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ABSTRACT 

We discuss the weak interacticms of ultra heavy fermions at low 

and high energy in the SU(2)L x U(l) gauge theory. Using pu-tial 

wave unitarity at high energy we establish critical fermion mass 

values beyond which strong couplings occur in the theory and the 

perturbaticm expmsicm fails. The critical masses are (500/>{N) GeV 

for quarks and (1.0/--{N)TeV for leptcms, where N ois the number of 

nearq degenerate SU(2)L doubl.ets of quarks and l.eptons respecti veq. 

At low energies, far below their producticm threshold, we show that 

" ultra heavy fermicms would induce large, observable cme loop radiative 

corrections. One of these correcticms (obtained also by Veltman) 

implies, using present experimental data, an upper limit of - 500 GeV 

for a heavy lepton in an SU(2)L doublet with a massless neutrino. 

* This work has been supported by the High Energy Physics Division 

of the U. S. Depu-tment of Energy. 
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I. lllTRODUCTION 

The recent discoveries of new quarks and leptons underscore 

our ignorance of some of the deepest questions we might ask. What 1s 

the nature and origin of the quark and lepton spectrum? How many are 

there? To what mass scale does the spectrum extend? For the moment 

we have no idea. The purpose of this paper is to explore the nature of 

the weak interactions if the spectrum extends significantly beyond the 

* expected 100 GeV mass scale of the intermediate vector bosons. The 

central point is that for such ultra heavy fermions the weak interac-

ticms of the SU(2)L x U(l) gauge theory would actU9.lly become strong 

and the perturbation expmsicm would fail. Besides being interesting 

in its own right, this phenomenon means that low energy experiments can 

be sensitive to the existence of ultra heavy quarks and leptcms. At 

energies far belOW their producticm threshold the ultra heavy fermions 

would induce large observable radiative corrections. 

We work primarily in the context of the usual SU(2)L x U(l) 

model with o~ one Higgs dotiblet
2

). But the essential features of our 

results are independent of the model. We will generalize our results 

for the SU(2)L x U(l) model to allow for any experimentally accept

able assignment of Higgs representaticms. 

As discussed below, in the weak interaction gauge theories the 

interactions of fermicms must become strong as the fermion mass 

increases beyond gauge boson masses. The questions which we will 

answer fall into two distinct categories. First, what is the fermion 

*" A brief discussion of some of these results may be found in 

ref. 1) 
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mass scale at which strong coupling begins? We answer this question 

by applying partial wave unitarity to the scattering of ultra heavy 

fermions at very high energy. Second, what low energy measurements 

can probe for the existence of ultra heavy fermions: We present a 

complete classification of the observably large radiative corrections 

induced by ultra heavy fermions and explicitly compute those which 

are most able to be studied experimentally. The corresponding 

questions for a heavy Higgs particle were discussed by Lee, Quigg, and 

Thacker3 ) in the former ca se and by Veltman 4) in the latter. 

The basic point is very simple. In the spontaneously broken 

gauge theories a fermion F of mass ~ couples to the Higgs particle 

H and to the longitudinal modes of the Wand Z bosons with a 

strength proportional to 

"F~2 
g~ 

2~ • 2Mw 
(1.1) 

(G
F 

is the Fermi constant, g the SU(2) gauge coupling constant, 

and Mw is the W mass.) So for some ~» Mw the interaction 

becomes strong and perturbation theory fails. To determine this 

critical mass scale we consider the tree approximation amplitudes for 

- - +-FF -+ FF, W W, ZZ, HR, ZH. Each of these contains a term propor-

2 
tiona1 to G

F 
~, which dominates for large enough ~. As ~ 

increases these amplitudes saturate the bounds imposed by partial wave 

unitarity. For this critical value of ~ perturbation theory breaks 

down and the fermion is strongly interacting, with itself and with 

W, Z, and H. 

As in ref. 3 ) we find the lowest critical value of ~ by 

computing the largest eigenvalue of the coupled channel T matrix in 
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the low partial waves. For quarks the J = 0 matrix yields the 

smallest critical mass. If the quarks in an SU(2)L doublet are 

nearly degenerate and there are N nearly degenerate doublets (i.e., 

mass splittings much less than masses), then the critical value is 

'" 550 GeV/-{N. For leptons the smallest critical value comes from the 

J = 1 matrix. It is 1.0 TevliN for N nearly degenerate doublets 

of ultra heavy charged leptons partnered with massless neutrinos and 

880 GeV/-,[N for N nearly degenerate doublets of ultra heavy charged 

leptons with nearly degenerate ultra heavy neutral leptons. Because, 

as explained in Section II, our bounds are conservative and especially 

if N ;;: 3, ultra heavy quarks could be within the range of the pp 

and pp colliding beam facilities which will be built in the next few 

years. 

If ultra heavy fermions exist then the theory acquires a 

"sthenon" sector in the sense of Appelquist and BjOrken5 ). The ultra 

heavy fermions couple strongly to one another and to W, Z, and H, 

but all remain weakly coupled to the light (Le., lighter than Mw) 

fermions. If in addition H is ultra heavy (~'" 0(1 TeV) --see 

ref. 3» then W, Z, and H also couple strongly among themselves 

with a strength characterized by ~GF ~2. Our analysis is 

* independent of whether H is ultra heavy. 

If ultra heavy quarks exist, it is amusing to realize that 

their short distance dynamics might be dominated by the weak 

interaction gauge theory. If QCD is still asymptotically free at the 

* If H is ultra heavy our unitarity bounds could only improve. 

"" 
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ul.tra heavy mass scale--that is, if too many new flavors do not 

populate the intervening mass scales--then at short distances QeD 

woul.d only contribute small co=ections to the dominant weak interac-

tion (broken gauge theory) dynamics. For instance, ultra !leavy 

Quarkonium, QQ, would be bound pr'imarily by W, Z, and H bosons 

* with only small co=ections from QeD gluons. And if QeD is not 

asymptotically free at the ultra heavy quark mass scale, weak bosons 

and QCD gluons are likely to be of com:rarable importance in their short 

distance dynamics. In either case QCD gluons would dominate the 

dynamics at large distances because of the finite range of the weak 

quanta. 

If ultra heavy leptons exist, they would also form strongly 

bound Leptonium states, bound by the weak quanta. The spectrum of 

ul.tra heavy Leptonium would closely resemble that of ultra heavy 

Quarkonium pr'ovided that QeD remains asymptotically free. 

Ordinarily, because of the decoupling theorem7), we expect 

heavy p1rtic1es to have a negligibly small effect on the physics at 

energies far below their pr'oduction threshold. But in the broken gauge 

2 
theories the appearance of the :rarameter GF ~ means that ultra 

heavy .fermions may pr'oduce important effects at low energies. If the 

:rarameter occurs in a measurable amplitude in one loop order, then 

ul.tra heavy fermions would cause a change of leading order in the tree 

appr-oximation pr'ediction 

* We assume, as argued in ref. 6), that the characteristic momentum 

scale of the QQ bound state is p - as(p) ~, 

the usual running coupling constant of QCD. 

"' 

where a (p) is 
s 
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l0- + {)(GF m/») l0- + 8(1» (1.2 ) 

giving rise to a large observable effect. 

In the standard SU(2)L )( U(l) model with one Higgs doublet, 

4) 2 
Veltman showed that the :rarameter GF ~ does not occur in one 

loop order, so that an ultra heavy Higgs boson would be "screened" from 

the physics at low energies. But ultra heavy fermions are not screened. 

