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Sintering is a complex process which has been extensively studied 

but is still not completely understood. The present objective is to 

approach the subject from a phenomenological overview and to explore the 

thermodynamic and geometric factors that would play a role in the process 

of densification of model compact systems consisting of crystalline 

spheres of uniform size in regular and irregular packing that form grain 

boundaries at every contact point. A further assumption is the presence 

of isotropic surface and grain boundary energies. Although such systems 

are unrealistic in comparison with normal powder compacts, their poten~ 

tia1 sintering behavior can be analyzed and provides one limiting set of 

behavior conditions which can be looked upon as one boundary condition. 

Furthermore, this approach is logically realistic since it is easier to 

understand and provides a basis for understanding the more complex real 

powder systems. The subject will be treated step by step. 

A thermodynamic driving force, negative free energy change, exists 

in any system that is undergoing mass transport processes associated 

with densification. In sintering of crystalline single phase grains the 

driving force constitutes reduction of the overall interfacial free 

energy and can be expressed by 

O(GSyst) = O~YsvdASV + O~YGBdAGB (1) 

which says that the change in free energy of the system is equal to the 
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change of the integrated surface free energy (negative) plus the change 

of the integrated grain boundary energy (positive). When the sum is 

1 2 
negative the densification process proceeds.' In real systems the 

specific free energies, YSV and YGB , would have several values because 

of their anisotropic nature or dependence on crystallographic orientations. 

MODEL SYSTEMS 

The first hypothetical step is the analysis of the sintering of two 

spheres with assumed isotropic interfacial energies. A grain boundary 

must form which grows as the centers of the spheres move toward each 

other by an amount indicated as h in Fig. 1. With occurrence of this 

shrinkage the most logical path for mass transport is along the grain 

boundary to the neck and from the neck to the free surfaces of the 

spheres. 3 This amounts to a two-step process. When the second step is 

faster, the spnerical shape of the free surfaces is maintained and the 

dihedral angle formed along a plane passing through the centers of the 

spheres, as shown in the upper sketch of Fig. 1, increases with shrink-

age. When dG becomes zero, the equilibrium angle is reached; further 

shrinkage does not occur because a positive change in dG would occur due 

to the second term becoming larger than the first. The following ~quation 

holds: 

(2) 

This configuration then constitutes metastable equilibrium for the 

system with an equilibrium dihedral angle. It dhvuld also be noted that 

the grain boundary can not move in this configuration because any movement 

would cause an increase of grain boundary area which would not be possible 

thermodynamically. When the first step is faster, a neck forms with an 
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equilibrium dihedral angle. The neck surface, however, exhibits reverse 

curvature in pllnes passing through the centers of the spheres, as shown 

in lower sketch of Fig. 1. As mass transport occurs from the neck to 

the free surfaces during the second step upsetting the equilibrium di-

hedral angle, the faster first step brings the angle back to equilibrium 

causing shrinkage. As this process continues, the reverse curvature 

keeps decreasing until the top configuration and eq~ilibr~.um are reached. 

The next step is an analysis of the specific driving forces for 

mass transport. These are due to the presence of reverse curvature in 

free surfaces and nonequilibrium dihedral angles. Figurt 2 indicates a 

cross-section through a neck region in the early stages of sintering 

when reverse curvature exists, illustrated by points 3 and 4 in the 

sketch', the dihedral angle is~. The Y l'S actually the sum of Y GB S S 
2 1 

and y which in the model system are equal but in most real systems 
SlS2 

are not equal. Then, it can be seen that y < YS V and Y < Y
SIV S2Sl 2 SlS2 

and that 

The maximum value for YGB/YSV becomes 2 when ~ is equal to zero. The 

chemical potentials for vacancies, and thus the vacancy concentrations, 

would follow the following sequence at non-equilibrium: 

~4 > ~3 > ~2 > ~l ~ ~B (4) 

With an equilibrium dihedral angle, ~l = ~2 = ~3' 

In the presence of reverse curvature ~4 > ~3; the flow of vacancies is from 

site 4 to site 3 and atoms to site 4, p~obably by bulk diffusion in the 
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near-surface region. This causes ~3 to become greater than ~2; matter 

then moves from site 2 to site 3 followed by movement from site 1 to 

site 2 causing the centers of the spheres to move towards each other. 

