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Introduction 

The random vortex method as described in Chorin (1973), is 

intended for the approximation of flows·at high Reynolds number R. 

Its main features are as follows: (i) the nonlinear terms in the 

Navier-Stokes equation are taken into account by a detailed analysis 

of the inviscid interactions between vortices of small but finite core 

("vortex blobs"), (1i) viscous diffusion is taken into account by adding 

to the motion of the vortices a small random gaussian component of appro-

priate variance, and (3) no-slip boundary conditions are approximated by 

a vorticity creation algorithm. Fuller details are given below. Develop-

ments, modifications, and applications 9f the method can be found e.g. in 

Ashurst (1977), Chorin (1978a, 1978b), Leonard (1975, 1977), McCracken and 

Peskin (1978), Shestakov (1975). Theoretical analysis can be found in 

Hald (1978), Hald and del Prete (1978), and Chorin et al (1977). 

This grid-free method is suitable for the analysis of flow at high 

Reynolds number because it has no obvious intrinsic source of diffusion. 

Most approximation methods solve equations which are close to the equations 

one wants to solve; the difference consists of higher order terms 

multiplied by small parameters. This is also the form of the diffusion 

term, and as a result, in most methods, the effects of a small R-l are 

dominated by numerical effects and the physics of high Reynolds number 

flow are suppressed. In vortex methods, the misrepresentation of the 

higher harmonics which occurs in the usual discretization methods (which 

usually has a diffusive effect among other effects) is replaced by the 

misrepresentation of the interaction of neighboring vortices (an essentially 

inviscid phenomenon which is a source of error, but not of diffusive error). 
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In the absence of the nonlinear terms, the diffusion is approximated'on 

the average exactly. Thus one may hope that the results of the calculation 

approximate the flow at whatever Reynolds number was intended, albeit 

with a statistical error, rather than at some other lower Reynolds number 

intrinsic to the algorithm. A good guess at the solution of the problem 

one wants to solve is better than an unambiguous solution of the wrong 

problem. 

The method produces a flow field which is random. The error in the 

calculation is the sum of two parts: theexpect~d value of the computed 

solution differs from the true solution, and any realization of the computed 

solution (or more accurately, any functional thereof) differs from the 

expected value bya random amount which can be estimated by its standard 

deviation (see e.g., Lamperti, 1966). The expressions for these quaritities 

will be given below, when the appropriate notation will be available. 

In the present paper we apply random vortex methods to the analysis 

of the boundary layer over a flat plate in two and three space dimensions. 

The calculations have two main objects. In the two dimensional case 

we shall show that the vortex method exhibits a phySical instability 

at an appropriate Reynolds number. The ability to do so is of course 

a basic requirement for any method which claims to have some use at 

high Reynolds number. The specific problem we apply our method to has' 
~ ,. 

a simplifying feature, inasmuch as the location_of the sharp gradients 

is known in advance to be near the wall, and thus the equations of motion 

can be solved in two dimension by finite difference or other non-

statistical methods in appropriately scaled variables. The interesting 

fact about our calculation is that it does not require such preliminary 
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scaling of the variables, i.e., the random walk can be relied upon to 

create the appropriate diffusive length. scale. 

The· second main goal of our calculation is to use the method to 

'. investigate the much harder problem of boundary layer instability in 

three dimensions, and in particular, two of the striking features of 

its solution: The formation of streamwise vortices and the creation of 

active spots. The three dimensional calculation requires a generalization 

of our method, and both the two dimensional and three dimensional problems 

afford the opportunity to use an improved algorithm for imposing the 

boundary conditions accurately. 

In the next four sections we present the calculation in two 

dimensions. In later sections we present the three dimensional calcu-

lations • 

. . .., 

._. 
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The Physical Problem in Two Dimensions 

Consider a semi-infinite flat plate placed on the positive half-axis, 

with an incompressible fluid of density 1 occupying the half space 

y ~ O. At time t < 0 the fluid is at rest. At t = 0, the fluid is 

impulsively set into motion with velocity U~. The resulting flow is 

assumed to be symmetrical about the x axis. The flow is described 

by the Navier-Stokes equations, 

(la) 

A~ = -t , (lb) 

u = -3 ~ v = a~ y , x ' (lc) 

where u = (u,v) is the velocity vector, ~ = (x,y) is the position vector, 

t is the vorticity, ~ is the stream function, A = V2 is the Laplace 

operator, and R is the Reynolds number, ,R = U~L/", where L is a length 

scale typical of .the flow. The boundary conditions are 

u = (U~,O) at y = ~ t > 0, (ld) , 

u = v = 0 for y = O,x > 0, (Ie) 

.b 
3y = 0 for y = 0, x < 0 . (If) 

Initially, ~ = (U~,O) everywhere. 

If R is large, the Prandtl boundary layer equations should 

provide a reasonable description of the flow near the plate and 

away from the leading edge. These equations can be written in the 

form [Schlichting (1960), Chorin (1978 a,b)], 

, ..... 

-. 
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(2a) 

t = -3 u . Y , (2b) 

(2c) 

where t, u, v, x, y have the same meaning as in equations (1), and \I 

is the viscosity. If U"" = 1 and L =1, R = \1-1. The boundary conditions 

for equations (2) are: u = U ... for y = ... , u = 0 for y = O. Equations 

(2) have a stationary solution, the Blasius solution, which is a function 

of the similarity variable u = y/I.KV. Let the displacement thickness 

6 be defined by 

the corresponding Reynolds number is R6 = U ... 6/\I. In Blasius flow, 

6 = 1.72 FiX, and R6 = 1. 72 1i:'{'V, where it is assumed that U ... = 1. 

6 and Ro are increasing functions of x. For R6 ~ R6c the Blasius 

solution is unstable to infinitesimal perturbations which satisfy 

equations (1) (see Lin (1966». R6c = 520, (See Jordinson (1970». 

These unstable modes are the Tollmien-Schlichting waves. The vortex 

interpretation of the waves is as follows: The boundary layer is a 

region of distributed vorticity imbedded in a shear flow. Vorticity 

imbedded in a shear tends to become organized into c'oherent macroscopic 

structures ("negative temperature states", "local equilibria", see Onsager 

(1949), Chorin (1976». This tendency is counteracted by the diffusive 

effects. The latter become weaker as x increases, since the vorticity 

gradients decrease as the layer spreads. Far enough downstream (i.e., 

for R6 large enough), the tendency towards coherence can overcome 
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the diffusive effects; the Tollmien-Schlichting waves can be viewed 

as a weak train of organized vortex structures. 