2 
One loop co=ections pr'oportional to G

F 
~ occur in the W, Z, and 

H self energies and in all amplitudes formed from them by adding 

arbitrary numbers of external Higgs bosons. In practice the most 

important consequence is that the following tree approximation rela: 

tionships would get (9(1) co=ections if ultra heavy fermions exist: 

~ 
g mf (1.3 ) 
2Mw 

~ gMw (1.4) 

~Z 
g~ 

(1.5 ) 
cos 8

W 

Mw ~ cos 9 W . 
(1.6) 

Here ~ ~, and ~Z are respectively the couplings of the 

Higgs boson to a (light) fermion f, to the W, and to the Z, 

and 9W is the weak-electromagnetic mixing angle. Equations (1.3) to 

(1.5) are of present experimental· interest because they underlie all 

strategies to search for the Higgs boson. The co=ection to eq. (1.6), 

obtained also by Veltman
8

), can be used together"with data on charged 
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and neutral current cross sections to put an upper bound on the mass 

of a heavy lepton in a doublet with a massless neutrino. With the most 

recent data the result is M:r. ;S 500 GeV. 

We have used dimensional regularization9) to compute the one 

loop corrections. The calculations are straightforward except for an 

apparent ambiguity in how r5 is defined in n dimensions. We have 

resolved this ambiguity by examining the Ward identities which must be 

satisfied by the amplitudes being computed. It turns out to be correct 

for the graphs studied here (and for a much larger class of graphs) to 

assume that r 5 anticommutes with all the Dirac r~ in n dimensions. 

10) A complete analysis is presented in a sepl-rate pl-per • 

The rest of the paper is organized as follows. In Section II 

we use partial wave unitarity at high energy to establish critical 

fermion mass values for the onset of strong coupling. We also 

generalize the effective lagrangian of ref. 3) to simplify the calcula

tion of the contributions to tree amplitudes which are proportional to 

2 
GF ~ 

to low 

In Section III we compute the one loop radiative 

2 
energy processes which are proportional to G

F 
~ • 

corrections 

In Section 

IV we discuss the generality of our results and explicitly compute the 

critical fermion masses for the SU(2) )( U(l) model with a gen-

eralized Higgs sector. Section V contains some concluding remarks. 

In Appendices A and B we compute the relevant amplitudes for the 

J = 0 and J = 1 coupled channel matrices in the standard modeL 

Appendix C contains a detailed discussion of th~ J = 0 coupled 

channel matrix in the model with a generalized Higgs sector. 
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II. BOUNDS FROM PARTIAL WAVE UNITARI'I'Y 

In this section we use partial wave unitarity to study the 

scattering of the ultra heavy fermions at energies far above their 

thresholds. In analogy with ref. 3), we use the saturation of the 

unitarity constraints for the tree apprOXimation amplitudes to deter-

mine critical values for the fermion masses beyond which strong couPling 

appears and the perturbation eXpl-nsion fails. Consider for example the 

J = 0 partial wave a o Unitarity and Schwartz's inequality demand 

la I >.:- Im a >.:- la 12 • 
o 0 0 

Now suppose we expl-nd a o in powers of the coupling constant g, 

a 
o 

2 c
l 

g 
4 + c2 g + •••• (2.1) 

2 
Since the Born term cl g is purely real at very high energies, we 

obtain 

Im a
o 

= g4 Im c
2 

~ g 
4 

Ic
2

1 

4 
and, therefore, to order g, 

I cll2 g 
4 ~ I c2 I g 

4 (2.2 ) 

Now if the eXpl-nsion (2.1) is to be reliable, we should also require 

IC
2 

g 4/cl II « 1 

and therefore, combining this with (2.2), we obtain 

la I = llc I ,( I 4/ 2 o Born - 1.... c2 g c l g I « 1 • (2.3 ) 

We shall see immediately that cl is proportional to the square of the 

"" 

p-

... 
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mass of the uJ.tra heavy fermion, 
2 
~ , so that (2.3) puts an upper 

boUDd on ~ if the perturbation expansion is to be reliable. We 

define a critical value for ~ by the equation 

la I 
o Born 

1 . (2.4) 

If' ~ ~ . (~) crit ' the fermions are strongly coupled, contributicm 

to the scattering amplitude from higher orelet'terms must be of the same 

order of magnitude as the lowest order terms, and perturbation theory 

has broken down. In practice strong coupling will set in at values of 

~ lower than the critical value due to (2.3), so we are being conserv

ative in defining (~)crit by saturating the unitarity boUDd (2.4). 

(a) An Example: J = 0 Fermion Scattering 

We assume the standard spontaneously broken SU(2) ® U(l) 

mode1
2

) to which we add a doublet of left-handed fermions F
l

, F2 and 

the corresponding right-handed singlets. We shall specify later 

whether the fermions are leptons or quarks, and for the moment assume 

that there is no Cabbibo mixing of this doublet with any others. In 

addition we assume that their masses are much larger than those of the 

gauge bosons. We shall compute T-matrix elements, where T is related 

to the S matrix by S = 1 + iT. Only neutral channels will be consid-

ered since this is sufficient for our purposes. The channels 

FiFi -+ bosons do not contribute to J 0 partial waves; they will 

be considered later. 

We quantize the theory in the unitary gauge, so the W and Z 

propagators have the form 

. g~V _ k~V/Mf 
-~ 2 

k -Mf+i€ 
(2.5 ) 
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Since we are interested only in contributions proportional to m.m., 
~ J 

we neglect Feynman graphs with photon exchange and the g~V piece of 

the propagator in Wand Z exchange graphs. It is easy to see on 

dimensional grounds that in the high energy limit these contributions 

are proportional to i but not to lm. m ./Mf . 
~ J 

The contributions to the amplitudes from each graph are 

displayed in Appendix A. We discuss the unitarity bounds only in the 

limit s » mim
j

, so the amplitudes simplify considerably. If we 

denote by + or the helicities of the fermions (written in the 

order Ji¥ -+ Ji¥) then only the channels ++ -+ ++, -- -+ --, and 

++ <-+ -- contribute to the J 0 partial wave amplitude, which is 

given by 

a 
o 

1 

32:rr 

1 f d(cos e)T . 

-1 

As a simple example we consider the elastic amplitude 

Fi+Fi+ -+ Fi+Fi+; only the Z and H s-channel exchanges contribute 

in the limit of interest and we find, using the resuJ.ts of Appendix A, 

a o 

2 GF m
i 

- 4f2:rr 

2 2 
g m

i 
~ 

32:rr Mw 

:Eartial wave unitarity implies that la I < 1, o 

the perturbation expansion requires 

2 m
i 

< 4Y2:rr 

GF 

2 
(1.2 TeV) • 

(2.6) 

so the validity of 

(2.7) 

For mi 
2 ~ 4l{2 :rr/GF , as we have already discussed, the 8<g 4) 

terms must make a larger contribution to a 0 than does the Born term 
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given in (2.6). As we pointed out in (2.3), the inequality (2.7) is 

conservative: the perturbation explOsion begins to fail for appreciably 

smaller values of m
i 

• 

(b ) Coupled Channels: J = 0 

We may improve the bound (2.7) by considering the scattering 

of different helicity and flavor combinations. As in ref. 2), the most 

restrictive bound is obtained from the largest eigenvalue of the 

coupled channel T matrix. 

We consider first one doublet of heavy fermions 

J 0 coupled channel matrix is 4 x 4 ; the relevant 

G~ The 

states are 

Fi+Fi+ and F.i_Fi _ where i = 1,2. The diagonal matrix elements are 

due to s-channel Z and H exchanges (see Appendix A) and are given 

by (2.6). The matrix elements which are off-diagonal in both helicity 

and flavor Fi+Fi+ <->Fj_F
j

_ with i ~ j , receive contributions from 

both s-channel Z and H exchanges and from t-channel W exchange. 

If there is no Cabbibo-like mixing these off-diagonal contributions 

cancel. All other off-diagonal matrix elements also vanish, so that 

the coupled channel matrix for J 0 is already diagonal, and there 

is no improvement in the bound (2.7). 

