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ABSTRACT

We discuss the wesk interactions of ultra heavy fermions at low

and high energy in the SU(2 )L x U(1) gauge theory. Using partial
wave unitarity at high energy we establish critical fermion mass
values beyond wh1ch strong couplings occur in the theory and the
perturbation expansion fails. The critical masses are (SOO/V—IE) GeV
for quarks and (l.O/ﬁ)TeV for leptons, where N .is the number of
nearly degenerate SU(2 )L doublets of quarks and leptons respectively.

At low energies, far below their production threshold, we show that

ultra heavy fermions would induce large, observable one loop radiative

corrections. One of these corrections (cbtained also by Veltman)
implies, using present experimental data, an upper limit of ~ 500 GeV

for & heavy lepton in an SU(2 )L doublet with a massless neutrino.

This work bas been supported by the High Energy FPhysics Division

- of the U.S. Department of Energy.
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I. INTRODUCTION

The recent discoveries of new quarks and leptons underscore
our ignorance of some of the deepest questions we might ask. What is
the nature and origin of the quark and lepton spectrum? How many are
there? To what mass scale does the spectrum extend? Fbr the moment
we ha.vé no idea. The purpose of this paper is to exinlore the nature of
the weak interactions if the spectrum extends significantly beyond the
expected 100 GeV mass scale of the intermediate vector bosops.*' The
central point is that for such ultra heavy fermions the weak interac-
tions of the sU{2 )L x U(1l) gauge theory would actually become strong
and the perturbation expansion would fail. Besides being interesting
in its own right, this phenomenon means that ‘low energy experiments can
be sensitive to the existence of ultra heavy quarks and leptons. At
energies far below thelr production threshold the ultra heavy fermions .
would induce large observable radiative corrections.

Ve work primarily in the context of the usual su(2 )L x U(1)
model with only one Higgs doublete). But the essential features of our
results are independent of the model. We will generalize our results
for the SU(2 )L x U(1) model to allow for any experimentally acceph-
able assignment of Higgs representations.

As discussed below, in the weak interaction gauge theories the
1ﬁteractions of fermions must become strong as the fermion mass
increases beyond gauge boson masses. The questions which we will

answer 811 into two distinct categories. First, what is the fermion

_A brief discussion of some of these results may be found in

1)

ref. .
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mass scale at which strong coupling begins? We answer this question
by applying partial wave unitarity to the s‘cattering of ultra heavy
fermions at very high energy. Second, what low énergy measurements
can probe for the existence of ultra heavy fermions? We present a
complete classification of the observably large radié.tive ‘corrections
induced by ultra heavy fermions and explicitly compute those which
are most able to be studied experimen'l;.ally.‘ The corresponding
questions for a heavy Higgs particle were discussed by Lee, Qﬁigg, and

3) in the former case and by Veltma.nh) in the latter.

Thacker

| The basic polnt is very simple. In the spontaneously broken
gauge theéries a fermion F of mass oy couples to the Higgs particle
H and to the longitudinal modes of the W and Z bosons with a

strength proportional to

g .
W/GF mF2 _ ;%.__E_D;w_ o (1.1)

(G, 1s the Fermi constant, g the SU(2) gauge coupling constant,

F
and M, is the W mass.) So for some m, >> M, the interaction
becomes strong and perturbation theory fails. To determine this
critical mass scale we consider the tree approximation amplitudes for
FF - ¥F, WW, 22, HH, ZH. Bach of these contains & term propor-
tional to GF mFa, which dominates for large engugh mp. As g
increases these a.mpli‘budesi saturate the bounds imposed by partial wave
unitarity. For this critical value of g perturbation theory breaks
down and the fermion is strongly interacting, with itself and with

W, 2, and H. )

As in ref.j) we find the lowest critical value of o by

computing the largest eigenvalue of the coupled channel T matrix in

b

the low partial waves. For quarks the J =0 matrix yields the
smallest critical mass. If the quarks in an Sﬁ(2 )L doublet are
nearly degenerate and there are N nearly degenerate doublets (i.e.,
mass splittings much less than masses ), then the critical value is

~ 550 GeV/V— . For leptons the smallest critical value comes from the
J =1 metrix. Tt 1s 1.0 TeV/ﬁ for N nearly degenerate doublets
of ultra heavy charged leptons partnered with massless neutrinos and
880 GeV/\,fﬁ' for N nearly degenerate doublets of ultra heavy charged
leptons with nearly degenerate ultra heavy neutral leptons. Because,
as explained in Section IT, our bounds are conservative and especially
if N 2 3, ultra heavy quarks could be within the range of the pp
and pp colliding beam facilities which will be built in the next few
years.

If ultra heavy fermions exist then the theory acquires a
"sthenon" sector in the sense of Appelquist and B;]orken5 ). The ultra
heavy fermions couple strongly to one another and to W, 2, and H,
but all remain weakly coupled to the light (i.e., lighter than Mw)
fermions. If in addition H is ultra heavy (mH ~ 0(1 TeV) --see
ref. 3)) then W, Z, and H also couple strongly among themselves
with a strength characterized by VGF mE:2 . Our apnalysis is
independent of whether H is ultra heavy.*‘ '

If ultra heavy quarks exist, it is amusing to realize that
their short distance dynamics might be dominated by the weak

interaction gauge theory. If QCD is still asymptotically free at the

If H is ultra heavy our unitarity bounds could only improve.

-
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ultra heavy mass scale--that is, if too many new flavors do not

populate the intervening mass scales--then at short distances QCD

would only contribute small corrections to the dominant weak interac-

tion (broken gauge theory) dymamics. For instance, ultra heavy
Quarkonium, QF, would be .bound frimarily by W, 2, and H bosons
with only small corrections from QCD gluons.% And if QCD is not
asymptotically free at the ultra heavy quark mass scale, weak bosons
and QCD gluons are likely to be of comparable importance in their short
distance dynamics: In either case QCD gluons would dominate the
dynamics at large distances 'becausé of the finite range of the weak
quanta. .

If ultra heavy leptons exist, they would also form strongly
bound Ieptonium states, bound by the weak quanta. The spectruni of
wltra heavy Leptonium would closely resemble that of ultra heavy
Quarkonium provided that QCD remains asympfotically free.

7)

Ordinarily, because of the decoupling theorem  ’, we expect

heavy particles to have a negligibly small effect on the physics at

- energies far below their production threshold. But in the broken gauge

theories the appearance of the parameter GF mF2 means that ultra
heavy fermions may produce important effects at low energies. If the
parameter occurs in a measurable amplitude in one loop order, then
ultra heavy fermions would cause a change of leading order in the tree

approximation prediction

” .
~ We assume, as argued in ref. 6), that the characteristic momentum
scale of the Q¥ bound state is. p ~ cxs(p) my where as(p) is

the usual running coupling constant of QCD.

