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FOREWORD

The National Resource for Computation in Chemistry (NRCC) was
established as a Division of Lawrence Berkeley Laboratory (LBL) in
October, 1977. The functions of the NRCC may be broadly categorized
as follows: {1) to make information on existing and developing compu-
tational methodologies available to all segments of the chemistry
community, (2) to make state-of-the-art computation facilities (both
hardware and software) accessible to the chemistry community, and (3)
to foster research and development of new computational methods for
application to chemical problems.

Workshops are one facet of the NRCC's program for both obtaining
and making available information on new developments in computationally
oriented subdisciplines of chemistry. The goal of this workshop was
to bring together some of the principal developers of new methods that
go beyond the Hartree-Fock formalism in the description of the electronic

structure of molecules. In the Hartree-Fock model the motion of each
‘ electron is governed only by the average field of the other electrons.
"Post Hartree-Fock" refers to methods that aim at describing the
instantaneous motion of each electron. This electron correlation
effect plays an important role in determining the structure of
molecules in their ground and excited states. Quantum chemists must
be able to reliably account for this correlation energy if they are

to accurately predict molecular properties and interpret experimental

data.
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The first part of the workshop concerned the more familiar con-
figuration interaction (CI) method in which the electronic wavefunction
is expanded in a basis set of configurations, i.e., a linear combination
of Slater determinants in which each of the electrons of the system is
assigned to a different spin orbital. The wavefunction is determined
by applying the variational principle. Except for a few very small
molecular systems, a "full CI" calculation is not generally possible so
that considerable care must be taken in choosing the molecular orbital
expansion functions and in selecting configurations for inclusion in the
CI expansion. The first session addressed the determination of the
molecular orbitals for the construction of the configurations, and the
second session examined the selection of configurations for the CI ex-
pansion.

The computation of the Hamiltonian matrix elements between con-
figurations, although straightforward, is time consuming. The third
session considered advances in the past year on this problem. One alter-
native presented is the simultaneous construction of the Hamiltonian
matrix as one proceeds through the calculation of matrix elements.
Another possibility is to create a list of the formal expressions for all
matrix elements and to substitute the electron repulsion integrals into
these expressions to obtain the values of the matrix elements. This latter
technique is referred to as the "formula tape" method. The fourth session
was devoted to discussing the relative merits of the two methods.

An earlier NRCC workshop held during the summer of 1978, "Numerical
Algorithms in Chemistry: Algebraic Methods" (LBL-8158), discussed in
detail the tools available for finding the lowest roots of large, diago-

nally dominant matrices. Such root searches are one step of the CI
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technique, and a short summary of the problem with suggested solutions was
presented at the current workshop.

The Direct CI method solves the secular equations directly from the
electron repulsion integrals without explicitly constructing a Hamiltonian
matrix. The most recent developments in the field of Direct CI were the
subject of a session at the current workshop.

Methods different from the CI Method are also used to obtain a
correlated wavefunction. Several sessions were devoted to a presentation
of these algorithms, such as Caupled Electron Pair Approximation (CEPA),
Pseudo Natural Orbital (PNO)-CI/CEPA, Self Consistent Electron Pair (SCEP),
along with the many-body Perturbation Theory and the Coupled Cluster Theory.

Logistics and program design were the subject of the last and one of
the more important sessions. The computational efficiency and flexibility
of the FORTRAN CI programs are a prime concern to both the NRCC and those
in the chemistry community who wish to perform CI calculations.

The present volume is an attempt to present a timely digest of each
session, and therefore closely follows the style of presentation of the
speakers. Annotated bibliographies are included as a guide to the liter-
ature of the various areas.

The NRCC is indebted to Dr. Charles Bender, Lawrence Livermore
Laboratory, and Professor John Pople, Carnegie-Mellon University, for
organizing this workshop. We also thank Dr. Bender, and Drs. Michel Dupuis
and John Wendoloski of the NRCC for their efforts in organizing this
volume.

The NRC? is jointly funded by the Department of Energy and the

National Science Foundation.

William A. Lester, dJr.
Director NRCC
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WORKSHOP RECOMMENDATIONS
TO NRCC

Recommendations from the session on matrix elements:

The recommendaticons for thils session cannot be separated from those
of the other sessions. Esseatially they ‘nvolve the acquisition of
geveral existing C1 program packages and their adaptation to the NRCC
environment, including the design and implementation of a common
Staudard Data Interface to be incorporated into these programs, along

the lines pioneered in the Munich System.

The actual programs to be acquired have been discussed in other
sessions. The principal candidates are opeu-eneded programs, such as
the University of Washington (Davidson) progrars (or their NASA-Ames
version), but others, such as the Caltech/LASL (F. Bobrowicz) programs,

should also be considered.

The design of the Standard Data Interface should be assigned to a

small working group or committee.

Recommendations from the session on diagonalization technigues:

These are the same as the recommendations from the workshop on
Numerical Algorithms. The programs to be set up at NRCC should include
standard (in core) diagonalization packages, such as EISPACK, and
speclal CI-oriented large~matrix programs. In this last category, the
principal candidates are the simultaneous multiroot versions of
Davidson's method (by B. Liu) and of the coordinate relaxation method
(by R. C. Raffenctti and/or by I. Shavitt). Also, a collection of
typical CI matrices of various sizes should be assembled, in order to

facil.tate testing, devclopment, and comparison of new methods.



Recommendations from the session on direct CI methods:

NRCC should keep a close eye on the coming work on the unitary group approach
to direct CI.

NRCC should set up a2 few of the existing direct CI programs, e.g.

CICS (Roos, Lund) (cpc, IBM)
cIDU (Bucskay, Sidney) (CD 7600)
CITRI (Schaefer, Berkeley) (Harrish/y, CDCZ)
CIMC (Roos, Lund) (cpc, IRM)
CIs (Siegbahn, Stockholm) (CDC, IEBM)

SVM (Bender, Livermore)



Recommendations from the session on program logic and design:

C. Bender, G.H.F. Diercksen (Chairman), J. Hoy,
S. Langhoff, M. Yoshimine

It is recommended to NRCC to study the svitability of the concept of
standardized data lists as general means to lirk different programs to
flexible and open-ended general purpose molecular program systems
serving equally well as a black box to experimental chemists, and as

a working tool for further research in theoretical chemistry, and,

if apt, to define Standard Data Interfaces. Special emphasis should
be given to data transportability and data reduction (a study group

may be set up for this purpose).

It is recommended to NRCC to study the creation of a Data Base,
accessible by a network system, containing quantum mechanically
calculated wavefunctions and expectation values of atomic

and molecular systems
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INTRODUCTORY REMARKS
J.A. Pople

The following are desirable features for a theoretical model chemistry

incorporating electron correlation;

MODEL CHEMISTRY FEATURES

1. Unique, continuous energy surface.
2. Efficient for large systems.

3. Size consistent.
E(X+Y) = E(X)+E(Y) for isolated systems.

4. Variational.
E (model) > E (exact)

5. Transformation invariance within degenerate sets.

The various methods described in this workshop should be examined
with these in mind. A1l the five criteria are satisfied at the Hartree-
Fock level. Beyond Hartree-Fock, it is difficult to satisfy them all

short of full configuration interaction within the basis set employed.
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DETERMINATION OF ORBITALS FOR USE IN
CONFIGURATION INTERACTION CALCULATIONS
by

Thom. II. Dunning, Jr.

Before beginning our discussion of the determination of the
orbitals for use in configquration interaction (CI) calculations,
we should take note of the intimate relationship between the
specification of the orbital set and the classes of configurations
included in the calculations. To take an extreme case, note that
for a full CI calculation the choice of orbitals is completely
irrelevant, i.e., the calculated wavefunction is unaffected by
an arbitrary unitary transformation of the orbitals; it depends
only on the space spanned by the original basis set. Of course,
for most chemical systems it is not possible to realistically carry
out a full CI calculation, so that specification of the orbital
set is important. Even for less-than-full CI calculations,
it can be shown, however, that for certain types of calculations
the wavefunction is unaffected by restricted transformations
among the orbital set. For example, for CI calculations based
on a single configuration plus a complete set of excitations of
a given type (single, double, etc.), the calculated wavefunction
is independent of transformations among the set of "occupied"
orbitals and among the set of "virtual" orbitals. The wavefunction
does, however, depend on transformations which mix the occupied

and virtual orbitals.
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While in the above we were primarily concerned with the
depender.ce 0f the calculated wavefunction on the orbitals used
in the calculations, a particular orbital set may be preferable
for other reasons. For example, in interpreting the results of
a CI calculation, it is important that the orbitals be determined
in a physically reasonable manner so as to simplify insofar as
is possible the assignation of specific correlation effects to
the configurations included in the calculations. Also, the cost
of calculating a wavefunction of given accuraey depends on the
orbital set used. For CI calculations the cost is related to
the number of confiqurations included in the expansion. Thus,

a given orbital set may be preferred because it leads to a more

compact representation of the wavefunction.
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ORBITALS FOR USE IN CI CALCULATIONS

CLassIFICATION OF ORBITALS

Y N R Y Vi S T NV v uan

P L e

—— ORBITAL SET NECESSARY FOR PROPER ZERO-ORDER
DESCRIPTION

SECcONDARY ORBITAL SET

— ORBITAL SET NEEDED FOR CORRECTIONS TO ZERO-
ORDER DESCRIPTION

MeTHODS OF DETERMINING THE ORBITALS FOR USE IN

CONFIGURATION INTERACTION UALCULATIONS

—— HARTREE-Fock METHOD
—— GENERAL1ZED VALENCE BonD METHOD

— MULTICONFIGURATION SELF-CONSISTENT FIELD
MeTHODS

— NaTuraL OrBITAL METHODS

Figure 1.
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To begin let us divide the orbitals to be used in the CI
calculations into two sets:

(1) the primary orbital set which is the minimum set of
orbitals necessary to provide a proper zero-order description of
the chemical system of interest, and

{2) the secondary orbital set which consists of those orbitals

needed to provide minor corrections to the zero-order wavefunction.

In selected cases the primary orbital set may consist of just the
Hartree-Fock orbitals. 1In general, however, the primary orbital

set will be larger than the Hartree-Fock orbital set.

This division of the orbitals into a primary and a secondary
set is more than just a bookkeeping convenience for different
techniques can be used to determine the orbitals in the two sets.
Thus, the energy of a system is critically dependent on the

orbitals in the primary set. As a result, variational technigques

such as
{1) the Hartree-Fock {HF) method,
{2) the generalized valence bond (GVB) method,
{3) the multiconfiquration self-consistent field (MCSCF)

method, and

(4) iterative natural orbital (NO) techniques
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are reguired. Although the NO methods are not strictly variational
methods, they are near-variational and in practice have been found

to yield satisfactory results.

The energy of the system is far less dependent on the orbitals
in the secondary set. For example, one common method of obtaining
a secondary orbital set is just to make use of the rirtual”
orbitals from a HF calculation. These orbitals ar« not at all
defined in a physically reasonable manner; nonetheless, satis-
factory results can be obtained if the orbitals and resulting
configurations are not truncated unreasonably. Except in selected
cases, this method is not, however, recommended. Rather, it is
advisable to obtain the secondary orbital set using energy related
techniques, e.g., as the NOs obtained from perturbation theory or
as the weakly occupied orbitals obtained with the methods mentioned
above. Because of the weak dependence of the energy on the
secondary orbital set, however, these latter methods undoubtedly
contain a certain amount of "overkill". One of the challenges
before us in advancing the CI method is the development of fast,
efficient methods for determining a secondary orbital set which

takes full advantage of the weak dependence of the system energy

on these orbitals.
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THE HARTREE-FOCK METHOD

OVERVIEW OF RESTRICTED HARTREE-FOCK METHODS
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FuLL VariaTIiON METHODS

ParTIAL VARIATIONAL METHODS
—— ExTeENDED HARTREE-Fock METHOD

—— IMprRoVED VIRTUAL ORBITAL METHOD

Figure 2.
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THE HARTREE-FOCK METHOD

ADVANTAGES AND DISADVANTAGES OF RESTRICTED HARTREE-FOCK METHODS
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—— ECONOMICAL
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—— SINGLE REFERENCE CONFIGURATION

—— SECONDARY ORBITAL SET UNSATISFACTORY

Figure 3.
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For a closed shell configuration the Hartree-Fock wave-

function takes a particularly simple form, namely,

Wypp =of0 0 -0 0 af---aB (1)

The orbitals in (1) are solutions -0f the pseudo-eigenvalue
equations
Hypd; T €303

(2)
‘”HF = h + Z (2Ji—Ki)
1

For a derivation of (2) and a discussion of its solution using
basis set expansion techniques the reader is referred to

C. C. J. Roothaan, "New Developments in Molecular Orbital
Theory," Rev. Mod. Phys. 23, 69 (1951). If (2) is solved in

a basis of N functions then the first n eigenfunctions of (2)
correspond to the orbitals occupied in (1) and the remaining

{N-n) eigenfunctions are referred to as the "virtual" orbitals.

It can easily be shown that the virtual orbitals are those
appropriate for a (2n+l)-electron system if no changes are allowed
in the 2n-eleetron core represented by (1). For most, but not

all, chemical systems these orbitals have positive energies (ei)
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and in the limit of a complete solution of (2) would not be

bound, i.e., £ would approach zero and the virtual orbitals
would become continuum functions. Such functions would be of
little use in CI calculations. Fortunately, for general molecular
systems basis set expansion techniques are used to solve (2) so
that the virtual orbitals are constrained to lie within the space
spanned by the original basis set. Only for basis sets containing
very diffuse functions does the continuum nature of the virtual

orbitals cause difficulties.

For open shell configurations, while the wavefunction is

still of a simple form, e.g., for doublet states

¥up =°‘@1¢1"'¢n¢n¢n+la3...aga , {3)
determination of the optimum set of orthonormal orbitals is not
guite so straightforward. 1In general, more than one pseudo-
eigenvalue equation must be solved, although in some cases it is
possible to combine the different equations into one master
equation using coupling operator techniques, see, e.g.,

C. C. J. xoothaan, "Self-Consistent Field Theory for Open Shells
of Electronic Systems," Rev. Mod. Phys. 32, 179 (1960). Wwith
miltiple equations to be solved, special procedures are required
to insure that

(1) the orbitals so determined are indeed the optimum orbitals

with respect to variations in both the occupied and virtual spaces
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(2) the occupied orbitals from all of the pseudo-eigenvalue

egquations form an orthogonal set.

Within the last few years techniques have been developed for the
full variational computation of the orbitals in general open shell
configurations. For a discussion of these techniques the reader

is referred to W. J. Hunt, W. A. Goddard, III and T. H. Dunning, Jr.,
“he Incorporation of Quadratic Convergence into Open-Shell Self-
Consistent-Field Equations," Chem. Phys. Lett. 6, 147 (1970)

[For a review of these and related technigques see F. W. Bobrowicz
and W. A. Goddard, III, "The Self-Consistent Field Equations for
Generalized Valence Bond and Open-5hell Hartree-Fock Wavefunctions"
in Methods of Electronie Structure Theory, ed. by H. F. Schaefer,
III, (Plenum Publishing Corporation, New York, 1977)] and E. R.
Davidson, "Spin-Restricted Open-Shell Self-Consistent Field

Theory," Chem. Phys. Lett. 21, 565 (1973).

Partial variational methods, which restrict the variations
allowed in the orbitals of open shell configurations such as (3),
have also been developed. While these methods of necessity do
not yield as low an energy as the full variational methods, they
are more economical and describe the ground and excited state(s)
in terms of a single set of orthonormal orbitals, a beneficial
feature if CI calculations are also to be carried out. 1In
addition, when the resulting orbitals are used in CI calculations
which include single excitations into the virtual space, the

results usually closely approximate those obtained with the £ull

variational orbital set.
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Two partial variational methods will be mentioned here:
the extended Hartree-Fock (EEF) method and the improved virtual
orbital (IVO) method. Both of these methods assume that the
orbitals of the closed shell HF ground state have been pre-
determined. Let us denote the orbitals occupied in the ground
state by {¢o} and the corresponding virtual orbitals by {¢v}.
Relative to £he closed shell configuration a singly excited state
may be represented by an excitation from one of the occupied

orbitals to one of the virtual orbitals, bio * ¢jv' In the EHF
method, K. Morokuma and S. Iwata, "Extended Hartree-Fock Theory
for Excited States,” Chem. Phys. Lett. 16, 192 (1972), the

variations in the set {¢,}, including ¢ are limited to trans-

io’
formations among the ground state occupied orbital space {¢0},
while the variations in ¢jv are limited to transformations among
the ground state virtual orbital space {¢V}. In the IVO method,

W. J. Hunt and W. A. Goddard, III, "Excited States of H20 Using
Improved Virtual Orbitals," Chem. Phys. Lett. 2, 414 (1969), only
the orbital ¢jv is variationally determined. As in the EHF method,

the variations in this orbital are restricted to transformations

among the ground state virtual orbital set.

The advantages of determining the primary orbital set with
the HF method are numerous, e.g.,

(1) the HF configuration for a system is well defined,
although exceptions do exist in situations in which a single

configuration is not adequate.



{2) the YF method is economical, and

{3) the YF model provides a simple orbital description of
ionization, excitation, etc. Such models are useful in developing
a gualitative understanding of the phenomena heing studied, thus

allowing the results to be extended to systems for which computa-

tions are not feasible.

On the disadvantage side, the HF model provides only a single
reference configuration and corresponding set of orbitals while
the theoretical description of many chemical processes of interest,
e.g., dissociation, reaction, excitation and ionization, often
require more than this minimal set. BAlso, for the reasons
noted earlier, the virtual orbitals from a HF calculation are
not a particularly appropriate set of secondary orbitals for use
in CI calculations. Their use in such calculations is recommended
only in selected cases, e.g., if the entire virtual space is to
be included in the calculation or if sophisticated selection

techniques are used.
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THE GENERALIZED VALENCE BOND METHOD

Overview OfF THE GENErRALIZED VALENCE Bonp METHOD
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—— STRONG ORTHOGONALITY CONSTRAINT

— DISSoOCIATION To "HF A1oms”

Figure 4.
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THE GENERALIZED VALENCE BOND METHOD

ADVANTAGES AND DISADVANTAGES OF THE (RESTRICTED)
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—— PROBLEMS WITH PERFECT-PAIRING RESTRICTION

—— SECONDARY ORBITAL SET UNDEFIMED

Figure 5.
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In the generalized valence bond (GVB) method, a valence bond
form is taken for the wavefunction and the orbitals and associated
spin-coupling are optimized using variational methods. At infinite
nuclear separations the orbitals so determined are just the atomic
orbitals of the constituent atoms. As the molecule is formed the
GVB orbitals hybridize, delocalize, etc. in response to the per-
turbing environment of the surrounding atoms. 1In the unrestricted
form of the method there is an orbital for each electron and the
spin function is a combination of all linearly independent spin
functions associated with N electrons. In general, the unrestricted
GVB orbitals are non-orthogonal. Unfortunately, determination of
the GVB orbitals for a system involving more than just a few
electrons is prohibitively expensive. In addition, because the
orbitals are not orthogonal, they do not form a convenient basis

for CI calculations.

To overcome these difficulties two approximation have been
invoked

(1) that the spin function be restricted to a single perfect
pairing function (perfect pairing restriction), and

(2) that the orbitals be constrained to be orthogonal if

they are not singlet coupled (strong orthogonality restriction).



Unrestricted GVB calculations provide justification for both of
these approximations. For most molecular systems near their
equilibrium geometries, the perfect pairing function has been

found to be the dominant spin function. Even when the perfect
pairing function does not dominate, e.g., upon dissociation, the
orbitals obtained with the perfect pairing restriction are a

good approximation to the unrestricted orbitals so that the

changes in the spin coupling can be described by a very limited

CI calculation. It has also been found that the total wavefunction,
and hence the system energy, is not sensitive to the overlap of
orbitals which are not singlet coupled. Again, to a large extent
any adverse effects associated with the strong orthogonality
restriction can be corrected for with a very small CI calculation.
In addition to the above restrictions, the GVB wavefunction for a
molecule is usually taken to be that which describes dissociation
to Hartree-Fock wavefunctions of the atoms. The one major exception
occurs for those atoms (and states of atoms) with ns-np near-
degeneracy corrections; for these atoms a two configuration wave-
function, containing both the nsznpm and npm+2 configurations, is

adopted for the separated atom limit.

Although the GVB orbitals determined in this way are pair-
wise non-orthogonal, the resulting GVB wavefunction can be recast
into a natural orbital form which is identically a (type of)
separated pair wavefunction and which involves an orthogonal set
of orbitals, the GVB natural orbitals. The equations for the GVB

natural orbitals take a particularly convenient form; see
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W. J. Hunt, P. J. Hay and W. A. Goddard, III, "Self-Consistent
Procedures for Generalized Valence Bond Wavefunctions. Applica-
tions to H,, BH, H,0, C,H. and 02," J. Chem. Phys. 57, 738 (1972)
and F. W. Bobrowicz and W. A. Goddard, III, “"The Self-Consistent
Field Equations for Generalized Valence Bond and Open-Shell
Hartree-Fock Wavefunctions" in Methods of Electronic Structure
Theory, ed. H. F. Schaefer, III, (Plenum Publishing Corporation,
New York, 1977). This method, with the approximations given
above, is referred to as the restricted GVB, or GVB(pp,so), method.

The GVB orbitals of a system are usually localized into inner
shell orbitals, bonding and anti-bonding orbitals, lone pair
orbitals, etc. For use in CI calculations these orbitals are
often transformed to symmetry adapted orbitals, formally reducing
the length of the CI expansion but complicating the form of the

Cl wavefunction itself.

In many modern CI methods the full set of molecular orbitals
which correlate with the atomic orbitals of the constituent atoms
are of special importance; see, e.g., the following discussion of
configuration selection for CI calculations. This set of orbitals
is often referred to as the valence orbital set (the core orbitals,
being fixed to be doubly occupied in the calculations, are ignored)
and for most systems is the primary orbital set. Such an expanded
orbital set and the associated configurations are necessary to
describe processes such as dissociation, reactions, etc. The HF
method does not provide a complete valence orbital set, e.g., it

contains the bonding and non-bonding combinations of the atomic
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orbitals, but it does not contain all of the needed anti-bonding
combinations. For most systems the GVB orbitals, on the other
hand, do form a complete set of valence orbitals and, as such,
provide a proper zero-order description of most chemical systems

and processes of interest.

The advantages of determining the orbitals for a CI calculation
using the restricted GVB method include:

{1) the GVB wavefunction for a system is well defined,

(2) the GVB method, with perfect-pairing and strong orthogonality
restrictions, is economical,

{3) the GVB method provides a multiconfiguration reference
function and a complete set of valence, or primary, orbitals,

(4) the GVB wavefunction provides for a simple orbital
description of chemical processes, more accurate and chemically

oriented than that provided for by the HF method.