Now we assume that there is mixing between two doublets, 

parametrized by Cabbibo angle 6c ' 

(,2 '0' .,F: F, 'in e) C F4 \ 

"n ., + F, '"' en) 
(2.8 ) 

We consider the coupled channel problem only for F1Fl and F2F2 if 

F3 and F4 are also ultra heavy, our bOund could be improved by 

-12-

- - * including F3F3 and F4F4 in the coupled channel matrix. The neutral 

currents remain unchanged by this modification but the charged current 

is multiplied by cos 6
c

' Therefore the W exchange amplitudes are 

multiplied by cos
2 

6 and the previously mentioned cancellation does 
c 

not occur. If we write the .channels in the order F1+Fl +, F2+F2+' 

Fl_Fl _, F2 _F2 _, the matrix is 

2 
0 0 

2 
~ -myn2x 

\ : 2 2 
0 G

F ~ -~~x 
a 

= - 4-y21£ 2 2 0 
-~m2x ~ 0 

2 
0 0 

2 
-~~x ~ 

(2.9) 

where x
2 

.. sin
2 

6 
c 

The absolute value of the largest eigenvalue 

is 

II GF [2 2 V · 2 '] >- =8-{21£ ~ +~ + (~2_~2) +4~2~2sin26c 

and unitarity requires 1>-1 < 1. The critical curve 1>-1 = 1 defines 

the approximate limit of validity of the perturbation expansion. If 

we assume ~ = ~ :: m, we find that the bound. (2.7) is improved by 

2 
a factor 1 + sin 6c' i.e., 

* 

2 
m < 

4~1£ 

GF 

1 

1 + sin
2 

6 
c 

(2.10 ) 

If Fl and F2 are ultra heavy and F3 and F4 are light, then 

it is shown in ref. 11) that the flavor conservation of the neutral 

current to· order 0: G
F 

implies thB.t 6c must be very small. 

.., 

t 

"" 

.. 
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If there are N approximately degenerate doublets (Le., mass dif'-

f'erences much less than masses), the resulting lJN.x 4N matrix is 

approximated. by a direct product of'matrix (2.9) and the N x N 

matrix with all elements equal to one. Diagonalizing f'or 9
c 

0 we 

have, there:f'ore, 

m2 < 
4V21C 1 

GF N 

The improvement of' the bound (2.10) can be understood by noting that 

9 = 42 corresponds to N ~ 2 • 
c 

Next we consider the case in which the f'ermions are quarks, 

and again consider only the channels FIFl and F2F2 . Each quark 

canes in three colors denoted. by R, B, Y. 

Although the quark scattering amplitudes are not directly 

observable if' quarks are conf'ined., it is nevertheless correct f'or our 

purposes to insist that they satisf'y IRrtial wave unitarity. We are 

interested in whether the perturbation exIRnsion f'or the weak interac-

tions of' the quarks is' valid or not. Order by order in g, the 

perturbation ex:IRnsion of' this f'ield theory is consistent with 

unitarity, and when the IRrtial wave bounds are saturated. by the Born 

terms, the ex:IRnsion :fails and the weak theory has become strongly 

interacting. This is all we are using the uni tari ty constraints to 

demonstrate. 

For a quark doublet the coupled. channel matrix is 36 )( 36 

because of' the nine color channels, RB, RB, But only the 

color-neutral channels, RB, BE, fi are important, so the matrix 

of' interest is 12 x 12. The key difference :from the lepton matrix 

-14-

is that there is no t-channel W exchange in color off-diagonal matrix 

elements such as RB .... BE, so that the cancellation of' f'lavor-helicity 

of'f'-diagonal elements does not occur. The matrix is written in block 

f'orm, 

a o 

IA 

l: 
\ 

B 

:j (2.11) 

A 

B 

where the matrices A and Bare 4 x 4. The matrix A contains 

only the color-diagonal.a.mplitudes RB .... HR, ... and is identical to 

the lepton matrix (2.9), while B represents the color of'f'-diagonal 

amplitudes RB .... BE, 

B 
GF 

4Y21C 

and is given by 

2 
~ o 

l-~~ 
o ~2 

-~m2 

o 

o 

-~m2 

2 
~ 

o 

-~m2 

o 

~2 j 
The matrix (2.11) is diagonalized. in Appendix C. The absolute value 

of' the largest eigenvalue is 

1.1 = 8}" ['("12 
+ ~ 2) + -./.("12 

- ~ 2)2 + 4m,.2~ 2(2 + ,,,p oJ'] 
(2.12 ) 

For ~ ~ == m, 

m
2 < 

2 
inequality (2.7) is improved by a :factor 5 + sin 9c' 

4y.21C 

GF 

1 

5 + sin
2 

9 c 

(2.13 ) 
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For N nearly degenerate doublets the right-hand side is decreased by 

a factor of ~ liN. 

m < 550 GeV. For 

For e = 0 the bound in (2.13) implies that 
c 

ec f. 0 and/or ~ f.~, the critical curve, 

obtained by setting the right-hand. Side of (2.12) to unity, approx

imately divides the (~,~) plane into weak and strong coupling 

regions. 

( c ) Coupled Channels: J = 1 

In the case of higher IRrtial waves (J > 0), the amplitudes 

+ -for F i F i -+ W W , 

channel matrix. 

ZH, HR and ZZ also contribute to the 'coupled 

2 2 2 
Their values in the limit s » mi »Mw, ~, 

are given in Appendix B. only states where the vector mesons are 

M.z,2 

longitudinally polarized are relevant. If the Higgs-IRrticle were also 

ultra. heavy then channels like HR -+ ZZ would be nOn-negligible3). 

The resulting matrix would be larger than the one discussed below and 

the bound would be improved. The J = 1 IRrtial wave amplitudes are 

given by 

1 
aJ.ll.L' 

1 

32rc [ 
d(cos e) dl ,(e) T , . 

J.lI.L ~~ 

-1 

Here dl ,(e) is the well-known Wigner d-function appearing in the 
~~ 

Jacob-Wick expansion. For fermions ~ and ~' are defined by 

~ = (~ _ ~)/2 and. ~t = (~ _ ~t)/2, where the ~ts refer to the 

helicities of the fermions: ~ (~) for the initial fermion (anti

fermion) and ~, (~') for the final fermion (anti-fermion), and 

~ = 0 for boson states which are either scalar H's or longitudinal 

W's and. Z's. For J = 1 we can have ~,~' = O,! 1, and the 

possible channels are twelve 

-16-

~ = + 1: Flll _, F
2

l 2 _ 

Flll +, Fl_Fl_' F2l2+' F2 _F2 _, 
+ _ 1 1 

~ = 0: W W, ~ ZZ, 1; HR, 
)2 It 

~ = - 1: Fl_Fl +, F2 _F2+· 

However, when the partial waves are calculated, half of the 

channels decouple. We are therefore left with a 6 x 6 matrix. 

ZH 

- - +- -Writing the channels in the order Fl+Fl _, F2+F2 _, W W, ZH, Fl_Fl +, 

F2 _F2+, the J = 1 matrix is 

0 0 
2 2 ~2/Y2 ~2/V21 -~ ~ 

0 0 
2 2 ~2l{2 ~ 2/'12\ -~ -~ 

2 2 
0 0 

2 2 ! 
G I-~ -~ ~ ~ 

a = _ ..L 
1 8rc I 2 2 2 2 

~ -~ 0 0 ~ -~ 

~2/-{2 ~2/-{2 2 2 
0 0 ~ ~ 

~2;-Y2 ~2/-{2 2 2 0 0 ~ -~ 

We have diagonalized this matrix analytically for the cases ~ = ~, 

and ~ or ~ vanishing. If ~ = ~ ;;; m, then the requirement 

that the absolute value of the largest eigenvalue be less than one 

yields the bound 

m < 880 GeV 

while if either' ~ or ~ is zero, the bound on the other is 

m < 1.0 TeV. 

These are the best bounds we have found for leptons. 

.. 

... 

". 

.... 
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For quarks the J = i ' coupled channel matriX is 14 ,. 14 

(color neutral channels only). However it yields higher values than 

the J 0 matrix for the critical mass. For equal masses we find 

m < 715 GeV 

which is larger than the value of 550 GeV obtained from the J 0 

matrix. We have also checked that J = 2 pl.rtial waves give less 

efficient bo1.mds than J = 0 and J = 1. 