The value of R6c given above has to be lowered if the unperturbed 

flow is treated as a non-parallel flow and if edge effects are taken 

into account (Townsend (1958)). More importantly, the boundary layer 

is unstable to perturbations of a finite amplitude for values of R6 

smaller than R6c (for analysis of similar situations, see Eckhaus 

(1965), Meksyn and Stuart (1951). A survey of finite amplitude stability 

theory for the flat plate problem is given in Roshotko (1976)). The 

boundary layer becomes more unstable if the outside flow is turbulent 

or contains vortical structures (see Schlichting (1960), RogIer and 

Reshotko (1975)). Since our calculation will by its very nature contain 

finite amplitude perturbations, vortices, a substantial amount of noise, 

and edge effects, the appropriate value of R6 which separates stable 

from unstable regimes is unclear. Presumably, there exists a value R6c 

such that for R6 ~ R6c all perturbations decay; the best guess of 

R6c I can obtain by looking at the references above is R6c = 300, 

with a substantial margin of error. Cebeci and Smith (1974) suggest a 

value R! = 320. . uc 

For R6 ~ R6c ' the perturbations can grow, but I found little 

information as to what they do in two dimension; presumably they grow 

and reach some finite amplitude equilibrium; this is the typical situation 

in other two-dimensional stability problems, for example in the thermal 

convection problem (see e.g. Chorin (1967)). ,All experimental studies 

I know deal with the more important and more realistic three dimensional 

problem which will be discussed further below. 
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The Numerical Methods in Two Dimensions 

Consider first the Navier-Stokes equations (1) in the whole plane. 

Assume that t = 1:5 j' where the t i are functions of small support 
J 

(t i is a: "blob"). Let, = 1:, j' where AljI j = t j. (If we had 

t j = It: j 15 (~ - Xj)' It: j = constant, we would have concluded that 
K 

'j = rllogl x - x jl .) For t j smooth but of small support, let 

It: j :: It j dxdy, and we must have 

lim 
Ixl -+-ao 1... log Ix-x I 2 'IT . j 

5. 
For IX-~jl small, 'j differs from 2'IT log IX-~jl (or else it would introduce 

undesirable unbounded velocities, see Chorin (1973), Rald (1978». We set 

K 

..J.. log 
2'IT Ix-~I, I~I ~ a (3a) 

ljij (x) = 5. Ixl 
-+ constant, Ixl < a • (3b) 

2'IT a 

This is the form introduced in Chorin (1973); it differs from the forms 

described in RaId (1978) for reasons which will become apparent below. 

Clearly tj = -A'j' is of small support. a is a cut-off which remains 

to be determined • 

Equations (1) state that the vorticity moves with the velocity 

field which it induces, i.e., let ~j = (Uj,Vj) be the velocity field 

induced by the j-th blob, and let -~i = (xi'Yi) be the center of the 

i-th blob. Then 

d4 J. 
Cit = j'T1~ , (~j evaluated at r i ). 
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This equation can be approximated by 

(4) 

where k is a time step and Ein = Ei(nk). Hald (1978) has shown that 

a higher order method is indeed more accurate but we shall use (4) 

for the sake of simplicity~ 

The hea.t equation is well known to be solvable by a random walk 

algorithm (see Chorin (1973». As a result equations (1) can be 

solved by moving the blobs according to the law 

(5) 

where n = (nl,n2)' nl' n2 independent gaussian random variables 

with mean 0 and variance 2k/R. 

Suppose we wish to solve equations (1) in a domain D with 

boundary aD. The normal boundary condition u·n = 0 on aD, ~ normal 

to aD, can be readily taken into account by solving A, = -t subject 

to the appropriate boundary condition, with the help of potential theory .. 

In the case of flow over a flat plate, the method of images will do the 

job. The no~slip boundary condition u·s = 0, ~ tangent to aD can be 

imposed through the creation of the appropriate amount of vorticity: 

Let uo be the velocity component tangent to the wall created by the. 

algorithm as described so far, and suppose uo ~ O. The no-slip condi

tion and the viscosity will create a boundary layer in which the total 

vorticity 'per unit length is 

-. 

-;: 
J \ 
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In the algorithm presented in Chorin (1973), we reproduced 

this effect numerically by creating a vortex sheet of strength uo 

at the wall, dividing its vorticity among blobs, and allowing ,these 

blobs to participate in the subsequent motion of the blobs according 

to the laws (5). If a blob is created at every piece of boundary 

of length h, its intensity is 

(6) 

If a blob inside the fluid happens to cross the boundary, it is 

. removed. It should be apparent that the amount of vorticity created 

at each time step depends on the cut-off a. If a is small. the 

backwash of the vortex may be large. and a vortex whose center is 

near the boundary will create a vortex whose intensity will have an 

oppo.site sign, etc. If a is large. the backwash of a newly created 
, 

vortex may not be sufficient to annihilate uo ' and more vortices will 

be created, all of the same sign. Presumably, on the average the total 

amount of vorticity is independent of a. The algorithm in this form 

is not accurate (see Chorin et al (1977». ·This ambiguity as well 

as the desire to reduce the amount of computational labor have led to 

the formulation of the vortex sheet algorithm which solves the boundary 

layer equations (2). (Chorin, 1978a). The computational elements are 

segments of a vortex sheet. Let u be the velocity component parallel 

to the wall. A segment S of a vortex sheet is a segment of a straight 

line, of length h, parallel to the wall, such that u above S differs 
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from u below S by an amount t. ("above" means "further from the 

wall"), uabove - ubelow = t. t is the intensity of the sheet. 

Consider a collection of N segments Si"with intensities 

t i , i=l, •••• ,N. Let the center of Si be ~i=(xi,Yi). To describe 

their motion, one begins with equations (2b) and (2c). Equation (2b) 

can be integrated in the form 

u(x,y) = u ... - f; t(~, fl)dfl (7a) 

where U ... is the velocity at infinity seen by the layer. Equation (2c) 

yields 

v(x,y) = -a fYu(x, fl)dfl . x 0 
(7b) 

Equations (7a) and (7b) allow one to determine u,v if t ... t(x,y)is 

given. One can visualize each sheet as casting.a shadow between 

itself and the wall. The darker the shadow, the smaller u becomes. 

