1 
of the experimental data shown in Fig. 6, and TQelTo was determined from the 

upward curvature needed to fit the data at lower temperatures. The fitting 

.. 

.. 
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quality for those samples shown in Fig. 6 is good, and that for the 

remaining samples was at least comparable .. The values of T -1 and TQ- 1
1 

1 
o e 0 0 

for each sample are listed in Table I. In the last column of Table I. 

• we also list the normalized mean square gap anisotropy <a2> in the "clean" o 

'. 
limit, which was obtained from Eq. (2.24). For clean bulk AI, both 

theoretical calculations26 and experimental results
27 

from tunneling 

measurements of single crystal Al indicate th~t <a 2>0. :: 0.01. Our 

results for thin Al films are several times larger than this value, and 

vary widely from sample to sample, with no apparent correlations with 

It should be realized that 

the values of <a2> in these thin Al films are very small, being reduced 

from <aha by the factor (1i/2T1~)2[Eq. (2.22)]. Even for the cleanest film 

we tested, this reduction factor is about 5 x 103 at 0.9T. The remarkable 
c 

sensitivity of the branch mixing time to small gap anisotropies reflects 

the weak electron-phonon interaction in AI. A similar degree of gap 

anisotropy in Sn or Pb could not have a significant effect on T
Q

, as 

9 
already demonstrated in the work of Clarke and Paterson. 

Figure 7 shows the experimentally determined values of T -1 vs. T . 
o c 

Although there is scatter between different samples with similar T 's we 
c ' 

see that T -1 increases 
o 

Fig. 7 represent T -1 ~ 
o 

rapidly with T . 
c 

The two straight lines shown in 

5 6 
T and T . Now if a 2F(w) is more or less 

c c 

• independent of T , we expect T -1 to be proportional to T 3 [Eq. (1.1)]. 
c 0 c 

Therefore, our experimental results indicate that as T increases from 
c 

about 1.2 to 2.1 K, either a 2F(w) increases substantially, or other branch 



-21-

relaxation mechanism becomes important. These two possibilities will 

be further discussed in the next section. 

For the cleanest films (T < 1.3K) we obtained an average T • 
C o· 

T = 0.1 ± 0.02ws 
o 

at an average T of 1.24 K. 
c 

V. DISCUSSION AND CONCLUSIONS 

(4.1) 

Before discussing possible causes for the rapid increase of T- 1 with 
o 

T , we first compare our value of T for relatively clean films with the 
c 0 

values obtained by other workers. Table II lists all the experimental and 

theoretical values of T for Al known to us. Five values of T have been 
o 0 

obtained from.measurements of the quasiparticle recombination time, T R, 

° h ° 36 uS1ng t e equat10n 

(5.1) 

where NT' the quasiparticle equilibrium density at temperature T, is 

given by 

(5.2) 

31 Long obtained a value of 0.35wm for the 2~- phonon mean free path against 

pair breaking, 1\., using a technique that avoided ·enhancement by phonon 

trapping. We obtained T 
o 

f I\. ° h 1 ° h O 37 rom uS1ng t e re at10ns 1p 

(5.3) 

where N is the equilibrium density of phonons with energies greater than 
wT 

2~, and V ph is the transverse phonon velocity. 34 Schuller and Gray interpreted 

.. 
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f d ·• 17 . their experimental results using the theory 0 Schmid an Schon to obtaln 

T
E

, the average inelastic scattering time of electronsat'the Fermi surface 

at T = Tc' We converted TE to TO using Eq. (2.34). 

The table is completed by two theoretical estimates of ,. Kaplan 
o 

4 ' 2 et a1. calculated T = 0.L14fJsin Al from a [2t,(0)]F[2t,(0)]. However, instead of using 
-- 0 

a measured value of a 2F(which is unavailable), they used the multi-OPW 

38 
calculations of Tomlinson and Carbotte . Unfortunately, these calculations 

show considerable scatter for energies below about lmeV, and Kaplan 
4 

et a1. 

therefore assumed a quadratic energy dependence for a 2F in this region. 