(d) Effective lagrangian 

The leading high energy behavior of amplitudes which have at 

least one longitudinally polarized vector boson in the in or out states 

can be found very sim~ by studying the Higgs-Goldstone system which 

underlies the full broken theory. A simple effective Iagrangian was 

derived in ref. 3) for the case of scattering amplitudes involving only 

+ 
W-, Z and H as external pl.rticles. Here we wish to extend this 

derivation to amplitudes involving fermions. 

Before the gauge couplings are turned on, the fermion and, Higgs 

sector of the SU(2)~) U(l) model is described by the Lagrangian 

L = (Oll~)t(oll~) + 11
2 ~t~ - )..(~t~)2 + t FiR i~ FiR + FL i~ FL 

i=l 

( 
- l - it 1 [- A - At ] - Gl FL~ FlR + FlR'f. FL J - G2. FL':I! F2R + F2R':I! FL 

(2.14) 

where I and I are the complex Higgs scalar doublets 

(~+ ) 
~o 

~ = 
,'" 
~ c:) 

-18-

Here ~+ creates a negatively charged pl.rticle, and FL and FiR are 

the fermion doublet and singlets 

F 1 C'F '\ L 2" (1 - 75 ) F:) FiR ~ (1 + 75 )Fi . 

The couplings G
l 

and G2 are to be determined. Shifting the origin 

of the ~o field in the usual way by an amount v/V2 = 1l/-..[2i: and 

performing an infinitesimal gauge transformation away from the new 

vacuum, we have -+ -+ ~ 0 ~ 
S·T J ~=exPi- ' ) 
v v + h 

---;=--
\\12 

~ ~ 1 

-V2 
('<" -'<")') 
'" + h - is:? 

I ~ i 
( 

+ h + is:?) 

i(Sl + is2 ) 

The Iagrangian (2.14) then describes a theory with three massless 

Goldstone bosons (Wi = (sl + i~)/i2, z = s:?), a massive physical 

Higgs scalar h and massive fermions with masses mi = vG/-y:2-. When 

the gauge couplings are turned on, the Goldstone bosons acquire a 

gauge-dependent mass because of mixing with the longitudinal degrees 

of freedom of the vector bosons. If, however, we choose the 't Hooft-

Feynman gauge, the masses of the w+ and z are equal to those of 

+ 
W'" and Z respecti vely. We then identify 

1 

v 

" i r:::
V~2 GF 

.JL 2Mw 
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and then the f'ul.l interaction part Of:..-(, is 

oi1 1 2 -. ;:;::::- 2 2 -2"MIl VV2 GF h(h +z +2w+w) 

-~ h(ID:LF1Fl + II1,l2F2) 

-
- ·'.fr2GF z(ID:LFl i ?'5Fl - II1:l2i?'5F2) 

+ .;;;;; Ew )fl (ID:L - ~ - (ID:L +IIl..2 )?'5 )F2 

2 

MIl G! (h2 
- 4-..[2 

- iW_F2 (ID:L - m2 + (ID:L~)?'5)F1J 

2 2 
+z +2ww) 

+ -

(2.15 ) 

It is straightforward to derive the Feynman rules from this effective 

Lagrangian and to compute the leading high-energy behavior of physical 

amplitudes. These calculations are considerably simpler than those in 

the original theory. As an example, consider FiFl " w+w_. There 

are only two graphs, s-channel h exchange and t-channel F2 exchange. 

The first one is (j(l/-{S) in the limit of large s. The second 

one is 

where 

T
AlI. 

M,s: 

GF M,s: 
+- --2 

Y2 t - ~ 

is the IIl8.trix element (with m±;: ~ ± ~) 

M,s: v(~)(m_ - m+ "5)(,4. + ~)(m_ + m+?'5)u(A.) 

where qis the four-momentum transfer. Since we are interested only 

in the limits ... co, we need keep only the e(s ) term in ~ 

This is 
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-[ 2 2 2 2 .J.] M,s: -2v (ID:L + ~ - (ID:L - ~ )?'5)~+ u 

where p + is the four-mOOlentum of the outgoing w + . 

straightforward to compute and we get 

This is 

r 2 2 221 ~ s sin Q L ID:L + ~ + A.(ID:L - ~) 1.\, _~ 

Using t - ~2 = _ s sin
2 ei2 + eh/s) we obtain 

~C::- Q [2 2 2 2 ] T~ - y2 GF cot 2" ID:L + ~ + A.(~ - ~) 8A-, _~ 

which is identical to the exact result quoted in Appendix A. 

It can be proved that the effective Lagrangian (2.15) gives the 

correct high energy behavior of amplitudes to leading order in the 

large fermion IIl8.SS limit provided that there is at least one external 

vector meson which is longitudinally polarized. The proof is similar 

to that given in the appendix of ref. 3). (The addition of fermions 

does not significantly affect the argument. ) 

In order to see that (2.15) also yields the leading high energy 

behavior when there are no external vector bosons, we note that when 

we computed with the full theory in the unitary gauge, we retained only 

the k k piece of the vector boson propagator. This led to contribu-
1.1. v 

2 2/ 2 tions to the amplitudes proportional to g ~ Mw • This part of the 

propagator corresponds to the longitudinal degree of freedom of the 

vector mesons. These degrees of freedom are precisely those given by 

w± and z in (2.15) so that the effective Lagrangian yields the 

2 2 I.I.V correct amplitudes in the limit ~ »Mw The g piece of the 

f'ul.l propagator gives a contribution to the amplitude which is constant 

• 

.. 

*. 

.. 
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in the limit s'" co, and this contribution is not given by (2.15). 

However it is not proportional to ~2 and is therefore negligible. 

III. LOW ENERGY EFFECTS 

In this section we search for low energy manifestations of 

ultra heavy fermions. A similar search in the case of ultra heavy Higeg3 

particles produced no interesting physical results 
4

) • We need 

renarmalization effects which produce corrections to tree graphs of the 

form 

A Atre, [1 + (j(~) 1 
where A is some physical amplitude and At is its value at tree 

ree 

level. Since for ultra heavy fermions (of mass scales given in the 

previous section) ~M.w can be of order one, such effects should be 

2 
observable. Effects proportional to g log ~ of the form 

A = Atre, [1 + ff(i log(~)j 
would be too small to detect in presently feasible experiments, as 

would effects which first appear in two loops, 

A = Atree[l + (j(i) + '~J(g4~2/M.w2)] 

In order to generate an effect proportional to ~ 2 
from a 

loop containing a heavy fermion, we need either Higgs-fermion vertices, 

which are proportional to ~~ or a quadratically divergent loop 

integral. Consider the self-energy of the vector mesons Wand Z, 

nlJ.V (p) 

where for W 

Cv 

and for Z 

Cv 

-22 

_ s Tr IJ. -1 i J d 4
k [ BMw2 (2Jt)4 y (Cv - CAY5)()! - mi ) 

'V • -1 ] 
xy (Cv - CAY5)(~+X- mj ) 

CA ~ 

2 
~(-T3 + 2Q sin ~) 

CA -T3~ • 

In the Z case there are two graphs corresponding to i j = 1,2, 

and for the W there is only one graph with i 1, j = 2. T3 is 

the weak isospin of the left-handed part of the fermion in the loop, 

and Q is its charge in units of the proton charge. s is a color 

factor; it has the value one for leptons and three for quarks. In 

2 
order to obtain a factor of ~ one must look at the quadratic 

divergence from the integral. 