The disadvantages of determining the orbitals using the
restricted GVB method include:

(1) difficulties arising from the use of the perfect-pairing
restriction, e.qg., some molecules such as benzene are not well
described by a single perfect-pairing configuration, and

(2) as in the HF method, the secondary orbital set is

essentially undefined.
Before concluding our discussion of the GVB method, it should
be noted that techniques have recently been developed which relax

the perfect-pairing restriction while retaining the strong
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orthogonality restriction. This method is particularly suitable
for studying chemical reactions which often involve changes in the
spin coupling in the transition state region. To date applications
of this method have been limited; see, e.qg., B. J. Moss,

F. W. Bobrowicz and W. A. Goddard, III, "The Generalized Valence
Bond Description of 0,," J. Chem. Phys. 63, 4632 (1975). For a
more complete discussion of the strongly orthogonal GVB (SO-GVB)

method, see F. W. Bobrowicz, Ph.D. Thesis (California Institute

of Technoloay, 1974).
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THE MULTICONFIGURATION SELF-CONSISTENT-FIELD METHOD

OVERVIEW OF MULTICONFIGURATION SELF-CONSISTENT-FIELD METHODS
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Figure 6.
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THE MULTICOMFIGURATION SELF-CONSISTENT-FIELD METHOD

ADVANTAGES AND DISADVANTAGES OF
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Figure 7.
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Rather than determining the primary orbital set from simple
orbital-type (HF or GVB) wavefunctions, it is, of course, possible

to determine the orbitals from a general multiconfiguration wave-

function
Yenr =2, %k %k
k

with both the CI coefficients, {C}, and the orbitals, {3} in {9},
being optimally determined — this is the multiconfiguration self-
consistent-field (MCSCF) method. Despite numerous difficulties in
solving the more complicated equations associated with a multiconfigura-
tion wavefunction, a number of general technigues have been developed,
including

(1) a Hamiltonian method similar to that used in single con-
figuration calculations, A. C. Wahl and G. Das, "The Multiconfigura-
tion Self-Consistent Field Method" in Methods of Electronic Structure
Theory, ed. H. F. Schaefer, III, (Plenum Press, New York, 1977).

(2) a "2%2" rotation method, J. Hinze, "MC-SCF. I. The Multi-
Configuration Self-Consistent Field Method,"” J. Chem. Phys. 53,
6424 (1973) and

(3) a generalized Brillouin theorem method, L. M. Cheung, S. T.
Elbert and K. Ruedenberg, "MCSCF Optimization through Combined Use-
of Natural Orbitals and the Brillouin-Levy-Berthier Theorem,"

Intern. J. Quantum Chem. {in press).
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Each of these techniques has been applied to many chemical
problems and, while each has its advantages and disadvantages

(in regard to speed, convergence, generality, etc.), all have

been generally successful.

To be efficient the number of orbitals and configurations
involved in the MCSCF wavefunction must be limited insofar as
is possible. This is the case because (1) the time involved in
determining the MCSCF wavefunction strongly depends on the number
of orbitals and configurations included in the multiconfiguration
expansion (the former far more than the latter) and (2) convergence
can be troublesome if an orbital contributes only weakly to the MCSCF
wavefunction. On the other hand, the energetic results can depend
critically on the orbitals and configurations included in the wave-
function. Thus, it is clear that an MCSCF procedure by itself is
incomplete; additional prescriptions indicating how to choose
configurations are required to make it a well defined method.
With such rules, which can be deduced from physical reasoning

and/or from quantitative experience, one obtains a specific MCSCF

model.

One possible choice is represented by the restrictions
imposed on the wavefunction by the GVB model. Other models that

have been found useful are the following ones.

(1) The "Hartree-Fock with proper dissociation" method,
G. C. Lie and E. Clementi, "Study of the Electronic Structure

of Molecules. XXI. Correlation Energy Corrections as a Functional
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of the Hartree-Fock Density and Its Application to Hydrides of
the Second Row Atoms,"” J. Chem. Phys. 60, 1275 (1974) and G. C.
Lie and E. Clementi, "Study of the Electronic Structure of
Molecules. XXII. Correlation Energy Corrections as a Functional
of the Hartree-Fock Density and Its Application to the Homonuclear
Diatomic Molecules of the Second Row Atoms," J. Chem. Phys. 60,
1288 (1974), which is just the GVB method recast into a MCSCF form,
(2) The OVC method, A. C. Wahl and G. Das, "The Method of
Optimized Valence Configurations: A Reasonable Application of
the Multiconfiguration Self-Consistent-Field Technique to the
Quantitative Description of Chemical Bonding," Adv. Quantum Chem.
5, 261 (1970), which attempts to include only those types of
correlation effects which change upon molecular formation and
(3} The "Full Optimized Reaction Space" (FORS) method of
K. Ruedenberg, K. R. Sundberg, and M. G. Dombek, which is described
in a separate article in this report. In the FORS method, the
orbitals are divided into two sets: those basically unaffected in
a chemical reaction and those affected (or replaced); within the
second set all possible configurations are constructed and

included in the MCSCF wavefunction.

Before concluding our discussion of the various MCSCF methods
we should take note of the separated pair method; see, e.g.,
D. M. Silver, E. L. Mehler and K. Ruedenberg, "Electron Correlation
and Separated Pair Approximation in Diatomic Molecules. I. Theory,"
J. Chem. Phys. 52, 1174 (1970) and subsequent papers in this
series. Although not as general as the MCSCF wavefunctions

discussed above, the separated pair wavefunction nonetheless is
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able to account for many important molecular correlation effects.
For example, as has been noted earlier, the GVB wavefunction with
perfect pairing and strong orthogonality restrictions is a limited
form of a separated pair wavefunction, and K. R. Sundberg and

K. Ruedenberg have, in fact, presented it from this point of view
under the name "Separated Pair Independent Particle Model"

(K. R. Sundberg, Ph.D. Thesis, Iowa State University, 1975, to be
published). The use of the orbitals obtained from separated pair
calculations in CI calculations was first practiced by K. J. Miller
and K. Ruedenberg for small atomic systems, "Electron Correlation
and Augmented Separated-Pair Expansion,” J. Chem. Phys. 48, 3444
(1968) and "Electron Correlation and Augmented Separated-Pair
Expansion in Berylliumlike Atomic Systems," J. Chem. Phys. 48, 3450
{1968). TFor molecular systems it is discussed in L. B. Harding and
W. A. Goddard, III, "Intermediates in the Chemiluminescent Reaction

of Singlet Oxygen with Ethylene. Ab Initio Studies," J. Amer. Chem.
Soc. 99. 4520 (1977).

The MCSCF method has many advantages as a method for determining
the orbitals for use in CI calculations. For example,

(1) the MCSCF method is reasonably economical if the number of
orbitals and configurations included in the MCSCF expansion is wisely
limited,

{(2) the MCSCF method provides a general multiconfiguration
reference wavefunction,

{(3) the MCSCF method can provide

{a) a full set of primary orbitals and

{(b) (at least) a partial set of secondary orbitals.
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On the disadvantage side, there may exist ambiguities and
uncertainties in regard to the optimal MCSCF model for a specific
system, particularly if configurations involving the secondary

orbitals are included.
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THE NATURAL ORBITAL METHOD

OVERVIEW OF NATURAL ORBITAL METHODS
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THE NATURAL ORBITAL METHOD

ADVANTAGES AND DISADVANTAGES OF NATURAL ORBITAL METHODS

e e ma mu e R = e R ee e e e R P T RN T R T e e e e Ta R RS P R e g e e Pt s i R P e e gt e P S e s

e mr e

—— FLEXIBLE MULTICONFIGURATION REFERENCE
WAVEFUNCTION

—— FULL PRIMARY ORBITAL SET

—— FULL SECONDARY ORBITAL SET

DISADVANTAGES

PR O W A v v

—— NOT ECONoMICAL (EXCEPT FOR PERTURBATION
METHODS)

—— NON-VARIATIONAL

Figure 9.



-41-

The natural orbitals (NOs) of a system are those orbitals which
lead to a diagonal representation of the first-order density matrix.
Natural orbitals were first introduced by P.-0. Lowdin, "Quantum
Theory of Many Particle Systems. I. Physical Interpretaion by Means
of Density Matrices, Natural Spin Orbitals, and Convergence Problems
in the Method of Configuration Interaction," Phys. Rev. 97, 1479
{(1955). For a two-electron system it was shown, P.-0. Lowdin and
H. Shull, "Natural Orbitals in the Quantum Theory of Two-Electron
Systems,"™ Phys. Rev. 101, 1730 (1956), that, for a given number of
configurations, expansion of the wavefunction in NOs leads to maximum
overlap with the exact wavefunction, with the magnitude of the orbital
occupation numbers being directly related to the importance of the
resulting configuration in the configuration expansion. This maximum
overlap principle, rather than a minimum energy principle, is the
reason that we refer to NO methods as near-variational methods for
determining the orbitals for use in CI expansions. Unfortunately,
for many electron systems the importance of a configuration in the
CI expansion is not determined solely from the occupation numbers of
the orbitals involved. Nonetheless, by minimizing the importance of
configurations which involve orbitals with small occupation numbers,
the use of NOs in CI calculations substantially improves the

"compactness" of the resulting wavefunction.
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The NOs of a system can usually be divided into a "strongly
occupied" set with occupation numbers n > 0.5 and a "weakly
occupied" set with occupation numbers n < 0.1. This, in fact,
was the motivation for our categorization of the orbitals for use
in CI calculations into primary (strongly occupied) and secondary
(weakly occupied) sets. For systems dominated by a single
configuration the strongly occupied orbitals are closely related
to the HF orbitals, e.g., it has been found that the two sets of
orbitals span nearly the same space, i.e., they are related by a
near-unitary transformation. While in this case the weakly
occupied orbitals are likewise a near-unitary transformation of
the HF virtual orbitals, the spatial characteristics of the
orbitals with the largest occupation numbers differ substantially
from those of the low-lying virtual orbitals. Similar relation-
ships hold when multiconfiguration reference wavefunctions are
used. The properties of NOs have been discussed in detail in
E. R. Davidson, Reduced Density Matrices in Quantum Chemistry,

(Academic Press, New York, 1976).

The difficulty with the use of NOs in CI calculations is
that the first-order density matrix, and hence the CI wave-
function, is required to calculate the NOs. Fortunately, it
has been found that the convergence of the CI expansion is not
strongly dependent on having the exact NOs, only a reasonable
approximation thereto. Taking advantage of this, a number of

methods have been developed to calculate an approximate set of
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NOs. The more important of these methods include:

(1) the iterative natural orbital (INO) method, C. F. Bender
and E. R. Davidson, "Studies in Configuration Interaction: The
First-Row Diatomic Hydrides," Phys. Rev. 183, 23 (196%) in which
an initial set of configurations, based on, say, the HF occupied
and virtual orbitals, is energy selected, the corresponding CI
wavefunction and NOs determined, and then the whole process is
repeated until the NOs and/or the energy has converged; it should
be noted that the convergence of neither the NOs nor the energy
is guaranteed and, in fact, in many cases these quantities may
start to diverge after a few iterations [see, e.g., K. H. Thunemann,
J. Romelt, S. D. Peyerimhoff and R. J. Buenker, "A Study of the
Convergence in Iterative MNatural Orbital Procedures," Int. J.
Quantum Chem. 11, 743 (1977)1,

(2) limited-CI natural orbital {(CI-NO) methods, see, e.qg.,

R. J. Buenker and S. D. Peyerimhoff, "Individual Configuration
Selection in CI Calculations with Subsequent Energy Extrapolation,"”
Theoret. Chim. Acta 35, 33 (1974), which calculate the NOs from
truncated CI wavefunctions, e.g., by selecting configurations with
a "loose" energy criterion, by limiting the types of configurations
generated, etc.; using this technigue it is important that all of
the orbitals be involved in the truncated configuration list,

(3) perturbation methods, see, e.g., G. C. Lie, J. Hinze and
B. Liu, "Valence Excited States of CH. I. Potential Curves,"

J. Chem. Phys. 59, 1872 (1973), P. J. Hay, "On the Calculation

of Natural Orbitals by Perturbation Theory,” J. Chem. Phys. 59,
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2468 (1973) and A. K. Q. Siu and E. F. Hayes, "Configuration
Interaction Procedure Based on the Calculation of Perturbation
Theory Natural Orbitals: Applications to H, and LiH," J. Chem.
Phys. 61, 37 (1974). These methods use either first-order
perturbation theory or the B, method to determine the NOs; this
can, of course, be done with considerable savings in computer

time over the first two methods.

It should be noted that, unlike the INO method, the latter two

methods require an appropriate reference wavefunction be determined

before the calculation of the NOs.

The advantages of natural orbital methods for determining
the orbitals for use in CI calculations include:

(1) the NO methods provide a completely general, multiconfigura-
tion reference wavefunction, although, as noted above, the limited
CI-NO and the perturbation methods require this function to be
predetermined (by, e.g., GVB or MCSCF techniques) and

(2) the NO methods can provide complete primary and secondary
orbital sets; of course, for use in the final CI calculations the

secondary orbital set may be truncated based on a minimum occupation

number restriction.

On the other handgd,

(1) the NO methods are not economical, e.g., the INO method
requires repeated transformations of the integrals and construction
and diagonalization of the Hamiltonian matrix; however, use of the

perturbation methods may largely negate this objection and
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(2) the NO methods are non-variational; although formally
this is a problem, in practice, except for a few isolated cases,

this has not been found to be the case.
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DETERMINATION OF ORBITALS AND SELECTION OF CONFIGURATIONS
THROUGH THE METHOD OF THE FULL OPTIMIZED REACTION SPACE (FORS)

Comments by Klaus Ruedenberg

1. MCSCF Approximations along Reactlon Paths

The strongest impact of Quantum chemistry can be expected to occur in
the field of chemical reactions because theoretical calculations of reaction
paths and transition states are in principle no different in nature than
those of stable molecules, whereas the experimental elucidation of reaction
intermediates is subject to many uncertainties due to their fleeting ap-
pearance and disappearance.

Even for the theoretical approach however, there exists a difference
in the degree of difficulty between the calculation of stable species and
that of intermediate structures. This is because the standard self-consistent-
field method, while being a very serviceable 'dominant approximation' for
many stable molecules, is rarely adequate for systems in the flux of reactive
changes, where orbitals not only deform but, in addition, change occupation
numbers due to changes in configurational mixing. In fact, on the basis of
currently available experience it is not possible to anticipate which con-
figurations will dominate a wave function at various points on a reaction
path. Consider for example the case that products and reactants are well
described by HF-SCF functions and that many, but not all of the occupied
reactant orbitals continuously deform into certain occupied product orbitals.
Some of the doubly occupied reactant orbitals deform however into virtual
reactant orbitals and, correspondingly, some of the virtual reactant orbitals
deform into doubly occupied product orbitals. In such a case, there is a
temptation to calculate the reaction using a two-determinant wavefunction.
More often than not it will be found, however, that in the intermediate
reglon where the "reaction orbitals" have occupation numbers close to unity,

there exist numerous other configurations which turn out to have similar
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weighting factors. Their inclusion in the dominant part of the wave-
function proves to be essential, in particular for the calculation of
reaction barriers.

Conversely, 1t is also important to know which parts of the exact wave-
function can be completely neglected for the calculations along a specific
reaction path. Since full recovery of correlation is out of the question,
even with preseat-day computers, the practical goal is always the calculation
of energy curves which are reliably parallel to the exact curve by including
all those correlation terms which change significantly (i.e. more than kT,
which is 10—3 Hartree at room temperature) and omitting all those terms
which do not and, hence would cancel when energy differences are taken.

When applied to reactants and products of a dissociation, this requirement
encompasses the postulate of size-consistency. However, the required
parallelism is equally important for the intermediate portions of an
energy curve, in particular for the determination of energy barriers.

From the preceding discussion it can be inferred that it is essential
to avoid unjustified restrictions in the construction of wave functions and
orbitals, so that all pertinent changes can be reflected without bilas in the
calculations, 1if reliable results are to be obtained for transition states.
At the same time the calculations have to remailn practical of course. It
is with this goal in mind that the method of the "Full Optimized Reaction
Space' has been developed. Experience gained so far indicates that it goes
a considerable way towards the desired objective.

The reported work was accomplished with the help of several coworkers
whose names are mentioned in the Acknowledgement. The first working versions
of the MCSCF program were operative in 19721 and informally reported at
the 1972 Boulder Conference on Theoretical Chemistry. Formal presentations
were given at the 1975 Midwest Theoretical Chemistry Conference at the
University of Wisconsin. The method is described in a 1975 Iowa State
University thesis2 and in a paper currently in press in the International
Journal of Quantum Chemistry.3 The concept as well as applications of the
Full Optimized Reaction Space were first discussed in another 1975 Iowa
State University thesisﬁ,in a 1977 paper in "Quantum Science,"5 and in

another paper currently in press in the "International Journal of Quantum
Chemistry."6
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Further developments and applications were givern in a 1977 lowa State
University thesis.7 They were presented at the 1977 Midwest Theoretical
Chemistry Conference at Argonne National Laboratory, at the 1977 Canadian
Symposium vn Theoretical Chemistry at the University of New Brunswick,

at the 1978 Peter Leermakers Symposium at Wesleyan University and they

are in preparation for publication.

2. Spin-Adapted Antisymmetrized Products (SAAP's)

In the FORS method, as presently implemented, the antisymmetric N-electron
wavefunctions are assumed to be elgenstates of 52 and 5§, and expressed as ex-

pansions of the form

Y(spin, space) = 2: CK WK SM(spin, space),
K,s Ks Ks

SM SM
= v}
wKs (spin, space) NKA{OS (spin)UK(space‘,

1/2

where 4 = (N!)~ EP(-l)P is the antisymmetrizer over N electrons and N, is

a normallization constant. The functions GSSM(spin) form a complete bas?s

of fS = Ni(25 + 1)/ (3N + S + 1) ! (%N - S)! pure spin functions that are eigen-
functions of S2 and SZ. The UK(space) form a complete basis of N-electron
space functions and are assumed to consist of all possible products of the
members of a complete set of orthonormal, real, symmetry adapted orbitals
fl(r), fz(r), f3(r),... . Any one fvS;annot occur more than twice as a factor
in any one UK' The spin functions Os are chosen to form an orttonormal basis
for an irreducible representation of the symmetric group of N elements, so

that the relations

fs

Z o SM 0 SHIPIO SM
s s t

s=1

hold for any permutation P, where the matrices (O IP‘G ) are independent of
M. Consequently the set of N-electron basis functions A{O MU}, s = 1,2, fS’
spans the same function space as the set A{G PU}, s =1, 2 S’ where P is

an arbitrary permutation. Hence, for any one choice of N orbitals fv ,fv ,EU Y«
1 2 3
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there exists exactly one set of functions ?Ks’ s = 1,2,...,fS and a unique order

can he arbirrarily chosen for the arrangement of the orbitals in the product UK'

We call the ?KSSM "spin-adapted antisymmetrized orbital products" and abbreviate them

as SAAP'5.8
The expectation value of ¥ requires the calculation of the matrix elements

(Us|{#{Ut) where |Us) = A{Uii'rSSM} with U = and |vt) = A{vOtS'M'} with

vV =

uluz...uN,
are -wo representative SAAP's. The expressions of the (USIHIVQ'S

V.V,..aV,,
1°2 N
in terms of one- and two-electron integrals between orbitals are very similar

in structure to the familiar Slater Condon rul=as for Slater determinants.

7 = i i i ‘ d y V
For example, when H 1/r12 and U and V differ in two orbitals, uys Ug and v 8

say, then

(Us§r1;|Vt) = [ol_, (uauBIrI;IVuve) + [TaBL]st <uBualr1%|VavB)
multiplied by a simple function of the occupation numbers. The difference to
the Slater-Condon rules lies in the appearance of the matrix elements
[L]St = (—1)P<OSSM|P|O§M) for the permutation P=1, where L is the "line-up
permutation' which brings V in maximal orbital coincidence with U, and for
the permutation P = TGBL’ where TaB is the transposition between the electrons
that occupy the orbitals u, and uB in U. These sp;ngmatrix elements are readily
calculated independently of the orbital integrals. ’

The SAAP formalism is convenient for generating and dealing with orbital
excitations under preservation of spin-symmetry, as is required in our MCSCF
procedure. We use "Serber SAAP's", i.e. SAAP's based on Serber-type spin
functions all of which are either symmetric or antisymmetric with respect to the
geminal transpositions (12), (34), (56), etc. This specific choice leads to a

large number of zero matrix elements. It is however not essential for the SAAP

formalism as outlined above.
3. Full Reaction Space

The orbital variation space is spanmed by the quantitative basis orbitals

(QB0's). These latter are chosen to be contracted even-tempered Gaussian AO'S.10

The principal QBO's are chosen to be the atomic SCF AO's. The secondary QBO's

are chosen to be one or several of the most diffuse even—-tempered primitives in

the expansions of the principal QBO's,ll as well as polarization fumctions.
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This type of QBO basis requires integral programs able to handle general (i.e.,
unsegmented) contracted A0's. The only program able to do this at preseni is
Raffenetti's BIGGMOLI programll, whose initial vetrsion originated when its
author was with this research group.

[ :
The orbital reaction space"s is spanned by the coafipuration penerating

orbitals (CGO's). They are linear combinations of the QBO's and their expansion
coefficients are eventually determined through molecular MCSCF optimizations.

A choice has to be made only with respect to the number of CGO's, i.e., the
dimension of the orbital reaction space. Ideally this number is equal to the
total number of valence AO's in a formal minimal basis set cn all atoms that
participate in a reaction. Under appropriate conditions cne may exclude certain
bonds or lone pailrs which remain unaffected. These latter and the innev shells
are the closed shell orbitals.

The full configurational reaction spacea’5 is spanned by all possible SAAP's

(see Section 2) that can be constructed using all reaction orbitals with all

possible spin couplings, but keeping all closed shell orbitals doubly occupied
in all SAAP's. Depending upon the CGO's the dimension of this space may vary
from about ten to over a thousand. This space is of course size-consistent
in the sense of given correct dissociation products.

If the dimension of the orbital reaction space equals the total number of
all valence AO's in the formal minimal basis set, then the full configurational

reaction space becomes the full configurational valence space.

The full configurational reaction space is invariant against all non-

singular transformations among the configuration generating reaction orbitals.

It is therefore possible to comstruct especially adapted '"reaction orbitals"
and the following types have been found useful.

Natural reaction orbitals (NRO's) which diagonalize the first order density

and, because of their good convergence properties, characterize the molecule

most succinctly during a reaction.4’5

Localized reaction orbitals (LRO's), obtalned by appropriate localization

procedures, are found to localize near the atoms. The number on each atom
equals the number of minimal basis set AO0's on that atom. Hence they represent

"molecule adapted minimal basis set Ao's."s’7

Directed localized reaction orbitals (DLRO's)7 which, in addition to being
localized on atoms are either lone pairs or directed into various bonds. They

characterize the participation of various atoms in a specific reaction.




4, Optimization in the Full Reaction Space

The Full Optimized Reaction Space (FORS) wavefunction is defined as the
optimal wavefunction in the full reaction space where, furthermore, the
reaction orbitals as well as the closed shell orbital have been optimized so
that (¢§H=w> is an extremum. This then is an MCSCF problem, whose dimension
may be quite large. The cptimization procedure currently used by this group7
depends upon the dimension of the full configurational reaction space and also
upon the dimension of the virtual space spanned by the singly excited SAAPs
generated during the MCSCF step (see Section 5).

If the dimension of the configurational reaction space is <20 then it is
nearly always possible to optimize MC coefficients and CGO's in the full space
directly by the MCSCF procedure described below.

The MCSCF calculation proceeds in three steps:

(1) Preliminary (closed or open-shell) SCF calculation yields occupied

SCF MO's which are the first approximations for all closed shells
and part of the CGO's.