Thus, their value for, in Al may be less reliable than the value for those 
o 

metals in which they used a measured form of a 2F. 
35 

Lawrence and Meador 

, -1 have calculated 'E ' the average inelastic quasiparticle scattering rate 

at the Fermi level, using microscopic theory. 
-1 7 3 -1 

,They find 'E = 1. 3 x 10 T s 

Using T = 1.2K and TO = 8.4 'E [E~. (2.34)], we find '0 = O.37fJs, a value 

4 that is in good agreement with the value of 0.44fJs found by Kaplan~' a1. 

The first five entries in Table II have been reviewed in detail by 

Eisenmenger et a1. 39 These authors point out,that the measuremenffi of 

Miller and Dayem
28 

and Levine and Hsieh
29 

may contain substantial errors 

because the temperature dependence of the data was not in agreement with 

theoretical predictions (at low temperatures in the case of Miller and Dayem, 

and near T in the case of Levine and Hsieh). Furthermore, the values of 
c 

'R' and hence of '0' contain a phonon trapping enhancement factor that is 

difficult to estimate with any accuracy. Consequently, we shall not include 

these two measurements in the subsequent discussion. The remaining experimental 

values fall into two groups. Group I contains the latest three recombination 
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time measurements of T that are in good agreement with each other, with an 
o 

average value of O.4~s, and also apparently in good agreement with the two 

theoretical values. However, the agreement of the data of Chi and Langenberg
33 

may be somewhat fortuitous. The transition temperaturesof their films were 

about 1.7K, as compared with values of about 1.3K for the films of Gray, et al.
30 

and Smith and Mochel,32 and one would expect the value of T obtained by Chi 
o 

and Langenberg to be smaller by a factor of about 2.2. Group II contains the 

estimates of T from the 2~ - phonon mean free path,3l the gap relaxation time,34 
o 

and the branch mixing time (present work) with an average value of about 

O.l~s that is a factor of four smaller than the theoretical and Group I 

estimates. 

It should also be noted that the theoretical calculations are for bulk, 

clean aluminum whereas the mean free paths of the Al films on which all of 

the measurements except our own were made were boundary-limited to a value of 

the order of lOOnm. Schmid40 has calculated that the inelastic scattering 

rate for films with a mean free path of lOOnm (p = 9nnm) is roughly three times 

higher than the rate for bulk aluminum. This increase in the elastic scattering 

rate arises from the increased coupling between the electrons and the transverse 

phonons in the presence; of impurities. Schuller and Gray34 used this theory to 

explain why their value of T obtained in films with mean free paths of l80nm 
o 

was below the theoretical value. However, our results suggest that this theory 

may not be valid. In an attempt to compare our results with Schmid's theory, we 
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have plotted our values of '0- 1 vs. P4.2 in Fig. 8 (solid circles). 

The broken line is Schmid's theory (taken from Fig. 4 of ref. 40), 

10 -1 41 . 
with kF = 1.75 x 10 m ,and f1tted to '0= 0.40 s (the average 

of the two theoretical estimates) in the clean limit (P 4 •2 
-1 

< 10 nnID). 

It is unreasonable to expect the theory to fit the data for samples in 

which T is significantly higher than the bulk value. Thus, we 
c 

restrict our comparison of theory and experiment to samples with 

resistivities below 19nilm, where T ranges from 1.22 to 1.27K. 
c 

From Fig. 8, it is obvious that the measured '0 is independent of P4.2' 

in this range while the theory predicts that. should change by a 
o 

factor of about 5. Thus, we conclude that the fact that our value 

of. for clean Al is a factor of about 4 below the theoretical value 
o 

cannot be explained by Schmid's theory, and, further, that there is 

an unresolved discrepancy between the two groups of experimental 

measurements. 

It should be pointed out that the variation of T with resistivity 
c 

in our films is in reasonable agreement with other measurements in the literature. 