We evaluate the integral by dimensional regularization9) 

replacing d 4k by d~ and subtracting the pole at n = 4. We 

stipulate that (ylJ., Y5} = 0 for all ylJ. in n dimensions. This 

prescription ensures that all relevant Ward identities are satisfied 

10) 
without the addition of extra counter terms . Then, defining 

nlJ.'V (0) ;: glJ.'V II 
. W,Z -~,Z 

we get 
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~ -~:: ["121og(}) + ,,} ,og(~) 

222 ] ~~ ~ 1 2 2 
+ 2 2 loge 2 ) - 2' (~ + ~ ) 
~-~ ~ 

and 

ii 
2 2 

TI I mi
2 

log() ) • (3.1) Z 2 2 
32n: cos ~ 

i=l 

~ is an arbitrary regularization parameter with the dimension 9f mass. 

It must cancel out from all physical predictions. This self energy 

contributes to the mass renormalization of the W and Z 

~,Z = 
TI 

( ~,Z )0 € -i ,;,Z) 
!''w, Z 

(3.2 ) 

Here and in the following, quantities with a subscript zero are 

unrenormalized. There is a wave function renormalization of the W or 

Z from this graph Which is of the form 

i ~ TI ~(l)\ . 
1 + 4 dl ~ p2=0 

It involves only a logarithmic divergence in the integral over k and 

is therefore proportional to g2 log ~2 so we shall not consider it 

further. We can use (3.1) and (3.2) to calculate the one loop 

corrections to the formula Mw/Nz cos ~ , 

Mw
2 

2---2 
M.z. cos ~ 

1 + 
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GF 
~ _C 2 

8 V2 rc 

r 2 2 2 2 

t" ~~ (~\ 
x 2 2 log 2) 
~-~ ~ 

2 2] + ~ + ~ • 

(3.3) 

Notice that ~ has cancelled out. There is no renormalization of 

cos ~ to order ~2 g2j its renormallzation, produced by the wave 

function renormalization of W and Z, is of" order l log ~ 2. " 

Notice that when ~ = ~, Mw/M.z.cOS \t = 1 is not rElnormal1zed. For 

a lepton of mass m in a doublet with a massless neutrino we have 

2 
2 2 2(Gyn) Mw = M.z. cos ~\l + 2J: . 

8n: V 2 

Using a ccmpendium of all existing data, Sehgal12 ) has concluded that 

Mw
2 

0.98 ± 0.05 . 
~ 

M.z. cos ~ 

Frcm this we can conclude that m < 500 GeV, I.e., there cannot exist 

a heavy lepton (with massless neutrino partner) of mass greater than 

500 GeV. 

All other graphs which produce terms of order 
2 2 
g~ involve 

Higgs particles. 

2 

TIH(l) L 
i=l 

We compute 

The Higgs particle self energy is 

2 2 f 4 g m. d k 1" 1 -+- S ~ Tr [ ()! - mi ) - \ll + :i - mi ) - J 
4 Mw (2n:) 

.. 

.. 

t. 

t' 



• 

(l 

.. 
~ 
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2 2 

m,'(' '~i) 0 IVO) 
i g 

~L 1&2 lI'lw 2 
-

i=l 

and 

? , 2 
2 ( 2 ~ II~( 0) == ~ II (l) I i g 

s L mi 
2 

3 l~) )+ 2 . -
48,r

2
l1'lw

2 .dp H 2 
P =0 i=l 

To one loop the Higgs p3.rticle propagator becomes, when 2 p .... 0, 

i€- + i II~(O» 
2 

- {O + i IIH(O) P 

so the renormalized Higgs particle mass is 

g2 s2 
2 

mi 40 log (:~ 
2

) + ~. Ka
2 ~- I (3.4) 

48,r
2

l1'lw
2 

i=l 

All other one loop graphs producing terms proportional to 

g2 ~2 can be obtained by attaching an arbitrary number of external 

Higgs particle legs to the fermion loops in the Higgs or vector boson 

self energies. We gain one power of ~ due to the coupling and lose 

one power since the loop becomes more convergent. 

The EWW and HZZ proper vertices receive contributions 

rHZZ(1l = P2 0) 
3 -i g 

2 2 M._ 
321t cos E\,-w L m"(~(i) + 'J 

i=1,2 
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pHWW(Pl = P2 = 0) 

3 [22 2 2 0] -i.;- ~ ~ 2 log (~2 \+ \ mi
2 (logC~ )+ l' . 

321t lI'lw ~ - ~ ~ ).L \: ~ 
~=1,2 

Using the result above we now calculate the large renormalizations of 

the Higgs coupling to light fermions and gauge bosons. Consider the 

coupling of the Higgs particle to a light fermion f. At tree level 

it is 

(~~O g m/2l1'lwo . 

At one loop 

"-Hff - 1 - i --;. + .!.II'(O) g mf ~ II 1 
2l1'lw 2l1'lw 2 H 

_f 1 + s F. ~ ~ ~ 7 2 2 gm [ G { 2 2 2 }] 
2l1'lw 8V2 l ~ 2 _ ~ 2 log ( -:; ) + b (~ + ~) • 

Also the couplings of the Higgs particle to vector bosons become 

"Rww = g lI'lw ~ + rHWW 
19l1'lw 

"w 1, ~ + i -2 + 2' IIH(O) 
2l1'lw 

GF ~ ~ ~ 5 2 2 [ { 2 2 2 }] "Rww = g lI'lw 1 - S 8 -{2 l ~ 2 _ ~ 2 log (~ 2 ) + b (~ + ~ ) 

g"z [ GF 
~=-- l-s 

cos .9w 6-{2 l 
22] (~ + ~) • 
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Notice that the effect of the ultra heavy fermians is to 

decrease the coupling of the Higgs particle to vector bosons and to 

increase its coupling to light fennions. For quarks of equal mass 

Which saturate the bound (2.13) the effect is of order 50% in ~ 

and 25% in ~. For a lepton with a massless neutrino saturating 

the bound of Section IIc, the effect is of order 25% in ~ and 20% 

2 
in ~. Of course if fermions of larger masses exist then we will 

have no guide as to the values of these couplings due to the breakdown 

of perturbation theory. 

There will also be large corrections to the three and four 

point Higgs particle self-couplings. These will be of the form 

2 4/M 2M 2 
g ~ H-W • 

If ~ is not ultra heavy then the corrections are so large that 

perturbation theory is meaningless for them. 

For two fermion doublets mixed by a Cabbibo angle 9c as in 

(2.8) we have the following results 

1%2 
Mw

2 

2: 
cos E\; 

g m
f 

~ = 2Mw 

1 + 
[ 

2 2 2 
GF 2 ~ ~ ~ 

S -J2 2 2 cos 9c 2 2 log ( 2 ) 
8 2n: ~ -~ ~ 

+ 2 2 ] (~ ~ ~ ) 

r 
II + 

GF 
S ,,-. 2 

8 v 2 n: 
0°,2 e, 

2 2 
~ ~ 
-2-2 
~ -~ 

2 

10g( ~2 ) 

+ t (m,. 
2 

+ ., 0] 
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[ ( 2 2 2 GF 2 ~~ ~ ~ = g Mw 1 - S ...f2 2 cos 9 c 2 2 log( 2 ) 
8 2n: ~ -~ ~ , 

+ % (m,.2 + .. ,}~) 

g 'Iz [ '" 'trzz = -_. 1 - S 
cos E\; 6~ n:

2 
2 2] (~ + ~) • 

IV. GENERALIZATION OF THE STANDARD MODEL 

In the computations of Sections II and III we worked within the 

context of the standard SU(2) )( U(l) model with one Higgs doublet. 

We could vary the model by changing the gauge group or the representa-

tion content of the fermions and Higgs bosons. This would change our 

results q~ntitatively but not qualitatively, and in most models simple 

enough to merit consideration the quantitative changes would be less 

than an order of magnitude. The central feature is quite model 

independent: the Ward identities necessary for renormalizability 

guarantee that ultra heavy fermions must couple strongly to the 

longitudinally polarized gauge bosons and to the Higgs boson systems. 

The quantitative details depend on Clebsch-Gordan coefficients deter-

mined by the group and representation content of the model. 