Whatever fluid enters a shadow region from the left and cannot leave 

on the right must leave upwards. From equations (7) one can derive 

the following expression for ~i = (ui,vi )at the center .~i of the 

i-th sheet 

(8a) 

where, d
J

o = 1 - !xi-x 01 /h is a smoothing function, and the summation 
. J, 

is over all Sjfor which 0 ~ dj ~ 1 and Yj~ Yi. This is of course 

a small subset of all the sheets; only the sheets which lie in a 

narrow vertical strip around ui affect ui. Similarly, 

Vi K -(1+ - I)/h, (8b) 
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where 

+ 
I± = UCD - 2:± t jdj * Yj , (8c) 

+ 
IXi±h/2-xjl/h d-: = 1 - (8d) 

J 

* = min(yi'Y j) (Be) Yj . 

The sum 1:+ (resp. 1:_) is over all Si such that d~ < 
J- 1 (resp. dj ~ 1). 

The motion of the sheets is then given by 

(9a) 

(9b) 

These formulas are analogous to (4); n is a gaussian random variable 

with mean 0 and variance 2vk; it appears only in the y component 

because equations (2) take into account diffusion in the y direction 

only. 

This vortex sheet algorithm generates a velocity field ~ = (u,v) 

which satisfie~ the boundary condition u = UCD at y = CD, V = 0 at 

y = O. The no-slip boundary condition u = ° at y = 0 can be satisfied 

by the following vorticity generation procedure (see Chorin 1978): 

Continue the flow from y> 0 to y < ° by antisymmetry, i.e., ~(x,-y) = 

-u(x,y). Since t = - ~ , and both u and y change signs, we have 

t(x,-y) = t(x,y); if u(x,O) = U o ; 0, we also have a vortex sheet 

of strength 2uo at the wall. This sheet can be divided into segments 

and allowed to participate in the subsequent motion. The antisymmetry 

can be imposed by reflecting any sheet which crosses ,the wall back 

. into the fluid. One can require that all the sheets created satisfy 
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the requirement Itil ~ t max ' where t max is some reasonably small 

quantity. To do this, one may have to create more than one sheet at 

anyone point at any given time step. The sheet method can be modified 

to make it more efficient and to reduce the variance at the results 

(see Chorin 1978a). The interaction of the sheets is not singular and 

no cut-off is needed. The amount of vorticity created at the wall is 

unambiguous, and the cos,t of the calculation is small. This is of course 

balanced by the fact that the Prandtl equations are not uniformly valid 

approximations to the Navier-Stokes equations, and the transition from 

sheets to blobs involves in general a decision process which in turn is 

not unambiguous. 

Note that the antisymmetry just described cannot be used directly 

with the vortex blob method. Indeed, if u (x,-y) = -~(x,y); it does not 

follow in general that 

t(x,-y) - (- ~+ ~~) at (x,-y) = t(x,y) , 

since x does not change sign. Thus, to impose the boundary conditions 

'accurately on the blob method we shall have to use the sheet method as 
, 

a transition near the wall, see below. 

The version of the sheet method that we shall use is almost identical 

to the one described in Chorin (1978) and documented in detail in Cheer 

(1978); this includes tagging and variance reduction techniques. The 

only difference is the following: In the earlier program, sheets are 

created at the wall, and on the average, half of them disappears at each 

step. In the present program, we make exactly half of them disappear 

at each step and this reduces the total number of sheets retained. This 
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is accomplished as follows: At each point at which sheets are 

created, their intensity is adjusted so that their number is even. 

A rejection technique (Handscomb and Hammersley (1966» is then used 

to insure that any successive n's used at well have differing signs. 

This rejection technique can be used only at the wall, or else it 

would destroy the independence of the successive n's in the interior 

and thus fail to describe the diffusion process correctly. 

The sheets and the blobs are objects of a very similar nature, they 

are determined by the same parameters, position and intensity. A 

computational element (xi' Yi' t i ) can be treated as either a sheet or 

a blob, depending on the circumstances. A sheet of negative intensity 

casts a shadow which shows the fluid under it, by the equation of 

continuity, this creates an upward flow to the left and a downward flow 

to the tight, just as if the sheet were a vortex. The circulation around 

a sheet of intensity t is th, and if the sheet becomes a blob, the 

latter's intensity must be K = th, in agreement with equation (5). 

These facts can be used to create a transition between the blobs 

and the wall. Pick a length 1 such that a blob has a small probability 

of jumping more than 21 in one random jump, i.e. 1 a mUltiple of the 

standard deviation 12k/R of n. Any vortex which finds itself less than .. 

from the boundary (inside or outside) becomes a sheet and is reflected 

accordingly, and also taken into account accordingly when Uo is computed. 

If a blob is further outside the boundary than .. it is removed (presumably 

this happens rarely). If a sheet is inside the domain and its distance 

from the boundary is more than" it may become a blob again. 

The cut-off a remains to be determined. A natural condition to 
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to impose is the following: consider a collection of blobs. As they 

tend to each other and to the boundary, their interaction should converge 

to the interaction of the corresponding sheets. Consider a sheet of 

intensity t at (X,Y), as well as vortex of intensity th at (X,Y), together 

with its image vortex at (X,-Y) required to sati~fy the boundary conditions 

(the sheets need no images). If a = h/n, the velocity fields induced 

along the vertical line x = X are identical (Figure 1). The lateral 

effects will tend to each other as y + O. Thus, if a =h/n, the interaction 

of the blobs will tend to the interaction of the sheets when the blobs 

approach the boundary. Thus a = h/n is a natural choice for a. Note that 

the form (3) of , ensures that for I.!I ~ a the magnitude of u is constant. 

This is the reason (3) is used. Remarks: (i) the value of a is twice 

the value used in Chorin (1973). (ii) The choice of a has the greatest 

effect near the wall, and thus it is natural to determine the value of a 

by considering what nappens -near the wall. (iii) Our value of a is large 

compared to the mean distance between blobs which is of order R-l / 2; this 

is in agreement with the requirements in RaId's proof. In summary the 

computational elements should be viewed as sheets near the wall, and as 

blobs far from the wall. 