42 As an example, in Fig. 8 we have plotted the results of Pettit and Silcox 
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(crosses) together with our own data (open circles). Our transition 

temperatures are slightly lower, but clearly follow the same trend. 

It is also noteworthly tha~ according to the results of Deutscher et 
43 

al. , 

the mean free path in the Al films is of the order of the grain size even 

for our dirtiest films. Thus, the grains are electrically connected, and 

the resistivity is not due to electron hopping between isolated grains. 

We now turn to a discussion of possible mechanisms for the rapid 

increase of , -1 with T shown in Fig. 7. One obvious candidate is an 
o c 

increase in the value of a 2F(w) = bw2. If the form of a 2F(w) is independent 

of T , we expect, -1 to be proportional to T 3 IEq. (1.1)]. However, as the 
c 0 c. 

transition temperature of our samples rises from 1.2 K to 1.8 K, '0- 1 increases 

by a factor of about 10 (Fig. 7). Thus our data indicate that b must increase 

by a factor of about 3 over this range of transition temperatures. Now the 

important contribution of a 2F(w) to the scattering is ~t frequencies w ~ 

kBTc/h, and our measurements, and the other measurements listed in Table II, 

are insensitive to the main peaks of a 2F(w) located at energies much greater 

than kBT. Unfortunately, tunneling measurements for A144 provide good 
. c 

estimates of a 2F(w) only near the peaks, and, to our knowledge, no reliable 

experimental information is available at low frequencies. However, theoretical 

calculations45 on disordered superconductors and experimental measurements46 ,47 

'on disordered Sn and Pb indicate that, at low energies, a 2F(tu) 'can not only 

be substantially greater than for the clean materials, but can also change 

from a quadratic to a linear dependence on w. Presumably, similar 

changes could also occur in AI. Thus, a substantial increase in the low 

energy part of a 2F(w) could explain the rapid increase of , -1 with decreasing 
o 

,.. 
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mean. free path. It is interesting to note, however, that if the 

frequency dependence becomes linear instead of quadratic, the basic 

results of our theory will probably not change very much. First, the 

dependence of T- 1 on A will not change because this result arises from 
Q 

the properties of the coherence factors. Second, although a linear 

energy dependence of a 2F(w) might lead to a slightly different steady 

state distribution of quasiparticles, the relaxation rate is always 

determined by a2F(kBTC/h)because the majority of quasiparticles have 

energies of order kBT for temperatures near T. Therefore, if the rapid 
c c 

increase of T -1 with T is due to an increase in a 2F(w), the experimental 
o c 

results lead us to conclude that.a2F(k
B

Tc/h)for the dirty films is roughly 

a factor of 6 greater than a2F(~Tc/h)for the clean films, irrespective of 

the form of a 2F(w). 

We now consider alternative explanations for the rapid increase of 

T -1 with T , namely other branch relaxation mechanisms that could 
o c 

also produce a linear 

the electron-electron 

dependence of T -Ion A. A possible candidate is 
o 

. . 48 d d 35 1nteract10n. However, Lawrence an Mea or 

have calculated that the electron-electron scattering rate is only about 

one-fourth of the electron-phonon rate. Further, in Schmid's calculation40 

plotted in Fig. 8, the rise in to-l for P4.2 > O.3~nm is largely due to 

the onset of electron-electron scattering. However, this rate is an order 

of magnitude lower than the experimentally observed rate. We conclude that 

electron-:lectron scattering is unlikely to explain the observed behavior. 

According to Eqs. (2.33) and (2.35), another possible mechanism is 

electron spin-flip scattering by magnetic impurities. It is conceivable that 

oxygen atoms on the surface and/or at the grain boundaries of the Al films 
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have dangling bonds with magnetic moments due to the localized unpaired 

49 - 50 
electrons. Such effects have been observed by Witters and coworkers 

in their measurements of the conduction electron spin resonance of AI. 