We do not propose to consider a laundry list of all possible 

models. Rather we will give attention to the experimentally least 

moti vated feature of the standard model, which is the Higgs sector. 

So we continue to assume the SU(2) )( U(l) gauge group with fermions 

in right-handed singlets and left-handed doublets, but we will allow 

• 

~ 

t 

" 
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for any Higgs sector which is consistent with the present experimental 

results. The generalization of the low energy co=ections computed in 

Section III is straightforward and in particular the co=ection to 

Mw = ~ cos ~ is not affected at all. Here we will discuss exp1:icitly 

the generalization of the determination of the critical mass values 

fran partial wave unitarity in Section II. 

The important experimental result which we use is the 

observation that the relaticm Mw = ~ cos E\v is well satisfied in 

charged and neutral current neutrino scattering12), This means that 

the W and Z bosons receive their masses primarily from Higgs 

doublets. So we shall imagine n Higgs doublets ~! i = 1," ',n , 

each with a real neutral component ~., which acquires a vacuum 
1 

expectation value vi:; < $i )0' Then the W boson mass is 

Mw
2 1 2 

~g 

n 

L 
i=l 

1 2-2 
~ g v 

2 
Vi 

(4.1) 

where ; = (Vl ' "', vn ) is an n-dimensional vector that is real up 

to possible CP violating phases which are completely negligible for 

our.purposes. 

Next consider the spin zerq bosons which can couple to the 

fermicms. Here too only isodoublet representaticms are relevant: 

since ~L WL = .~R WR = ~L?' 5 *L .= ~R?' 5 *R = 0 and since we take WL to 

have I = ~ and WR to have I = 0, the only spin zero bosons which 

can couple to the fermions are isodoublets ~ .. The interaction is just 

the obvious generalization of the standard model, given explicitly in 

Appendix C, eq. (C.l). In :r:articuhr the r~l neutral components $i 
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couple to a fermion doublet (Fl , F2 ) by 

L 
a=1,2 

n 

';- A.a' (~La WRa + ~Ra WLa )$. L • ~ 

i=l 

so that the fermion masses are 

m a 

n 

\"- vi A.ai 

~ 

-+ -+ 
V'A. a 

r; I ' 17-: I cos e a a 

(4.2 ) 

(4.3 ) 

where 7-: is also a real n-dimensional vector making an angle e a a 

with respect to ;. 

Finally we must compute and diagonalize the J 0 coupled 

channel matrix for this model. Using the effective Lagrangian of 

Section IIId, we see that the amplitudes are trivial generalizations 

of our previous results. In place of the four fields h, w ±' z in 

eq. (2.15) we now have 4n such fields with analogous couplings. The 

details are presented in Appencix C; here we simply state the results. 

We assume that all Cabbibo angles are zero. Then for leptons 

the eigenvalues of the J 0 matrix are 

lao I 
GF 

4Y21t 

2 
m a 

cos2 e a 

Comparing with eq. (2.6) we see that the critical mass value is 

2 
decreased by the factor cos Qa • For quarks we find 

(4.4) 



lao lmax 

GF 

8-y2:rr 
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{3 G ~2 + 

2 
~ 

2 
cos .2) 

~ ~ 16 ~ ~ cos 912 f
-'-·'-~------·--·-2-----.. -.------------ f 

~
2 2) 222 

+ 9 2 - 2 + 2 2 
cos 91 cos 9

2 
cos 9

1 
cos 9

2 
. 

(4.5 ) 

where is the angle between ~ 
... 

and ~ For 9
12 

= 0, 912 

eq. (4.5) is greater or equal to the standard model result 

(9 = Q = 9 = 0) 1 2 12 given in eq. (2.12) but in general it may be 

larger or smaller. However even in the worst case, 912 = ~, the 

maximum eigenvalue is 

3 GF ma 

~ 2 ) 
lao lmax· = 4"Vi:rr col 9

a 
max 

(4.6) 

so that the critical quark mass is less than or equal to 

700(cos 9) GeV. 
a min 

As 91 or 92 approach :rr/2 strong coupling 

sets in for arbitrarily small fermion masses. (The phenomenological 

implications of this limit have been explored by Raber and Kane13 ) 

in the two Higgs doublet model.) 

V. CONCLUSIO~ 

We have considered the interactions and low energy renormaliza-

tion effects of fermions much heavier than the Wand Z bosons in 

the standard SU(2) )( U(l) model of the weak interactions. By 

considering the scattering of such ultra heavy fermions we were able 
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to compute the critical mass values above which they become strongly 

interacting and the perturbation expansion fails. The values are of 

order 500 GeV/ -{N for quarks and 1000 GeV/-{N for leptons, where 

N is the number of nearly degenerate doublets. Because, as we 

emphasized in the introduction to Section II, these critical mass 

estimates are conservatively large, and especially if N ~ 3, it is 

possible that manifestations of such "strong weak interactions" could 

be seen at the coming generation of pp and pp colliding beam 

facilities. It is not inconceivable that strongly bound states of 

ultra heavy quarks could be observed with the weak interactions 

providing the binding force. In general the short distance dynamics 

of such quarks could be oxymoronic: while their weak interactions 

would be strong, their strong interactions would become weak due to 

asymptotic freedom if there are not too many quark flavors. Ultra 

heavy leptons would also form strongly bound states, but these could 

probably only be observed in e+e- collisions at the presently 

unimaginable TeV energy scale. 

We have found large low energy renormalization effects which 

would change some of the predictions of the Weinberg-Salam mode1. The 

effect of most immediate interest is the correction to MW = ~cos 9W ' 

obtained also by Veltman 8) • Using a compendium12 ) of data on charged 

and neutral current scattering, this enables us to put an upper limit 

of ~ 500 GeV on the mass of a heavy lepton in a doublet with a 

massless neutrino. If there were a deep reason for the masslessness 

of the electron and muon neutrinos which would apply to all lepton 

flavors, then this bound would be very compelling. If in addition new 

quarks and leptons have masses of the same order of ma.gnitude, as seems 

t 

... 

" '.i 

.:~. 
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to be true experimentally aIi.d is predicted in some super-unified 

14) 
models of strong and weak interactions, then our bound would also 

imply a bound of the same order of magnitude on the quark mass 

spectrum. Though highly conjectural, this is the only clue we now 

.. have to an upper limit on the lePton and quark mass spectrum. 

... 
All the other large low energy renormalization effects involve 

Higgs mesons. In Section III we have catalogued all the amplitudes 

and Green's functions which get large one-loop corrections. We have 

explicitly computed the corrections to the predicted values of three 

physical quantities: the coupling constant of the Higgs boson to the 

W and Z bosons and the light fermions. The effect is to decrease 

the W and Z couplings and to increase the fermion couplings. 

Unlike -the correction to Mw = Mz cos E\;-, these- corrections do not 

vanish if the ultra heavy fermion doublet is degenerate. If ultra 

heavy fermions exist, these corrections would make standard predictions 

for the production and decay of the Higgs particle unreliable. 

We argued in Section IV that the essential qualitative features 

of our results are more general than the standard SU(2) x U(l) model 

assumed in Sections II and III. Because of the chiral Ward identities 

which must be satisfied by any broken gauge theory (except vector-like 

theories) in order to be renormalizable, ultra heavy fermions must 

;:, quite generally be strongly coupled. This is even true if the gauge 

symmetry is broken dynamically and there are no elementary Higgs fields 

r) * in the Iagrangian. _ 

* We thank Ken !ane for an interesting discussion of this point. 
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APPENDIX A 

The helicity spinors are defined by 

i . p u(~)(p) = ~ u(~)(p), 
Ipl 

i . p v(~)(p) = _~ v(A.)(p) 
Ipl 

where i denotes the spin operator, A. = ~ 1 indicates helicity ~ ~ 

for both particle and antiparticle, and p is the momentum of either. 

As we explained in the text, we ignore photon exchange graphs' and the 

~v + 
g -piece in the W- and Z propagators. 