A heuristic error analysis in Chorin (1973) provides error estimates 

for the expected value of the velocity field produced by our methods in 

the form error = O(k) +O(R-l / 2 ), R = Reynolds number based on a velocity 

and length scales typical of the flow away from the wall. RaId's analysis 

of the inviscid case suggests that this could be reduced to O(k2) + O(R-1/2 ) 

if the time integration were carried out more accurately. The standard 

deviation of a smooth functional of the velocity should be O(R-l / 2 ). 
l 
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Application of the Numerical Method in Two Dimensions. 

In this section we describe the application of the vortex methods 

to the specific problem at hand. Note that if the sheet method is used 

by itself on the flat plate problem and if it converges in the mean 

to a stationary solution of the Prandtl equations (2), that solution 

is a function of the similarity variable ~ only; more specifically, 

if two computer runs are made, with the same numerical parameters k, h, 

tmax,etc, the same sequence of random numbers, and the same impulsive 

initial conditions, but with two distinct values of v, the resulting 

computed solutions will be identical for equal values of y/IXV and x. 

These facts are straightforward consequences of equations(8) (see 

Chorin, 1978b). As a consequence, the instability of the boundary layer 

cannot be seen with the sheet method, and our main tool will be the 

blob method. We shall use the sheet method for the following limited 

purposes only·: (i) to provide a rational argument in favor of the value 

a = h/TI; (ii) as a vorticity creation algorithm, (iii) as a way of imposing 

an approximate Blasius flow before allowing unstable modes to grow; and 

(iv) as a diagnostic tool. . 

The number of vorticity elements required to describe the flow is 

large, since enough of them must be included to resolve the Tollmien

Schlichting waves, and those have a short wave length. From linear 

stability theory (see Lin, (1966) and Jordinson, (1970» one finds that 

the wave number of unstable Tollmien-Schlichting waves is between roughly 

0.1/ 6 and 0.4/ 6 for moderate values of R6, say very rougly 0.3/6 =0.2/1iV. 

The c~rresponding wave length is -10TI/iV the number of waves between 

o and x is roughly x divided by 10TIIXV , i.e. - R6/50. The first 
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unstable modes occur when Ro - 500, i.e., one has to be able to resolve 

at least 10 waves between the leading edge and the first occurence of 

growing modes. One can also see that the time period is correspondingly 

small. For this reason stability calculations based on the Navier-Stokes 

equations are very expensive indeed (see e.g. Fasel (1976». 

There is an additional restricting constraint in the present work. 

It is interesting to compare the behavior of the growing modes in two 

dimension with the corresponding behavior in three dimensions; the two 

cases are quite different, and the contrast is very instructive when 

one is interested in the transition to turbulence. We wish to use 

comparable numerical parameters in two and in three dimensions, so that 

the comparison of the results be believable; the cost of three dimen

sional calcualations is of course much larger even than the cost of two 

dimensional calculations; we must therefore look for ways of representing 

the boundary layer which are as economical as possible and yet exhibit 

a correct behavior. 

There is no obvious way in which the steady Blasius profile can be 

imposed exactly on our array of vortex elemen,ts at the initial time. On 

the other hand, a calculation which starts from impulsive initial data 

contains.a large and rather long-lived transient component whose behavior 

is not easy distinguishable from that of a growing mode. Part of this 

problem can be removed as follows: Start the calculation by using the 

sheet representation only (wllich is cheap and allows no instability), 

and run for a time 0 < t < To' To large enough so that the Blasius profile 

will have been. reached with some not unreasonable accuracy. At time 

t = To allow some or all of the sheetsto become blobs. In all the 
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two dimensional runs described below we set T = 1. . . 0 

It is quite obvious that we shall not be able to duplicate the 

results of linearized stability theory. The initial data will not 

coincide exactly with the Blasius solution. The perturbations will not 

be small. In Fasel (1976) the perturbation ampli-tude was about 0.05 of 

the free-stream velocity - an impossibly low level for our method. Our 

results should be compared with the behavior of finite amplitudepertur-

bations in noisy flow. The advantages of our numerical method can be 

seen from the fact that the method requires no scaling. The very same 

program could be used to solve an interior flow problem. The algorithm 

provides its own scaling and concentrates the computing effort where 

it is needed. This should be particularly important in other problems 

where thin shear layers occur at locations which are not known in advance. 

In the calculations described below, the vorticity is created at 

walls in the form of sheets, with all Itil ~ t max •. If the amount of 

vorticity needed to satisfy the boundary conditions is less than to' 

no sheets are created; here, to = t max/2. When sheets find themselves 

at y >L at time t > To' they become blobs; they become sheets again 

if y < L. .. must be such that the probability that n > 2L is small. 

We checked that as long as L '" l.Sx standard deviation of n, the results 

are insensitive to the value of L. Detailed calculations were performed 

for 0 ~ x~ 1; i.e., the typical streamwise length L is 1, and thus 

R = U~L/v = v-I. Both sheets and blobs were followed for x > 1 but 

allowed to move only with the random component in their laws of motion. 

When they reached x = X they were deleted. This was done to ensure that 

the right boundary at x = 1, which is introdueed only for computational 
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convenience, behaves as an absorbing boundary and does not affect 

adversely the calculations in the region of interest 0 ~ x ~ 1. 

We usually picked X = 2. 

The interaction of two elements at least one of which was a sheet, 

was computed as if both were sheets. Two blobs interacted as blobs. 

In the computation of the tangential velocity at the wall, all elements 

are treated as sheets. 

After much experimentation we picked t max = 0.6. This is large 

value of tm and produces a crude and noisy boundary layer; however, ax . 

it is sufficient for exhibiting the main effects. A relatively large 

value of t max reduces the number of elements in the calculation, and, 

as explained above, this is of particular importance since we intend 

to present a three dimensional calculation. The choices of hand k 

are described in the next section. 

In the steady state, the drag D(x) on the piece of boundary between 

o and x can be computed by the momentum defect formula (Schlichting 1960). 