(2) A preliminary MCSCF calculation, using about 5-12 reasonably

selected configurations containing all CGO's is carried out
with the occupied SCF orbitals frozen. This yields first ap-
proximations to those CGO's that lie in the virtual SCF space.

(3) With these first approximations a full MCSCF calculation is made.

If the dimension of the configurational reaction space lies between 20
and 40, then it is often possible to apply the MCSCF procedure directly to
the full space, if certain orbitals are frozen. Full optimization is achieved
by several MCSCF passes, iteratively freezing different orbitals.

If the dimension of the configurational reaction space is larger than 40,
then the space of the virtual SAAP's may become too large. In this case,
the following iterative procedure is effective.

(1) Preliminary SCF calculation as described above.

(2} Preliminary MCSCF calculation as described above.

(3) (a) CI calculation in the full configurational reaction space of the

orbitals determined in (2).
(b) Determination of natural reaction orbitals.
(c) CI wavefunction is expressed in terms of configurations made from

natural reaction orbitals (""NRO-based configurations').
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(4) (a) MCSCF calculation on the about 10 most important configurations
from the NRO-based expansion of step 3(c) yields new CGO's.
(b) CI calculation in full reaction space generated by new CGO's.
(c) Determination of new natural reaction orbitals.
(d) CI wavefunction is expressed in terms of new NRO-based con-
figurations.
(5) Step 4 can be repeated with a larger number of configurations, if
this proves necessary.
(6) Total self-consistency-test on: a) Total CI energy; b) Natural
reaction orbitals; c) Order of configurations in NRO-based expansion.
It is felt, however, that with the help of further refinements and more
powerful computers (this group has been limited to an IBM 360/158 type computer),
direct full MCSCF optimization on larger-dimensional configurational spaces will

be possible.

5. MCSCF Procedure

The described wavefunction optimizations require a completely general
fast MCSCF procedure. The method developed at Iowa State University in recent
3
b

years determines the MC coefficients and the orbitals pl...yN in a MC function

Y = ZKCKqupl"'PN)’ which is a completely arbitrary superposition of SAAP's with
entirely arbitrary spin-couplings and multiplicities. The orbitals lie in a
M(>N) dimensional space of QBO's. The optimization is accomplished through
combined use of natural orbitals and the Brillouin-Levy-Berthier theorem and
typically converges to chemical accuracy within five iterationms.

"MC-single—~excitations" (MCSX's) are defined by the combination of single
substitutions

T S S L ST SO

where “Pi is an occupied orbital and Ej = 1 or O for Pj being occupied or virtual
respectively. These functions are orthogonalized and if necessary reduced to
a linearly independent set. The Brillouin-Levy-Berthier Theorem states that
the following two statements are equivalent:
(i) ¥ cannot be improved by changing the occupied orbitals;

(11) Y cannot be improved by admixture of Single Excitatioms Wi"
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The optimization procedure is based on the following iterative cycle

(1) Given a set of approximate MO's, determine the MC coefficient CK
by a "MC-CI" calculation;

(2) Using these coefficients, form single excitations wij' Then find
the CI wavefunction in the enlarged configuration space spanned by
¥ and the Wij's.

(3) From this wavefunction find improved MO's by substituting its
dominant natural orbitals in place of the natural orbitals of the
MC wavefunction. Special care is taken that ''corresponding' natural
orbitals are matched.

It is noteworthy that the dimension of the "single excitation space' spanned
by the Wij‘s cannot be larger than the number of orbital substitutions i + j

(with i < j) independently of the size of the full configurational reaction space.

6. Illustrative Example

An illustration of the workings of the procedure is given by the following
calculation of the dissociation energy of N2 at the experimental equilibrium
distance recently carried out by M. Schmidt at his laboratory.12 The full
reaction space consists of 176 SAAP's (not symmetry adapted to me) and the basis
set is a (l4s, 7p, 2d) even-tempered primitive set contracted to a (5s, 3p, 2d)
QBO set. The sequence of calculations and the corresponding dissociation energies

(with respect to the 2N SCF energy) are as follows:

D(ev)
SCF 5.01
Full CI with SCF orbitals (occupied MO's + 3 lowest virtuals) 7.73
8 configuration preliminary MCSCF (4 MO's frozen, 6 variable),

4 iterations, 7.54
Full CI with these MO's 8.63
13 configuration MCSCF, 7 iterations 8.75
Full CI with these MO's 9.05
19 configuration MCSCF, 3 iterations 8.91
Full CI with these MO's 9.06

23 configurations MCSCF: no change in orbitals and CI energy
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In order to illustrate the timing in a machine independent manner (the cal-
culation were done on an Itel AS/5 computer), we choose as unit of time the
total amount of time needed to carry out the restricted Hartree Fock SCF cal-

culation on N.. In this unit the various steps consumed the following amounts

of CPU times 2
Preparation of SCF calculation including integral evaluations 0.84
HF-SCF iterations 0.16
Subtotal 1.00
Integral transformation preparatory to MCSCF and CI 0.68
First MCSCF (8 SAAP's, 4 iterations) 0.48
Full CI and natural orbital rearrangement 0.27
Second MCSCF (13 SAAP's, 7 iteratioms) 1.49
Full CI and natural orbital rearrangement 0.27
Third MCSCF (19 SAAP's, 3 iterations) 0.94
Full CI and natural orbital rearrangement 0.27
TOTAL 5.38

The total time could possibly be reduced, 1f it should prove possible to carry
out the MCSCF calculation directly on all 176 SAAP's. Even then it would be
advisable to carry out first the (8 SAAP/4 Frozen MO) preliminary MCSCF to ob-
tain good starting orbitals.

To put the quality of the calculation in perspective, we note that the
experimental dissociation energy is 9.9 eV, and that a recent CI calculation
based on SCF orbitals and claiming to include the effect of 105 configurations
yielded a dissociation energy of 9.33 eV.13 By contrast, only about 40 SAAP's
in the Full Optimized Reaction Space contribute to yield the quoted value of
9.06 eV to within one milli-Hartree. A recent GVB + CI calculation of Dunning
et al. yielded 8.93 eV.14

Thus the FORS approach recovers 83% of the valence correlation energy
changes during the Nz dissociation which is known to be a difficult case.

Under investigation are appropriate ways to go outside the FORS to recover the

remaining correlation energy changes.

7. Applications to Reactilons

The MCSCF approach is essential for systems for which there exists no one

dominant SCF configuration. This is particularly important for the calculation
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of the intermediate portions of energy surfaces for chemical reactions because,
here, the order of importance of the dominant configurations cannot be anticipated.
In such cases the FORS method yields an unbiased description. The subsequent
figures exhibit some of the results that were obtained in this manner for the

following reactions

H,C = CHZ _— 2CH2 (FORS dimension = 8) See ref. 2 and 6,

0—0
é | = 2CH.0 (FORS dimension = 12) See ref. 4 and 5,
H2 ———CH2 2

HNO = NOH (FORS dimension = about 1500) See ref. 7 and 15.

Figure 3 in particular illustrates the necessity for an unbiased MCSCF approach
in as much as many SAAP's contribute in the central portion, whereas only one

is dominant for reactants and products.

Conclusions

It appears that the FORS approach is a substantive first step towards the
recovery of correlation energy changes during chemical reactions. In addition
we infer from the results obtained that, in general, the choice of the config-
uration generating orbitals (CGO's) has a marked effect on CI calculatioms

because, in fact, the number of CGO's is necessarily limited. Optimal are those

CG0's which minimize the dominant part of the final full CI expansion. What

this dominant part is, will vary from case to case so that some bootstrapping
seems unavoidable at this time. In many cases, the stamiard W¥-SCF¥ wave function

is an inadequate representation of the dominant part, so that an MCSCF procedure
is called for.
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Figure 8. Variations of Directed Localized Reaction Orbitals during HON#HNO isomerization, ctd.
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TYPES OF ORBITALS IN CURRENT USE

BELIEVED 'BEST' FOR GIVEN APPLICATIONS

Comments by E. R. Davidson

SCF: Canonical Ground State Orbitals
IVO or ICSCF Orbitals
Parent Configuration Orbitals
MCSCF Orbitals
GVB Orbitals
RHF or UHF Orbitals
Delocalized vs Localized Orbitals

Symmetry Constrained/Unconstrained Orbitals

NO: INOs
Pair NOs
Perturbation NOs

Average NOs

Others: Exchange
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'"BEST' ORBITAL DEPENDS ON

PROPERTY WANTED AND TYPE OF STATE

Types:
1. Sparse energy level region (low valence states), good
SCF description, "regular" state.
2. Broken symmetry states (localized hole, Jahn-Teller, etc.).
3. Dense energy spectrum with valence/Rydberg mixing.
4. Non-variational states (deep holes, resonances, etc.).
5. Non-SCF states or irregular only for some R.
Properties:
1. One state
A. Energy surface
B. First order charge and spin values
Sry), Pg(9,)/r, 441, T ..., spin-spin, ...
C. Second order polarizability, spin-orbit.
2. Two states
A. AE

B. Transition probability
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MCSCF ORBITAL DETERMINATION

Comments by J. Hinze

Extended Brillouin Theorem CI

The MCSCF reference function is
2 ec
T I°I

The Hamiltonian is (spin free)

X:Zij {a a } + —Z lj,kl{a ak la]}

ijkl
with
+ o+ —+ -
{aiaj} = aiaj + ag aj
—+ + = -t —
{a akalaj} a akalaj + a; akalaj + aja aa
and aiaj + a,a, = 0 ; a.a. + aja = 613

The energy of the system is then given by

= 1
E=<w|.y¢’|\il>=§ h..r..+—§ G apqls
19 13713 2 14kl 1jkl ijkl

with the density matrix elements

+

Ly = <W|{aiaj}lw>

Tiskl = <y|{a} ak 1 ]}|W>

T, . = W]{a ata’a a,a.}|¥> etc
ijklmn k®m?n?12 j )
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A single (Brillouin type) excitation is

ata )y

+ +
= a Y = +
{353} (agdp * 3 3p

Y
p+a
The Brillouin conditions are
> - <Y =
<Wp+andw q+andW> 0
For the Brillouin CI we need

|¥> =T __ = <W|{a;aq}lw>

Ypaqg pg

_ + +
<wp+q\wr+s> = <W]{apaq}{asar}|w>

<Wp*anﬂW> and <wp+qLﬁﬂwr+s>

with g > p and s > r ; (gp) > (sr)
We get four types of formulae

l. q > s; #r

p

2. 9 >s8; p=7r
3. g=s; P
p

4, g = s;

giving the matrix elements in terms of the 1-, 2-, 3-

order reduced density matrix of the reference.

The formulae are done once and for all!

and 4-
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Double Excitations from General Reference

Using

o+t
?pq+rs = {arasapaq}?
and

+_+ ; ;
[arasapaq]W {other spin coupling)

There will be 16 types of formulae done once and for all!

The 5- and 6- order reduced density matrices of the

reference will be required also.
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Orthogonal Gradient Method to Obtain MCSCF Orbitals

(with A. Golebiewski and E. Yurtsever)

The MCSCF equations are

mFimMm) = Zj ] ¢j>€ji

_ 1
Fim = 0lip * Zkfk'ﬁ‘z‘lbrim,kl

™
It

+
ji <¢’j IZmFim| o> = chj Fin®m

I

Zm{hjmrim LD INIC I, Sy
These equations are solved if and only if

* =
Eij Eji

i.e. £ = ; 0 should be made Hermitian

and f£ind U which makes & Hermitian.

This is obtained as

v = e(e+e)—1/2

For a more complete discussion of this method, see A. Golebiewski,

J. Hinze and E. Yurtsever, "The Orthogonal Gradient Method. A Simple

Method to Solve the Closed, Open and Multiconfigquration SCF Equations, "

J. Chem. Phys. (to be published).
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A PARTIAL REVITW OF
CONFIGURATION SELECT10M METHODS
Presentation by

B. Llu

¢ iy not a complete review
¢ iy not imnartial
¢ cnphasizcs methods rather than histaory

why do gquantum chemistry calcuiations?

¢ To understand chemlcal phenomena
® To obtain chemical data
.

To develop and test new quantum chemical methods

What is a good calculation?

® One that gives the correct answer to our questions
" The best calculation is the one that gives the most accurate

answer

to our question. This is not necessarily the one that gives
total energy

How do we know our answer is correct?

® Convergeuce with respect to improved calculations.

the lowest
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The confipuration Interaction Method

op

{ f:)] l(:)" )

¢T : 1.c.

R S
v ';;CPKP

Variatlonal principte ™

HC = EC , HlJ I

Three steps of a C1 calculation
sclection of basis functions ¥
construction of orbital basis Ei
selection of configurations ¢I

Why do we need configuration selection?
Complete CI is usuzlly too large

than a complete CI.

Two types of configuration selection methods

= (% |H
(9}

'(‘4

1.

of A{wl(l). ...wn(n)|

P\:'»;J>

Tor a Mmited basis set, # restricted CT often pruduces better results

® Energy oriented meihods select configurations to achicve the lowest

possible total energy

® Chemistry oriented methods use criteria other than the lowest total

cnergy
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Encreyv oriented selection: Classification of configurations by perturbation
theory
® Rayleigh-Schrodinger perturbatien theory
H=H + AV
o

o % n.n
‘{'-)ﬁ)xp')

® In the CI context choose J¢?} , and define the H0 matrix

l

from the H matrix as shown on the diagram

_y

P

Classify configurations by the order of perturbation wavefunction in which
they first appear.



Eneryy oriented <election:  The

Further selecticn in the Jat

1.

® oroth ordor subspace {4
e !
® 15t osder subnpace u};

& ind order suhepooce (4]

—78-
Interact ing Subopaces

’“.Eﬁ,ﬂjr 20 for some 1
<mé[u;'1> /0 for some

Freypy selection: discacd
contribution is below soenc

(i) perturbation theery

s = (¢ 100 2 \
bE, = lenl. Y (e
(i) o% = (1 - ¢H V2 ¢
K 1FY
AE = (F ~-n_) cz/(l
K s RO

E and CK estimated by

Hatural orbitnl trumcarion:

order interacting subupace.

all contipuri:tions whose estimated energy
theashola,

- 1%

perturhation tbeory

discard a1l confijpurations consrructed from

natural orbitals with occupation nurhoers below some threshold

® ot efficient for total
[

energy

very useful for treating higher order subspaces
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Yatvarelation bred ol encrew sclicotlon

¢ cadeadate encryy aer diffoerent values of the threshold

© ranolate 1o tae yero threshold limit

® (oo choee entinate of the complete 1.0 order intevacting
st e Jiwit by oaogserjes of relatively cwell calenlations

Chemtotry o Sen metnods: Complete valence Cl

LI iigurations penerated by distributing valence electrons in
vt oo orbitale

® Inoindes near-dep acy cifects

& Correct aoyuptotic bLihavior

Cherioiry orieatrd methods:  Virst order CT, POL-CI, OVC, charge wavefunction

& VCE o4 el einple encitations '

& cssent ially corrvect asvmptoetic behavior |

® 3 Yude pelarvization awnd seri-internal correlation cnerpgy

e hused on the qualirative idea o) the separation of atomic and
malecular corre)ation energies

Whoat ds the best confipguratica sclection method? There is no simple answer.
It depends on:

® +he nature of the problem at hand

® the accuracy needed

© the orbital hasis

®* characteristics of the computer program

Wlhat are the mest important ingredients of a pood calculation?

® Understeanding of the nature of the problem at hand

¢ . preat deal of care
€ A chemictoy orieuted approach
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. 4, - 2,
Energy difference at Re between CH 47 and A7/
Natural orbital truncation, all singles and doubles from HF

5] i F(ai—) crror E(2A)vﬁ(ai_) error

4 1 ~35.504755 014373 107820 0009438

G L31406078 LO0LLLE .107936 L000832

8 L317C00 .001511 LI08720 .000048

23 .319111 L108708

23 3 3567300 .007666 .099552 .002149
6 L362700 001206 0977135 .000364
8 .363515 000451 097574 000203
13 . 363940 .097371

@ Converpence on encrgy difference much better than convergence on total
enersy

1.+ -
Vihrational quanta of CO(X L ) in cn 1

Metiod AG]/? error AG3/2 2TTOT
Vil 2128.13 -15.6 2102.4 -14.4
FOCIL 2140.2 -3.0 2114 .7 -2.1
SDHF 2235.9 92.6 2213.9 96.1
Observed 2142 3 2116.8

@ VCI and FOCI give much better vibrational quanta iu spite of hligher total
enerygies
® needs six~{old excitations to deseribe the stretch of a triple bend.

e T 8 Gt 8 e e O T e S A = 0 e O T L o

Force constants of HCN in idvne/A

! ) K12
Experiment 3.12(0.10) 9.39(0.09) -0.21(0.08)
A(VCTI) -0.07 -0.15 0
A(SDHF) 40.15 410.94 +0.06

Kl ~ CH stretch

K, - €1 stretch

K12 ~ coupling between CH and €I stretches

® VCI gives much better force constants
® Need six-fold excitation to describe the vibration
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THE METHOD OF INTERACTING CORRELATED FRAGMENTS
FOR VAN DER WAALS INTERACTION:

GROUND STATE OF He7

® [nteracting HF, neglect atomic correlation

2.2
1Salsb

D, = 12.1°K too large by ~1.5°K

2 . 2. -
+ 1Salsblw + lsalsblw + lsalsblew

® interacting correlated atoms, limited atomic correlation

2 2 2 2 2 2
(lsa + ZSa + Zpa) (lsb + 25b + Zpb)

+ all singles and doubles that vanish at R=®

b, = 10.7°K within 0.3°K
LROUND STATE OF Mg,

Neglect K- and L~shell correlation

.
® Interacting HF
2
® Interacting 352 + 3p atoms
[

Singles + Doubles from HF
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Figure 1. Potential curve of He2 Zg.

® theoretical curve

— == empirical curves
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Figure 2. Potential curve of Mg2 XlZ;.

® RKR denotes the empirical curve

® THF denotes the Interacting HF curve
® 1C3p denotes the Interacting Correlated

Fragments curve

® SDHF denotes the Single + Doubles from
HF curve
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Conclusgion

HRCG should support a4 gencral purpose CLoprogram
® Capability to deal with a wide varfety of chemlial proolems

o Uscful for testing new methods
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Strategies for Handling Configurations in
C{ Calculations

Comments By P, JEFFREY Hay

e Typically reference set of configurations Wg\ defined

and (1+2) excitations relative to the set are generated

e Restrictions can be placed on configuration list by
partitioning the orbital space
--(Valencelvirtual) or (valence/Rydberg/virtual)
First-order wavefn (Schaefer , Bender)
POL CI wavefn (Hay, Dunningz)
--(Valence |/ secondary NO / virtual)
OVC wavefn (Das, Wah|3)
GVB Cl wavefn (Harding, Goddard4)
where valence orbitals determined by MC-SCF, GVB
INO or related methods.

¢ Procedure can be effective for "semi-quantitative”

calculation of potential energy curves of many electronic
states



Hartree-Fock
Valence CI
POL ClI
(1+2) CI

03 Calculations

“virt
0

0
1
2

-KhH-

N
1

198
1394
5381

*SELECTED CONFIGURATIONS ONLY

2

corr

-0. 2254
-0.3602
-0.4793

Ring forhv-v”
_open form
0.36 eV
0.52
1.20

1.22

® ACCURACY IMPROVES AS THE RESTRICTION ON ORBITAL
PARTITIONING DECREASES
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Partitioning of Configurations

» Alternatively HCl can be partitioned

into major and minor configuratiors
according to energy contributions or

classes of orbitals

Handling of partitioned matrix

minor

--Obtain roots directly (B method)5

and form resulting full matrix

(1y . (2) (3)
--As above for -, ) £, E,

[
[

--Retain minor configs. with [/l

majnr

£

aa

b

ab

(¢4

and extrapolate results to zero threshold6

--Reject minor configs. with e < const.

and form resulting full matrix
--Obtain approx. CI coefficients
v = 1

i

ny

i¢i

7

and evaluate variational energy for full HCI

£ o= {¢lnfe)

Flexible generation and selection techniques should

be implemented at NRCC
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(W)

-

H.F.Schaefer,

P.J.Hay and T.

2290 (1977).

_;4‘;-&)_
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Sooavonnt tor the amportant contibutions through quadruple excitations
anosimultancons sansbe and ot e encitations Yrom members of the
tederence o

B Basic Nwelinood!
1. vwtermine orctn order wavs tumn tions for the tirst k states of a
e TR

whoeroo the o are determimed dnoa small €L caleulation involving only
Uae coaeterenee configuration tunctions (CF'eY . The small set of
taportant Uy are determined trvom suall €1 calculzt fons at

Teprescntat bve points on the potential surface.
venerate gl o single and double excitations from each CF in the
veterence biat.

i, seleat o osubset ot contigurations generated in step 2 to be included
in the final wavefunction by some procedure such as perturbation

theorv.  The enerpy contribution of coufiguration 4y to the kth state
can be estimated as N n
e e e Tale e
y C ‘ik'i' o 0
Lk, o= -
x

et - B
1 2, O
; : o 0 k
where E - is the expectation value of (Wk|H|Wk » . If 4E, for any of the
[ sLuLcchccuds some desipgnuted threshold value T, it is included in
the final wavefunction. Alternately, one can determine the energy
lowering of the £th configuration to each of the k state (Buenker and
Peyerimhoff).
Determine the encrpies B as a function of T. This requires little
more work than solving the problem for the smallest threshold since
it requires obtaining k roots of different subsets of the full matrix
piven a good initial puess to the eigenvectors.
5. Once the energy is known as a function of threshold one can extrapolate
to T=0. (See Buenker and Peyerimhoff in Theovet Chim Acta).

o~

C. Shortcomings nf tire Method

1. There exists some impression in the determined energies due to the
CF selection process and particularly to tae extrapolation procedure.
This can introduce difficulties where high precision is required such
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as computlng vibrational energlies or in computing polarizabilities

by the finite fleld method.

1t has recently been suggested (see forthcoming paper by C. Jackels
and 1. Shavitt) that for multi-reference liats the extrapolated energy
may underestimate the cnergy obtained if all CF's were retained (see
accompanylng figure). That is, the relationship between E and T may
become substantially different (dotted line) at very small threshold

(1 ym or less). This point was subsequently discussed at the meeting
by T. Shavitt.

N e
O 20 40 60 80 100
T(mh)

Energy extrapolation diagram.
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Pil. HAMILTONTAN MATRIX CALCULATION
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® Determination of formulas

(O,[Fd, Y aih, Elh:;ug.,u
“

[NE &
where

by =, (r ) Ao, (r,))

Bkt & (¢.{c)w, (,l'z):glelr",(l'x)‘f«‘:(l‘z))

® Data access problem
(because both H and g are very large,
and access patterns are irregular for

at least one of them)
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DETERMINATION OF FORMULAS

Strongly dependent on type of CF's (configuration

functions) used.

Involves extensive "nonproductivs" work (in the

general case).

Can be done as a single-stage or a two-stage

(formula tape) process.

Can be done from H elements to integrals or (in
some cases) vice versa (i.e,, for given Hst’
find all integrals and coefficients, or, for a

given integral, find all its contributions to H).