Defining - r -. A., ~ and ~, ~ to be the helicities of the 

incoming and outgoing fermion and anti-fermion respectively 

we obtain, in the center-of-mass frame, the following contributions 

to the helicity amplitudes for elastic scattering FiFi ~ FiFi: 

s-channel H-exchange 

-+2 
~ r:::- 2 p 

-4y2GF mi 2 
s - ~ 

A.A.' B "B,,];:, 
~,,, '" 

t-channel H-exchange 

, 2 1 '" e e "'\ -4~f2GF mi 2 ,E sin 2' ~ BA.,_A.' - mi cos 2' BA.,A.'j 
t - ~ 

~ Q- e) x E sin 2' ~ S_ - mi cos 2' S __ 
A.,-~' ~,~' 

s-channel Z-exchange 

s 
- 2 2 '2 G m. M.-

--y F ~ s - --z 
B -
~, A. B~,,];:, 
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t-channel Z-exchange 

~2 2 Q 
... 1- 2 P sin 2' 
4V2GF~ 2 B __ 

t - 1% ~,-~' 
B 

A., -~, 

For the quantum number exchange scattering FIFI ~ F2F2 we 

obtain: 

s-channel H-exchange 

-+2 

-4-...f2GF ~~ P 2 A.A.' B~];: B~,,];:, 
s - MH 

s-channel Z-exchange 

>/2GF ~~ 
s 

2 
s - 1% 

B~];: B~,,];:, 

t-channel W-exchange 

2 V2GF t _1 rAw2 E sin ~ ~l + A.)~ + (1 - ~)~)B~, _~, 
1 Q 2 2 "\ 

- 2' cos 2' (~ - ~ )(1 - ~)BA.'~;; 

x ~ sin ~ ~l - ];:)~ + (1 + ];:)~)B];:, _];:, 

1 e 2 2 - ) + 2' cos 2' (~ - ~ )(1 + ~)B __ , 
A., ~ , 

Here s and t are the usual Mandelstam variables, GF is Fermi's 

constant, related to rAw and the gauge coupling constant 

2 G
F 

g 

-fi 8 rAw2 

and e is the center-of-mass scattering angle. 

g by 

.,:. 

or 

(. 

~ 
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In the limit s » mi 
2 

the amplitudes simplify considerably, 

and the ncmvanishing contributions fran each graph are: 

s-channel. H 

t-cbannel. H 

s-channel. Z 

t-channel Z 

FiFi ... Fli 

... + + 1 + + 

++ 

++ 

+ -

- + 

> - - J 

~ ::} 
... --1 
... + +) 
... -+} 
-+ +-

++-+++ 

-+ 

+ + -+ 

-+ + + 

+ + -+ 

-+ + + 

+- -+ -+ 

- + -+ +-

2 -.{2 G
F 

m
i 

2 = +....[2 GF mi 

2 = + -{2 GF mi 

2 -Y2 GF mi 

- 2 - -V 2 GF mi 

2 -VGF mi 

Fll --F2F2 

+ + ~ ::~ 
s-channel H 

+ + 

= :: 1 
+ + + + 

-+ 
s-channel Z 

+ + -+ 

-+ + + 

+ + 

= ::} 
t-channel W 

+- -+ -+ 

-+-++-
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-'{2 GF D1:L ~ 

+ V2 GF D1:L m2 

+-{2 GF D1:L~ 

-2 -{2 GF D1:L ~ 

2 
-2 -{2 GF D1:L 

. 2 
-2'V2 GF~· 

Adding up all graphs, the final result for the nonvanishing amplitudes 

for leptcms or quarks in the color-diagonal channels BR':' BR, ••. , are 

Fli -+ FiFi 

+ + -+ + +} 
-+ -

+ - -+ + 

-+-++-. 

FlFl _F2F2 

+- -+ -+ 

-+-++-

2 
-2.y2 G

F 
m

i 

2 
-2-{2 GF D1:L 

2 
-2"/2 GF ~ • 
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In the color-chaDging channels RR'" BE, ••• , the nonvanishing 

amplitudes are 

FiFi ... Fli 

+ + ... + +l 

... - ( 

FlFl ~F2F2 

+ + : ::} 

2 -2V2 GF mi 

2....[2GF ~~ • 
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APPENDIX B 

We shall compute the amplitudes ror the processes 

- + -F i F i ... W W, ZZ, HH and ZH, where the vector bosons are longi tu-

dinalJ.y polarized in all cases. We rirst compute in detail the process 

- - + F2F2 ... W W in the CMS. The scattering angle 9 is defined between 

the outgoing W- and the incoming F
2

• The couplings or the Z 

boson to the rermions has the general rorm 

-I M.z.. ~ F ril{c
V 

+ CA r
5

)F
i 

Zil ' 00r 2 VVc. tiF i i = 1,2 

where 

CVi {4 Q Sin
2 

9w - 2 T
3

)i 

CAi {2 T3 )i 

and Q is the electric charge or F i in units or the proton charge, 

and. T3 is the z-component or the weak isospin or the lefi-handed. 

doublet (T
3 

= + 1/2 or - 1/2 ror Fl or F2, respectively). We 

compute the T-matrix elements T,s::{s, e) where '}.. and ~ denote the 

helicities or F and F, respectively. 

We obtain the rollowing nonvanishing contributions from each 

- -+ graph ror F2F2 '" W W : 

T++ 

T 
+-

-T 

T 
-+ 

s-channel photon 

+ 4-{2 GF ~ ~ sin
2 ~ -v; cos e I3w ~ 2M.w2) 

1+
s 

2 M.w
2 

\ 
+ 2-y2 GF ~ sin

2 ~ s sin 9 I3W ~ + -s - ) 

.c. 

.... 

(. 

of 



) 

.. 

~ 

\) 

T++ 

T 
++ 

T 
+-

T 
-+ 

T++ 

T 
+-

T 
-+ 
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s-cbannel H 

-T --{2GF ~ 
s-{s • 0 -2."w 2} 2 

s - ~ 

s-cbannel Z 

-T 
r- s-..[s cos e 

Ow (1 + 2 ~2) -,,2 GF ~ CV2 2 
s - ~ 

- ~ -{2 GF (CV2 + CA2 13) 
.2 .in • ~ 2"w2) 

2 I3w 1+--
s _ ~ s 

- ~ -(2 GF (CV2 - CA2 13) 

2 2 
s sin e 13 ( 2 Mw ) 2 W 1+--
s _ ~ s 

t-cbannel Fl 

-T + -{2 GF ~"VS(l + cos e)13w 

-...{2 GF ~2sVs [-I3w(l + cos e)~13 -13w)2 + 4sllJ.2) 
4(t - llJ. ) 

4 Mw
2 1 

+ -s- (l3w cos e - 13 cos 2e)J 

....j2 GF ~ 
2 

s sin e 0 2 Mw 2 ) 
+ 2 I3I3w + 13 cos e - -- I3W 

(1 + l3)(t - llJ. ) s 

+ ~-{2 G
F 

s sin e I3w(l + 13) 

-{2 GF s sin e 
2 

t - llJ. 
[ 

2 1 2 2 2 - ~ I3w + 2" I3w(l + 13) (~ - llJ. + 2 Mw ) 