-6-

g2<1 + Aeg mF2)> - g2(1 + Q) (1.2)

giving rise to a large cbservable effect.
In the standard SU(2 )L x U(1) model with one Higgs doublet,

Veltmanll' )

showed that the parameter GF mH2 does not occur in one

loop order, so that an ultra heavy Higgs boson would be "screened" from
the physics at low energies. But ultra heavy fermions are not screened.
One loop corrections proportional to GF mF2 occur in the W, Z, and
H self energies and in all amplitudes formed from them by adding
arbitrary numbers of external Higgs bosons. In practice the most
important consequence is that .the following tree approximation rela-
tionships would get (9{1) corrections if ultra heavy fermions exist:

ez~ TH, - @3

‘g = &My ‘ (1.%)

Moz (1.5)

M, M, cos g, . (1.6)

Here )‘Hff’ }\wa, and )‘HZZ are respectively the lcouplings of the
Higgs boson to a (light) fermion £, to the W, and to the Z,

and Gw is the weak-electromagnetic mixing angle. Equations (1.3) to
(1.5) are of present experimental.interest because they underlie all
strategies to search for the Higgs boson. The correction to eg. (1.6),

8 .
obtained also by Veltman ), can be used together with data on charged
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and neutral current cross sections to put an upper bound on the mass
of a heavy lepton in a doublet with a maSSle.ss neutrino. With the most
recent data the result is M. < 500 GeV.

We have used dimensional regularization9) to compute the one
loop corrections. The calculations are straightforward except for an
apperent ambiguity in how 75 is defined in n dimensions. We have
resolved this ambiguity by examining the Ward identities which muét be ’
" satisfied by the amplitudes being computed. It turns out to be correct
for the graphs studied here (and for a much larger class of graphs) to
anticommutes with all the Dirac 7’u in n dimensions.

5
A conplete analysis is presented in a separate paperlo).

assume that 7

The rest of the paper is organized as follows. In Section IT
we use partial wave unitarity at high energy to establish critical

fermion mass velues for the onset of strong coupling. We also

generalize the effective Iagrangian of ref. 3) to simplify the calcula-.

tion of the contributions to tree amplitudes which are proportional to
GF mF2 . In Section III we compute the one loop radiative corrections
to low energy processes which are proportional to GF mFE. In Section
IV we discuss the generality of our results and explicitly compute the
critical fermion masses for the SU(2) x U(1l) model with a gen-
eralized Higgs sector. Section V containg some concluding remarks.

In Appendices A and B we compute the relevant amplitudes for the

J =0 and J =1 coupled channel matrices in the standard model.
Appendix C contains a detailed discussion of the, J = 0 coupled

channel matrix in the model with a generalized Higgs sector.

~8-

II. BOUNDS FROM PARTTAL WAVE UNITARITY

In this section we use partial wave unitarity to study the

scattering of the ultra heavy fermions at energies far above their

thresholds. In analogy with ref. 3 ), we use the saturation of the
unitarity constraints Por the tree approximation amplitudes to deter-
mine critical values for the fermion masses beyond which strong coupling
appears and the perturbation expansion fails. Consider for example the

J = 0 partial wave a, ¢ Unitarity and Schwartz's inequality demand
2
el 2 ma = la{|°.
o o o
Now suppose we expand a, in powers of the coupling constant g ,

) .
a, = C & + ocyg Foeee . (2.1)

Since the Born term ¢y g2 is purely real at very high energiles, we

obtain
L L
= <
Im 8, g Im e S 8 |c2|
4
and, therefore, to order g,
2 L L
<
le;I" e < eyl e - (2.2)

Now if the expansion (2.1) is to be reliable, we should also require
L 2
lczg/clg I << 1
and therefore, combining this with (2.2), -we obtain

2 Ly 27 -
Iao IB = g lcll S lc2 g /cl 8 I < l d (2'5)
orn

We shall see immediately that c, 1s proportiomal to the square of the

1
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mass of the ultra heavy fermionm, mF2 , 80 that (2.3) puts an upper Since we are interested only in contributions proportiomal to mimj »
bound. on mF if the perturbation expansion is to be reliable. We we neglect Feynman graphs with photon exchange and the guv piece of
define a critical value for L by the equation the propagator in W and Z exchange graphs. It is easy to see on
dimensional grounds that in the high energy limit these contributions
la, | - 1. (2.4) R R
Born are proportional to g Dbut not to g mimj/ME.
It oy < «(mF) it » the fermions are strongly coupled, contributias ' The contributions to the amplitudes from each graph are
cr
to the scattering amplitude from higher order terms must be of the same displayed in Appendix A. We discuss the unitarity bounds only in the
order of magnitude as the lowest order terms, and perturbation theory limit s >> mimj s so the amplitudes simplify considerably. If we
has broken down. In practice strong coupling will set in at values of denote by + or - the helicities of the fermions (written in the
ower e critical value due to (2.3), so we are beilng conserv- order FF - FF en o e channels ++ = ++, == =+ ==, and
m, 1 than th itical value due to (2.3) bei d FF -+ FF) th the cha Y
ative in defining (mF)crit by saturating the unitarity bound (2.4). ++ ¢ -- contribute to the J = O partial wave amplitude, which is
(a) An Example: J = O Fermion Scattering given by
We assume the standard spontanecusly broken SU(2) & U(1) 1 1
2) a, = — d(cos )T .
model / to which we add a doublet of left-handed fermions Fl, F2 and - 32w
-1

the corresponding right-handed singlets. We shall specify later

whether the fermions are leptons or quarks, and for the moment assume As a slmple mple we consider the elastic amplitude

that there 1s no Cabbibo mixing of this doublet with any others. In LIV g P

in the limit of interest and we find, using the results of Appendix A,

only the Z and H s-channel exchanges contribute

addition we assume thét their masses are much larger than those of the

gauge bosons. We shall compute T-matrix elements, where T is related GF m12 g2 mi2 .
a, = - = i — (2.6)
to the S matrix by S =1 + iT. Only neutral channels will be consid- wg b4 32 Mw

i . The channel
ered since this is sufficient for our purposes e channels Fartial wave wnltarity implies that laol <1, so the validity of

FiFi -+ bosons do not contribute to J = O partial waves; they will the perturbation expansion requires

be considered later.

i the W a z . Ly2 ¢ -
We quantize the theory in the uwnitary gauge, so the an mi2 < = (1.2 Tev)2 . @.7)
propagators have the form » GF
: 2 ' in
4 gp.v _ k“‘kv/Me » . @.5) For m, > 4\]2 n/GF , as we have already discussed, the @fg )

k2 - M2 + i€ ) . terms must make a larger contribution to a, than does the Born term
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given in (2.6). As we pointed out in (2.3), the inequality (2.7) is
conservative: the perturbation expension begins to fail for appreciably
smaller values of m, .