To investigate this possibility, we assume that T~I = n xii, where n is 

to be determined from the experimental data. In the temperature range of interest 

(O.9T to 0.999T ), Eq. (2.33) can be reduced to 51 
c c 

(5.4) 

Therefore, in the presence oOf an appreciable amount of spin-flip scattering, 

T
E

- 1 should be replac~d by TE-1(1 + 2 T:I/T;I)~, or, equivalently, T
O

- 1 

1 

should be replaced by T -I(T )(1 + T -1/4.2 T -l(t )~. We further assume 
o c soc 

that T -1 is proportional to T 3, so that T -I(T ) = T -1(1.2K)(T /1.2)3. 
o c 0 c 0 c 

Using the relationship between Tc and P4.2 shown in the inset of Fig. 8, we 

I 7 -1 -7 obtained the solid line in Fig. 8 with T - (1. 2K) = 10 Sand n = 4 x 10 . 
o 

Given the scatter in the data, the fit is quite satisfactory. We note that 

-~ (TEf) is about 1.4 and 1.2 for the cleanest samples and dirtiest sample 

respectively, while we typically used ~/kBT - 0.2 to obtain the initial slope 

in Fig. 6. Thus, we believe that the validity condition [Eq. (2.36)] for 

!.: 
Eq. (5.4) is satisfied, particularly in its less restrictive form ~/kBT $ (TEr)-2 

(see Section II). The conclusion that the increase in T -I may be due to magnetic 
o 

impurity scattering is obviously very speculative, yet we feel that this 

mechanism cannot be ruled out. Further light could perhaps be shed on this 

problem by-measuring TQ in samples deliberately doped with magnetic impurities. 

.. ' 

• 
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In summary, for Al samples not deliberately doped with oxygen, we 

find T = 0.10 ± 0.02lJsec 
o 

for an average transition temperature of 

1.24 K. This result is in good agreement with gap relaxation34 and 

2~ - phonon lifetime31 measurements, but roughly a factor of 4 lower 

. 30 32 33 4 35 than recombina.tion t1me measurements ' , and theoretical estimates. ' 

As the samples are progressively doped with higher concentrations of oxygen, 

the transition temperature increases, and T -1 increases, but at a much 
o 

3 faster rate than the expected T dependence. This rapid rate of increase 
c 

of T -1 could be explained by an increase in the value of a2F(w~ as is known 
o 

to occur in disordered Sn and Pb films. Alternatively, magnetic impurities 

could possibly account for the behavior. Finally, the increase in the elastic 

branch crossing rate as the mean free path is reduced is in good agreement 

with our computer calculations, which use the anisotropy as a fitting parameter. 
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Table 1. Measured and calculated· quantities for the eleven samples tested. 

Film R
300

· Ri T T -IT <a 2 > 
a 

Sample Thickness T p 4.2 £ 0 
c -- Qelo 0 0 

(nm) (K) 
R4 . 2 (nm) (st) (ns) (rstm) 

'(1 

1 590 1.219 13.7. 2.2 409. 0.70 97 

2 560 1. 219 13.9 2.3 391 0.40 95 

3 590 1.226 14.0 2.4 375 0.46 90 

4 566 1.217 12.6 2.B 317 0.54 100 20.B 0.022 

5 210 1.228 5.1 9.0 100 0.13 90 7.B 0.034 

6 200 1.231 5.1 9.0 100 0.32 102 13.0 0.049 

7 244 1.262 4.B 10.0 90 0.65 lOB 5.2 0.020 

8 275 1.267 3.7 11.5 7B 1.22 111 5.2 0.022 

9 206 1.253 3.0 17.0 53 0.067 120 3.9 0.023 

10 95 1. 241 3.9 19.0 49 2.1 66 5.2 0.076 

11 126 1.306 2.6 39.0 23 0.20 67 0.78 0.017 

12 110 1.411 2.5 72.0 12.5 O.BO 49 0.52 0.025 

13 190 1.573 1.7 150 6.0 0.46 13 0.26 0.079 

14 130 1.886 1.1 BOO 1.1 4.0 10 < 0.1 < 0.15 

15 130 2.113 1.0 850 1.0 2.0 8.5 < 0.1 < 0.18 

aThe uncertainties in <a2 > arise from the uncertainties in the curve fitting used to determine TQ-I(O)T . For o e 0 

samples 14 and 15 the upward curvature is so small that only an upper bound on <a 2 > can be given. For samples 1 to 
0 