In the absence of reverse curvature and an equilibrium dihedral angle 

(Fig. la), ~l = ~2 = ~3 which does not become upset. 

The next step is an analysis of the sintering of a pore formed 

( 11) 1 f k ' 1 by 3 spheres in alp ane in cc pac 1ng. It can be seen in Fig. 

3 that as grain boundaries form at contact points and assuming that step 

2 is faster than step 1 in mass transport, the dihedral angle increases 

from zero degrees and when the pore closes, ~ is approaching 600 which 

corresponds to a YGB/YSV of 1.734. The same pattern would hold if necks 

formed at the grain boundaries (step 1 faster than step 2), just as 

discussed for the 2-sphere model. Figure 4 shows fcc packing of spheres 

(0.26 fractional void volume) along the (100), (111) and (110) planes 

without shrinkage in row A. Interpenetration and grain boundary formation 

continues until pores on the (111) plane close, as described in rig. 3, 

which is represented by row B; at this point the fractional void voll~e 

is 0.035, and the fractional linear shrinkage is 0.084. Continued 

shrinkage until the pores along (100) planes close is represented by row 

C; this requires a size reduction of the (111) plane which complicates 

the mass diffusion path. Continuing shrinkage results in the closing of 

the pores on the (110) planes and complete densification; at this point 

the fractional linear shrinkage is 0.095 and ~ is 109 0 (YGB/YSV = 1.161). 

In this model system the sintering process consists of an initial (open 

pore with no grain growth) stage and a final (closed pore with potential 

grain growth) stage; no intermediate stage represented by grain growth 
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and the presence of open pores exists. It should be noted that if the 

material system had a ratio of YGB/YSV less than 1.161, no thermodynamic 

barrier for complete densification would exist; a value greater than 

1.161 would indicate that equilibrium dihedral angles would be reached 

before the system had completely densified resulting in an end point 

density. 

The next step is to analyze the sintering of a planar pore formed 

by four spheres in a (100) plane in sc packing (0.48 fractional void 

volume). As grain boundaries grow at contact points (Fig. 5) and assum-

ing that step 2 is faster than step 1, the di.hedral angle increases and 

when the pore closes, ~ is approaching 900 which corresponds to a 

YGB/YSV of 1.416. When these planar pores close, closed pores are pre

sent since the (110) planes are not completely densified, as seen in 

Fig. 6; at this point the fractional linear shrinkage is 0.184. Continu-

ed shrinkage results in complete densification with a linear shrinkage 

of 0.196 for wh:i.ch a Y GB/Y SV ratio smaller than 1.161 is required. As 

in the fcc system, the sintering precess would consist only of initial 

and final stages It should be otserved that the maximum YGB/Y
SV 

ratio , 
permissable to f~rm closed pores decreases with less dense packings of 

\ 
spheres. This pOjtnt is further illustrated by the densification of a 

model system with! diamond cubic (dc) packing (0.68 fractional void vol

ume). The open p!acking with a small coordination number of spheres , 
I 

around a sphere ~s represented in Fig. 7. In this case closed pores form 
! 

(end of initia~stage) with ~ at 1050 which is equivalent to a YGB/Y
SV I 

ratio of 1. ~,?'6; the fractional void volume then is 0.101 and the linear 
;' 

shrinkage,lO.277. Complete densification requires a yGB/ysv ratio of 
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1.074 and indicates a shrinkage of 0.316. 