(b) Coupled Chennels: J = 0

We may improve the bound (2.7) by considering the scattering
of different helicity and flavor combinations. As in ref. 2), the most
restrictive bound is obtained from the largest eigenvalue of the
coupled channel T matrix. .

We consider first one doublet of heavy fermioms Fl\) . The
J = 0 coupled channel matrix is 4 x 4 ; the relevant states are
F1+Fi+ and F.i-Fi- where 1 = 1,2. The diagonel matrix elements are
due to s-channel Z and H exchanges (see Appendix A) and are given
by (2.6). The matrix elements which are off-diagonal in both helicity

and flavor F, F. eoF,

PN 3-F3- with 1 % ;] s receive contributions from

both s-channel Z and H exchanges and from t-channel W exchange.
If there is no Cabbibo-like mixing these off-diagonal contributions
cancel. All other off-diagonal maetrix elements also vanish, so that
the coupled chamnel matrix for J = O is already diagonal, and there
is no improvement in the bound (2.7).

Now we assume that there 1s mixing between two doublets,

perametrized by Cabbibo angle 0, »

Fl > < Fh \)
F2 cos Oc + F3 sin ec -F2 sin ec + F5 cos ec)_

(2.8)

We consider the coupled channel problem only for Flfl and F2F2 ; if

F3 and Fh are also ultre heavy, our bound could be improved by

-1e-
- - - . *

including F5F3 and FhFh in the coupled channel matrix. The neutral

currents remain unchanged by this modification but the charged current

is multiplied by cos ec. Therefore the W exchange amplitudes are

multiplied by cos2 ec and the previously mentioned cancellation does

not occur. If we write the channels in the order Fl +Fl " F2 +F2 "
Fl-Fl-’ F2_F2_, the matrix is
nﬁ_z 0 0 -nL_Lmex2
2 2
~ GF o] m, -m, m,X (o]
o 2
h‘\En 0 -, m X m' 0
-y 0 0 -

(2.9)
where x2 = s:Ln2 ec . The absolute value of the largest eigenvalue
is

G : 2 o
¥ 2 2 2 2 2 2 2
In] = + +~\/ { - ) + 4 sin” ©
Voo™ T Ve o m T e
and unitarity requires l)\l < 1. The critical curve l)\' =1 defines
the approximate limit of walidity of the perturbation expansion. If
ve assume m, =m, =W, We find that the bound (2.7) is improved by
a factor 1 + s:l.n2 ec, i.e.,
o 2 x 1 ®
o < . . (2.10)
G l+ sin” ©
F c
If Fl and F2 are ultra heavy and F5 and Fh are light, then

1)

current to order « Gp implies that O, must be very small.

it is shown in ref. that the flavor conservation of the neutral
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If there are N approximately degenerate doublets (i.e., mass dif-
ferences much less than masses), the resulting ¥ x 4N matrix is
approximated by a direct product of matrix (2.9) and the N x XN
matrix with all elements equal to one. Diagonalizing for ec =0 we

have, therefore,

5 la-'\/’::rl
m < - .

GF N

The improvement of the bound (2.10) can be understood by noting that
ec = /2 corresponds to N 22 .

Next we consider the case in wh;'Lch the fermions are quarks,
and again consider only the chammels FlFl and Fz-fe' Each quark
comes in three colars denoted by R, B, Y.

Although the quark scattering amplitudes are not directly
observable if quarks are confined, it is nevertheless correct for our
purposes to insist that they satisfy partial wave unitarity. We are
interested in whether the perturbation expansion for the weak interac-
tions of the quarks is valid or not. Order by order in g the
perturbation expansion of this field theory is consistent with
unitarity, and when the partial wave bounds are saturated by the Born
terms, the expansion fails and the weak theory has become strongly
interacting. This is all we are using the umitarity constraints to
demonstrate.

For a quark doublet the coupled channel matrix is 36 X 36
because of the nine color channels, RR, R-B-, *++ ., But only the
color-neutral channels, RR, BE, YY are impo'rbant, so the matrix

of interest is 12 x 12. The key difference from the lepton matrix

~1h-

is that there is no t-channel W exchange in color off-dlagonal matrix
elements such as RR —» BB, so that the cancellation of flavor-helieity
off-diagonal elements does not occur. The matrix is written in block

form,

[ !

! B B
a = B A B
(o]
' B B A (2.11)

where the matrices A and B are U4 X L4 . The matrix A contains
only the color-diagonal emplitudes RR - RR, °-* and is identical to
the lepton matrix (2.9), while B represents the color off-diagonal

amplitudes RR - BB, :-- and is given by

=" 0 —
Gp ° 5, e °
S T wEa | o ‘mm, w,? 0
i o m |-

The matrix (2.11) is diagonalized in Appendix C. The absolute value

of the largest eigenvaiue is

e [ B y
A] = ng. 3(m12 + m22) +‘\/9(m12- m22)2 + um12m22(2 + sin® ec)2 )
_ %t

(2.12)

For m) =m, =m, inequality (2.7) is improved by a factor 5 + sin29c,

o < . (2.13)
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For N nearly degenerate doublets the right-hand side is decreased by
a factor of ~ 1/N. For 8, = 0 the bouwnd in (2.13) implies that

m < 550 GeV. For éc #0 and/or m £ m,, the critical curve,
obtained by setting the right-hand side of (2.12) to umity, approx-
imately divides the (ml,nya) plane into weak and strong coupling
reglons.

(e¢) Coupled Chamnels: J =1

In the case of higher partial waves (J > 0), the amplitudes
for F:I.Fi -+ W+W-, ZH, HE and ZZ also contribute to the coupled
channel matrix. Their values in the limit s >> mi-z > M7 MHQ, M,”
are given in Appendix B. Only states where the vector mesons are
longitudinally polarized are relevant. If the Higgs-particle were also
ultra heavy then channels like HH - ZZ would be non-negl:tg:i.ble3 )

The resulting ma.tzl‘i_x would be larger than the one discussed below and
the bound would be improved. The J =1 partial wave amplitudes are

given by

1 1

1
= — a e)a- ,(8)T ., .
a o (cos ©) p’u.( ) !

!
=1

Here d:'m,(e) is the well-known Wigner d-function appearing in the
Jacob-Wick expansion. For fermions p and u' are defined by
p={(=-2%)2 and u' = (A -2N')/2, where the A's refer to the
helicities of the fermions: A (X) for the initial fermion (anti-
fermion) and A' (R') for the final fermion (anti-fermion), and
p = 0 for boson states which are either scalar H's or longitudinal
W's and Z's. For J =1 we can have u,p' = O,%t 1, and the

possible channels are twelve

-16-

b=+ 1: F1+F1-’ F2+F2_

- — - - + - 1 1
w=0: FBF, RFR,RE, RE, WV, N 27, L HH, ZH

L=-1: Fl-F1+’ F2_F2+.