Can be done relative to true vaecuum, or in a
particle-hole formalism (relative to a closed-

shell reference configuration).
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REMOVAL OF "CORE" ORBITALS FROM H-MATRIX CALCULATION

("Core" orbitals are those which are kept
fully occupied in all configuration functions)

&L
Replace the combined (ﬁ =T+ Gne) one-electron
integrals matrix by

Ei =h, + T L1gkk] - [dkskiD) (i,§ ¢ core)
i 3 k€ core

and omit the core orbitals and electrons from the

rest of the calculation.

(See, e.g., R*P. Hosteny, T. H. Dunning Jr., R. R.

Gilman, A. Pipano, and I. Shavitt, J. Chem. Phys. 62,
4764 (1975) )
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USE OF A PARTICLE-HOLE FORMALISM

is advantageous when

where:

N = number of electrons in variable occupancy
orbitals,

= maximum level of excitation included

Prax
(relative to the reference configuration)
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FORMULAS FOR SLATER DETERMINANTS

® Relatively simple formulas (Slater-Condon
rules) but excessively long expansions.
But even in this case detailed matching
of &, and ®, is required, including finding

a maximum coincidence permutation and its

parity.

® Simplified treatment is possible for

special cases (e.g., single and double

excitations'only).

® All nonzero coefficients aj and b}y, arc +1.
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COMPARISON OF SLATER DETERMINANTS
AND SPIN-ADAPTED CF's

for all single and double excitations from
a closed-shell reference CF

N = No. of electrons

n = No. of (spatial) orbitals

h= %N = No. of orbitals occupied in ref. CF

P ®n~h = No. of orbitals wvacant 1in ref. CF

Agsume p >> h >> 1

Type of CF No. of CF's No. of Spn's?
i-a hp Zhp
12 . 92 hp hp
1§ a2 #h2p hZp
12 < ab i‘hpz hp2
iy=ab (x 2) i‘thz %thz

# Summed over allowed spin assignments.

® No. of SD's & 3x No. of spin-adapted CF's
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NO. OF NONZERO MATRIX ELEMENTS

for above example

Typea Spin-adaptedb

SD's

1
(13~ab|H]13=ca) zth“(%thl’) %thl’
(13-ablu|ik~ac)  2n3p> 3np]

8 Most prevalent types only; each represents a

2x 2 block.

bThe number in parentheses is for a choice of
spin couplings which diagonalizes these blocks,
te., (ADYN@ODH! and (13 (@E0)HL.

® Typically, the ratio of the numbers of nonzero

elements for the two cases is about

1:2.
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INTERMEDIATE PROCEDURE

¢ Compute a “spin block" of H elements in terms

of SD's, then transform to CF's.

¢ Can use projection operator property to reduce
the size of the SD block required (Nesbet,
Davidson).

¢ For double excitations from a closed shell,
the typical SD spin block is 6x 2, containing

2 -6 nonzero elements, and 1s transformed to
2x2.

® Can also be used for spatial symmetry.

References:

R. K. Nesbet, Ann. Phys. (N.Y.) 3, 397 (1958);
J. Math. Phys. 2, 701 (1961).

E. R. Davidson, Int. J. Quantum Chem. 8, 83 (1974).

D. Munch and E. R. Davidson, J. Chem. Phys. 63, 980 (1975).
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METHOD BASED ON "BONDED FUNCTIONS"
(Boys, Reeves, Sutcliffe, Shavitt)

Form of functions:

(aa) (bb)...(pq) (rs) ... (ulv...

where

(aa) = aa

(pg) = %5 (pq+ qp)

(u =u

(the antisymmetrizer is implied).

Example:
(aa)(bc)(de)f  (w=3)
(aa)(bc)(d(ef) (w=2)
(aa)th(edeNf  (w=1)
(aaXh(cd)ef)  (x=1)
(aa)(b(c(de)f}) (m=1)
References:

C. M. Reeves, Ph.D. Thesis, Cambridge University (1957);
Commun. ACM 9, 276 (1966).

B. Sutcliffe, J. Chem. Phys. 45, 235 (1966).
G.H.F. Dierr':sen and B. Sutcliffe, Theor. Chim. Acta 34, 105 (1974).
G.H.F. Diercksen, Theor. Chim. Acta 40, 283 (1975).

1. Shavitt, The Method of Configuration Interaction, in "Modern
Theoretical Chemistry, Vol. 3, Methods of Electronic
Structure Theory", Ed. H. F. Schaefer III (Plenum,
New York, 1977), p. 189.
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The set of bonded functions for a given
orbital product is linearly independent,

but not orthogonal.

A single Schmidt orthonormalization
matrix can be used for all "spin blocks",
taking appropriate upper-left sub-

matrices, as required (Pipana, Shavitt).

Spatial symmetry for axial point groups
can easily be superimposed (Gershgorn,
Shavitt)

References:

Z. Gershgorn and 1. Shavitt, Int. J. Quantum Chem.
Symp. 1, 403 (1967).

A, Pipano and I. Shavitt, The Use of Complex Orbitals
in Large Scale Molecular Configuration Interaction

Calculations (preprint).
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"CYCLES" AND "CHAINS" PATTERNS

Bonded Mox Coincidence Potierns Parameters
Functions Rearrongement
v 1234567 1234567

{ab){cd) ta bic d) o=0's0,¢c51,J70, F--%
{ad){bc) {a(b c)d) °i'°ii" foralli,j

927 914" 9237 934% 1101370542
lab)etd {dla bMc Lﬂ + @e1,0'0,¢x0,4:0, =}
tad}te(! (d alfe {t Oyq%1iQy4°-!
{oal(be)id to adib cNd ﬂj—u a1540,c:0, ds1, Ts} /2
(ablcd)ie (ela bic d) Qy2Qq; =1 far all j

9p 0. 2yq7 11 94579 42
(ab)lcdM et (@ bielc d) ﬂ o=1,0'=0,c:0,4:0, 1":.’z
tafHghlicid {t allg Mcld L ] k J R=0, Qg4=1,a3470

(aa)(be)(de)( lo a)(c bile a)f m oro'e0,cxl,d:2, =4
fabMec)tdfilg  faflc cibMg(d N Q5. c -}
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MATRIX ELEMENT FORMULA FOR BONDED FUNCTIONS

(BIH|B") = T{RQV, + R L Qulbllbi)

+ ‘Zl Oij[R<bibl;g’b;bll> +q,(bb;lglbjbi ]}

{ 1 if there are no even chains
R= .
0 otherwise

1 ifbe=biforallk #ij,...
Q.=

0 otherwise

]" = (__ 1 )a+v'( — %)(N/Z)—S—c 2!/2

See Shavitt, in "Modern Thenretical Chemistry,
Vol. 3, Methods of Electronic Structure Theory"

for definitions of cther symbols, etc.



-105~

UNITARY GROUP APPROACH

8 The entire spin-adapted orthonormal basis of
N-eleciton configuration functions is defined
globally, not individually for each orbital

product.

® As a result, matrix element formulas can be

derived without reference to permutations.

® A "lexical” ordering of the configuration
functions leads to certain regularities in the

contributions of each integral to the H matrix.

A detailed review, with many references, has been given by:

J. Paldus, Many-Llectron Corrclation Problem. A Group
Theoretical Approach, in "Theoretical Chemistry:
Advances and Perspectives'', Volume 2, Ed. H.
Evring and D. J. Henderson (Academic Press,

New York, 1976), p. 131,

See also:

W. G. Harter and C. W. Patterson, "A Unitary Calculus fur
Electronic Orbitals" (Lecture Notes in Physics

49) (Springer-Verlag, Berlin, 1976).

F. A. Matsen, Adv. Quantum Chem. 11 (in press).
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UNITARY GROUP METHODS FOR MATRIX ELEMENTS
Some recent work:

J.-F. Gouyet, R. Schranner, and T. H. Seligman,
J. Phys. A 8, 285 (1975).

G.W.F. Drake and M. Schlesinger, Phys. Rev. A 15,
1990 (1977).

C. R. Sarma and S. Rettrup, Theor. Chim. Acta 46,
63 (1977); S. Rettrup and C. R. Sarma,
Theor. Chim Acta 46, 73 (1977).

M. J. Downward and M. A. Robb, Theor. Chim. Acta
46, 129 (1977).

I. Shavitt, Int. J. Quantum Chem. Symp. 11, 131
(1977); Int. J. Quantum Chem. Symp. 12

(in press).
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MFTHOD BASED ON THE GRAPHICAL UNITARY GROUP APPROACH

® Global definition of an orthonormal CF set
(does not allow individual selection, but
allows selection of classes of orbital

subset occupancies).

® Systematic numbering scheme, easily

determined from CF specification.

® Compact representation (in terms of the

"distinct row table'" and corresponding graph).

® Easy direct generation of "inverted" formula

tape (i.e., ordered by integrals).

® Fqual contributions of cach integral to

systematic sequences of matrix elements.

References:

I. Shavitt, Int. J. Quantum Chem. Symp. 11, 131 (1977);
Int. J. Quantum Chem. Symp. 12 (in press).
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<

Example of the distinct row graph for 6 orbitals,

5 electrons, doublet state (full CI1).

Each configuration

function is represented by one path from tail to head.
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A T ST PR P

.’...-.-...--.....-.---.. ae

The pattern of equal contributions of one integral to elements
of the H matrix, and their use in the direct CI iterative

eigenvector Jetermination.
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METHOD BASED ON ONE-ELECTRON INTEGRAL CONTRIBUTIONS

(Wetmore and Segal)

ﬁu =r 1wl = z xt X

N o= B i0” jo
B Ejhij ﬁij M éiz.:l'dgijkt(gijgkt B 6jkﬁil,)
Then:
a:; = (¢8|E1 lét)
b:;m = “’sl Eijﬁkl, - 6jkEi{, ' L

£ “’leij le X lE, 10 - °jk<°sl By le0)

su

aut -8 st
ij "k

ik 2id

=L a
u

(The summation over u may include CF's which are not

in the original list.)

References:

R. W. Wetmore and G. A. Segal, Chem. Phys. Lett. 36, 478 (1975).

G. A. Segal, R. W. Wetmore, and K. Wolf, Chem. Phys. 30, 478
(1978).
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USE OF " PATTERNS"

Classify noncoincidence pattern between the two

configuration functions into several types, and

provide special treatment for each type.

Examples:

e F. E. Harris, J. Chem. Phys. 46, 2769 (1967)

(using the Sanibel Coefficient approach,

20 types).

® J. Karwowski, Theor. Chim. Acta 29, 151 (1973)

e C.

(using the symmetric group approach, 15
types, but representation matrices of
Sy for the "line up" permutation are

still rcquired).

. Wetmore and G. A. Segal, Chem. Phys. Lett.

36, 478 (1975); G. A. Segal, R. W. Wetmore,
and K. Wolf, Chem. Phys. 30, 478 (1978)

(in conjunction with their method for the
determination of 2-electron integral coef-

ficients from those of l-electron integrals).

. Sarma and S. Rettrup, Theor. Chim Acta 46,

63 (1977)
(using the unitary group approach).
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SHORT SURVEY OF OTHER METHODS

® Projection operator approach (Lowdin, etc.)
Sanibel coefficients. Projections are not

orthogonal. Line-up permutations required.

® Methods based on the symmetric group SN
Related to the unitary group method, but
less systematic. Most forms require

representation matrices of SN'

¢ Serber spin functions (Salmon and Ruedenberg)
Related to the SN methods, but a particu-
lar choice of spin functions simplifies

the representations required.

Some general survey refercnces:

R. Pauncz, "Alternant Molecular Orbitals" (Saunders, Philadelphia,
19A7) .
F. E. Harris, Adv. Quantum Chem. 3, 61 (1967);

in "Energy, Structure, and Reactivity", Ed. D. W. Smith
and W. B. McRae (Wiley, New York, 1973), p. 112.

I. Shavitt, in "Modern Theoretical Chemistry, Vol. 3, Methods of
Electronic Structure Theory', Ed. H. F. Schaefer III
(Plenum, New York, 1977), p. 189.

W. I. Salmon, Adv. Quantum Chem. 8, 37 (1974).
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USE OF 'PATTERNS"

Classify noncoincidence pattern between the two

configuration functions into several types, and

provide special treatment for each type.

Examples:

e F. E. Harrils, J. Chem. Phys. 46, 7769 (1967)

(using the Sanibel Coefficient approact,

20 types).

® J. Karwowski, Theor. Chim. Acta 29, 151 (1973)

® R.

® C.

(using the symmetric group approach, 15
types, but representation matrices of
Sy for the "line up" permutation are

still required).

. Wetmore and G. A. Segal, Chem. Phys. Lett.

306, 478 (1y75); G. A. Segal, R. W. Wetmore,
and K. Wolf, Chem. Phys. 30, 478 (1978)

(in conjunction with their method for the
determination of 2-electron integral coef-

ficients from those of l-electron integrals).

. Sarma and S. Rettrup, Theor. Chim Acta 46,

63 (1977)
(using the unitary group approach).
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SHORT SURVEY OF OTHER METHODS

® Projection operator approach (Lowdin, etc.)
Sanibel coefficients. Projections are not
orthogonal. Line-up permutations required.
® Methods based on the symmetric group SN
Related to the unitary group method, but
less systematic. Most forms require

representation matrices of SN'

® Serber spin functions (Salmon and Ruedenberg)

Related to the S, methods, but a particu-

N
lar cholce of spin functions simplifies

the representations required.

Some general survey references:

R. Pauncz, "Alternant Molecular Orbitals'" (Saunders, Philadelphia,
1967) .

F. E. Harris, Adv. Quantum Chem. 3, 61 (1967);
in "Energy, Structure, and Reactivity", Ed. D. W. Smith
and W. B. McRae (Wiley, New York, 1973), p. 112.

I. Shavitt, in "Modern Theoretical Chemistry, Vol. 3, Methods of
Electronic Structure Theory", Ed. H. F. Schaefer III
(Plenum, New York, 1977), p. 189.

W. I. Salmon, Adv. Quantum Chem. 8, 37 (1974).
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SOME REFERENCES ON OTHER METHODS

e Projection operators and Sanibel coefficientas:

. 0. Ldwdin. Phys. Rev. 97, 1509 (1955).

E. Harris, J. Chem. Phys. 46, 2769 (1967); 47, 1047 (1967).
H. Smith and F. E. Harris, J. Math. Phys. 10, 771 (1969).
E. Horriman, J. Chem. Phys. 40, 2827 (1964).

Manne, Theor. Chim. Acta 6, 116 (1966).

Mano, J. Math. Phys. 12, 2361 (1971).

® oW o < g

¢ Symmetric group methods:

F. A. Matsen, Adv. Quantum Chem. 1, 59 (1964); J. Am. Chem.
Soc. 92, 3525 (1970).

J. Gerratt and W. N, Lipscomb, Proc. Nat. Acad. Seci. USA 59,
332 (1968).

D. J. Klein and B. R. Junker, J. Chem. Phys. 54, 4290 (1971).

G. A. Gallup, Adv. Quantum Chem. 7, 113 (1973).

& Serber functions:

K. Ruedenberg, Phys. Rev. Lett. 27, 1105 (1971).

W. I. Salmon and K. Ruedenberg, J. Chem. Phys. 57, 2776
(1972).

W. I. Salmon, K. Ruedenberg, and L. M. Cheung, J. Chem.
Phys. 57, 2787 (1972).

K. Ruedenberg and R. D. Poshusta, Adv. Quantum Chem. 6,
267 (1972).
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DATA ACCESS PROBLEM IN H-MATRIX CALCULATION

If H is accessed sequentially, then elements

of g are needed at random, and vice versa.

Possible strategies:

® Multipass (work proportional to number of

passes)

® Sorted formula tape (more efficient form
of multipass, but needs explicit formula
tape)

® Direct CI (inverted formula tape, or

programmed for special cases)

® Special ordering of CF's and integrals

Some references:
Y. Yoshimine, J. Comp. Phys. 11, 333 (1973).

G. H. F. Diercksen and B. Suttcliffe, Theor. Chim. Acta
34, 105 (1974).
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SPECIAL ORDERING APPROACH

(based on the assumption that p >> h)

The CF list is arranged so that all CF's which
involve the same set of "particles" with all

possible "holes", e.g.,

ab Qab §ab
ij’ ik L 'Y A

appear contiguously. Matrix element blocks
involving two such sets, e.g.,

Cnd ET L
(where the x's stand for any hole combination),
require integrals involving only certain
particles (a, b, c above) plus holes. If the
integrals are suitably arranged according to
particle indices, then a whole block of H can

be computed with a limited (core-contained)

set of integrals.
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MATRIX ELEMENTS

Comments by J. Paldus

Graphical methods of sp1'n—a1gebras1'6 can be conveniently

exploited in obtaining spin-free form of various theories exploiting

the spin-independent Hamiltonian, particularly in conjunction with the
graphical techniques based on the second guantization and Wick's theorem
(see, for example, Refs. 7-14). In connection with the unitary group
approach (see, for example, Refs. 15-21) they were exploited by Gouyet
et a].]] and via symmetric group approach by Drake and Schlesinger !

With this approach formulas analogous to those obtained earlier for
elementary gener‘ators”']9 can be obtained, as well as their generalization
to the non elementary generators by Shavitt21. Moreover, following Drake
and Schlesinger's approachIz, simpler formulas for the matrix elements
of the generator products may be obtained as schematically indicated

in Fig. 1. This Figure shows schematically the spin graphs (Jucys-
Bandzaitis typez) for a general electronic Gelfand state]7’]8, overlap,
one and two genzrator matrix elements, and a schematic evaluation cof

the two-electron matrix elements using Shavitt21 and Drake and Sch]esinger12

approaches. Note that dashed lines carry zero angular momentum and thin

lines in Jucys-Bandzaitis diagrams carry % angular momentum.
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Following Drake and Sch]esinger]z in the unitary group
approach7_14 one can avoid the summations in Shavitt's expressionSZ]
for the generator products, so that only two terms (corresponding to
x =0 and x =1 1in the Figure) have to be evaluated by multiplying
contribution for each pertinent level in Gelfand tableau. The
contributions for the "overlapping" part of the generator product are
of two basic types as shown in the Table. For non-overlapping part the
expressions given by Shavittz] apply (with g{b) =1 and f(b) = (-1)b
in the chasqn'phase factor convention). For the end-levels of the
over]appinﬁ'region formulas similar to those for elementary or single
generatq+ matrix elements resu]tzz. Using the same approach, similar

resu]ts.were also obtained for the particle-hole forma]ism23.
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A NOTE ON THE EXPRESSION OF FORMULAE FOR THE H-MATRIX

Comments by Kivoshi Tanaka

Use of Second Quantization

a) ¢ =1%ycC

i 174
+ ) +
Ho= Vg +Ih CC+y L(1ilk1) ¢ ckclcj (1)
{ - !
U,’Ji} * {{Vr}-{wk}}
n
vacuum |0 ) = A g ¢ra¢r8
bk = Ck particle
a+ =C hole
r r
E_ = <{(0|H{0"
o
n
€,, =h_, + L {2(ii]rr) - (drirD}
45 = gy * L 20 - drlr
(B) ¥ =17y a  +3 ¢b
T rr g ¢k k
H = E + I € - L€ a+a

kﬁ k 2 [g rsTS

+ +
+ L{(kr|s®) - (kllsr)}bkbgaras

+ + 1 + +
z (kn!lm)bkbgbmbn+ 7 Z(ur|ts) aaa.a,

M=

+ I (e k bka + h.c.)

+
[

P ({(ke|im) - (km|tr)Yblalbb + hec.]

I {(kr|st) - (kt|s)} b:a:atas + h.c.]

M= N

++ + +

. II
Z {(kr|2s) bbiaa  +h.c } (1n)
where h.c. = hermitian conjugate.

{C) CSF's are expressed by b*'s and a''s for any spin multiplicity

(D) Number of terms in Expression Formulae

example ?
|0 nl(c—core)
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diagonal of ﬂznl(c—core)

L3> JE lﬂl’(ﬂ2"21"1"1)‘ (nznllnlnz) by (II)

* hﬂ w," h m
22 ™M

ho,0,, (mymyloy0), (mymloge)), (myaylo,my), (myaloym)

s (oM lmym) Gy,

1
(oinilcjcj). (ciojlojci) (for all 's) by (1)
(1i) off diagonal nzﬂl(c-core) & ﬂaﬂl(d-core)
.
Eﬂjﬂz, (nanzlﬂlﬂl), (n3n1|ﬂ1ﬂ2) by (II)
.
hngﬂz » (mgmylmymy),s (mamy [mymy)
v
(n3n2[oioi), (naoi[cinz) (for all o's) by (1)
in general
Formulae (I) Formulae (1I)
g2 . 2
diagonal Ne (Npi—Nh)
one orbital difference ~Ne "(Npi—Nh)
two orbital difference several several

(E)

9

Effectiveness

1) system of large number of electrons
(11) the first order CI & MCGBT in which number of elements due to one
orbital difference 1s considerable

Use of closed shell function as a vacuum and €'s with hole-particle
description

Use of the second quantized particle - hole description in order to reduce
the number of terms of Expression Formulae

Comparison of the number of terms by (II) with those by (I)

n, s number of electrons

n_ ; number of particles

P
s number of holes
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IV. FORMULA TAPE OR NOT
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FORMULA TAPE OR NOT

Presentation by F. R, Davidson

Depends on:
L Computer Hardwire
e Physical Problem

hd Acceptable Approximations

Nature of Problem:

/
f K . IJn
DT A RS i = EC
v ) K e wul ij bij k1] gl E (I
VRV | ijkl

ji3 1 k1) [ntegral over MU's

w“[ Symmetry/Spin Coupling Coefficients
S NEAY s n -
Pikl Formula' for matrix element between elementary
Jed pieces of wavefunction
M=#of MO's 10 - 200
5
K = # of Config - 10
£ = # of clementary ieces/config 1 - lO3
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"Simple" special case CI

F 1J = ¥ r TJuv W W

ijkl T\Y) ijkl pT vJ

Tabulate by "Classes" of configurations based on excitations

from one generating form.

Roos & Siegbahn
All SD excitations from one closed shell SCF configuration

~

I' held in core for each pattern

Schaefer extension to one SCF determinant open shell

~

Munch & Davidson Va Atom [ on formula file (random), interacting

subspace
Direct CI
5 5 T &8 1k c, = E ¢ €A
JEB  ijkl ijkl
Indirect CI
. =~ AB
H = ¢ J[ijlwky T IEA, JEB

1J ijkl ijkl

Advantage: Speed

Disadvantage: Inflexible, range of problems limited
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GENERAL CI
SHAVITT: Tabulate I’ ??“V on tape
ijkl
Form I W wVJ<z PHHY g kl]> -
e ijkl ikl
1BM: Tabulate F 1 Sort on ijkl
: ijkl Jkd
Form r 1 [ij II k1) sort on I1J -+ H
ikl ’ 1J
BENDER : Tabulate ' .17 on tape
: 1jkl P
Direct CI
=~ 1J
z [ij l k1) £ T, C. = EC
19kl J ijkl J 1
. ~ 1J ..
Or Indirect HIJ = Z r [ii § k1]
ijkl  ijkl
DAVIDSON : Tabulate 1ijkl for each I1J , in core |,
Replace Label 1ijkl in Table by [ij Il k1]
. 1J yv
= r
Form HIJ z (?jkl [ij 1 k1) ikl ) qu
"
Generating LS uv as needed

ijkl

v]


file:///iikl
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FORMULA TAPE

ADVANTAGE

® SAVES TIME IF SAME SET OF CONFIGURATIONS IS USED FOR
SEVERAL CALCULATIONS

DISADVANTAGE

® SLOW IF CONFIG. LIST IS USED ONLY ONCE

® LARGE STORAGE REQUIREMENTS

® (OFTEN CAUSES CHOICE OF CONFIGS. TO BE ADAPTED TO USE
OF FORMULA TAPE. CONFIGS. USED REPEATEDLY EVEN IN IND
GENERALLY SLOWER THAN CLASS FORMULA HELD IN CORE

NO FORMULA TAPE

ADVANTAGE

LOW STORAGE REQUIREMENTS
ENCOURAGLS BETTER CHOICE OF CONFIGURATIONS AT EACH
GEOMETRY OR INO

DISADVANTAGE

® REPEATS MUCH LOGIC IF SAME SET OF CONFIGURATIONS
IS USED
CLASS FORMULA IS FASTER FOR "SIMPLE" CI
REQUIRES MULTI-READ OR RANDOM ACCESS TO INTEGRALS
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Comments by M. Yoshimine

® Formula tape is needed for:

1) Potential surface calculations,
2) Very long integral list.