The next step is to analyze the effect of the nature of regular 

packing of uniform size spherical grains on shrinkage. Figure 8 indicates 

three types of regular packings which represent fcc, EC and dc packings, 

and the hypothetical decrease in p0rosity vs. time curves. The amount 

of interpenetration at every contact in a given time at a given tempera-

ture regardless of the type of packing is the same until closed pores are 

formed in the most dense or fcc packing. The densiflcatjon curves under 

these ideal model conditions are directly proportional to time and coin-

cide until the fcc packing closed pores form; the straighl: line continues 

until closed pores form in the sc packing; and so on. It is seen that 

the basic difference in the curves is only in the amount cf shrinkage 

that has to be realized for a given packing before closed pores form; 

this portion represents the initial stage. The closed por~ or final 

stage does not follow this linear relationship of porosity vs. time. It 

can be seen that the amount of linear shrinkage per unit liength in a , 
given time would also be the same for all packings before iany closed pores 

( 

form. 

The next step is to L;~lore the effect of sphere siz~ on 

densification rates. Illustrative schematics are shown iI' Fig. 9 which 

are based on sc packing of spherical grains. The number ,j f contacts in , , 
a unit length doubles for every decrease of diameter of Yle spheres by 

, 
half; this exponential increase is shown in the upper lejt plot. Since 

shrinkage occurs at every contact point, the amount of shrinkage and the 

amount of decrease of porosity in a given time likewise increases with 

decrease of grain size. The total shrinkage and the two stages of 
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sint.ering, however, remain constant regardless of grain size if the 

packing is the same, except for the time parameter. These points are 

illustrated by the upper right plot. Extremely fine particles, thus, 

can be considered to be reactive in comparison with coarser grain com

pacts just on the basis of particle size. 

The next step is to consider the importance of homogeneity in efforts 

to reach theoretical density. Figure 10 represents an initial close

packed plane which was sintered to complete densification to form a hex

agonal network of grain boundaries except for a pore on a grain boundary 

which formed because of some irregularity at that point, and an absent 

grain whose site became a pore. Although the small pore fulfills the 

requirement of being on a triple point, it will not decrease in size 

since it is isolated and thus the whole compact would have to decrease 

by an equivalent volume which is kinetically too slow. On the ocher 

hand, if equivalent small pores were present on every triple point, or 

uniformly distributed on the triple points, then there would be relative

ly short diffusion paths between por~s and each pore would shrink cooper

atively to realize theoretical density (assuming that the YGB/Y
SV 

ratio 

for these grains was less than 1.734 sin'~8 this packing represented a 

close-packed plane in fcc configuration). The large pore formed by an 

absent grain indicates an equilibrium configuration with equilibrium 

dihedral angles; it would thus be stable. A large pore with many grains 

coordinating it was formed in an alumina compact that l,ad organic spheres 

added during mixing which were oxidized on firing. It is shown in Fig. 

11. The equilibrium configuratio~ of the dihedral angles can be seen. 

This pore will not shrink because there is no specific driving force for 
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mass transport. 

REAL SY~l'EMS 

It is thus evident that in hyr,othetical model systems no grain 

growth, which requires grain boundary motion, can occur. In real systems, 

however, grain growth does occur at some time during the initial stage, 

i.e. whil~ open pores are still present, which corresponds to the initia

tion of the intermediate stage of sintering. Grain growth readily occurs 

during the final stage. 

The question then arises as to why grain boundaries move and thus 

grain growth occurs. The responsible factors for grain growth in real 

systems are (a) the presence of a range of grain and particle sizes and 

shapes, (b) anisotropy of surface and grain boundary energies, and (c) 

non-homogeneity due to aggregation, agglomeration and non-uniformity in 

packing. Some examples of effects due 1:0 sut:h irregularities are illus

trated in Fig. 12. The top series of sketches illustrate the interpene

tration of a large and small sphere. The grain boundary becomes curved 

because of the influence and requirements of the dihedral angle position 

due to the greater interpenetration of the smaller sphere in a given 

t.ime; this fact plus the relatively early growth of the grain boundary 

to be approximately equal to the diameter of the small sphere creates a 

situation which makes movement of the grain boundary out of a small grain 

thermodynamically feasible. 