However, when the partial waves are calculated, half of the
channeis decouple. We are therefore left with a 6 x 6 matrix.

Writing the channels in the order F, F F,F

+ - -
1+1-° + 27 ww, zZB F) F,

F,F,, the J=1 mitrix is
o o P w® =YE aVA
o o _m22 _m22 m22 NE m22 Nz
GF '_m12 | _m22 0 o m22 le
TRl o o m
n°/Vz2 ﬁmge/\/'E n°  m’ 0 0
Lmle 3 m22 n mle _m22 o o |

We have diagonalized this matrix analytically for the cases m, = m,
and mw, or m, venishing. If m = m, =m, then the requirement’
that the absolute value of the largest eigenvalue be less than one

yields the bound
m < 880 Gev

while if either m, or m, is zero, the bound on the other is

m < 1.0 TeV. -

These are the best bounds we have found for leptons.
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For quarks the J = 1 coupled channel matrix is 1k x 1k
(color neutral channels 6nly). However it yields higher values than

the J = 0 matrix for the critical mass. For equal masses we find

m < Ti5 GeV

which is larger than the value of 550 GeV obtained from the J = 0O
matrix. We have also checked that J =2 mpartial wavés give less

efficient bounds than J =0 and J = 1.

(d) Effective Lagrangian

The leading high energy behavior of amplitudes which have at
least one longitudinally polarized vector boson in the in or out states
can be found very simply by studying the Higgs-Goldstone system which
underlies the full broken theory. A simple effective lLagrangian was
derived in ref. 3) for the case of scattering amplitudes involving. only
wt, Z and H as external particles. Here we wish to extend this
derivation to amplitudes involving fermions.

Before the gauge couplings are turnéd on, the fermion and‘Higgs

sector of the SU(2) & U(L) model is described by the Iagrangian

o‘i= (au@f(a“@ + 2 f@ - x(@fé)e + i Fp BFp+F WF

iR iR
i=1

]

- Gl[ FLE Flg * F:LRET Frj- Gz'.[fLé For * F2R§T FL]
(2.14)

where 6 and § are the complex Higgs scalar doublets

- () (3

-18-

Here ¢ , creates a negatively charged particle, and P, and F, . are

iR
the fermion doublet and singlets

F
1 1 1
P o= -2-(1-75)<F> Fip = 3 (1+75)Fi.
2

The couplings Gl and G2 are to be determined. Shifting the origin
of the (bo field in the usual way by an smount v/ V2 = u/ Yen and
performing an infinitesimal gauge transformation away from the new

vacuum, we have

a4

fig-

2

@ = exp:;
/i(gl - 152)" i v+ b+ i
. L ~ L
b Z ( ¢ |

\, +h - ik (g + 18,

The lagrangian (2.14) then describes a theory with three massless

T
Goldstone bosons (w, _ = (gl i 152)/ V2 , z = 53), a massive physical
Higgs scalar h and massive fermions with masses m, = vGi/'VCQ-“. When
the gauge couplings are turned on, the Goldstone bosons acquire a
gauge-dependent mass because of mixing with the longitudinal degrees
of freedom of the vector bosons. If, however, we choose the 't Hooft-
Feynman gauge, the masses of the w; and 2z are equal to those of

+
W® and Z respectively. We then identify

1 .o - &
- y V2 Cp 2N
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and then the full interaction part of ,fj is

2
G
oﬁ = - %‘-MHE 2 Gy n® +2° + aw v ) - P:}\Ij: 2 + 52 + 2w+w_)2
- N\ /;/2 GF h(mli"lFl + m2'F'2F2)
- /\/E Cp 2mF 17 F) - m,F,17.F,)
G _
* ﬁ [iw+F1(“&' my - (my+m, )75 )F,
- 1w_§2 (ml -m, (ml-l-gsz )75 )Fl] . (2.15)

It is straightforward to derive the Feynman rules from this effective
Lagrangian and to compute the leading high-energy _'behavior of physical
amplitudes. These calculations are considerebly simpler than those in
the original theory. As‘an example, consider FIFl d w+w_ . There
are only two graphs, s-channel h exchange and t-channel F2 exchange.
The first one is (9(1/yfs) in the limit of lerge s . The second

one is

v}here M,z 1is the matrix element (with m, = m * m,2)
My = TWV@ -m )l )@+ my ™

where q ‘is the four-momentum transfer. Since we are interested only

in the limit s = oo, we need keep only the ﬂs) term in M -

This is

~20-

My = -27{(152 tml - (g - m22)75)16+]u

vhere P, is the four-momentum of the outgoing w o This is

straightforward to compute and we get

[

. My = ssinQLm12+m22+x(m12—m22)l 5)\’_-):.
Using ¢ - m22 - - s sin® e/e + @/(1/5) we obtain

Tx = -V2- Gy cot g [m12 + m22 + k(ml2 - m22)] BM-X
which is identical to the exact result quoted in Appendix A.

It can be proved that the effective Iagrangian (2.15) gives the
correct high energy behavior of amplitudes to leading order in the
large fermion mass limit provided that there is at least one external
vector meson which is longitudinally polarized. The proof is similar
to that given in the appendix of ref. 5 ). (The addition of fermions
does not significantly affect the argument.)

In arder to see that (2.15) also yilelds the leading high energy
behavior when there are no external vector bosons, we note that when
we computed with the full theory in the unitary gauge, we retained qnly
the kukv piece of the vector boson propagator. This led to contribu-
tions to the amplitudes proportional to gemFe/MW2 . This part of the
propagator corresponds to the longitﬁdinal degree of freedom of the
vector mesons. These degrees of freedom are precisely those given by
wy and z in (2.15) so that the effective lagrangian yields the
correct amplitudes in the 1limit sz >> Mw2 . The gp.v plece of the

full propagator gives a contribution to the amplitude which is constant
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in the limit s = o, and this contribution is not given by (2.15).

However it is not proportional to mF2 and 1s therefore negligible.