- 13 (1 + I3)Mw 2 cos e] . 
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We have defined 13 and I3w to be the velocities of the 

fermions and WI s, respecti vely. When one adds up all the graphs, all 

the pieces that grow with s or -Vs cancel, as required by renor

malizability. The amplitude for F1F
l

'" W+W- is obtained from the 

above one by replacing llJ."'-" ~ and ~, CV2, CA2 ",~, C
Vl

, CAl· 

For the amplitude FiFi'" zz we simplify the calculation by 

2 
neglecting all pieces proportional to G~ . Then for i = 1 or 2, 

we get: 

s-cha=el H 

T -T 
++ 

-I{i G sVs F mi 13 
s - ~~ 

t-cha=el Fi + u-cha=el Fi 

T -T 
++ 

+-y2 G m {S 13 1 __ i_ )( 
F i s 

col e "" ~ 
4m 2 

sin
2 

4m 2 
) 

e + -;- cos
2

Q 

T 
+-

2-
T = -2~ f2G

F 
m. 13 _+ V~ ~ 

sin e cos e 

2 
2 4mi 2 

sin e + -- cos e 
s 

For F i F i -+ HH the exact answers are: 

s-cbannel H 

T -T + 31/2 GF mi 13 
~2-vs 

2 
s - ~ 

++ 



l 

T++ 

T +-
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t-channel F i + u-cbannel F i 

-T 
-4-./2 GF mi

3 ( f3 - cos 9 
--------------------------~2 + 

VB 2 ~i 
(00' • • -0o, ~ 

1 + f3 - 2f3 cos 9 + -
S 

T_+ + 2~.f2 GF mi
2 

sin 9 

• ( 1 
4m 2 

cos 9 + _i_ 
s 

- (00' • • -00> ~ • 

Finally, :for FiFi'" ZH, neglecting again terms proportional 

2 
to ~, we find: 

s-channel Z 

T = T 
++ -- -'12 GF mi CAi-YS 

t-cbannel Fi + u-cbannel Fi 

T++ T -,[2 0" mi CAi -v. t 2~ 1 1 
2 ~ 

s (1 - f3 cos 9 + 1 + f3 cos 9 

T+_ -T_+ = 12 GF mi CAi f3 sin 9 + . 2 [1 
1 + : cos 9 1 

In the limit s » m
i
2 » Mw2 

the amplitudes simpli:fy 

considerably, and the only nonvaniShing amplitudes left over are: 

T 
+-

T 
-+ 

T +-

T_ 

T +-

T +-

T +-

,-
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- +--
F1Fl ... W W 

,.., 2 9 
-2'/2 GF ml cot 2' 

.C 2 9 
-2'y2 GF ~ cot 2' c 

F2F2 ... W-W+ .. 
<.' 

J;) 2 ~ 
-2 y2 GF ~ cot 2' 

~r;; 2 9 
-2 v2 GF ~ cot 2' 

FiFi ... HH 

T = 2-..[2 G
F 

m
i
2 

cot 9 
-+ 

FiFi ... ZZ 

T = 
-+ -2-{2 GF m/ cot 9 

FiFi ... ZH 

-T -+ CAi 212 G
F 

mi
2 

csc e . 
( 

-r 



') 

.. 

), 

I) 
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APPENDIX C 

In this Appendix we derive the results which were stated in 

Section IV. As explained there, we consider the SU(2) x U(~) gauge 

theory with fermions in ~eft-handed doub~ets and right-hand sing~ets 

and with an arbitrary number of Higgs doub~ets, ~l'·· ·'~n. We will 

compute the J = 0 coup~ed channe~ matrix for a fermion doub~et 

(Fi' F2 ) in the annihilation channe~s F aFa <--7 FbFb' a, b = ~,2, in 

the limit -Y;;:» ~,~ » Mw,~ and -ys- »all physical Higgs 

boson masses. 

:Each Higgs doublet Pi has four components. Three of the 4n 

components are "swallowed" by the gauge bosons and the remaining 

4n -;; components survive as physica~ p3.rtic~es. As remarked in the 

discussion of the effective Lagrangian, Section IId, it is precise~y 

the three "swallowed" Higgs bosons which are responsible for the 

contribution of the gauge bosons in the ~imit of interest. In the 

effective Lagrangian we work in the It Hooft-Feynman gauge, which 

amolmts to computing as if the three unphysica~ Higgs bosons were not 

swallowed. We follow that approach now, so, that the effective 

Lagrangian becomes a sum of n terms, each ~ike eq. (2 .~5). vIe can 

easi~ use this generalized effective Lagrangian to compute to ~eading 

order in G
F 

ma
2

, without bothering to isolate the three unphysica~ 

Higgs bosons. 

Since we are OllY computing FaFa <--7 FbFb in tree apprOXimation, 

it is sufficient to give the boson-fermion interaction in the gen-

eralized effective Lagrangian: 

--r' 
':/--1: 
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n 

\- -hi (Ali F~F~ + '-2i F2F2 ) 
/ 

iZi (~i Fl 15 Fl - ~i F2 "5F2) 

1;i 

+ -{2 i w; F~ (~i - ~i - (~i + ~i )15)F2 

- -{2 i w~ F2(~i - ~i + (~i + '-2i)":JFl 

(C.l) 

+ -
Here h., z., and w~ are the components of rh, , defined by 

~ ~ ~ ~ 

~i 
1 

-{2 (
i-f2 w~ ) 

Vi + hi - i zi • 

It is now very easy to generalize the sand t channel 

exchange diagrams compiled in Appendix A: in place of each diagram we 

get the sum of n terms with gma/2Mw replaced by Aai . We will 

neglect possible Cabbibo angles. Adding all the diagrams we find that 

the lepton coupled channel matrix is already diagonal because of the 

same cancellations that occurred in Section II: 

I 2 0 0 / ~ 0 
' 2 

I cos 91 ~2 0 0 
10

2 
! cos 92 2 , 

- G

F 

I ~ 0 ) - ~--- I 0 2 

'0 - 4.y.. I 0 00' '\ ., , 

\ 0 2 
\ 0 00, ., I \ 0 • 

\ (c.'l 
, 
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The rows and columns are labeled in the order Fl+Fl +, F2+F2+, Fl_~_' 

F2 F2 • Where :;; = (v.) and ~ = (~i) are real n dimensional 
- - 3. a a 

vectors, as discussed in Section TV, we have used the relations 

Mw
2 1 2:;'2 

q:g (4.1) 

-+ -+ 
m ~ • v (4.3) a a. 

I~ 1 • I:;; 1 • cos 8 
a a 

For the quark matrix we again find the same structure as we 

found in Section II for the standard model. We display only the color 

neutral channels since they contain the maximum eigenvalue. Where the 

rows and. columns are labeled by the color channels RB, BB, and if, 

the J = 0 matrix is 

(A 
B B\ 

\ 
a \ B A B 

0 

\ B B A • (C.3 ) 
/ 

A and Bare 4 x 4 matrices labeled just like the lepton matrix 

(C.2). A is given by precisely the same expression as (C.2) and B 

\ 
x 

is given by / 2 0 

I ~ 0 
! 2 6 
i cos 1 2 0 I ~ x 

o 2 Q I cos 2 2 
-G

F ~ 0 B - -~< 2 

- 4 Y2' \ 0 x 00' ., ." , 

'\ 0 0 cos2 6
2 

I 

x (c.4) 

where 

x 

cos 6
12 

.. 

~m2 cos 612 

cos 6
1 

cos 82 

~ 
-+ 

~ 

I~I I~I 
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( 

To diagonalize (C.3) we first diagonalize the color degrees of .. 
;.i 

freedom. Since the matrix 

/0 

\~ 
1 

o 

1 

~) 
o / 

/ 

has eigenvalues (2, -1, -1), after a unitarity transformation of the 

color degree s of freedom (C. 3) becomes 

/~ + 2B 0 o '\ 
\ 

\ 
0 A - B 0 

0 0 A - B/ (C.5 ) 
\ / 

The maximal eigenvalue is found in A + 2B, which can be put in 2 x 2 

block diagonal form by a unitarity matrix which interchanges 

F2l2+ <->F2 }2_: 

Ut(A + 2B)U c :) 
where 

( 

r 
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; 2 
i 3~ ~2x 
! 2 

GF \ icoS 9
1 

i 

---- 2 I 
C = - 4-..[2 • 'm." / . 

-2x 29 I 
cos 2, '. (C.7) 

.. 
Diagona1izing the matrix C we obtain the maximal eigenvalue ca.uoted in 

eq. (4.5). 

~ 

J 
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