D(x) = J~u(Um -u)dy, u = u(x,y). (lOa) 

The normalized drag is defined as 

d(x) = D(x)/Do(x), (lOb) 

where Do(x) is the Blasius drag Do(x) = 0.664lliV, which can be obtained 

from the Blasius solution. The velocities for use in formulas such as 

(10) are computed as if all the elements were- sheets. We shall use d(x) 

defined by (10) as a measure of the amplitude of the growing modes even 

when the flow is not steady and D(x) is not really the drag on [O,x]. 
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Finally, we observed that if k was too large the solution 

exhibited large oscillation of no possible physical significance. 

This is readily understood. We are solving a moderately stiff system 

of ordinary differential equations by Euler's method. The remedy is 

to reduce k. k ~ h is adequate. 
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Numerical Results in Two Dimensions 

In Table I and Fig. 2 we display the normalized "drag" d(x) at 

x = 1/2 as a function of Rand t. (d(X) is the ratio D(X)/Do ' see 

formula (10) above). These calculations were made with k = h =0.05; 

the other parameters are as described in the preceding section: 

t max = 0.6, X = 2, a = h/TI. The point X = 1/2 is in the middle of the 

region of interest. In our units, \I ='R-l , and R6 = 6/\1 = 1.72 1RJ2. 

From Table I and Fig. 2 one can see that d(X) is growing for R6 =394, 

R = 105; d(X) is not growing for R6 = 122, R = 104 , and d(X) is 

initially excited but ultimately slowly decaying for Rc = 272, 

R = 5 x 104 • This last fact is debatable and the value Rc = 272 seems 

to be the approximate value of R6c. These results are reasonable in 

view of what is known from the theory and from experiments. 

In Fig. 4 we exhibit the edge of the boundary layer as a function 

of x for t=3, R=104. The edge is defined as the smallest value of 

y for which u = U~. The edge is not at infinity because we have finite 

number of vortex elements and thus the tail of the probability distribution 

of the locations of the elements is not accurately approximated. The 

layer is stable at this value of R, yet the edge is ragged and the 

layer appears to be "intermittent" (for a definition of intermittency 

see Cebeci and Smith (1974). The "intermittency" is due to the presence 

of discrete vortices; this connection will be exploited elsewhere for 

producing models of intermittency. It is obvious from Fig. 4 that 

the wave length of the growing modes cannot be determined directly from 

the instantaneous velocity distribution. However, it can be estimated 

indirectly. Consider the following question: how small must h be to 
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allow us to dist.inguish between stable and unstable layers? Suppose 

that for h> ho this distinction can be made, but for h~ ho the 

layer appears to be stable even when it should not be. Then ho is an 

estimate of the wave length of the growing modes, since when h < h 
- 0 

these modes are suppressed. In Table II we present the values of d(X) 

at X = 1/2 as a function of h for R=105. We see that 10 < h < 15, in o 

a reasonable if rough agreement with the Tollmien-Schlichting theory. 

In Fig. 3 we display the velocity as a function of P = y/1Vi at 

X = 1/2 for R = 104 and R = 105, averaged over 10 steps between t = 2.5 

at t = 3. Curve I is the laminar steady Blasius profile, and curve II 

was drawn in what appears to the eye as a reasonable neighborhood of 

the points obtained at R = 105. The fluctuations are large (as one 

may well expect since tmax = 0.6), but the points at R = 104 are in 

a reasonable agreement with the Blasius curve; curve II (an unstable 

case) has a different shape. The gradients are first sharper, then 

smaller than in the stable case. This is consistent with experience in 

. the unstable regime of thermal convection (see e.g. Chorin (1967». It 

is also consistent with data for a turbulent boundary layer in the 

following sense: The Tol1imen-Schl1chting waves are large scale struc-

tures in comparison with boundary layer thickness, while in the stable 

regime there are no organized structur~s. In the turbulent regime one 

can associate a velocity with an eddy size; the changes in the profile 

due to the transition from the stable to the unstable regime should be 

of the same nature as the changes in the velocity profile which occur 

when the eddy size increases. This is indeed the case" (see Favre et 

aI, (1967); their data are reproduced in Lighthill, (1970». 
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A typical run from t' = 0 to t = 3 with the numerical parameters 

used here took about 10 minutes on the UC Berkeley CDC 6400 Computer. 

At the end of the calculation, there were about 200 sheets and 300 blobs. 

f 
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Table I 

Drag as a Function of Reynolds Number and Time 

R = 10000 R = 50000 R = 100000 
t (R6 = 122) (R6 = 272) (R6 = 384) 

1 1.11 1.11 1.11 

1.5 1.23 1.87 1.97 

2 0.89 1.18 1.39 

2.5 1.15 1.44 1.57 

3 .77 1.25 1.65 

Table II 

Drag as a function of h, R= 100000; R6 = 384 

h=1/20,k=1/20 { t = 1 1.5 2 2.5 3 
d = 1.11 1.97 1.39 1.57 1.65 

h=1/15,k=1/15 { t = 1.27 2 2.67 3.33 
d = .98 1.48 1.66 1. 70 

'''''-
h=1/1O,k=1/l0 { t = 1 2 3 

d = .98 1.10 1.08 
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The Physical Problem in Three Space Dimensions 

We now consider the three dimensional version of the precedin~ 

problem. 

Consider a semi-infinite flat plate placed on the half plane 

z = 0, x > O. A fluid of density I occupies the half space z > O. 

At time t < 0 the fluid is at rest, at t=O the fluid is impulsively 

set into motion with velocity UeID = 1. The Navier-Stokes equations 

in three dime'nsional space can be written in the form: 

(l1a) 

i = curl u , (lIb) 

div u = 0 • (lIe) 

u = (u,v,w) is the velocity vector, and ~ = (x,y,z) is the 

position vector. The boundary conditions are 

(12a) 

U a 0 for z = 0, x > 0 , (l2b) 

.!.w. 3y a 0 for z = 0, x < 0 • (12c) 

Appropriate Prandtl equations can also be written. We shall not 

need them in this paper. The only fact about three dimensional boundary 

layer approximations that we shall use is the following: The vertical 

component of the vorticity vanishes, i.e., for a solution of the Prandtl 
, . ' 

equations, 1 - (t l ,t2 ,0). 
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The Prandtl equations in three dimensions admit a two dimensional 

solution, the Blasius solution. That solution is unstable at high 

enough R. Squire's theorem (Lin, (1966), p. 27) states that the problem 

of instability to three dimensional infinitesimal perturbation is 

equivalent to a two dimensional problem at lower R. 