III. 1OW ENERGY EFFECTS

In this section we search for low energy manifestations of
ultra heavy fermions. A similar search in the case of ultra heavy Higgs
particles produced no mterestiﬁg physical resultsh). We need
renormalization effects which produce corrections to tree graphs of the
form

' gemFe
A = Apree |1 6(’@?)

where A 1is some physical amplitude and is its walue at tree

Atree
level. Since for ultra heavy fermions (of mass scales given in the
previous section) ng/MW can be of order one, such effects should e

observable. Effects proportional to g2 log my of the form

fe e o (D)

would be too small to detect in presently feasible experiments, as

would effects which first appear in two loops,

i v 2 o b2, 2
A = Atreell » 06 + Ue'n/w, )] :
In order to generate an effect proportional to mF2 from a
loop containing a heavy fermion, we need either Higgs-fermion vertices,

which are proportional to gnF/Mw or a quadratically divergent loop

integral. Consider the self-energy of the vector mesons W and 2,

-22
2 ae ' -1
nw(P) = = ‘;‘E‘F 3 _(;;E Tr [7”(0‘, - A75)(}ﬁ - mi.)

x 7 (Cy - O )@ + ¥ - mj)-l]

where for W

Cy = G = M
and for 2

2
Cy = MZ(-T3 + 2Q sin ew)
C, = -TBMZ .

In the Z case there are two graphs corresponding to i = J = 1,2,

and for the W there is only one graph with i =1, Jj = 2. T3 is

the weak isospin of the left-handed part of the fermion in the loop,
and Q is its charge in units of the proton charge. t 1is a color
factor; it has the value one for leptons and three for quarks. In
order to obtain a factor of sz one must look at the q_uadratic
divergence from the integral.

We evaluate the integral by dimensional regularizationg)

replacing dhk by a%k and subtracting the pole at n = 4. We

stipalate that (7", 75) =0 forall 7" in n dimensions. This
prescription ensures that all relevent Ward identities are satisfied

without the addition of extra counter termslo). Then, defining

n

“éﬂ'z(” g"’ N,z

we get
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=
m(:m
,I_Fm i

&
/E\
\ tmlvﬁm
N—r

+
“’Bm

'—l

R
N
tm‘ms
~—

and
2

2
ig 2 2 m,
HZ = - ——2——?— Z mi log _2— . (3'1)
32 cos Gw M

i=1

1 1is an arbitrary regularization parameter with the dimension of mass.
Tt must cancel out from all physical predictions. This self energy

contributes to the mass renormalization of the W and Z
I
W, 7%
= 1 -1 == . .2
%, = 0f ) & 7 ) (3.2)
yZ

Here and in the following, quantities with a subscript zero are
unrenormalized. There is a wave function renormalization of the W or
Z from this graph which is of the form
d B 2
—_ 1

u P)

d.p2

=

P =0

Tt involves only a logarithmic divergence in the integral over k and
is therefore proportional to g2 log sz so we shall not comnsider it
further. We can use (3.1) and (3.2) to calculate the one loop

corrections to the formula MW/MZ = cos @,

2
sz =1+§—-——GF—2
M, cos” 6 - 8\[2—11
Mo 2 2
m m
x[m12-m2210g< 2\} +m:L +m2 .

(3.3)
Notice that p has cancelled out. There is no rencrmalization of
cos QW to order mF2 ga ; 1its renormalization, produced by the wave
function renormalization of W amd Z , 1is of order 5‘2 log mFa.l
Notice that when m, =m,, MW/MZcos ew = 1 1is not renormalized. TFor
a lepton of mass m 1in a doublet with a massless neutrino we have

G 2

N
sz = Mzecoseewl +W2_>

Using a compendium of all existing datas, Sehgalle) has concluded that
MWQ
—— = +
=3 5 0.98 * 0.05.
MZ cos QW

From this we can conclude that_ m < 500 GeV, 1i.e., there camnot exist
a heavy lepton (with massless neutrino partner) of mass greater than
500 GeV.

A1l other graphs which produce terms of order g.emF2 involve

Higgs particles. The Higgs particle self energy is

. 2 gam.e dhk, L )
]'[H(P) = = Z th; 3 (—2;—)1: Tr[(x-mi) (,}(-.i-ﬂ-mi) }

i=1

We compute
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and

1
"

1(0) 1,6%)

5°=0
To one loop the Higgs particle propagator becomes, when p2 -~ 0,

1@ +1i Ill'i(o)) :

- Mg + 1 T(0)

so the renormelized Higgs particle mass is

2 m2
Z miu(j 104%) s2). ()
i=1

A1l other one loop graphs producing terms proportional to

g2 sz can be obtained by attaching an arbitrary number of external
Higgs particle legs to the fermion loops in the Higgs or vector boson
self energies. We gain one power of o due to the coupling and lose
one power since the loop becomes more convergent.

The HWW and HZZ proper vertices receive contributions

I‘BZé'(p; =p, =0) = 32,; — ewa z m12_<1og<;;> N '1>

2 2 2
ig ‘ o 2(5 N m .
N~ é m 04— )+ ‘
48+ MW i p.2
i=1

26
r™(p =p,=0) =
_15 2 2
= 28 212m2210g ) z ; + 1"
e My Lmy - m

i=1,2

Using the result above we now calculate the large renormalizations of

the Higgs coupling to light fermions and gauge bosons. Consider the

coupling of the Higgs particle to a light fermion f . At tree level

it is } .
(kﬂff) = g m/am, -
At one loop
e = 52 (10 gl + B0
cemel L G [ mom 108(%2>+7( 2,02
on, vz 2 m12' 2 ;;é‘ g thy

Also the couplings of the Higgs particle to vector bosons become

]'&4

- I _'-‘_-'
}‘wa'sMwl’fing 2Mw + 5 Tg(0)
6 | mimt m >
My = 8 Myt §8'\/2_112 mle_m22 1°g(m22)+6(m1 + o)
G
_ 8 l'gaé'f (m12+m22)

cos Gw
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Notice that the effect of the uwltra heavy fermions is to
decrease the coupling of the Higgs particle to wvector bosons and to
increase its coupling to light fermions. For quarks of equal ﬁass
whi¢h saturate the bound (2.13) the effect is of order 50% in )‘fmw
and 25% in )‘Hff - For a lepton with a massless neutrino éatura.ting
the boﬁnd of Section ITe, the effect is of order 25% in )\iww and 20%
in }\gﬁ, Of course if fermions of larger masses eiist then we will .
have no guide as to the values of these couplings due to the breakdown
of perturbation theory. .

There will also be large corrections to the three and four

point Higgs particle self-couplings. These will be of the form
2 h, 2.2
g mp Mg, .
e MH is not ultra heavy then the corrections are so large that
perturbation theory is meaningless for them.

For two fermion doublets mixed by a Cabbibo angle ec as in

(2.8) we have the following results

2 2 2 2
My Cp oy O ™
MZ2coszew—l+§8\/En22cos emle_mezlc’g<m12)
+ (nL_L2 +m22)}
= iili i'-l + & —-——GF cos2 e ml2 m22‘ log( mi-e)
ey [ e fmem \m”
+ 7w

28~
’ 2 2 2
3 T - W~ el
Moy =€ My |t 58.‘/5-“2 o ecm_le_m22 1°g(m22)
+%<m12+m22)}

IV. GENERALIZATION OF THE STANDARD MODEL

In the computations of Sections IT and ITI we worked within the

context of the standard SU(2) x U(1) model with one Higgs doublet.