® Construction of HI by blocks.

Integral list Y = X1 + XZ + ... Xn-

= = =
Hp =2 Cp pXp T By = ZHp s
H =7 C X
I,n P I,Pn Pn
n
Three step process:
1. Reorder CI,P to CI,Pn;
2. Carry out HI,n =L CI,P XP ;
Pn n n

3. Carry out HI = g HI,n .

® Packing of the formula tape (ALCHEMY program - IBM computer).

cll,: [’ T 1 ?2 | C i
n e It (L pptt— —m———
4 4 8 bytes
Packed C; [T T ® Tc'] Table of C
n 1 2 1
I' = chained I index

P' 1<pP'<Ne 30,000
index of C in the table.

[e]
[
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MUNICH MOLECULAR PROGRAM SYSTEM

Comments by G. H. F. Diercksen

CI Program:
includes subprograms for

® Confipuration Generation
® Symbolic Matrix Element Generation
® Symbolic Matrix Element "Inversion"
® Numerical Matrix Element

® Diagonalization

All subprograms are logically independent and use the Standard Data Interface
philosophy. The CI program is based on the work of Boys, Reeves, and

Yoshimine.

Characteristics

® Dynamic main and external storage allocation, thus no fixed
dimension is necessary. The maximum size of soluble problem
is defined by main storage, and computer time available at
the time.

® The formula tape may be generated explicitly or implicitly;
in the second case it is not saved.

® The program may be run stepwise, extensive interrupt/restart/

checkpoint procedures are available.

References

G.H.F.Diercksen and B.T.Sutcliffe, Theor. Chim. Acta 34, 105 (1974).
G.H.F.Diercksen, Theor. Chim. Acta 40, 283 (1975).

G.H." .Diercksen and W.P. Kraemer, MUNICH Molecular Program System,
Reference Manual, Max-Planck Institut fur Physik und Astrophysik (1978).
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V. DIAGONALIZATION TECHNIQUES

(Report from the Numerical Algorithms Workshop)

Isaiah Shavitt
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and
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Columbus, Ohio



Presentation by o Shavitt

LLANCZ0S METHOD

In effect, the desired eigenvectors are expended in the Schmidt-
orthogonalized version of the Krylov sequence,

v, Av, sz,

In exact arithmetic, the orthogonal sequence obeys a 3-term recurrence
relation, but numerical errors lead to loss of orthogonality, and eventually
losas of linear independence. However, this loss is a symptom of convergence
{e.g., if v 1s an eipenvector, then Av is linearly dependent upon it).
Selective orthogonalization (parlett “and Scott) can be used to remove the
converged vectors.

The Lanczos method is not competitive with quantum—chemical methods for
diagonally dominant matrices.

References:

C. C. Paige, J. Inst. Math. Applies 10, 373 (1972); 18, 341 (1976).

B, N. Parlett and D. S. Scott, "The Lanczos Algorithm with Implicit Deflation,"
Memorandum No. UCB/ERL M77/70, Electronics Research Lahoratory,
UC Berkeley (2 Dec. 1977).

R. Underwood, "An Iterative Block Lanczos Method for the Solutjon of Large
Sparsr Eigenproblemsa,' Report STAN-CS-75-496 (Stanford, Comp. Sci.
Dept. 1975).

DAVIDSON'S METHOD

This is similar, in some ways, to the Lanczos method, except that the Krylov
sequence is replaced, In effect, hy the sequence

-0t av, -9 ta1% v, ...

where D = diag(A), and p is the Rayleigh quotient of the current

approximation. This 1is not strictly correct, since p and ¥y vary as the
iterations proceed,

This is much more effective than the Lanczos method for diagonally dominant

matrices, but produces one eigenvector at a time. It is closely related to
perturbation theory.
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References:

R. E. Davidson, J. Comput. Phys. 17, 87 (1975).
W. Butscher and W. E. Kammer, J. Comp. Phys. 20, 313 (1976).

PERTURBATION-VARTIATION METHODS
(Roos & Siegbahn; Seeger, Krishnan & Pople)

These are closely related to Davidson's method. The expansion is in a
sequence of the type

~1 2

-1 2
!0, (HO‘D) E!ol [(}_!D_p) l;l] !ol LEC
where
H =1 \s) o (s}

a =H (Davidson)

s 55
a, = X Ny (Roos, Pople)

i€s

0,V from best current approximation (Davidson, Pople - actually sequence of
lst-order calculations)

p =E , v fixed (Roos).
o’ ~o

References:

B. J. Roos and P. E. M. Siegbahn, in '"Methods of Electronic Structure Theory,"
Ed. H. F. Schaefer 111 (Plenum, New York, 1977) p. 277.

R. Seeger, R. Krishnan, and J. A. Pople, J. Chem. Phys. 68, 2519 (1978).

SIMULTANEOUS ITERATIONs FOR SEVERAL ROOTS

For Davidson's method: B. Liu
For Coordinate relaxation: R. C. Raffenetti, I. Shavitt

Advantages:

® Reduced I1/0 costs (one read through the matrix per iteratiomn for all
roots combined).

® For relaxation method, overcomes slow convergence for closely-spaced
ToOots.

Disadvantages:

® More central storage required (2 vectors per root sought).
® For Davidson's method, higher-dimensional "small" eigenvalue problems.
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SIMULTANEOUS COORDINATE RELAXATION

e ——
L_._A-J
n k k

V is the current set of trial vectors. The i-th row of V is relaxed
simultaneously, using coordinate relaxation with root shifting, for i=1,2,...,n.
Then we solve a small generalized eigenvalue problem (kxk)

For k roots,

FY = QIR (diagonal)

sub ject to +
QY =1,

H Eln vy
n k

=
n

k[@ -« vt | |yl V'Y
n

k

where

8

k

and then transform to new V' = VY.

References:

R. C. Raffenetti (to be published)
I. Shavitt (unpublished)

METHODS BASED ON PARTITIONING PERTURBATION THEORY

P. 0. Lowdin, J. Mol. Spectrosc. 10, 12 (1963).

Z. Gershgorn & I. Shavitt, Int. J. Quantum Chem. 2, 751 (1968).
S. Iwata & K. F. Freed, Chem. Phys. 11, 433 (1975).

G. A. Segal & R. W. Wetmore, Chem. Phys. Lett. 32, 556 (1975).

L. E. Nitsche & R. E. Davidson, J. Chem. Phys. 68, 3103 (1978); J. Am. Chem.
Soc. {in press).
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THE DIRECT CI METHOD

Presentation by B.Roos

A CI-METHOD 1S CALLED DIRECT IF THE CORRESPONDING
SECULAR PROBLEM 1S SOLVED DIRECTLY FROM THE INTEGRAL
REFERENCES WITHOUT THE EXPLICIT CONSTRUCTION OF A
HAMILTONIAN MATRIX,

VarRIANT A:No USE OF A FORMULA TAPE

THE StockHOLM DIRECT Cl PROGRAMS,

THE APPROACH OF THE TORUN GROUP?(3)

VARIANT B: WITH FORMULA TAPE

THE VECTOR METHOD BY BENDER ET AL.(H4)

METHODS BASED ON GELFAND STATES AND THE UNITARY GROUP
(PALDUS .RoBB AND SHAVITT(2)).

Figure 1




Comments to Fipure |

There have recently been sole argarcnts repac gy, wnen 3 O method s
dircet, 1 therctore tound it appropriate to start this overview with o
definition of what 1 mean by o direct G method,  The original formulation

of the mcledJ included some lmpartant features apart from thoese piven in

the definition. No Fformula tape was used.  Instead, for ecach two-clectron
integral (the one-clectron integrals arc rrivial to handle) o loop structure
could be defined and the coupling coefficients could be programmed explicitly
into these loops. In this way the program became almost completely core-
bound, which made it possible to work with very large Cl-expansions (a
current study of the “2“ energy surface includes around 76,000 configuration
state functions).

In the extension of the original program (closed shell plus all single-
double replacements) to treat more general cases, we have tried to follow
the original philosophy since it has been our feeling that the use of a
formula tape would lower the effectiveness of the method too much and
would not make it more efficient than conventional Cl methods, With the
new unitary group approach, especially that developed along the lines
advocated by Shavitt,2 this may no longer be true. A similar extension
of the direct scheme to treat the case of an arbitrary open-shell reference
configuration has recently been proposed by Duch and Karwowski.3 It is
based on so-called SAAP's instead of Gelfand states, and the coupling
coefficients are also given here in forms of irreducible representations
of the unitary group. It remains to be seen whether this method can be
effectively programmed.

The vector method of Bender and co—workersA represents a direct
scheme where a formula tape is utilized., The efficiency of this method
compared to conventional CI techniques is, however, at present not apparent

to me.

References

1. (a) B.Roos, Chem. Phys. Letters 15, 153 (1972).

(b) B.Roos and P.Siegbahn, in Methods of Electron Structure Theory,

H. F. Schaefer, III, editor (Plenum Press, New York, 1977), pp. 277-318.

2. I.Shavitt, Int. J. Quantum Chem. S11, 137 (1977);

ibid 512 (1978).
3. W.Duch and J.Karwowski, Theor. Chim. Acta (in press).
4, R.F.Hausman and C.F.Bender, in Methods of Electron Structure Theory,

H. F. Schaefer, III, editor (Plenum Press, New York, 1977), pp. 319-338.
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QuTLINE OF THE DIREcT Cl-METHOD

SECULAR PROBLEM
(H-ES)c=0 (1)

ANY METHOD OF SOLUTION BASED ON THE CONSTRUCTION OF THE
VECTOR O IS PERMITTED IN THE DIRECT Cl SCHEME

O=He (2)
C;IS RESOLVED INTO INTEGRAL REFERENCES:

O = g% Hpq %:Al(KL:PQ)CL + EE%E(PQ/RS) %;AZ(KL:PQRS)CL

(3)

THE PROBLEM IN A DIRECT Cl SCHEME 1S
A. TO REDUCE THC DOUBLE LOOP KL OVER CONFIGURATIONS
B, TO FIND EASY-TO-USE ALGORITHMS TO DETERMINE Al AND AZ'

Figure 2



~144-

Comments to Figure 2

The direct €T scheme s based on the direct construction of the
t-vector, Kq.o (2), from the integral list according to Eq. (3). This means
that the seeular problem has to be solved by an iterative or perturbative
methord where the essentlal step [s the construction of ¢ from the c-vector
obtained in the preceding iteration. Methods based on Krylov sequences
are thus suitable here, as are methods based upon perturbation theory,

(n) (n-1)

where 7 I used to construct the perturbation vector o from c

In practice we use a variation-perturbation mcthods suggested by Brindas

and Guﬂclnsk16 where the perturbation expansion is followed by a variational

caleulation using the perturbations as hasis functions. This procedure

normatly converges very fast; more than 6 to 8 iterations are seldom needed.
The crucial step in the direct scheme is the calculation of the

g-vector according to Eq. (3). For each integral there is in principle a

double loop over all configurations. For the method to be useful this

Inop has to be reduced. 1In the case of a closed sheil reference

configuration, comprising in the CI expansion all single and double

replacements, this is done by dividing the integrals into different

classes.

References

5. B.Roos and P.Siegbahn, in Chemical and Biochemical Reactivity,
The Jerusalem Symposia on Quantum Chemistry and Biochemistry,
The Israel Academy of Sciences and Humanities, Jersalem, 1974.

6. E.Brédndas and 0.Goscinski, Phys. Rev. Al, 552 (1970).
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fiasses ot inteerals concributing to ¢, from the interaction
Petwen bhoab e vwdited configurations (o= 0§ - ab, o= k1 - od)
fLohL ks b= accapied orbitals 3 a, by oo, d o= virtual orbitals
1 Cik B ih) \ (il il ki) Aooce. oovirt,
N (ai ey, taj b k) RENVYITTIN 2owvirt.
(bill cky i ck)
3 (ac ki), (ac il ki) 2 o0e. D ovirt.

(be il ki) ,  (be Nl ki)
4 (ac Il bdy , (ad I bey 0 oOCe. 4 owvirt.

Figure 3

Comments to Figure 3

These classes are illustrated in Fig. 3 for the case of interactions
between doubles in the closed shell case. As you can see there are only
four different classes of integrals in this case [the addition of single
replacements also introduces the classes (ai/jk) and (ab/ci)]. Each
class corresponds to a double loop over orbital indices. Thus the loop
over configurations occurring in (3) is reduced to an n?, nm or m® loop
(n and m being the number of occupied and virtual orbitals, respectively).
The second class of integrals is most time-consuming and since they are of

22 3_3

the order of n“m“ the whole calculation becomes approximately an n’m

procedure (notice that n is much smaller than m).
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LooP STRUCUTRE FOR THE CALCULATION OF THE J-VECTOR.

LOOP OVER BUFFERS coik
STORAGE
OF INTEGRALS
; O INTEGEAL
. (14/kL
DEFINE TYPE OF INTEGRAL: (1J/kL). BUFFER
(ag/vL) . (aB/14), (AB/c1) . (aB/CD).
CALL APPROTIATE SUBROUTINE FOR
THIS TYRE LusaE
y 1MLE ¢
LOOP OVER TWO REDUNDAHT INDICES.E.G. AP Jrrtcs
(1J/KL) CONTRIBUTES TO MATRIAZ E_IIEf0S i
(19 » ap/H/vL = aB)
|LOOP 15 OVER_A AND B IN THE INDEX VECTOR
\
IND COUPLING CONSTANTS AND ADD C1on
C-VECTOR
CORRESPONDING CONTRIBUTION To O
CxLaB
. Tyne
Figure 4 J-VECTOR
KLAB

Comments to Figure 4

The figure shows the detailed structure of the calculation of the
O-vector in the closed shell case. There is an outer loop over two-electron
integrals. Each integral is classified and the appropriate subroutine
corresponding to the loop structure of that class is called. Addresses
of the UI coefficients are given by an index vector which stores them
canonically by the indices 1i,j and a,b. Indirect addressing can also
be used for this if the length of the index vector becomes too large.

The double loop over redundant indices now defines the pair of interacting
configurations. The corresponding coupling coefficients are explicitly
programmed into these subroutines. The contribution to the appropriate
components of the O-vector can therefore be immediately obtained. I shall
show later that this loop structure can actually be used also in the

general case (arbitrary open-shell reference configuration).
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Timing patA For THE CISD proram ot an 1B 350/9]1 coMputeR

min/it 4

T
~

15 4 y

10 - A

s

420K 950K

Figure 5

Comments to Figure 5

This figure shows some timing data obtained in calculations on the
IBM 360/91 computer at the Max-Planck institute at Munchen, using the CISD
program. The curve shows a dependence on NCi which is smaller than NéiS
for NCI less than around 30,000 configurations, but approaches this dependence
for larger expansions. Limit of present day programs lies around 102
configuration.

Actually the core-space requirements can be reduced considerably by a
two-level addressing system for the index vector. In a first vector each
configuration is given as present (1) or not present (0). This information
can be stored bit-wise. A second small vector counts tli: number of ome's
in each full word and thus gives the address., A small assembler routine
is used to perform this addressing. The whole procedure leads to an
increase in CPU time of around 20%, but the core memory requirements car

be reduced by one-third,
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QuTLINE oF THE DIRECT Cl-meTHoD wiTH AN MC
REFERENCE STATE

CI-ExpAnsTON ¥ =l§i [ CiD :Zf ip } = %Zj al Q$;
WHERE 1? _ Zij LbcfQ

15 AN _MC-SCF wave FUNCTION

AND (i%vREPRESENT SINGLE AND DOUBLE REPLACEMENT STATES WITH RESPECT

70 THE IC conFiGURATION Dy .

THE SCHRODINGER EQUATION TAKES THE FORM

<BIDY DIl - c, <
<<ﬁ>lulcﬁ>><cﬁ>mls&>> ------ q, <

THE PRESENT VERSION ASSUMES ' TO BE CLOSED SHELL DETERMINANTS.
L0

SOLUTION 1S OBTAINED BY MEANS OF VARIATION-PERTURBATION THEORY AS IN
THE CASE OF A SINGLE REFERENCE CONFIGURATION,

Figure 6
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Comments to Figure 6

The direct CI method in variant A has recently been extended to include
a multiconfigurational reference state. The wave function is expanded in a
small set of reference configurations, and all single and double replace-
ments out of these configurations. The reference configurations have in
the first version of the program been restricted to be closed shell determinants.
Redundant configurations occurring in the CI expansion are eliminated via the
index vector introduced earlier, The orbitals and a zeroth order wave function
are obtained by an MC-SCF calculation which precedes the CI step. The CI
scecular problem is then solved by the same variation-perturbation treatment
as was used in the single reference configuration case. This method is
easily extended to the case of an MC zeroth order wave function., Included
in the CI expansion are also the other roots of the MC problem. The
coefficients Cio and C;o in the first equations of this figure are
therefore in general different.

The secular problem can be blocked into subspaces corresponding to
the replacements in the different reference configurations. This greatly
simplifies the calculation of the O-vector, since the diagonal blocks can
be treated in the same way as was done in existing programs. The only
additions needed to the loop structure given in Fig. 4 is a loop over
reference configurations and a relabelling of integral indices., The timing
in this part is therefore proportional to the number of reference configu-
rations. New subroutines had to te written for tha off-diagonal blocks
of matrix elements. Only those blocks where the reference configurations
differ in two, four or six spin-orbitals will give a non~zero contribution
to 0. The case of two is handled the direct way, while the other blocks

are obtained by calculating the actual matrix elements, since there are

very few of them.
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AN ExaMPLE OF AN CIMC caLcuLATION

ENERGY SURFACE FOR THE H20 MOLECULE, ESPECIALLY THE CHANNELS

1t 1
H20 - H2( ZG) + 0(D)
AND HyO - HZS) +OH(2TT)
NUMBER OF BASIS FUNCTIONS: 44
NUMBER OF REFERENCE CONFIGURATIONS: 10

NuMBeRr ofF CSF’s: /6471

CPU-TIME PER ITERATION: 21 mMinuTes (ALMDAHL 470)
Figure 7

Comments to Figure 7

As an example of a calculation with this new direct CI, we give some
data from a study of the energy surface for the water molecule.

Notice that the timing here (ALMDAHL is only slightly faster than

IBM 360/91) is much more favorable than in the single reference configuration

case (Fig. 5). The reason is that most of the time is spent in the
diagonal blocks, and the iteration time is therefore proportional to

1.5

Nrefx sub

where Nref is the number of reference configurations and Nsub is the
number of excitations out of a given reference configuration. This is

much smaller than

1.5 1.5
Nor = (g% Noyp)
In the water case, Nref = 10 and NSUb = 8000 (approx.), which fits very

nicely to the curve given on Fig. 5.
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THE CASE OF A GENERAL REFERENCE CONFIGURAT]ON
(DucH AnD Karwowski(3)).,

A. REFERENCE CONFIGURATION OF GENERAL SPIN-MULTIPLICITY
B. NO LIMITATION TO EXCITATION LEVEL
c. CSF's ARE CONSTRUCTED ASs SAAP’s:

P L 5;7( (r) 6.,
- r; o o
SM(rJq) fg k=1 Sk ! Kk )

D: EXAMPLE OF A MATRIX ELEMENT

He, = <f§f1 [ }Il(ﬁi‘f7 WHERE

NK(P)=NK(R)=1 AND NK(Q)=NK(S)=0 P=Q=R=$

NL(P)=NL(R)=D AND NL(Q)=NL(S)=1

o = LCPa/rs) + UC(as)) (ra/ps)| UN(PY)

WHERE Ug ARE THE IRREDUCIBLE REPRESENTATION MATRICES OF THE
PERMUTATION GROUP CORRESPONDING TO THE N OPEN SHELLS OF CON-

FIGURATION K'PO IS THE SO CALLED LINE UP PERMUTATION IN THE
OPEN SHELL PART AND (QS) 1S A TRANSPCSITION

Figure 8



-152~-

Comments to Figure 8

The theoretical chemistry group in Torun, Poland has recently
come out with a method for calculating the coupling constants needed
in a direct CI scheme, for a general spin-adapted reference configuration
and any level of excitation from it. The configurations are in this
method given as spin-adapted antisymmetrized products of orbital and
spin functions (SAAP's), where the spin~functions are chosen to transform
according to the irreducible representations of the permutation group.
The space—functions will then transform according to the dual represen-
tations. T will not go through the theory presented by them in any
detail, especially since it is rather new to me also. The example of
a matrix element expression given in Fig. 8 will probably suffice to
give an idea of the method.

The problem is probably to be able to store all the information
imbedded in the irreducible representation matrices in such a way that
the corresponding coupling constants can be easily retrieved, when needed.

This problem has not yet been sufficiently analyzed.
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(OccuPATION NUMBERS FOR THE INTEGRAL (PQ/RS) WITH ALL
INDICES DIFFERENT IN DK’S METHOD.

No NK(P) NK(Q) NK(R) N, (s) N, (P) NL(Q) NL(R) NL(S) case¥

W N
N e b
RO OO
NN
SRy ey S WP = I F S
—~rooooo |r
PR N
HH O OO
NN N
oW WIS Ny

*U. KARWOWSKI. THEORET CHIM ACTA 29,151 (1973).
LOOP STRUCUTRE FOR K AND L FOR CASE No 1
(DOUBLY EXCITED CONFIGURATIONS)

G.S. occupATiON
NO(P) N (@) NO(R) NO(S) K L

0
1 1 1 1 Qs - ¢D PR - CD
1 0 0 1 IS - ¢CR IP - ¢ca
0 1 1 0 Ql - PC RL - CS

LOOP INDICES (REDUNDANT INDICES) ARE UNDERLINED. IF THE INTE-
GRAL IS ALSO CLASSIFIED ACCORDING TO THE OCCUPATION NUMBERS OF

CORRESPONDING ORBITALS IN THE REFERENCE CONFIGURATION. THE
LOOP STRUCUTRE IS DEFINED.

Figure 9
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Comments to Figure 9

Duch and Karwowski (DK) also give for each type of integral the
occupation numbers of the configurations interacting via this integral.
Their tables can actuallv he used to obtain a loop structure corresponding
to a glven class of integrals. The integral classes will be defined
by: 1) the number o' equal indices, and 2) occupation numbers of the
corresponding orhbitals in the reference state. An example is given
on this figure. The table shows possible occupation numbers in
configurations interacting via an integral (pq/rs) with all indices
being different. The case numbers given in the last column of the
table give the form of the matrix element as reported by Karwowski in
an earlier paper.