Once the two dimensional perturbations begin to grow, several 

striking phenomena occur. In particular, before turbulence sets in, 

streamwise vortices (i.e. vortices whose axis is parallel to the mean 

flow) make their appearance. Intense secondary instabilities follow, 

and spots of intense motion emerge at random locations. Experimental 

investigations of boundary layer instability can be found in Klebanoff 

et al (1962), 'Kline et al (1967). Experimental investigations of 

boundary layers, in which phenomena resembling those which first arise 

immediately after the onset of instability persist and may be responsible 

for some of the observed features, are described e.g. in Favre et al. 

(1967), Kline et al (1967), Willmarth (1976); theoretical aspects of 

several aspects of instability are found in Greenspan and Benney (1967), 

Benney (1960), Lighthill (1970). One of the major conclusions from the 

experimental data (see in particular Klebanoff et al., 1962) is that the 

. perturbed flow is periodic in the transverse direction (i.e., y direction). 

It is therefore natural to consider in three dimensions equations (11) 

with the added periodicity conditions 

u(x,y+q,z) = u(x,y,z), i(x,y+q,z) ~ ~(x,y,z) , (13) 

etc. Furthermore, from Klebanoff et al (1962) we conclude that q is 

roughly equal to the wave lenp,th of the first unstable Tollmien-Schlichting 
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.waves; roughly, q = 0.1 in our units. We shall therefore be solving 

equations (11) with the boundary conditions (12) and (13), and 

q = 0.1. 



-27-

The Numerical Methods in Three Dimensions 

We consider first the three dimensional analogue of the blob 

method. The three dimensional problem is more difficult because the 

vorticity 1 is now a stretchable vector quantity which must satisfy 

div 1 = o. 

In earlier three dimensional calculations (Leonard, (1975), (1977), 

Del Prete (1978), Chorin, (unpublished», the vorticity field was re-

presented as a sum of vortex filaments. The difficulties with this 

approach are: (i) a huge amount of bookkeeping is required to keep track 

of the changing vortex configurations; (ii) there is no obvious way to 

generate the filaments at the boundary in a consistent manner. We bypass 

these difficulties by representing the vorticity as a sum of vortex segments 

(Fig. 5). Each vortex segment moves in the flow field. induced by all the 

others. The condition div 1 = 0 will be satisfied only approximately. The 

segments have no independent physical significance. The two dimensional 

blobs do not have one either; physical vortices or vortex tubes are 

expected to emerge from the superposition of the computational blobs or 

segments. A segment A is defined by seven quantities: The coordinates 

~(l) = (x(l), y(l), z(l» of the center of its base, the coordinates 

~(2)= (x(2),y(2), z(2» of the center of its top, and its intensity K. We 

shallwrite Ai = (xil), yP), zfl),xF), yF), zF), K i ), i=l. •• ,N, 

N = number of segments. The base and the top are circles of radius 

a, (the cut-off), which will be determined below. 

Given a vorticity yield 1 (!.), the velocity field in a fluid which 
. . 

fills out the whole space is given by the Biot-Savart formula (see e.g. 

Batchelor, (1967»: 
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1 fax ~(.E.') 
~(.E.) = - - dr' 41T 3 -

a 
(14) 

a = r - .E.', a = I~I . 

If the vorticity field is a sum of N closed vortex lines with the 

i-th line having intensity Ki , (14) becomes 

u(E) = - !1T ~ Ki r 
i~l Jf i - th line 

a x s 
3 ds • 

a 

(15) 

~ = ~(.E.') is the unit tangent vector to the i-th line at rt, ds = ds(r') 

is the arc length along the i-th line, and as before a = r-r'. We 

now seek an interaction law between vortex segments which will approximate 

the motion .induced by (14) or (15). 

Inside the segment the velocity field must be kept bounded, just 

as is the case in two dimension. Furthermore, the field must be modified 

inside the segments in such a way that the segments will be compatible 

with the boundary calculations (see below). The problem of the finding 

the correct formulation of the vortex method in three dimensions is difficult, 

(see e.g. Leonard (1977». The formulation offered here is plausible but 

not rigorously justified. 

We require that the motion of a vortex ring or line made up of 

vortex segments should preserve the shape of the ring or line. This 

can be accomplished by ensuring that the configuration of the vectors 

a and of the velocity vectors which enter the formula for the motion of 

the tips of the segment is the appropriate translate of the corresponding 

configurations which determine the motion of the bases. Thus, let 

Ai' Aj be two vortex segments; define 
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The velocity fields G(~), G(~) induced by A
J
" at r(l) and r(2) 

-:-iJ -iJ 

will be approximated by: 

If a~~) > a and a(~) > a: 
1J iJ -

(1) 
G(1) = -K j !4.j x ~ 
-ij 4n «1»3 aij 

(2) 
_ -Kj ~j x~ 

- 4n «2»3 aij 

If either ai(~) < a or ai(~) < a . J J 
(1) 

(1) -Kj ~. x s. 
G - -.£oJ -] 
-=-:l.j - 4n 2 (1) 

(1 a
ij 

. (2) 
G(2) = -Kj ~j x '!j 
-ij 4n (12 (2) 

. aij 

(16a) 

(16b) 

(17a) 

(17b) 

The equations of motion for each segment 'can now be obtained by 

summing the contributions of all the other segments and then adding to 

that sum the appropriate random component. This yields 

r(l)n+l = r(l)n + k I G(~) + n 
-i -i j,&l -iJ . 

(18a) 

r(2)n+1 = r(2)n + k I G(2) + !I. 
-i -i j,&l -ij ~ 

(18b) 
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with nl' n2' n3' gaussian random variable with means 0 and variances 

2k/R, independent of each other. ~ in (18a) is identical to ~ in 

(18b), since diffusion does not introduce rotation or stretching. 