We could vary the model by changing the gauge group or the represehta-
tion content of the fermions and Higgs bosons. This would change our
results quantitatively but not qualitatively, and in most models simplé
enough to merit consideration the quantitative changes would be less
than an order of magnitude. The central feature is quite model
independent: +the Ward identities necessary for renormslizability
guarantee that wltra heavy fermions must couple strongly to the
longitudinally polarized gauge bosons and to the Higgs boson systems.
The quantitative details depend on Clebsch~Gordan coefficients deter-
mined by the group and representation content of the model.

We do not propose to consider a laundry list of all possible
models. Rather we will give attention to the experimentally least
motivated feature of the standard model, which is the Higgs sector.

So we continue to assume the sU(2) x U(L) gauge group vith fermions

in right-handed singlets and left-handed doublets, but we will allow

‘!\

[l
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for any Higgs sector which is consistent with the present experimental
results. The generalization of the low energy corrections computed in
Section III is straightforward and in particular the correction to

MW = MZ cos Qw is not affected at all. Here we will discuss explj.citly
the generalization of the determination of the critical maés values
from partial wave unitarity in Section IT.

The important experimental result which we use is the
observation that the relation Mw = MZ cos SW is well satisfied in
charged and neutral current neutrino scatteringm). This means that
the W and Z Dosons receive their masses primarily from Higgs
doublets. So we shall imagine n Higgs doublets Zfi, i=1°"°,n,
each W'it;h a real neutral component ¢i’ which acquires a vacuum
expectation value v, = { ¢1 )O' Then the W boson mass is

n

2 102 2
My s Z"i

]

(4.1)

]
=
(03

where ; .= (vl, rer, V n) is an n-dimensional vector that is real up
to possible CP violating phases which are completely negligible for
our purposes. ' A

Next consider the spin zero bosons which can couple to the

fermions. Here too only isodoublet representetions are relevant:

since \IJL\lrL = _\IIR\IIR = erva = .‘J/R75\VR = 0 and since we take V¥ to
have I = % and \lfR to have I =0, +the only spin zero bosons which

can couple to the fermions are isodoubléts: ' The interaction is Just
the obvious generalization of the standard model, given explicitly in

Appendix C, eg. (C.1). In particuls:r the real neutral components d)i

-30-~
couple to a fermion doublet (Fl, Fg) by

n

Z Ny (g Vo + Voo Vb (h.2)

a=1,2 i=l

so that the fermion masses are

mo= v )‘ai = Vv . }‘a.
- ->
= |v] - b"al cos 8, . (4.3)

where _):a is also a real n-dimensional vector making an angle ea
with respect to ;; . -

Finally we must compute and diagonalize the J = 0 coupled
channel matrix for this model. Using the effective Lagrangian of
Section IIId, we see that the amplitudes are trivial generalizations

of our previous results. In place of the four fields h, w 2

eq. (2.15) we now have kn such fields with analogous couplings. The

z in

details are presented in Appencix C; here we simply state the results.
We assume that all Cabbibo angles are zero. Then for leptons

the eigenvalues of the J = 0 matrix are

la._| r —-———mae (b.b)
a = . .
[} 2 :

v Wz % cos Ga

Comparing with eq. (2.6) we see that the critical mass value is

decreased by the factor c:OS2 Oa. " For quarks we find
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2 ' 2
Ia l _ % 3 ! ,
o 2 2
max
8v2 « cos 91 cos” 6,
- - — -
2 2
m m, 16 m12m2 cos A
¥ 2 0052 ) i cos 6, * co ° L) cos2 8,
1 2 5 5% 2
(k.5)
- -
vhere 8., 1is the angle between 7‘1 end A, - For 61_2 =0,

eq. (4.5) is greater or equal to the standard model result

(el =6,=0,-= 0) givén in eg. (2.12) but in general it may be
larger or smaller. However even in the worst case, 912 =X , the
maximum eigenvalue is
3G m 2
|a°| = F — (4.6)
max hvgn cos 8

a
max

so that the critical quark mass is less than or equal to

2

sets in for arbitrarily smell fermion masses. (The phenomenological
13)

700(cos ea)mi GeV. As 61 or 8, approach :1:/2 strong coupling
n

implications of this limit have been explored by Haber and Kane

in the two Higgs doublet model.)

V. CONCLUSION
We have considered the interactions and low energy renormeliza-
tion effects of fermions much heavier than the W and Z bosons in
the standard SU(2) x U(l) model of the weak interactions. 3By

considering the scattering of such ultra heavy fermions we were able
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to compute the critical mass values above which they become strongly
interacting and the perturbation expansion fails. The values are of
order 500 GeV/ \/N for quarks and 1000 GeV/ VN for leptons, where

N 1is the number of nearly degenerate doublets. Because, as we

(o)

emphasized in the introduction to Section II, these critical mass

estimates are conservatively large, and especially if N 2 3, it is

LY

possible that manifestations of such "strong weak interactions” could
be seen at the coming generation of pp and pp colliding beam
facilities. It is not inconceivable that strongly bound states of
ultra heavy quarks could be observed with the weak interactions
providing the binding force. In general the short distance dynamics
of such quarks could be oxymoronic: while their weak interactic;'ms
would be strong, their strong interactions would become weak due to
asymptotic freedom if there are noﬁ too many quark flavors. Ultra
heavy leptons would also form strongly bound states, but these could
probably only be observed in e+e' collisions at the presently
uninagi;zable TeV energy scale.

We have found large low energy renormalization effects which
would change some of the predictions of the Weinberg-Salam model. The
effect of most immediate interest is the correction to MW = Mzcos QW. »
obtained also by Veltma.ns). Using a compendiumlz) of data on charged
and neutral current scattering, this ené.bles us to put an upper limit ™~
of ~ 500 GeV on the mass of a heavy lepton in a doublet with a ‘
massless neutrino. If there were a deep reason for the masslessness
of the electron and muon neutrinos which would apply to all lepton
flavors, ﬁhen this bound would be very compelling.  If in addition new

quarks and leptons have masses of the same order of magnitude, as seems
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t0 be true experimentally and is predicted in some super-unified

modelslb')

of strong and weak interactions, then ouwr bound would also
imply a bound of the same order of magnitude on the quark mass
spectrum. Though highly conjectural, this is the only clue we now
have to an upper limit on thei 1éﬁﬁon and quark mass spectr{nn.

