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ABSTRACT 
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The effects of the angular range of data taking in reconstructions in 

planar positron cameras using the deconvolution method and the matrix method, 

respectively, are investigated. It is found that in the absence of any a 

priori information there are undetermined components in the reconstruction 

if the field of view of the positron camera is limited. However, most of 

the undetermined components are recovered in the case in which the transverse 

spacing of the object is discrete, and all of them are recovered if the fact 

that the object extent is finite is utilized. It is concluded that the two 

reconstruction methods are mathematically equivalent. The results obtained 

can be applied to other transmission and emission imaging devices. 
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SUMMARY 

Most emission and transmission imaging methods involve taking data in 

a continuous range of angles or series of discrete angles. In this paper we 

investigate the relationship between the angular range of data taking and the 

quality of the reconstructions by studying the typical problem of imaging in 

planar positron cameras (Fig. 1). Different algorithms for reconstructing the 

the object distribution p(~) from the data solve the integral equation 

---------- (1) 

in different ways (, is the scalar field constructed from the data. '0 is 

the point response function). One such algorithm Fourier transforms equation 

(1) to the frequency space (k-space) and solves for R(~)t the Fourier compo­

nents of p(~). Another algorithm Fourier transforms equation (1) in the x 

and y dimensions only and solves the resulting integral equation in the z 

dimension for every spatial frequency (kx, ky). We shall refer to these two 

methods as the deconvolution method [1, 2] and the matrix method [3] respec­

tively. 

In the case where the range of integration in equation (1) covers all 
I 

space, there would be a region in frequency space where 4Jo(~J (the Fourier 

transform of $o(~)) is zero if ~o does not cover the full angular range, as 

shown in Fig. 2. The consequences are that the corresponding components of 

R{~) cannot be determined, and that the integral equation in the z coordinates 
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in the matrix method does not admit unique solutions. We demonstrated the 

effect of the size of the camera angle by reconstructing the isotope distrib­

ution from the data generated by the same phantom in a two-sided, a four-sided 

and a six-sided camera whose detectors correspond to one, two and three pairs 

of opposite faces of a cube with the object at its center. Table I shows the 

optimum value of x2 , a measure of the deviation of the reconstruction from 

the phantom, for each configuration. 

The undetermined Fourier components can be recovered partly or completely 

if a priori constraints are utilized. If we assume that the distribution of 

p{~} in the z-dimension is discrete, most of the zero components of ~o(~) will 

become non-zero through sampling. Thus, the corresponding components of R{k} 

will be recovered in the deconvolution method, and the degree of undeterminacy 

will be correspondingly reduced in the integral eql\ation in the z coordinate 

of the matrix method. 

If we make use of the fact that the object is finite in extent, all the 

undeterminacy is removed. Thus, in the deconvolution method, the facts that 

(1) the Fourier transform of a finite object is an entire function, and (2) 

an entire function can be continued throughout the whole complex plane from 

a knowledge of the function on any finite continuous line segment, make it 

possible to recover the undetermined components of R(1). In the case of the 

matrix method, it can be shown that the integral operator in the z coordinate 

becomes positive-definite when the range of integration is finite, with the 

consequence that unique solutions exist for each kx I'D; the undetermined 

components at kx = a can be filled in by analytic continuation from kx f O. 

In our work, an iterative scheme was employed to extend R(l) obtained from 

the deconvolution method beyond the deconvolution :egion. The value of x2 

is significantly improved (Table II). 
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Table I 
Deconvolution Without Iterations 

Number of sides 2 4 

Optimum x2 

Number of 
Iterations 

x2 

1.000 0.442 

Table II 

Deconvolution With Iterations 

0 5 10 

1.000 0.431 0.389 

6 

0.435 

15 

0.381 
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Figure 1. Schematic figure of ' planar positron camera. 
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Figure 2, The shape of the positron camera point response 

function and its Fourier transform. 

I 
0\ 
I 