One can write the boundary layer equation in three dimensions 

and solve them by a method in which the computational elements are 

pieces of a vortex sheet (="tiles") with sides hI' in the x direction 

and h2 in the y direction. Each tile carries a two dimensional vortex 

with components tl' t2. As observed earlier, t3 = 0 in the boundary 

layer equations. However, we shall use the tiles only near the 

boundary, where vortex stretching is presumably negligible, or to 

create an initial Blasius profile, in which stretching is exactly 

zero. Therefore, the boundary layer equations we shall be solving 

reduce to 

div u = 0, u = (u,v,w) • 

The'se equations can be solved by a straightforward extension of the sheet 

method described earlier. No 'vortex stretching will be taken into account, 

and we shall not take the trouble to write out the equations in full. 

The rejection and variance reduction techniques carry over from the 

two-dimensional case. Care is taken to ensure that "t~+t~ ~ t max • 
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A tile created near the wall can become a segment if t > T or 

if zi > 1. A segment which falls below 1 becomes a tile again. The 

transformation of tiles into segments (and vice versa) must obey the 

following conditions: 

(i) A tile must become a segment parallel to the wall; i.e., 

if a tile (xi' Yi' zi' tli' t 2i ) becomes a segment 

(xil),yil),zil),xi2),yi2),zf2),Ki) we must have 

Z(2) - z(2) - 0 i i - . 09a) 

(ii) A flow which is two dimensional when described by tiles must 

remain two dimensional when described ,by segments. The two dimensionality 

of a flow described by' segments will be perserved only if the flow fields 

seen by the tips of the segments are translates of the flow fields 

seem by the bases, with a translation vector normal to the plane of the 

flow and pointing in the direction of a fixed normal n to that 

plane. 

(iii) The stretching of the several segments represents the stretching 

of vorticity, which will be represented accurately only if the length 

of the segments is reasonably small. A reasonable normalization of 

that length in our problem is 

Y
(2) _ yO) = h 
i i 2 when a segment is created. (19b) 

(iv) The circulation around a vortex line made up of tiles must 

equal the circulation around a vortex line made up of segments. If 

yi2) - yfl) is normalized by (19b) this requirement leads to 
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(19c) 

where i' = (t 1i ,t 2i ), ~ is the fixed normal to the plane of the flow 

and sgn(a) = 1 if a ~ 0, sgn(a) = -1 if a < O. 

The remaining connecting formulas between segments and tiles are 

obviously 

x(l) 
i = xi' (l9d) 

yP) = Yi ' (1ge) 

z(l) = zi • (19f) i 

Formulas (19) are of course invertible, and the computational elements 

can be treated as either tiles or segments, as the occasion warrants. 

When two segments interact, their interaction is given by formulas 

(19); when a segment and a tile interact, they are both viewed as tiles. 

Finally, the cut-off s must be determined. We must require that 

if we consider on one hand the interaction of two infinite vortex lines 

parallel to the y axis represented by segments, and on the other hand 

the interact~on of the same vortex lines represented by tiles, the 

former should approach the latter as the lines approach the wall. This 

requirement obviously reduces to the condition imposed on a in two 

dimensions, and yields a = hl/~' This conclusion is of course legi-

timate only if most of the vorticity does indeed point in a direction 

parallel to the y axis. 
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Application of the Numerical Methods in Three Dimensions. 

In this section we discuss some of the features of the numerical 

method which are specific to the particular application at hand. Most 

of the numerical parameters are chosen just as they were chosen in 

the two-dimensional case; in particular, t and L. We picked 

hI = k = 1/15, since the two-dimensional calculations showed that this 

was a minimal but adequate choice. We picked h2 = q/4, after some 

experimentation showed that this value was sufficient to exhibit 

important effects. 

The two major difficulties we encountered in .three dimensions were: 

the large amount of computational labor, and the difficulty in imposing 

periodic boundary conditions on a grid-free method. The amount of 

labor is large not only because three-dimensional calculations are always 

more costly than two-dimensional calculations, but also (and especially) 

because the specific nature of the secondary instabilities which arise 

in three dimensions (see the next section) requires the creation of 

large amounts of vorticity at the walls. In consequence we used ~max = 1. 

This value seems to yield results which are compatible with two-dimensional 

results obtained with smaller values of ~max' but it is obviously so 

large that one may legitimately argue that what we have is a model rather 

than an approximation. 

Periodic boundary conditions can be imposed on a vortex calculation, 

but the price in computing labor is high. There again we did the least 

we could reasonably do. For each vortex segment with base located at 

at (x, y, z) (or its image created to satisfy the normal boundary 

condition, with a base at (x,y,-z),) we created two more segments, based 
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at (x,y±q,z), q = the period and took their velocity fields into 

account when we moved the-segment. Similarly, new tiles must be 

created outside the strip 0 ~ y ~ q with iocations and strengths 

determined by periodicity. Some rather complex programming is needed 

to keep track of the several image systems as the tiles become 

segments and vice versa. 

Finally, we note that if tl = 0 at t = 0, i.e., if there is no 

streamwise vorticity at all at t = 0, none will ever be created by 

our algorithm. Thus, if we are to observe the effects of streamwise 

vorticity, we must introduce some by artificial means. We proceeded 

as follows: At t = 0, for one time step, we changed the velocity at 

infinity. Instead of ~(x,y,~) = (U~,O,O) we set 

!!.(X,y,CD) = 
for .9. < y < 2!L 

4 4 
elsewhere 

We usually picked A = 10-3 (note that U~ = 1). For t > k, we reverted 

to u{x,y,~) = (U~,O,O) everywhere. The effect of this initial 

perturbation is to create a small streamwise vortex at the boundary, 

whose subsequent history is determined by diffusion, transport, and 

stretching. 
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Numerical Results in Three Dimensions 

Calculations done in three dimensions with A=O (i.e. with no 

perturbation which could trigger three dimensional effects) produce 

results similar to the results of two dimensional calculations. 

They afford a check on both, but are not worth discussing separately. 

Even a very small value of A (i.e. a very small three dimensional 

perturbation) has a substantial effect at all values of R we tried. 

First of all the amplitude of the three dimensional motion grows slowly 

in time. The reason seems to be that a streamwise vortex produces 

streamwise vorticity at the wall; it then moves some of it away from 

the wall; the vorticity which is moved away from the wall has the 

effect of amplifying the initial motion induced by the streamwise vortex 

(see Figure 6). However, it is easy to see that this amplification 

does not produce an increase in the total amount of streamwise vorticity. 