A1l the other large low energy renormaiization effects involve
Higgs mesons. In Section III we have catalogued all the amplitudes
and Green's functions which get large one-loop corrections. We have
explicitly computed the corrections to the predicted values of three
physical quantities: the coupling conbstant of the Higgs boson to the
W and Z %bosons and the light fermions. The effect is to decrease
the W and Z couplings and to increase the fermion couplings.
Unlike the correction to MW = MZ cos ew, these corrections do not
vanish if the ultra heavy fermion doublet is degenerate. If ultra
heavy fermions exist, these corrections would make standard predictions
for the production and decay of the Higgs particle unreliable.

We argued in Section IV that the essential qualitative features
of our results are more general than the standard SU(2) x U(L) model
assumed in Sections II and III. Because of the chiral Ward identities
which must be satisfied by any broken gauge theory (except vector-like
theories) in order 't;o be renormalizable, ultra heavy fermions must
quite generally be strongly coupled. This is even true if the gauge
symnetry is broken dynamically and there are no elementary Higgs fields

3
in the Iagrangian.

We thank Ken Iene for an interesting discussion of this point.
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APPENDIX A

The hellcity spinors are defined by

EI;IS M@y < x ™M@, % M@y - v @)
P P

where -7:‘ denotes the spin operator, A =1 1 indicates Helicity t

nof

for both particle and antiparticle, and 5 is the momentum of either.
As we explained in the text, we ignore photon exchange graphs and the
g“v-piece in the wt and Z propagators.

Defining A, N and A', N' to be the helicities of the
incoming and outgoing fermion and anti-fermion respectively
we obtain, in the center-;of-mass frame, the following contributions

to the helicity amplitudes for elastic scattering Fifi - FiFi:
s-channel H-exchange
'S
2 1
YA Gp my —-—-2-s T vy Sx,x %,x'

t-channel H-exchange

L 8 )
Nyl @ sinz M8y ar - Wy COS3F 5x,w>

My

: 2
~4rf2 Gp m;

_'V2 GF mi -————2 Sh,x SK',X'
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t-channel Z-exchange

vz 2 7° s1a® g
Waen® —5=2s_ 5 .

t - M, Ny =N

For the quantum number exchange scattering Flfl HFQFQ we

obtain:

s-channel H-exchange

. -2
2
VRS T AT B

s-channel Z-exchange

FXe S 8 8
CVE Gp B, 5 O,% OrL,n

s -

t~-channel W-exchange

2\/2_(:- ; E sin g 1+ x)ml + Q- )\)me)s)\’ 2

i 'Mwa‘
e $ a7 B -
x Qﬂ sing ((1 - 7\)111:L + (1 + T.)me)s__ -,
% X
1 ® w?-n2)@a+7%)s .
+2cose(m1 m2)( + )X',X'_

Here s and t are the usual Mandelstam variables, G, is Fermi's

F
cons‘I:ant, related to MW and the gauge coupling constent g by
. . o
. "
<~ B 2
v 2 8 MW

"and © 1is the center-of-mass scatﬁering axigle.

ol

-
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In the 1imit s >> mig the amplitudes simplify considerably, ‘ PE
and the nonvanishing contributions from each graph are:

PO .
F F = -VEepmm
FiFi-’FiFi L
s-channel H
4 o+ o w2 b o
= e m, =
- - = -_> : F = + EGFm1m2
j -~ o+
s~channel H E
' + 4+ > - - o : .
_+~‘{2GFmi r 1 o o4 :
-- > o+
- - - - -
s-channel Z = A2 Gp mym,
) 4+ > om -
- : 2 :
. }A-+ 2 Gp m e s o4+ a
- - + o+
t~-channel H
+- -+ -+
2 +4+ > -
==-y2G, m \(
= -2¥2 G
-+-’+-} Fi ___,++} e
{t-channel W '
2
b e+ = .2\/5<}le
++ > 4+
) 2
- - - . o -+ > + - —-QVEGFma.
s-channel Z $ =-32 Gp my
A .- Adding up all graphs, the final result for the nonvanishing amplitudes
-- T A for leptons or quarks in the color-diagonal chennels RR = RR,*-, are
FeFy »F4Fy
+4 > - -
+4+ o+
-- > 4 _
2 - - .- 2
t-channel Z $=- 2G, m = 2Y2 G, m
e o s V2 Gpmy . e s F o
-4 > -
-t >+~
FlFl(—-)FgF2
+- =+ -+ = 2yze.n’
FM

2
-+ o+ = «2 2GFm2.
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In the color-changing channels RR - BB, ---,

amplitudes are
FyFy

+ +

- FFy

> o+ o+

2
=232 GF mi

2y2 6y mym, -

the nonvanishing
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APPENDIX B
We shall compute the amplitudes for the processes

F Fi -WW", 72, BH and ZH, where the vector bosons are longitu-

i
dinally polarized in all cases. We first compute in detail the process
F2-F-"2 - Wt in the (MS. The gscattering angle © is defined between

the outgoing W  and the incoming F,. The couplings of the Z

et

boson to the fermions has the general form

= .NEZ— F B =
o‘él = 3 \Ne 6 FyoMog+c 7P 2, 1=102

where
C.. = (hqsin® o, -2T,)
Vi W 3’1 N
Cpy = (2 Ts) N

and Q 1is the electric charge of Fi in units of the proton charge,

and T3 is the z-component of the weak isospin of the left-handed

doublet (T3 =+1/2 or -1/2 for F, or F,, respectively). We
compute the T-matrix elements Tﬁ(s,e) where A and N denote the
helicities of F and ¥, respectively.
We obtain the following nonvanishing contributions from each
graph for Fefz vt
s-channel photon

o 2
+ln/2_GFm2stin26W'\/;coseﬁw <l+ SMW )

=3
]
1
=]
]

=}
]
=]
[}

8

2 2Mw2 ' !
» . +2VEGFQ251n 8, s sin 0 B <1+ >
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s~-channel H
. 2'
s\/s 2Mw
T Y
s - My
s-channel Z
— sVs-cose 2MW2>
= - = -\2¢ c B [1+
- F T Yy S'MZz W< s
2 2
1 s sin © EMW
= -§V-2—GF(CVE+CA2 ﬁ) T-——e 6w 1+ -
2 2MW2
1 s sin ©
= -33/2e,(c, -C s)—-——s<1+ )
2\["F v 'AD S_MZQ W . s
t-channelFl
= o = +Ve ey mEQ + cos 0)By
2
2 G sVs bhm!
-..V___FEQ_E__V_- -ﬁw(1+cos 6)((B-Bw)2+ ml)
h(t-ml) s
2
L
+ i (Bw cos & - B cos 20)
s
\/EGszassine 2 2
= + 5 (ﬁﬁw+ﬁcose- By
@+ )t - m°) s
- +3 2 Gy 5 sin 0 By(1 +B)