The lower part of the figure shows the three possible loop structures
corresponding to different occupations of p, q, r, and s in the
reference configuration. The example shows the interaction between
doubly excited configurations and corresponds to the first line in the
table. Obviously these loop structures are identical to those obtained
in the closed shell case (Fig. 4). Tt should thus (if the coupling
constants can easily be obtained) be possible to write a parallel

direct CI program for the general spin-state, using the same philosophy

as was used in the closed shell case.
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Direct Cl PROGRAMS IN WORK TODAY

la
1. cisp (CS REFERENCE CONFIGURATION+ ALL SINGLES AND DOUBLES)

1b
2. CIUHF (UHF REFERENCE DETERMINANT + ALL SINGLES AND DOUBLES)
7
3. CI3  (compLETE CI FOR THREE ELECTRONS)

8
4, CITRI (TRIPLET REFERENCE CONF. + ALL SINGLES AND DOUBLES)

5. CIMC (MC REF.STATE +ALL SINGLESgAND DOUBLES OUT OF ALL
REFERENCE CONFIGURATIONS)

Figure 10
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Comments to Figure 10

This figure lists some of the direct CI programs presently in work,

CISD is the original closed shell Cl program which has now been
rewritten so that pp-hh coupling can be used instead of ph-ph coupling,
which was the original form.,

CIUHE works with determinants and can use UHF orhbitals as the one-
electron basis. It has mainly been used for studies of radical

systems. Comparison with other programsshows that almost identical
results are obtained with UHF-CI and RHF-CI (if the CI is complete

in the interacting space) in spite of the fact that UHF-CI wavefunction
is not a proper spin function.

This program (CI3) works with a complete CI expansion for three electrons.
The direct CI program for triplet states was written by Lucchese.

It is interesting since it was written for a Harris/4 minicomputer,
showing that the direct CI method is practical on such computers.

Due to core limitations it was found preferable to work with a formula
tape, in spite of the fact that the program was originally written in
variant A. A double-level addressing in the index vector would probably
have made it possible to treat much larger expansions 1n core, without
the necessity to go on tape.

The CIMC program has been described above., So far it has been used

in a number of studies of enerpy surfaces, such as H,0, CH 0 C,H

2 2 73 L

and a number of diatomics.

One program is missing in this figure -- a direct CI program for
doublet states written by Taylor and Bacskay in Sidney.10 Except
for the variational single and double CI, it includes a number of

CEPA-like procedures also, for including corrections from higher

order excitations.

Reference

10.

P.Taylor, G.Bacskay, A.C.,Hurley, and N.S.Hush, J. Chem. Phys.,
(submitted for publication),
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Comments by C. F. Bender

VECTOR METHOD SYNOPSIS

+ Near linear relationship between number of determinants
and computer times

+ Faster than standard Cl diagonalization techniques

+ Handles multiroot, multiconfiguration states

e Configurations can be easily generated

® Formula tape technique further reduces computer time

— Slater determinant rather than spin eigenfunctions
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EARLY VECTOR METHOD CODES

NSM

® 60 spin orbitals

® 30 K Slater determinants

® Lanczos and Davidson diagonalization
® Vectorized sort/merge techniques

VM

60 spin orbitals

10 K Slater determinants

Davidson diagonalization

Hermiticity of Hap incorporated

Formula tape generation for increased speed
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BASIC VECTOR METHOD (VM)

Hdew = Edgy
— +
H,, = D (af IH1y8)a aza a

afy6
1
N-—-1

(@B 1H178) = | Hy 18 (5 17) + 2 (e | H | 48)

P, is a Slater determinant

Closure
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SPIN ADAPTED VECTOR METHOD (SVM)

Hp ¥ =EY
\1! are spin eigenfunctions

\If Z Cpk ok
where S ok ‘s are Slater determinants. Because of closure
for Slater determinants

E=(WH, W)/(¥ 1)

= (Ve" WP 1)

~ A~

thus spin eigenfunctions (linear combinations) of Slater
determinants can be used.
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SPIN-ADAPTED VECTOR METHOD FORMULA TAPE

For all unique orbital indices

Qijkl(P ~ Yiikl(P

For ij # ki Vijkl is very sparse and can be stored com:yactly
Q.o=Bd
iy o ~ o~
where

?k = (C,Ijk,Hop ,(Pk

)

Formula tape steps

1. Construct and save Vijkl

2. At diagonalization time
a. construct B
b. broadcast A, * V.,
c. diagonalize by repeated steps
HY =EV¥
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ALTERNATIVE FORM OF HAMILTONIAN OPERATOR

p—

op /. (ozBlHlfy(S)aaaa
aflyh

I
It

«, B3, v, 6 are spin orbitals

= 7. Ay, [0,

ijk1 jki +(1 _6(ij'k”)o'lkji]

i
1>k
(ij) = (k1)

i, j, k, | are orbitals

ukl Z a|pa|qalqakp

_<Ij|H‘k|>+(1——5 )(1—5 )(jilH“k)
—(1-5, )(leHlkl) 5|k)<lj|H||k>

This form of the Hamiltonian preserves hermiticity features and reduces the
number of two-body matrix elements by approximately 16
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MAJOR SECTIONS OF SVM

CONFIG  — generates configurations

FORM — constructs formula tape for H-matrix
FORR — constructs formula tape for p-matrix
PREP — replaces symbholic integrals with values
FORH — forms numerical H-matrix (from PREP)
HPQ — forms rumerical H-matrix directly
EIGEN — Davidson multiroot diagonalization
ALLE — Jacobi diagonalization for all roots
SOME — Givens diagonalization »

RHOF — forms density matrix

TRANS — compute Tr(gg)

SAVF — for saving & retrieving formula tapes

GETF
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THE GRAPHICAL UNITARY GROUP APPROACH TO

ELECTRONIC WAVEFUNCTION CALCULATION

Comments by Isaiah Shavitt

FEATURES

® Efficient procedure for '"direct" CI

c o » o

Spin adapted (also spatial symmetry for
Abelian point groups)

General (any state)
Can use multireference zero-order function
Can take integrals in any order

May alsc be applicable to perturbation
theory calculations

CONFIGURATION FUNCTIONS

(for the expansion of the wave function)

are

® Spin eigenfunctions
@ Orthonormal

® Specified compactly

There is a unique "lexical" ordering of
the configuration functions. Contiguous
lexical indices are assigned to the set
of functions actually used (whether full
or limited CI, including the utilization
of Abelian point group symmetry) in such
a way that the index of a function is
easily obtained from its specification.
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COMPACT FORMULA TAPE

Lists sets of equal contributions

of an integral to sequences of

diagonally contiguous H matrix

elements. Hence:

® Fast formula tape generation

® Fast eigenvector iterations

Diagram shows an example of H matrix elements sequences.
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THE UNITARY GROUP APPROACH PROVIDES:

® a method for constructing an orthonormal
spin-adapted complete set of configuration

functions from a given set of orthonormal

orbitals,

® a formalism for the efficient computation
of matrix elements of quantum mechanical
operators between these configuration

functions.

The resulting configuration functions are

called Gelfand states, and the complete set

of these is the Gelfand-Zetlin basis (or the

canonical basis).

; [] ] Is) Iw]
¢ 2 2 L 1 0 0 22 2] 1 113
s 2 2 14 0 o 242 2
4 2 1 {4 0 121 0 o5
3 2 1 1 i20 3
2 i 1 010 1 3
1 1 010 1

_000 ¢

b =,;=(frzzmi + [11335¢| - 2-]123§§6l)



-167-

o
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I
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O

Example of the distinct row graph for 4 orbitals.
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Each co-oriented walk from the tail to the head
of the graph (visiting one vertex at each level)
represents one Gelfand state. The lexical index
ot that state is equal to the weight of that

wvalk, plus one (the weight of a walk is the sum

of the weights of the arcs it traverses).

An upper (lower) walk of a vertex (1,5} is a
walk connecting it to the head (tail) of the
graph. The set of Gelfand states represented by
all the walks which share a particular upper
wvalk of (i,j), and have all possible lower walks
of that vertex, have contiguous lexical indices,
m= m, + k, k=1,2, ""xij
where m is the weight of the shared upper walk.
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LIMITED CI

Occupancy and spin coupling limitations

can be imposed on subsets of orbitals
{1’ 2’ *e*H il]!
{1’ 2’ R ] iz}’

etc., by leaving out some distinct rows.
For example, to include all single and
dcuble excitations from a closed shell
reference configuration, include only

those distinct rows which satisfy

N, = 2i, 2i-1, 2i-2 (L=isdN)

N, =N, N-1, N-2 FN<i<n-1)
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The matrix element
(m'|Eij|m) (i< j)
vanishes unless the distinct rows p,  and pé

of the Paldus arrays for lm) and Im’), res-

pectively, satisfy

pl'c = P (k<i or k=j)
I = + : :
Nk Nk 1 (isk<j)
! = . s
bk bk + 1 (i<k< j)

The graphical representation of two Gelfand
states which satisfy these conditions forms a
loop betwecn levels i-~1 and j. The value

of the matrix element depends only on the loop

(on its shape and on the b-value of the loop
head).
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N —
upper walk
loop head
J—— o .
1
j-level segment
R R B e —— e
—— — loop
\
.-—’ P - -
i—-— —4-
,
Hevel segment
i 1— —— —_—————— Y
loap
tait
lower walk
graph tail \\
00— ~— — e\ -

Graphical representation of 2 Gelfand states.
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The set of all matrix elements
(m'IEij|m)
which share a common loop provide the same
coéfficient value for the integral (il h| i)
in the expansion of all the Hamiltonian
matrix elements (m’|d|m),
- o+ i

m = m m‘c + m, + 1

! = ’

m m + o, + m, + 1
where m and mi are the weights of the two
branches of the loop, and m and m_ range
over the weights of all the upper walks of
the loop head and all the lower walks of the
loop tail, respectively. Furthermore, the

range of values of m, is given by

mt+1 -1,2,...,xt

where x, is the weight of the loop tail.
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FACTORIZATION OF GENERATOR MATRIX ELEMENTS
, J
(m IEij|m) = kgiW(Tk,bk)
where the summation is over the segments of
the loop.
Tk identifies the shape of the k-level segment.

bk is the b-value of the k-level vertex on the

|m) branch.

For the derivation of the segment values

W(Tk,bk) we use

Eij = EikEkj - EkjEik (i<k< j)
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TWO-ELECTRON MATRIX ELEMENTS

(m’ |EijEkL‘ m) = liﬂ(m’ lEijl m”)(m”lEkLl m)

C.
v¢ =l b0 Y°
J-1 J° )
4 - + +
Y = ! T b Y + ‘;q T b = 1= i= L]
q-1 :!:( q, q) ‘. :i:( q, q) Yq (q j=1, j-2, ’
0 R - + +
Yk-1 wO(Tk ’ bk) Yk + WO(Tk’ bk) Yk

overlap
ranga

10




-176-

e — —— —— — =

qQ—

- ——— e e A ———



~177-

VII. NON-STANDARD VARIATIONAL METHODS

W. Meyer, Chairman
Department of Physical Chemistry
Universitat Kaiserslautern
Kaiserslautern, West Germany

C. E. Dykstra
Chemistry Department
University of Illinois
at Champaign~Urbana
Urbana, Illinois

G. P. Das
Argonne National Laboratory
Argonne, Illinois
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NON-STANDARD VARIATIONAL METHODS

Proseniation by W Mever

Variational Methods:

a) E e.g. E= (wlﬁlw) /¢y|y} may not involve any variation.

>E
var true

b) 8E = 0, variation of orbital/configuration coefficient

e R S N LR N A NS A

(y 8- ) =
wOIH Elwo +¥y Q obeys a)
(y3P1q - + -
wij[H ENJO wD) 0 not size consistent
PT3 = ( s -
E E, + “'o”’nl“ EO|¢O+ W
(y B - ) =
v, B Eo|wo+wD 0 not a)
(wabll?l-E lo +y ) =0 but size consistent
1j o'’0 D

8E = 0 -+ quadratic errors in E only, gradient calcula-ion possible.
P (p_|a- -
c)  CPMET wolu E|1po+1pD) 0

W =By, +up+ug) = 05w = v

CEPA (wolﬁ-Elwo+wD> = 0

“"i?'ﬁ‘Eij'“’o+“’n’ =05 By (u’olﬁl"’i;)

Non-linear equations + self-consistency procedures.

Linear errors in E, no gradients(?)
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Some kind of gelf-consistency desirable for

smoothness of energy and property surfaces.

Cl, PT3, CPA conslder same configuratlon space explicitly [ref. + doubles

(+singles)] + same configuration interaction technique.

Standard techniques

a) Orthogonal configurations
b) Orthogonal orbitals
Disadvantages:

Long configuration expansion, four-index integrals transf.

""Non-Standard"

PNO-CI/CEPA, palr natural orbitals, partially nonorthogonal

Advantages:

k virt.

N occ
Configuration expansion reduced from N’k? to N2k<‘ orbi{)
e.g., transition probabilities: K* kz matrix element)

Small subset of orbital integrals + no complete transformation.

Disadvantages:

PNO's from perturbation theory -+ some loss of variational

degree of freedom

Self-Consistent Electron Pairs Technique (SCEP)

a) Complete interacting space: wo + doubles + singles (expansion
coefficients may refer to non-orthogonal configurations)

b) Direct (CI) technique

c) No four-index transformation, instead, limited two-index
transformation Coulomb and exchange operators,
e.g., Kij = [pifoj].

d) Strictly structured according to spin-adapted hole pairs.

Advantages:

1) "Formula" logic at level of configuration classes (particle pairs).



2)

3)

4)

5)
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Pair expansion coefficients (=symmetric/antisymmetric matrices)
can be updated independently, 1.e. iteration may focus on pairs
of largest variance.

External orbitals may be adapted to each palr optimizing the
perturbation iteration.

Core usage can be restricted to the equivalent of 4-6 Fock
matrices (1/2 matrices).

Complete variation of wavefunction — including orbitals of wo -

possible with reasonable extra effort -+ gradients efficiently.

Disadvantages:

1)

2)

3)

6)

As yet implemented for single configuration reference only.
Repeated calculation of operators may be costly in case
of slow convergence.

Not sufficiently '"general''?

Relatively simple implementation of symmetry, e.g.

"equivalent pairs".

Sketch of Formalism

poo

Overlap matrix S = (50[50)

Bare Hamiltonian H 7 - (golﬁolgo)

Coulomb operator J(C)OG = 2: cHV [uvlpo]
uv

Exchange operator K7 = 2: cHV [uplvd]
uv

(e.g., K(1YY]) = Ryy = ECEC; [uplval = [pi]io] )

Fock operator F(D) = H® + J(D) - K(D)/2

Note: trace (ATJ(B)) = (atu(m)) = ¢Bfi(a))
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Hartree-Fock:

[¥] 1‘
Eo = (DO{H + %J(Do) - 4K(DO)H

6EO - (61)0 F (Do))

60 = RD + DR
o o] (o]
R = 2: dcia(la)(il - li)(al)S . i:0ce, a:virt.
i,a
9k .
5C = 4 (a]l~(Do)li)
ia
3%E
e ae— * 46 .6 ((alFlad - (1|F|1)Y)
aciaacjb 1} ab

2-Electron System

po - +
b, = 2 S |€p€o| ; Cp = pC, p =%l
po
7 r pH OV
(|€pc,0| lgug\)h = 5§ g
- ol -
( |£OE;0|1'12 I&ugvb = [pu|ov]

+
( -
upplwp) (cpscps>
E = (cr{28°c s+ Kk(C,)}
P P p

= + 0 - - +
§E = 2 (5Cy {2n CpS + K(Cp) -ESCys ) 2 (8Cp G,)

b
6c, = Z dc;” (laxn| + plbxal) n

agzb

= + - .ab
T - Znab(aIGp+pGp|b) =T, =0
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3E i
2ot 28, Spg 2IF @) - HIM)[b)
P 7P

N ,:,)a eigenvectors of F(D) - 1/2 J(D) = VN~] potentials

+1 ) b b
Cén ) . cén - T; /E; °nab(|a)(b| f plb) (al)

N-Electron System

wo' in general, multi-configurational,
Internal orbitals ¢i = |
la)

External orbitals ¢a =
oL p=-1, m=l
Internal pairs n, (b,d, + pd,d, ) (aB~-pBa)/r p= %1, msO
W A6 31 2 - e
BB p 1, m=-~1

Spin-adapted creation/annihilation operators
+ +
(yny lem) 5 (nny [pm)

Consider two-electron-part of Hamiltonian

D D0 D] Gatls) + plag e L (int lpm) (n,n, lpm)

p=tl a>b 1>j

+ "interacting space" spanned by

d):gp N § (n:n‘l’;lpm) (nin_‘] IPm)wo (1 ...N)

)

\

ab + +
wPEijp = E CP § (ﬂaﬂblpm) ¢pm (3 LR N)

¢p 's may turn out non-orthogonal for MC-y_ + then orthogonalize:
m

P Z linear combination of internal pairs.

Note: All "formula" information contained in reduced transition

density matrices for ¢_ 's.
m

Expansion coefficients for wo may be relaxed during iterations by including

other linear combinations of the configurations of wo'
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Energy for Closed-Shell Case

) , Koo
2, o al X1 (Byibyp + S1g6y 07

b
c, - Z c: (lav¢n| + plwdCa)n
D, = csc , D, = C.SC

“PQ T 2P

fE = £4D (K + F(D ) /2 + 32VEp <c x(c)>+<cp K(cp) ¥ + (D, F(D))

p
+ 152 D, s[(c K(C))—(pr(D))] +Z (n, [\/2 p)(z-q)g K(D,,)
Psq
- &, 3]0
R 1+z92p\1_)pp)/2 9=1~+ CI

=0+ PT3

-1
D = +f Z [D -z (p s)2
) p[-pp q Zpq /2]

-1

)+ 2f zp(GEP_c)

P

6E = 2f'12:<51|c1 |
13 i

G = V2-p R(C,) + K(EE) + (2 F(D_) "’Es)fgs

+
+ 2 {VER @0 ko, -6, 30, + s tch R(C,)) = S (FOID. )} c.s

i
Gy = 8,4 2f F(D) +):{2\/2 -p 1<(cp) +z K(Cq) (qus)}xj

J , J
+ K(D¥ ) - J@) - FO) (gijs)/z

PR LIRS je 1k
E 2-p) (2—
I_)Pq V(2-p) (2-q) %Xq Xp

J JL 18
D = D & 2 E X
-1 -pq Pq ) q xP



-185~

b .
sc, = E aci® n__(Ja (v} + plbraal) - ‘E ar,, (I0a) sep + ¢ slaral)

a b

|61) = deia |a?
a
dC# : variation of external expansion coefficients

dA : rotations between internal/external space

To be calculated from integrals tape:

a) For optimizing gp

(1) All operators J [pc‘ij] once

1]
Kyy = [pt]1o]
(+ limited 2-index transformation, about N xk' nultiplications).

m

(2) Operators K(EE) per iteration on EE

(~ about same expense as above, N xk").

b) For optimizing |1}

) K(g‘i(j) . J(l_)_ij) a2 x1)

(2) a (1) again if new cycle on gp'

c) To get Gps Gy

Little logic, random access to Kij’ Jij’ K(Cp), Cp, plus
lots of matrix multiplications (N°Kk?)

Explicit inclusion of singles:
. a
Representation: gs = Z Ci Ia)(i'
ai
+
G + G + + - K
) p KRG SC)) + 8¢ (sc 7 - K(CH)

i.e., instead of K(gp) , now calculate
+ +
K(C, + %Cs5 C + %€, Sﬁi)

+ no more work than before.
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Open-Shell States
Due to semi~-internal configurations, palrs are represented by
Cext
cp o+ % lag ) (1]
ext
+ In Gp, write x(gp +% Elai) (1] + pj1? (ai])
+ Symmetry of K-operators preserved, remaining terms involve
only Kij’ Jij'
RHF with same efficiency as closed-shell HF (UHF: twice as many

operators + coefficient matrices)

Coupled Clusters - Spin Adapted
Terms like

3

> 1
“st (6Cp SCqo? (Cp Kij ) Ypor

P\Q!R

References

PNO-CI/CEPA: W.Meyer, in "Modern Theoretical Chemistry: Methods of
Electronic Structure Theory,” edited by H.F.Schaefer, p.413
(Plenum Publishing, 1977) and references therein.
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OTHER DEVELOPMENTS AND APPLICATIONS
OF THE SCEP METHOD

Comments by C. E. Dykstra

The flexibility of the SCEP method is shown by the ease of direct
extension of the basic method to special open-shell casesl and to quadruple
substitutions.2 Important in showing the power of the method are applications
to real molecular problems as shown below. Among these applications are
problems involving large configuration expansions (over 63,000 for HZCZO

isomers3), large basis sets (53 functions4 for CH

and 63 functions5 for H;),
and SCEP/CEPA calculations6 in Bey.

3

Studies of Molecular Systems Using the SCEP Method:

¢ Be, cluster energy

e D2h and D2d energy differences in allene

® vVinylidene * acetylene rearrangement

® Inversion potential of CHy

e H; potential surface

® Ground state energles of HyCy0 isomers

® Formation and rearrangement of the vinvl znion

® Basis set and correlation effects in the H2C2 and H2N2 systems

References
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of open shell wavefunctions, J. Chem. Phys. 67, 4716 (1977).

2. C.E.Dykstra, Inclusion of some higher order effects with the self
consistent electron pairs method, J. Chem. Phys. 68, 1829 (1978).

3. C.E.Dykstra, An ab initic study of the energies and structures of
ketene, oxirene, and ethynol, .J. Chem. Phys. 68, 4244 (1978).

5. C.E.Dykstra, M.Hereld, R.R.Lucchese, H.F.Schaefer, and W.Meyer,

Molecular structure of the methyl anion CHE: An Investigation of the

effects of electron correlatian using the theory of self-consistent

electron pairs, J. Chem. Phys. 67, 4071 (1977).
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system: Rearrangements and formation from H and acetylene, J. Am.
Chem. Soc. 100, 0000 (1978).

C.E.Dykstra, The SCEP computer program, QCPE 10, 346 (1978).
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Comments by G. P. Das

method is specialized to study energetics of chemical reactions

of the type: AB+C = A+BC

2. Procedure

a.

First, the atomic and diatomic wavefunctions for A, C, AB and BC
are obtained, the diatoms at various 'R'.
A CI consisting of the configurations that represent incoming
channel i1s constructed and MCSCF performed. The same is also
done for the outgoing channel.
The wavefunctions for the two channels are then combined in
the form:

Yy = AIWI + BOWO
and the corresponding secular equation solved. Only the off-

diagonal element deals with non-orthogonal set of orbitals.

‘ification and Approximations

. computing the matrix element <w1|x|wo) , Wwe write

Y= (Y|P O+ Y (Y Yo oYY o+ a6
0 I'"0 I § O] Ik Ik L 3 I

where WIk's are other roots of the secular equation det ..ng ¥

Obviously WIk's don't contribute. Only the ®Ij's, excitations

T

not present in WI’ of which only singles and doubles w.r.t WI

need to be considered. Thus only the overlaps (WIEWO) and

(&__|¥_ ) are to be calculatec. Note that ¥ .'s are excitations
I13'°0 i]

involving transfer of electrons from the diatom to the atom.