3 measurements were taken only within 10mK of T , so that values of TQ i 1 T and <a 2 > were not determined. 
ceo 0 0 

.,. 
f " 
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Table II. Values of TO for aluminum 

Quantity Measured T (K) 
c 

Effective recombination time 1.45 

Effective recombination time 1.2 

Effective recombination time 1.3 

2~ - phonon mean free path .1. 3 
(A 0.35lJm) 

Intrinsic recombination time 1.3 
(TR = 1.4lJS at ~/kBT = 6) 

Effective recombination time 1.7 
(TReff = 0.03lJs at ~/kBT = 1.5) 

Gap relaxation time 1. 21 

Branch mixing time 1. 25 

(Calculated) 1.2 

(Calculated) 1.2 

phonon 
trapping 

enhancement 
factor 

7 

1 

1 

1.1 

1 

1 

~ ~ 

T (lJ sec.) 
o 

1.1 

0.2 

0.36 

0.10 

0.44 

0.39 

0.13 

0.10 

0.44 

0.37 



Figure Captions 

Fig. 1. Computed branch imbalance in the quasiparticle distributions 

vs. energy for a 100 nm- thick film with ~ = O.lmeV, with 

quasiparticles injected from a second film with ~' 0~12meV 

through a lQ - 3mm x 3mm tunnel junction biased at lmV. 

Curves a and b were calculated from the coupled kinetic equations 

with, -1, = 0 and 7.8. 
Qelo a 

Curve a' was calculated for 'Q-
l
l T = 0 e a 0 

with ~' = O. Curve c is the prediction of the chemical potential 

model. 

* -1 
Fig. 2. Calculated values of (F T

Q
*) TO vs. ~{T)/kBTc for eight values of 

'Q~io'o: 0, 0.65, 1.3, 2.6, 5.2, 7.8, 13, 20.8. TQi~TO (broken line) 

is shown for comparison. Insert shows Q*/Q (solid lines) for 

* , -11 T = 0, 2.6, 20.8, and F (broken line) and F (dotted line), 
Qe 0 0 

which are independent of the value of TQ~ioTO' 

Fig. 3~ Inelastic quasiparticle branch mixing rates, TQ
1 (E)T

O
' vs~ quasiparticle 

energy E/A obtained from the exact equation, Eq. (2.27) (solid line), 
o 

and two different approximations, Eq. (2.28) (broken line), and 

Eq. (2.32) (dotted line). 

Fig. 4. Inelastic quasiparticle charge imbalance relaxation rates, TQ! To' 

vs. quasiparticle energy E/~ obtained from the exact equation, 
o 

Eq. (2.37) (solid line) and an approximate form, Eq. (2.38) (broken line). 

Fig. 5. Measured V. and Vd vs. I. for . sample 6. 
1 1 

Note the two 

different voltage scales. Inset shows sample configuration. 



* -1 Fig. 6. Measured values of (F TQ*) == I/2N(0)gNS(O)r2eVd vs. t,(T)/kBTc 

Fig. 7. 

Fig. 8. 

for 5 of the samples listed in Table I (sample numbers shown in 

paranthesis). 

T -1 vs. T for Al films. The two solid lines, representing 
o c 

T 5 and T 6 dependences, while the broken line represents 
c c 

3 a T dependence. 
c (left hand ordinate) 

Experimentally determined T -1 /Vs. measured residual resistivity 
o 

P4.2 (.). 

Solid line 

Broken line is the theoretical calculation of Schmid (Ref. 40). 
, _ r-- ,1-

represents T -l(T )[1 + nTl 1/4.2~ - (T )]~(right 
o c 0 c 

hand ordinate). Inset shows the measured Tc vs. P4 . 2 for the 

present experiment (0) together with data taken from Ref. 42 (x). 
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