2 G sin © :
'v———;F—_;an" {'meeﬁw+%5w(1+5)(m22'm12+2Mw2)

-8(1 + B)Mw2 cos 6]

oo

We have defined p and Bw to be the velocities of the

fermions and W's, respectively. When one adds up all the graphs, all

the pieces that grow with s or \[ s cancel, as required by renor-

malizability. The amplitude for FlFl - is obtained from the

above one by replacing my —m, and Q’E’ CV2’ CA2 -’Ql, CVJ.’ CAl'
For the amplitude Fiiii -+ 72Z we simplify the calculation by

neglecting all pieces proportional to GFMZ2 . Then for i =1 or 2,

we get:

s~-channel H

_ N
T, =T _ = -\fec-Fmia —_—

s - My
t~-channel Fi + u-channel Fi
~ hmig cos2 8 ™
T++=-T__=+2GFmi\,sﬁ 1-S X i;mz
2 1 2
sin” © + cos @

sin 8 cos ©

2
b
sin2 0 + i cos2 e

2 .
T+_ = T_+ = -21’2 GF m, B

For F:LF:L =+ HH +the exact answers are:

s~-channel H

CVE

| g
Tﬂ=-T--= +BVEGF miﬁ ;————2
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t-channel Fi + u~-channel F

i
3
-lnlz— GF m, B - cos 8
T, =-T = — + (cos @ - -cos 6)
- ‘\/; 2 l""i T
1 +pf ~2B cos © +
T-+
T = T =+2y2G,m° ein @
- e PP 8
1l
x = - {cos @ = -cos @}.
2 o T
+B =~ 2B cos © +
s
T-+
Finally, for FiF_i - ZH, neglecting again terms proportionmal
to MZE, we find:
s-channel 7
T+_

=}
1]
]
I

=T = -2 Gpmy Cus
t-channel Fi + u=-channel Fi

, 2m12 1 1 T
=T = Veceym ¢ VL - +

s 1l -fcos® 1+8PB cos €

3
1}
=]
]

1 1

; > :
T, = T ='V2G m, C,. B sin © + . T
= -t P 1-p cos © 1+8 cos © +-

In the limit s >> mi2 >> sz the amplitudes simplify

considerably, and the only nonvanishing amplitudes left over are:

-hho

b
<.

R

[®]
L]

=]
.,

8
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@

b

=
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mE n

8
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o

o] ©
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2
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APPENDIX C
In this Appendix we derive the results which were stated in
Section IV. As explained there, we comsider the SU(2) x U(1) gauge
theory with fermions in left-handed doublets and right-hand sipglets
and with an arbitrary number of Higgs doublets, 61’ ce. ,§nA . We will
compute the J = O coupled channel matrix for a fermion douﬁlet

(Fl-, FE) in the annihilation channels Fai"a HFbe 5 8 =12, in

the limit s > m,m, >> MM, and s >> all physical Higgs
boson masses.
Bach Higgs doublet §i has four components. Three of the In

components are “swallowed" by the gauge bosons and the remaining

bn - 3 components survive as physical particles. As remarked in the
discussion of the effective lagrangian, Section IId, it is precisely
the three "swallowed" Higgs bosons which are responsible for the
" contribution of the gauge boswons in the limit of interest. In the
effective lagrangian we work in the 't Hooft-Feynman gauge, which
amounts to computing as if the three unphysical Higgs bosons were not
swallowed. We follow that approach now, so‘that the effective
Iagrangian becomes & sum of n ‘terms, each like eq. (2.15). We can .
easily use this generalized effective lLagrangian to compute to leading

2

order in GF oo, without bothering to isolate the three unphysical

Higgs bosons.

bb
it is sufficient to give the boson-fermion interaction in the gen-

Since we are only computing Faﬁa «—FF  in tree approximation,

eralized effective lagrangian:

L6~

A o w = . = .
oheq = 3 by 0y FyFy + 0y FEFE)_ -z (N T v Ty - Ny By 75D

+ \E- Ly ﬁ1("11 =Ny - (gt "21)75>F2

- VAW By - hy + Oy 51)75)F1 .
N (c.1)

+
Here hi’ zi, and w_:L are the components of Ql s defined by

nje- WI

vi+hi-izi .

1
B - =

It is now very easy to generalize the s and %t channel
exchange -diagrams compiled in Appendix A: d1n place of each diagram we

get the sum of n terms with gma/EMw replaced by )‘a We will

E
neglect possible Cabbibo angles. Adding all the diagrams we find that
the lepton coupled chammnel matrix is already dilagonal because of the

same cancellations that occurred in Section II:

/ 2
/ ﬂﬁe_ 0 0 o]
{ cos el m22
! 0 0 o]

- G i 2

F cos 6,
ao = *‘ 2 2

2 x ! |
\ 0 0 > 0
\\ cos 61 2
Vo0 0 o mg



4.

The rows and columns are labeled in the order F. F F. F F

1414 ooy
- -
F2_F2_. Where v =

-
(vi) and A = ()\.ai) are real n dimensional

vectors, as discussed in Section IV, we have used the relations

ng = -]f;gz? (h.l)
m, = Ka,' v (%.3)

lxl'l-w;l'coe
a (€08 S ¢

For the quark matrix we again find the same structure as we

found in Section II for the standard model. We display only the color
neutral channels since they contain the maximum eigenvalue. Where the
rows and columns are labeled by the color channels Rﬁ,

Bf, and YV,
the J =0 matrix is

\\ B ;.

’ (c.3)

= w
W W
o

w
=

A and B are 4 X 4 matrices labeled just like the lepton matrix

(C.2). A 4is given by precisely the same expression as (C.2) and B

is given by o
/ N\
e 0 ) x N
/™2 A\
! cos Gl
2 \
0 m22 X 0 “
-G cos” @ !
2
B = ] nng
hye =
0 x —_ 0 ;
cos 91 i
\ n?
\ X 0 0
cos 6,/

1-F1-’

-h8.

where

. mlm2 cos 912

cos el cos 62

Py

cos 8. = _i._)_\z._,
Rl Ryl

To diagonalize (C.3) we first diagonalize the color degrees of

freedom. Since the matrix

/0 1 1
'l 0 1
1 1 o/

/

has eigenvalues (2, -1, -1), after a unitarity transformation of the

color degrees of freedom (C.3) becomes

’
s

/A+2]3 0 0\\
\ 0 A-B o |
J
. 0 0 A-Bf . (c.5)
\ v

The meximal eigenvalue is found in A + 2B, which can be put in 2 x 2

block diagonal form by a unitarity matrix which interchanges

2+ 24 22" -
C 0
uf(a + 28U =
0 c
where

KL



/ 3m12
N ] cos2 e,
C = - F
Ltvg £
-2x

(c.7)
2

Diagonalizing the matrix C we obtain the maximal eigenvalue quoted in

eq. (k.5).

1)

2)

3)

k)

6)
)
8)
9)

10)

11)

13)
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