It is an accepted fact that a curved grain boundary ean move towards 

its center of curvature. Such a movement is thermodynamically acceptable 

since its area is reduced in the process. It can be shown, however, that 

even a straight boundary can move because of the presence of anisotropy 
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in interfacial energies. In Fig. 12, for instance, two grains are shown 

for.ming a grain boundary whose energy is the sum of Y
S2Sl 

and Y
SlS2 

On 

the basis of the indicated structures it can be postulated that YS S > 
1 2 

Y
S 

~ ; therefore, the ~ and the vacancy concentration in Sl at the grain 
2"1 

boundary is greater than in 52' The grain boundary could then move into 

grain. 2. There could, however, be a reorientation of the grain boundary 

as we:'.l so that Y
SlS2 

becomes equal to Y
S2Sl 

as shown in the second 

sketch; in this position no further movement occurs be.cause of loss of 

anisotropy and the associated thermodynamic driving force. In a real 

system with anisotropy of surface energies and various grain and particle 

shapes the potential of some anisotropy and nonsymmetrical dihedral angles 

with associated potential grain houndary motion exists at every contact 

point. Such details have not as yet been worked out. 

1 
Th,~ las t sketch in Fig, 12 shows a pore on a curved grain boundary. 

It can be shown energetically that an isotropic grain boundary can not 

break al.iay from the pore unless a sufficient curvature exists in the 

grain boundary in order to have a reduction in the free energy of the 

system a3 the grain boundary straightened out. Such events lead to 

entrapped pores within the grains which literally are impossible to 

eliminate by diffusion because the entire grain would have to shrink in 

size causing difficulties of maintaining contiguity at grain boundaries. 

Another factor that causes problems in the presence of agglomerated 

or aggregated particles in the powder because they are the source of in-

homogeneities. If the particles are more densely packed than the matrix 

or if they are an assembly of fine particles, according to Figs. 8 and 9 

they would densify earlier becoming the focus for exaggerated grain 
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growth. On the other hand, if the particles are less densely packed 

than the matrix, the matrix densifies first and the particle regia 

retain a porous structure which can not be eliminated. On the other 

hand, many kinetic analyses are based on a change in pore size and 

shape; these changes are also dependent on tha factors that affect grain 

growth variations. Another factor, whose effect can be most easily 

followed by pore changes, is aggregation during sintering because of 

inhomogeneities in packing of powders and failure to form grai~ bounda

ries at all initial contact points. 

SUMMARY DISCUSSION 

Analyses of model and real systems indicate that the most critical 

facturs in realizing uniform microstructures are homogeneity and uni

formity of packing in the powder compact. If agglomerates and aggregates 

are present, processing procedures should be devised that would prevent 

their fOl~tion or, if they form, break them down either in the powder 

processing or fabrication steps. 

The starting oowders should consist of small and uniform grains 

since they then are "reactive" on the basis of prov-cding many more grain

grain contacts. If a microstructure with small grains is desired, a 

starting powder with small and uniform-sized grains is necessary. 

Furthermore, since grain growth is dependent on grain boundary motion 

which in turn is largely due to the anisotropy of structures and inter

facial energies, any additives that would reduce this anisotropy would be 

desirable. 

Although there is no unique value of YGB/ysv in a real system because 

of the anisotropy of interfacial energies, it does not exclude the 



-11-

requirement that the values for this ratio should be as small as possible. 

Theoretically, the smaller the % theoretical density of the powder com-

pacts, the smaller the YGB/Y
SV 

ratios should be to realize theoretical 

density in the sintered compacts. If the ratio is too large, a thermo-

dynamic end point density may be the result. Any additive that would 

reduce the YGB/YSV values is thus desirable. 