As a result of this secondary motion, the computed boundary layer 

thickness 6 increases. 6 at (X,Y) is defined by 

Indeed, the part of the boundary layer which expands can expand sub-

stantially, while the part which contracts cannot contract below zero. 

In Figures 7 and 8 we plot the ratio 6/6b where 6 = computed boundary 

layer thickness at X = 1/2 averaged over a period in y, and 6b = boundary 

layer thickness at X = 1/2 computed from the steady Blasius solution. 

In Figure 7, R = 20000. Note that at t = 3, R6 computed with the steady 

6 is Rc =187, and thus the layer should be steady. However, if R6 is 

evaluated with the computed boundary. layer thickness, Ro at X - 1/2 
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_ is approximately 300, and R6 at X = I is approximately 440, well over 

the value at which the layer because unstable in the two-dimensional 

calculation. In F.igure 8, R=IOOOOO, and the same effect is reproduced. 

The computed value of the drag are not greatly affected by this 

thickening of the layer. (This is quite plausible, in view of the 

extra factor u in the integrand in the formula for the drag; the 

effect of this factor is to reduce the dependence of the drag on the 

velocity profile near the wall.) 

When the layer becomes unstable to Tollmien-Schlichting waves, 

the streamwise vorticity begins to grow. The possible mechanisms 

for this growth are well known: The waves stretch lines; furthermore, 

they can create situations in which a horizontal streamwise line 

tilts away from the horizontal; its higher parts move faster than 

the lower parts, and stretching results. All segments are initially 

created with length h2• If they stretch their length becomes 

I.!.F )-.!.P) I· The ratio g = I.!.F)-.!.P) IIh2 is the stretching ratio. 

In Figures 8 and 9 we plot g, the average value of g, averaged 

over all segments. It is seen to grow slowly with time. These 

figures are for R = 20000 and 100000. Note ·that at the time when 

g begins to grow with R = 20000 the layer had become thicker as a 

result of seco~dary motion and R6 is larger than the critical value. 

In Figure 9 we also plotted s, the total streamwise vorticity, and 

r, the ratio of newly created streamwise vorticity to nearby created 

transverse vorticty. Roughly r is an indication of the rate of growth 

of s. All these quantities are seen to grow slowly and steadily. The 

growth can be started earlier by increasing A. At value of R smaller 

~, 
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than 10000, we never did succeed in inducing such growth within a time 
~ 

we could afford and without using very large values of A (i.e. A of 

order 1 - not a plausible value for our problem). 

The more interesting graph in figures 9 and 10 is the graph of 

the maximum value Smax of the stretching ratio. This value can become 

very large (~17), which indicates that some vortices are stretched 

by a large amount. This suggests an extraordinary spottiness of 

the stretching process. This spottiness can be explained as follows: 

because our method is random, the local velocity profile can differ 

from point to pOint. At some points the local profile may be much 

more unstable than at others, and as a result secondary instabilities, 

whose growth rate is very large (Greenspan (1962» will occur at some 

points and not at others. One can also argue that as a result of 

the variation in local profiles, at some points the segments may depart 

from the horizontal more than at others, and therefore the stretching 

mechnanism is more intense there. These two explanations may of course 

be identical. These "spots" make the major contribution to the growth 

of the mean quantities. Their presence indicates that the layer 

contains a mechanisms for amplifying greatly small differences in local 

conditions. However, one should remember that our numerical layer is 

much noisier than a real layer is likely to be. 

In Table III we plot the values of the streamwise component of 

u at x = ihl , Y = jh2 , z = 0 and R = 2 x 105 , t = 2.6. The details 

of the fluctuations do not seem to have any particular physical sig-

nificance. The values of Rand t were picked somewhat arbitrarily; 

the table shows the spottiness of the field, and also shows that, as 
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expected, the streamwise component of t increases as the layer 

thickens. 

When g increases, more and more segments and tiles have to be 

cre~ted; this is why we needed a large value of t max • A further 

consequence is that computing for larger times than what we displayed 

is more expensive than we could afford. A typical run for 0 < t < 3 

took about one hour of CDC 6400 time at Berkeley. 

/~ .. 
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Table III 

Streamwhe Vorticity at the Boundary, R = 2 x l()5 , t = 2.6 

j=l 2 3 4 

i=l' .000 .000 .000 -.001 

2 .000 .000 .000 .000 

3 .000 .000 .000 ~OOO 

4 .003 .000 .000 .000 

5 .028 .000 .001 .000 

6 .000 .000 .000 .001 

7 -.046 -.012 .001 .001 

8 -.046 -.004 -.008 -.010 

9 -.038 -.028 -.002 -.244 

10 -.187 -.054 -.007 -.093 

11 .091 -.065 .030 .076 

12 -.062 -.310 .136 .205 

13 2.260 .507 .480 1.070 

14 -.077 .150 .826 -.621 

15 -.552 .422 .001 -.273 
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Conclusions 

Our vortex methods, including the new three dimensional version 

and the new vorticity creation procedure, seem to be able to reproduce 

important features of boundary layer behavior in two and three-dimen

sions and at Reynolds numbers where instability is expected. The 

three-dimensional calculation does exhibit a growth of streamwise 

vorticity ancf spottiness;, however, it was not performed for times 

long enough for anything resembling fully developed turbulence to be 

present. Unlike, other methods" our methods are not limited at high, 

R by the difficulty in distinguishing real from numerical diffusion, 

they are however limited, like other methods, by the fact that effects 

not resolved cannot be seen; i.e., i~ there are not enough computational 

elements to represent a phenomenon, that phenomenon will not be observed. 

Since fully turbulent flow is very complicated, our methods do not 

obviate the need for careful modeling; they may indeed be compatible 

with such modeling. 
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List of Figure Captions 

Figure 1. Shee~s and vortices near a wall. 

Figure 2. Growth of an unstable layer in two dimension. 

Figure 3. Velocity profiles in two dimension. 

Figure 4. Boundary layer shape. 

Figure 5. A vortex segment. 

Figure 6. Amplification of streamwise rotation. 

Figure 7. Growth of boundary layer thickness, R = 20000. 

Figure 8. Growth of boundary layer thickness, R = 100000. 

Figure 9. Amplification of boundary layer disturbances in three 

dimensions, R = 20000. 

Figure 10. Amplification of boundary layer disturbances in three 

dimensions, R = 100000. 
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