With little loss of accuracy, the optimization in Step 2. can be
carried out only in the basis function spaces for the individual
atoms and diatoms. This implies that the Fock equations are
modified to the form
AB AB AB
F = ) €.,

c AB AB
S A § ij 5

5% o) )
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(52X s g)s -2 a(s 2 u)g o

i CAB 3 kC AB

and

where the orthogonality requirements in (1) are only amongst {Ci},
i C AB, while for C the orthogonality to the AB-orbitals introduces

the additional terms in the Fock operator.

In the CI of step 2, one can omit configurations representing higher
order correlations involving virtuals within the subsystems. The
corresponding lost correlation energy as well as terms can be
reinstated in the final energy and wavefunction coming out of

Step 3. This 1is an important approximation and 1s explained as
follows: Correct to second order, the contribution from these terms

is of the form

e i Cy ey )

e -¢g

a b
where 5; and E; are the modified dlagonal energles in the presence
of the atom C. The numerator is more or less unchanged, while the
change 1n the denominator is expected to be small, but in any case

checked out and corrections introduced accordingly.
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VIIT. PERTURBATION THEORY
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Presentation by Rod Bartlett

Brilloutn {1932} —-

Wigner (1935)

~

IVlr!aHon PT| emee———— [ PT & CI
t
l l
v

Lowdin
<« (1981, 1962)

Lippman,
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feenberg,
et al. {1956)

Dalgarno,
Stewart {1961)

\

Bartlett, Brancas
{1911}

(1972)

Schulman,

Raos Kaufman {1970}

Bender ({1975) Robb (1973) e——

Bartlett, et al.
(1974)

Kirtman, Cole
{GVB-RSPT)

|

Davidson, Bender {197B)
{Mu1ti-Configuration RSPT)

/m\\er. Plessett {1934

‘/,//’/’/’////;pl Diagonalization}

Rayleigh (1890)
Schredinqer (1926)

l

Lennard-Jones {1930)

iyt reass (1920 -~..--_\§§4 Other Perturbation Theories

¢
[ BTvoRD_WF
—

{Exchanlje PT)
Hirschielder
Kirtman

{Coupled HF)
Perg. Allen
Dalgarno, Lipscomd

-~\.~"“‘-4(Propagator Theories)

Brueckner (1955)
Goldstone (1957} 1 “Linked Diagram Theorem®

Hugenholtz (1958)

Grimaldt (1965)

CLUSTER EXPANSICNS

Atomic MBPT

Siranoglu {1962)
foplications

} Kelly (IQSIW

Das (1968) Nesbet (1965)

|

(Pair Theories)

MOLECULAR MEPT|——, x::;mnhm

{ Coester, Kimmel (1960)
Pople, et al, Mcbowell Genera] 1zed }
(1975} fﬁ'§°§ ' Cluster Theories Effex (1966)
9
Brandow (1967)
(Multidimensional
Linked Diagram
Theoren} [coupLe cLusTer meTHoDs |
e \
[App!ications} Burt1§€::' Pople, HuFley,
™ Kaldor, (1119) Purvis  Krishna et al,

et al. (1976)
L‘l&:ren (1978)

{Multi-Dimensional
Generalizations)
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WHY PERTURBATION THEORY ?

Organizes much of quantum chemistry into a single framework.

Provides convenient, tractable formulae for a variety of
computational problems.

Small energy differences are computed directly.

Facilitates maintenance of "size consistency" (separability
conditions) for total energy, density matrix, excitation
energies, etc.

Perturbation theory formulations lead to vectorized
computer code.

Perturbation formulations suggest different approximations,
including types of infinite order summations.

Ideally suited for second-order properties.
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A
2BHy

31 p
x

o -
3

a -

J

-

Il 1 1l _/z
BT 3D 607/ ry

50
8~-8 ODISTANCE (au.)

Dissociation of B2 H6

Plot for configuration interaction changes as a function
of B...B distance for the symmetric pathway. Values
of E are E(SCF-CI) ~E(SCF). From each AE we subtract
2AE for BH, to find A(AE). Units for the abscissa are

in kilocalories per mole.

Ref.: Dixon, Pepperberg, and Lipscomb, J. Am. Chem. Soc.



ENERGY

(a)
{b)

{c)

(d)

-196~

ILLUSTRATION OF IMPORTANCE OF *“SIZE-CONSISTENCY"
FOR STUDIES OF POTENTIAL SURFACES

Exothermicities of Reactions and Predicted Barrier Heights

A+ BC

--—-—--—~

N }ERROR

AE
AEgxp. CALC.

AB +C

REACTION PATH

If exothermicity is not correct have innate error in predicted barrier.

In a “size-consistent” method AE = E(AB) + E(C) — E(BC) — E(A); and no
supermolecules [ABC] need to be computed to obtain exothermicity.

From a small number of calculations can predict exothermicities for many
reactions at a given level of basis set or sophistication.

Higher excitations are likely to be important in obtaining correct relative
energies on a potential surface, and ’size-consistent’’ methods, at a sufficient
level of sophistication, include contributions from higher excitations.
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MANY-BODY PERTURBATION THEORY

N 1

He 2 hil+ 2o
i=1 i>]

H=H +V

H - )> {h(i)+V @) +plvi)-v= ()] p} ’
i=1

VeHH s T g Tog{Wo + prv-Noa p)
i<j i

thw+ Wq) X (W)= €. Q)

+ =
plh) p VP (1) e_X (1)

N
p=1l-0 o-

_ |xJ.><xJ.|

j=1

N
Wae £

* -1
; [dt X @y W-PIX 2,

1

N-1
N-1 -
V= vt = far.ox * La-
j=1f T @, 0ppx )
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MANY-BODY PERTURBATION THEORY (cont)

E = Eser * Ecorr

Ecer * Eo+<a>0|v|a>0>

m -
RSPT:AE= E-E - T <0 |V I(E -H) T P(v-aAD) TN 0 >
0 Tg O 00 0

04]
A T T
MBPT : AE - K>Eo<<1>0|\/[(50 H) " VvIt|e >,
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=7 2

G 0 2 X 1) ab)| /ptij ab)
—— i>j a>b

0———{} Y., T ¥ {jfl ab)ablledX cd]lij} /D(ijab) D(ijed)
- i>j a>h c>d

e———g = ¥ X Y (abllin/ijliked (k4| ab)/D(ijab) D(kLab)

i>j k>L a>b

Q—_f}() = 2. 3 (ab)ij)ic] ak) (kjllcb)/Diijab) Dikjch)

-~ ijk abc

0—09 + 0—)( = 3 ¥ (ab]ij){[Z {cn] an) -Cc|V]a)]){ij]lcb)/ D(ijab)D(ijcb)
— AN i>j abce n

D(ijadb) = ci+ tj TE € .

p(ijab) = D(ijab) + Alijab)

Afijab) = -Cab] ab) -(ijflij) + Caiflai) + ajllag) + il bi) + {vjl b

N N
[ Ztanllam - Glv]2)]- [ Zonlm - Glvie]
n=1 n=1
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1, 3, k, 1

occupied
a, b, ¢, d unoccupied
¢ Pqlles )
I) main
\/ sort
(1j k1) (ij llab? (ia || jb) (ij || ka) (ia || be) (ab| cd)
‘ /
! b 0 l v
hole-hole EZ’ Quad hole-particle S.E. T.E. Particle ladder
ladder

10 00 80 0s ol (0

E, > (ij |l ab)(ij| ab) /D= (ij| ab) c"i*'.3

j
{Ci?} small sort P
By, (L) > C3Y gl
E, (PPL) ~ c‘;? {ab |l cd) ci‘; cEi”J? x x?lj’ EZE“

> ab i Cl.) ¢
E3 (HPL) Cij (ic | ka) ik
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NON-LINEAR PT SUMMATIONS

Variation - Perturbation

=
1]

¢0 + X1¢1 + X2¢2 + - - -

~

=1
It

Exs =7 = Dyps By

Padé Approximants

E {[N, N—l]} = E0 + E1 + [N, N-1]

[N, N-1] = [E2 E3 - - -] E, - E

(P HIl YUY Y=HA=ADXE

~ o~ ~ o~ o~
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Qo

:::§> Y (kflled) Ciz CE? + 6 more quadratic terms
k>%
c>d

"Quadruple" Excitations Diagrams

Energy obtained from z C?? o Z (kilcd) Cab C?q + ...
ij K59 k& Tij

c>d

Non-linear loop i

(Defines new part of coefficient)

Return to Linear Loop
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QUARTIC FORCE FIELD FIT FOrR GEOMETRY
OF H20 (39 STO)

a
3 30 -
2 20 A -
2 %2
- o] »] o .
o
[ 10 1
b4
| X xa 6 .
N o
expjo—2 0 o
XA
& AO%
a
il - n] _
' 0 O SCF
A 3-RSPT
- X CI(SD) T
O DE-MBPT
G L | | L L]
Re 0e fnn faa fnn’ fna fRRR fnnnn
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-AE (keal/mole)

Reaction #BFN | D-MBPT (6) EXP.
2 BH3 ~ ByHg 68 35.6 38.4 + 4°
BH3 + CO ~ H3BCO 63 205 22.0 £ 28
BH3 + NH3 = H3BNH3 62 20.5b -
HNC - HCN 37 16.1 (103 £ 1)
CHaNC — CHZCN 63 22.3 237 + 14
CH3NC ~[CH3 ¢ | 63 -44.1 (.Jq)a -38.4

Aadjusted for vibrational zero point energy and temperature,

bincluding estimate for geometry relaxation.
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FOURTH-ORDER PERTURBATION THEORY

D D s.D,T.Q $,D,T.Q D D
! b } = } 4
E4- <‘palVP(Eo—‘Ho) P(V—E1)P(E0—Hu) P(V—E.‘)P(Eo—Ho) PVl¢o>-— EZA

E, =C4-E2A
8= <by | > = <dbo| VPIE, — Ho) T P(Es — Hol 1PV |0 >
A=1/8 Y [<k|||cd>/ek+e|-ec-ed]2
k>4

E, = <to| VP(E, —Ho) PV] o>

_ .. 2
E2 - 2 <“Hab> I5i+€j - Ea - Eb

i>]

a>h

P=|m (nfny T (h|  where (@]h =0

== = k

P may be separated into single, double, triple, and quadruple excitations
|03 = [ty by, g, 1)

S.D..T..Q
Ea=Ca+Eq +E4 +E,

EZA is solely determined by double excitations
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FOURTH-ORDER PERTURBATION THEORY {Continued)

Insarting the gquadruple excitation determinants, D.Il]’::’ , into £ 4 inE 4" 64 - EZA' it may be shown that

®

D

£°- T <||Ilnb>{ ¥ <k|llnd‘ [<kllled><|jllab> <klllab ><ijlled>

ljlb

Ckicd

i;ab

<muu>gu.e>©<kmm><.,uu> 5 (<ikilab><jited>
D "\ Digab

2 (
Ouibd  Oijac

kiac | jbd

D

D

D. D.

" ( <ikllse>< Jlllbd > C? <iklibd> < jlllac >)]}

kac

jlod ikbd

ilac

D

But

A=Ea=F T (<ijllab>) 2 Litlicd>

1>j %>1 0. )

a>b c¢>d ijab kied

€ -

£ —EzA B+C+D+E

L\

kiab ijed

+ Siklled> <jliiab>

Oikcd  Djiab )

) el

+

v
“UNLINKED” DIAGRAMS
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FOURTH-ORDER PERTURBATION THEORY (Continued)

What happens if restrict space to just double excitations?

_ -1
P={h,> <hy|h,> <n2{
D_.D

Then, E, = €, — E;A

But consider example of 2 separated He atoms, He A and HeB.
_eA B A B

= aEPAP 2 2EP AR

2 2
Thus, E,A IS NOT SIZE-CONSISTENT
540 IS SIZE-CONSISTENT

So, simplest size-consistent fourth~order PT approximation

would just neglect RSPT renormalization terms.

i
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TABLE 1.

Components of the correlation energy through
fourth-order (millihartrees) (core electrons
are frozen.)

E,
(a) D s qQ 4
Molecule Ez Eg El, E,‘ El. ECORR
BH, (4s2pld/2alp) -93.53 ~19.3 -3.65 -116.32
-4,92 -0.18 +1.45

K, (4s2pld/2slp) ~188.64 -12.8 -2.16 -203.53
~3.99 -0.'57 +2.48

co, (5s3pld) -520,01 +20.53 ~16.27 -515.75
-13.36 -11.77 +8.86

€0 (503pld) -309.82 +4.92 -12,00 -316.89
~9.98 -6.92 +4.90

HCN (482pld/2slp) -284,52 -2.03 -6.80 -293.36
-9.04 -3.70 +5.94

N, (483pld;spd bond fxn.) -340.58 +7.27 -9.40 =342.70
~11.58 -5.12 +7.30

N, (R=3.00 a ); RF ~555.34 +195.79 «172.33 =531.88
o -148.60 -35.951 +12,18

N, (8=3.00 a); vur ~227.03 -25.96 -9.48 262,47
o -7.30 ~7.16 +4.98

(a) All molecules are at thair equilibrium geometry unless otherwisae specified,
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TABLE 2.
Comparison of various correlation approximations
with CPMET.®
Molecule p-cI ™ | p-uBeT(4) | DQ-MBPT(4) | CPMET
BH3 ~113.40 -117.78 =116.32 -116.90
NH3 -194.45 -205.44 -202.97 -203.30
co -289.66 -314.87 =-309.97 -309.70
HCN -265.94 ~295.59 -289.66 -290.17
CO2 =457.52 -312.84 =503.98 ~504.01
NZ(Z.OGB ao) -313.75 =347.04 -337.58 -337.22
N,(3.00 a.); -391.26 =508.15 -495.97 -447.80
2 (V]
RHF
a)

All energies are in millihartrees.

b)D—CI is estimated from a variational upper bound obtained

from ¥ = ¢ +X,® + A,®, where ¢, and ¢, are the double-
o 1 272 1 2

excitation parts of the perturbed wavefunction.
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TABLE 3. CH,NC ~ CH,CN; Basis set [4s2pld]/[2s1p]

Components of the correlation energy, energy

. 2)

of isomerization,and activation energy.

"Transition -AE c) E c)
Order CH,NC State" b) cu30N Isomerization A

SCF ~131.91865 ~131.84204 -131.94918 19.16 48.07
2 -.41283 -.41839 -.42401 7.02 -3.49

3 -.01818 -.01772 -.01302 -3.24 0.29
4 S.E. (-.00461) (-.00531) (~.00440) (-0.13) (-0.44)
D.E. (-.01265) (-.01321) (-.01292) (+0.17) (-0.35)
Q.E. #+.00814) (+.010156) (+.00863) (~0.3D (t1.27)
4 Total -.00912 -.00836 -.00869 -0.27 0.48
EcoRrr -.44013 - 44448 -.44572 +3.51 -2.73
EoTAL -132.35878 -132.28652 -132.39491 22.67 45.34
Corrected for zero pointd) 22.7 ~39-40
Experimental® 23.7+0.14 38.4

8 pasis set is Dunning's contractionzo of Huzinaga's (9s5p)/(4s)
primitive set augmented with polarization functions on all atoms.
b)

Transition state_geometry is taken from the SCF calculations
of Liskow et al.’

c)

Units for energy differences are kcal/mole.
d)

and ~5-6 for the activation barrier (see text).

E)See Refs. 5 and 3.

Estimated zero-point correction is included, ~0 for AE (isomerization)
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N, potential curve

ﬁ‘F + D-MBPT

7 UHF+D-MBPT

'
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Disadvantages of MBPT (as used here)

® Limitation to a single reference determinant.
— RHF is fine near equilibrium for many molecules.
— UHF is often suitable for open shells (high spin cases)
and for breaking a single bond into open-shell fragments.
— UHF has problems in describing multiple bond breaking.
(A multiconfigurational generalization of MBPT has been given
by Brandow and used in calculations on H, and BH by Kaldor.)

2
® Exclusion of triple excitations.

Advantages of MBPT

1) All properties are evaluated by summing products of molecular
integrals, which is a conceptually simple procedure that lends
itself to efficient computer algorithms particularly suited
to vector machines. (No counfipurations need be considered.)

2) The cancellations that occur in full CI among different levels
of excited configurations, like double and quadruple excitations,
are already incorporated into the linked-diagram expansion.
Hence, approximations to the linked-diagram expansion can
benefit from higher excitation effects automatically.

3) MBPT provides properly size-consistent results due to 2).

4) As long as an entire diagram is computed, MBPT results are
invariant to unitary transformations among degenerate orbitals.

5) The diagrammatic summation of MBPT may be computed recursively
to all orders in many cases. The closed form equivalent of the
most important MBPT summations are found in the coupled-cluster

formulation of Coester, Kimmel, and Cizek.
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Survey of Some Current Work in PT (necessarily incomplete!)

I. Potential Surface Problem
. MBPT including all single, double, quadruple excitation

effects to fourth-order, higher-order double and

quadruple terms: UUF reference function [ﬁartlett, Poplé].

. Multi-reference function MBPT to third-order [Kaldor].
GVB reference function RSPT to second-order [Kirtman].

. Multi-reference function CI-RSPT to fourth-order
[Davidson, Bender].

II. Ionization Potentials (Double Perturbation Theory)

Third-order RSPT [Chong, Simons].
"Transition State" and second-order PT for correlacion
[Goscinski, Ohrn].

. Many propagator studies use PT to solve for Green's
function [Cederbaum].

ITI. Second-Order Properties (Double Perturbation Theory)

. Coupled Hartree-Fock and second-order correlation
[Adamowicz, Sadlej].

. Coupled Hartree-Fock and high-order correlation
[Bartlett, Purvis].

IV. Excitation Energies

. PT of excitation energies discussed by Paldus, Ti%ek

. Most applications use PT to evaluate polarization
propagator [Yeager, Freed, Linderberg, Jorgenson, many
others].

V. Miscellaneous

Direct determination of conformational barrier in ethane

using PT [Nee, Parr, and Bartlett].
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ALTERNATIVE INITIAL APPROXIMATIONS IN
PERTURBATION THEORY

Comments by Bernard Kirtman

In the table, two alternatives to the Hartree-Fock (HF) initial approxi-
mation in perturbation theory are evaluated. One is the generalized valence
bond (GVB) model;1 the other is a limited multiconfiguration wavefunction.

In wGVB the spin function S 1is a linear combination of independent bonding
structures. For a perfectly paired (PP) molecule it has the form shown. To
make the VB calculations practical one must use either a strong orthogonality
approximation2 or a method based on overlap expansions.3 In either case the
zeroth—order treatment involves Q(NKA) steps, where N is the number of
electrons and K the dimension of the basis. Several advantages of GVB with
respect to HF are listed, along with the disadvantages, in the table. These
advantages follow from the improved approximation [cf.items (a) and (b)] and
the spatially localized [cf. item (c)], quasiatomic [cf. item (d)] character

of the VB orbitals. Under item (b) the example is based on preliminary
calculationsh which indicate that the second-order VB energy may be as accurate
as third-order HF. The possibility that basis sets may be avoided with an
atoms~in-molecules type approach [see item (d)] rests on being able to suitably
adapt Kelly'sS numerical perturbation techniques.

A limited multiconfiguration initial approximation is required for
excited states with open shells where there is an exact zeroth-order degeneracy
and also in many instances of quasidegeneracy as well. Several appropriate
degenerate perturbation methods,e’7 which (usually) yield the entire set of
strongly interacting states, are available. All need to be more thoroughly
explored, although Brandow's expansion does seem to represent a distinct
improvement8 over the Bloch-Horowitz procedure from which it is derived.

For one particular method, namely generalized Van Vleck, we have given the
most time-consuming computational steps (in third-order) beyond those present
in a non-degenerate treatment., The parameter r, here, is the number of

virtual orbitals in the set of zeroth-order configurations, divided by N.
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Only single substitutions are taken into account, but one or two doubles would
make no difference. The first and last steps listed each correspond to a
single elementary sum; the middle one to two such sums. For r=1, say, the
extra computational effort is comparable to that of an ordinary ground state
calculation.

In summary, the potential advantages — and, often, necessity — of the
alternative initial approximations presented here are such as to warrant

further careful investigation.

References

1. W.A.Goddard III, Phys. Rev. 157, 73 (1967).
2. W.J.Hunt, P.J.Hay and W.A.Goddard IIL, J. Chem. Phys. 57, 738 (1972).
3. D.M.Chipman, B.Kirtman and W.E.Palke, J. Chem. Phys. 65, 2256 (13976).
See also B.Kirtman and D.M.Chipman, Chem. Phys. Lett. 26, 593 (1974).
4. B.Kirtman and S.J.Cole, J. Chem. Phys (to be published).
5. See H.P.Kelly, Adv. Chem. Phys. 14, 129 (1969) and additional
references cited therein.
6. There are a number of exchange perturbation theories. The one that
we have used in correlation calculations is due to D. M. Chipman,
J. Chem. Phys. 66, 1830 (1977), particularly his most flexible
primitive function. The latter yields just one of the degenerate
states at a time.
7. (a) C.Bloch and J.Horowitz, Nucl. Phys. 8, 91 (1958);
(b) B.H.Brandow, Rev. Mod. Phys. 39, 771 (1967); Lect. Theor. Phys.
B1l, 55 (1968);
(c) B.Kirtman, J. Chem. Phys. 49, 3890 (1968) and work in progress.
8. Cf., P.5.Stern and U.Kaldor, J. Chem. Phys. 64, 2002 (1976).
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Alfernalive Initial Approximabions in Perturbation Theory

I. Generalized Velence Bond (GVB)

Y= 2 804016.06)...80.23,...)

PP . . g
Yo : S=alialzs).. Alif) = dl)AG)-ag)80)

ractical aparop: strang orthogdonalit Y ot oyerlep expansions’
P ke Sa-vn;,g 3 (D?;-V )

Ji&d\l%%ﬂ_ﬁﬁ
(2 NK* vs.K* for Hartree-Fock

(b) non- symmetric (exchange) pT®

a.dvant_ggs

(a) required near disscciation limit
(b) joster convergemce =2 greater accuracy/effert
eg. 3rd-order HF vs. 2pd-order VB
possibly N NK™
(c) weak corvelation bebween well-separaled electrens
= vlegli_gi.ble or simple aﬂrcﬁmﬁon
(d) ofoms - in- molecules = avoid basis set
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I Limiled Hu.lttconftgumtwn
use IV0's for goad zeroth-order exclted stules

dtsndvantages
(0) complex PT

exac de eneras ﬁ!ﬂhomge pT d
general: Block zlnmw\t'il,v1 Brandow’ (S’?::W&e)

(b} evaluate ertive sewlox malri laqg nrder
(r=N,/N) e rPK, N

advanto.ges

(a) re1m.red for exact ond (some) 1uas|degenemy
(b) all' stotes obtained snmultanemslt]
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Comments by E. R. Davidson

VECTORIZED PERTURBATION THEORY

Given vector space [f) = (|f.), |f2) ves)

¢1
Element [¢) = |f) ¢ %= (‘1’2)

Vector method gilves (SJH|¢) without forming matrix (fjﬂlg)

If |0) is an approximate eigenvector involving several reference configurations,
RSPT gilves Il) and |2) by casy vector operations

F2 vee O 2 + .. O 2 reference for U(R)
g u

Mg, 4e~ problem
gh g gt gt 1
g g u 4

All single and double excitations in minimum NO space in |0)

m, States U(R)

Conclusion: with good |0), 4th order gives chemical accuracy. Calculation
beyond 3rd order does not gain absolute accuracy unless triple and quadruple
excitations are included

E. R. Davidson and C. F. Bender, Chem. Phys. Lett.
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STEPS IN MULTICONFIGURATION/EXCITED STATE PERTURBATION
THEQRY CALCULATIONS

1. DefineCS ; H,,C3 = E°CS

AA~A ~ A

2. For each root of interest

form ng

i. calculate E2

ii. calculate C*

form Hw;

i. calculate E3

ii. calculate C?

iii. calculate E*
RTINS

form Hyp

i. calculate E,,, . =(yp HYR)
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F,: energy up to second order

POTENTIAL CURVES — PERT 2
1 | ! |
E3(2x 2)
_5 — -
-15—
2 E3(1x 1)
&
[-}]
=
w 25— -
-35[ -
| | | I
0 1 2 3 4

Internuclear separation, a.u.