It is ,-~lso worthwhile to sununarize the sintering mechanisms as 

presently deduced from these model analyses. Firstly, in densifying 

systems the mass tra~sport must occur ~n two steps: movement from grain 

boundaries formed by contacts to the neck region, and from the neck 

region to the free surfaces. In most real systems a neck forms and the 

slow step in sincering is the movement of material in the neck region to 

the free surface regions due to a thermodynamic driJing force of reverse 

curvature in the fre~ surfaces. In special cases, a steady state neck 

does not form and the slow step is movement of material in the grain 

boundaries to the neck region due to a thermodynamic specific driving 

force of the presence of nonequilibrium dihedral angle formed at the 

contact grain boundary. These special cases are repr~sented by conditions 

which favor removal of material from the neck region as it moves into the 

neck and redistributing it. (Examples are sintering of MgO compacts in 

4 
water vapor atmosphere, and liquid phase sintering). 

Secondly, an identification of the stages of sintering would be in 

order since their ideptification in literature has not been consistent. 

The events that occur in the process of establishing real conta~~s and 

a steady state framework structure have been identified here as the 

PRELIMINARY STAGE which includes any rearrangement of the grains or 
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particles and formation of necks. This terminology was chosen since 

some systems may not have any preliminary stage events and the formation 

of necks may involve contributions of several mechanisms. The INITIAL 

STAGE corresponds to the period when shrinkage occurs with decreasing 

pore s:zes but with no grain growth and no formation of closed pores. 

The FINAL STAGE of sintering corresponds to the period when no open pores 

are present. Grain growth can occur during this period and can also 

continue into an annealing period after the system has reached its maxi

mum density, but not necessarily theoretical density. In real systems, 

because of a range of particle sizes and shapes and anisotropy of inter

facial energies, grain growth starts at some point in the initial stage 

which then constitutes the beginning of the INTERMEDIATE STAGF. An 

example of the effect of an intermediate stage on the kinetics is 

illustrated by the dash-curve in Fig. 9. Closed pores are progressively 

formed during this stage, but the final stage does not start until all 

open pores become closed. Inspection then indicates that the length of 

the intermediate stage is variable and is dependent on the character of 

the powder; for example, it is possible that in some systems with a 

broad particle size range the initial stage may be essentially non

existent. 

Lastly, it is evident that the nature of the mass transport or 

diffusion path is not the same for the identified three stages of 

sintering. It is then unrealistic to attempt to develop a single equa

tion based on basic principles to cover the entire sintering process 

that would be applicable to all systems. On the other hand, it is real

istic to have mathematical expressions for the sintering kinetics that 
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apply to each stage of sintering with step one as the mass transport rate 

controlling step and another set with step two as the rate controlling 

step. 
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FIGURE CAPTIONS 

1. Schematic of a two sphere model showing shrinkage: 

(a) Mass transport from grain boundary region to neck region is 

slow step, and (b) from neck region into free surface region 

is slow step. 

2. Cross-section through neck region in the early stages of sintering 

when reverse curvature exists. Text describes vacancy and mass 

transport paths. 

3. Sinter1ng of a 3 sphere pore. Pore closes and dihedral angle 

increases to 60° as sphere centers move toward each other. 

4. Shrinkage along (100), (Ill) and (110) planes in fcc packing of 

spheres. 

5. Sintering of a planar pore formed by four spheres. Pore closes 

as dihedral angle approaches 90°. 

6. Shrinkage along (100) and (110) planes in sc packing of spheres. 

7. Planar packing of spheres with a coordination of three. Greater 

interpenetration at grain boundaries is necessary to achieve 

densification in the plane. 

8. Effect of fcc, sc and dc packings of uniform size spheres on 

decrease of porosity vs. time curves. 

9. Effect of sphere size in compacts with sc packing on densification 

rates. 

10. Close packed plane in fcc packing with pore on triple point and one 

grain absent. 

11. A large pore with many coordinating grains in an alumina compact. 

It was formed by adding large organic spheres to alumina powder 
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which were oxidized on heating. 

12. Schematic examples of factors causing grain boundary motions in 

sintering compacts. 
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