(1x1) 1 configuration reference space
(2x2) 2 configuration reference space
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POTENTIAL CURVES - CI PERT F,: total enerpy up to 2nd, 3rd, and

Energy, eV

I 1 !

E4, CI2

l ] | ]

1 2 3 4 5

Internuclear separation, a.u.

CI2 = CI curve, 2 configuration reference space

4th order without
quadruples

(2 configuration reference
space)
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Mg, CALCULATION DESCRIPTION

® Basis functions: [ 11s,7p] — (45,3p)

® SCFon 1092 1(1‘12209220‘.230“2 30,21 7",,4 1 ”u440924"u2

o Molecular orbital basis: occupied .. canonical SCF,
unoccupied .. ICSCF

® Configurations: frozen 100 - 309, 16, —30,. 17, 11rg
1. (SCF + singles into 509, S0, 21rg, 21ru)s ‘D
2. (SCF + singles and doubles into 509, 50, 2110, 27 )s.p
3. SCF + full Cl (quadruple excitations)

® Internuclear separation .. R = 6.00 a.u.

e Calculations: Cl1, Cl2, CI3, PERT1, PERT2, PERT3(2)
Energies: (‘ZD‘”, 2‘29*, =0 T, 'z ) transition
moments
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DOMINANT CONFIGURATIONS MUST BE IN Cn

1"z e C, eset C, € set2
EO —399.174861 —399.216385
E2 —399.245243 —399.238777
E3 —399.241270 —399.239939
E4 —399.242091 —399.240635
EA —399.237797 —399.240471
EC! —399.240599

21:2 +

]
EC —398.969015 —399.071118
E2 —396.734690 —399.093093
E3 —397.967954 —399.092813
E4 BANG —399.094385
EA —398.966258 —399.093317
E€! ~399.093978

ECI = energy of full 4 electron CI



~-226-

CONVERGENCE OF PERTURBATION ENERGIES TO Cl ENERGIES

. a) 1% 1y 1 1 171
Wavefunction 2 Lg* 2 Lg* 2u+ l]g I,
EC 0.0239 0.0227  0.0383 0.0295 0.0213
E? 0.0015 0.0007 -0.0009 0.0004 0.0016
E3 0.0004 0.0010 1 X 108 0.0002  0.0005
E4 -0.0001 -0.0004 -0.0004 -0.0003 -0.0001
gc! -399.2403 -399.0938 -399.0963 -399.1347 -399.1004

Wavefunction 3 ®

EO 0.0242 0.0229 0.0386 0.0301 0.0216
E?2 0.0018 0.0009 -0.0007 0.0009  0.0019
g3 0.0007 0.0012  0.0003 0.0011 0.0008
E4 4% 10-%- -0.0004 -0.0005 -0.0003 -0.0001
EC! -399.2406 -399.0940 -399.0966 -399.1352 -399.1008

a) (SCF + S + D into valence orbitals as reference space) + doubles
only beyond 2~ order

b) (SCF + S + D into valence orbitals as re.serence space) + up to
quadruples beyond 2~ order
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COMPARISON OF TRANSITION MOMENTS

Wavetfunction Type
2 'zt mn, x
2 [RE N y
2 2'29*—‘ I, y

1 1
2 Eu*— z? z
2 2z -zt z
3 'zt n x
3 -, y
3 2'z *-'n, y
1 1
3 Zg* — Eu+ z
3 2'2;—'2u z

a)

Calculated with 2nd order wavefunction

Cl

0.42
0.49
0.28
3.69
0.37

0.43
0.50
0.28
3.69
0.38

Perturbation *

0.40
0.48
0.30
3.72
0.34

0.40
0.48
0.30
3.72
0.34
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BK Approximation
Variation-perturbation expansion method

2, Gershgorn & I. Shavitt, Int. J. Quantum Chem. 2, 751 (1968).
L. E. Nitzsche & E. Davidson, J. Chem. Phys. 68, 3103 (1978).
G. A. Segal & R. W. Wetmore, Chem, Phys. Lett. 32, 556 (1974).
L. E. Nitzsche & E. Davidson, J. Am. Chem. Soc. in press.

K. Freed, work in progress.

McMurchie & Davidson, W.I.P.

Partition Space

P Important (small )
Q Less important (large #)

Approximate: H = i

~<CP> <HPP HQP> <CP> .7 <0P>
. -
Cq Bpq Dq €q €q

]Cp

DQ = Diagonal of HQQ
~ -1 —~
[HPP - HPQ (E-—DQ) HQP] C, = EcCp
c.=(-D YL ¢
Q Q QPP
E=£2+356
-1 (%531 _ 0 o y=2
(E-DQ) = (E DQ) S(E DQ)
-1
[HPP-Eoi-HPQ(EO—DQ) QP] = §[1 + H (E =D ) HQP
or
Hoer Cp = 8 Segs Cp
lop
Hegr = Upp Hgp(E,-D ) -1
(EO_DQ) HPQ

1
Seer = (pp Hpg(B D)™ b < PP )
N
( A DQ) Hpq
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So for all E
0
E +8§2F
0
and

E =E for &=0
O

©
+
LJ
o _,.__EO+82
E,
~—“—Eo+ 3

Bec?use of variational property EO + § varies by “GO_B when EO is changed by
10™

Practical

For a grid in E_ over range of spectrum compute Hogg(Ey) and Sgee(Eg)
for all Eg

Simultaneously
$$f -5+ 2 et B Hk'z K, € P
1 1| e
it - g E atatl 1,J €P

13 137 & Ehy)

weighted scalar product HQi "sparse"
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HKl,l He 02
gl HKZ,Z
: “K3,2
All non-zero All non=-2zero
connections connections
to 1 to 2

"matches" (common connections)

Kioi = K2

4ll: connection lists "ordered" alphabetical

Compute

~ -1
CQ = (E - DQ) HQPCP

if any CQ are "Large" (> €) change P and repeat

Repeat for decreasing € until C and E converge

Little experience yet. Probable € = 1(')-2 for acceptable accuracy

P~ 10l - 102 independent of N for Quantum Chem,

Cost ~ P2N (CPU and 1/0) Faster than NZ!
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IX. COUPLED CLUSTER THEORY

J. A. Pople, Chairman
Carnegie Mellon Institute
Pittsburgh, Pennsylvania

J. Paldus
Department of Chemistry
University of Waterloc

Waterloo, Ontario, Canada
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Presentation by J. A. Pople

COUPLED CLUSTER THEORY

Configuration Interaction (limited to double substitutions)

is not size-consistent.

Perturbation Theory (Méller-Plesset) may converge slowly.

Coupled cluster theory (limited to double substitutions)

is size-consistent and is equivalent to configuration interaction for

a two-electron system. However, it is not variational (does not lead

to an energy upper bound).

COUPLED CLUSTER_THEORY WITH DOUBLE SUBSTITUTIONS (CCD)

Configuration Interaction;:

Y(ID) = (1 + -?2) Y
~ 1 ab ~ab
T, =7 2.2 &g, ¢t
274 Ha o

CID Not size consistent.

Y(CCD) = exp (Tz) Yo

= (1 +T,+

N

T, T, Yy

CCD 1Is size-consistent for separate closed-shell systems since

exp ("1\"2\ + 1":}23) Y~ [exp (’i«;)yﬂ [exp ('.5123) Yg ]
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CCD WAVEFUNCTION

1 ab wab
Y(ceD) = ¥+ & a® ¢
ot £§;L 11 13

1 Z E ab cd Yﬂbcd
+ —— a_ a + assese
32 53h Wpea 13 K LIk

Coefficients a:? and energy E to be determined.

vVariation approach impractical.

b
h|

a: is an array with O(nzNz) elements where

n = number of electrons

N number of basis functions

CIZEK EQUATIONS

<Y0|H-E|Y(CCD)> =0

<wi?|ufnlv(ccn)> =0 all 1jab
These suffice to determine E and a:?
First of these equations gives E,

E=E +l2“, aab

(iil|ab)
HF 4 fjab ij

il laby = [[a @G @) /) [% W%, @ - x,Mx,@ ] dr) ar,
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EQUATIONS FOR a-VECTOR

<Y“blH-E|‘l' + 1Y +-§-§:2 T, ¥ >=0

Put
= H° +V
where HO is a Fock Hamiltonian, and V 1is perturbation in a

Mdller-Plesset expansion

. ab ,ab ab ab
(abl li3) + 2 Aij +us v Vi =0

ab

where uey and v, ab depend on a
ij ij ij

Use ijab as array suffix and iterate

a=-at erurw

le
i
n<|

&

1<
1
nE;

2z

is diagonal matrix

ue>

Vector a is given by

-1

ab
Aij = Ga + eb - ei - Gj

u-vector is linear in

[

+ 1 b
1] =3 Z (ab || cd) al + 5 )k_;, (=t |f L9yal)
2 {-o ]| 5e) afy + (ale) apy
Cc

-(ka l1c) a + (kblllc) ajk}



-236-

EQUATIONS FOR a-VECTOR (cont)

Use of the large set of transformed integrals (ab H cd) can be avoided

by transformation of acd and uab to the original atomic basis functions.

ij ij

Time required is O(nzNa)

a=-z=3'1(_c_+3+1)

v-vector is quadratic in a(see Hurley, ref. 3)

ab 1 cd ab ac _bd bd _ac
vij—zuzcd (kzl\cd)g au-Zaij 3 t 855 %y

a ik 25 T %k e

ab cd cd ab) ac bd bd ac)
-2 (aik ajz +aik 3 +lo(

Each part of the summation can be split into two operations, e.g.

Xigpa = 2] cd) af
ke
followed by
)
uzgd (e fj cd) afy a _w ): Xiaga ® jz

Time required is O(n3N3)
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COMPUTATIONAL TIMES FOR MALLER-PLESSET THECRY

n = Number of electrons

N = Number of basis functions

Calculated Integrals
Hartree-Fack SCF
Integral Transformation
Second Order
Repeated Third Qrder
f::r:iign Fourth Order S
of CCD ]
T
Q

O(NA)
O(Nl')
O(nNA)
o’n?)
o’y
0(n2N3)
O(nzNz)
0(n3N4)

O(n3N3)

VAX TIME
(min)

n=10, N=40

10

41
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References on Coupled-Cluster Theory
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Quant, Chem. (to be published).

R, J. Bartlett and G. D. Purvis, Int.J.Quant.Chem. (to be published).



~239-

Comments by J. Paldus

The spin-adapted form of the coupled-cluster equationsl—A was extended
from the CPMET5 to the ECPMET for the closed-shell case.6 The most complicated
triexcited-triexcited term is shown. Note that the pertinent coefficients
are always expressible through a simple quantity Déz)(X,Y), which is
tabulated, The quantity AZ(X,Y) is defined as

[X] = 2X + 1

where
[x,y,z,...] = [XJIvirzl ...
and

2k x,v) = [x,v7" {

i

[Nt ol
NN

They satisfy the Racah-Elliot sum rule

Z(‘)YAZ(X,Y)AZ(Y,XI) - (_)X+X'AZ

Y (X’xl) s

which in fact is an expression of group-theoretical orthogonality
relations for the representation metrices Dés) of 53 . The triexcited
configurations used are essentially the singlet hole-particle Gelfand

states.

The same formulas can be used in direct CI approach of Roos

and Siegbahn7. Hopefully, a similar appreach could also be used for

Hausman and Bender's8 direct CI.
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ECPMET (5 CIMI)

X () , L8y 557

Z Ag, tlonady Ty =05 BN b,
=

Teiaxctked = decexcrted past

3,3),,1.2.3 g1?2
Az {a'a“a’laja,u )y =
5, 12245,

3 -
5 . 12
- EZ b, ¥ (52,513 [Z @ sphata a1 (81 100,208

12 o1 12

12
x+1 x42 1.2 1.2 %, {3) ,= 5
+ E <a a lvib'b“>¢b b a It (sl)|a1a2a3>gu]
pb?
2 .
59 o 1.2.3,,(3) 2 g12
Y S e, B sy Yo cbyitla,, patala i@ Ina,, pa,00
nz-ls‘12 \::1 12
+ <b. b lvla sceataa® 1t B3z ) §12
1P 1VIa, a2 caatas it is | lbza‘)sll’
bb,
3 - -
(S;) (5,)
_ 1) z12 12 ) R
E Z Z Dy 7 {877,870, 7 (51548;5)
blbl ;a1 512512
12
x+1 1 1 %42 _w, {3) 2 s
x <a bllvlb a,,,>¢<ba a lt (Sl)lbla)‘”,a))s12
+ Z i E (8,,5,1/2s ]_lr)(gl)(ﬁ12 s n(§l) $...,5
, GBSy 12] P 51200y © (515/517)
blbl xht 5134
x 1 x41 _x+2. 1, (3) s
x¢a bylvia,bi>¢a”a b7 (s!”aM!aM?bl)sllzz .
where
x olZx ) X Y z &z
K 1
1 - elix ) 0 ° ) -3
1 a
, 0 1 - 1o
2 1 x,9) ) )
1 o % {2‘
3 S(x.y)
1 1
1 - L5
1 7 3
and 3
1 1 3 -1

[s1=28+1 .
[3“,-‘., S\__l = -‘T [Sk]

[ £

Figure 1. Extended counled pair many-electron theory (ECDIET) or
configuration interaction with molecular integrals (CLII),
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Recently, the size-consistent fourth-order iterative perturbative
approaches to the correlation energy calculations were applied to
many small and medium sized molecules by Bartlett et a1.9 and Pople et a].]o
These approaches can be regarded as an approximate solution to the CPMET
equationsl (1st Eq. in Fig. 2), which may be written in a form suitable
for an iterative so]ution5 (2nd Eq. in Fig. 2). However, a zero-order
iterative process for the CPMET equations often diverges as in the
case shown in Fig. 2, which indicates the values of the largest EZ
matrix element and of correlation energy AE as a function of iteration
number for Be atom, using Watson's basis]1 with four s, five p and
four d AO'SG. A11 127 biexcited cluster components were considered.
While this iterative process converged for smaller bases, this was

the first basis for which divergence occured. Nevertheless, the

values of the energy and cluster components, corresponding to the second

jteration (which corresponds roughly to the fourth order PT) are

very close to the exact values, obtained by solving the CPMET equations
using Newton-Raphson iterative scheme. One may thus speculate, that
the fourth order PT result is very close to the exact result even

in the case that the PT approach diverges. One can give a deeper

interpretation to these results relying on the theory of asymptotic

serieslz.
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PROGRAM LOGIC AND STRUCTURE

Presentation by G. H. F. Diercksen

Problem: Build a program system by linking different programs, under the
condition that programs/subprograms/math. algorithms/coding blocks can easily be

updated/modified/substituted.

Key Words: Modularization, Data Interfaces.

These terms are nelther new nor original, but they

are adapted from Information Science.

Lit: ? Folklore

ARCHIVE
INTEGRALS: DATA BASE
[
SDI { PP F s NIV i i s ST L S E L AT L IS R_
SCF/MCSCF: ' I \Q‘
N
] N
I
1y
SDI EEN 227z VilrrzilZid. s
| N
TRANSFORMATION: §
| )
[
SDI CIIiziTadizaZlirsad i3 Lo SR Q
CI: I $
\
Ao T T N
eerere e rer ez l l
SDI P ] s 7. 25 2R
PROPERTIES : ] | | t
)

SDI Lii il LIS ] . I R e |

Figure 1, MUNICH molecular program system (MMPS)
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MODULARIZATION »

Hierarchy Levels

I Program systems (e.g., MUNICH MPS)

II Programs + subprograms

definition: modules to and from which data are passed
exclusively from and to data lists held on external storage.
(e.g. GAUSS, SCF, TRANSF, CI, CISD, ...
SCF: CSCF, 0OSCF, USCF, «..
CI: CONGEN, SYMGEN, SYMORD, NUMGEN, EIGEN, NATORB,...)
111 {Math} algorithms
1v {Logicallblocks of coding.'programming without GO TO"?
Advantages: on each level it's easy to update/modify/substitute.

Disadvantages: none?
DATA STRUCTURES:
Standard Data Interfaces (SDI)

A SDI contains the complete and self-content results of the

calculation up to the point of generation.

Requirements:
® 5DI locatable by name
& SDI logical data sublists locatable by name, to avoid "counting"
® SDI/SDI logical data sublists easily copyable without knowledge

of contents
Kev: Labelled SDI, SDI sublists, SDI records

Standard Data Interface {SDI) Structure

DEF: SDI = A sequence of any number of Standard Data Sectioms (SDS)

preceded by and including a SDI label (the SDI is closed
indirectly by the start of the next SDI or an EOF mark).

DEF: SDS = A sequence of any number of Standard Data Records (SDR)
preceded by and including an SDS label (the SDS is closed
indirectly by the start of the next SDS or an EOF mark).

DEF: SDR = A sequence of alphanumeric data preceded by and including
an SDR label, written/read by one "write/read" statement

in any suitable higher language.
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Figure 2
Standard Data Record label (SDRL)
DEF: The SDR label consists of ten integers
SDR  mem——— {
sorL [ T T T | I S S I  — |
1 2 ) [] 5 6 7 8 9 10
SDRL(1) = LRF = logical record flag
= 0 default
= -1 SDSL
= 4 end of SDS, optional
SDRL(2) = LRN = logical record number
SDRL(3) = LRL = 1logical record length (in standard units), not

+

SDRL(4)
SDRL(10) }

including the SDRL

available to user/to be assigned
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Standard Data Section Label (SDSL)
DEF: The SDS label consists of one SDR with logical record flag = -1.

/ o~

’ -

/ =~ -
/ -
I T . T T 5 E— ]

SDSMARK SDSNAME PGMNAME PGMREL PGMUPDT GENDATE

SDSMARK = SDS mark

SDSNAME = SDS name

PGMNAME = generating program name

PGMREL = generating program release #

PGMUPDT = generating program update #

GENDATE = SDS generation date

Standard Data Interface Label (SDIL)

DEF: The SDI label consists of one SDS named ( SDI label) which
consists of two SDR. The first SDR contains the SDS label;
the second SDR contains the SDI label.

4 ’ . ~
rd / ~
A ~
’ / ~
~
~ // ~
= I T I 1T 171 I z -
SDRL SDINAME 2 8 ® § PROBIMID  AUTHOR/
B28 INSTALLATION ID
R
= A
SDRL = standard data record label
SDINAME = standard data interface name
PGMNAME = generating program name
PGMREL = generating program release #
PGMUPDT = generating program update #
GENDATE = SDI generating date

PROBLMID = problem identifier
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MUNICH SDI's

SDT NAMES SDS NAMES

GAUSSIAN INTEGRAL LIST SHORT LABELED ASYSDEF
GBASDEF
GOVERL
GKINET
GNUCLE
GEXELF
GTWO

SELF CONSISTENT FIELD ASYSDEF
GBASDEF
GSYSDEF
EIGVAL
EIGVEG

TRANSFORMED INTEGRAL LIST ASYSDEF
GBASDEF
GSYSDEF
EIGVAL
EIGVEG
TRANSDEF
TOVERL

Etc. etc.
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ALCHEMY Program System
(1BM Computer)

Comments by M. Yoshimine

Aim: ® Generality

® QOpen-ended

Program design: ® Modular structure
® Dynamic storage allocation
® 1/0 reduction

¢ efficient alogrithm

Packing of long data lists: [A.D.McLean] Floating point numbers to integer

representation with code words.

number: I byte I I l I]
7 sign bit
1 4 3
code word: I 0 | 1 11 J 0 41
repeat fbyte structure
number 0...7)
| 1] 1] 1/ 1000 0]

? repeat number
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Comments by P. J. Hay

Core
Gaussian integrals O R potentials
[Raffenetri) [Kahn]

L

SCF program
[GVB1 — Hunt, Hay]
[GVB2 — Bobrowicz,Wadt]

l

Integral
transformation

[Winter, Hay]

l

Configuration
generation
[Bobrowicz]

'

Configuration
interaction
[Ladner, Bobrowicz]

'

Cl properties

[Dunning, Hay] f— Atomic properties
[NYU Group]
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Characteristics of Bobrowicz CI Program at LASL (CDC 7600)

® Spin states — singlet (5 =0) through septet (5§ =3).
® TFlexibility in handling reference configurations and orbital
restrictions in configuration generation.
® Use of symmetry for Abelian groups.
® Maximum of 48 MO's (60 MO's in slower version).
® Random access of transformed integrals in large coge.
® Number of spin eigenfunctions 5000 for full matrix construction
and extraction of several roots.
L] Ak and Bk selection procedures.
e Shavitt and Davidson eigenvector algorithms.
® [Example: HgCl ZZ+ state,
17 electrons, 33 MO's
1540 space and 4910 spin eigenfunctions
Form CI matrix (946000 nonzero elements) 100 sec*
Obtain 2 eigenvectors 187 sec
*(CP + 1/0 time)
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SCREEPER CODE OVERVIEW
(Lawrence Livermore Laboratory)

Comments by C. F. Bender

RAFF\ \ ‘;' -—
Ne77

\C

RAFF = integral package
(Raffenetti's Polyatom)

SCF = §8CF package

CONTRACT = integral transformation

CIMOLE = formula tape drive

CI program

SVM = direct CI program
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NASA Ames CI Program (CDC 7600)

Comments by S. R. Langhoff

Confipuration generation
e Single and/or double excitations of a selected symmetry.
e Generation from up to 35 spatial occupancies.
¢ Can freeze any subset of the occupied or virtual orbitals

® Fach configuration designated by two 60-bit words.

Configuration selection
® By a perturbation theory estimate of their energy contribution
or cocfficient.

® By diagonal elements.

Matrix element determination
® Number of non-coincidences and orbital differences
determined by logic and bit counting procedures.
® Algorithm requires two passes through the configuration list:
a) first pass determines a chained list of integrals
b) second pass determines the matrix elements HIJ
c) non—-zero matrix elements are written to disk with
a label for each block
@ Matrix elements are determined between Slater determinants
and then expressed in terms of spin eigenfunctions.
e Largest amount of work is required in putting configurations
in maximum coincidence and in determining the parity of
the permutation.
® Spin information 1s stored in block data statements and
loaded into fast core at cxecution.

® The J and K integrals are always held in fast core.

Program limitations
® 50 moiecurar arbitass.
b 9 open shells.
6000 spatial occupancies.
2" -1 (32,383) maximum size of H matrix.
All spin eigenfunctions must be kept for each spatial.

occupancy generated.
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